LLVM 22.0.0git
AArch64LoadStoreOptimizer.cpp
Go to the documentation of this file.
1//===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a pass that performs load / store related peephole
10// optimizations. This pass should be run after register allocation.
11//
12// The pass runs after the PrologEpilogInserter where we emit the CFI
13// instructions. In order to preserve the correctness of the unwind information,
14// the pass should not change the order of any two instructions, one of which
15// has the FrameSetup/FrameDestroy flag or, alternatively, apply an add-hoc fix
16// to unwind information.
17//
18//===----------------------------------------------------------------------===//
19
20#include "AArch64InstrInfo.h"
22#include "AArch64Subtarget.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/StringRef.h"
37#include "llvm/IR/DebugLoc.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCDwarf.h"
40#include "llvm/Pass.h"
42#include "llvm/Support/Debug.h"
46#include <cassert>
47#include <cstdint>
48#include <functional>
49#include <iterator>
50#include <limits>
51#include <optional>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "aarch64-ldst-opt"
56
57STATISTIC(NumPairCreated, "Number of load/store pair instructions generated");
58STATISTIC(NumPostFolded, "Number of post-index updates folded");
59STATISTIC(NumPreFolded, "Number of pre-index updates folded");
60STATISTIC(NumUnscaledPairCreated,
61 "Number of load/store from unscaled generated");
62STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted");
63STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted");
64STATISTIC(NumFailedAlignmentCheck, "Number of load/store pair transformation "
65 "not passed the alignment check");
66STATISTIC(NumConstOffsetFolded,
67 "Number of const offset of index address folded");
68
69DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming",
70 "Controls which pairs are considered for renaming");
71
72// The LdStLimit limits how far we search for load/store pairs.
73static cl::opt<unsigned> LdStLimit("aarch64-load-store-scan-limit",
74 cl::init(20), cl::Hidden);
75
76// The UpdateLimit limits how far we search for update instructions when we form
77// pre-/post-index instructions.
78static cl::opt<unsigned> UpdateLimit("aarch64-update-scan-limit", cl::init(100),
80
81// The LdStConstLimit limits how far we search for const offset instructions
82// when we form index address load/store instructions.
83static cl::opt<unsigned> LdStConstLimit("aarch64-load-store-const-scan-limit",
84 cl::init(10), cl::Hidden);
85
86// Enable register renaming to find additional store pairing opportunities.
87static cl::opt<bool> EnableRenaming("aarch64-load-store-renaming",
88 cl::init(true), cl::Hidden);
89
90#define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass"
91
92namespace {
93
94using LdStPairFlags = struct LdStPairFlags {
95 // If a matching instruction is found, MergeForward is set to true if the
96 // merge is to remove the first instruction and replace the second with
97 // a pair-wise insn, and false if the reverse is true.
98 bool MergeForward = false;
99
100 // SExtIdx gives the index of the result of the load pair that must be
101 // extended. The value of SExtIdx assumes that the paired load produces the
102 // value in this order: (I, returned iterator), i.e., -1 means no value has
103 // to be extended, 0 means I, and 1 means the returned iterator.
104 int SExtIdx = -1;
105
106 // If not none, RenameReg can be used to rename the result register of the
107 // first store in a pair. Currently this only works when merging stores
108 // forward.
109 std::optional<MCPhysReg> RenameReg;
110
111 LdStPairFlags() = default;
112
113 void setMergeForward(bool V = true) { MergeForward = V; }
114 bool getMergeForward() const { return MergeForward; }
115
116 void setSExtIdx(int V) { SExtIdx = V; }
117 int getSExtIdx() const { return SExtIdx; }
118
119 void setRenameReg(MCPhysReg R) { RenameReg = R; }
120 void clearRenameReg() { RenameReg = std::nullopt; }
121 std::optional<MCPhysReg> getRenameReg() const { return RenameReg; }
122};
123
124struct AArch64LoadStoreOpt : public MachineFunctionPass {
125 static char ID;
126
127 AArch64LoadStoreOpt() : MachineFunctionPass(ID) {}
128
129 AliasAnalysis *AA;
130 const AArch64InstrInfo *TII;
131 const TargetRegisterInfo *TRI;
132 const AArch64Subtarget *Subtarget;
133
134 // Track which register units have been modified and used.
135 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
136 LiveRegUnits DefinedInBB;
137
138 void getAnalysisUsage(AnalysisUsage &AU) const override {
141 }
142
143 // Scan the instructions looking for a load/store that can be combined
144 // with the current instruction into a load/store pair.
145 // Return the matching instruction if one is found, else MBB->end().
147 LdStPairFlags &Flags,
148 unsigned Limit,
149 bool FindNarrowMerge);
150
151 // Scan the instructions looking for a store that writes to the address from
152 // which the current load instruction reads. Return true if one is found.
153 bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit,
155
156 // Merge the two instructions indicated into a wider narrow store instruction.
158 mergeNarrowZeroStores(MachineBasicBlock::iterator I,
160 const LdStPairFlags &Flags);
161
162 // Merge the two instructions indicated into a single pair-wise instruction.
164 mergePairedInsns(MachineBasicBlock::iterator I,
166 const LdStPairFlags &Flags);
167
168 // Promote the load that reads directly from the address stored to.
170 promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
172
173 // Scan the instruction list to find a base register update that can
174 // be combined with the current instruction (a load or store) using
175 // pre or post indexed addressing with writeback. Scan forwards.
177 findMatchingUpdateInsnForward(MachineBasicBlock::iterator I,
178 int UnscaledOffset, unsigned Limit);
179
180 // Scan the instruction list to find a register assigned with a const
181 // value that can be combined with the current instruction (a load or store)
182 // using base addressing with writeback. Scan backwards.
184 findMatchingConstOffsetBackward(MachineBasicBlock::iterator I, unsigned Limit,
185 unsigned &Offset);
186
187 // Scan the instruction list to find a base register update that can
188 // be combined with the current instruction (a load or store) using
189 // pre or post indexed addressing with writeback. Scan backwards.
190 // `MergeEither` is set to true if the combined instruction may be placed
191 // either at the location of the load/store instruction or at the location of
192 // the update instruction.
194 findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit,
195 bool &MergeEither);
196
197 // Find an instruction that updates the base register of the ld/st
198 // instruction.
199 bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI,
200 unsigned BaseReg, int Offset);
201
202 bool isMatchingMovConstInsn(MachineInstr &MemMI, MachineInstr &MI,
203 unsigned IndexReg, unsigned &Offset);
204
205 // Merge a pre- or post-index base register update into a ld/st instruction.
206 std::optional<MachineBasicBlock::iterator>
207 mergeUpdateInsn(MachineBasicBlock::iterator I,
208 MachineBasicBlock::iterator Update, bool IsForward,
209 bool IsPreIdx, bool MergeEither);
210
212 mergeConstOffsetInsn(MachineBasicBlock::iterator I,
213 MachineBasicBlock::iterator Update, unsigned Offset,
214 int Scale);
215
216 // Find and merge zero store instructions.
217 bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI);
218
219 // Find and pair ldr/str instructions.
220 bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI);
221
222 // Find and promote load instructions which read directly from store.
223 bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI);
224
225 // Find and merge a base register updates before or after a ld/st instruction.
226 bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI);
227
228 // Find and merge an index ldr/st instruction into a base ld/st instruction.
229 bool tryToMergeIndexLdSt(MachineBasicBlock::iterator &MBBI, int Scale);
230
231 bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt);
232
233 bool runOnMachineFunction(MachineFunction &Fn) override;
234
236 return MachineFunctionProperties().setNoVRegs();
237 }
238
239 StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; }
240};
241
242char AArch64LoadStoreOpt::ID = 0;
243
244} // end anonymous namespace
245
246INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt",
247 AARCH64_LOAD_STORE_OPT_NAME, false, false)
248
249static bool isNarrowStore(unsigned Opc) {
250 switch (Opc) {
251 default:
252 return false;
253 case AArch64::STRBBui:
254 case AArch64::STURBBi:
255 case AArch64::STRHHui:
256 case AArch64::STURHHi:
257 return true;
258 }
259}
260
261// These instruction set memory tag and either keep memory contents unchanged or
262// set it to zero, ignoring the address part of the source register.
263static bool isTagStore(const MachineInstr &MI) {
264 switch (MI.getOpcode()) {
265 default:
266 return false;
267 case AArch64::STGi:
268 case AArch64::STZGi:
269 case AArch64::ST2Gi:
270 case AArch64::STZ2Gi:
271 return true;
272 }
273}
274
275static unsigned getMatchingNonSExtOpcode(unsigned Opc,
276 bool *IsValidLdStrOpc = nullptr) {
277 if (IsValidLdStrOpc)
278 *IsValidLdStrOpc = true;
279 switch (Opc) {
280 default:
281 if (IsValidLdStrOpc)
282 *IsValidLdStrOpc = false;
283 return std::numeric_limits<unsigned>::max();
284 case AArch64::STRDui:
285 case AArch64::STURDi:
286 case AArch64::STRDpre:
287 case AArch64::STRQui:
288 case AArch64::STURQi:
289 case AArch64::STRQpre:
290 case AArch64::STRBBui:
291 case AArch64::STURBBi:
292 case AArch64::STRHHui:
293 case AArch64::STURHHi:
294 case AArch64::STRWui:
295 case AArch64::STRWpre:
296 case AArch64::STURWi:
297 case AArch64::STRXui:
298 case AArch64::STRXpre:
299 case AArch64::STURXi:
300 case AArch64::STR_ZXI:
301 case AArch64::LDRDui:
302 case AArch64::LDURDi:
303 case AArch64::LDRDpre:
304 case AArch64::LDRQui:
305 case AArch64::LDURQi:
306 case AArch64::LDRQpre:
307 case AArch64::LDRWui:
308 case AArch64::LDURWi:
309 case AArch64::LDRWpre:
310 case AArch64::LDRXui:
311 case AArch64::LDURXi:
312 case AArch64::LDRXpre:
313 case AArch64::STRSui:
314 case AArch64::STURSi:
315 case AArch64::STRSpre:
316 case AArch64::LDRSui:
317 case AArch64::LDURSi:
318 case AArch64::LDRSpre:
319 case AArch64::LDR_ZXI:
320 return Opc;
321 case AArch64::LDRSWui:
322 return AArch64::LDRWui;
323 case AArch64::LDURSWi:
324 return AArch64::LDURWi;
325 case AArch64::LDRSWpre:
326 return AArch64::LDRWpre;
327 }
328}
329
330static unsigned getMatchingWideOpcode(unsigned Opc) {
331 switch (Opc) {
332 default:
333 llvm_unreachable("Opcode has no wide equivalent!");
334 case AArch64::STRBBui:
335 return AArch64::STRHHui;
336 case AArch64::STRHHui:
337 return AArch64::STRWui;
338 case AArch64::STURBBi:
339 return AArch64::STURHHi;
340 case AArch64::STURHHi:
341 return AArch64::STURWi;
342 case AArch64::STURWi:
343 return AArch64::STURXi;
344 case AArch64::STRWui:
345 return AArch64::STRXui;
346 }
347}
348
349static unsigned getMatchingPairOpcode(unsigned Opc) {
350 switch (Opc) {
351 default:
352 llvm_unreachable("Opcode has no pairwise equivalent!");
353 case AArch64::STRSui:
354 case AArch64::STURSi:
355 return AArch64::STPSi;
356 case AArch64::STRSpre:
357 return AArch64::STPSpre;
358 case AArch64::STRDui:
359 case AArch64::STURDi:
360 return AArch64::STPDi;
361 case AArch64::STRDpre:
362 return AArch64::STPDpre;
363 case AArch64::STRQui:
364 case AArch64::STURQi:
365 case AArch64::STR_ZXI:
366 return AArch64::STPQi;
367 case AArch64::STRQpre:
368 return AArch64::STPQpre;
369 case AArch64::STRWui:
370 case AArch64::STURWi:
371 return AArch64::STPWi;
372 case AArch64::STRWpre:
373 return AArch64::STPWpre;
374 case AArch64::STRXui:
375 case AArch64::STURXi:
376 return AArch64::STPXi;
377 case AArch64::STRXpre:
378 return AArch64::STPXpre;
379 case AArch64::LDRSui:
380 case AArch64::LDURSi:
381 return AArch64::LDPSi;
382 case AArch64::LDRSpre:
383 return AArch64::LDPSpre;
384 case AArch64::LDRDui:
385 case AArch64::LDURDi:
386 return AArch64::LDPDi;
387 case AArch64::LDRDpre:
388 return AArch64::LDPDpre;
389 case AArch64::LDRQui:
390 case AArch64::LDURQi:
391 case AArch64::LDR_ZXI:
392 return AArch64::LDPQi;
393 case AArch64::LDRQpre:
394 return AArch64::LDPQpre;
395 case AArch64::LDRWui:
396 case AArch64::LDURWi:
397 return AArch64::LDPWi;
398 case AArch64::LDRWpre:
399 return AArch64::LDPWpre;
400 case AArch64::LDRXui:
401 case AArch64::LDURXi:
402 return AArch64::LDPXi;
403 case AArch64::LDRXpre:
404 return AArch64::LDPXpre;
405 case AArch64::LDRSWui:
406 case AArch64::LDURSWi:
407 return AArch64::LDPSWi;
408 case AArch64::LDRSWpre:
409 return AArch64::LDPSWpre;
410 }
411}
412
415 unsigned LdOpc = LoadInst.getOpcode();
416 unsigned StOpc = StoreInst.getOpcode();
417 switch (LdOpc) {
418 default:
419 llvm_unreachable("Unsupported load instruction!");
420 case AArch64::LDRBBui:
421 return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui ||
422 StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
423 case AArch64::LDURBBi:
424 return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi ||
425 StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
426 case AArch64::LDRHHui:
427 return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui ||
428 StOpc == AArch64::STRXui;
429 case AArch64::LDURHHi:
430 return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi ||
431 StOpc == AArch64::STURXi;
432 case AArch64::LDRWui:
433 return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui;
434 case AArch64::LDURWi:
435 return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi;
436 case AArch64::LDRXui:
437 return StOpc == AArch64::STRXui;
438 case AArch64::LDURXi:
439 return StOpc == AArch64::STURXi;
440 }
441}
442
443static unsigned getPreIndexedOpcode(unsigned Opc) {
444 // FIXME: We don't currently support creating pre-indexed loads/stores when
445 // the load or store is the unscaled version. If we decide to perform such an
446 // optimization in the future the cases for the unscaled loads/stores will
447 // need to be added here.
448 switch (Opc) {
449 default:
450 llvm_unreachable("Opcode has no pre-indexed equivalent!");
451 case AArch64::STRSui:
452 return AArch64::STRSpre;
453 case AArch64::STRDui:
454 return AArch64::STRDpre;
455 case AArch64::STRQui:
456 return AArch64::STRQpre;
457 case AArch64::STRBBui:
458 return AArch64::STRBBpre;
459 case AArch64::STRHHui:
460 return AArch64::STRHHpre;
461 case AArch64::STRWui:
462 return AArch64::STRWpre;
463 case AArch64::STRXui:
464 return AArch64::STRXpre;
465 case AArch64::LDRSui:
466 return AArch64::LDRSpre;
467 case AArch64::LDRDui:
468 return AArch64::LDRDpre;
469 case AArch64::LDRQui:
470 return AArch64::LDRQpre;
471 case AArch64::LDRBBui:
472 return AArch64::LDRBBpre;
473 case AArch64::LDRHHui:
474 return AArch64::LDRHHpre;
475 case AArch64::LDRWui:
476 return AArch64::LDRWpre;
477 case AArch64::LDRXui:
478 return AArch64::LDRXpre;
479 case AArch64::LDRSWui:
480 return AArch64::LDRSWpre;
481 case AArch64::LDPSi:
482 return AArch64::LDPSpre;
483 case AArch64::LDPSWi:
484 return AArch64::LDPSWpre;
485 case AArch64::LDPDi:
486 return AArch64::LDPDpre;
487 case AArch64::LDPQi:
488 return AArch64::LDPQpre;
489 case AArch64::LDPWi:
490 return AArch64::LDPWpre;
491 case AArch64::LDPXi:
492 return AArch64::LDPXpre;
493 case AArch64::STPSi:
494 return AArch64::STPSpre;
495 case AArch64::STPDi:
496 return AArch64::STPDpre;
497 case AArch64::STPQi:
498 return AArch64::STPQpre;
499 case AArch64::STPWi:
500 return AArch64::STPWpre;
501 case AArch64::STPXi:
502 return AArch64::STPXpre;
503 case AArch64::STGi:
504 return AArch64::STGPreIndex;
505 case AArch64::STZGi:
506 return AArch64::STZGPreIndex;
507 case AArch64::ST2Gi:
508 return AArch64::ST2GPreIndex;
509 case AArch64::STZ2Gi:
510 return AArch64::STZ2GPreIndex;
511 case AArch64::STGPi:
512 return AArch64::STGPpre;
513 }
514}
515
516static unsigned getBaseAddressOpcode(unsigned Opc) {
517 // TODO: Add more index address stores.
518 switch (Opc) {
519 default:
520 llvm_unreachable("Opcode has no base address equivalent!");
521 case AArch64::LDRBroX:
522 return AArch64::LDRBui;
523 case AArch64::LDRBBroX:
524 return AArch64::LDRBBui;
525 case AArch64::LDRSBXroX:
526 return AArch64::LDRSBXui;
527 case AArch64::LDRSBWroX:
528 return AArch64::LDRSBWui;
529 case AArch64::LDRHroX:
530 return AArch64::LDRHui;
531 case AArch64::LDRHHroX:
532 return AArch64::LDRHHui;
533 case AArch64::LDRSHXroX:
534 return AArch64::LDRSHXui;
535 case AArch64::LDRSHWroX:
536 return AArch64::LDRSHWui;
537 case AArch64::LDRWroX:
538 return AArch64::LDRWui;
539 case AArch64::LDRSroX:
540 return AArch64::LDRSui;
541 case AArch64::LDRSWroX:
542 return AArch64::LDRSWui;
543 case AArch64::LDRDroX:
544 return AArch64::LDRDui;
545 case AArch64::LDRXroX:
546 return AArch64::LDRXui;
547 case AArch64::LDRQroX:
548 return AArch64::LDRQui;
549 }
550}
551
552static unsigned getPostIndexedOpcode(unsigned Opc) {
553 switch (Opc) {
554 default:
555 llvm_unreachable("Opcode has no post-indexed wise equivalent!");
556 case AArch64::STRSui:
557 case AArch64::STURSi:
558 return AArch64::STRSpost;
559 case AArch64::STRDui:
560 case AArch64::STURDi:
561 return AArch64::STRDpost;
562 case AArch64::STRQui:
563 case AArch64::STURQi:
564 return AArch64::STRQpost;
565 case AArch64::STRBBui:
566 return AArch64::STRBBpost;
567 case AArch64::STRHHui:
568 return AArch64::STRHHpost;
569 case AArch64::STRWui:
570 case AArch64::STURWi:
571 return AArch64::STRWpost;
572 case AArch64::STRXui:
573 case AArch64::STURXi:
574 return AArch64::STRXpost;
575 case AArch64::LDRSui:
576 case AArch64::LDURSi:
577 return AArch64::LDRSpost;
578 case AArch64::LDRDui:
579 case AArch64::LDURDi:
580 return AArch64::LDRDpost;
581 case AArch64::LDRQui:
582 case AArch64::LDURQi:
583 return AArch64::LDRQpost;
584 case AArch64::LDRBBui:
585 return AArch64::LDRBBpost;
586 case AArch64::LDRHHui:
587 return AArch64::LDRHHpost;
588 case AArch64::LDRWui:
589 case AArch64::LDURWi:
590 return AArch64::LDRWpost;
591 case AArch64::LDRXui:
592 case AArch64::LDURXi:
593 return AArch64::LDRXpost;
594 case AArch64::LDRSWui:
595 return AArch64::LDRSWpost;
596 case AArch64::LDPSi:
597 return AArch64::LDPSpost;
598 case AArch64::LDPSWi:
599 return AArch64::LDPSWpost;
600 case AArch64::LDPDi:
601 return AArch64::LDPDpost;
602 case AArch64::LDPQi:
603 return AArch64::LDPQpost;
604 case AArch64::LDPWi:
605 return AArch64::LDPWpost;
606 case AArch64::LDPXi:
607 return AArch64::LDPXpost;
608 case AArch64::STPSi:
609 return AArch64::STPSpost;
610 case AArch64::STPDi:
611 return AArch64::STPDpost;
612 case AArch64::STPQi:
613 return AArch64::STPQpost;
614 case AArch64::STPWi:
615 return AArch64::STPWpost;
616 case AArch64::STPXi:
617 return AArch64::STPXpost;
618 case AArch64::STGi:
619 return AArch64::STGPostIndex;
620 case AArch64::STZGi:
621 return AArch64::STZGPostIndex;
622 case AArch64::ST2Gi:
623 return AArch64::ST2GPostIndex;
624 case AArch64::STZ2Gi:
625 return AArch64::STZ2GPostIndex;
626 case AArch64::STGPi:
627 return AArch64::STGPpost;
628 }
629}
630
632
633 unsigned OpcA = FirstMI.getOpcode();
634 unsigned OpcB = MI.getOpcode();
635
636 switch (OpcA) {
637 default:
638 return false;
639 case AArch64::STRSpre:
640 return (OpcB == AArch64::STRSui) || (OpcB == AArch64::STURSi);
641 case AArch64::STRDpre:
642 return (OpcB == AArch64::STRDui) || (OpcB == AArch64::STURDi);
643 case AArch64::STRQpre:
644 return (OpcB == AArch64::STRQui) || (OpcB == AArch64::STURQi);
645 case AArch64::STRWpre:
646 return (OpcB == AArch64::STRWui) || (OpcB == AArch64::STURWi);
647 case AArch64::STRXpre:
648 return (OpcB == AArch64::STRXui) || (OpcB == AArch64::STURXi);
649 case AArch64::LDRSpre:
650 return (OpcB == AArch64::LDRSui) || (OpcB == AArch64::LDURSi);
651 case AArch64::LDRDpre:
652 return (OpcB == AArch64::LDRDui) || (OpcB == AArch64::LDURDi);
653 case AArch64::LDRQpre:
654 return (OpcB == AArch64::LDRQui) || (OpcB == AArch64::LDURQi);
655 case AArch64::LDRWpre:
656 return (OpcB == AArch64::LDRWui) || (OpcB == AArch64::LDURWi);
657 case AArch64::LDRXpre:
658 return (OpcB == AArch64::LDRXui) || (OpcB == AArch64::LDURXi);
659 case AArch64::LDRSWpre:
660 return (OpcB == AArch64::LDRSWui) || (OpcB == AArch64::LDURSWi);
661 }
662}
663
664// Returns the scale and offset range of pre/post indexed variants of MI.
665static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale,
666 int &MinOffset, int &MaxOffset) {
667 bool IsPaired = AArch64InstrInfo::isPairedLdSt(MI);
668 bool IsTagStore = isTagStore(MI);
669 // ST*G and all paired ldst have the same scale in pre/post-indexed variants
670 // as in the "unsigned offset" variant.
671 // All other pre/post indexed ldst instructions are unscaled.
672 Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1;
673
674 if (IsPaired) {
675 MinOffset = -64;
676 MaxOffset = 63;
677 } else {
678 MinOffset = -256;
679 MaxOffset = 255;
680 }
681}
682
684 unsigned PairedRegOp = 0) {
685 assert(PairedRegOp < 2 && "Unexpected register operand idx.");
686 bool IsPreLdSt = AArch64InstrInfo::isPreLdSt(MI);
687 if (IsPreLdSt)
688 PairedRegOp += 1;
689 unsigned Idx =
690 AArch64InstrInfo::isPairedLdSt(MI) || IsPreLdSt ? PairedRegOp : 0;
691 return MI.getOperand(Idx);
692}
693
696 const AArch64InstrInfo *TII) {
697 assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st.");
698 int LoadSize = TII->getMemScale(LoadInst);
699 int StoreSize = TII->getMemScale(StoreInst);
700 int UnscaledStOffset =
701 TII->hasUnscaledLdStOffset(StoreInst)
704 int UnscaledLdOffset =
705 TII->hasUnscaledLdStOffset(LoadInst)
708 return (UnscaledStOffset <= UnscaledLdOffset) &&
709 (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize));
710}
711
713 unsigned Opc = MI.getOpcode();
714 return (Opc == AArch64::STRWui || Opc == AArch64::STURWi ||
715 isNarrowStore(Opc)) &&
716 getLdStRegOp(MI).getReg() == AArch64::WZR;
717}
718
720 switch (MI.getOpcode()) {
721 default:
722 return false;
723 // Scaled instructions.
724 case AArch64::LDRBBui:
725 case AArch64::LDRHHui:
726 case AArch64::LDRWui:
727 case AArch64::LDRXui:
728 // Unscaled instructions.
729 case AArch64::LDURBBi:
730 case AArch64::LDURHHi:
731 case AArch64::LDURWi:
732 case AArch64::LDURXi:
733 return true;
734 }
735}
736
738 unsigned Opc = MI.getOpcode();
739 switch (Opc) {
740 default:
741 return false;
742 // Scaled instructions.
743 case AArch64::STRSui:
744 case AArch64::STRDui:
745 case AArch64::STRQui:
746 case AArch64::STRXui:
747 case AArch64::STRWui:
748 case AArch64::STRHHui:
749 case AArch64::STRBBui:
750 case AArch64::LDRSui:
751 case AArch64::LDRDui:
752 case AArch64::LDRQui:
753 case AArch64::LDRXui:
754 case AArch64::LDRWui:
755 case AArch64::LDRHHui:
756 case AArch64::LDRBBui:
757 case AArch64::STGi:
758 case AArch64::STZGi:
759 case AArch64::ST2Gi:
760 case AArch64::STZ2Gi:
761 case AArch64::STGPi:
762 // Unscaled instructions.
763 case AArch64::STURSi:
764 case AArch64::STURDi:
765 case AArch64::STURQi:
766 case AArch64::STURWi:
767 case AArch64::STURXi:
768 case AArch64::LDURSi:
769 case AArch64::LDURDi:
770 case AArch64::LDURQi:
771 case AArch64::LDURWi:
772 case AArch64::LDURXi:
773 // Paired instructions.
774 case AArch64::LDPSi:
775 case AArch64::LDPSWi:
776 case AArch64::LDPDi:
777 case AArch64::LDPQi:
778 case AArch64::LDPWi:
779 case AArch64::LDPXi:
780 case AArch64::STPSi:
781 case AArch64::STPDi:
782 case AArch64::STPQi:
783 case AArch64::STPWi:
784 case AArch64::STPXi:
785 // Make sure this is a reg+imm (as opposed to an address reloc).
787 return false;
788
789 // When using stack tagging, simple sp+imm loads and stores are not
790 // tag-checked, but pre- and post-indexed versions of them are, so we can't
791 // replace the former with the latter. This transformation would be valid
792 // if the load/store accesses an untagged stack slot, but we don't have
793 // that information available after frame indices have been eliminated.
794 if (AFI.isMTETagged() &&
795 AArch64InstrInfo::getLdStBaseOp(MI).getReg() == AArch64::SP)
796 return false;
797
798 return true;
799 }
800}
801
802// Make sure this is a reg+reg Ld/St
803static bool isMergeableIndexLdSt(MachineInstr &MI, int &Scale) {
804 unsigned Opc = MI.getOpcode();
805 switch (Opc) {
806 default:
807 return false;
808 // Scaled instructions.
809 // TODO: Add more index address stores.
810 case AArch64::LDRBroX:
811 case AArch64::LDRBBroX:
812 case AArch64::LDRSBXroX:
813 case AArch64::LDRSBWroX:
814 Scale = 1;
815 return true;
816 case AArch64::LDRHroX:
817 case AArch64::LDRHHroX:
818 case AArch64::LDRSHXroX:
819 case AArch64::LDRSHWroX:
820 Scale = 2;
821 return true;
822 case AArch64::LDRWroX:
823 case AArch64::LDRSroX:
824 case AArch64::LDRSWroX:
825 Scale = 4;
826 return true;
827 case AArch64::LDRDroX:
828 case AArch64::LDRXroX:
829 Scale = 8;
830 return true;
831 case AArch64::LDRQroX:
832 Scale = 16;
833 return true;
834 }
835}
836
837static bool isRewritableImplicitDef(unsigned Opc) {
838 switch (Opc) {
839 default:
840 return false;
841 case AArch64::ORRWrs:
842 case AArch64::ADDWri:
843 return true;
844 }
845}
846
848AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I,
850 const LdStPairFlags &Flags) {
852 "Expected promotable zero stores.");
853
854 MachineBasicBlock::iterator E = I->getParent()->end();
856 // If NextI is the second of the two instructions to be merged, we need
857 // to skip one further. Either way we merge will invalidate the iterator,
858 // and we don't need to scan the new instruction, as it's a pairwise
859 // instruction, which we're not considering for further action anyway.
860 if (NextI == MergeMI)
861 NextI = next_nodbg(NextI, E);
862
863 unsigned Opc = I->getOpcode();
864 unsigned MergeMIOpc = MergeMI->getOpcode();
865 bool IsScaled = !TII->hasUnscaledLdStOffset(Opc);
866 bool IsMergedMIScaled = !TII->hasUnscaledLdStOffset(MergeMIOpc);
867 int OffsetStride = IsScaled ? TII->getMemScale(*I) : 1;
868 int MergeMIOffsetStride = IsMergedMIScaled ? TII->getMemScale(*MergeMI) : 1;
869
870 bool MergeForward = Flags.getMergeForward();
871 // Insert our new paired instruction after whichever of the paired
872 // instructions MergeForward indicates.
873 MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I;
874 // Also based on MergeForward is from where we copy the base register operand
875 // so we get the flags compatible with the input code.
876 const MachineOperand &BaseRegOp =
877 MergeForward ? AArch64InstrInfo::getLdStBaseOp(*MergeMI)
878 : AArch64InstrInfo::getLdStBaseOp(*I);
879
880 // Which register is Rt and which is Rt2 depends on the offset order.
881 int64_t IOffsetInBytes =
882 AArch64InstrInfo::getLdStOffsetOp(*I).getImm() * OffsetStride;
883 int64_t MIOffsetInBytes =
885 MergeMIOffsetStride;
886 // Select final offset based on the offset order.
887 int64_t OffsetImm;
888 if (IOffsetInBytes > MIOffsetInBytes)
889 OffsetImm = MIOffsetInBytes;
890 else
891 OffsetImm = IOffsetInBytes;
892
893 int NewOpcode = getMatchingWideOpcode(Opc);
894 // Adjust final offset on scaled stores because the new instruction
895 // has a different scale.
896 if (!TII->hasUnscaledLdStOffset(NewOpcode)) {
897 int NewOffsetStride = TII->getMemScale(NewOpcode);
898 assert(((OffsetImm % NewOffsetStride) == 0) &&
899 "Offset should be a multiple of the store memory scale");
900 OffsetImm = OffsetImm / NewOffsetStride;
901 }
902
903 // Construct the new instruction.
904 DebugLoc DL = I->getDebugLoc();
905 MachineBasicBlock *MBB = I->getParent();
907 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(NewOpcode))
908 .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR)
909 .add(BaseRegOp)
910 .addImm(OffsetImm)
911 .cloneMergedMemRefs({&*I, &*MergeMI})
912 .setMIFlags(I->mergeFlagsWith(*MergeMI));
913 (void)MIB;
914
915 LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n ");
916 LLVM_DEBUG(I->print(dbgs()));
917 LLVM_DEBUG(dbgs() << " ");
918 LLVM_DEBUG(MergeMI->print(dbgs()));
919 LLVM_DEBUG(dbgs() << " with instruction:\n ");
920 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
921 LLVM_DEBUG(dbgs() << "\n");
922
923 // Erase the old instructions.
924 I->eraseFromParent();
925 MergeMI->eraseFromParent();
926 return NextI;
927}
928
929// Apply Fn to all instructions between MI and the beginning of the block, until
930// a def for DefReg is reached. Returns true, iff Fn returns true for all
931// visited instructions. Stop after visiting Limit iterations.
933 const TargetRegisterInfo *TRI, unsigned Limit,
934 std::function<bool(MachineInstr &, bool)> &Fn) {
935 auto MBB = MI.getParent();
936 for (MachineInstr &I :
937 instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) {
938 if (!Limit)
939 return false;
940 --Limit;
941
942 bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) {
943 return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() &&
944 TRI->regsOverlap(MOP.getReg(), DefReg);
945 });
946 if (!Fn(I, isDef))
947 return false;
948 if (isDef)
949 break;
950 }
951 return true;
952}
953
955 const TargetRegisterInfo *TRI) {
956
957 for (const MachineOperand &MOP : phys_regs_and_masks(MI))
958 if (MOP.isReg() && MOP.isKill())
959 Units.removeReg(MOP.getReg());
960
961 for (const MachineOperand &MOP : phys_regs_and_masks(MI))
962 if (MOP.isReg() && !MOP.isKill())
963 Units.addReg(MOP.getReg());
964}
965
966/// This function will add a new entry into the debugValueSubstitutions table
967/// when two instruction have been merged into a new one represented by \p
968/// MergedInstr.
970 unsigned InstrNumToSet,
971 MachineInstr &OriginalInstr,
972 MachineInstr &MergedInstr) {
973
974 // Figure out the Operand Index of the destination register of the
975 // OriginalInstr in the new MergedInstr.
976 auto Reg = OriginalInstr.getOperand(0).getReg();
977 unsigned OperandNo = 0;
978 bool RegFound = false;
979 for (const auto Op : MergedInstr.operands()) {
980 if (Op.getReg() == Reg) {
981 RegFound = true;
982 break;
983 }
984 OperandNo++;
985 }
986
987 if (RegFound)
988 MF->makeDebugValueSubstitution({OriginalInstr.peekDebugInstrNum(), 0},
989 {InstrNumToSet, OperandNo});
990}
991
993AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I,
995 const LdStPairFlags &Flags) {
996 MachineBasicBlock::iterator E = I->getParent()->end();
998 // If NextI is the second of the two instructions to be merged, we need
999 // to skip one further. Either way we merge will invalidate the iterator,
1000 // and we don't need to scan the new instruction, as it's a pairwise
1001 // instruction, which we're not considering for further action anyway.
1002 if (NextI == Paired)
1003 NextI = next_nodbg(NextI, E);
1004
1005 int SExtIdx = Flags.getSExtIdx();
1006 unsigned Opc =
1007 SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode());
1008 bool IsUnscaled = TII->hasUnscaledLdStOffset(Opc);
1009 int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1;
1010
1011 bool MergeForward = Flags.getMergeForward();
1012
1013 std::optional<MCPhysReg> RenameReg = Flags.getRenameReg();
1014 if (RenameReg) {
1015 MCRegister RegToRename = getLdStRegOp(*I).getReg();
1016 DefinedInBB.addReg(*RenameReg);
1017
1018 // Return the sub/super register for RenameReg, matching the size of
1019 // OriginalReg.
1020 auto GetMatchingSubReg =
1021 [this, RenameReg](const TargetRegisterClass *C) -> MCPhysReg {
1022 for (MCPhysReg SubOrSuper :
1023 TRI->sub_and_superregs_inclusive(*RenameReg)) {
1024 if (C->contains(SubOrSuper))
1025 return SubOrSuper;
1026 }
1027 llvm_unreachable("Should have found matching sub or super register!");
1028 };
1029
1030 std::function<bool(MachineInstr &, bool)> UpdateMIs =
1031 [this, RegToRename, GetMatchingSubReg, MergeForward](MachineInstr &MI,
1032 bool IsDef) {
1033 if (IsDef) {
1034 bool SeenDef = false;
1035 for (unsigned OpIdx = 0; OpIdx < MI.getNumOperands(); ++OpIdx) {
1036 MachineOperand &MOP = MI.getOperand(OpIdx);
1037 // Rename the first explicit definition and all implicit
1038 // definitions matching RegToRename.
1039 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
1040 (!MergeForward || !SeenDef ||
1041 (MOP.isDef() && MOP.isImplicit())) &&
1042 TRI->regsOverlap(MOP.getReg(), RegToRename)) {
1043 assert((MOP.isImplicit() ||
1044 (MOP.isRenamable() && !MOP.isEarlyClobber())) &&
1045 "Need renamable operands");
1046 Register MatchingReg;
1047 if (const TargetRegisterClass *RC =
1048 MI.getRegClassConstraint(OpIdx, TII, TRI))
1049 MatchingReg = GetMatchingSubReg(RC);
1050 else {
1051 if (!isRewritableImplicitDef(MI.getOpcode()))
1052 continue;
1053 MatchingReg = GetMatchingSubReg(
1054 TRI->getMinimalPhysRegClass(MOP.getReg()));
1055 }
1056 MOP.setReg(MatchingReg);
1057 SeenDef = true;
1058 }
1059 }
1060 } else {
1061 for (unsigned OpIdx = 0; OpIdx < MI.getNumOperands(); ++OpIdx) {
1062 MachineOperand &MOP = MI.getOperand(OpIdx);
1063 if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
1064 TRI->regsOverlap(MOP.getReg(), RegToRename)) {
1065 assert((MOP.isImplicit() ||
1066 (MOP.isRenamable() && !MOP.isEarlyClobber())) &&
1067 "Need renamable operands");
1068 Register MatchingReg;
1069 if (const TargetRegisterClass *RC =
1070 MI.getRegClassConstraint(OpIdx, TII, TRI))
1071 MatchingReg = GetMatchingSubReg(RC);
1072 else
1073 MatchingReg = GetMatchingSubReg(
1074 TRI->getMinimalPhysRegClass(MOP.getReg()));
1075 assert(MatchingReg != AArch64::NoRegister &&
1076 "Cannot find matching regs for renaming");
1077 MOP.setReg(MatchingReg);
1078 }
1079 }
1080 }
1081 LLVM_DEBUG(dbgs() << "Renamed " << MI);
1082 return true;
1083 };
1084 forAllMIsUntilDef(MergeForward ? *I : *Paired->getPrevNode(), RegToRename,
1085 TRI, UINT32_MAX, UpdateMIs);
1086
1087#if !defined(NDEBUG)
1088 // For forward merging store:
1089 // Make sure the register used for renaming is not used between the
1090 // paired instructions. That would trash the content before the new
1091 // paired instruction.
1092 MCPhysReg RegToCheck = *RenameReg;
1093 // For backward merging load:
1094 // Make sure the register being renamed is not used between the
1095 // paired instructions. That would trash the content after the new
1096 // paired instruction.
1097 if (!MergeForward)
1098 RegToCheck = RegToRename;
1099 for (auto &MI :
1101 MergeForward ? std::next(I) : I,
1102 MergeForward ? std::next(Paired) : Paired))
1103 assert(all_of(MI.operands(),
1104 [this, RegToCheck](const MachineOperand &MOP) {
1105 return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
1106 MOP.isUndef() ||
1107 !TRI->regsOverlap(MOP.getReg(), RegToCheck);
1108 }) &&
1109 "Rename register used between paired instruction, trashing the "
1110 "content");
1111#endif
1112 }
1113
1114 // Insert our new paired instruction after whichever of the paired
1115 // instructions MergeForward indicates.
1116 MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I;
1117 // Also based on MergeForward is from where we copy the base register operand
1118 // so we get the flags compatible with the input code.
1119 const MachineOperand &BaseRegOp =
1120 MergeForward ? AArch64InstrInfo::getLdStBaseOp(*Paired)
1121 : AArch64InstrInfo::getLdStBaseOp(*I);
1122
1124 int PairedOffset = AArch64InstrInfo::getLdStOffsetOp(*Paired).getImm();
1125 bool PairedIsUnscaled = TII->hasUnscaledLdStOffset(Paired->getOpcode());
1126 if (IsUnscaled != PairedIsUnscaled) {
1127 // We're trying to pair instructions that differ in how they are scaled. If
1128 // I is scaled then scale the offset of Paired accordingly. Otherwise, do
1129 // the opposite (i.e., make Paired's offset unscaled).
1130 int MemSize = TII->getMemScale(*Paired);
1131 if (PairedIsUnscaled) {
1132 // If the unscaled offset isn't a multiple of the MemSize, we can't
1133 // pair the operations together.
1134 assert(!(PairedOffset % TII->getMemScale(*Paired)) &&
1135 "Offset should be a multiple of the stride!");
1136 PairedOffset /= MemSize;
1137 } else {
1138 PairedOffset *= MemSize;
1139 }
1140 }
1141
1142 // Which register is Rt and which is Rt2 depends on the offset order.
1143 // However, for pre load/stores the Rt should be the one of the pre
1144 // load/store.
1145 MachineInstr *RtMI, *Rt2MI;
1146 if (Offset == PairedOffset + OffsetStride &&
1148 RtMI = &*Paired;
1149 Rt2MI = &*I;
1150 // Here we swapped the assumption made for SExtIdx.
1151 // I.e., we turn ldp I, Paired into ldp Paired, I.
1152 // Update the index accordingly.
1153 if (SExtIdx != -1)
1154 SExtIdx = (SExtIdx + 1) % 2;
1155 } else {
1156 RtMI = &*I;
1157 Rt2MI = &*Paired;
1158 }
1159 int OffsetImm = AArch64InstrInfo::getLdStOffsetOp(*RtMI).getImm();
1160 // Scale the immediate offset, if necessary.
1161 if (TII->hasUnscaledLdStOffset(RtMI->getOpcode())) {
1162 assert(!(OffsetImm % TII->getMemScale(*RtMI)) &&
1163 "Unscaled offset cannot be scaled.");
1164 OffsetImm /= TII->getMemScale(*RtMI);
1165 }
1166
1167 // Construct the new instruction.
1169 DebugLoc DL = I->getDebugLoc();
1170 MachineBasicBlock *MBB = I->getParent();
1171 MachineOperand RegOp0 = getLdStRegOp(*RtMI);
1172 MachineOperand RegOp1 = getLdStRegOp(*Rt2MI);
1173 MachineOperand &PairedRegOp = RtMI == &*Paired ? RegOp0 : RegOp1;
1174 // Kill flags may become invalid when moving stores for pairing.
1175 if (RegOp0.isUse()) {
1176 if (!MergeForward) {
1177 // Clear kill flags on store if moving upwards. Example:
1178 // STRWui kill %w0, ...
1179 // USE %w1
1180 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards
1181 // We are about to move the store of w1, so its kill flag may become
1182 // invalid; not the case for w0.
1183 // Since w1 is used between the stores, the kill flag on w1 is cleared
1184 // after merging.
1185 // STPWi kill %w0, %w1, ...
1186 // USE %w1
1187 for (auto It = std::next(I); It != Paired && PairedRegOp.isKill(); ++It)
1188 if (It->readsRegister(PairedRegOp.getReg(), TRI))
1189 PairedRegOp.setIsKill(false);
1190 } else {
1191 // Clear kill flags of the first stores register. Example:
1192 // STRWui %w1, ...
1193 // USE kill %w1 ; need to clear kill flag when moving STRWui downwards
1194 // STRW %w0
1196 for (MachineInstr &MI :
1197 make_range(std::next(I->getIterator()), Paired->getIterator()))
1198 MI.clearRegisterKills(Reg, TRI);
1199 }
1200 }
1201
1202 unsigned int MatchPairOpcode = getMatchingPairOpcode(Opc);
1203 MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(MatchPairOpcode));
1204
1205 // Adds the pre-index operand for pre-indexed ld/st pairs.
1206 if (AArch64InstrInfo::isPreLdSt(*RtMI))
1207 MIB.addReg(BaseRegOp.getReg(), RegState::Define);
1208
1209 MIB.add(RegOp0)
1210 .add(RegOp1)
1211 .add(BaseRegOp)
1212 .addImm(OffsetImm)
1213 .cloneMergedMemRefs({&*I, &*Paired})
1214 .setMIFlags(I->mergeFlagsWith(*Paired));
1215
1216 (void)MIB;
1217
1218 LLVM_DEBUG(
1219 dbgs() << "Creating pair load/store. Replacing instructions:\n ");
1220 LLVM_DEBUG(I->print(dbgs()));
1221 LLVM_DEBUG(dbgs() << " ");
1222 LLVM_DEBUG(Paired->print(dbgs()));
1223 LLVM_DEBUG(dbgs() << " with instruction:\n ");
1224 if (SExtIdx != -1) {
1225 // Generate the sign extension for the proper result of the ldp.
1226 // I.e., with X1, that would be:
1227 // %w1 = KILL %w1, implicit-def %x1
1228 // %x1 = SBFMXri killed %x1, 0, 31
1229 MachineOperand &DstMO = MIB->getOperand(SExtIdx);
1230 // Right now, DstMO has the extended register, since it comes from an
1231 // extended opcode.
1232 Register DstRegX = DstMO.getReg();
1233 // Get the W variant of that register.
1234 Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32);
1235 // Update the result of LDP to use the W instead of the X variant.
1236 DstMO.setReg(DstRegW);
1237 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1238 LLVM_DEBUG(dbgs() << "\n");
1239 // Make the machine verifier happy by providing a definition for
1240 // the X register.
1241 // Insert this definition right after the generated LDP, i.e., before
1242 // InsertionPoint.
1243 MachineInstrBuilder MIBKill =
1244 BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW)
1245 .addReg(DstRegW)
1246 .addReg(DstRegX, RegState::Define);
1247 MIBKill->getOperand(2).setImplicit();
1248 // Create the sign extension.
1249 MachineInstrBuilder MIBSXTW =
1250 BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX)
1251 .addReg(DstRegX)
1252 .addImm(0)
1253 .addImm(31);
1254 (void)MIBSXTW;
1255
1256 // In the case of a sign-extend, where we have something like:
1257 // debugValueSubstitutions:[]
1258 // $w1 = LDRWui $x0, 1, debug-instr-number 1
1259 // DBG_INSTR_REF !7, dbg-instr-ref(1, 0), debug-location !9
1260 // $x0 = LDRSWui $x0, 0, debug-instr-number 2
1261 // DBG_INSTR_REF !8, dbg-instr-ref(2, 0), debug-location !9
1262
1263 // It will be converted to:
1264 // debugValueSubstitutions:[]
1265 // $w0, $w1 = LDPWi $x0, 0
1266 // $w0 = KILL $w0, implicit-def $x0
1267 // $x0 = SBFMXri $x0, 0, 31
1268 // DBG_INSTR_REF !7, dbg-instr-ref(1, 0), debug-location !9
1269 // DBG_INSTR_REF !8, dbg-instr-ref(2, 0), debug-location !9
1270
1271 // We want the final result to look like:
1272 // debugValueSubstitutions:
1273 // - { srcinst: 1, srcop: 0, dstinst: 4, dstop: 1, subreg: 0 }
1274 // - { srcinst: 2, srcop: 0, dstinst: 3, dstop: 0, subreg: 0 }
1275 // $w0, $w1 = LDPWi $x0, 0, debug-instr-number 4
1276 // $w0 = KILL $w0, implicit-def $x0
1277 // $x0 = SBFMXri $x0, 0, 31, debug-instr-number 3
1278 // DBG_INSTR_REF !7, dbg-instr-ref(1, 0), debug-location !9
1279 // DBG_INSTR_REF !8, dbg-instr-ref(2, 0), debug-location !9
1280
1281 // $x0 is where the final value is stored, so the sign extend (SBFMXri)
1282 // instruction contains the final value we care about we give it a new
1283 // debug-instr-number 3. Whereas, $w1 contains the final value that we care
1284 // about, therefore the LDP instruction is also given a new
1285 // debug-instr-number 4. We have to add these substitutions to the
1286 // debugValueSubstitutions table. However, we also have to ensure that the
1287 // OpIndex that pointed to debug-instr-number 1 gets updated to 1, because
1288 // $w1 is the second operand of the LDP instruction.
1289
1290 if (I->peekDebugInstrNum()) {
1291 // If I is the instruction which got sign extended and has a
1292 // debug-instr-number, give the SBFMXri instruction a new
1293 // debug-instr-number, and update the debugValueSubstitutions table with
1294 // the new debug-instr-number and OpIndex pair. Otherwise, give the Merged
1295 // instruction a new debug-instr-number, and update the
1296 // debugValueSubstitutions table with the new debug-instr-number and
1297 // OpIndex pair.
1298 unsigned NewInstrNum;
1299 if (DstRegX == I->getOperand(0).getReg()) {
1300 NewInstrNum = MIBSXTW->getDebugInstrNum();
1301 addDebugSubstitutionsToTable(MBB->getParent(), NewInstrNum, *I,
1302 *MIBSXTW);
1303 } else {
1304 NewInstrNum = MIB->getDebugInstrNum();
1305 addDebugSubstitutionsToTable(MBB->getParent(), NewInstrNum, *I, *MIB);
1306 }
1307 }
1308 if (Paired->peekDebugInstrNum()) {
1309 // If Paired is the instruction which got sign extended and has a
1310 // debug-instr-number, give the SBFMXri instruction a new
1311 // debug-instr-number, and update the debugValueSubstitutions table with
1312 // the new debug-instr-number and OpIndex pair. Otherwise, give the Merged
1313 // instruction a new debug-instr-number, and update the
1314 // debugValueSubstitutions table with the new debug-instr-number and
1315 // OpIndex pair.
1316 unsigned NewInstrNum;
1317 if (DstRegX == Paired->getOperand(0).getReg()) {
1318 NewInstrNum = MIBSXTW->getDebugInstrNum();
1319 addDebugSubstitutionsToTable(MBB->getParent(), NewInstrNum, *Paired,
1320 *MIBSXTW);
1321 } else {
1322 NewInstrNum = MIB->getDebugInstrNum();
1323 addDebugSubstitutionsToTable(MBB->getParent(), NewInstrNum, *Paired,
1324 *MIB);
1325 }
1326 }
1327
1328 LLVM_DEBUG(dbgs() << " Extend operand:\n ");
1329 LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs()));
1330 } else if (Opc == AArch64::LDR_ZXI || Opc == AArch64::STR_ZXI) {
1331 // We are combining SVE fill/spill to LDP/STP, so we need to use the Q
1332 // variant of the registers.
1333 MachineOperand &MOp0 = MIB->getOperand(0);
1334 MachineOperand &MOp1 = MIB->getOperand(1);
1335 assert(AArch64::ZPRRegClass.contains(MOp0.getReg()) &&
1336 AArch64::ZPRRegClass.contains(MOp1.getReg()) && "Invalid register.");
1337 MOp0.setReg(AArch64::Q0 + (MOp0.getReg() - AArch64::Z0));
1338 MOp1.setReg(AArch64::Q0 + (MOp1.getReg() - AArch64::Z0));
1339 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1340 } else {
1341
1342 // In the case that the merge doesn't result in a sign-extend, if we have
1343 // something like:
1344 // debugValueSubstitutions:[]
1345 // $x1 = LDRXui $x0, 1, debug-instr-number 1
1346 // DBG_INSTR_REF !13, dbg-instr-ref(1, 0), debug-location !11
1347 // $x0 = LDRXui killed $x0, 0, debug-instr-number 2
1348 // DBG_INSTR_REF !14, dbg-instr-ref(2, 0), debug-location !11
1349
1350 // It will be converted to:
1351 // debugValueSubstitutions: []
1352 // $x0, $x1 = LDPXi $x0, 0
1353 // DBG_INSTR_REF !12, dbg-instr-ref(1, 0), debug-location !14
1354 // DBG_INSTR_REF !13, dbg-instr-ref(2, 0), debug-location !14
1355
1356 // We want the final result to look like:
1357 // debugValueSubstitutions:
1358 // - { srcinst: 1, srcop: 0, dstinst: 3, dstop: 1, subreg: 0 }
1359 // - { srcinst: 2, srcop: 0, dstinst: 3, dstop: 0, subreg: 0 }
1360 // $x0, $x1 = LDPXi $x0, 0, debug-instr-number 3
1361 // DBG_INSTR_REF !12, dbg-instr-ref(1, 0), debug-location !14
1362 // DBG_INSTR_REF !12, dbg-instr-ref(2, 0), debug-location !14
1363
1364 // Here all that needs to be done is, that the LDP instruction needs to be
1365 // updated with a new debug-instr-number, we then need to add entries into
1366 // the debugSubstitutions table to map the old instr-refs to the new ones.
1367
1368 // Assign new DebugInstrNum to the Paired instruction.
1369 if (I->peekDebugInstrNum()) {
1370 unsigned NewDebugInstrNum = MIB->getDebugInstrNum();
1371 addDebugSubstitutionsToTable(MBB->getParent(), NewDebugInstrNum, *I,
1372 *MIB);
1373 }
1374 if (Paired->peekDebugInstrNum()) {
1375 unsigned NewDebugInstrNum = MIB->getDebugInstrNum();
1376 addDebugSubstitutionsToTable(MBB->getParent(), NewDebugInstrNum, *Paired,
1377 *MIB);
1378 }
1379
1380 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
1381 }
1382 LLVM_DEBUG(dbgs() << "\n");
1383
1384 if (MergeForward)
1385 for (const MachineOperand &MOP : phys_regs_and_masks(*I))
1386 if (MOP.isReg() && MOP.isKill())
1387 DefinedInBB.addReg(MOP.getReg());
1388
1389 // Erase the old instructions.
1390 I->eraseFromParent();
1391 Paired->eraseFromParent();
1392
1393 return NextI;
1394}
1395
1397AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI,
1400 next_nodbg(LoadI, LoadI->getParent()->end());
1401
1402 int LoadSize = TII->getMemScale(*LoadI);
1403 int StoreSize = TII->getMemScale(*StoreI);
1404 Register LdRt = getLdStRegOp(*LoadI).getReg();
1405 const MachineOperand &StMO = getLdStRegOp(*StoreI);
1406 Register StRt = getLdStRegOp(*StoreI).getReg();
1407 bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt);
1408
1409 assert((IsStoreXReg ||
1410 TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) &&
1411 "Unexpected RegClass");
1412
1413 MachineInstr *BitExtMI;
1414 if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) {
1415 // Remove the load, if the destination register of the loads is the same
1416 // register for stored value.
1417 if (StRt == LdRt && LoadSize == 8) {
1418 for (MachineInstr &MI : make_range(StoreI->getIterator(),
1419 LoadI->getIterator())) {
1420 if (MI.killsRegister(StRt, TRI)) {
1421 MI.clearRegisterKills(StRt, TRI);
1422 break;
1423 }
1424 }
1425 LLVM_DEBUG(dbgs() << "Remove load instruction:\n ");
1426 LLVM_DEBUG(LoadI->print(dbgs()));
1427 LLVM_DEBUG(dbgs() << "\n");
1428 LoadI->eraseFromParent();
1429 return NextI;
1430 }
1431 // Replace the load with a mov if the load and store are in the same size.
1432 BitExtMI =
1433 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1434 TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt)
1435 .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR)
1436 .add(StMO)
1438 .setMIFlags(LoadI->getFlags());
1439 } else {
1440 // FIXME: Currently we disable this transformation in big-endian targets as
1441 // performance and correctness are verified only in little-endian.
1442 if (!Subtarget->isLittleEndian())
1443 return NextI;
1444 bool IsUnscaled = TII->hasUnscaledLdStOffset(*LoadI);
1445 assert(IsUnscaled == TII->hasUnscaledLdStOffset(*StoreI) &&
1446 "Unsupported ld/st match");
1447 assert(LoadSize <= StoreSize && "Invalid load size");
1448 int UnscaledLdOffset =
1449 IsUnscaled
1451 : AArch64InstrInfo::getLdStOffsetOp(*LoadI).getImm() * LoadSize;
1452 int UnscaledStOffset =
1453 IsUnscaled
1455 : AArch64InstrInfo::getLdStOffsetOp(*StoreI).getImm() * StoreSize;
1456 int Width = LoadSize * 8;
1457 Register DestReg =
1458 IsStoreXReg ? Register(TRI->getMatchingSuperReg(
1459 LdRt, AArch64::sub_32, &AArch64::GPR64RegClass))
1460 : LdRt;
1461
1462 assert((UnscaledLdOffset >= UnscaledStOffset &&
1463 (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) &&
1464 "Invalid offset");
1465
1466 int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset);
1467 int Imms = Immr + Width - 1;
1468 if (UnscaledLdOffset == UnscaledStOffset) {
1469 uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N
1470 | ((Immr) << 6) // immr
1471 | ((Imms) << 0) // imms
1472 ;
1473
1474 BitExtMI =
1475 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1476 TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri),
1477 DestReg)
1478 .add(StMO)
1479 .addImm(AndMaskEncoded)
1480 .setMIFlags(LoadI->getFlags());
1481 } else if (IsStoreXReg && Imms == 31) {
1482 // Use the 32 bit variant of UBFM if it's the LSR alias of the
1483 // instruction.
1484 assert(Immr <= Imms && "Expected LSR alias of UBFM");
1485 BitExtMI = BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1486 TII->get(AArch64::UBFMWri),
1487 TRI->getSubReg(DestReg, AArch64::sub_32))
1488 .addReg(TRI->getSubReg(StRt, AArch64::sub_32))
1489 .addImm(Immr)
1490 .addImm(Imms)
1491 .setMIFlags(LoadI->getFlags());
1492 } else {
1493 BitExtMI =
1494 BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(),
1495 TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri),
1496 DestReg)
1497 .add(StMO)
1498 .addImm(Immr)
1499 .addImm(Imms)
1500 .setMIFlags(LoadI->getFlags());
1501 }
1502 }
1503
1504 // Clear kill flags between store and load.
1505 for (MachineInstr &MI : make_range(StoreI->getIterator(),
1506 BitExtMI->getIterator()))
1507 if (MI.killsRegister(StRt, TRI)) {
1508 MI.clearRegisterKills(StRt, TRI);
1509 break;
1510 }
1511
1512 LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n ");
1513 LLVM_DEBUG(StoreI->print(dbgs()));
1514 LLVM_DEBUG(dbgs() << " ");
1515 LLVM_DEBUG(LoadI->print(dbgs()));
1516 LLVM_DEBUG(dbgs() << " with instructions:\n ");
1517 LLVM_DEBUG(StoreI->print(dbgs()));
1518 LLVM_DEBUG(dbgs() << " ");
1519 LLVM_DEBUG((BitExtMI)->print(dbgs()));
1520 LLVM_DEBUG(dbgs() << "\n");
1521
1522 // Erase the old instructions.
1523 LoadI->eraseFromParent();
1524 return NextI;
1525}
1526
1527static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) {
1528 // Convert the byte-offset used by unscaled into an "element" offset used
1529 // by the scaled pair load/store instructions.
1530 if (IsUnscaled) {
1531 // If the byte-offset isn't a multiple of the stride, there's no point
1532 // trying to match it.
1533 if (Offset % OffsetStride)
1534 return false;
1535 Offset /= OffsetStride;
1536 }
1537 return Offset <= 63 && Offset >= -64;
1538}
1539
1540// Do alignment, specialized to power of 2 and for signed ints,
1541// avoiding having to do a C-style cast from uint_64t to int when
1542// using alignTo from include/llvm/Support/MathExtras.h.
1543// FIXME: Move this function to include/MathExtras.h?
1544static int alignTo(int Num, int PowOf2) {
1545 return (Num + PowOf2 - 1) & ~(PowOf2 - 1);
1546}
1547
1548static bool mayAlias(MachineInstr &MIa,
1550 AliasAnalysis *AA) {
1551 for (MachineInstr *MIb : MemInsns) {
1552 if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) {
1553 LLVM_DEBUG(dbgs() << "Aliasing with: "; MIb->dump());
1554 return true;
1555 }
1556 }
1557
1558 LLVM_DEBUG(dbgs() << "No aliases found\n");
1559 return false;
1560}
1561
1562bool AArch64LoadStoreOpt::findMatchingStore(
1563 MachineBasicBlock::iterator I, unsigned Limit,
1565 MachineBasicBlock::iterator B = I->getParent()->begin();
1567 MachineInstr &LoadMI = *I;
1569
1570 // If the load is the first instruction in the block, there's obviously
1571 // not any matching store.
1572 if (MBBI == B)
1573 return false;
1574
1575 // Track which register units have been modified and used between the first
1576 // insn and the second insn.
1577 ModifiedRegUnits.clear();
1578 UsedRegUnits.clear();
1579
1580 unsigned Count = 0;
1581 do {
1582 MBBI = prev_nodbg(MBBI, B);
1583 MachineInstr &MI = *MBBI;
1584
1585 // Don't count transient instructions towards the search limit since there
1586 // may be different numbers of them if e.g. debug information is present.
1587 if (!MI.isTransient())
1588 ++Count;
1589
1590 // If the load instruction reads directly from the address to which the
1591 // store instruction writes and the stored value is not modified, we can
1592 // promote the load. Since we do not handle stores with pre-/post-index,
1593 // it's unnecessary to check if BaseReg is modified by the store itself.
1594 // Also we can't handle stores without an immediate offset operand,
1595 // while the operand might be the address for a global variable.
1596 if (MI.mayStore() && isMatchingStore(LoadMI, MI) &&
1599 isLdOffsetInRangeOfSt(LoadMI, MI, TII) &&
1600 ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) {
1601 StoreI = MBBI;
1602 return true;
1603 }
1604
1605 if (MI.isCall())
1606 return false;
1607
1608 // Update modified / uses register units.
1609 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
1610
1611 // Otherwise, if the base register is modified, we have no match, so
1612 // return early.
1613 if (!ModifiedRegUnits.available(BaseReg))
1614 return false;
1615
1616 // If we encounter a store aliased with the load, return early.
1617 if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false))
1618 return false;
1619 } while (MBBI != B && Count < Limit);
1620 return false;
1621}
1622
1623static bool needsWinCFI(const MachineFunction *MF) {
1624 return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() &&
1626}
1627
1628// Returns true if FirstMI and MI are candidates for merging or pairing.
1629// Otherwise, returns false.
1631 LdStPairFlags &Flags,
1632 const AArch64InstrInfo *TII) {
1633 // If this is volatile or if pairing is suppressed, not a candidate.
1634 if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI))
1635 return false;
1636
1637 // We should have already checked FirstMI for pair suppression and volatility.
1638 assert(!FirstMI.hasOrderedMemoryRef() &&
1639 !TII->isLdStPairSuppressed(FirstMI) &&
1640 "FirstMI shouldn't get here if either of these checks are true.");
1641
1642 if (needsWinCFI(MI.getMF()) && (MI.getFlag(MachineInstr::FrameSetup) ||
1644 return false;
1645
1646 unsigned OpcA = FirstMI.getOpcode();
1647 unsigned OpcB = MI.getOpcode();
1648
1649 // Opcodes match: If the opcodes are pre ld/st there is nothing more to check.
1650 if (OpcA == OpcB)
1651 return !AArch64InstrInfo::isPreLdSt(FirstMI);
1652
1653 // Bail out if one of the opcodes is SVE fill/spill, as we currently don't
1654 // allow pairing them with other instructions.
1655 if (OpcA == AArch64::LDR_ZXI || OpcA == AArch64::STR_ZXI ||
1656 OpcB == AArch64::LDR_ZXI || OpcB == AArch64::STR_ZXI)
1657 return false;
1658
1659 // Two pre ld/st of different opcodes cannot be merged either
1661 return false;
1662
1663 // Try to match a sign-extended load/store with a zero-extended load/store.
1664 bool IsValidLdStrOpc, PairIsValidLdStrOpc;
1665 unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc);
1666 assert(IsValidLdStrOpc &&
1667 "Given Opc should be a Load or Store with an immediate");
1668 // OpcA will be the first instruction in the pair.
1669 if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) {
1670 Flags.setSExtIdx(NonSExtOpc == OpcA ? 1 : 0);
1671 return true;
1672 }
1673
1674 // If the second instruction isn't even a mergable/pairable load/store, bail
1675 // out.
1676 if (!PairIsValidLdStrOpc)
1677 return false;
1678
1679 // Narrow stores do not have a matching pair opcodes, so constrain their
1680 // merging to zero stores.
1681 if (isNarrowStore(OpcA) || isNarrowStore(OpcB))
1682 return getLdStRegOp(FirstMI).getReg() == AArch64::WZR &&
1683 getLdStRegOp(MI).getReg() == AArch64::WZR &&
1684 TII->getMemScale(FirstMI) == TII->getMemScale(MI);
1685
1686 // The STR<S,D,Q,W,X>pre - STR<S,D,Q,W,X>ui and
1687 // LDR<S,D,Q,W,X,SW>pre-LDR<S,D,Q,W,X,SW>ui
1688 // are candidate pairs that can be merged.
1689 if (isPreLdStPairCandidate(FirstMI, MI))
1690 return true;
1691
1692 // Try to match an unscaled load/store with a scaled load/store.
1693 return TII->hasUnscaledLdStOffset(OpcA) != TII->hasUnscaledLdStOffset(OpcB) &&
1695
1696 // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair?
1697}
1698
1699static bool canRenameMOP(const MachineOperand &MOP,
1700 const TargetRegisterInfo *TRI) {
1701 if (MOP.isReg()) {
1702 auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg());
1703 // Renaming registers with multiple disjunct sub-registers (e.g. the
1704 // result of a LD3) means that all sub-registers are renamed, potentially
1705 // impacting other instructions we did not check. Bail out.
1706 // Note that this relies on the structure of the AArch64 register file. In
1707 // particular, a subregister cannot be written without overwriting the
1708 // whole register.
1709 if (RegClass->HasDisjunctSubRegs && RegClass->CoveredBySubRegs &&
1710 (TRI->getSubRegisterClass(RegClass, AArch64::dsub0) ||
1711 TRI->getSubRegisterClass(RegClass, AArch64::qsub0) ||
1712 TRI->getSubRegisterClass(RegClass, AArch64::zsub0))) {
1713 LLVM_DEBUG(
1714 dbgs()
1715 << " Cannot rename operands with multiple disjunct subregisters ("
1716 << MOP << ")\n");
1717 return false;
1718 }
1719
1720 // We cannot rename arbitrary implicit-defs, the specific rule to rewrite
1721 // them must be known. For example, in ORRWrs the implicit-def
1722 // corresponds to the result register.
1723 if (MOP.isImplicit() && MOP.isDef()) {
1725 return false;
1726 return TRI->isSuperOrSubRegisterEq(
1727 MOP.getParent()->getOperand(0).getReg(), MOP.getReg());
1728 }
1729 }
1730 return MOP.isImplicit() ||
1731 (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied());
1732}
1733
1734static bool
1737 const TargetRegisterInfo *TRI) {
1738 if (!FirstMI.mayStore())
1739 return false;
1740
1741 // Check if we can find an unused register which we can use to rename
1742 // the register used by the first load/store.
1743
1744 auto RegToRename = getLdStRegOp(FirstMI).getReg();
1745 // For now, we only rename if the store operand gets killed at the store.
1746 if (!getLdStRegOp(FirstMI).isKill() &&
1747 !any_of(FirstMI.operands(),
1748 [TRI, RegToRename](const MachineOperand &MOP) {
1749 return MOP.isReg() && !MOP.isDebug() && MOP.getReg() &&
1750 MOP.isImplicit() && MOP.isKill() &&
1751 TRI->regsOverlap(RegToRename, MOP.getReg());
1752 })) {
1753 LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI);
1754 return false;
1755 }
1756
1757 bool FoundDef = false;
1758
1759 // For each instruction between FirstMI and the previous def for RegToRename,
1760 // we
1761 // * check if we can rename RegToRename in this instruction
1762 // * collect the registers used and required register classes for RegToRename.
1763 std::function<bool(MachineInstr &, bool)> CheckMIs = [&](MachineInstr &MI,
1764 bool IsDef) {
1765 LLVM_DEBUG(dbgs() << "Checking " << MI);
1766 // Currently we do not try to rename across frame-setup instructions.
1767 if (MI.getFlag(MachineInstr::FrameSetup)) {
1768 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions "
1769 << "currently\n");
1770 return false;
1771 }
1772
1773 UsedInBetween.accumulate(MI);
1774
1775 // For a definition, check that we can rename the definition and exit the
1776 // loop.
1777 FoundDef = IsDef;
1778
1779 // For defs, check if we can rename the first def of RegToRename.
1780 if (FoundDef) {
1781 // For some pseudo instructions, we might not generate code in the end
1782 // (e.g. KILL) and we would end up without a correct def for the rename
1783 // register.
1784 // TODO: This might be overly conservative and we could handle those cases
1785 // in multiple ways:
1786 // 1. Insert an extra copy, to materialize the def.
1787 // 2. Skip pseudo-defs until we find an non-pseudo def.
1788 if (MI.isPseudo()) {
1789 LLVM_DEBUG(dbgs() << " Cannot rename pseudo/bundle instruction\n");
1790 return false;
1791 }
1792
1793 for (auto &MOP : MI.operands()) {
1794 if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() ||
1795 !TRI->regsOverlap(MOP.getReg(), RegToRename))
1796 continue;
1797 if (!canRenameMOP(MOP, TRI)) {
1798 LLVM_DEBUG(dbgs() << " Cannot rename " << MOP << " in " << MI);
1799 return false;
1800 }
1801 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1802 }
1803 return true;
1804 } else {
1805 for (auto &MOP : MI.operands()) {
1806 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
1807 !TRI->regsOverlap(MOP.getReg(), RegToRename))
1808 continue;
1809
1810 if (!canRenameMOP(MOP, TRI)) {
1811 LLVM_DEBUG(dbgs() << " Cannot rename " << MOP << " in " << MI);
1812 return false;
1813 }
1814 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1815 }
1816 }
1817 return true;
1818 };
1819
1820 if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs))
1821 return false;
1822
1823 if (!FoundDef) {
1824 LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n");
1825 return false;
1826 }
1827 return true;
1828}
1829
1830// We want to merge the second load into the first by rewriting the usages of
1831// the same reg between first (incl.) and second (excl.). We don't need to care
1832// about any insns before FirstLoad or after SecondLoad.
1833// 1. The second load writes new value into the same reg.
1834// - The renaming is impossible to impact later use of the reg.
1835// - The second load always trash the value written by the first load which
1836// means the reg must be killed before the second load.
1837// 2. The first load must be a def for the same reg so we don't need to look
1838// into anything before it.
1840 MachineInstr &FirstLoad, MachineInstr &SecondLoad,
1841 LiveRegUnits &UsedInBetween,
1843 const TargetRegisterInfo *TRI) {
1844 if (FirstLoad.isPseudo())
1845 return false;
1846
1847 UsedInBetween.accumulate(FirstLoad);
1848 auto RegToRename = getLdStRegOp(FirstLoad).getReg();
1849 bool Success = std::all_of(
1850 FirstLoad.getIterator(), SecondLoad.getIterator(),
1851 [&](MachineInstr &MI) {
1852 LLVM_DEBUG(dbgs() << "Checking " << MI);
1853 // Currently we do not try to rename across frame-setup instructions.
1854 if (MI.getFlag(MachineInstr::FrameSetup)) {
1855 LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions "
1856 << "currently\n");
1857 return false;
1858 }
1859
1860 for (auto &MOP : MI.operands()) {
1861 if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() ||
1862 !TRI->regsOverlap(MOP.getReg(), RegToRename))
1863 continue;
1864 if (!canRenameMOP(MOP, TRI)) {
1865 LLVM_DEBUG(dbgs() << " Cannot rename " << MOP << " in " << MI);
1866 return false;
1867 }
1868 RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg()));
1869 }
1870
1871 return true;
1872 });
1873 return Success;
1874}
1875
1876// Check if we can find a physical register for renaming \p Reg. This register
1877// must:
1878// * not be defined already in \p DefinedInBB; DefinedInBB must contain all
1879// defined registers up to the point where the renamed register will be used,
1880// * not used in \p UsedInBetween; UsedInBetween must contain all accessed
1881// registers in the range the rename register will be used,
1882// * is available in all used register classes (checked using RequiredClasses).
1883static std::optional<MCPhysReg> tryToFindRegisterToRename(
1884 const MachineFunction &MF, Register Reg, LiveRegUnits &DefinedInBB,
1885 LiveRegUnits &UsedInBetween,
1887 const TargetRegisterInfo *TRI) {
1889
1890 // Checks if any sub- or super-register of PR is callee saved.
1891 auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) {
1892 return any_of(TRI->sub_and_superregs_inclusive(PR),
1893 [&MF, TRI](MCPhysReg SubOrSuper) {
1894 return TRI->isCalleeSavedPhysReg(SubOrSuper, MF);
1895 });
1896 };
1897
1898 // Check if PR or one of its sub- or super-registers can be used for all
1899 // required register classes.
1900 auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) {
1901 return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) {
1902 return any_of(
1903 TRI->sub_and_superregs_inclusive(PR),
1904 [C](MCPhysReg SubOrSuper) { return C->contains(SubOrSuper); });
1905 });
1906 };
1907
1908 auto *RegClass = TRI->getMinimalPhysRegClass(Reg);
1909 for (const MCPhysReg &PR : *RegClass) {
1910 if (DefinedInBB.available(PR) && UsedInBetween.available(PR) &&
1911 !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) &&
1912 CanBeUsedForAllClasses(PR)) {
1913 DefinedInBB.addReg(PR);
1914 LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI)
1915 << "\n");
1916 return {PR};
1917 }
1918 }
1919 LLVM_DEBUG(dbgs() << "No rename register found from "
1920 << TRI->getRegClassName(RegClass) << "\n");
1921 return std::nullopt;
1922}
1923
1924// For store pairs: returns a register from FirstMI to the beginning of the
1925// block that can be renamed.
1926// For load pairs: returns a register from FirstMI to MI that can be renamed.
1927static std::optional<MCPhysReg> findRenameRegForSameLdStRegPair(
1928 std::optional<bool> MaybeCanRename, MachineInstr &FirstMI, MachineInstr &MI,
1929 Register Reg, LiveRegUnits &DefinedInBB, LiveRegUnits &UsedInBetween,
1931 const TargetRegisterInfo *TRI) {
1932 std::optional<MCPhysReg> RenameReg;
1933 if (!DebugCounter::shouldExecute(RegRenamingCounter))
1934 return RenameReg;
1935
1936 auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg());
1937 MachineFunction &MF = *FirstMI.getParent()->getParent();
1938 if (!RegClass || !MF.getRegInfo().tracksLiveness())
1939 return RenameReg;
1940
1941 const bool IsLoad = FirstMI.mayLoad();
1942
1943 if (!MaybeCanRename) {
1944 if (IsLoad)
1945 MaybeCanRename = {canRenameUntilSecondLoad(FirstMI, MI, UsedInBetween,
1946 RequiredClasses, TRI)};
1947 else
1948 MaybeCanRename = {
1949 canRenameUpToDef(FirstMI, UsedInBetween, RequiredClasses, TRI)};
1950 }
1951
1952 if (*MaybeCanRename) {
1953 RenameReg = tryToFindRegisterToRename(MF, Reg, DefinedInBB, UsedInBetween,
1954 RequiredClasses, TRI);
1955 }
1956 return RenameReg;
1957}
1958
1959/// Scan the instructions looking for a load/store that can be combined with the
1960/// current instruction into a wider equivalent or a load/store pair.
1962AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I,
1963 LdStPairFlags &Flags, unsigned Limit,
1964 bool FindNarrowMerge) {
1965 MachineBasicBlock::iterator E = I->getParent()->end();
1967 MachineBasicBlock::iterator MBBIWithRenameReg;
1968 MachineInstr &FirstMI = *I;
1969 MBBI = next_nodbg(MBBI, E);
1970
1971 bool MayLoad = FirstMI.mayLoad();
1972 bool IsUnscaled = TII->hasUnscaledLdStOffset(FirstMI);
1973 Register Reg = getLdStRegOp(FirstMI).getReg();
1976 int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1;
1977 bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI);
1978
1979 std::optional<bool> MaybeCanRename;
1980 if (!EnableRenaming)
1981 MaybeCanRename = {false};
1982
1984 LiveRegUnits UsedInBetween;
1985 UsedInBetween.init(*TRI);
1986
1987 Flags.clearRenameReg();
1988
1989 // Track which register units have been modified and used between the first
1990 // insn (inclusive) and the second insn.
1991 ModifiedRegUnits.clear();
1992 UsedRegUnits.clear();
1993
1994 // Remember any instructions that read/write memory between FirstMI and MI.
1996
1997 LLVM_DEBUG(dbgs() << "Find match for: "; FirstMI.dump());
1998 for (unsigned Count = 0; MBBI != E && Count < Limit;
1999 MBBI = next_nodbg(MBBI, E)) {
2000 MachineInstr &MI = *MBBI;
2001 LLVM_DEBUG(dbgs() << "Analysing 2nd insn: "; MI.dump());
2002
2003 UsedInBetween.accumulate(MI);
2004
2005 // Don't count transient instructions towards the search limit since there
2006 // may be different numbers of them if e.g. debug information is present.
2007 if (!MI.isTransient())
2008 ++Count;
2009
2010 Flags.setSExtIdx(-1);
2011 if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) &&
2013 assert(MI.mayLoadOrStore() && "Expected memory operation.");
2014 // If we've found another instruction with the same opcode, check to see
2015 // if the base and offset are compatible with our starting instruction.
2016 // These instructions all have scaled immediate operands, so we just
2017 // check for +1/-1. Make sure to check the new instruction offset is
2018 // actually an immediate and not a symbolic reference destined for
2019 // a relocation.
2022 bool MIIsUnscaled = TII->hasUnscaledLdStOffset(MI);
2023 if (IsUnscaled != MIIsUnscaled) {
2024 // We're trying to pair instructions that differ in how they are scaled.
2025 // If FirstMI is scaled then scale the offset of MI accordingly.
2026 // Otherwise, do the opposite (i.e., make MI's offset unscaled).
2027 int MemSize = TII->getMemScale(MI);
2028 if (MIIsUnscaled) {
2029 // If the unscaled offset isn't a multiple of the MemSize, we can't
2030 // pair the operations together: bail and keep looking.
2031 if (MIOffset % MemSize) {
2032 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
2033 UsedRegUnits, TRI);
2034 MemInsns.push_back(&MI);
2035 continue;
2036 }
2037 MIOffset /= MemSize;
2038 } else {
2039 MIOffset *= MemSize;
2040 }
2041 }
2042
2043 bool IsPreLdSt = isPreLdStPairCandidate(FirstMI, MI);
2044
2045 if (BaseReg == MIBaseReg) {
2046 // If the offset of the second ld/st is not equal to the size of the
2047 // destination register it can’t be paired with a pre-index ld/st
2048 // pair. Additionally if the base reg is used or modified the operations
2049 // can't be paired: bail and keep looking.
2050 if (IsPreLdSt) {
2051 bool IsOutOfBounds = MIOffset != TII->getMemScale(MI);
2052 bool IsBaseRegUsed = !UsedRegUnits.available(
2054 bool IsBaseRegModified = !ModifiedRegUnits.available(
2056 // If the stored value and the address of the second instruction is
2057 // the same, it needs to be using the updated register and therefore
2058 // it must not be folded.
2059 bool IsMIRegTheSame =
2060 TRI->regsOverlap(getLdStRegOp(MI).getReg(),
2062 if (IsOutOfBounds || IsBaseRegUsed || IsBaseRegModified ||
2063 IsMIRegTheSame) {
2064 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
2065 UsedRegUnits, TRI);
2066 MemInsns.push_back(&MI);
2067 continue;
2068 }
2069 } else {
2070 if ((Offset != MIOffset + OffsetStride) &&
2071 (Offset + OffsetStride != MIOffset)) {
2072 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
2073 UsedRegUnits, TRI);
2074 MemInsns.push_back(&MI);
2075 continue;
2076 }
2077 }
2078
2079 int MinOffset = Offset < MIOffset ? Offset : MIOffset;
2080 if (FindNarrowMerge) {
2081 // If the alignment requirements of the scaled wide load/store
2082 // instruction can't express the offset of the scaled narrow input,
2083 // bail and keep looking. For promotable zero stores, allow only when
2084 // the stored value is the same (i.e., WZR).
2085 if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) ||
2086 (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) {
2087 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
2088 UsedRegUnits, TRI);
2089 MemInsns.push_back(&MI);
2090 continue;
2091 }
2092 } else {
2093 // Pairwise instructions have a 7-bit signed offset field. Single
2094 // insns have a 12-bit unsigned offset field. If the resultant
2095 // immediate offset of merging these instructions is out of range for
2096 // a pairwise instruction, bail and keep looking.
2097 if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) {
2098 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
2099 UsedRegUnits, TRI);
2100 MemInsns.push_back(&MI);
2101 LLVM_DEBUG(dbgs() << "Offset doesn't fit in immediate, "
2102 << "keep looking.\n");
2103 continue;
2104 }
2105 // If the alignment requirements of the paired (scaled) instruction
2106 // can't express the offset of the unscaled input, bail and keep
2107 // looking.
2108 if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) {
2109 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
2110 UsedRegUnits, TRI);
2111 MemInsns.push_back(&MI);
2113 << "Offset doesn't fit due to alignment requirements, "
2114 << "keep looking.\n");
2115 continue;
2116 }
2117 }
2118
2119 // If the BaseReg has been modified, then we cannot do the optimization.
2120 // For example, in the following pattern
2121 // ldr x1 [x2]
2122 // ldr x2 [x3]
2123 // ldr x4 [x2, #8],
2124 // the first and third ldr cannot be converted to ldp x1, x4, [x2]
2125 if (!ModifiedRegUnits.available(BaseReg))
2126 return E;
2127
2128 const bool SameLoadReg = MayLoad && TRI->isSuperOrSubRegisterEq(
2129 Reg, getLdStRegOp(MI).getReg());
2130
2131 // If the Rt of the second instruction (destination register of the
2132 // load) was not modified or used between the two instructions and none
2133 // of the instructions between the second and first alias with the
2134 // second, we can combine the second into the first.
2135 bool RtNotModified =
2136 ModifiedRegUnits.available(getLdStRegOp(MI).getReg());
2137 bool RtNotUsed = !(MI.mayLoad() && !SameLoadReg &&
2138 !UsedRegUnits.available(getLdStRegOp(MI).getReg()));
2139
2140 LLVM_DEBUG(dbgs() << "Checking, can combine 2nd into 1st insn:\n"
2141 << "Reg '" << getLdStRegOp(MI) << "' not modified: "
2142 << (RtNotModified ? "true" : "false") << "\n"
2143 << "Reg '" << getLdStRegOp(MI) << "' not used: "
2144 << (RtNotUsed ? "true" : "false") << "\n");
2145
2146 if (RtNotModified && RtNotUsed && !mayAlias(MI, MemInsns, AA)) {
2147 // For pairs loading into the same reg, try to find a renaming
2148 // opportunity to allow the renaming of Reg between FirstMI and MI
2149 // and combine MI into FirstMI; otherwise bail and keep looking.
2150 if (SameLoadReg) {
2151 std::optional<MCPhysReg> RenameReg =
2152 findRenameRegForSameLdStRegPair(MaybeCanRename, FirstMI, MI,
2153 Reg, DefinedInBB, UsedInBetween,
2154 RequiredClasses, TRI);
2155 if (!RenameReg) {
2156 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits,
2157 UsedRegUnits, TRI);
2158 MemInsns.push_back(&MI);
2159 LLVM_DEBUG(dbgs() << "Can't find reg for renaming, "
2160 << "keep looking.\n");
2161 continue;
2162 }
2163 Flags.setRenameReg(*RenameReg);
2164 }
2165
2166 Flags.setMergeForward(false);
2167 if (!SameLoadReg)
2168 Flags.clearRenameReg();
2169 return MBBI;
2170 }
2171
2172 // Likewise, if the Rt of the first instruction is not modified or used
2173 // between the two instructions and none of the instructions between the
2174 // first and the second alias with the first, we can combine the first
2175 // into the second.
2176 RtNotModified = !(
2177 MayLoad && !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg()));
2178
2179 LLVM_DEBUG(dbgs() << "Checking, can combine 1st into 2nd insn:\n"
2180 << "Reg '" << getLdStRegOp(FirstMI)
2181 << "' not modified: "
2182 << (RtNotModified ? "true" : "false") << "\n");
2183
2184 if (RtNotModified && !mayAlias(FirstMI, MemInsns, AA)) {
2185 if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) {
2186 Flags.setMergeForward(true);
2187 Flags.clearRenameReg();
2188 return MBBI;
2189 }
2190
2191 std::optional<MCPhysReg> RenameReg = findRenameRegForSameLdStRegPair(
2192 MaybeCanRename, FirstMI, MI, Reg, DefinedInBB, UsedInBetween,
2193 RequiredClasses, TRI);
2194 if (RenameReg) {
2195 Flags.setMergeForward(true);
2196 Flags.setRenameReg(*RenameReg);
2197 MBBIWithRenameReg = MBBI;
2198 }
2199 }
2200 LLVM_DEBUG(dbgs() << "Unable to combine these instructions due to "
2201 << "interference in between, keep looking.\n");
2202 }
2203 }
2204
2205 if (Flags.getRenameReg())
2206 return MBBIWithRenameReg;
2207
2208 // If the instruction wasn't a matching load or store. Stop searching if we
2209 // encounter a call instruction that might modify memory.
2210 if (MI.isCall()) {
2211 LLVM_DEBUG(dbgs() << "Found a call, stop looking.\n");
2212 return E;
2213 }
2214
2215 // Update modified / uses register units.
2216 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
2217
2218 // Otherwise, if the base register is modified, we have no match, so
2219 // return early.
2220 if (!ModifiedRegUnits.available(BaseReg)) {
2221 LLVM_DEBUG(dbgs() << "Base reg is modified, stop looking.\n");
2222 return E;
2223 }
2224
2225 // Update list of instructions that read/write memory.
2226 if (MI.mayLoadOrStore())
2227 MemInsns.push_back(&MI);
2228 }
2229 return E;
2230}
2231
2234 assert((MI.getOpcode() == AArch64::SUBXri ||
2235 MI.getOpcode() == AArch64::ADDXri) &&
2236 "Expected a register update instruction");
2237 auto End = MI.getParent()->end();
2238 if (MaybeCFI == End ||
2239 MaybeCFI->getOpcode() != TargetOpcode::CFI_INSTRUCTION ||
2240 !(MI.getFlag(MachineInstr::FrameSetup) ||
2241 MI.getFlag(MachineInstr::FrameDestroy)) ||
2242 MI.getOperand(0).getReg() != AArch64::SP)
2243 return End;
2244
2245 const MachineFunction &MF = *MI.getParent()->getParent();
2246 unsigned CFIIndex = MaybeCFI->getOperand(0).getCFIIndex();
2247 const MCCFIInstruction &CFI = MF.getFrameInstructions()[CFIIndex];
2248 switch (CFI.getOperation()) {
2251 return MaybeCFI;
2252 default:
2253 return End;
2254 }
2255}
2256
2257std::optional<MachineBasicBlock::iterator> AArch64LoadStoreOpt::mergeUpdateInsn(
2259 bool IsForward, bool IsPreIdx, bool MergeEither) {
2260 assert((Update->getOpcode() == AArch64::ADDXri ||
2261 Update->getOpcode() == AArch64::SUBXri) &&
2262 "Unexpected base register update instruction to merge!");
2263 MachineBasicBlock::iterator E = I->getParent()->end();
2265
2266 // If updating the SP and the following instruction is CFA offset related CFI,
2267 // make sure the CFI follows the SP update either by merging at the location
2268 // of the update or by moving the CFI after the merged instruction. If unable
2269 // to do so, bail.
2270 MachineBasicBlock::iterator InsertPt = I;
2271 if (IsForward) {
2272 assert(IsPreIdx);
2273 if (auto CFI = maybeMoveCFI(*Update, next_nodbg(Update, E)); CFI != E) {
2274 if (MergeEither) {
2275 InsertPt = Update;
2276 } else {
2277 // Take care not to reorder CFIs.
2278 if (std::any_of(std::next(CFI), I, [](const auto &Insn) {
2279 return Insn.getOpcode() == TargetOpcode::CFI_INSTRUCTION;
2280 }))
2281 return std::nullopt;
2282
2283 MachineBasicBlock *MBB = InsertPt->getParent();
2284 MBB->splice(std::next(InsertPt), MBB, CFI);
2285 }
2286 }
2287 }
2288
2289 // Return the instruction following the merged instruction, which is
2290 // the instruction following our unmerged load. Unless that's the add/sub
2291 // instruction we're merging, in which case it's the one after that.
2292 if (NextI == Update)
2293 NextI = next_nodbg(NextI, E);
2294
2295 int Value = Update->getOperand(2).getImm();
2296 assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 &&
2297 "Can't merge 1 << 12 offset into pre-/post-indexed load / store");
2298 if (Update->getOpcode() == AArch64::SUBXri)
2299 Value = -Value;
2300
2301 unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode())
2304 int Scale, MinOffset, MaxOffset;
2305 getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset);
2307 // Non-paired instruction.
2308 MIB = BuildMI(*InsertPt->getParent(), InsertPt, InsertPt->getDebugLoc(),
2309 TII->get(NewOpc))
2310 .add(Update->getOperand(0))
2311 .add(getLdStRegOp(*I))
2313 .addImm(Value / Scale)
2314 .setMemRefs(I->memoperands())
2315 .setMIFlags(I->mergeFlagsWith(*Update));
2316 } else {
2317 // Paired instruction.
2318 MIB = BuildMI(*InsertPt->getParent(), InsertPt, InsertPt->getDebugLoc(),
2319 TII->get(NewOpc))
2320 .add(Update->getOperand(0))
2321 .add(getLdStRegOp(*I, 0))
2322 .add(getLdStRegOp(*I, 1))
2324 .addImm(Value / Scale)
2325 .setMemRefs(I->memoperands())
2326 .setMIFlags(I->mergeFlagsWith(*Update));
2327 }
2328
2329 if (IsPreIdx) {
2330 ++NumPreFolded;
2331 LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store.");
2332 } else {
2333 ++NumPostFolded;
2334 LLVM_DEBUG(dbgs() << "Creating post-indexed load/store.");
2335 }
2336 LLVM_DEBUG(dbgs() << " Replacing instructions:\n ");
2337 LLVM_DEBUG(I->print(dbgs()));
2338 LLVM_DEBUG(dbgs() << " ");
2339 LLVM_DEBUG(Update->print(dbgs()));
2340 LLVM_DEBUG(dbgs() << " with instruction:\n ");
2341 LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs()));
2342 LLVM_DEBUG(dbgs() << "\n");
2343
2344 // Erase the old instructions for the block.
2345 I->eraseFromParent();
2346 Update->eraseFromParent();
2347
2348 return NextI;
2349}
2350
2352AArch64LoadStoreOpt::mergeConstOffsetInsn(MachineBasicBlock::iterator I,
2354 unsigned Offset, int Scale) {
2355 assert((Update->getOpcode() == AArch64::MOVKWi) &&
2356 "Unexpected const mov instruction to merge!");
2357 MachineBasicBlock::iterator E = I->getParent()->end();
2359 MachineBasicBlock::iterator PrevI = prev_nodbg(Update, E);
2360 MachineInstr &MemMI = *I;
2361 unsigned Mask = (1 << 12) * Scale - 1;
2362 unsigned Low = Offset & Mask;
2363 unsigned High = Offset - Low;
2366 MachineInstrBuilder AddMIB, MemMIB;
2367
2368 // Add IndexReg, BaseReg, High (the BaseReg may be SP)
2369 AddMIB =
2370 BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(AArch64::ADDXri))
2371 .addDef(IndexReg)
2372 .addUse(BaseReg)
2373 .addImm(High >> 12) // shifted value
2374 .addImm(12); // shift 12
2375 (void)AddMIB;
2376 // Ld/St DestReg, IndexReg, Imm12
2377 unsigned NewOpc = getBaseAddressOpcode(I->getOpcode());
2378 MemMIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc))
2379 .add(getLdStRegOp(MemMI))
2381 .addImm(Low / Scale)
2382 .setMemRefs(I->memoperands())
2383 .setMIFlags(I->mergeFlagsWith(*Update));
2384 (void)MemMIB;
2385
2386 ++NumConstOffsetFolded;
2387 LLVM_DEBUG(dbgs() << "Creating base address load/store.\n");
2388 LLVM_DEBUG(dbgs() << " Replacing instructions:\n ");
2389 LLVM_DEBUG(PrevI->print(dbgs()));
2390 LLVM_DEBUG(dbgs() << " ");
2391 LLVM_DEBUG(Update->print(dbgs()));
2392 LLVM_DEBUG(dbgs() << " ");
2393 LLVM_DEBUG(I->print(dbgs()));
2394 LLVM_DEBUG(dbgs() << " with instruction:\n ");
2395 LLVM_DEBUG(((MachineInstr *)AddMIB)->print(dbgs()));
2396 LLVM_DEBUG(dbgs() << " ");
2397 LLVM_DEBUG(((MachineInstr *)MemMIB)->print(dbgs()));
2398 LLVM_DEBUG(dbgs() << "\n");
2399
2400 // Erase the old instructions for the block.
2401 I->eraseFromParent();
2402 PrevI->eraseFromParent();
2403 Update->eraseFromParent();
2404
2405 return NextI;
2406}
2407
2408bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI,
2410 unsigned BaseReg, int Offset) {
2411 switch (MI.getOpcode()) {
2412 default:
2413 break;
2414 case AArch64::SUBXri:
2415 case AArch64::ADDXri:
2416 // Make sure it's a vanilla immediate operand, not a relocation or
2417 // anything else we can't handle.
2418 if (!MI.getOperand(2).isImm())
2419 break;
2420 // Watch out for 1 << 12 shifted value.
2421 if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm()))
2422 break;
2423
2424 // The update instruction source and destination register must be the
2425 // same as the load/store base register.
2426 if (MI.getOperand(0).getReg() != BaseReg ||
2427 MI.getOperand(1).getReg() != BaseReg)
2428 break;
2429
2430 int UpdateOffset = MI.getOperand(2).getImm();
2431 if (MI.getOpcode() == AArch64::SUBXri)
2432 UpdateOffset = -UpdateOffset;
2433
2434 // The immediate must be a multiple of the scaling factor of the pre/post
2435 // indexed instruction.
2436 int Scale, MinOffset, MaxOffset;
2437 getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset);
2438 if (UpdateOffset % Scale != 0)
2439 break;
2440
2441 // Scaled offset must fit in the instruction immediate.
2442 int ScaledOffset = UpdateOffset / Scale;
2443 if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset)
2444 break;
2445
2446 // If we have a non-zero Offset, we check that it matches the amount
2447 // we're adding to the register.
2448 if (!Offset || Offset == UpdateOffset)
2449 return true;
2450 break;
2451 }
2452 return false;
2453}
2454
2455bool AArch64LoadStoreOpt::isMatchingMovConstInsn(MachineInstr &MemMI,
2457 unsigned IndexReg,
2458 unsigned &Offset) {
2459 // The update instruction source and destination register must be the
2460 // same as the load/store index register.
2461 if (MI.getOpcode() == AArch64::MOVKWi &&
2462 TRI->isSuperOrSubRegisterEq(IndexReg, MI.getOperand(1).getReg())) {
2463
2464 // movz + movk hold a large offset of a Ld/St instruction.
2465 MachineBasicBlock::iterator B = MI.getParent()->begin();
2467 // Skip the scene when the MI is the first instruction of a block.
2468 if (MBBI == B)
2469 return false;
2470 MBBI = prev_nodbg(MBBI, B);
2471 MachineInstr &MovzMI = *MBBI;
2472 // Make sure the MOVKWi and MOVZWi set the same register.
2473 if (MovzMI.getOpcode() == AArch64::MOVZWi &&
2474 MovzMI.getOperand(0).getReg() == MI.getOperand(0).getReg()) {
2475 unsigned Low = MovzMI.getOperand(1).getImm();
2476 unsigned High = MI.getOperand(2).getImm() << MI.getOperand(3).getImm();
2477 Offset = High + Low;
2478 // 12-bit optionally shifted immediates are legal for adds.
2479 return Offset >> 24 == 0;
2480 }
2481 }
2482 return false;
2483}
2484
2485MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward(
2486 MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) {
2487 MachineBasicBlock::iterator E = I->getParent()->end();
2488 MachineInstr &MemMI = *I;
2490
2492 int MIUnscaledOffset = AArch64InstrInfo::getLdStOffsetOp(MemMI).getImm() *
2493 TII->getMemScale(MemMI);
2494
2495 // Scan forward looking for post-index opportunities. Updating instructions
2496 // can't be formed if the memory instruction doesn't have the offset we're
2497 // looking for.
2498 if (MIUnscaledOffset != UnscaledOffset)
2499 return E;
2500
2501 // If the base register overlaps a source/destination register, we can't
2502 // merge the update. This does not apply to tag store instructions which
2503 // ignore the address part of the source register.
2504 // This does not apply to STGPi as well, which does not have unpredictable
2505 // behavior in this case unlike normal stores, and always performs writeback
2506 // after reading the source register value.
2507 if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) {
2508 bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI);
2509 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) {
2510 Register DestReg = getLdStRegOp(MemMI, i).getReg();
2511 if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg))
2512 return E;
2513 }
2514 }
2515
2516 // Track which register units have been modified and used between the first
2517 // insn (inclusive) and the second insn.
2518 ModifiedRegUnits.clear();
2519 UsedRegUnits.clear();
2520 MBBI = next_nodbg(MBBI, E);
2521
2522 // We can't post-increment the stack pointer if any instruction between
2523 // the memory access (I) and the increment (MBBI) can access the memory
2524 // region defined by [SP, MBBI].
2525 const bool BaseRegSP = BaseReg == AArch64::SP;
2526 if (BaseRegSP && needsWinCFI(I->getMF())) {
2527 // FIXME: For now, we always block the optimization over SP in windows
2528 // targets as it requires to adjust the unwind/debug info, messing up
2529 // the unwind info can actually cause a miscompile.
2530 return E;
2531 }
2532
2533 unsigned Count = 0;
2534 MachineBasicBlock *CurMBB = I->getParent();
2535 // choice of next block to visit is liveins-based
2536 bool VisitSucc = CurMBB->getParent()->getRegInfo().tracksLiveness();
2537
2538 while (true) {
2539 for (MachineBasicBlock::iterator CurEnd = CurMBB->end();
2540 MBBI != CurEnd && Count < Limit; MBBI = next_nodbg(MBBI, CurEnd)) {
2541 MachineInstr &MI = *MBBI;
2542
2543 // Don't count transient instructions towards the search limit since there
2544 // may be different numbers of them if e.g. debug information is present.
2545 if (!MI.isTransient())
2546 ++Count;
2547
2548 // If we found a match, return it.
2549 if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset))
2550 return MBBI;
2551
2552 // Update the status of what the instruction clobbered and used.
2553 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
2554 TRI);
2555
2556 // Otherwise, if the base register is used or modified, we have no match,
2557 // so return early. If we are optimizing SP, do not allow instructions
2558 // that may load or store in between the load and the optimized value
2559 // update.
2560 if (!ModifiedRegUnits.available(BaseReg) ||
2561 !UsedRegUnits.available(BaseReg) ||
2562 (BaseRegSP && MBBI->mayLoadOrStore()))
2563 return E;
2564 }
2565
2566 if (!VisitSucc || Limit <= Count)
2567 break;
2568
2569 // Try to go downward to successors along a CF path w/o side enters
2570 // such that BaseReg is alive along it but not at its exits
2571 MachineBasicBlock *SuccToVisit = nullptr;
2572 unsigned LiveSuccCount = 0;
2573 for (MachineBasicBlock *Succ : CurMBB->successors()) {
2574 for (MCRegAliasIterator AI(BaseReg, TRI, true); AI.isValid(); ++AI) {
2575 if (Succ->isLiveIn(*AI)) {
2576 if (LiveSuccCount++)
2577 return E;
2578 if (Succ->pred_size() == 1)
2579 SuccToVisit = Succ;
2580 break;
2581 }
2582 }
2583 }
2584 if (!SuccToVisit)
2585 break;
2586 CurMBB = SuccToVisit;
2587 MBBI = CurMBB->begin();
2588 }
2589
2590 return E;
2591}
2592
2593MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward(
2594 MachineBasicBlock::iterator I, unsigned Limit, bool &MergeEither) {
2595 MachineBasicBlock::iterator B = I->getParent()->begin();
2596 MachineBasicBlock::iterator E = I->getParent()->end();
2597 MachineInstr &MemMI = *I;
2599 MachineFunction &MF = *MemMI.getMF();
2600
2603
2604 bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI);
2605 Register DestReg[] = {getLdStRegOp(MemMI, 0).getReg(),
2606 IsPairedInsn ? getLdStRegOp(MemMI, 1).getReg()
2607 : AArch64::NoRegister};
2608
2609 // If the load/store is the first instruction in the block, there's obviously
2610 // not any matching update. Ditto if the memory offset isn't zero.
2611 if (MBBI == B || Offset != 0)
2612 return E;
2613 // If the base register overlaps a destination register, we can't
2614 // merge the update.
2615 if (!isTagStore(MemMI)) {
2616 for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i)
2617 if (DestReg[i] == BaseReg || TRI->isSubRegister(BaseReg, DestReg[i]))
2618 return E;
2619 }
2620
2621 const bool BaseRegSP = BaseReg == AArch64::SP;
2622 if (BaseRegSP && needsWinCFI(I->getMF())) {
2623 // FIXME: For now, we always block the optimization over SP in windows
2624 // targets as it requires to adjust the unwind/debug info, messing up
2625 // the unwind info can actually cause a miscompile.
2626 return E;
2627 }
2628
2629 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2630 unsigned RedZoneSize =
2631 Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction());
2632
2633 // Track which register units have been modified and used between the first
2634 // insn (inclusive) and the second insn.
2635 ModifiedRegUnits.clear();
2636 UsedRegUnits.clear();
2637 unsigned Count = 0;
2638 bool MemAccessBeforeSPPreInc = false;
2639 MergeEither = true;
2640 do {
2641 MBBI = prev_nodbg(MBBI, B);
2642 MachineInstr &MI = *MBBI;
2643
2644 // Don't count transient instructions towards the search limit since there
2645 // may be different numbers of them if e.g. debug information is present.
2646 if (!MI.isTransient())
2647 ++Count;
2648
2649 // If we found a match, return it.
2650 if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) {
2651 // Check that the update value is within our red zone limit (which may be
2652 // zero).
2653 if (MemAccessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize)
2654 return E;
2655 return MBBI;
2656 }
2657
2658 // Update the status of what the instruction clobbered and used.
2659 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
2660
2661 // Otherwise, if the base register is used or modified, we have no match, so
2662 // return early.
2663 if (!ModifiedRegUnits.available(BaseReg) ||
2664 !UsedRegUnits.available(BaseReg))
2665 return E;
2666
2667 // If we have a destination register (i.e. a load instruction) and a
2668 // destination register is used or modified, then we can only merge forward,
2669 // i.e. the combined instruction is put in the place of the memory
2670 // instruction. Same applies if we see a memory access or side effects.
2671 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects() ||
2672 (DestReg[0] != AArch64::NoRegister &&
2673 !(ModifiedRegUnits.available(DestReg[0]) &&
2674 UsedRegUnits.available(DestReg[0]))) ||
2675 (DestReg[1] != AArch64::NoRegister &&
2676 !(ModifiedRegUnits.available(DestReg[1]) &&
2677 UsedRegUnits.available(DestReg[1]))))
2678 MergeEither = false;
2679
2680 // Keep track if we have a memory access before an SP pre-increment, in this
2681 // case we need to validate later that the update amount respects the red
2682 // zone.
2683 if (BaseRegSP && MBBI->mayLoadOrStore())
2684 MemAccessBeforeSPPreInc = true;
2685 } while (MBBI != B && Count < Limit);
2686 return E;
2687}
2688
2690AArch64LoadStoreOpt::findMatchingConstOffsetBackward(
2691 MachineBasicBlock::iterator I, unsigned Limit, unsigned &Offset) {
2692 MachineBasicBlock::iterator B = I->getParent()->begin();
2693 MachineBasicBlock::iterator E = I->getParent()->end();
2694 MachineInstr &MemMI = *I;
2696
2697 // If the load is the first instruction in the block, there's obviously
2698 // not any matching load or store.
2699 if (MBBI == B)
2700 return E;
2701
2702 // Make sure the IndexReg is killed and the shift amount is zero.
2703 // TODO: Relex this restriction to extend, simplify processing now.
2704 if (!AArch64InstrInfo::getLdStOffsetOp(MemMI).isKill() ||
2705 !AArch64InstrInfo::getLdStAmountOp(MemMI).isImm() ||
2707 return E;
2708
2710
2711 // Track which register units have been modified and used between the first
2712 // insn (inclusive) and the second insn.
2713 ModifiedRegUnits.clear();
2714 UsedRegUnits.clear();
2715 unsigned Count = 0;
2716 do {
2717 MBBI = prev_nodbg(MBBI, B);
2718 MachineInstr &MI = *MBBI;
2719
2720 // Don't count transient instructions towards the search limit since there
2721 // may be different numbers of them if e.g. debug information is present.
2722 if (!MI.isTransient())
2723 ++Count;
2724
2725 // If we found a match, return it.
2726 if (isMatchingMovConstInsn(*I, MI, IndexReg, Offset)) {
2727 return MBBI;
2728 }
2729
2730 // Update the status of what the instruction clobbered and used.
2731 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI);
2732
2733 // Otherwise, if the index register is used or modified, we have no match,
2734 // so return early.
2735 if (!ModifiedRegUnits.available(IndexReg) ||
2736 !UsedRegUnits.available(IndexReg))
2737 return E;
2738
2739 } while (MBBI != B && Count < Limit);
2740 return E;
2741}
2742
2743bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore(
2745 MachineInstr &MI = *MBBI;
2746 // If this is a volatile load, don't mess with it.
2747 if (MI.hasOrderedMemoryRef())
2748 return false;
2749
2750 if (needsWinCFI(MI.getMF()) && MI.getFlag(MachineInstr::FrameDestroy))
2751 return false;
2752
2753 // Make sure this is a reg+imm.
2754 // FIXME: It is possible to extend it to handle reg+reg cases.
2756 return false;
2757
2758 // Look backward up to LdStLimit instructions.
2760 if (findMatchingStore(MBBI, LdStLimit, StoreI)) {
2761 ++NumLoadsFromStoresPromoted;
2762 // Promote the load. Keeping the iterator straight is a
2763 // pain, so we let the merge routine tell us what the next instruction
2764 // is after it's done mucking about.
2765 MBBI = promoteLoadFromStore(MBBI, StoreI);
2766 return true;
2767 }
2768 return false;
2769}
2770
2771// Merge adjacent zero stores into a wider store.
2772bool AArch64LoadStoreOpt::tryToMergeZeroStInst(
2774 assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store.");
2775 MachineInstr &MI = *MBBI;
2776 MachineBasicBlock::iterator E = MI.getParent()->end();
2777
2778 if (!TII->isCandidateToMergeOrPair(MI))
2779 return false;
2780
2781 // Look ahead up to LdStLimit instructions for a mergeable instruction.
2782 LdStPairFlags Flags;
2784 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true);
2785 if (MergeMI != E) {
2786 ++NumZeroStoresPromoted;
2787
2788 // Keeping the iterator straight is a pain, so we let the merge routine tell
2789 // us what the next instruction is after it's done mucking about.
2790 MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags);
2791 return true;
2792 }
2793 return false;
2794}
2795
2796// Find loads and stores that can be merged into a single load or store pair
2797// instruction.
2798bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) {
2799 MachineInstr &MI = *MBBI;
2800 MachineBasicBlock::iterator E = MI.getParent()->end();
2801
2802 if (!TII->isCandidateToMergeOrPair(MI))
2803 return false;
2804
2805 // If disable-ldp feature is opted, do not emit ldp.
2806 if (MI.mayLoad() && Subtarget->hasDisableLdp())
2807 return false;
2808
2809 // If disable-stp feature is opted, do not emit stp.
2810 if (MI.mayStore() && Subtarget->hasDisableStp())
2811 return false;
2812
2813 // Early exit if the offset is not possible to match. (6 bits of positive
2814 // range, plus allow an extra one in case we find a later insn that matches
2815 // with Offset-1)
2816 bool IsUnscaled = TII->hasUnscaledLdStOffset(MI);
2818 int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1;
2819 // Allow one more for offset.
2820 if (Offset > 0)
2821 Offset -= OffsetStride;
2822 if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride))
2823 return false;
2824
2825 // Look ahead up to LdStLimit instructions for a pairable instruction.
2826 LdStPairFlags Flags;
2828 findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false);
2829 if (Paired != E) {
2830 // Keeping the iterator straight is a pain, so we let the merge routine tell
2831 // us what the next instruction is after it's done mucking about.
2832 auto Prev = std::prev(MBBI);
2833
2834 // Fetch the memoperand of the load/store that is a candidate for
2835 // combination.
2837 MI.memoperands_empty() ? nullptr : MI.memoperands().front();
2838
2839 // If a load/store arrives and ldp/stp-aligned-only feature is opted, check
2840 // that the alignment of the source pointer is at least double the alignment
2841 // of the type.
2842 if ((MI.mayLoad() && Subtarget->hasLdpAlignedOnly()) ||
2843 (MI.mayStore() && Subtarget->hasStpAlignedOnly())) {
2844 // If there is no size/align information, cancel the transformation.
2845 if (!MemOp || !MemOp->getMemoryType().isValid()) {
2846 NumFailedAlignmentCheck++;
2847 return false;
2848 }
2849
2850 // Get the needed alignments to check them if
2851 // ldp-aligned-only/stp-aligned-only features are opted.
2852 uint64_t MemAlignment = MemOp->getAlign().value();
2853 uint64_t TypeAlignment =
2854 Align(MemOp->getSize().getValue().getKnownMinValue()).value();
2855
2856 if (MemAlignment < 2 * TypeAlignment) {
2857 NumFailedAlignmentCheck++;
2858 return false;
2859 }
2860 }
2861
2862 ++NumPairCreated;
2863 if (TII->hasUnscaledLdStOffset(MI))
2864 ++NumUnscaledPairCreated;
2865
2866 MBBI = mergePairedInsns(MBBI, Paired, Flags);
2867 // Collect liveness info for instructions between Prev and the new position
2868 // MBBI.
2869 for (auto I = std::next(Prev); I != MBBI; I++)
2870 updateDefinedRegisters(*I, DefinedInBB, TRI);
2871
2872 return true;
2873 }
2874 return false;
2875}
2876
2877bool AArch64LoadStoreOpt::tryToMergeLdStUpdate
2879 MachineInstr &MI = *MBBI;
2880 MachineBasicBlock::iterator E = MI.getParent()->end();
2882
2883 // Look forward to try to form a post-index instruction. For example,
2884 // ldr x0, [x20]
2885 // add x20, x20, #32
2886 // merged into:
2887 // ldr x0, [x20], #32
2888 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit);
2889 if (Update != E) {
2890 // Merge the update into the ld/st.
2891 if (auto NextI = mergeUpdateInsn(MBBI, Update, /*IsForward=*/false,
2892 /*IsPreIdx=*/false,
2893 /*MergeEither=*/false)) {
2894 MBBI = *NextI;
2895 return true;
2896 }
2897 }
2898
2899 // Don't know how to handle unscaled pre/post-index versions below, so bail.
2900 if (TII->hasUnscaledLdStOffset(MI.getOpcode()))
2901 return false;
2902
2903 // Look back to try to find a pre-index instruction. For example,
2904 // add x0, x0, #8
2905 // ldr x1, [x0]
2906 // merged into:
2907 // ldr x1, [x0, #8]!
2908 bool MergeEither;
2909 Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit, MergeEither);
2910 if (Update != E) {
2911 // Merge the update into the ld/st.
2912 if (auto NextI = mergeUpdateInsn(MBBI, Update, /*IsForward=*/true,
2913 /*IsPreIdx=*/true, MergeEither)) {
2914 MBBI = *NextI;
2915 return true;
2916 }
2917 }
2918
2919 // The immediate in the load/store is scaled by the size of the memory
2920 // operation. The immediate in the add we're looking for,
2921 // however, is not, so adjust here.
2922 int UnscaledOffset =
2924
2925 // Look forward to try to find a pre-index instruction. For example,
2926 // ldr x1, [x0, #64]
2927 // add x0, x0, #64
2928 // merged into:
2929 // ldr x1, [x0, #64]!
2930 Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit);
2931 if (Update != E) {
2932 // Merge the update into the ld/st.
2933 if (auto NextI = mergeUpdateInsn(MBBI, Update, /*IsForward=*/false,
2934 /*IsPreIdx=*/true,
2935 /*MergeEither=*/false)) {
2936 MBBI = *NextI;
2937 return true;
2938 }
2939 }
2940
2941 return false;
2942}
2943
2944bool AArch64LoadStoreOpt::tryToMergeIndexLdSt(MachineBasicBlock::iterator &MBBI,
2945 int Scale) {
2946 MachineInstr &MI = *MBBI;
2947 MachineBasicBlock::iterator E = MI.getParent()->end();
2949
2950 // Don't know how to handle unscaled pre/post-index versions below, so bail.
2951 if (TII->hasUnscaledLdStOffset(MI.getOpcode()))
2952 return false;
2953
2954 // Look back to try to find a const offset for index LdSt instruction. For
2955 // example,
2956 // mov x8, #LargeImm ; = a * (1<<12) + imm12
2957 // ldr x1, [x0, x8]
2958 // merged into:
2959 // add x8, x0, a * (1<<12)
2960 // ldr x1, [x8, imm12]
2961 unsigned Offset;
2962 Update = findMatchingConstOffsetBackward(MBBI, LdStConstLimit, Offset);
2963 if (Update != E && (Offset & (Scale - 1)) == 0) {
2964 // Merge the imm12 into the ld/st.
2965 MBBI = mergeConstOffsetInsn(MBBI, Update, Offset, Scale);
2966 return true;
2967 }
2968
2969 return false;
2970}
2971
2972bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB,
2973 bool EnableNarrowZeroStOpt) {
2975
2976 bool Modified = false;
2977 // Four transformations to do here:
2978 // 1) Find loads that directly read from stores and promote them by
2979 // replacing with mov instructions. If the store is wider than the load,
2980 // the load will be replaced with a bitfield extract.
2981 // e.g.,
2982 // str w1, [x0, #4]
2983 // ldrh w2, [x0, #6]
2984 // ; becomes
2985 // str w1, [x0, #4]
2986 // lsr w2, w1, #16
2988 MBBI != E;) {
2989 if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI))
2990 Modified = true;
2991 else
2992 ++MBBI;
2993 }
2994 // 2) Merge adjacent zero stores into a wider store.
2995 // e.g.,
2996 // strh wzr, [x0]
2997 // strh wzr, [x0, #2]
2998 // ; becomes
2999 // str wzr, [x0]
3000 // e.g.,
3001 // str wzr, [x0]
3002 // str wzr, [x0, #4]
3003 // ; becomes
3004 // str xzr, [x0]
3005 if (EnableNarrowZeroStOpt)
3007 MBBI != E;) {
3008 if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI))
3009 Modified = true;
3010 else
3011 ++MBBI;
3012 }
3013 // 3) Find loads and stores that can be merged into a single load or store
3014 // pair instruction.
3015 // When compiling for SVE 128, also try to combine SVE fill/spill
3016 // instructions into LDP/STP.
3017 // e.g.,
3018 // ldr x0, [x2]
3019 // ldr x1, [x2, #8]
3020 // ; becomes
3021 // ldp x0, x1, [x2]
3022 // e.g.,
3023 // ldr z0, [x2]
3024 // ldr z1, [x2, #1, mul vl]
3025 // ; becomes
3026 // ldp q0, q1, [x2]
3027
3029 DefinedInBB.clear();
3030 DefinedInBB.addLiveIns(MBB);
3031 }
3032
3034 MBBI != E;) {
3035 // Track currently live registers up to this point, to help with
3036 // searching for a rename register on demand.
3037 updateDefinedRegisters(*MBBI, DefinedInBB, TRI);
3038 if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI))
3039 Modified = true;
3040 else
3041 ++MBBI;
3042 }
3043 // 4) Find base register updates that can be merged into the load or store
3044 // as a base-reg writeback.
3045 // e.g.,
3046 // ldr x0, [x2]
3047 // add x2, x2, #4
3048 // ; becomes
3049 // ldr x0, [x2], #4
3051 MBBI != E;) {
3052 if (isMergeableLdStUpdate(*MBBI, AFI) && tryToMergeLdStUpdate(MBBI))
3053 Modified = true;
3054 else
3055 ++MBBI;
3056 }
3057
3058 // 5) Find a register assigned with a const value that can be combined with
3059 // into the load or store. e.g.,
3060 // mov x8, #LargeImm ; = a * (1<<12) + imm12
3061 // ldr x1, [x0, x8]
3062 // ; becomes
3063 // add x8, x0, a * (1<<12)
3064 // ldr x1, [x8, imm12]
3066 MBBI != E;) {
3067 int Scale;
3068 if (isMergeableIndexLdSt(*MBBI, Scale) && tryToMergeIndexLdSt(MBBI, Scale))
3069 Modified = true;
3070 else
3071 ++MBBI;
3072 }
3073
3074 return Modified;
3075}
3076
3077bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
3078 if (skipFunction(Fn.getFunction()))
3079 return false;
3080
3081 Subtarget = &Fn.getSubtarget<AArch64Subtarget>();
3082 TII = Subtarget->getInstrInfo();
3083 TRI = Subtarget->getRegisterInfo();
3084 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3085
3086 // Resize the modified and used register unit trackers. We do this once
3087 // per function and then clear the register units each time we optimize a load
3088 // or store.
3089 ModifiedRegUnits.init(*TRI);
3090 UsedRegUnits.init(*TRI);
3091 DefinedInBB.init(*TRI);
3092
3093 bool Modified = false;
3094 bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign();
3095 for (auto &MBB : Fn) {
3096 auto M = optimizeBlock(MBB, enableNarrowZeroStOpt);
3097 Modified |= M;
3098 }
3099
3100 return Modified;
3101}
3102
3103// FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and
3104// stores near one another? Note: The pre-RA instruction scheduler already has
3105// hooks to try and schedule pairable loads/stores together to improve pairing
3106// opportunities. Thus, pre-RA pairing pass may not be worth the effort.
3107
3108// FIXME: When pairing store instructions it's very possible for this pass to
3109// hoist a store with a KILL marker above another use (without a KILL marker).
3110// The resulting IR is invalid, but nothing uses the KILL markers after this
3111// pass, so it's never caused a problem in practice.
3112
3113/// createAArch64LoadStoreOptimizationPass - returns an instance of the
3114/// load / store optimization pass.
3116 return new AArch64LoadStoreOpt();
3117}
#define Success
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
static cl::opt< bool > EnableRenaming("aarch64-load-store-renaming", cl::init(true), cl::Hidden)
static MachineOperand & getLdStRegOp(MachineInstr &MI, unsigned PairedRegOp=0)
static bool isPromotableLoadFromStore(MachineInstr &MI)
static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, int &MinOffset, int &MaxOffset)
static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride)
static unsigned getMatchingPairOpcode(unsigned Opc)
static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, LdStPairFlags &Flags, const AArch64InstrInfo *TII)
static std::optional< MCPhysReg > tryToFindRegisterToRename(const MachineFunction &MF, Register Reg, LiveRegUnits &DefinedInBB, LiveRegUnits &UsedInBetween, SmallPtrSetImpl< const TargetRegisterClass * > &RequiredClasses, const TargetRegisterInfo *TRI)
static bool needsWinCFI(const MachineFunction *MF)
static bool canRenameUntilSecondLoad(MachineInstr &FirstLoad, MachineInstr &SecondLoad, LiveRegUnits &UsedInBetween, SmallPtrSetImpl< const TargetRegisterClass * > &RequiredClasses, const TargetRegisterInfo *TRI)
static std::optional< MCPhysReg > findRenameRegForSameLdStRegPair(std::optional< bool > MaybeCanRename, MachineInstr &FirstMI, MachineInstr &MI, Register Reg, LiveRegUnits &DefinedInBB, LiveRegUnits &UsedInBetween, SmallPtrSetImpl< const TargetRegisterClass * > &RequiredClasses, const TargetRegisterInfo *TRI)
static bool mayAlias(MachineInstr &MIa, SmallVectorImpl< MachineInstr * > &MemInsns, AliasAnalysis *AA)
static cl::opt< unsigned > LdStLimit("aarch64-load-store-scan-limit", cl::init(20), cl::Hidden)
static bool canRenameMOP(const MachineOperand &MOP, const TargetRegisterInfo *TRI)
static unsigned getPreIndexedOpcode(unsigned Opc)
#define AARCH64_LOAD_STORE_OPT_NAME
static void addDebugSubstitutionsToTable(MachineFunction *MF, unsigned InstrNumToSet, MachineInstr &OriginalInstr, MachineInstr &MergedInstr)
This function will add a new entry into the debugValueSubstitutions table when two instruction have b...
static cl::opt< unsigned > UpdateLimit("aarch64-update-scan-limit", cl::init(100), cl::Hidden)
static bool isPromotableZeroStoreInst(MachineInstr &MI)
static unsigned getMatchingWideOpcode(unsigned Opc)
static unsigned getMatchingNonSExtOpcode(unsigned Opc, bool *IsValidLdStrOpc=nullptr)
static MachineBasicBlock::iterator maybeMoveCFI(MachineInstr &MI, MachineBasicBlock::iterator MaybeCFI)
static int alignTo(int Num, int PowOf2)
static bool isTagStore(const MachineInstr &MI)
static unsigned isMatchingStore(MachineInstr &LoadInst, MachineInstr &StoreInst)
static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, const TargetRegisterInfo *TRI, unsigned Limit, std::function< bool(MachineInstr &, bool)> &Fn)
static bool isRewritableImplicitDef(unsigned Opc)
static unsigned getPostIndexedOpcode(unsigned Opc)
static bool isMergeableLdStUpdate(MachineInstr &MI, AArch64FunctionInfo &AFI)
#define DEBUG_TYPE
static cl::opt< unsigned > LdStConstLimit("aarch64-load-store-const-scan-limit", cl::init(10), cl::Hidden)
static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, MachineInstr &StoreInst, const AArch64InstrInfo *TII)
static bool isPreLdStPairCandidate(MachineInstr &FirstMI, MachineInstr &MI)
static bool isMergeableIndexLdSt(MachineInstr &MI, int &Scale)
static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, const TargetRegisterInfo *TRI)
static bool canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, SmallPtrSetImpl< const TargetRegisterClass * > &RequiredClasses, const TargetRegisterInfo *TRI)
static unsigned getBaseAddressOpcode(unsigned Opc)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
Definition: DebugCounter.h:194
bool End
Definition: ELF_riscv.cpp:480
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
Register const TargetRegisterInfo * TRI
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
MachineInstr unsigned OpIdx
uint64_t High
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:56
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:480
static bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT, const TargetTransformInfo &TTI, const DataLayout &DL, bool HasBranchDivergence, DomTreeUpdater *DTU)
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define LLVM_DEBUG(...)
Definition: Debug.h:119
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:247
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
A private abstract base class describing the concept of an individual alias analysis implementation.
AArch64FunctionInfo - This class is derived from MachineFunctionInfo and contains private AArch64-spe...
static const MachineOperand & getLdStOffsetOp(const MachineInstr &MI)
Returns the immediate offset operator of a load/store.
static const MachineOperand & getLdStAmountOp(const MachineInstr &MI)
Returns the shift amount operator of a load/store.
static bool isPreLdSt(const MachineInstr &MI)
Returns whether the instruction is a pre-indexed load/store.
static bool isPairedLdSt(const MachineInstr &MI)
Returns whether the instruction is a paired load/store.
static int getMemScale(unsigned Opc)
Scaling factor for (scaled or unscaled) load or store.
static const MachineOperand & getLdStBaseOp(const MachineInstr &MI)
Returns the base register operator of a load/store.
const AArch64RegisterInfo * getRegisterInfo() const override
const AArch64InstrInfo * getInstrInfo() const override
const AArch64TargetLowering * getTargetLowering() const override
unsigned getRedZoneSize(const Function &F) const
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
This class represents an Operation in the Expression.
static bool shouldExecute(unsigned CounterName)
Definition: DebugCounter.h:88
A debug info location.
Definition: DebugLoc.h:124
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
bool needsUnwindTableEntry() const
True if this function needs an unwind table.
Definition: Function.h:681
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:312
A set of register units used to track register liveness.
Definition: LiveRegUnits.h:31
static void accumulateUsedDefed(const MachineInstr &MI, LiveRegUnits &ModifiedRegUnits, LiveRegUnits &UsedRegUnits, const TargetRegisterInfo *TRI)
For a machine instruction MI, adds all register units used in UsedRegUnits and defined or clobbered i...
Definition: LiveRegUnits.h:48
bool available(MCRegister Reg) const
Returns true if no part of physical register Reg is live.
Definition: LiveRegUnits.h:117
void init(const TargetRegisterInfo &TRI)
Initialize and clear the set.
Definition: LiveRegUnits.h:74
void addReg(MCRegister Reg)
Adds register units covered by physical register Reg.
Definition: LiveRegUnits.h:87
void removeReg(MCRegister Reg)
Removes all register units covered by physical register Reg.
Definition: LiveRegUnits.h:103
LLVM_ABI void accumulate(const MachineInstr &MI)
Adds all register units used, defined or clobbered in MI.
An instruction for reading from memory.
Definition: Instructions.h:180
bool usesWindowsCFI() const
Definition: MCAsmInfo.h:652
OpType getOperation() const
Definition: MCDwarf.h:720
MCRegAliasIterator enumerates all registers aliasing Reg.
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
reverse_instr_iterator instr_rend()
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator_range< succ_iterator > successors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
const std::vector< MCCFIInstruction > & getFrameInstructions() const
Returns a reference to a list of cfi instructions in the function's prologue.
void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair, unsigned SubReg=0)
Create a substitution between one <instr,operand> value to a different, new value.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & cloneMergedMemRefs(ArrayRef< const MachineInstr * > OtherMIs) const
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand * > MMOs) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
Definition: MachineInstr.h:72
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:587
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:359
LLVM_ABI bool mayAlias(BatchAAResults *AA, const MachineInstr &Other, bool UseTBAA) const
Returns true if this instruction's memory access aliases the memory access of Other.
unsigned peekDebugInstrNum() const
Examine the instruction number of this MachineInstr.
Definition: MachineInstr.h:558
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
mop_range operands()
Definition: MachineInstr.h:693
LLVM_ABI bool hasOrderedMemoryRef() const
Return true if this instruction may have an ordered or volatile memory reference, or if the informati...
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
bool isPseudo(QueryType Type=IgnoreBundle) const
Return true if this is a pseudo instruction that doesn't correspond to a real machine instruction.
Definition: MachineInstr.h:928
LLVM_ABI void dump() const
LLVM_ABI unsigned getDebugInstrNum()
Fetch the instruction number of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:595
A description of a memory reference used in the backend.
MachineOperand class - Representation of each machine instruction operand.
void setImplicit(bool Val=true)
int64_t getImm() const
bool isImplicit() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
void setIsKill(bool Val=true)
LLVM_ABI bool isRenamable() const
isRenamable - Returns true if this register may be renamed, i.e.
MachineInstr * getParent()
getParent - Return the instruction that this operand belongs to.
bool isEarlyClobber() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
bool tracksLiveness() const
tracksLiveness - Returns true when tracking register liveness accurately.
void dump() const
Definition: Pass.cpp:146
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:85
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:380
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
An instruction for storing to memory.
Definition: Instructions.h:296
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
LLVM Value Representation.
Definition: Value.h:75
self_iterator getIterator()
Definition: ilist_node.h:134
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static unsigned getShiftValue(unsigned Imm)
getShiftValue - Extract the shift value.
static unsigned getShifterImm(AArch64_AM::ShiftExtendType ST, unsigned Imm)
getShifterImm - Encode the shift type and amount: imm: 6-bit shift amount shifter: 000 ==> lsl 001 ==...
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:126
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ Define
Register definition.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
constexpr double e
Definition: MathExtras.h:47
BaseReg
Stack frame base register. Bit 0 of FREInfo.Info.
Definition: SFrame.h:77
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
IterT next_nodbg(IterT It, IterT End, bool SkipPseudoOp=true)
Increment It, then continue incrementing it while it points to a debug instruction.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
@ Offset
Definition: DWP.cpp:477
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1744
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
iterator_range< filter_iterator< ConstMIBundleOperands, bool(*)(const MachineOperand &)> > phys_regs_and_masks(const MachineInstr &MI)
Returns an iterator range over all physical register and mask operands for MI and bundled instruction...
Definition: LiveRegUnits.h:167
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
Definition: SPIRVUtils.cpp:976
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
FunctionPass * createAArch64LoadStoreOptimizationPass()
createAArch64LoadStoreOptimizationPass - returns an instance of the load / store optimization pass.
auto instructionsWithoutDebug(IterT It, IterT End, bool SkipPseudoOp=true)
Construct a range iterator which begins at It and moves forwards until End is reached,...
IterT prev_nodbg(IterT It, IterT Begin, bool SkipPseudoOp=true)
Decrement It, then continue decrementing it while it points to a debug instruction.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85