CS 213, Fall 2001
Lab Assignment L4: Code Optimization
Assigned: October 11
Due: October 25, 11:59PM

Sanjit Seshiaganj it +213@s. cmu. edu) is the lead person for this assignment.

1 Introduction

This assignment deals with optimizing memory intensiveecdthage processing offers many examples of
functions that can benefit from optimization. In this lab,wi# consider two image processing operations:

r ot at e, which rotates an image counter-clockwisediy, andsnoot h, which “smooths” or “blurs” an
image.

For this lab, we will consider an image to be represented agoadimensional matrix\/, where M; ;
denotes the value df, j)th pixel of M. Pixel values are triples of red, green, and blue (RGB) \al\Vge

will only consider square images. L&t denote the number of rows (or columns) of an image. Rows and
columns are numbered, in C-style, frénto NV — 1.

Given this representation, thieot at e operation can be implemented quite simply as the combimatio
the following two matrix operations:

e TransposeFor each(i, j) pair, M; ; and M ; are interchanged.

e Exchange rowsRow is exchanged with rolV — 1 — .

This combination is illustrated in Figure 1.

The snoot h operation is implemented by replacing every pixel valuehwiite average of all the pixels
around it (in a maximum o3 x 3 window centered at that pixel). Consider Figure 2. The \&hbifepixels
M2[1] [1] andM2[N- 1] [N- 1] are given below:

Y i0 X5 oMt[i][5]
9
DA §V:_]\1f—2 M1[i][5]
4

M2[1][1] =

M2[N — 1][N — 1] =

(0,0)

Rotate by 90

(counter—clockwise)

(0,0)

(0,0 ~
Exchange

Transpose Rows

Figure 1: Rotation of an image 9)° counterclockwise

M1[1][1] M2[1][1]

-
-

smooth
—_—

4 v/

M1IN-11IN-11 M2IN-11IN-11

Figure 2: Smoothing an image

2 Logistics

You may work in a group of up to two people in solving the praofefor this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions toet assignment will be posted on the course Web

page.

3 Hand Out Instructions

SITE-SPECIFIC: Insert a paragraph here that explains how the instructor will hand out
the per f | ab- handout . t ar file to the students.

Start by copyingoer f | ab- handout . t ar to a protected directory in which you plan to do your work.
Then give the command:ar xvf perfl ab- handout . tar. This will cause a number of files to be
unpacked into the directory. The only file you will be modifgi and handing in i&er nel s. c. The
dri ver. c program is a driver program that allows you to evaluate thopmance of your solutions. Use
the commandrake dri ver to generate the driver code and run it with the commahdr i ver .

Looking at the fil&ker nel s. ¢ you'll notice a C structuré eaminto which you should insert the requested
identifying information about the one or two individualsneprising your programming teario this right
away so you don’t forget.

4 Implementation Overview

Data Structures
The core data structure deals with image representatigo. el is a struct as shown below:

typedef struct {
unsi gned short red; [+ R value */
unsi gned short green; /* G val ue =/
unsi gned short blue; /* B value =/

} pixel;

As can be seen, RGB values have 16-bit representationshitl@&lor”). An imagel is represented as a one-
dimensional array opi xel s, where thé:, j)th pixel isl [RI DX(i , j, n)] . Heren is the dimension of the image
matrix, andRl DX is a macro defined as follows:

#define RIDX(i,j,n) ((i)*=(n)+(j))

See the filedef s. h for this code.

Rotate

The following C function computes the result of rotating soeirce imagesr ¢ by 90° and stores the result in desti-
nation imagedst . di mis the dimension of the image.

void naive rotate(int dim pixel *src, pixel =dst) {
int i, j;

for(i=0; i <dinm i++)
for(j=0; j <dim j++)
dst[RRIDX(dim1-j,i,dim] = src[RIDX(i,j,dim];

return;

}

The above code scans the rows of the source image matrixingpfy/the columns of the destination image matrix.
Your task is to rewrite this code to make it run as fast as ptessising techniques like code motion, loop unrolling
and blocking.

See the filker nel s. ¢ for this code.

Smooth

The smoothing function takes as input a source imsge and returns the smoothed result in the destination image
dst . Here is part of an implementation:

voi d naive_smooth(int dim pixel *src, pixel =dst) {
int i, j;

for(i=0; i <dim i++)
for(j=0; j <dim j++)
dst[RIDX(i,j,dim] = avg(dim i, j, src); /+ Snooth the (i,j)th pixel =*/

return;

}

The functionavg returns the average of all the pixels around ¢le j) th pixel. Your task is to optimizenoot h
(andavg) to run as fast as possibléNdte: The functionavg is a local function and you can get rid of it altogether to
implementsnoot h in some other way.)

This code (and an implementationa¥ g) is in the fileker nel s. c.

Performance measures

Our main performance measurédPEor Cycles per Elementf a function takes” cycles to run for an image of size
N x N, the CPE value i€ /N?2. Table 1 summarizes the performance of the naive implertiensashown above
and compares it against an optimized implementation. Regoce is shown for for 5 different values of. All
measurements were made on the Pentium Il Xeon Fish machines

The ratios (speedups) of the optimized implementation thesnaive one will constitute scoreof your implementa-
tion. To summarize the overall effect over different valoésv, we will compute thegeometric meanof the results
for these 5 values. That is, if the measured speedup¥ fer {32, 64, 128, 256,512} are Rsa, R4, R12s, Ras6, and
Rs51- then we compute the overall performance as

R = {/Ra» x Res x Risg x Rase X Rs12

\ Test casq 1 2 3 4 5 \ \

Method Nl 64 128 256 512 1024 Geom. Mean
Naiver ot at e (CPE) 147 40.1 46.4 659 945
Optimizedr ot at e (CPE) 80 86 148 221 253
Speedup (naive/opt) 18 47 31 30 3.7 3.1
Method N| 32 64 128 256 512 Geom. Mean
Naivesnoot h (CPE) 695 698 702 717 722
Optimizedsnoot h (CPE) 415 416 412 535 56.4
Speedup (naive/opt) 16.8 16.8 17.0 134 128 15.2

Table 1: CPEs and Ratios for Optimized vs. Naive Implemeniat

Assumptions

To make life easier, you can assume thais a multiple of 32. Your code must run correctly for all suctues ofV,
but we will measure its performance only for the 5 values shiowTable 1.

5 Infrastructure

We have provided support code to help you test the corresmiegour implementations and measure their perfor-
mance. This section describes how to use this infrastrectlihe exact details of each part of the assignment is
described in the following section.

Note: The only source file you will be modifying iser nel s. c.

Versioning

You will be writing many versions of theot at e andsnoot h routines. To help you compare the performance of
all the different versions you've written, we provide a wdymgistering” functions.

For example, the fil&er nel s. ¢ that we have provided you contains the following function:

void register_rotate_ functions() {
add_rotate_function(& otate, rotate_descr);

}

This function contains one or more callsadd_r ot at e_f unct i on. In the above example,

add_r ot at e_f unct i on registers the functionot at e along with a string ot at e_.descr which is an ASCII
description of what the function does. See the Kitr nel s. ¢ to see how to create the string descriptions. This
string can be at most 256 characters long.

A similar function for your smooth kernels is provided in tile ker nel s. c.

Driver

The source code you will write will be linked with object cotiet we supply into @r i ver binary. To create this
binary, you will need to execute the command

uni x> nmeke driver

You will need to re-make driver each time you change the coder nel s. c. To test your implementations, you
can then run the command:

uni x> ./driver

Thedr i ver can be run in four different modes:

e Default modein which all versions of your implementation are run.

e Autograder modgin which only ther ot at e() andsnoot h() functions are run. This is the mode we will
run in when we use the driver to grade your handin.

e File mode in which only versions that are mentioned in an input fileraire

e Dump modein which a one-line description of each version is dumpealtixt file. You can then edit this text
file to keep only those versions that you'd like to test ushefile mode You can specify whether to quit after
dumping the file or if your implementations are to be run.

If run without any argumentsir i ver will run all of your versions default mode Other modes and options can be
specified by command-line argumentgitoi ver , as listed below:

-g: Runonlyrot at e() andsnoot h() functions gutograder modge

-f <funcfil e>: Execute only those versions specifieckinuncf i | e> (file mode.

-d <dunpfil e>: Dump the names of all versions to a dump file cakatunpf i | e>, one lineto a version
(dump modg

- : Quit after dumping version names to a dump file. To be useardam with- d. For example, to quit
immediately after printing the dump file, typé dri ver -qd dunpfile.

- h : Print the command line usage.

Team Information

Important: Before you start, you should fill in the structker nel s. ¢ with information about your team (group
name, team member names and email addresses). This infamrisgiust like the one for the Data Lab.

6 Assignment Details

Optimizing Rotate (50 points)

In this part, you will optimizer ot at e to achieve as low a CPE as possible. You should congsilever and then
run it with the appropriate arguments to test your impleragons.

For example, running driver with the supplied naive vergfonr ot at e€) generates the output shown below:

6

uni x> ./driver

Teamane: bovi k

Menber 1: Harry Q Bovik
Emai |l 1: bovi k@owher e. edu

Rotate: Version = naive_rotate: Naive baseline inplenentation:

Dim 64 128 256 512 1024 Mean
Your CPEs 14. 6 40.9 46. 8 63.5 90.9

Basel i ne CPEs 14.7 40. 1 46. 4 65. 9 94.5

Speedup 1.0 1.0 1.0 1.0 1.0 1.0

Optimizing Smooth (50 points)

In this part, you will optimizesnoot h to achieve as low a CPE as possible.
For example, running driver with the supplied naive vergfonsnoot h) generates the output shown below:

uni x> ./driver

Snmoot h: Version = naive_snooth: Naive baseline inplenentation:

Dim 32 64 128 256 512 Mean
Your CPEs 695.8 698.5 703.8 720.3 722.7

Basel i ne CPEs 695.0 698.0 702.0 717.0 722.0
Speedup 1.0 1.0 1.0 1.0 1.0 1.0

Some advice.Look at the assembly code generated forttlo¢ at e andsnoot h. Focus on optimizing the inner
loop (the code that gets repeatedly executed in a loop) dlsangptimization tricks covered in class. Theoot h is
more compute-intensive and less memory-sensitive thandhat e function, so the optimizations are of somewhat
different flavors.

Coding Rules

You may write any code you want, as long as it satisfies theviotig:

e |t must be in ANSI C. You may not use any embedded assemblygmstatements.
e |t must not interfere with the time measurement mechanism. Will also be penalized if your code prints any
extraneous information.

You can only modify code itker nel s. c. You are allowed to define macros, additional global vagaband other
procedures in these files.

Evaluation

Your solutions forr ot at e andsnoot h will each count for 50% of your grade. The score for each wdlblased on
the following:

e Correctness: You will get NO CREDIT for buggy code that caube driver to complain! This includes code
that correctly operates on the test sizes, but incorrectiymage matrices of other sizes. As mentioned earlier,
you may assume that the image dimension is a multiple of 32.

e CPE: You will get full credit for your implementations obt at e andsnoot h if they are correct and achieve
mean CPEs above thresholfisand.S; respectively. You will get partial credit for a correct inephentation
that does better than the supplied naive one.

SITE-SPECIFIC: As the instructor, you will need to decide onyour full credit threshholds S, and
S, and your rules for partial credits. We typically use a linear scale, with about a 40% minimum
if students actually tried to solve the lab.

7 Hand In Instructions

SITE-SPECIFIC: Insert a paragraph here that tells each teamhow to hand in their ker nel s. c
file. For example, here are the handin instructions we use at KU.

When you have completed the lab, you will hand in one fier nel s. c, that contains your solution. Here is how
to hand in your solution:

e Make sure you have included your identifying informatiorihie team struct iker nel s. c.

e Make sure that theot at e() andsnoot h() functions correspond to your fastest implemnentationthese
are the only functions that will be tested when we use theedtiy grade your assignement.

e Remove any extraneous print statements.

e Create a team name of the form:

— “ID"where ID is your Andrew ID, if you are working alone, or

— “ID{+IDy" where ID; is the Andrew ID of the first team member ahB, is the Andrew ID of the
second team member.

This should be the same as the team name you entered in thiustrinker nel s. c.

e To handinyouker nel s. c file, type:
make handi n TEAMEt eammane

wheret earmane is the team name described above.

e After the handin, if you discover a mistake and want to sulanévised copy, type
make handi n TEAMEt eammane VERSI ON=2

Keep incrementing the version number with each submission.

e You can verify your handin by looking in
[af s/ cs. cnu. edu/ acadeni c/ cl ass/ 15213-f 01/ L1/ handi n

You have list and insert permissions in this directory, lutead or write permissions.

Good luck!

