CS 213, Fall 2001
Malloc Lab: Writing a Dynamic Storage Allocator
Assigned: Friday Nov. 2, Due: Tuesday Nov. 20, 11:59PM

Cory Williams cgw@ndr ew. cnu. edu) is the lead person for this assignment.

1 Introduction

In this lab you will be writing a dynamic storage allocator fo programs, i.e., your own version of the
mal | oc, f ree andr eal | oc routines. You are encouraged to explore the design spaatvely and
implement an allocator that is correct, efficient and fast.

2 Logistics

You may work in a group of up to two people. Any clarificatiomsdaevisions to the assignment will be
posted on the course Web page.

3 Hand Out Instructions

SITE-SPECIFIC: Insert a paragraph here that explains how sudents should download
themal | ocl ab- handout . t ar file.

Start by copyingmal | ocl ab- handout . t ar to a protected directory in which you plan to do your
work. Then give the command:ar xvf mal | ocl ab- handout . t ar. This will cause a number of
files to be unpacked into the directory. The only file you wél imodifying and handing in ism c. The
mdr i ver . c program is a driver program that allows you to evaluate tlop@ance of your solution. Use
the commandrake to generate the driver code and run it with the commahddri ver -V. (The-V
flag displays helpful summary information.)

Looking at the filenm ¢ you'll notice a C structuréd eaminto which you should insert the requested
identifying information about the one or two individualsneprising your programming teario this right
away so you don’t forget.

When you have completed the lab, you will hand in only one fii@ (c), which contains your solution.

4 How to Work on the Lab

Your dynamic storage allocator will consist of the follogifour functions, which are declared imm h
and defined inmm c.

i nt mm_init(void);

void *mm nal | oc(size t size);

void mmfree(void *ptr);

void *mmrealloc(void *ptr, size t size);

Themm c file we have given you implements the simplest but still fior@lly correct malloc package that
we could think of. Using this as a starting place, modify ¢h&amctions (and possibly define other private
st at i ¢ functions), so that they obey the following semantics:

e Mmi ni t: Before callingnmnal | oc mmr eal | oc or nmf r ee, the application program (i.e.,
the trace-driven driver program that you will use to evaduaiur implementation) callsmi ni t to
perform any necessary initializations, such as allocatiegnitial heap area. The return value should
be -1 if there was a problem in performing the initializatiGmotherwise.

e mmmual | oc: Thenmmnal | oc routine returns a pointer to an allocated block payload déast
si ze bytes. The entire allocated block should lie within the hesgion and should not overlap with
any other allocated chunk.

We will comparing your implementation to the versionn@l | oc supplied in the standard C library
(I'i bc). Since the i bc malloc always returns payload pointers that are aligned Ihgt8s, your
malloc implementation should do likewise and always reyte aligned pointers.

e mmf ree: Thenmf r ee routine frees the block pointed to Ipt r . It returns nothing. This rou-
tine is only guaranteed to work when the passed poirger J was returned by an earlier call to
mmnal | oc or nmr eal | oc and has not yet been freed.

e mmr eal | oc: Thenmr eal | oc routine returns a pointer to an allocated region of at leagte
bytes with the following constraints.

— if pt r is NULL, the call is equivalent tomrmal | oc(si ze) ;
— if si ze is equal to zero, the call is equivalentrtm.f r ee(ptr) ;

— if pt r isnot NULL, it must have been returned by an earlier cathteral | oc ormmr eal | oc.
The call tommr eal | oc changes the size of the memory block pointed toplby (the old
blocK to si ze bytes and returns the address of the new block. Notice teaaddress of the
new block might be the same as the old block, or it might betkffit, depending on your imple-
mentation, the amount of internal fragmentation in the déatk, and the size of theeal | oc
request.

The contents of the new block are the same as those of the oldblock, up to the minimum of
the old and new sizes. Everything else is uninitialized. é&@mple, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the neakldre identical to the first 8

2

bytes of the old block and the last 4 bytes are uninitialiZzgichilarly, if the old block is 8 bytes
and the new block is 4 bytes, then the contents of the new laoekdentical to the first 4 bytes
of the old block.

These semantics match the the semantics of the corresgdnidbt mal | oc, r eal | oc, andf r ee rou-
tines. Typeran nal | oc to the shell for complete documentation.

5 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beastprmgram correctly and efficiently. They are
difficult to program correctly because they involve a lot atyped pointer manipulation. You will find it
very helpful to write a heap checker that scans the heap askslit for consistency.

Some examples of what a heap checker might check are:

e Is every block in the free list marked as free?

Are there any contiguous free blocks that somehow escaddsming?

Is every free block actually in the free list?

Do the pointers in the free list point to valid free blocks?

Do any allocated blocks overlap?

e Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of the functiomt mmcheck(voi d) inmm c. It will check any invari-
ants or consistency conditions you consider prudent. lrmsta nonzero value if and only if your heap is
consistent. You are not limited to the listed suggestionsane you required to check all of them. You are
encouraged to print out error messages wimerc heck fails.

This consistency checker is for your own debugging duringefigpment. When you subnmmtm ¢, make
sure to remove any calls tomcheck as they will slow down your throughput. Style points will bieen
for yourmmcheck function. Make sure to put in comments and document what ye@alaecking.

6 Support Routines

The memlib.c package simulates the memory system for youardic memory allocator. You can invoke
the following functions imem i b. c:

e void *memsbrk(int incr): Expands the heap byncr bytes, wherd ncr is a positive
non-zero integer and returns a generic pointer to the figt bfythe newly allocated heap area. The
semantics are identical to the Uribr k function, except thatremsbr k accepts only a positive
non-zero integer argument.

e voi d »memheap. o(voi d) : Returns a generic pointer to the first byte in the heap.

e voi d *memheap_hi (voi d) : Returns a generic pointer to the last byte in the heap.

si ze_t nmemheapsi ze(voi d) : Returns the current size of the heap in bytes.

si ze_t nmempagesi ze(voi d) : Returns the system’s page size in bytes (4K on Linux systems

7 The Trace-driven Driver Program

The driver progranmdr i ver . c inthenal | ocl ab- handout . t ar distribution tests younm c¢ pack-
age for correctness, space utilization, and throughpug.dFiver program is controlled by a settodce files
that are included in theal | ocl ab- handout . t ar distribution. Each trace file contains a sequence of
allocate, reallocate, and free directions that instruetdiiver to call yoummnal | oc, mmr eal | oc, and
mmf r ee routines in some sequence. The driver and the trace filebasaime ones we will use when we
grade your handimm c file.

The driverndr i ver . ¢ accepts the following command line arguments:

e -t <tracedir>: Look for the default trace files in directotyr acedi r instead of the default
directory defined irtonf i g. h.

e -f <tracefil e>: Use one particulatrr acef i | e for testing instead of the default set of trace-
files.

e - h: Print a summary of the command line arguments.
e -| : Run and measurei bc malloc in addition to the student’s malloc package.
e - v: Verbose output. Print a performance breakdown for eadefita in a compact table.

e - V. More verbose output. Prints additional diagnostic infation as each trace file is processed.
Useful during debugging for determining which trace fileasising your malloc package to fail.

8 Programming Rules

e You should not change any of the interfacesmn c.

e You should not invoke any memory-management related ljozalls or system calls. This excludes
the use ofmal | oc, cal | oc,free,real | oc, sbrk, brk or any variants of these calls in your
code.

e You are not allowed to define any globalgirat i ¢ compound data structures such as arrays, structs,
trees, or lists in younm ¢ program. However, yoare allowed to declare global scalar variables such
as integers, floats, and pointersnim c.

e For consistency with thiei bc mal | oc package, which returns blocks aligned on 8-byte boundaries
your allocator must always return pointers that are aligiee8-byte boundaries. The driver will
enforce this requirement for you.

9 Evaluation

You will receive zero pointsif you break any of the rules or your code is buggy and crashegtiver.
Otherwise, your grade will be calculated as follows:

e Correctness (20 points).You will receive full points if your solution passes the aminess tests
performed by the driver program. You will receive partiaddit for each correct trace.

e Performance (35 points)Iwo performance metrics will be used to evaluate your sofuti

— Space utilization The peak ratio between the aggregate amount of memory ysttt wriver
(i.e., allocated viarm.mal | oc or mm.r eal | oc but not yet freed viarmf r ee) and the size
of the heap used by your allocator. The optimal ratio equals trou should find good policies
to minimize fragmentation in order to make this ratio as elas possible to the optimal.

— Throughput The average number of operations completed per second.

The driver program summarizes the performance of yourattody computing @erformance index
P, which is a weighted sum of the space utilization and through

T
P:wU—i-(l—w)min(l,)
Tlibc
whereU is your space utilizatior]" is your throughput, andy;,. is the estimated throughput bf bc
malloc on your system on the default traéeShe performance index favors space utilization over
throughput, with a default ai» = 0.6.

Observing that both memory and CPU cycles are expensiversyssources, we adopt this formula to
encourage balanced optimization of both memory utilizatind throughput. Ideally, the performance
index will reachP = w + (1 —w) = 1 or 100%. Since each metric will contribute at mastand

1 — w to the performance index, respectively, you should not gextoemes to optimize either the
memory utilization or the throughput only. To receive a g@utre, you must achieve a balance
between utilization and throughput.

e Style (10 points).

— Your code should be decomposed into functions and use aslébalyariables as possible.

— Your code should begin with a header comment that descriesttucture of your free and
allocated blocks, the organization of the free list, and lyowr allocator manipulates the free
list. each function should be preceeded by a header comimandéscribes what the function
does.

1The value fofT ;. is a constant in the driver (600 Kops/s) that your instruesiablished when they configured the program.

10

11

— Each subroutine should have a header comment that desuaititzé st does and how it does it.
— Your heap consistency checkamcheck should be thorough and well-documented.

You will be awarded 5 points for a good heap consistency areakd 5 points for good program
structure and comments.

Handin Instructions

SITE-SPECIFIC: Insert a paragraph here that explains how the students should hand in
their solution mm c files.

Hints

Use themdr i ver - f option. During initial development, using tiny trace files will sitifp debug-
ging and testing. We have included two such trace fidd®f t 1, 2- bal . r ep) that you can use for
initial debugging.

Use thermdri ver -v and- V options. The - v option will give you a detailed summary for each
trace file. The V will also indicate when each trace file is read, which willghgbu isolate errors.

Compile withgcc - g and use a debuggerA debugger will help you isolate and identify out of
bounds memory references.

Understand every line of the malloc implementation in thebi@ok. The textbook has a detailed
example of a simple allocator based on an implicit free ligse this is a point of departure. Don't
start working on your allocator until you understand eveinyg about the simple implicit list allocator.

Encapsulate your pointer arithmetic in C preprocessor roacPointer arithmetic in memory man-
agers is confusing and error-prone because of all the gaftat is necessary. You can reduce the
complexity significantly by writing macros for your pointeperations. See the text for examples.

Do your implementation in staged.he first 9 traces contain requestsntal | oc andfree. The
last 2 traces contain requests fagal | oc, nal | oc, andf r ee. We recommend that you start by
getting yourmal | oc andf r ee routines working correctly and efficiently on the first 9 gacOnly
then should you turn your attention to theal | oc implementation. For starters, buitceal | oc

on top of your existingral | oc andf r ee implementations. But to get really good performance,
you will need to build a stand-alorreeal | oc.

Use a profiler.You may find thegpr of tool helpful for optimizing performance.

Start early!lt is possible to write an efficient malloc package with a feages of code. However, we
can guarantee that it will be some of the most difficult anchigijcated code you have written so far
in your career. So start early, and good luck!

