LLVM 22.0.0git
AArch64RedundantCopyElimination.cpp
Go to the documentation of this file.
1//=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7// This pass removes unnecessary copies/moves in BBs based on a dominating
8// condition.
9//
10// We handle three cases:
11// 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of
12// the CBZ/CBNZ source register is zero on the taken/not-taken path. For
13// instance, the copy instruction in the code below can be removed because
14// the CBZW jumps to %bb.2 when w0 is zero.
15//
16// %bb.1:
17// cbz w0, .LBB0_2
18// .LBB0_2:
19// mov w0, wzr ; <-- redundant
20//
21// 2. If the flag setting instruction defines a register other than WZR/XZR, we
22// can remove a zero copy in some cases.
23//
24// %bb.0:
25// subs w0, w1, w2
26// str w0, [x1]
27// b.ne .LBB0_2
28// %bb.1:
29// mov w0, wzr ; <-- redundant
30// str w0, [x2]
31// .LBB0_2
32//
33// 3. Finally, if the flag setting instruction is a comparison against a
34// constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate
35// in some cases.
36//
37// %bb.0:
38// subs xzr, x0, #1
39// b.eq .LBB0_1
40// .LBB0_1:
41// orr x0, xzr, #0x1 ; <-- redundant
42//
43// This pass should be run after register allocation.
44//
45// FIXME: This could also be extended to check the whole dominance subtree below
46// the comparison if the compile time regression is acceptable.
47//
48// FIXME: Add support for handling CCMP instructions.
49// FIXME: If the known register value is zero, we should be able to rewrite uses
50// to use WZR/XZR directly in some cases.
51//===----------------------------------------------------------------------===//
52#include "AArch64.h"
53#include "llvm/ADT/SetVector.h"
54#include "llvm/ADT/Statistic.h"
59#include "llvm/Support/Debug.h"
60
61using namespace llvm;
62
63#define DEBUG_TYPE "aarch64-copyelim"
64
65STATISTIC(NumCopiesRemoved, "Number of copies removed.");
66
67namespace {
68class AArch64RedundantCopyElimination : public MachineFunctionPass {
71
72 // DomBBClobberedRegs is used when computing known values in the dominating
73 // BB.
74 LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs;
75
76 // OptBBClobberedRegs is used when optimizing away redundant copies/moves.
77 LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs;
78
79public:
80 static char ID;
81 AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {}
82
83 struct RegImm {
85 int32_t Imm;
86 RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {}
87 };
88
89 bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB,
90 SmallVectorImpl<RegImm> &KnownRegs,
93 bool runOnMachineFunction(MachineFunction &MF) override;
95 return MachineFunctionProperties().setNoVRegs();
96 }
97 StringRef getPassName() const override {
98 return "AArch64 Redundant Copy Elimination";
99 }
100};
101char AArch64RedundantCopyElimination::ID = 0;
102}
103
104INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim",
105 "AArch64 redundant copy elimination pass", false, false)
106
107/// It's possible to determine the value of a register based on a dominating
108/// condition. To do so, this function checks to see if the basic block \p MBB
109/// is the target of a conditional branch \p CondBr with an equality comparison.
110/// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero
111/// in \p MBB for some cases. Otherwise, we find and inspect the NZCV setting
112/// instruction (e.g., SUBS, ADDS). If this instruction defines a register
113/// other than WZR/XZR, we know the value of the destination register is zero in
114/// \p MMB for some cases. In addition, if the NZCV setting instruction is
115/// comparing against a constant we know the other source register is equal to
116/// the constant in \p MBB for some cases. If we find any constant values, push
117/// a physical register and constant value pair onto the KnownRegs vector and
118/// return true. Otherwise, return false if no known values were found.
119bool AArch64RedundantCopyElimination::knownRegValInBlock(
121 SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) {
122 unsigned Opc = CondBr.getOpcode();
123
124 // Check if the current basic block is the target block to which the
125 // CBZ/CBNZ instruction jumps when its Wt/Xt is zero.
126 if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) &&
127 MBB == CondBr.getOperand(1).getMBB()) ||
128 ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) &&
129 MBB != CondBr.getOperand(1).getMBB())) {
130 FirstUse = CondBr;
131 KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0));
132 return true;
133 }
134
135 // Otherwise, must be a conditional branch.
136 if (Opc != AArch64::Bcc)
137 return false;
138
139 // Must be an equality check (i.e., == or !=).
140 AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm();
141 if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
142 return false;
143
144 MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB();
145 if ((CC == AArch64CC::EQ && BrTarget != MBB) ||
146 (CC == AArch64CC::NE && BrTarget == MBB))
147 return false;
148
149 // Stop if we get to the beginning of PredMBB.
150 MachineBasicBlock *PredMBB = *MBB->pred_begin();
151 assert(PredMBB == CondBr.getParent() &&
152 "Conditional branch not in predecessor block!");
153 if (CondBr == PredMBB->begin())
154 return false;
155
156 // Registers clobbered in PredMBB between CondBr instruction and current
157 // instruction being checked in loop.
158 DomBBClobberedRegs.clear();
159 DomBBUsedRegs.clear();
160
161 // Find compare instruction that sets NZCV used by CondBr.
162 MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator();
163 for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) {
164
165 bool IsCMN = false;
166 switch (PredI.getOpcode()) {
167 default:
168 break;
169
170 // CMN is an alias for ADDS with a dead destination register.
171 case AArch64::ADDSWri:
172 case AArch64::ADDSXri:
173 IsCMN = true;
174 [[fallthrough]];
175 // CMP is an alias for SUBS with a dead destination register.
176 case AArch64::SUBSWri:
177 case AArch64::SUBSXri: {
178 // Sometimes the first operand is a FrameIndex. Bail if tht happens.
179 if (!PredI.getOperand(1).isReg())
180 return false;
181 MCPhysReg DstReg = PredI.getOperand(0).getReg();
182 MCPhysReg SrcReg = PredI.getOperand(1).getReg();
183
184 bool Res = false;
185 // If we're comparing against a non-symbolic immediate and the source
186 // register of the compare is not modified (including a self-clobbering
187 // compare) between the compare and conditional branch we known the value
188 // of the 1st source operand.
189 if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) &&
190 SrcReg != DstReg) {
191 // We've found the instruction that sets NZCV.
192 int32_t KnownImm = PredI.getOperand(2).getImm();
193 int32_t Shift = PredI.getOperand(3).getImm();
194 KnownImm <<= Shift;
195 if (IsCMN)
196 KnownImm = -KnownImm;
197 FirstUse = PredI;
198 KnownRegs.push_back(RegImm(SrcReg, KnownImm));
199 Res = true;
200 }
201
202 // If this instructions defines something other than WZR/XZR, we know it's
203 // result is zero in some cases.
204 if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
205 return Res;
206
207 // The destination register must not be modified between the NZCV setting
208 // instruction and the conditional branch.
209 if (!DomBBClobberedRegs.available(DstReg))
210 return Res;
211
212 FirstUse = PredI;
213 KnownRegs.push_back(RegImm(DstReg, 0));
214 return true;
215 }
216
217 // Look for NZCV setting instructions that define something other than
218 // WZR/XZR.
219 case AArch64::ADCSWr:
220 case AArch64::ADCSXr:
221 case AArch64::ADDSWrr:
222 case AArch64::ADDSWrs:
223 case AArch64::ADDSWrx:
224 case AArch64::ADDSXrr:
225 case AArch64::ADDSXrs:
226 case AArch64::ADDSXrx:
227 case AArch64::ADDSXrx64:
228 case AArch64::ANDSWri:
229 case AArch64::ANDSWrr:
230 case AArch64::ANDSWrs:
231 case AArch64::ANDSXri:
232 case AArch64::ANDSXrr:
233 case AArch64::ANDSXrs:
234 case AArch64::BICSWrr:
235 case AArch64::BICSWrs:
236 case AArch64::BICSXrs:
237 case AArch64::BICSXrr:
238 case AArch64::SBCSWr:
239 case AArch64::SBCSXr:
240 case AArch64::SUBSWrr:
241 case AArch64::SUBSWrs:
242 case AArch64::SUBSWrx:
243 case AArch64::SUBSXrr:
244 case AArch64::SUBSXrs:
245 case AArch64::SUBSXrx:
246 case AArch64::SUBSXrx64: {
247 MCPhysReg DstReg = PredI.getOperand(0).getReg();
248 if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
249 return false;
250
251 // The destination register of the NZCV setting instruction must not be
252 // modified before the conditional branch.
253 if (!DomBBClobberedRegs.available(DstReg))
254 return false;
255
256 // We've found the instruction that sets NZCV whose DstReg == 0.
257 FirstUse = PredI;
258 KnownRegs.push_back(RegImm(DstReg, 0));
259 return true;
260 }
261 }
262
263 // Bail if we see an instruction that defines NZCV that we don't handle.
264 if (PredI.definesRegister(AArch64::NZCV, /*TRI=*/nullptr))
265 return false;
266
267 // Track clobbered and used registers.
268 LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs,
269 TRI);
270 }
271 return false;
272}
273
274bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) {
275 // Check if the current basic block has a single predecessor.
276 if (MBB->pred_size() != 1)
277 return false;
278
279 // Check if the predecessor has two successors, implying the block ends in a
280 // conditional branch.
281 MachineBasicBlock *PredMBB = *MBB->pred_begin();
282 if (PredMBB->succ_size() != 2)
283 return false;
284
286 if (CondBr == PredMBB->end())
287 return false;
288
289 // Keep track of the earliest point in the PredMBB block where kill markers
290 // need to be removed if a COPY is removed.
292 // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ
293 // or a compare (i.e., SUBS). In the latter case, we must take care when
294 // updating FirstUse when scanning for COPY instructions. In particular, if
295 // there's a COPY in between the compare and branch the COPY should not
296 // update FirstUse.
297 bool SeenFirstUse = false;
298 // Registers that contain a known value at the start of MBB.
299 SmallVector<RegImm, 4> KnownRegs;
300
301 MachineBasicBlock::iterator Itr = std::next(CondBr);
302 do {
303 --Itr;
304
305 if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse))
306 continue;
307
308 // Reset the clobbered and used register units.
309 OptBBClobberedRegs.clear();
310 OptBBUsedRegs.clear();
311
312 // Look backward in PredMBB for COPYs from the known reg to find other
313 // registers that are known to be a constant value.
314 for (auto PredI = Itr;; --PredI) {
315 if (FirstUse == PredI)
316 SeenFirstUse = true;
317
318 if (PredI->isCopy()) {
319 MCPhysReg CopyDstReg = PredI->getOperand(0).getReg();
320 MCPhysReg CopySrcReg = PredI->getOperand(1).getReg();
321 for (auto &KnownReg : KnownRegs) {
322 if (!OptBBClobberedRegs.available(KnownReg.Reg))
323 continue;
324 // If we have X = COPY Y, and Y is known to be zero, then now X is
325 // known to be zero.
326 if (CopySrcReg == KnownReg.Reg &&
327 OptBBClobberedRegs.available(CopyDstReg)) {
328 KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm));
329 if (SeenFirstUse)
330 FirstUse = PredI;
331 break;
332 }
333 // If we have X = COPY Y, and X is known to be zero, then now Y is
334 // known to be zero.
335 if (CopyDstReg == KnownReg.Reg &&
336 OptBBClobberedRegs.available(CopySrcReg)) {
337 KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm));
338 if (SeenFirstUse)
339 FirstUse = PredI;
340 break;
341 }
342 }
343 }
344
345 // Stop if we get to the beginning of PredMBB.
346 if (PredI == PredMBB->begin())
347 break;
348
349 LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs,
350 OptBBUsedRegs, TRI);
351 // Stop if all of the known-zero regs have been clobbered.
352 if (all_of(KnownRegs, [&](RegImm KnownReg) {
353 return !OptBBClobberedRegs.available(KnownReg.Reg);
354 }))
355 break;
356 }
357 break;
358
359 } while (Itr != PredMBB->begin() && Itr->isTerminator());
360
361 // We've not found a registers with a known value, time to bail out.
362 if (KnownRegs.empty())
363 return false;
364
365 bool Changed = false;
366 // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB.
367 SmallSetVector<unsigned, 4> UsedKnownRegs;
368 MachineBasicBlock::iterator LastChange = MBB->begin();
369 // Remove redundant copy/move instructions unless KnownReg is modified.
370 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
371 MachineInstr *MI = &*I;
372 ++I;
373 bool RemovedMI = false;
374 bool IsCopy = MI->isCopy();
375 bool IsMoveImm = MI->isMoveImmediate();
376 if (IsCopy || IsMoveImm) {
377 Register DefReg = MI->getOperand(0).getReg();
378 Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register();
379 int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0;
380 if (!MRI->isReserved(DefReg) &&
381 ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) ||
382 IsMoveImm)) {
383 for (RegImm &KnownReg : KnownRegs) {
384 if (KnownReg.Reg != DefReg &&
385 !TRI->isSuperRegister(DefReg, KnownReg.Reg))
386 continue;
387
388 // For a copy, the known value must be a zero.
389 if (IsCopy && KnownReg.Imm != 0)
390 continue;
391
392 if (IsMoveImm) {
393 // For a move immediate, the known immediate must match the source
394 // immediate.
395 if (KnownReg.Imm != SrcImm)
396 continue;
397
398 // Don't remove a move immediate that implicitly defines the upper
399 // bits when only the lower 32 bits are known.
400 MCPhysReg CmpReg = KnownReg.Reg;
401 if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) {
402 return !O.isDead() && O.isReg() && O.isDef() &&
403 O.getReg() != CmpReg;
404 }))
405 continue;
406
407 // Don't remove a move immediate that implicitly defines the upper
408 // bits as different.
409 if (TRI->isSuperRegister(DefReg, KnownReg.Reg) && KnownReg.Imm < 0)
410 continue;
411 }
412
413 if (IsCopy)
414 LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI);
415 else
416 LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI);
417
418 MI->eraseFromParent();
419 Changed = true;
420 LastChange = I;
421 NumCopiesRemoved++;
422 UsedKnownRegs.insert(KnownReg.Reg);
423 RemovedMI = true;
424 break;
425 }
426 }
427 }
428
429 // Skip to the next instruction if we removed the COPY/MovImm.
430 if (RemovedMI)
431 continue;
432
433 // Remove any regs the MI clobbers from the KnownConstRegs set.
434 for (unsigned RI = 0; RI < KnownRegs.size();)
435 if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) {
436 std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]);
437 KnownRegs.pop_back();
438 // Don't increment RI since we need to now check the swapped-in
439 // KnownRegs[RI].
440 } else {
441 ++RI;
442 }
443
444 // Continue until the KnownRegs set is empty.
445 if (KnownRegs.empty())
446 break;
447 }
448
449 if (!Changed)
450 return false;
451
452 // Add newly used regs to the block's live-in list if they aren't there
453 // already.
454 for (MCPhysReg KnownReg : UsedKnownRegs)
455 if (!MBB->isLiveIn(KnownReg))
456 MBB->addLiveIn(KnownReg);
457
458 // Clear kills in the range where changes were made. This is conservative,
459 // but should be okay since kill markers are being phased out.
460 LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse
461 << "\tLastChange: ";
462 if (LastChange == MBB->end()) dbgs() << "<end>\n";
463 else dbgs() << *LastChange);
464 for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end()))
465 MMI.clearKillInfo();
466 for (MachineInstr &MMI : make_range(MBB->begin(), LastChange))
467 MMI.clearKillInfo();
468
469 return true;
470}
471
472bool AArch64RedundantCopyElimination::runOnMachineFunction(
473 MachineFunction &MF) {
474 if (skipFunction(MF.getFunction()))
475 return false;
477 MRI = &MF.getRegInfo();
478
479 // Resize the clobbered and used register unit trackers. We do this once per
480 // function.
481 DomBBClobberedRegs.init(*TRI);
482 DomBBUsedRegs.init(*TRI);
483 OptBBClobberedRegs.init(*TRI);
484 OptBBUsedRegs.init(*TRI);
485
486 bool Changed = false;
487 for (MachineBasicBlock &MBB : MF)
488 Changed |= optimizeBlock(&MBB);
489 return Changed;
490}
491
493 return new AArch64RedundantCopyElimination();
494}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
IRTranslator LLVM IR MI
A set of register units.
#define I(x, y, z)
Definition: MD5.cpp:58
Register const TargetRegisterInfo * TRI
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:56
static bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT, const TargetTransformInfo &TTI, const DataLayout &DL, bool HasBranchDivergence, DomTreeUpdater *DTU)
This file implements a set that has insertion order iteration characteristics.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define LLVM_DEBUG(...)
Definition: Debug.h:119
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
A set of register units used to track register liveness.
Definition: LiveRegUnits.h:31
static void accumulateUsedDefed(const MachineInstr &MI, LiveRegUnits &ModifiedRegUnits, LiveRegUnits &UsedRegUnits, const TargetRegisterInfo *TRI)
For a machine instruction MI, adds all register units used in UsedRegUnits and defined or clobbered i...
Definition: LiveRegUnits.h:48
unsigned pred_size() const
reverse_iterator rend()
unsigned succ_size() const
LLVM_ABI iterator getLastNonDebugInstr(bool SkipPseudoOp=true)
Returns an iterator to the last non-debug instruction in the basic block, or end().
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
LLVM_ABI bool isLiveIn(MCRegister Reg, LaneBitmask LaneMask=LaneBitmask::getAll()) const
Return true if the specified register is in the live in set.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:72
MachineOperand class - Representation of each machine instruction operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:85
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:168
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:356
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
Reg
All possible values of the reg field in the ModR/M byte.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1744
FunctionPass * createAArch64RedundantCopyEliminationPass()
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:858