84#include "llvm/IR/IntrinsicsARM.h"
119#define DEBUG_TYPE "arm-isel"
122STATISTIC(NumMovwMovt,
"Number of GAs materialized with movw + movt");
123STATISTIC(NumLoopByVals,
"Number of loops generated for byval arguments");
125 "Number of constants with their storage promoted into constant pools");
129 cl::desc(
"Enable / disable ARM interworking (for debugging only)"),
134 cl::desc(
"Enable / disable promotion of unnamed_addr constants into "
139 cl::desc(
"Maximum size of constant to promote into a constant pool"),
143 cl::desc(
"Maximum size of ALL constants to promote into a constant pool"),
148 cl::desc(
"Maximum interleave factor for MVE VLDn to generate."),
153 cl::desc(
"Maximum number of base-updates to check generating postindex."),
161 ARM::R0, ARM::R1, ARM::R2, ARM::R3
175void ARMTargetLowering::addTypeForNEON(
MVT VT,
MVT PromotedLdStVT) {
176 if (VT != PromotedLdStVT) {
185 if (ElemTy != MVT::f64)
189 if (ElemTy == MVT::i32) {
233void ARMTargetLowering::addDRTypeForNEON(
MVT VT) {
235 addTypeForNEON(VT, MVT::f64);
238void ARMTargetLowering::addQRTypeForNEON(
MVT VT) {
240 addTypeForNEON(VT, MVT::v2f64);
243void ARMTargetLowering::setAllExpand(
MVT VT) {
256void ARMTargetLowering::addAllExtLoads(
const MVT From,
const MVT To,
257 LegalizeAction Action) {
263void ARMTargetLowering::addMVEVectorTypes(
bool HasMVEFP) {
264 const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
266 for (
auto VT : IntTypes) {
340 const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
341 for (
auto VT : FloatTypes) {
415 const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
416 for (
auto VT : LongTypes) {
433 addAllExtLoads(MVT::v8i16, MVT::v8i8,
Legal);
434 addAllExtLoads(MVT::v4i32, MVT::v4i16,
Legal);
435 addAllExtLoads(MVT::v4i32, MVT::v4i8,
Legal);
452 for (
auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
461 const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1, MVT::v2i1};
462 for (
auto VT : pTypes) {
513 RegInfo(Subtarget->getRegisterInfo()),
514 Itins(Subtarget->getInstrItineraryData()) {
520 const Triple &TT = TM.getTargetTriple();
522 if (TT.isOSBinFormatMachO()) {
524 if (Subtarget->isThumb() && Subtarget->
hasVFP2Base() &&
525 Subtarget->
hasARMOps() && !Subtarget->useSoftFloat()) {
527 static const struct {
528 const RTLIB::Libcall
Op;
529 const RTLIB::LibcallImpl Impl;
532 { RTLIB::ADD_F32, RTLIB::__addsf3vfp },
533 { RTLIB::SUB_F32, RTLIB::__subsf3vfp },
534 { RTLIB::MUL_F32, RTLIB::__mulsf3vfp },
535 { RTLIB::DIV_F32, RTLIB::__divsf3vfp },
538 { RTLIB::ADD_F64, RTLIB::__adddf3vfp },
539 { RTLIB::SUB_F64, RTLIB::__subdf3vfp },
540 { RTLIB::MUL_F64, RTLIB::__muldf3vfp },
541 { RTLIB::DIV_F64, RTLIB::__divdf3vfp },
544 { RTLIB::OEQ_F32, RTLIB::__eqsf2vfp },
545 { RTLIB::UNE_F32, RTLIB::__nesf2vfp },
546 { RTLIB::OLT_F32, RTLIB::__ltsf2vfp },
547 { RTLIB::OLE_F32, RTLIB::__lesf2vfp },
548 { RTLIB::OGE_F32, RTLIB::__gesf2vfp },
549 { RTLIB::OGT_F32, RTLIB::__gtsf2vfp },
550 { RTLIB::UO_F32, RTLIB::__unordsf2vfp },
553 { RTLIB::OEQ_F64, RTLIB::__eqdf2vfp },
554 { RTLIB::UNE_F64, RTLIB::__nedf2vfp },
555 { RTLIB::OLT_F64, RTLIB::__ltdf2vfp },
556 { RTLIB::OLE_F64, RTLIB::__ledf2vfp },
557 { RTLIB::OGE_F64, RTLIB::__gedf2vfp },
558 { RTLIB::OGT_F64, RTLIB::__gtdf2vfp },
559 { RTLIB::UO_F64, RTLIB::__unorddf2vfp },
564 { RTLIB::FPTOSINT_F64_I32, RTLIB::__fixdfsivfp },
565 { RTLIB::FPTOUINT_F64_I32, RTLIB::__fixunsdfsivfp },
566 { RTLIB::FPTOSINT_F32_I32, RTLIB::__fixsfsivfp },
567 { RTLIB::FPTOUINT_F32_I32, RTLIB::__fixunssfsivfp },
570 { RTLIB::FPROUND_F64_F32, RTLIB::__truncdfsf2vfp },
571 { RTLIB::FPEXT_F32_F64, RTLIB::__extendsfdf2vfp },
578 { RTLIB::SINTTOFP_I32_F64, RTLIB::__floatsidfvfp },
579 { RTLIB::UINTTOFP_I32_F64, RTLIB::__floatunssidfvfp },
580 { RTLIB::SINTTOFP_I32_F32, RTLIB::__floatsisfvfp },
581 { RTLIB::UINTTOFP_I32_F32, RTLIB::__floatunssisfvfp },
585 for (
const auto &LC : LibraryCalls)
595 if (!Subtarget->useSoftFloat() && !Subtarget->
isThumb1Only() &&
596 Subtarget->hasFPRegs()) {
606 setAllExpand(MVT::f32);
607 if (!Subtarget->hasFP64())
608 setAllExpand(MVT::f64);
611 if (Subtarget->hasFullFP16()) {
620 if (Subtarget->hasBF16()) {
622 setAllExpand(MVT::bf16);
623 if (!Subtarget->hasFullFP16())
635 addAllExtLoads(VT, InnerVT,
Expand);
644 if (!Subtarget->
isThumb1Only() && !Subtarget->hasV8_1MMainlineOps())
647 if (!Subtarget->hasV8_1MMainlineOps())
656 if (Subtarget->hasMVEIntegerOps())
657 addMVEVectorTypes(Subtarget->hasMVEFloatOps());
660 if (Subtarget->hasLOB()) {
664 if (Subtarget->hasNEON()) {
665 addDRTypeForNEON(MVT::v2f32);
666 addDRTypeForNEON(MVT::v8i8);
667 addDRTypeForNEON(MVT::v4i16);
668 addDRTypeForNEON(MVT::v2i32);
669 addDRTypeForNEON(MVT::v1i64);
671 addQRTypeForNEON(MVT::v4f32);
672 addQRTypeForNEON(MVT::v2f64);
673 addQRTypeForNEON(MVT::v16i8);
674 addQRTypeForNEON(MVT::v8i16);
675 addQRTypeForNEON(MVT::v4i32);
676 addQRTypeForNEON(MVT::v2i64);
678 if (Subtarget->hasFullFP16()) {
679 addQRTypeForNEON(MVT::v8f16);
680 addDRTypeForNEON(MVT::v4f16);
683 if (Subtarget->hasBF16()) {
684 addQRTypeForNEON(MVT::v8bf16);
685 addDRTypeForNEON(MVT::v4bf16);
689 if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
729 if (Subtarget->hasNEON()) {
851 for (
MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
860 for (
auto VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16,
869 if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
877 if (Subtarget->hasMVEIntegerOps()) {
882 if (Subtarget->hasMVEFloatOps()) {
886 if (!Subtarget->hasFP64()) {
934 if (Subtarget->hasFullFP16()) {
940 if (!Subtarget->hasFP16()) {
991 if (Subtarget->hasDSP()) {
1013 if (Subtarget->
isThumb1Only() || !Subtarget->hasV6Ops()
1014 || (Subtarget->
isThumb2() && !Subtarget->hasDSP()))
1029 if (Subtarget->hasMVEIntegerOps())
1039 if (!Subtarget->
isThumb1Only() && Subtarget->hasV6T2Ops())
1053 if (!Subtarget->hasV5TOps() || Subtarget->
isThumb1Only()) {
1062 if (Subtarget->hasPerfMon())
1066 if (!Subtarget->hasV6Ops())
1069 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1070 : Subtarget->hasDivideInARMMode();
1077 if (TT.isOSWindows() && !Subtarget->hasDivideInThumbMode()) {
1089 if (TT.isTargetAEABI() || TT.isAndroid() || TT.isTargetGNUAEABI() ||
1090 TT.isTargetMuslAEABI() || TT.isOSWindows()) {
1093 HasStandaloneRem =
false;
1120 if (TT.isOSWindows())
1127 InsertFencesForAtomic =
false;
1129 (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1133 if (!Subtarget->isThumb() || !Subtarget->
isMClass())
1138 if (!Subtarget->hasAcquireRelease() ||
1141 InsertFencesForAtomic =
true;
1147 if (Subtarget->hasDataBarrier())
1148 InsertFencesForAtomic =
true;
1168 if (!InsertFencesForAtomic) {
1175 if (TT.isOSLinux() || (!Subtarget->
isMClass() && Subtarget->hasV6Ops())) {
1187 }
else if ((Subtarget->
isMClass() && Subtarget->hasV8MBaselineOps()) ||
1188 Subtarget->hasForced32BitAtomics()) {
1202 if (!Subtarget->hasV6Ops()) {
1208 if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1238 if (Subtarget->hasFullFP16()) {
1248 if (Subtarget->hasFullFP16())
1263 if (!Subtarget->useSoftFloat() && Subtarget->
hasVFP2Base() &&
1277 if (!Subtarget->useSoftFloat() && !Subtarget->
isThumb1Only()) {
1285 if (!Subtarget->hasFP16()) {
1317 if (Subtarget->hasNEON()) {
1324 if (Subtarget->hasFP64()) {
1338 if (Subtarget->hasFullFP16()) {
1363 if (Subtarget->hasNEON()) {
1375 if (Subtarget->hasV8Ops()) {
1390 if (Subtarget->hasFullFP16()) {
1418 if (TT.isOSWindows()) {
1435 if (Subtarget->hasMVEIntegerOps())
1438 if (Subtarget->hasV6Ops())
1443 if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) ||
1450 if (Subtarget->useSoftFloat() || Subtarget->
isThumb1Only() ||
1479 return Subtarget->useSoftFloat();
1496std::pair<const TargetRegisterClass *, uint8_t>
1507 case MVT::f32:
case MVT::f64:
case MVT::v8i8:
case MVT::v4i16:
1508 case MVT::v2i32:
case MVT::v1i64:
case MVT::v2f32:
1509 RRC = &ARM::DPRRegClass;
1517 case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
1518 case MVT::v4f32:
case MVT::v2f64:
1519 RRC = &ARM::DPRRegClass;
1523 RRC = &ARM::DPRRegClass;
1527 RRC = &ARM::DPRRegClass;
1531 return std::make_pair(RRC,
Cost);
1535#define MAKE_CASE(V) \
1754 if ((Subtarget->hasMVEIntegerOps() &&
1755 (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
1756 VT == MVT::v16i8)) ||
1757 (Subtarget->hasMVEFloatOps() &&
1758 (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16)))
1772 if (Subtarget->hasNEON()) {
1773 if (VT == MVT::v4i64)
1774 return &ARM::QQPRRegClass;
1775 if (VT == MVT::v8i64)
1776 return &ARM::QQQQPRRegClass;
1778 if (Subtarget->hasMVEIntegerOps()) {
1779 if (VT == MVT::v4i64)
1780 return &ARM::MQQPRRegClass;
1781 if (VT == MVT::v8i64)
1782 return &ARM::MQQQQPRRegClass;
1791 Align &PrefAlign)
const {
1792 if (!isa<MemIntrinsic>(CI))
1810 unsigned NumVals =
N->getNumValues();
1814 for (
unsigned i = 0; i != NumVals; ++i) {
1815 EVT VT =
N->getValueType(i);
1816 if (VT == MVT::Glue || VT == MVT::Other)
1822 if (!
N->isMachineOpcode())
1846 if (
auto Const = dyn_cast<ConstantSDNode>(
Op.getOperand(1)))
1847 return Const->getZExtValue() == 16;
1854 if (
auto Const = dyn_cast<ConstantSDNode>(
Op.getOperand(1)))
1855 return Const->getZExtValue() == 16;
1862 if (
auto Const = dyn_cast<ConstantSDNode>(
Op.getOperand(1)))
1863 return Const->getZExtValue() == 16;
1932 bool isVarArg)
const {
1951 if (!
getTM().isAAPCS_ABI())
1953 else if (Subtarget->hasFPRegs() && !Subtarget->
isThumb1Only() &&
1961 if (!
getTM().isAAPCS_ABI()) {
1974 bool isVarArg)
const {
1975 return CCAssignFnForNode(CC,
false, isVarArg);
1979 bool isVarArg)
const {
1980 return CCAssignFnForNode(CC,
true, isVarArg);
1987 bool isVarArg)
const {
1988 switch (getEffectiveCallingConv(CC, isVarArg)) {
2014 if (Subtarget->hasFullFP16()) {
2027 if (Subtarget->hasFullFP16()) {
2041SDValue ARMTargetLowering::LowerCallResult(
2045 SDValue ThisVal,
bool isCmseNSCall)
const {
2053 for (
unsigned i = 0; i != RVLocs.
size(); ++i) {
2058 if (i == 0 && isThisReturn) {
2060 "unexpected return calling convention register assignment");
2071 Chain =
Lo.getValue(1);
2072 InGlue =
Lo.getValue(2);
2076 Chain =
Hi.getValue(1);
2077 InGlue =
Hi.getValue(2);
2089 Chain =
Lo.getValue(1);
2090 InGlue =
Lo.getValue(2);
2093 Chain =
Hi.getValue(1);
2094 InGlue =
Hi.getValue(2);
2138std::pair<SDValue, MachinePointerInfo> ARMTargetLowering::computeAddrForCallArg(
2140 bool IsTailCall,
int SPDiff)
const {
2162 return std::make_pair(DstAddr, DstInfo);
2171ARMTargetLowering::ByValCopyKind ARMTargetLowering::ByValNeedsCopyForTailCall(
2177 if (isa<GlobalAddressSDNode>(Src) || isa<ExternalSymbolSDNode>(Src))
2182 auto *SrcFrameIdxNode = dyn_cast<FrameIndexSDNode>(Src);
2183 auto *DstFrameIdxNode = dyn_cast<FrameIndexSDNode>(Dst);
2184 if (!SrcFrameIdxNode || !DstFrameIdxNode)
2187 int SrcFI = SrcFrameIdxNode->getIndex();
2188 int DstFI = DstFrameIdxNode->getIndex();
2190 "byval passed in non-fixed stack slot");
2212 if (SrcOffset == DstOffset)
2220 RegsToPassVector &RegsToPass,
2227 DAG.
getVTList(MVT::i32, MVT::i32), Arg);
2228 unsigned id = Subtarget->
isLittle() ? 0 : 1;
2241 std::tie(DstAddr, DstInfo) =
2242 computeAddrForCallArg(dl, DAG, NextVA, StackPtr, IsTailCall, SPDiff);
2276 bool isStructRet = (Outs.
empty()) ?
false : Outs[0].
Flags.isSRet();
2277 bool isThisReturn =
false;
2278 bool isCmseNSCall =
false;
2279 bool isSibCall =
false;
2280 bool PreferIndirect =
false;
2281 bool GuardWithBTI =
false;
2291 !Subtarget->noBTIAtReturnTwice())
2300 isCmseNSCall =
true;
2312 if (isa<GlobalAddressSDNode>(Callee)) {
2316 auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2319 PreferIndirect = Subtarget->isThumb() && Subtarget->
hasMinSize() &&
2321 return isa<Instruction>(U) &&
2322 cast<Instruction>(U)->getParent() == BB;
2329 IsEligibleForTailCallOptimization(CLI, CCInfo, ArgLocs, PreferIndirect);
2343 "site marked musttail");
2346 unsigned NumBytes = CCInfo.getStackSize();
2355 if (isTailCall && !isSibCall) {
2362 assert(StackAlign &&
"data layout string is missing stack alignment");
2363 NumBytes =
alignTo(NumBytes, *StackAlign);
2368 SPDiff = NumReusableBytes - NumBytes;
2372 if (SPDiff < 0 && AFI->getArgRegsSaveSize() < (
unsigned)-SPDiff)
2388 RegsToPassVector RegsToPass;
2403 SDValue Src = OutVals[ArgIdx];
2406 if (!
Flags.isByVal())
2411 std::tie(Dst, DstInfo) =
2412 computeAddrForCallArg(dl, DAG, VA,
SDValue(),
true, SPDiff);
2413 ByValCopyKind
Copy = ByValNeedsCopyForTailCall(DAG, Src, Dst, Flags);
2415 if (Copy == NoCopy) {
2420 }
else if (Copy == CopyOnce) {
2424 ByValTemporaries[ArgIdx] = Src;
2426 assert(Copy == CopyViaTemp &&
"unexpected enum value");
2430 int TempFrameIdx = MFI.CreateStackObject(
2431 Flags.getByValSize(),
Flags.getNonZeroByValAlign(),
false);
2440 SDValue Ops[] = {Chain, Temp, Src, SizeNode, AlignNode};
2443 ByValTemporaries[ArgIdx] = Temp;
2446 if (!ByValCopyChains.
empty())
2456 bool AfterFormalArgLoads =
false;
2460 for (
unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2462 ++i, ++realArgIdx) {
2464 SDValue Arg = OutVals[realArgIdx];
2466 bool isByVal =
Flags.isByVal();
2486 if (isTailCall && VA.
isMemLoc() && !AfterFormalArgLoads) {
2491 AfterFormalArgLoads =
true;
2503 auto ArgVT = Outs[realArgIdx].ArgVT;
2504 if (isCmseNSCall && (ArgVT == MVT::f16)) {
2522 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
2523 StackPtr, MemOpChains, isTailCall, SPDiff);
2527 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
2528 StackPtr, MemOpChains, isTailCall, SPDiff);
2533 std::tie(DstAddr, DstInfo) =
2534 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2538 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2539 StackPtr, MemOpChains, isTailCall, SPDiff);
2541 if (realArgIdx == 0 &&
Flags.isReturned() && !
Flags.isSwiftSelf() &&
2542 Outs[0].VT == MVT::i32) {
2544 "unexpected calling convention register assignment");
2545 assert(!
Ins.empty() && Ins[0].VT == MVT::i32 &&
2546 "unexpected use of 'returned'");
2547 isThisReturn =
true;
2552 RegsToPass.push_back(std::make_pair(VA.
getLocReg(), Arg));
2553 }
else if (isByVal) {
2555 unsigned offset = 0;
2559 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2560 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2563 bool NeedsStackCopy;
2564 if (
auto It = ByValTemporaries.
find(realArgIdx);
2565 It != ByValTemporaries.
end()) {
2566 ByValSrc = It->second;
2567 NeedsStackCopy =
true;
2570 NeedsStackCopy = !isTailCall;
2574 if (CurByValIdx < ByValArgsCount) {
2575 unsigned RegBegin, RegEnd;
2576 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2580 for (i = 0, j = RegBegin;
j < RegEnd; i++,
j++) {
2587 RegsToPass.push_back(std::make_pair(j, Load));
2592 offset = RegEnd - RegBegin;
2594 CCInfo.nextInRegsParam();
2599 if (NeedsStackCopy &&
Flags.getByValSize() > 4 * offset) {
2603 std::tie(Dst, DstInfo) =
2604 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2613 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2621 std::tie(DstAddr, DstInfo) =
2622 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2629 if (!MemOpChains.
empty())
2635 for (
const auto &[Reg,
N] : RegsToPass) {
2643 bool isDirect =
false;
2648 GVal =
G->getGlobal();
2649 bool isStub = !
TM.shouldAssumeDSOLocal(GVal) && Subtarget->
isTargetMachO();
2651 bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->
isMClass());
2652 bool isLocalARMFunc =
false;
2655 if (Subtarget->genLongCalls()) {
2657 "long-calls codegen is not position independent!");
2661 if (isa<GlobalAddressSDNode>(Callee)) {
2662 if (Subtarget->genExecuteOnly()) {
2681 const char *
Sym = S->getSymbol();
2683 if (Subtarget->genExecuteOnly()) {
2702 }
else if (isa<GlobalAddressSDNode>(Callee)) {
2703 if (!PreferIndirect) {
2708 isLocalARMFunc = !Subtarget->isThumb() && (isDef || !
ARMInterworking);
2710 if (isStub && Subtarget->
isThumb1Only() && !Subtarget->hasV5TOps()) {
2722 "Windows is the only supported COFF target");
2726 else if (!
TM.shouldAssumeDSOLocal(GVal))
2742 const char *
Sym = S->getSymbol();
2743 if (isARMFunc && Subtarget->
isThumb1Only() && !Subtarget->hasV5TOps()) {
2747 ARMPCLabelIndex, 4);
2761 assert(!isARMFunc && !isDirect &&
2762 "Cannot handle call to ARM function or direct call");
2766 "call to non-secure function would require "
2767 "passing arguments on stack",
2773 "call to non-secure function would return value through pointer",
2780 if (Subtarget->isThumb()) {
2783 else if (isCmseNSCall)
2785 else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2790 if (!isDirect && !Subtarget->hasV5TOps())
2792 else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2805 if (isTailCall && !isSibCall) {
2810 std::vector<SDValue> Ops;
2811 Ops.push_back(Chain);
2812 Ops.push_back(Callee);
2820 for (
const auto &[Reg,
N] : RegsToPass)
2833 isThisReturn =
false;
2839 assert(Mask &&
"Missing call preserved mask for calling convention");
2843 Ops.push_back(InGlue);
2854 Chain = DAG.
getNode(CallOpc, dl, {MVT::Other, MVT::Glue}, Ops);
2866 Chain = DAG.
getCALLSEQ_END(Chain, NumBytes, CalleePopBytes, InGlue, dl);
2872 return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl, DAG,
2873 InVals, isThisReturn,
2874 isThisReturn ? OutVals[0] :
SDValue(), isCmseNSCall);
2881void ARMTargetLowering::HandleByVal(
CCState *State,
unsigned &
Size,
2882 Align Alignment)
const {
2884 Alignment = std::max(Alignment,
Align(4));
2890 unsigned AlignInRegs = Alignment.
value() / 4;
2891 unsigned Waste = (ARM::R4 -
Reg) % AlignInRegs;
2892 for (
unsigned i = 0; i < Waste; ++i)
2898 unsigned Excess = 4 * (ARM::R4 -
Reg);
2905 if (NSAAOffset != 0 &&
Size > Excess) {
2917 unsigned ByValRegBegin =
Reg;
2918 unsigned ByValRegEnd = std::min<unsigned>(Reg +
Size / 4, ARM::R4);
2922 for (
unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2928 Size = std::max<int>(
Size - Excess, 0);
2936bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2962 if (!isa<GlobalAddressSDNode>(
Callee.getNode()) || isIndirect) {
2967 AddressRegisters.
insert(ARM::R12);
2970 AddressRegisters.
erase(
AL.getLocReg());
2971 if (AddressRegisters.
empty()) {
2972 LLVM_DEBUG(
dbgs() <<
"false (no reg to hold function pointer)\n");
2991 <<
" (guaranteed tail-call CC)\n");
2992 return CalleeCC == CallerCC;
2997 bool isCalleeStructRet = Outs.
empty() ?
false : Outs[0].Flags.isSRet();
2999 if (isCalleeStructRet != isCallerStructRet) {
3015 (!
TT.isOSWindows() ||
TT.isOSBinFormatELF() ||
3016 TT.isOSBinFormatMachO())) {
3025 getEffectiveCallingConv(CalleeCC, isVarArg),
3026 getEffectiveCallingConv(CallerCC, CallerF.
isVarArg()), MF,
C, Ins,
3034 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
3035 if (CalleeCC != CallerCC) {
3036 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
3037 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) {
3056 LLVM_DEBUG(
dbgs() <<
"false (parameters in CSRs do not match)\n");
3075 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3084 StringRef IntKind =
F.getFnAttribute(
"interrupt").getValueAsString();
3097 if (IntKind ==
"" || IntKind ==
"IRQ" || IntKind ==
"FIQ" ||
3100 else if (IntKind ==
"SWI" || IntKind ==
"UNDEF")
3104 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
3131 bool isLittleEndian = Subtarget->
isLittle();
3143 "secure entry function would return value through pointer",
3148 for (
unsigned i = 0, realRVLocIdx = 0;
3150 ++i, ++realRVLocIdx) {
3154 SDValue Arg = OutVals[realRVLocIdx];
3155 bool ReturnF16 =
false;
3157 if (Subtarget->hasFullFP16() &&
getTM().isTargetHardFloat()) {
3190 auto RetVT = Outs[realRVLocIdx].ArgVT;
3212 DAG.
getVTList(MVT::i32, MVT::i32), Half);
3216 HalfGPRs.
getValue(isLittleEndian ? 0 : 1), Glue);
3222 HalfGPRs.
getValue(isLittleEndian ? 1 : 0), Glue);
3234 DAG.
getVTList(MVT::i32, MVT::i32), Arg);
3236 fmrrd.
getValue(isLittleEndian ? 0 : 1), Glue);
3241 fmrrd.
getValue(isLittleEndian ? 1 : 0), Glue);
3285 return DAG.
getNode(RetNode, dl, MVT::Other, RetOps);
3288bool ARMTargetLowering::isUsedByReturnOnly(
SDNode *
N,
SDValue &Chain)
const {
3289 if (
N->getNumValues() != 1)
3291 if (!
N->hasNUsesOfValue(1, 0))
3299 if (
Copy->getOperand(
Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3301 TCChain =
Copy->getOperand(0);
3315 SDValue UseChain =
U->getOperand(0);
3323 if (
U->getOperand(
U->getNumOperands() - 1).getValueType() == MVT::Glue)
3331 if (!
Copy->hasOneUse())
3338 if (
Copy->getOperand(
Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3340 TCChain =
Copy->getOperand(0);
3345 bool HasRet =
false;
3360bool ARMTargetLowering::mayBeEmittedAsTailCall(
const CallInst *CI)
const {
3378 &&
"LowerWRITE_REGISTER called for non-i64 type argument.");
3394 EVT PtrVT =
Op.getValueType();
3404 if (Subtarget->genExecuteOnly()) {
3406 auto *
T =
CP->getType();
3407 auto C =
const_cast<Constant*
>(
CP->getConstVal());
3417 return LowerGlobalAddress(GA, DAG);
3422 Align CPAlign =
CP->getAlign();
3424 CPAlign = std::max(CPAlign,
Align(4));
3425 if (
CP->isMachineConstantPoolEntry())
3437 if (Subtarget->genExecuteOnly() && !Subtarget->hasV8MBaselineOps())
3446 unsigned ARMPCLabelIndex = 0;
3449 const BlockAddress *BA = cast<BlockAddressSDNode>(
Op)->getBlockAddress();
3452 if (!IsPositionIndependent) {
3455 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3466 if (!IsPositionIndependent)
3497ARMTargetLowering::LowerGlobalTLSAddressDarwin(
SDValue Op,
3500 "This function expects a Darwin target");
3505 SDValue DescAddr = LowerGlobalAddressDarwin(
Op, DAG);
3511 MVT::i32,
DL, Chain, DescAddr,
3535 Chain, FuncTLVGet, DAG.
getRegister(ARM::R0, MVT::i32),
3541ARMTargetLowering::LowerGlobalTLSAddressWindows(
SDValue Op,
3558 DAG.
getVTList(MVT::i32, MVT::Other), Ops);
3585 const auto *GA = cast<GlobalAddressSDNode>(
Op);
3602 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3629 std::pair<SDValue, SDValue> CallResult =
LowerCallTo(CLI);
3630 return CallResult.first;
3652 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3660 PtrVT, dl, Chain,
Offset,
3662 Chain =
Offset.getValue(1);
3668 PtrVT, dl, Chain,
Offset,
3678 PtrVT, dl, Chain,
Offset,
3694 return LowerGlobalTLSAddressDarwin(
Op, DAG);
3697 return LowerGlobalTLSAddressWindows(
Op, DAG);
3706 return LowerToTLSGeneralDynamicModel(GA, DAG);
3709 return LowerToTLSExecModels(GA, DAG, model);
3718 while (!Worklist.
empty()) {
3720 if (isa<ConstantExpr>(U)) {
3725 auto *
I = dyn_cast<Instruction>(U);
3726 if (!
I ||
I->getParent()->getParent() !=
F)
3754 auto *GVar = dyn_cast<GlobalVariable>(GV);
3755 if (!GVar || !GVar->hasInitializer() ||
3756 !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3757 !GVar->hasLocalLinkage())
3762 auto *
Init = GVar->getInitializer();
3764 Init->needsDynamicRelocation())
3773 auto *CDAInit = dyn_cast<ConstantDataArray>(
Init);
3776 unsigned RequiredPadding = 4 - (
Size % 4);
3777 bool PaddingPossible =
3778 RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3783 unsigned PaddedSize =
Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3807 if (RequiredPadding != 4) {
3812 while (RequiredPadding--)
3824 ++NumConstpoolPromoted;
3829 if (
const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3830 if (!(GV = GA->getAliaseeObject()))
3832 if (
const auto *V = dyn_cast<GlobalVariable>(GV))
3833 return V->isConstant();
3834 return isa<Function>(GV);
3842 return LowerGlobalAddressWindows(
Op, DAG);
3844 return LowerGlobalAddressELF(
Op, DAG);
3846 return LowerGlobalAddressDarwin(
Op, DAG);
3854 const GlobalValue *GV = cast<GlobalAddressSDNode>(
Op)->getGlobal();
3858 if (GV->
isDSOLocal() && !Subtarget->genExecuteOnly())
3871 }
else if (Subtarget->
isROPI() && IsRO) {
3876 }
else if (Subtarget->
isRWPI() && !IsRO) {
3901 if (Subtarget->
useMovt() || Subtarget->genExecuteOnly()) {
3920 "ROPI/RWPI not currently supported for Darwin");
3923 const GlobalValue *GV = cast<GlobalAddressSDNode>(
Op)->getGlobal();
3946 "Windows on ARM expects to use movw/movt");
3948 "ROPI/RWPI not currently supported for Windows");
3951 const GlobalValue *GV = cast<GlobalAddressSDNode>(
Op)->getGlobal();
3955 else if (!
TM.shouldAssumeDSOLocal(GV))
3979 DAG.
getVTList(MVT::i32, MVT::Other),
Op.getOperand(0),
3980 Op.getOperand(1), Val);
3997SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
4000 Op.getConstantOperandVal(
Op.getOperand(0).getValueType() == MVT::Other);
4004 case Intrinsic::arm_gnu_eabi_mcount: {
4013 assert(Mask &&
"Missing call preserved mask for calling convention");
4018 constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
4022 if (Subtarget->isThumb())
4025 ARM::tBL_PUSHLR, dl, ResultTys,
4026 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
4027 DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
4031 {ReturnAddress, Callee, RegisterMask, Chain}),
4040 unsigned IntNo =
Op.getConstantOperandVal(0);
4044 case Intrinsic::thread_pointer: {
4048 case Intrinsic::arm_cls: {
4049 const SDValue &Operand =
Op.getOperand(1);
4050 const EVT VTy =
Op.getValueType();
4061 case Intrinsic::arm_cls64: {
4064 const SDValue &Operand =
Op.getOperand(1);
4065 const EVT VTy =
Op.getValueType();
4088 case Intrinsic::eh_sjlj_lsda: {
4095 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
4105 if (IsPositionIndependent) {
4111 case Intrinsic::arm_neon_vabs:
4114 case Intrinsic::arm_neon_vabds:
4115 if (
Op.getValueType().isInteger())
4117 Op.getOperand(1),
Op.getOperand(2));
4119 case Intrinsic::arm_neon_vabdu:
4121 Op.getOperand(1),
Op.getOperand(2));
4122 case Intrinsic::arm_neon_vmulls:
4123 case Intrinsic::arm_neon_vmullu: {
4124 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
4127 Op.getOperand(1),
Op.getOperand(2));
4129 case Intrinsic::arm_neon_vminnm:
4130 case Intrinsic::arm_neon_vmaxnm: {
4131 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
4134 Op.getOperand(1),
Op.getOperand(2));
4136 case Intrinsic::arm_neon_vminu:
4137 case Intrinsic::arm_neon_vmaxu: {
4138 if (
Op.getValueType().isFloatingPoint())
4140 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
4143 Op.getOperand(1),
Op.getOperand(2));
4145 case Intrinsic::arm_neon_vmins:
4146 case Intrinsic::arm_neon_vmaxs: {
4148 if (!
Op.getValueType().isFloatingPoint()) {
4149 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4152 Op.getOperand(1),
Op.getOperand(2));
4154 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4157 Op.getOperand(1),
Op.getOperand(2));
4159 case Intrinsic::arm_neon_vtbl1:
4161 Op.getOperand(1),
Op.getOperand(2));
4162 case Intrinsic::arm_neon_vtbl2:
4164 Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
4165 case Intrinsic::arm_mve_pred_i2v:
4166 case Intrinsic::arm_mve_pred_v2i:
4169 case Intrinsic::arm_mve_vreinterpretq:
4172 case Intrinsic::arm_mve_lsll:
4174 Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
4175 case Intrinsic::arm_mve_asrl:
4177 Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
4188 if (!Subtarget->hasDataBarrier()) {
4192 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
4193 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
4204 }
else if (Subtarget->preferISHSTBarriers() &&
4213 DAG.
getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
4221 (!Subtarget->
isThumb1Only() && Subtarget->hasV5TEOps())))
4223 return Op.getOperand(0);
4226 unsigned isRead =
~Op.getConstantOperandVal(2) & 1;
4228 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
4230 return Op.getOperand(0);
4232 unsigned isData =
Op.getConstantOperandVal(4);
4233 if (Subtarget->isThumb()) {
4235 isRead = ~isRead & 1;
4236 isData = ~isData & 1;
4253 const Value *SV = cast<SrcValueSDNode>(
Op.getOperand(2))->getValue();
4254 return DAG.
getStore(
Op.getOperand(0), dl, FR,
Op.getOperand(1),
4262 const SDLoc &dl)
const {
4268 RC = &ARM::tGPRRegClass;
4270 RC = &ARM::GPRRegClass;
4284 MVT::i32, dl, Root, FIN,
4305 const Value *OrigArg,
4306 unsigned InRegsParamRecordIdx,
4307 int ArgOffset,
unsigned ArgSize)
const {
4322 unsigned RBegin, REnd;
4332 ArgOffset = -4 * (ARM::R4 - RBegin);
4342 for (
unsigned Reg = RBegin, i = 0;
Reg < REnd; ++
Reg, ++i) {
4351 if (!MemOps.
empty())
4360 unsigned TotalArgRegsSaveSize,
4361 bool ForceMutable)
const {
4372 CCInfo.
getStackSize(), std::max(4U, TotalArgRegsSaveSize));
4376bool ARMTargetLowering::splitValueIntoRegisterParts(
4378 unsigned NumParts,
MVT PartVT, std::optional<CallingConv::ID> CC)
const {
4380 if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) {
4392SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
4394 MVT PartVT,
EVT ValueVT, std::optional<CallingConv::ID> CC)
const {
4395 if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) {
4408SDValue ARMTargetLowering::LowerFormalArguments(
4424 unsigned CurArgIdx = 0;
4436 unsigned ArgRegBegin = ARM::R4;
4443 if (!
Flags.isByVal())
4447 unsigned RBegin, REnd;
4449 ArgRegBegin = std::min(ArgRegBegin, RBegin);
4455 int lastInsIndex = -1;
4459 ArgRegBegin = std::min(ArgRegBegin, (
unsigned)
GPRArgRegs[RegIdx]);
4462 unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4466 for (
unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4468 if (Ins[VA.
getValNo()].isOrigArg()) {
4469 std::advance(CurOrigArg,
4470 Ins[VA.
getValNo()].getOrigArgIndex() - CurArgIdx);
4482 GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4489 MVT::f64, dl, Chain, FIN,
4492 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4500 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4504 if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4505 RC = &ARM::HPRRegClass;
4506 else if (RegVT == MVT::f32)
4507 RC = &ARM::SPRRegClass;
4508 else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
4509 RegVT == MVT::v4bf16)
4510 RC = &ARM::DPRRegClass;
4511 else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
4512 RegVT == MVT::v8bf16)
4513 RC = &ARM::QPRRegClass;
4514 else if (RegVT == MVT::i32)
4516 : &ARM::GPRRegClass;
4562 assert(VA.
getValVT() != MVT::i64 &&
"i64 should already be lowered");
4568 if (index != lastInsIndex)
4576 if (
Flags.isByVal()) {
4577 assert(Ins[index].isOrigArg() &&
4578 "Byval arguments cannot be implicit");
4582 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4616 lastInsIndex = index;
4623 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.
getStackSize(),
4624 TotalArgRegsSaveSize);
4628 "secure entry function must not be variadic", dl.
getDebugLoc()));
4638 assert(StackAlign &&
"data layout string is missing stack alignment");
4639 StackArgSize =
alignTo(StackArgSize, *StackAlign);
4648 "secure entry function requires arguments on stack", dl.
getDebugLoc()));
4657 return CFP->getValueAPF().isPosZero();
4661 SDValue WrapperOp =
Op.getOperand(1).getOperand(0);
4663 if (
const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4664 return CFP->getValueAPF().isPosZero();
4667 Op->getValueType(0) == MVT::f64) {
4682 const SDLoc &dl)
const {
4684 unsigned C = RHSC->getZExtValue();
4750 LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4752 unsigned Mask =
LHS.getConstantOperandVal(1);
4753 auto *RHSC = cast<ConstantSDNode>(
RHS.getNode());
4754 uint64_t RHSV = RHSC->getZExtValue();
4755 if (
isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4757 if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4772 isa<ConstantSDNode>(RHS) &&
RHS->getAsZExtVal() == 0x80000000U &&
4774 LHS.getConstantOperandVal(1) < 31) {
4775 unsigned ShiftAmt =
LHS.getConstantOperandVal(1) + 1;
4818 bool Signaling)
const {
4819 assert(Subtarget->hasFP64() ||
RHS.getValueType() != MVT::f64);
4834std::pair<SDValue, SDValue>
4837 assert(
Op.getValueType() == MVT::i32 &&
"Unsupported value type");
4849 switch (
Op.getOpcode()) {
4862 DAG.
getVTList(
Op.getValueType(), MVT::i32), LHS, RHS)
4901 return std::make_pair(
Value, OverflowCmp);
4912 std::tie(
Value, OverflowCmp) = getARMXALUOOp(
Op, DAG, ARMcc);
4917 EVT VT =
Op.getValueType();
4960 EVT VT =
Op.getValueType();
4964 switch (
Op.getOpcode()) {
4989 EVT VT =
Op.getValueType();
4990 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP() || Subtarget->
isThumb1Only())
5000 switch (
Op->getOpcode()) {
5016 switch (
Op->getOpcode()) {
5035 DAG.
getNode(NewOpcode, dl, MVT::i32,
5046 unsigned Opc =
Cond.getOpcode();
5048 if (
Cond.getResNo() == 1 &&
5056 std::tie(
Value, OverflowCmp) = getARMXALUOOp(
Cond, DAG, ARMcc);
5057 EVT VT =
Op.getValueType();
5059 return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, OverflowCmp, DAG);
5069 dyn_cast<ConstantSDNode>(
Cond.getOperand(0));
5071 dyn_cast<ConstantSDNode>(
Cond.getOperand(1));
5073 if (CMOVTrue && CMOVFalse) {
5079 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
5081 False = SelectFalse;
5082 }
else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
5088 return getCMOV(dl,
Op.getValueType(), True, False,
Cond.getOperand(2),
5089 Cond.getOperand(3), DAG);
5104 bool &swpCmpOps,
bool &swpVselOps) {
5132 swpCmpOps = !swpCmpOps;
5133 swpVselOps = !swpVselOps;
5156 if (!Subtarget->hasFP64() && VT == MVT::f64) {
5158 DAG.
getVTList(MVT::i32, MVT::i32), FalseVal);
5160 DAG.
getVTList(MVT::i32, MVT::i32), TrueVal);
5195 ((K ==
LHS && K == TrueVal) || (K ==
RHS && K == FalseVal))) ||
5197 ((K ==
RHS && K == TrueVal) || (K ==
LHS && K == FalseVal)));
5218 EVT VT =
Op.getValueType();
5225 const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
5240 if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 ||
5248 if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
5251 int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
5252 int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
5253 int64_t PosVal = std::max(Val1, Val2);
5254 int64_t NegVal = std::min(Val1, Val2);
5300 SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
5301 V = (KTmp == TrueVal) ? FalseVal : TrueVal;
5306 if (*K != KTmp || V != VTmp)
5317bool ARMTargetLowering::isUnsupportedFloatingType(
EVT VT)
const {
5321 return !Subtarget->hasFP64();
5323 return !Subtarget->hasFullFP16();
5328 EVT VT =
Op.getValueType();
5332 if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->
isThumb2())
5344 if (VT == MVT::i32 &&
5364 if (
Op.getValueType().isInteger()) {
5372 LHS.getValueType() ==
RHS.getValueType()) {
5373 EVT VT =
LHS.getValueType();
5379 Shift = DAG.
getNOT(dl, Shift, VT);
5385 if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
5386 LHS.getValueType() == MVT::i32 &&
RHS.getValueType() == MVT::i32) {
5389 unsigned Opcode = 0;
5391 if (TVal == ~FVal) {
5393 }
else if (TVal == ~FVal + 1) {
5395 }
else if (TVal + 1 == FVal) {
5397 }
else if (TVal == FVal + 1) {
5427 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5429 return DAG.
getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5433 if (isUnsupportedFloatingType(
LHS.getValueType())) {
5438 if (!
RHS.getNode()) {
5444 if (
LHS.getValueType() == MVT::i32) {
5456 TrueVal.getValueType() == MVT::f32 ||
5457 TrueVal.getValueType() == MVT::f64)) {
5467 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5471 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, Cmp, DAG);
5483 (
TrueVal.getValueType() == MVT::f16 ||
5484 TrueVal.getValueType() == MVT::f32 ||
5485 TrueVal.getValueType() == MVT::f64)) {
5486 bool swpCmpOps =
false;
5487 bool swpVselOps =
false;
5501 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, Cmp, DAG);
5504 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, Cmp, DAG);
5514 if (!
N->hasOneUse())
5517 if (!
N->getNumValues())
5519 EVT VT =
Op.getValueType();
5520 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5537 return DAG.
getLoad(MVT::i32,
SDLoc(
Op), Ld->getChain(), Ld->getBasePtr(),
5538 Ld->getPointerInfo(), Ld->getAlign(),
5539 Ld->getMemOperand()->getFlags());
5557 DAG.
getLoad(MVT::i32, dl, Ld->getChain(),
Ptr, Ld->getPointerInfo(),
5558 Ld->getAlign(), Ld->getMemOperand()->getFlags());
5560 EVT PtrType =
Ptr.getValueType();
5563 RetVal2 = DAG.
getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5564 Ld->getPointerInfo().getWithOffset(4),
5566 Ld->getMemOperand()->getFlags());
5584 bool LHSSeenZero =
false;
5586 bool RHSSeenZero =
false;
5588 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5599 if (
LHS.getValueType() == MVT::f32) {
5604 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5617 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5632 unsigned Opc =
Cond.getOpcode();
5635 if (
Cond.getResNo() == 1 &&
5645 std::tie(
Value, OverflowCmp) = getARMXALUOOp(
Cond, DAG, ARMcc);
5668 if (isUnsupportedFloatingType(
LHS.getValueType())) {
5673 if (!
RHS.getNode()) {
5681 unsigned Opc =
LHS.getOpcode();
5695 std::tie(
Value, OverflowCmp) = getARMXALUOOp(
LHS.getValue(0), DAG, ARMcc);
5709 if (
LHS.getValueType() == MVT::i32) {
5711 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5718 if (
SDValue Result = OptimizeVFPBrcond(
Op, DAG))
5749 if (Subtarget->
isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5755 Addr,
Op.getOperand(2), JTI);
5761 Chain =
Addr.getValue(1);
5768 Chain =
Addr.getValue(1);
5774 EVT VT =
Op.getValueType();
5777 if (
Op.getValueType().getVectorElementType() == MVT::i32) {
5778 if (
Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5786 const EVT OpTy =
Op.getOperand(0).getValueType();
5787 if (OpTy == MVT::v4f32)
5789 else if (OpTy == MVT::v4f16 && HasFullFP16)
5791 else if (OpTy == MVT::v8f16 && HasFullFP16)
5796 if (VT != MVT::v4i16 && VT != MVT::v8i16)
5799 Op = DAG.
getNode(
Op.getOpcode(), dl, NewTy,
Op.getOperand(0));
5804 EVT VT =
Op.getValueType();
5808 bool IsStrict =
Op->isStrictFPOpcode();
5809 SDValue SrcVal =
Op.getOperand(IsStrict ? 1 : 0);
5811 if (isUnsupportedFloatingType(SrcVal.
getValueType())) {
5821 MakeLibCallOptions CallOptions;
5824 std::tie(Result, Chain) =
makeLibCall(DAG, LC,
Op.getValueType(), SrcVal,
5825 CallOptions, Loc, Chain);
5835 Loc,
Op.getValueType(), SrcVal);
5844 EVT VT =
Op.getValueType();
5845 EVT ToVT = cast<VTSDNode>(
Op.getOperand(1))->getVT();
5846 EVT FromVT =
Op.getOperand(0).getValueType();
5848 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f32)
5850 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f64 &&
5851 Subtarget->hasFP64())
5853 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f16 &&
5854 Subtarget->hasFullFP16())
5856 if (VT == MVT::v4i32 && ToVT == MVT::i32 && FromVT == MVT::v4f32 &&
5857 Subtarget->hasMVEFloatOps())
5859 if (VT == MVT::v8i16 && ToVT == MVT::i16 && FromVT == MVT::v8f16 &&
5860 Subtarget->hasMVEFloatOps())
5863 if (FromVT != MVT::v4f32 && FromVT != MVT::v8f16)
5880 EVT VT =
Op.getValueType();
5883 if (
Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5889 assert((
Op.getOperand(0).getValueType() == MVT::v4i16 ||
5890 Op.getOperand(0).getValueType() == MVT::v8i16) &&
5891 "Invalid type for custom lowering!");
5896 if (VT == MVT::v4f32)
5897 DestVecType = MVT::v4i32;
5898 else if (VT == MVT::v4f16 && HasFullFP16)
5899 DestVecType = MVT::v4i16;
5900 else if (VT == MVT::v8f16 && HasFullFP16)
5901 DestVecType = MVT::v8i16;
5907 switch (
Op.getOpcode()) {
5919 Op = DAG.
getNode(CastOpc, dl, DestVecType,
Op.getOperand(0));
5924 EVT VT =
Op.getValueType();
5927 if (isUnsupportedFloatingType(VT)) {
5935 MakeLibCallOptions CallOptions;
5937 CallOptions,
SDLoc(
Op)).first;
5948 EVT VT =
Op.getValueType();
5952 bool UseNEON = !InGPR && Subtarget->hasNEON();
5959 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
5966 if (SrcVT == MVT::f32) {
5972 }
else if (VT == MVT::f32)
5988 if (VT == MVT::f32) {
6000 if (SrcVT == MVT::f64)
6009 if (VT == MVT::f32) {
6030 EVT VT =
Op.getValueType();
6032 unsigned Depth =
Op.getConstantOperandVal(0);
6034 SDValue FrameAddr = LowerFRAMEADDR(
Op, DAG);
6053 EVT VT =
Op.getValueType();
6055 unsigned Depth =
Op.getConstantOperandVal(0);
6069 .
Case(
"sp", ARM::SP)
6080 assert(
N->getValueType(0) == MVT::i64
6081 &&
"ExpandREAD_REGISTER called for non-i64 type result.");
6084 DAG.
getVTList(MVT::i32, MVT::i32, MVT::Other),
6124 const APInt &APIntIndex = Index->getAPIntValue();
6126 NewIndex *= APIntIndex;
6155 EVT SrcVT =
Op.getValueType();
6156 EVT DstVT =
N->getValueType(0);
6158 if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) &&
6159 (DstVT == MVT::f16 || DstVT == MVT::bf16))
6163 if ((DstVT == MVT::i16 || DstVT == MVT::i32) &&
6164 (SrcVT == MVT::f16 || SrcVT == MVT::bf16)) {
6165 if (Subtarget->hasFullFP16() && !Subtarget->hasBF16())
6172 if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
6225 EVT VT =
Op.getValueType();
6268 EVT VT =
Op.getValueType();
6310 DAG.
getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)};
6362 Chain, DAG.
getConstant(Intrinsic::arm_set_fpscr,
DL, MVT::i32), FPSCR};
6390 Chain, DAG.
getConstant(Intrinsic::arm_set_fpscr,
DL, MVT::i32), FPSCR};
6420 EVT VT =
N->getValueType(0);
6421 if (VT.
isVector() && ST->hasNEON()) {
6430 if (ElemTy == MVT::i8) {
6438 if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
6453 if (ElemTy == MVT::i64) {
6466 if (!ST->hasV6T2Ops())
6475 EVT VT =
N->getValueType(0);
6478 assert(ST->hasNEON() &&
"Custom ctpop lowering requires NEON.");
6479 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6480 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6481 "Unexpected type for custom ctpop lowering");
6489 unsigned EltSize = 8;
6512 Op =
Op.getOperand(0);
6514 APInt SplatBits, SplatUndef;
6515 unsigned SplatBitSize;
6518 !BVN->
isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6520 SplatBitSize > ElementBits)
6531 assert(VT.
isVector() &&
"vector shift count is not a vector type");
6535 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6546 assert(VT.
isVector() &&
"vector shift count is not a vector type");
6551 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6552 if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6561 EVT VT =
N->getValueType(0);
6583 "unexpected vector shift opcode");
6585 if (
isVShiftRImm(
N->getOperand(1), VT,
false,
false, Cnt)) {
6586 unsigned VShiftOpc =
6588 return DAG.
getNode(VShiftOpc, dl, VT,
N->getOperand(0),
6594 EVT ShiftVT =
N->getOperand(1).getValueType();
6597 unsigned VShiftOpc =
6599 return DAG.
getNode(VShiftOpc, dl, VT,
N->getOperand(0), NegatedCount);
6604 EVT VT =
N->getValueType(0);
6613 "Unknown shift to lower!");
6615 unsigned ShOpc =
N->getOpcode();
6616 if (ST->hasMVEIntegerOps()) {
6646 DAG.
SplitScalar(
N->getOperand(0), dl, MVT::i32, MVT::i32);
6660 if (ST->isThumb1Only())
6665 std::tie(
Lo,
Hi) = DAG.
SplitScalar(
N->getOperand(0), dl, MVT::i32, MVT::i32);
6681 bool Invert =
false;
6688 EVT VT =
Op.getValueType();
6689 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6696 assert(ST->hasMVEIntegerOps() &&
6697 "No hardware support for integer vector comparison!");
6699 if (
Op.getValueType().getVectorElementType() != MVT::i1)
6724 Merged = DAG.
getNOT(dl, Merged, CmpVT);
6734 switch (SetCCOpcode) {
6738 if (ST->hasMVEFloatOps()) {
6741 Invert =
true; [[fallthrough]];
6746 case ISD::SETLT: Swap =
true; [[fallthrough]];
6750 case ISD::SETLE: Swap =
true; [[fallthrough]];
6766 Result = DAG.
getNOT(dl, Result, VT);
6769 case ISD::SETUO: Invert =
true; [[fallthrough]];
6778 Result = DAG.
getNOT(dl, Result, VT);
6784 switch (SetCCOpcode) {
6787 if (ST->hasMVEIntegerOps()) {
6790 Invert =
true; [[fallthrough]];
6793 case ISD::SETLT: Swap =
true; [[fallthrough]];
6795 case ISD::SETLE: Swap =
true; [[fallthrough]];
6820 Result = DAG.
getNOT(dl, Result, VT);
6854 Result = DAG.
getNOT(dl, Result, VT);
6866 assert(
LHS.getSimpleValueType().isInteger() &&
"SETCCCARRY is integer only.");
6893 unsigned OpCmode, Imm;
6904 switch (SplatBitSize) {
6909 assert((SplatBits & ~0xff) == 0 &&
"one byte splat value is too big");
6912 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
6917 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
6918 if ((SplatBits & ~0xff) == 0) {
6924 if ((SplatBits & ~0xff00) == 0) {
6927 Imm = SplatBits >> 8;
6937 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
6938 if ((SplatBits & ~0xff) == 0) {
6944 if ((SplatBits & ~0xff00) == 0) {
6947 Imm = SplatBits >> 8;
6950 if ((SplatBits & ~0xff0000) == 0) {
6953 Imm = SplatBits >> 16;
6956 if ((SplatBits & ~0xff000000) == 0) {
6959 Imm = SplatBits >> 24;
6966 if ((SplatBits & ~0xffff) == 0 &&
6967 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
6970 Imm = SplatBits >> 8;
6978 if ((SplatBits & ~0xffffff) == 0 &&
6979 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
6982 Imm = SplatBits >> 16;
6998 unsigned ImmMask = 1;
7000 for (
int ByteNum = 0; ByteNum < 8; ++ByteNum) {
7001 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
7003 }
else if ((SplatBits & BitMask) != 0) {
7012 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
7026 EVT VT =
Op.getValueType();
7027 bool IsDouble = (VT == MVT::f64);
7033 if (
ST->genExecuteOnly()) {
7035 assert((!
ST->isThumb1Only() ||
ST->hasV8MBaselineOps()) &&
7036 "Unexpected architecture");
7059 if (!
ST->hasVFP3Base())
7064 if (IsDouble && !Subtarget->hasFP64())
7071 if (IsDouble || !
ST->useNEONForSinglePrecisionFP()) {
7089 if (!
ST->hasNEON() || (!IsDouble && !
ST->useNEONForSinglePrecisionFP()))
7098 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
7152 unsigned ExpectedElt = Imm;
7153 for (
unsigned i = 1; i < NumElts; ++i) {
7157 if (ExpectedElt == NumElts)
7160 if (M[i] < 0)
continue;
7161 if (ExpectedElt !=
static_cast<unsigned>(M[i]))
7169 bool &ReverseVEXT,
unsigned &Imm) {
7171 ReverseVEXT =
false;
7182 unsigned ExpectedElt = Imm;
7183 for (
unsigned i = 1; i < NumElts; ++i) {
7187 if (ExpectedElt == NumElts * 2) {
7192 if (M[i] < 0)
continue;
7193 if (ExpectedElt !=
static_cast<unsigned>(M[i]))
7208 return VT == MVT::v8i8 && M.size() == 8;
7213 if (Mask.size() == Elements * 2)
7214 return Index / Elements;
7215 return Mask[Index] == 0 ? 0 : 1;
7245 if ((M.size() != NumElts && M.size() != NumElts * 2) || NumElts % 2 != 0)
7253 for (
unsigned i = 0; i < M.size(); i += NumElts) {
7255 for (
unsigned j = 0; j < NumElts; j += 2) {
7256 if ((M[i+j] >= 0 && (
unsigned) M[i+j] != j + WhichResult) ||
7257 (M[i+j+1] >= 0 && (
unsigned) M[i+j+1] != j + NumElts + WhichResult))
7262 if (M.size() == NumElts*2)
7277 if ((M.size() != NumElts && M.size() != NumElts * 2) || NumElts % 2 != 0)
7280 for (
unsigned i = 0; i < M.size(); i += NumElts) {
7282 for (
unsigned j = 0; j < NumElts; j += 2) {
7283 if ((M[i+j] >= 0 && (
unsigned) M[i+j] != j + WhichResult) ||
7284 (M[i+j+1] >= 0 && (
unsigned) M[i+j+1] != j + WhichResult))
7289 if (M.size() == NumElts*2)
7309 if (M.size() != NumElts && M.size() != NumElts*2)
7312 for (
unsigned i = 0; i < M.size(); i += NumElts) {
7314 for (
unsigned j = 0; j < NumElts; ++j) {
7315 if (M[i+j] >= 0 && (
unsigned) M[i+j] != 2 * j + WhichResult)
7320 if (M.size() == NumElts*2)
7339 if (M.size() != NumElts && M.size() != NumElts*2)
7342 unsigned Half = NumElts / 2;
7343 for (
unsigned i = 0; i < M.size(); i += NumElts) {
7345 for (
unsigned j = 0; j < NumElts; j += Half) {
7346 unsigned Idx = WhichResult;
7347 for (
unsigned k = 0; k < Half; ++k) {
7348 int MIdx = M[i + j + k];
7349 if (MIdx >= 0 && (
unsigned) MIdx !=
Idx)
7356 if (M.size() == NumElts*2)
7380 if ((M.size() != NumElts && M.size() != NumElts * 2) || NumElts % 2 != 0)
7383 for (
unsigned i = 0; i < M.size(); i += NumElts) {
7385 unsigned Idx = WhichResult * NumElts / 2;
7386 for (
unsigned j = 0; j < NumElts; j += 2) {
7387 if ((M[i+j] >= 0 && (
unsigned) M[i+j] !=
Idx) ||
7388 (M[i+j+1] >= 0 && (
unsigned) M[i+j+1] !=
Idx + NumElts))
7394 if (M.size() == NumElts*2)
7413 if ((M.size() != NumElts && M.size() != NumElts * 2) || NumElts % 2 != 0)
7416 for (
unsigned i = 0; i < M.size(); i += NumElts) {
7418 unsigned Idx = WhichResult * NumElts / 2;
7419 for (
unsigned j = 0; j < NumElts; j += 2) {
7420 if ((M[i+j] >= 0 && (
unsigned) M[i+j] !=
Idx) ||
7421 (M[i+j+1] >= 0 && (
unsigned) M[i+j+1] !=
Idx))
7427 if (M.size() == NumElts*2)
7440 unsigned &WhichResult,
7443 if (
isVTRNMask(ShuffleMask, VT, WhichResult))
7445 if (
isVUZPMask(ShuffleMask, VT, WhichResult))
7447 if (
isVZIPMask(ShuffleMask, VT, WhichResult))
7465 if (NumElts != M.size())
7469 for (
unsigned i = 0; i != NumElts; ++i)
7470 if (M[i] >= 0 && M[i] != (
int) (NumElts - 1 - i))
7479 if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7487 int Ofs = Top ? 1 : 0;
7488 int Upper = SingleSource ? 0 : NumElts;
7489 for (
int i = 0, e = NumElts / 2; i != e; ++i) {
7490 if (M[i] >= 0 && M[i] != (i * 2) + Ofs)
7492 if (M[i + e] >= 0 && M[i + e] != (i * 2) + Ofs +
Upper)
7501 if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7510 unsigned Offset = Top ? 0 : 1;
7511 unsigned N = SingleSource ? 0 : NumElts;
7512 for (
unsigned i = 0; i < NumElts; i += 2) {
7513 if (M[i] >= 0 && M[i] != (
int)i)
7515 if (M[i + 1] >= 0 && M[i + 1] != (
int)(
N + i +
Offset))
7524 if (NumElts != M.size())
7532 unsigned Off0 = rev ? NumElts / 2 : 0;
7533 unsigned Off1 = rev ? 0 : NumElts / 2;
7534 for (
unsigned i = 0; i < NumElts; i += 2) {
7535 if (M[i] >= 0 && M[i] != (
int)(Off0 + i / 2))
7537 if (M[i + 1] >= 0 && M[i + 1] != (
int)(Off1 + i / 2))
7553 if (!ST->hasMVEFloatOps())
7558 if (VT != MVT::v8f16)
7579 for (
unsigned i = 1; i < 4; i++) {
7606 if (!ST->hasMVEFloatOps())
7611 if (VT != MVT::v4f32)
7627 for (
unsigned i = 1; i < 4; i++) {
7648 if (!isa<ConstantSDNode>(
N))
7650 Val =
N->getAsZExtVal();
7652 if (ST->isThumb1Only()) {
7653 if (Val <= 255 || ~Val <= 255)
7665 EVT VT =
Op.getValueType();
7667 assert(ST->hasMVEIntegerOps() &&
"LowerBUILD_VECTOR_i1 called without MVE!");
7671 unsigned BitsPerBool;
7675 }
else if (NumElts == 4) {
7678 }
else if (NumElts == 8) {
7681 }
else if (NumElts == 16) {
7690 if (!isa<ConstantSDNode>(FirstOp) &&
7692 return U.get().isUndef() || U.get() == FirstOp;
7700 unsigned Bits32 = 0;
7701 for (
unsigned i = 0; i < NumElts; ++i) {
7703 if (!isa<ConstantSDNode>(V) && !V.isUndef())
7705 bool BitSet = V.isUndef() ?
false : V->getAsZExtVal();
7707 Bits32 |= BoolMask << (i * BitsPerBool);
7713 for (
unsigned i = 0; i < NumElts; ++i) {
7715 if (isa<ConstantSDNode>(V) || V.isUndef())
7726 if (!ST->hasMVEIntegerOps())
7730 EVT VT =
Op.getValueType();
7740 if (
N != 1 &&
N != 2 &&
N != 4 &&
N != 8)
7744 for (
unsigned I = 2;
I < NumElts;
I++) {
7760 switch (
N->getOpcode()) {
7771 return N->getOperand(1).getNode() ==
Op;
7773 switch (
N->getConstantOperandVal(0)) {
7774 case Intrinsic::arm_mve_add_predicated:
7775 case Intrinsic::arm_mve_mul_predicated:
7776 case Intrinsic::arm_mve_qadd_predicated:
7777 case Intrinsic::arm_mve_vhadd:
7778 case Intrinsic::arm_mve_hadd_predicated:
7779 case Intrinsic::arm_mve_vqdmulh:
7780 case Intrinsic::arm_mve_qdmulh_predicated:
7781 case Intrinsic::arm_mve_vqrdmulh:
7782 case Intrinsic::arm_mve_qrdmulh_predicated:
7783 case Intrinsic::arm_mve_vqdmull:
7784 case Intrinsic::arm_mve_vqdmull_predicated:
7786 case Intrinsic::arm_mve_sub_predicated:
7787 case Intrinsic::arm_mve_qsub_predicated:
7788 case Intrinsic::arm_mve_vhsub:
7789 case Intrinsic::arm_mve_hsub_predicated:
7790 return N->getOperand(2).getNode() ==
Op;
7805 EVT VT =
Op.getValueType();
7813 APInt SplatBits, SplatUndef;
7814 unsigned SplatBitSize;
7816 if (BVN->
isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7823 (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32) &&
7825 [BVN](
const SDNode *U) { return IsQRMVEInstruction(U, BVN); })) {
7826 EVT DupVT = SplatBitSize == 32 ? MVT::v4i32
7827 : SplatBitSize == 16 ? MVT::v8i16
7834 if ((
ST->hasNEON() && SplatBitSize <= 64) ||
7835 (
ST->hasMVEIntegerOps() && SplatBitSize <= 64)) {
7840 SplatBitSize, DAG, dl, VmovVT, VT,
VMOVModImm);
7848 uint64_t NegatedImm = (~SplatBits).getZExtValue();
7850 NegatedImm, SplatUndef.
getZExtValue(), SplatBitSize, DAG, dl, VmovVT,
7858 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
7868 if (
ST->hasMVEIntegerOps() &&
7869 (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32)) {
7870 EVT DupVT = SplatBitSize == 32 ? MVT::v4i32
7871 : SplatBitSize == 16 ? MVT::v8i16
7888 bool isOnlyLowElement =
true;
7889 bool usesOnlyOneValue =
true;
7890 bool hasDominantValue =
false;
7897 for (
unsigned i = 0; i < NumElts; ++i) {
7902 isOnlyLowElement =
false;
7903 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7906 unsigned &Count = ValueCounts[
V];
7909 if (++Count > (NumElts / 2)) {
7910 hasDominantValue =
true;
7914 if (ValueCounts.
size() != 1)
7915 usesOnlyOneValue =
false;
7916 if (!
Value.getNode() && !ValueCounts.
empty())
7919 if (ValueCounts.
empty())
7931 if (hasDominantValue && EltSize <= 32) {
7942 (constIndex = dyn_cast<ConstantSDNode>(
Value->getOperand(1)))) {
7947 if (VT !=
Value->getOperand(0).getValueType()) {
7960 if (!usesOnlyOneValue) {
7963 for (
unsigned I = 0;
I < NumElts; ++
I) {
7978 assert(FVT == MVT::f32 || FVT == MVT::f16);
7979 MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
7980 for (
unsigned i = 0; i < NumElts; ++i)
7985 Val = LowerBUILD_VECTOR(Val, DAG, ST);
7989 if (usesOnlyOneValue) {
8016 if (
ST->hasNEON() && VT.
is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
8036 if (EltSize >= 32) {
8042 for (
unsigned i = 0; i < NumElts; ++i)
8056 for (
unsigned i = 0 ; i < NumElts; ++i) {
8075 EVT VT =
Op.getValueType();
8078 struct ShuffleSourceInfo {
8080 unsigned MinElt = std::numeric_limits<unsigned>::max();
8081 unsigned MaxElt = 0;
8091 int WindowScale = 1;
8093 ShuffleSourceInfo(
SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
8095 bool operator ==(
SDValue OtherVec) {
return Vec == OtherVec; }
8101 for (
unsigned i = 0; i < NumElts; ++i) {
8109 }
else if (!isa<ConstantSDNode>(
V.getOperand(1))) {
8116 SDValue SourceVec =
V.getOperand(0);
8118 if (Source == Sources.
end())
8122 unsigned EltNo =
V.getConstantOperandVal(1);
8129 if (Sources.
size() > 2)
8135 for (
auto &Source : Sources) {
8136 EVT SrcEltTy =
Source.Vec.getValueType().getVectorElementType();
8137 if (SrcEltTy.
bitsLT(SmallestEltTy))
8138 SmallestEltTy = SrcEltTy;
8140 unsigned ResMultiplier =
8148 for (
auto &Src : Sources) {
8149 EVT SrcVT = Src.ShuffleVec.getValueType();
8153 if (SrcVTSize == VTSize)
8162 if (SrcVTSize < VTSize) {
8163 if (2 * SrcVTSize != VTSize)
8169 DAG.
getUNDEF(Src.ShuffleVec.getValueType()));
8173 if (SrcVTSize != 2 * VTSize)
8176 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
8181 if (Src.MinElt >= NumSrcElts) {
8186 Src.WindowBase = -NumSrcElts;
8187 }
else if (Src.MaxElt < NumSrcElts) {
8204 Src.WindowBase = -Src.MinElt;
8211 for (
auto &Src : Sources) {
8212 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
8213 if (SrcEltTy == SmallestEltTy)
8218 Src.WindowBase *= Src.WindowScale;
8223 for (
auto Src : Sources)
8224 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
8232 if (
Entry.isUndef())
8236 int EltNo = cast<ConstantSDNode>(
Entry.getOperand(1))->getSExtValue();
8241 EVT OrigEltTy =
Entry.getOperand(0).getValueType().getVectorElementType();
8244 int LanesDefined = BitsDefined / BitsPerShuffleLane;
8248 int *LaneMask = &
Mask[i * ResMultiplier];
8250 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
8251 ExtractBase += NumElts * (Src - Sources.begin());
8252 for (
int j = 0;
j < LanesDefined; ++
j)
8253 LaneMask[j] = ExtractBase + j;
8259 assert(Sources.size() <= 2 &&
"Too many sources!");
8262 for (
unsigned i = 0; i < Sources.size(); ++i)
8291 unsigned OpNum = (PFEntry >> 26) & 0x0F;
8311 unsigned PFIndexes[4];
8312 for (
unsigned i = 0; i != 4; ++i) {
8316 PFIndexes[i] = M[i];
8320 unsigned PFTableIndex =
8321 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8323 unsigned Cost = (PFEntry >> 30);
8329 bool ReverseVEXT, isV_UNDEF;
8330 unsigned Imm, WhichResult;
8333 if (EltSize >= 32 ||
8340 else if (Subtarget->hasNEON() &&
8345 else if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8348 else if (Subtarget->hasMVEIntegerOps() &&
8352 else if (Subtarget->hasMVEIntegerOps() &&
8366 unsigned OpNum = (PFEntry >> 26) & 0x0F;
8367 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8368 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
8371 if (LHSID == (1*9+2)*9+3)
return LHS;
8372 assert(LHSID == ((4*9+5)*9+6)*9+7 &&
"Illegal OP_COPY!");
8429 for (
int I : ShuffleMask)
8442 EVT VT =
Op.getValueType();
8444 assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8445 "Expect an v8i16/v16i8 type");
8451 std::vector<int> NewMask;
8455 NewMask.push_back(i);
8495 if (VT != MVT::v16i1)
8511 EVT VT =
Op.getValueType();
8515 assert(ST->hasMVEIntegerOps() &&
8516 "No support for vector shuffle of boolean predicates");
8542 "Expected identical vector type in expanded i1 shuffle!");
8546 PredAsVector2, ShuffleMask);
8551 if (VT == MVT::v2i1) {
8568 EVT VT =
Op.getValueType();
8572 assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8573 "Unexpected vector type");
8575 int QuarterSize = NumElts / 4;
8584 for (
int i = 0; i <
Length; i++) {
8585 if (ShuffleMask[Start + i] >= 0) {
8586 if (ShuffleMask[Start + i] %
Length != i)
8588 MovIdx = ShuffleMask[Start + i] /
Length;
8596 for (
int i = 1; i <
Length; i++) {
8597 if (ShuffleMask[Start + i] >= 0 &&
8598 (ShuffleMask[Start + i] /
Length != MovIdx ||
8599 ShuffleMask[Start + i] %
Length != i))
8605 for (
int Part = 0; Part < 4; ++Part) {
8607 int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
8611 Input =
Op->getOperand(1);
8621 if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
8626 if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
8628 for (
int Part = 0; Part < 4; ++Part)
8629 for (
int i = 0; i < QuarterSize; i++)
8631 Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
8633 VT, dl,
Op->getOperand(0),
Op->getOperand(1), NewShuffleMask);
8636 for (
int Part = 0; Part < 4; ++Part)
8652 EVT VT =
Op.getValueType();
8664 for (
int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
8668 if (Mask[i] != i + BaseOffset) {
8669 if (OffElement == -1)
8675 return NonUndef > 2 && OffElement != -1;
8679 if (isOneOffIdentityMask(ShuffleMask, VT, 0, OffElement))
8681 else if (isOneOffIdentityMask(ShuffleMask, VT, NumElts, OffElement))
8692 ShuffleMask[OffElement] < (
int)NumElts ? V1 : V2,
8703 EVT VT =
Op.getValueType();
8707 if (ST->hasMVEIntegerOps() && EltSize == 1)
8718 if (EltSize <= 32) {
8722 if (Lane == -1) Lane = 0;
8733 bool IsScalarToVector =
true;
8736 IsScalarToVector =
false;
8739 if (IsScalarToVector)
8746 bool ReverseVEXT =
false;
8748 if (ST->hasNEON() &&
isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
8772 unsigned WhichResult = 0;
8773 bool isV_UNDEF =
false;
8774 if (ST->hasNEON()) {
8776 ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8783 if (ST->hasMVEIntegerOps()) {
8818 }) &&
"Unexpected shuffle index into UNDEF operand!");
8821 ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8824 assert((WhichResult == 0) &&
8825 "In-place shuffle of concat can only have one result!");
8834 if (ST->hasMVEIntegerOps() && EltSize <= 32) {
8838 for (
bool Top : {
false,
true}) {
8839 for (
bool SingleSource : {
false,
true}) {
8840 if (
isTruncMask(ShuffleMask, VT, Top, SingleSource)) {
8845 SingleSource ? V1 : V2);
8861 unsigned PFIndexes[4];
8862 for (
unsigned i = 0; i != 4; ++i) {
8863 if (ShuffleMask[i] < 0)
8866 PFIndexes[i] = ShuffleMask[i];
8870 unsigned PFTableIndex =
8871 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8873 unsigned Cost = (PFEntry >> 30);
8879 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8880 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
8890 if (EltSize >= 32) {
8898 for (
unsigned i = 0; i < NumElts; ++i) {
8899 if (ShuffleMask[i] < 0)
8903 ShuffleMask[i] < (
int)NumElts ? V1 : V2,
8911 if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8915 if (ST->hasNEON() && VT == MVT::v8i8)
8919 if (ST->hasMVEIntegerOps())
8928 EVT VecVT =
Op.getOperand(0).getValueType();
8931 assert(ST->hasMVEIntegerOps() &&
8932 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8936 unsigned Lane =
Op.getConstantOperandVal(2);
8937 unsigned LaneWidth =
8939 unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
8951 if (!isa<ConstantSDNode>(Lane))
8957 if (Subtarget->hasMVEIntegerOps() &&
8958 Op.getValueType().getScalarSizeInBits() == 1)
8982 IVecIn, IElt, Lane);
8991 EVT VecVT =
Op.getOperand(0).getValueType();
8994 assert(ST->hasMVEIntegerOps() &&
8995 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8999 unsigned Lane =
Op.getConstantOperandVal(1);
9000 unsigned LaneWidth =
9011 if (!isa<ConstantSDNode>(Lane))
9031 assert(
Op.getValueType().getScalarSizeInBits() == 1 &&
9032 "Unexpected custom CONCAT_VECTORS lowering");
9034 "Unexpected custom CONCAT_VECTORS lowering");
9035 assert(ST->hasMVEIntegerOps() &&
9036 "CONCAT_VECTORS lowering only supported for MVE");
9040 EVT Op2VT = V2.getValueType();
9041 assert(Op1VT == Op2VT &&
"Operand types don't match!");
9042 assert((Op1VT == MVT::v2i1 || Op1VT == MVT::v4i1 || Op1VT == MVT::v8i1) &&
9043 "Unexpected i1 concat operations!");
9056 if (Op1VT == MVT::v4i1 || Op1VT == MVT::v8i1) {
9070 auto ExtractInto = [&DAG, &dl](
SDValue NewV,
SDValue ConVec,
unsigned &j) {
9071 EVT NewVT = NewV.getValueType();
9072 EVT ConcatVT = ConVec.getValueType();
9073 unsigned ExtScale = 1;
9074 if (NewVT == MVT::v2f64) {
9088 ConVec = ExtractInto(NewV1, ConVec, j);
9089 ConVec = ExtractInto(NewV2, ConVec, j);
9099 while (ConcatOps.
size() > 1) {
9100 for (
unsigned I = 0, E = ConcatOps.
size();
I != E;
I += 2) {
9103 ConcatOps[
I / 2] = ConcatPair(V1, V2);
9107 return ConcatOps[0];
9112 EVT VT =
Op->getValueType(0);
9119 "unexpected CONCAT_VECTORS");
9140 EVT VT =
Op.getValueType();
9146 "Unexpected custom EXTRACT_SUBVECTOR lowering");
9147 assert(ST->hasMVEIntegerOps() &&
9148 "EXTRACT_SUBVECTOR lowering only supported for MVE");
9158 EVT SubVT = MVT::v4i32;
9160 for (
unsigned i = Index, j = 0; i < (Index + NumElts); i++, j += 2) {
9175 for (
unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
9191 assert(ST->hasMVEIntegerOps() &&
"Expected MVE!");
9192 EVT VT =
N->getValueType(0);
9193 assert((VT == MVT::v16i1 || VT == MVT::v8i1 || VT == MVT::v4i1) &&
9194 "Expected a vector i1 type!");
9196 EVT FromVT =
Op.getValueType();
9207 if (!Subtarget->hasMVEIntegerOps())
9210 EVT ToVT =
N->getValueType(0);
9253 if (ToVT != MVT::v8i16 && ToVT != MVT::v16i8)
9255 EVT FromVT =
N->getOperand(0).getValueType();
9256 if (FromVT != MVT::v8i32 && FromVT != MVT::v16i16)
9267 if (!Subtarget->hasMVEIntegerOps())
9272 EVT ToVT =
N->getValueType(0);
9273 if (ToVT != MVT::v16i32 && ToVT != MVT::v8i32 && ToVT != MVT::v16i16)
9276 EVT FromVT =
Op.getValueType();
9277 if (FromVT != MVT::v8i16 && FromVT != MVT::v16i8)
9288 SDValue Ext1 = Ext.getValue(1);
9291 Ext = DAG.
getNode(
N->getOpcode(),
DL, MVT::v8i32, Ext);
9292 Ext1 = DAG.
getNode(
N->getOpcode(),
DL, MVT::v8i32, Ext1);
9304 EVT VT =
N->getValueType(0);
9306 SDNode *BVN =
N->getOperand(0).getNode();
9311 unsigned HiElt = 1 - LoElt;
9316 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
9332 for (
unsigned i = 0, e =
N->getNumOperands(); i != e; ++i) {
9333 SDNode *Elt =
N->getOperand(i).getNode();
9336 unsigned HalfSize = EltSize / 2;
9338 if (!
isIntN(HalfSize,
C->getSExtValue()))
9341 if (!
isUIntN(HalfSize,
C->getZExtValue()))
9380 switch (OrigSimpleTy) {
9396 unsigned ExtOpcode) {
9419 if (ExtendedTy == LD->getMemoryVT())
9420 return DAG.
getLoad(LD->getMemoryVT(),
SDLoc(LD), LD->getChain(),
9421 LD->getBasePtr(), LD->getPointerInfo(), LD->getAlign(),
9422 LD->getMemOperand()->getFlags());
9428 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
9429 LD->getMemoryVT(), LD->getAlign(),
9430 LD->getMemOperand()->getFlags());
9443 N->getOperand(0)->getValueType(0),
9449 "Expected extending load");
9455 DAG.
getNode(Opcode,
SDLoc(newLoad), LD->getValueType(0), newLoad);
9464 SDNode *BVN =
N->getOperand(0).getNode();
9466 BVN->
getValueType(0) == MVT::v4i32 &&
"expected v4i32 BUILD_VECTOR");
9474 EVT VT =
N->getValueType(0);
9480 for (
unsigned i = 0; i != NumElts; ++i) {
9481 const APInt &CInt =
N->getConstantOperandAPInt(i);
9490 unsigned Opcode =
N->getOpcode();
9492 SDNode *N0 =
N->getOperand(0).getNode();
9493 SDNode *N1 =
N->getOperand(1).getNode();
9501 unsigned Opcode =
N->getOpcode();
9503 SDNode *N0 =
N->getOperand(0).getNode();
9504 SDNode *N1 =
N->getOperand(1).getNode();
9514 EVT VT =
Op.getValueType();
9516 "unexpected type for custom-lowering ISD::MUL");
9517 SDNode *N0 =
Op.getOperand(0).getNode();
9518 SDNode *N1 =
Op.getOperand(1).getNode();
9519 unsigned NewOpc = 0;
9523 if (isN0SExt && isN1SExt)
9528 if (isN0ZExt && isN1ZExt)
9530 else if (isN1SExt || isN1ZExt) {
9547 if (VT == MVT::v2i64)
9564 "unexpected types for extended operands to VMULL");
9565 return DAG.
getNode(NewOpc,
DL, VT, Op0, Op1);
9600 DAG.
getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9634 DAG.
getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9637 DAG.
getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9658 EVT VT =
Op.getValueType();
9659 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9660 "unexpected type for custom-lowering ISD::SDIV");
9667 if (VT == MVT::v8i8) {
9695 EVT VT =
Op.getValueType();
9696 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9697 "unexpected type for custom-lowering ISD::UDIV");
9704 if (VT == MVT::v8i8) {
9743 DAG.
getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9746 DAG.
getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9750 DAG.
getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9771 EVT VT =
N->getValueType(0);
9785 Op.getOperand(1), Carry);
9799 Op.getOperand(1), Carry);
9833 if (ShouldUseSRet) {
9841 Entry.IsSExt =
false;
9842 Entry.IsZExt =
false;
9843 Entry.IsSRet =
true;
9844 Args.push_back(Entry);
9848 Args.emplace_back(Arg, ArgTy);
9851 (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
9861 std::pair<SDValue, SDValue> CallResult =
LowerCallTo(CLI);
9864 return CallResult.first;
9883 EVT VT =
Op.getValueType();
9884 assert((VT == MVT::i32 || VT == MVT::i64) &&
9885 "unexpected type for custom lowering DIV");
9891 LC = VT == MVT::i32 ? RTLIB::SDIVREM_I32 : RTLIB::SDIVREM_I64;
9893 LC = VT == MVT::i32 ? RTLIB::UDIVREM_I32 : RTLIB::UDIVREM_I64;
9900 for (
auto AI : {1, 0}) {
9902 Args.emplace_back(Operand,
9906 CallLoweringInfo CLI(DAG);
9910 ES, std::move(Args));
9920ARMTargetLowering::BuildSDIVPow2(
SDNode *
N,
const APInt &Divisor,
9928 const bool MinSize =
ST.hasMinSize();
9929 const bool HasDivide =
ST.isThumb() ?
ST.hasDivideInThumbMode()
9930 :
ST.hasDivideInARMMode();
9934 if (
N->getOperand(0).getValueType().isVector())
9939 if (!(MinSize && HasDivide))
9952 if (Divisor.
sgt(128))
9960 assert(
Op.getValueType() == MVT::i32 &&
9961 "unexpected type for custom lowering DIV");
9967 return LowerWindowsDIVLibCall(
Op, DAG,
Signed, DBZCHK);
9973 if (
N->getValueType(0) == MVT::i32)
9981void ARMTargetLowering::ExpandDIV_Windows(
9986 assert(
Op.getValueType() == MVT::i64 &&
9987 "unexpected type for custom lowering DIV");
10004 EVT MemVT = LD->getMemoryVT();
10005 assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10006 MemVT == MVT::v16i1) &&
10007 "Expected a predicate type!");
10008 assert(MemVT ==
Op.getValueType());
10010 "Expected a non-extending load");
10011 assert(LD->isUnindexed() &&
"Expected a unindexed load");
10025 ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
10027 LD->getMemOperand());
10034 if (MemVT != MVT::v16i1)
10043 EVT MemVT =
LD->getMemoryVT();
10044 assert(
LD->isUnindexed() &&
"Loads should be unindexed at this point.");
10046 if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10052 {LD->getChain(), LD->getBasePtr()}, MemVT,
LD->getMemOperand());
10062 EVT MemVT = ST->getMemoryVT();
10063 assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10064 MemVT == MVT::v16i1) &&
10065 "Expected a predicate type!");
10066 assert(MemVT == ST->getValue().getValueType());
10067 assert(!ST->isTruncatingStore() &&
"Expected a non-extending store");
10068 assert(ST->isUnindexed() &&
"Expected a unindexed store");
10073 SDValue Build = ST->getValue();
10074 if (MemVT != MVT::v16i1) {
10093 ST->getChain(), dl, GRP, ST->getBasePtr(),
10095 ST->getMemOperand());
10101 EVT MemVT = ST->getMemoryVT();
10102 assert(ST->isUnindexed() &&
"Stores should be unindexed at this point.");
10104 if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10120 {ST->getChain(), Lo, Hi, ST->getBasePtr()},
10121 MemVT, ST->getMemOperand());
10122 }
else if (Subtarget->hasMVEIntegerOps() &&
10123 ((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10124 MemVT == MVT::v16i1))) {
10139 MVT VT =
Op.getSimpleValueType();
10141 SDValue PassThru =
N->getPassThru();
10152 VT, dl,
N->getChain(),
N->getBasePtr(),
N->getOffset(), Mask, ZeroVec,
10153 N->getMemoryVT(),
N->getMemOperand(),
N->getAddressingMode(),
10154 N->getExtensionType(),
N->isExpandingLoad());
10159 if (!PassThru.
isUndef() && !PassThruIsCastZero)
10166 if (!ST->hasMVEIntegerOps())
10170 unsigned BaseOpcode = 0;
10171 switch (
Op->getOpcode()) {
10187 unsigned NumActiveLanes = NumElts;
10189 assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
10190 NumActiveLanes == 2) &&
10191 "Only expected a power 2 vector size");
10195 while (NumActiveLanes > 4) {
10198 Op0 = DAG.
getNode(BaseOpcode, dl, VT, Op0, Rev);
10199 NumActiveLanes /= 2;
10203 if (NumActiveLanes == 4) {
10213 SDValue Res0 = DAG.
getNode(BaseOpcode, dl, EltVT, Ext0, Ext1,
Op->getFlags());
10214 SDValue Res1 = DAG.
getNode(BaseOpcode, dl, EltVT, Ext2, Ext3,
Op->getFlags());
10215 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res0, Res1,
Op->getFlags());
10221 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Ext0, Ext1,
Op->getFlags());
10225 if (EltVT !=
Op->getValueType(0))
10232 if (!ST->hasMVEFloatOps())
10239 if (!ST->hasNEON())
10247 unsigned PairwiseIntrinsic = 0;
10248 switch (
Op->getOpcode()) {
10252 PairwiseIntrinsic = Intrinsic::arm_neon_vpminu;
10255 PairwiseIntrinsic = Intrinsic::arm_neon_vpmaxu;
10258 PairwiseIntrinsic = Intrinsic::arm_neon_vpmins;
10261 PairwiseIntrinsic = Intrinsic::arm_neon_vpmaxs;
10267 unsigned NumActiveLanes = NumElts;
10269 assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
10270 NumActiveLanes == 2) &&
10271 "Only expected a power 2 vector size");
10277 VT =
Lo.getValueType();
10279 NumActiveLanes /= 2;
10283 while (NumActiveLanes > 1) {
10285 NumActiveLanes /= 2;
10292 if (EltVT !=
Op.getValueType()) {
10293 unsigned Extend = 0;
10294 switch (
Op->getOpcode()) {
10306 Res = DAG.
getNode(Extend, dl,
Op.getValueType(), Res);
10328 SDValue Ops[] = {
N->getOperand(0),
10338 DAG.
getVTList(MVT::i32, MVT::Other), Ops);
10351 const SDValue Ops[] = {RegClass, V0, SubReg0, V1, SubReg1};
10353 DAG.
getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
10357 SDLoc dl(V.getNode());
10358 auto [VLo, VHi] = DAG.
SplitScalar(V, dl, MVT::i32, MVT::i32);
10368 assert(
N->getValueType(0) == MVT::i64 &&
10369 "AtomicCmpSwap on types less than 64 should be legal");
10378 ARM::CMP_SWAP_64,
SDLoc(
N),
10379 DAG.
getVTList(MVT::Untyped, MVT::Untyped, MVT::Other), Ops);
10398 EVT VT =
Op.getValueType();
10407 if (isUnsupportedFloatingType(
LHS.getValueType())) {
10409 Chain, IsSignaling);
10410 if (!
RHS.getNode()) {
10425 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
10426 SDValue Result = getCMOV(dl, VT, False, True, ARMcc, Cmp, DAG);
10428 ARMcc = DAG.
getConstant(CondCode2, dl, MVT::i32);
10429 Result = getCMOV(dl, VT, Result, True, ARMcc, Cmp, DAG);
10445 MakeLibCallOptions CallOptions;
10446 MVT SVT =
Op.getOperand(0).getSimpleValueType();
10449 makeLibCall(DAG, LC, MVT::f32,
Op.getOperand(0), CallOptions,
DL).first;
10480 Sub1Result, Sub1Result, Flags1);
10495 if (
Op.getValueType() != MVT::i32)
10518 bool CanUseAdd =
false;
10567 GTCondValue, Flags);
10572 LTCondValue, Flags);
10574 if (
Op.getValueType() != MVT::i32)
10582 switch (
Op.getOpcode()) {
10614 case ISD::BITCAST:
return ExpandBITCAST(
Op.getNode(), DAG, Subtarget);
10618 case ISD::SREM:
return LowerREM(
Op.getNode(), DAG);
10619 case ISD::UREM:
return LowerREM(
Op.getNode(), DAG);
10641 return LowerSET_FPMODE(
Op, DAG);
10643 return LowerRESET_FPMODE(
Op, DAG);
10647 return LowerDIV_Windows(
Op, DAG,
true);
10651 return LowerDIV_Windows(
Op, DAG,
false);
10658 return LowerSignedALUO(
Op, DAG);
10661 return LowerUnsignedALUO(
Op, DAG);
10695 return LowerDYNAMIC_STACKALLOC(
Op, DAG);
10704 return LowerSPONENTRY(
Op, DAG);
10706 return LowerFP_TO_BF16(
Op, DAG);
10710 return LowerCMP(
Op, DAG);
10716 unsigned IntNo =
N->getConstantOperandVal(0);
10718 if (IntNo == Intrinsic::arm_smlald)
10720 else if (IntNo == Intrinsic::arm_smlaldx)
10722 else if (IntNo == Intrinsic::arm_smlsld)
10724 else if (IntNo == Intrinsic::arm_smlsldx)
10731 std::tie(
Lo,
Hi) = DAG.
SplitScalar(
N->getOperand(3), dl, MVT::i32, MVT::i32);
10735 N->getOperand(1),
N->getOperand(2),
10747 switch (
N->getOpcode()) {
10754 Res = ExpandBITCAST(
N, DAG, Subtarget);
10763 Res = LowerREM(
N, DAG);
10767 Res = LowerDivRem(
SDValue(
N, 0), DAG);
10821 "ROPI/RWPI not currently supported with SjLj");
10830 bool isThumb = Subtarget->isThumb();
10831 bool isThumb2 = Subtarget->
isThumb2();
10834 unsigned PCAdj = (
isThumb || isThumb2) ? 4 : 8;
10840 : &ARM::GPRRegClass;
10858 Register NewVReg1 =
MRI->createVirtualRegister(TRC);
10864 Register NewVReg2 =
MRI->createVirtualRegister(TRC);
10870 Register NewVReg3 =
MRI->createVirtualRegister(TRC);
10888 Register NewVReg1 =
MRI->createVirtualRegister(TRC);
10893 Register NewVReg2 =
MRI->createVirtualRegister(TRC);
10898 Register NewVReg3 =
MRI->createVirtualRegister(TRC);
10903 Register NewVReg4 =
MRI->createVirtualRegister(TRC);
10909 Register NewVReg5 =
MRI->createVirtualRegister(TRC);
10924 Register NewVReg1 =
MRI->createVirtualRegister(TRC);
10930 Register NewVReg2 =
MRI->createVirtualRegister(TRC);
10954 : &ARM::GPRnopcRegClass;
10959 unsigned MaxCSNum = 0;
10967 if (!
II.isEHLabel())
10971 if (!MF->hasCallSiteLandingPad(
Sym))
continue;
10974 for (
unsigned Idx : CallSiteIdxs) {
10975 CallSiteNumToLPad[
Idx].push_back(&BB);
10976 MaxCSNum = std::max(MaxCSNum,
Idx);
10983 std::vector<MachineBasicBlock*> LPadList;
10986 for (
unsigned I = 1;
I <= MaxCSNum; ++
I) {
10989 LPadList.push_back(
MBB);
10994 assert(!LPadList.empty() &&
10995 "No landing pad destinations for the dispatch jump table!");
11010 BuildMI(TrapBB, dl,
TII->get(Subtarget->isThumb() ? ARM::tTRAP : ARM::TRAP));
11017 MF->insert(MF->end(), DispatchBB);
11018 MF->insert(MF->end(), DispContBB);
11019 MF->insert(MF->end(), TrapBB);
11023 SetupEntryBlockForSjLj(
MI,
MBB, DispatchBB, FI);
11030 MIB =
BuildMI(DispatchBB, dl,
TII->get(ARM::Int_eh_sjlj_dispatchsetup));
11042 unsigned NumLPads = LPadList.size();
11044 Register NewVReg1 =
MRI->createVirtualRegister(TRC);
11045 BuildMI(DispatchBB, dl,
TII->get(ARM::t2LDRi12), NewVReg1)
11051 if (NumLPads < 256) {
11052 BuildMI(DispatchBB, dl,
TII->get(ARM::t2CMPri))
11054 .
addImm(LPadList.size())
11057 Register VReg1 =
MRI->createVirtualRegister(TRC);
11058 BuildMI(DispatchBB, dl,
TII->get(ARM::t2MOVi16), VReg1)
11059 .
addImm(NumLPads & 0xFFFF)
11062 unsigned VReg2 = VReg1;
11063 if ((NumLPads & 0xFFFF0000) != 0) {
11064 VReg2 =
MRI->createVirtualRegister(TRC);
11065 BuildMI(DispatchBB, dl,
TII->get(ARM::t2MOVTi16), VReg2)
11071 BuildMI(DispatchBB, dl,
TII->get(ARM::t2CMPrr))
11077 BuildMI(DispatchBB, dl,
TII->get(ARM::t2Bcc))
11082 Register NewVReg3 =
MRI->createVirtualRegister(TRC);
11083 BuildMI(DispContBB, dl,
TII->get(ARM::t2LEApcrelJT), NewVReg3)
11087 Register NewVReg4 =
MRI->createVirtualRegister(TRC);
11088 BuildMI(DispContBB, dl,
TII->get(ARM::t2ADDrs), NewVReg4)
11095 BuildMI(DispContBB, dl,
TII->get(ARM::t2BR_JT))
11099 }
else if (Subtarget->isThumb()) {
11100 Register NewVReg1 =
MRI->createVirtualRegister(TRC);
11101 BuildMI(DispatchBB, dl,
TII->get(ARM::tLDRspi), NewVReg1)
11107 if (NumLPads < 256) {
11108 BuildMI(DispatchBB, dl,
TII->get(ARM::tCMPi8))
11115 const Constant *
C = ConstantInt::get(Int32Ty, NumLPads);
11118 Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11121 Register VReg1 =
MRI->createVirtualRegister(TRC);
11122 BuildMI(DispatchBB, dl,
TII->get(ARM::tLDRpci))
11126 BuildMI(DispatchBB, dl,
TII->get(ARM::tCMPr))
11132 BuildMI(DispatchBB, dl,
TII->get(ARM::tBcc))
11137 Register NewVReg2 =
MRI->createVirtualRegister(TRC);
11138 BuildMI(DispContBB, dl,
TII->get(ARM::tLSLri), NewVReg2)
11144 Register NewVReg3 =
MRI->createVirtualRegister(TRC);
11145 BuildMI(DispContBB, dl,
TII->get(ARM::tLEApcrelJT), NewVReg3)
11149 Register NewVReg4 =
MRI->createVirtualRegister(TRC);
11150 BuildMI(DispContBB, dl,
TII->get(ARM::tADDrr), NewVReg4)
11160 Register NewVReg5 =
MRI->createVirtualRegister(TRC);
11161 BuildMI(DispContBB, dl,
TII->get(ARM::tLDRi), NewVReg5)
11167 unsigned NewVReg6 = NewVReg5;
11168 if (IsPositionIndependent) {
11169 NewVReg6 =
MRI->createVirtualRegister(TRC);
11170 BuildMI(DispContBB, dl,
TII->get(ARM::tADDrr), NewVReg6)
11177 BuildMI(DispContBB, dl,
TII->get(ARM::tBR_JTr))
11181 Register NewVReg1 =
MRI->createVirtualRegister(TRC);
11182 BuildMI(DispatchBB, dl,
TII->get(ARM::LDRi12), NewVReg1)
11188 if (NumLPads < 256) {
11189 BuildMI(DispatchBB, dl,
TII->get(ARM::CMPri))
11193 }
else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
11194 Register VReg1 =
MRI->createVirtualRegister(TRC);
11195 BuildMI(DispatchBB, dl,
TII->get(ARM::MOVi16), VReg1)
11196 .
addImm(NumLPads & 0xFFFF)
11199 unsigned VReg2 = VReg1;
11200 if ((NumLPads & 0xFFFF0000) != 0) {
11201 VReg2 =
MRI->createVirtualRegister(TRC);
11202 BuildMI(DispatchBB, dl,
TII->get(ARM::MOVTi16), VReg2)
11208 BuildMI(DispatchBB, dl,
TII->get(ARM::CMPrr))
11215 const Constant *
C = ConstantInt::get(Int32Ty, NumLPads);
11218 Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11221 Register VReg1 =
MRI->createVirtualRegister(TRC);
11222 BuildMI(DispatchBB, dl,
TII->get(ARM::LDRcp))
11227 BuildMI(DispatchBB, dl,
TII->get(ARM::CMPrr))
11238 Register NewVReg3 =
MRI->createVirtualRegister(TRC);
11239 BuildMI(DispContBB, dl,
TII->get(ARM::MOVsi), NewVReg3)
11244 Register NewVReg4 =
MRI->createVirtualRegister(TRC);
11245 BuildMI(DispContBB, dl,
TII->get(ARM::LEApcrelJT), NewVReg4)
11252 Register NewVReg5 =
MRI->createVirtualRegister(TRC);
11253 BuildMI(DispContBB, dl,
TII->get(ARM::LDRrs), NewVReg5)
11260 if (IsPositionIndependent) {
11261 BuildMI(DispContBB, dl,
TII->get(ARM::BR_JTadd))
11266 BuildMI(DispContBB, dl,
TII->get(ARM::BR_JTr))
11275 if (SeenMBBs.
insert(CurMBB).second)
11287 while (!Successors.empty()) {
11296 BB->normalizeSuccProbs();
11303 II = BB->rbegin(), IE = BB->rend();
II != IE; ++
II) {
11304 if (!
II->isCall())
continue;
11308 OI =
II->operands_begin(), OE =
II->operands_end();
11310 if (!OI->isReg())
continue;
11311 DefRegs.
insert(OI->getReg());
11316 for (
unsigned i = 0; SavedRegs[i] != 0; ++i) {
11317 unsigned Reg = SavedRegs[i];
11319 !ARM::tGPRRegClass.contains(Reg) &&
11320 !ARM::hGPRRegClass.contains(Reg))
11322 if (Subtarget->
isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
11324 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
11337 MBBLPad->setIsEHPad(
false);
11340 MI.eraseFromParent();
11353static unsigned getLdOpcode(
unsigned LdSize,
bool IsThumb1,
bool IsThumb2) {
11355 return LdSize == 16 ? ARM::VLD1q32wb_fixed
11356 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
11358 return LdSize == 4 ? ARM::tLDRi
11359 : LdSize == 2 ? ARM::tLDRHi
11360 : LdSize == 1 ? ARM::tLDRBi : 0;
11362 return LdSize == 4 ? ARM::t2LDR_POST
11363 : LdSize == 2 ? ARM::t2LDRH_POST
11364 : LdSize == 1 ? ARM::t2LDRB_POST : 0;
11365 return LdSize == 4 ? ARM::LDR_POST_IMM
11366 : LdSize == 2 ? ARM::LDRH_POST
11367 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
11372static unsigned getStOpcode(
unsigned StSize,
bool IsThumb1,
bool IsThumb2) {
11374 return StSize == 16 ? ARM::VST1q32wb_fixed
11375 : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
11377 return StSize == 4 ? ARM::tSTRi
11378 : StSize == 2 ? ARM::tSTRHi
11379 : StSize == 1 ? ARM::tSTRBi : 0;
11381 return StSize == 4 ? ARM::t2STR_POST
11382 : StSize == 2 ? ARM::t2STRH_POST
11383 : StSize == 1 ? ARM::t2STRB_POST : 0;
11384 return StSize == 4 ? ARM::STR_POST_IMM
11385 : StSize == 2 ? ARM::STRH_POST
11386 : StSize == 1 ? ARM::STRB_POST_IMM : 0;
11393 unsigned LdSize,
unsigned Data,
unsigned AddrIn,
11394 unsigned AddrOut,
bool IsThumb1,
bool IsThumb2) {
11395 unsigned LdOpc =
getLdOpcode(LdSize, IsThumb1, IsThumb2);
11396 assert(LdOpc != 0 &&
"Should have a load opcode");
11403 }
else if (IsThumb1) {
11409 BuildMI(*BB, Pos, dl,
TII->get(ARM::tADDi8), AddrOut)
11414 }
else if (IsThumb2) {
11434 unsigned StSize,
unsigned Data,
unsigned AddrIn,
11435 unsigned AddrOut,
bool IsThumb1,
bool IsThumb2) {
11436 unsigned StOpc =
getStOpcode(StSize, IsThumb1, IsThumb2);
11437 assert(StOpc != 0 &&
"Should have a store opcode");
11439 BuildMI(*BB, Pos, dl,
TII->get(StOpc), AddrOut)
11444 }
else if (IsThumb1) {
11451 BuildMI(*BB, Pos, dl,
TII->get(ARM::tADDi8), AddrOut)
11456 }
else if (IsThumb2) {
11457 BuildMI(*BB, Pos, dl,
TII->get(StOpc), AddrOut)
11463 BuildMI(*BB, Pos, dl,
TII->get(StOpc), AddrOut)
11484 unsigned SizeVal =
MI.getOperand(2).getImm();
11485 unsigned Alignment =
MI.getOperand(3).getImm();
11490 unsigned UnitSize = 0;
11495 bool IsThumb2 = Subtarget->
isThumb2();
11496 bool IsThumb = Subtarget->isThumb();
11498 if (Alignment & 1) {
11500 }
else if (Alignment & 2) {
11505 Subtarget->hasNEON()) {
11506 if ((Alignment % 16 == 0) && SizeVal >= 16)
11508 else if ((Alignment % 8 == 0) && SizeVal >= 8)
11517 bool IsNeon = UnitSize >= 8;
11518 TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
11520 VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
11521 : UnitSize == 8 ? &ARM::DPRRegClass
11524 unsigned BytesLeft = SizeVal % UnitSize;
11525 unsigned LoopSize = SizeVal - BytesLeft;
11527 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
11531 unsigned srcIn = src;
11532 unsigned destIn = dest;
11533 for (
unsigned i = 0; i < LoopSize; i+=UnitSize) {
11534 Register srcOut =
MRI.createVirtualRegister(TRC);
11535 Register destOut =
MRI.createVirtualRegister(TRC);
11536 Register scratch =
MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11538 IsThumb1, IsThumb2);
11540 IsThumb1, IsThumb2);
11548 for (
unsigned i = 0; i < BytesLeft; i++) {
11549 Register srcOut =
MRI.createVirtualRegister(TRC);
11550 Register destOut =
MRI.createVirtualRegister(TRC);
11551 Register scratch =
MRI.createVirtualRegister(TRC);
11553 IsThumb1, IsThumb2);
11555 IsThumb1, IsThumb2);
11559 MI.eraseFromParent();
11585 MF->
insert(It, loopMBB);
11586 MF->
insert(It, exitMBB);
11589 unsigned CallFrameSize =
TII->getCallFrameSizeAt(
MI);
11599 Register varEnd =
MRI.createVirtualRegister(TRC);
11601 BuildMI(BB, dl,
TII->get(IsThumb ? ARM::t2MOVi32imm : ARM::MOVi32imm),
11604 }
else if (Subtarget->genExecuteOnly()) {
11605 assert(IsThumb &&
"Non-thumb expected to have used movt");
11610 const Constant *
C = ConstantInt::get(Int32Ty, LoopSize);
11641 Register varLoop =
MRI.createVirtualRegister(TRC);
11642 Register varPhi =
MRI.createVirtualRegister(TRC);
11643 Register srcLoop =
MRI.createVirtualRegister(TRC);
11644 Register srcPhi =
MRI.createVirtualRegister(TRC);
11645 Register destLoop =
MRI.createVirtualRegister(TRC);
11646 Register destPhi =
MRI.createVirtualRegister(TRC);
11654 BuildMI(BB, dl,
TII->get(ARM::PHI), destPhi)
11660 Register scratch =
MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11662 IsThumb1, IsThumb2);
11664 IsThumb1, IsThumb2);
11668 BuildMI(*BB, BB->
end(), dl,
TII->get(ARM::tSUBi8), varLoop)
11676 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
11685 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
11694 auto StartOfExit = exitMBB->
begin();
11698 unsigned srcIn = srcLoop;
11699 unsigned destIn = destLoop;
11700 for (
unsigned i = 0; i < BytesLeft; i++) {
11701 Register srcOut =
MRI.createVirtualRegister(TRC);
11702 Register destOut =
MRI.createVirtualRegister(TRC);
11703 Register scratch =
MRI.createVirtualRegister(TRC);
11704 emitPostLd(BB, StartOfExit,
TII, dl, 1, scratch, srcIn, srcOut,
11705 IsThumb1, IsThumb2);
11706 emitPostSt(BB, StartOfExit,
TII, dl, 1, scratch, destIn, destOut,
11707 IsThumb1, IsThumb2);
11712 MI.eraseFromParent();
11724 "__chkstk is only supported on Windows");
11725 assert(Subtarget->
isThumb2() &&
"Windows on ARM requires Thumb-2 mode");
11745 switch (
TM.getCodeModel()) {
11787 MI.eraseFromParent();
11811 .
addReg(
MI.getOperand(0).getReg())
11819 MI.eraseFromParent();
11843 if (miI == BB->
end()) {
11845 if (Succ->isLiveIn(ARM::CPSR))
11851 SelectItr->addRegisterKilled(ARM::CPSR,
TRI);
11863 Register AddDestReg =
MRI.createVirtualRegister(&ARM::rGPRRegClass);
11864 BuildMI(TpEntry, Dl,
TII->get(ARM::t2ADDri), AddDestReg)
11870 Register LsrDestReg =
MRI.createVirtualRegister(&ARM::rGPRRegClass);
11871 BuildMI(TpEntry, Dl,
TII->get(ARM::t2LSRri), LsrDestReg)
11877 Register TotalIterationsReg =
MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11878 BuildMI(TpEntry, Dl,
TII->get(ARM::t2WhileLoopSetup), TotalIterationsReg)
11881 BuildMI(TpEntry, Dl,
TII->get(ARM::t2WhileLoopStart))
11882 .
addUse(TotalIterationsReg)
11889 return TotalIterationsReg;
11900 Register TotalIterationsReg,
bool IsMemcpy) {
11907 SrcPhiReg =
MRI.createVirtualRegister(&ARM::rGPRRegClass);
11908 CurrSrcReg =
MRI.createVirtualRegister(&ARM::rGPRRegClass);
11909 BuildMI(TpLoopBody, Dl,
TII->get(ARM::PHI), SrcPhiReg)
11917 Register DestPhiReg =
MRI.createVirtualRegister(&ARM::rGPRRegClass);
11918 Register CurrDestReg =
MRI.createVirtualRegister(&ARM::rGPRRegClass);
11919 BuildMI(TpLoopBody, Dl,
TII->get(ARM::PHI), DestPhiReg)
11926 Register LoopCounterPhiReg =
MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11927 Register RemainingLoopIterationsReg =
11928 MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11929 BuildMI(TpLoopBody, Dl,
TII->get(ARM::PHI), LoopCounterPhiReg)
11930 .
addUse(TotalIterationsReg)
11932 .
addUse(RemainingLoopIterationsReg)
11936 Register PredCounterPhiReg =
MRI.createVirtualRegister(&ARM::rGPRRegClass);
11937 Register RemainingElementsReg =
MRI.createVirtualRegister(&ARM::rGPRRegClass);
11938 BuildMI(TpLoopBody, Dl,
TII->get(ARM::PHI), PredCounterPhiReg)
11939 .
addUse(ElementCountReg)
11941 .
addUse(RemainingElementsReg)
11945 Register VccrReg =
MRI.createVirtualRegister(&ARM::VCCRRegClass);
11946 BuildMI(TpLoopBody, Dl,
TII->get(ARM::MVE_VCTP8), VccrReg)
11947 .
addUse(PredCounterPhiReg)
11952 BuildMI(TpLoopBody, Dl,
TII->get(ARM::t2SUBri), RemainingElementsReg)
11953 .
addUse(PredCounterPhiReg)
11961 SrcValueReg =
MRI.createVirtualRegister(&ARM::MQPRRegClass);
11962 BuildMI(TpLoopBody, Dl,
TII->get(ARM::MVE_VLDRBU8_post))
11971 SrcValueReg = OpSrcReg;
11973 BuildMI(TpLoopBody, Dl,
TII->get(ARM::MVE_VSTRBU8_post))
11984 BuildMI(TpLoopBody, Dl,
TII->get(ARM::t2LoopDec), RemainingLoopIterationsReg)
11985 .
addUse(LoopCounterPhiReg)
11988 BuildMI(TpLoopBody, Dl,
TII->get(ARM::t2LoopEnd))
11989 .
addUse(RemainingLoopIterationsReg)
12002 bool isThumb2 = Subtarget->
isThumb2();
12003 switch (
MI.getOpcode()) {
12010 case ARM::tLDR_postidx: {
12014 .
add(
MI.getOperand(2))
12015 .
add(
MI.getOperand(3))
12016 .
add(
MI.getOperand(4))
12017 .
add(
MI.getOperand(0))
12019 MI.eraseFromParent();
12023 case ARM::MVE_MEMCPYLOOPINST:
12024 case ARM::MVE_MEMSETLOOPINST: {
12054 Register OpDestReg =
MI.getOperand(0).getReg();
12055 Register OpSrcReg =
MI.getOperand(1).getReg();
12056 Register OpSizeReg =
MI.getOperand(2).getReg();
12076 if (TpExit == BB) {
12078 "block containing memcpy/memset Pseudo");
12091 bool IsMemcpy =
MI.getOpcode() == ARM::MVE_MEMCPYLOOPINST;
12093 OpDestReg, OpSizeReg, TotalIterationsReg, IsMemcpy);
12096 Properties.resetNoPHIs();
12108 MI.eraseFromParent();
12118 case ARM::t2STR_preidx:
12119 MI.setDesc(
TII->get(ARM::t2STR_PRE));
12121 case ARM::t2STRB_preidx:
12122 MI.setDesc(
TII->get(ARM::t2STRB_PRE));
12124 case ARM::t2STRH_preidx:
12125 MI.setDesc(
TII->get(ARM::t2STRH_PRE));
12128 case ARM::STRi_preidx:
12129 case ARM::STRBi_preidx: {
12130 unsigned NewOpc =
MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
12131 : ARM::STRB_PRE_IMM;
12133 unsigned Offset =
MI.getOperand(4).getImm();
12141 .
add(
MI.getOperand(0))
12142 .
add(
MI.getOperand(1))
12143 .
add(
MI.getOperand(2))
12145 .
add(
MI.getOperand(5))
12146 .
add(
MI.getOperand(6))
12148 MI.eraseFromParent();
12151 case ARM::STRr_preidx:
12152 case ARM::STRBr_preidx:
12153 case ARM::STRH_preidx: {
12155 switch (
MI.getOpcode()) {
12157 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG;
break;
12158 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG;
break;
12159 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE;
break;
12164 MI.eraseFromParent();
12168 case ARM::tMOVCCr_pseudo: {
12186 F->insert(It, copy0MBB);
12187 F->insert(It, sinkMBB);
12190 unsigned CallFrameSize =
TII->getCallFrameSizeAt(
MI);
12196 if (!
MI.killsRegister(ARM::CPSR,
nullptr) &&
12212 .
addImm(
MI.getOperand(3).getImm())
12213 .
addReg(
MI.getOperand(4).getReg());
12228 .
addReg(
MI.getOperand(1).getReg())
12230 .
addReg(
MI.getOperand(2).getReg())
12233 MI.eraseFromParent();
12238 case ARM::BCCZi64: {
12244 bool RHSisZero =
MI.getOpcode() == ARM::BCCZi64;
12249 BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12253 BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12259 BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
12263 BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
12273 BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
12282 MI.eraseFromParent();
12286 case ARM::Int_eh_sjlj_setjmp:
12287 case ARM::Int_eh_sjlj_setjmp_nofp:
12288 case ARM::tInt_eh_sjlj_setjmp:
12289 case ARM::t2Int_eh_sjlj_setjmp:
12290 case ARM::t2Int_eh_sjlj_setjmp_nofp:
12293 case ARM::Int_eh_sjlj_setup_dispatch:
12294 EmitSjLjDispatchBlock(
MI, BB);
12317 Fn->
insert(BBI, SinkBB);
12320 unsigned CallFrameSize =
TII->getCallFrameSizeAt(
MI);
12324 Register ABSSrcReg =
MI.getOperand(1).getReg();
12325 Register ABSDstReg =
MI.getOperand(0).getReg();
12326 bool ABSSrcKIll =
MI.getOperand(1).isKill();
12327 bool isThumb2 = Subtarget->
isThumb2();
12331 Register NewRsbDstReg =
MRI.createVirtualRegister(
12332 isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
12346 BuildMI(BB, dl,
TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12353 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).
addMBB(SinkBB)
12360 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
12369 TII->get(ARM::PHI), ABSDstReg)
12374 MI.eraseFromParent();
12379 case ARM::COPY_STRUCT_BYVAL_I32:
12381 return EmitStructByval(
MI, BB);
12382 case ARM::WIN__CHKSTK:
12383 return EmitLowered__chkstk(
MI, BB);
12384 case ARM::WIN__DBZCHK:
12385 return EmitLowered__dbzchk(
MI, BB);
12401 if (!
Node->hasAnyUseOfValue(0)) {
12402 MI.getOperand(0).setIsDead(
true);
12404 if (!
Node->hasAnyUseOfValue(1)) {
12405 MI.getOperand(1).setIsDead(
true);
12409 for (
unsigned I = 0;
I !=
MI.getOperand(4).
getImm(); ++
I) {
12410 Register TmpReg =
MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
12411 : &ARM::GPRRegClass);
12418 if (
MI.getOpcode() == ARM::MEMCPY) {
12436 MCID = &
TII->get(NewOpc);
12439 MI.getDesc().getNumOperands() + 5 -
MI.getDesc().getSize()
12440 &&
"converted opcode should be the same except for cc_out"
12441 " (and, on Thumb1, pred)");
12451 MI.addOperand(
MI.getOperand(1));
12452 MI.removeOperand(1);
12456 for (
unsigned i =
MI.getNumOperands(); i--;) {
12458 if (
op.isReg() &&
op.isUse()) {
12461 MI.tieOperands(DefIdx, i);
12475 if (!
MI.hasOptionalDef() || !MCID->
operands()[ccOutIdx].isOptionalDef()) {
12476 assert(!NewOpc &&
"Optional cc_out operand required");
12481 bool definesCPSR =
false;
12482 bool deadCPSR =
false;
12483 for (
unsigned i = MCID->
getNumOperands(), e =
MI.getNumOperands(); i != e;
12487 definesCPSR =
true;
12490 MI.removeOperand(i);
12494 if (!definesCPSR) {
12495 assert(!NewOpc &&
"Optional cc_out operand required");
12498 assert(deadCPSR == !Node->hasAnyUseOfValue(1) &&
"inconsistent dead flag");
12500 assert(!
MI.getOperand(ccOutIdx).getReg() &&
12501 "expect uninitialized optional cc_out operand");
12539 switch (
N->getOpcode()) {
12540 default:
return false;
12542 CC =
N->getOperand(0);
12564 EVT VT =
N->getValueType(0);
12565 CC =
N->getOperand(0);
12612 EVT VT =
N->getValueType(0);
12615 bool SwapSelectOps;
12617 NonConstantVal, DAG))
12623 OtherOp, NonConstantVal);
12629 CCOp, TrueVal, FalseVal);
12653 if (
N->getOpcode() ==
ARMISD::VTRN &&
N->getValueType(0) == MVT::v2i32)
12668 if (!
N->getValueType(0).is64BitVector())
12676 EVT VT =
N->getValueType(0);
12715 EVT VT =
N->getValueType(0);
12721 Opcode = Intrinsic::arm_neon_vpaddls;
12723 Opcode = Intrinsic::arm_neon_vpaddlu;
12751 EVT VT =
N->getValueType(0);
12766 unsigned nextIndex = 0;
12834 return DAG.
getNode(ExtOp, dl, VT, tmp);
12865 if (SRA.getOpcode() !=
ISD::SRA) {
12871 if (
auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
12872 if (Const->getZExtValue() != 31)
12877 if (SRA.getOperand(0) !=
Mul)
12881 SDLoc dl(AddcNode);
12882 unsigned Opcode = 0;
12888 Op0 =
Mul.getOperand(0);
12889 Op1 =
Mul.getOperand(1);
12892 Op0 =
Mul.getOperand(0);
12893 Op1 =
Mul.getOperand(1).getOperand(0);
12896 Op0 =
Mul.getOperand(0).getOperand(0);
12897 Op1 =
Mul.getOperand(1);
12900 Op0 =
Mul->getOperand(0).getOperand(0);
12901 Op1 =
Mul->getOperand(1).getOperand(0);
12910 SDValue HiMLALResult(SMLAL.getNode(), 1);
12911 SDValue LoMLALResult(SMLAL.getNode(), 0);
12917 SDValue resNode(AddcNode, 0);
12946 "Expect an ADDE or SUBE");
12950 "ADDE node has the wrong inputs");
12969 "Expect ADDC with two result values. First: i32");
12989 bool IsLeftOperandMUL =
false;
12994 IsLeftOperandMUL =
true;
13005 SDValue *LowAddSub =
nullptr;
13008 if ((AddeSubeOp0 != MULOp.
getValue(1)) && (AddeSubeOp1 != MULOp.
getValue(1)))
13011 if (IsLeftOperandMUL)
13012 HiAddSub = &AddeSubeOp1;
13014 HiAddSub = &AddeSubeOp0;
13019 if (AddcSubcOp0 == MULOp.
getValue(0)) {
13020 LoMul = &AddcSubcOp0;
13021 LowAddSub = &AddcSubcOp1;
13023 if (AddcSubcOp1 == MULOp.
getValue(0)) {
13024 LoMul = &AddcSubcOp1;
13025 LowAddSub = &AddcSubcOp0;
13033 if (AddcSubcNode == HiAddSub->getNode() ||
13049 if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->
useMulOps() &&
13063 return SDValue(AddeSubeNode, 0);
13074 DAG.
getVTList(MVT::i32, MVT::i32), Ops);
13084 return SDValue(AddeSubeNode, 0);
13096 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
13105 SDNode *UmlalNode =
nullptr;
13130 DAG.
getVTList(MVT::i32, MVT::i32), Ops);
13144 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
13149 SDNode* AddcNode =
N->getOperand(2).getNode();
13150 SDNode* AddeNode =
N->getOperand(3).getNode();
13158 {N->getOperand(0), N->getOperand(1),
13159 AddcNode->getOperand(0), AddcNode->getOperand(1)});
13183 int32_t imm =
C->getSExtValue();
13184 if (imm < 0 && imm > std::numeric_limits<int>::min()) {
13189 return DAG.
getNode(Opcode,
DL,
N->getVTList(),
N->getOperand(0),
RHS);
13204 int64_t imm =
C->getSExtValue();
13215 return DAG.
getNode(Opcode,
DL,
N->getVTList(),
13216 N->getOperand(0),
RHS,
N->getOperand(2));
13228 if (!Subtarget->hasMVEIntegerOps())
13241 SetCC =
N->getOperand(0);
13244 CC = cast<CondCodeSDNode>(SetCC->
getOperand(2))->get();
13245 TrueVal =
N->getOperand(1);
13246 FalseVal =
N->getOperand(2);
13248 LHS =
N->getOperand(0);
13249 RHS =
N->getOperand(1);
13250 CC = cast<CondCodeSDNode>(
N->getOperand(4))->get();
13251 TrueVal =
N->getOperand(2);
13252 FalseVal =
N->getOperand(3);
13257 unsigned int Opcode = 0;
13286 switch (TrueVal->getOpcode()) {
13305 if (TrueVal !=
LHS || FalseVal !=
RHS)
13308 EVT LeftType =
LHS->getValueType(0);
13309 EVT RightType =
RHS->getValueType(0);
13312 if (LeftType != VectorScalarType || RightType != VectorScalarType)
13316 if (VectorScalarType != MVT::i32)
13324 if (VectorScalarType != MVT::i32)
13337 EVT VT =
N->getValueType(0);
13345 Shft =
N->getOperand(0);
13351 cast<CondCodeSDNode>(Cmp.getOperand(2))->get() !=
ISD::SETLT ||
13352 Cmp.getOperand(0) !=
N->getOperand(1) ||
13353 Cmp.getOperand(1) !=
N->getOperand(2))
13355 Shft =
N->getOperand(1);
13367 ScalarType = MVT::i8;
13370 case (1 << 15) - 1:
13371 ScalarType = MVT::i16;
13374 case (1ULL << 31) - 1:
13375 ScalarType = MVT::i32;
13406 unsigned LegalLanes = 128 / (ShftAmt + 1);
13430 for (
unsigned I = 0;
I < NumParts; ++
I) {
13447 if (!Subtarget->hasMVEIntegerOps())
13462 if (
N->getOperand(0).getOpcode() !=
ISD::XOR)
13472 if (!Const || !Const->isOne())
13489 ISD::CondCode CC = cast<CondCodeSDNode>(
N->getOperand(2))->get();
13490 EVT VT =
N->getValueType(0);
13492 if (!Subtarget->hasMVEIntegerOps() ||
13521 Opc = Intrinsic::arm_mve_vctp64;
13524 Opc = Intrinsic::arm_mve_vctp32;
13527 Opc = Intrinsic::arm_mve_vctp16;
13530 Opc = Intrinsic::arm_mve_vctp8;
13584 EVT VT =
N->getValueType(0);
13590 switch (
Op.getOpcode()) {
13607 !isa<ConstantSDNode>(N0) && N1->
hasOneUse()) {
13615 unsigned N0RedOp = 0;
13622 unsigned N1RedOp = 0;
13636 if (
SDValue R = DistrubuteAddAddVecReduce(N0, N1))
13638 if (
SDValue R = DistrubuteAddAddVecReduce(N1, N0))
13645 auto DistrubuteVecReduceLoad = [&](
SDValue N0,
SDValue N1,
bool IsForward) {
13659 LoadSDNode *Load0 = dyn_cast<LoadSDNode>(N0);
13660 LoadSDNode *Load1 = dyn_cast<LoadSDNode>(N1);
13669 if (!BaseLocDecomp0.getBase() ||
13670 BaseLocDecomp0.getBase() != BaseLocDecomp1.getBase() ||
13671 !BaseLocDecomp0.hasValidOffset() || !BaseLocDecomp1.hasValidOffset())
13673 if (BaseLocDecomp0.getOffset() < BaseLocDecomp1.getOffset())
13675 if (BaseLocDecomp0.getOffset() > BaseLocDecomp1.getOffset())
13685 if (IsBefore < 0) {
13688 }
else if (IsBefore > 0) {
13701 }
else if (IsForward && IsVecReduce(N0) && IsVecReduce(N1) &&
13711 if (!IsVecReduce(N0) || !IsVecReduce(N1))
13721 if (
SDValue R = DistrubuteVecReduceLoad(N0, N1,
true))
13723 if (
SDValue R = DistrubuteVecReduceLoad(N1, N0,
false))
13730 if (!Subtarget->hasMVEIntegerOps())
13736 EVT VT =
N->getValueType(0);
13741 if (VT != MVT::i64)
13752 auto MakeVecReduce = [&](
unsigned Opcode,
unsigned OpcodeA,
SDValue NA,
13770 std::tie(Ops[0], Ops[1]) = DAG.
SplitScalar(NA, dl, MVT::i32, MVT::i32);
13772 unsigned S = VecRed->
getOpcode() == OpcodeA ? 2 : 0;
13821 "Expected shift op");
13823 SDValue ShiftLHS =
N->getOperand(0);
13847 if (
auto *Const = dyn_cast<ConstantSDNode>(N1->
getOperand(1))) {
13848 if (Const->getAPIntValue().ult(256))
13851 Const->getAPIntValue().sgt(-256))
13867 (
N->getOperand(0).getOpcode() ==
ISD::SHL ||
13868 N->getOperand(0).getOpcode() ==
ISD::SRL) &&
13869 "Expected XOR(SHIFT) pattern");
13872 auto *XorC = dyn_cast<ConstantSDNode>(
N->getOperand(1));
13873 auto *ShiftC = dyn_cast<ConstantSDNode>(
N->getOperand(0).getOperand(1));
13874 if (XorC && ShiftC) {
13875 unsigned MaskIdx, MaskLen;
13876 if (XorC->getAPIntValue().isShiftedMask(MaskIdx, MaskLen)) {
13877 unsigned ShiftAmt = ShiftC->getZExtValue();
13878 unsigned BitWidth =
N->getValueType(0).getScalarSizeInBits();
13879 if (
N->getOperand(0).getOpcode() ==
ISD::SHL)
13880 return MaskIdx == ShiftAmt && MaskLen == (
BitWidth - ShiftAmt);
13881 return MaskIdx == 0 && MaskLen == (
BitWidth - ShiftAmt);
13891 N->getOperand(0).getOpcode() ==
ISD::SRL) ||
13893 N->getOperand(0).getOpcode() ==
ISD::SHL)) &&
13894 "Expected shift-shift mask");
13906 unsigned BinOpcode,
EVT VT,
unsigned SelectOpcode,
SDValue X,
13908 return Subtarget->hasMVEIntegerOps() &&
isTypeLegal(VT) &&
13913 if (!Subtarget->hasNEON()) {
13932 return Subtarget->hasFP64();
13935 return Subtarget->hasMVEFloatOps();
13964 if (ST->isThumb() && ST->isThumb1Only())
13968 for (
auto *U :
N->users()) {
13969 switch(U->getOpcode()) {
13982 if (isa<ConstantSDNode>(U->getOperand(0)) ||
13983 isa<ConstantSDNode>(U->getOperand(1)))
13987 if (U->getOperand(0).getOpcode() ==
ISD::SHL ||
13988 U->getOperand(1).getOpcode() ==
ISD::SHL)
13998 if (
N->getOperand(0).getOpcode() !=
ISD::SHL)
14003 auto *C1ShlC2 = dyn_cast<ConstantSDNode>(
N->getOperand(1));
14004 auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
14005 if (!C1ShlC2 || !C2)
14008 APInt C2Int = C2->getAPIntValue();
14009 APInt C1Int = C1ShlC2->getAPIntValue();
14011 if (C2Int.
uge(C2Width))
14017 if ((C1Int & Mask) != C1Int)
14024 auto LargeImm = [](
const APInt &Imm) {
14025 unsigned Zeros = Imm.countl_zero() + Imm.countr_zero();
14026 return Imm.getBitWidth() - Zeros > 8;
14029 if (LargeImm(C1Int) || LargeImm(C2Int))
14041 SHL.dump();
N->dump());
14076 if (CSINC.getOpcode() !=
ARMISD::CSINC || !CSINC.hasOneUse())
14085 CSINC.getOperand(0)),
14086 CSINC.getOperand(1), CSINC.getOperand(2),
14087 CSINC.getOperand(3));
14106 if (!Subtarget->hasMVEIntegerOps() || !
N->getValueType(0).isVector())
14148 if (!Subtarget->hasVMLxForwarding())
14167 EVT VT =
N->getValueType(0);
14178 EVT VT =
N->getValueType(0);
14179 if (VT != MVT::v2i64)
14188 EVT VT = cast<VTSDNode>(
Op->getOperand(1))->getVT();
14190 return Op->getOperand(0);
14204 And =
And->getOperand(0);
14209 Mask = Mask->getOperand(0);
14212 Mask.getValueType() != MVT::v4i32)
14218 return And->getOperand(0);
14223 if (
SDValue Op0 = IsSignExt(N0)) {
14224 if (
SDValue Op1 = IsSignExt(N1)) {
14230 if (
SDValue Op0 = IsZeroExt(N0)) {
14231 if (
SDValue Op1 = IsZeroExt(N1)) {
14246 EVT VT =
N->getValueType(0);
14247 if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64)
14258 if (VT != MVT::i32)
14265 int64_t MulAmt =
C->getSExtValue();
14266 unsigned ShiftAmt = llvm::countr_zero<uint64_t>(MulAmt);
14268 ShiftAmt = ShiftAmt & (32 - 1);
14273 MulAmt >>= ShiftAmt;
14276 if (llvm::has_single_bit<uint32_t>(MulAmt - 1)) {
14284 }
else if (llvm::has_single_bit<uint32_t>(MulAmt + 1)) {
14296 if (llvm::has_single_bit<uint32_t>(MulAmtAbs + 1)) {
14304 }
else if (llvm::has_single_bit<uint32_t>(MulAmtAbs - 1)) {
14334 if (
N->getValueType(0) != MVT::i32)
14343 if (C1 == 255 || C1 == 65535)
14346 SDNode *N0 =
N->getOperand(0).getNode();
14360 if (!C2 || C2 >= 32)
14404 if (Trailing == C2 && C2 + C3 < 32) {
14417 if (Leading == C2 && C2 + C3 < 32) {
14445 EVT VT =
N->getValueType(0);
14449 VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1)
14452 APInt SplatBits, SplatUndef;
14453 unsigned SplatBitSize;
14455 if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14456 BVN->
isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14457 if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14458 SplatBitSize == 64) {
14492 if (!Subtarget->hasV6Ops() ||
14493 (Subtarget->isThumb() &&
14494 (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
14497 SDValue SRL = OR->getOperand(0);
14498 SDValue SHL = OR->getOperand(1);
14501 SRL = OR->getOperand(1);
14502 SHL = OR->getOperand(0);
14509 if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
14513 SDNode *SMULLOHI = SRL.getOperand(0).getNode();
14514 if (SRL.getOperand(0) !=
SDValue(SMULLOHI, 0) ||
14515 SHL.getOperand(0) !=
SDValue(SMULLOHI, 1))
14534 unsigned Opcode = 0;
14535 if (
isS16(OpS16, DAG))
14553 if (Subtarget->
isThumb1Only() || !Subtarget->hasV6T2Ops())
14556 EVT VT =
N->getValueType(0);
14571 if (VT != MVT::i32)
14584 if (Mask == 0xffff)
14591 if ((Val & ~Mask) != Val)
14616 (Mask == ~Mask2)) {
14619 if (Subtarget->hasDSP() &&
14620 (Mask == 0xffff || Mask == 0xffff0000))
14633 (~Mask == Mask2)) {
14636 if (Subtarget->hasDSP() &&
14637 (Mask2 == 0xffff || Mask2 == 0xffff0000))
14703 return isValidMVECond(CC,
N->getOperand(0).getValueType().isFloatingPoint());
14710 EVT VT =
N->getValueType(0);
14715 auto IsFreelyInvertable = [&](
SDValue V) {
14722 if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1)))
14738 EVT VT =
N->getValueType(0);
14744 if (Subtarget->hasMVEIntegerOps() && (VT == MVT::v2i1 || VT == MVT::v4i1 ||
14745 VT == MVT::v8i1 || VT == MVT::v16i1))
14748 APInt SplatBits, SplatUndef;
14749 unsigned SplatBitSize;
14751 if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14752 BVN->
isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14753 if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14754 SplatBitSize == 64) {
14790 unsigned SplatBitSize;
14793 APInt SplatBits0, SplatBits1;
14797 if (BVN0 && BVN0->
isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
14798 HasAnyUndefs) && !HasAnyUndefs) {
14799 if (BVN1 && BVN1->
isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
14800 HasAnyUndefs) && !HasAnyUndefs) {
14805 SplatBits0 == ~SplatBits1) {
14835 EVT VT =
N->getValueType(0);
14850 if (Subtarget->hasMVEIntegerOps()) {
14881 ToMask = ~N->getConstantOperandAPInt(2);
14887 isa<ConstantSDNode>(
From->getOperand(1))) {
14888 APInt Shift =
From->getConstantOperandAPInt(1);
14901 unsigned LastActiveBitInA =
A.countr_zero();
14902 unsigned FirstActiveBitInB =
B.getBitWidth() -
B.countl_zero() - 1;
14903 return LastActiveBitInA - 1 == FirstActiveBitInB;
14908 APInt ToMask, FromMask;
14916 APInt NewToMask, NewFromMask;
14918 if (NewFrom !=
From)
14922 if ((NewToMask & ToMask).getBoolValue())
14947 unsigned InvMask =
N->getConstantOperandVal(2);
14949 unsigned Width = llvm::bit_width<unsigned>(~InvMask) - LSB;
14951 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
14952 "undefined behavior");
14953 unsigned Mask = (1u << Width) - 1;
14955 if ((Mask & (~Mask2)) == 0)
14957 N->getOperand(0), N1.
getOperand(0),
N->getOperand(2));
14964 APInt ToMask1, FromMask1;
14967 APInt ToMask2, FromMask2;
14973 APInt NewFromMask = FromMask1 | FromMask2;
14974 APInt NewToMask = ToMask1 | ToMask2;
14976 EVT VT =
N->getValueType(0);
14979 if (NewFromMask[0] == 0)
14991 APInt ToMask1 = ~N->getConstantOperandAPInt(2);
14992 APInt ToMask2 = ~N0.getConstantOperandAPInt(2);
14994 if (!N0.
hasOneUse() || (ToMask1 & ToMask2) != 0 ||
14998 EVT VT =
N->getValueType(0);
15001 N->getOperand(1),
N->getOperand(2));
15015 SDValue CSInc = Cmp->getOperand(0);
15065 if (
N->getConstantOperandVal(2) ==
ARMCC::EQ)
15066 return DAG.
getNode(
N->getOpcode(),
SDLoc(
N), MVT::i32,
N->getOperand(0),
15069 if (
N->getConstantOperandVal(2) ==
ARMCC::NE)
15071 N->getOpcode(),
SDLoc(
N), MVT::i32,
N->getOperand(0),
15084 SDValue InDouble =
N->getOperand(0);
15093 !cast<LoadSDNode>(InNode)->isVolatile()) {
15099 SDValue BasePtr = LD->getBasePtr();
15101 DAG.
getLoad(MVT::i32,
DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
15102 LD->getAlign(), LD->getMemOperand()->getFlags());
15108 LD->getPointerInfo().getWithOffset(4),
15110 LD->getMemOperand()->getFlags());
15122 isa<ConstantSDNode>(InDouble.
getOperand(1))) {
15143 if (!Subtarget->
isLittle() && BVSwap)
15153 if (isa<ConstantSDNode>(BV.
getOperand(2))) {
15161 if (!Subtarget->
isLittle() && BVSwap)
15206 if (Copy.getValueType() == MVT::f32 &&
15208 bool HasGlue = Copy->getNumOperands() == 3;
15209 SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1),
15210 HasGlue ? Copy->getOperand(2) :
SDValue()};
15211 EVT OutTys[] = {
N->getValueType(0), MVT::Other, MVT::Glue};
15229 if (
LoadSDNode *LN0 = dyn_cast<LoadSDNode>(Op0)) {
15230 if (LN0->hasOneUse() && LN0->isUnindexed() &&
15231 LN0->getMemoryVT() == MVT::i16) {
15234 LN0->getBasePtr(), LN0->getMemOperand());
15252 EVT VT =
N->getValueType(0);
15286 unsigned NumElts =
N->getValueType(0).getVectorNumElements();
15287 for (
unsigned i = 0; i < NumElts; ++i) {
15288 SDNode *Elt =
N->getOperand(i).getNode();
15305 if (
N->getNumOperands() == 2)
15311 EVT VT =
N->getValueType(0);
15317 for (
unsigned i = 0; i < NumElts; ++i) {
15343 EVT VT =
N->getValueType(0);
15351 assert(EltVT == MVT::f32 &&
"Unexpected type!");
15356 Use->getValueType(0).isFloatingPoint())
15364 unsigned NumOfBitCastedElts = 0;
15366 unsigned NumOfRelevantElts = NumElts;
15367 for (
unsigned Idx = 0;
Idx < NumElts; ++
Idx) {
15372 ++NumOfBitCastedElts;
15373 }
else if (Elt.
isUndef() || isa<ConstantSDNode>(Elt))
15376 --NumOfRelevantElts;
15380 if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
15398 for (
unsigned Idx = 0 ;
Idx < NumElts; ++
Idx) {
15403 V->getOperand(0).getValueType() == MVT::i32)
15405 V = V.getOperand(0);
15422 EVT VT =
N->getValueType(0);
15429 if (
Op->getOperand(0).getValueType() == VT)
15430 return Op->getOperand(0);
15445 if (
Op.getValueType() == MVT::i32) {
15456 EVT VT =
N->getValueType(0);
15461 if (ST->isLittle())
15465 if (
Op.getValueType() == VT)
15474 if (
Op->getOperand(0).getValueType() == VT)
15475 return Op->getOperand(0);
15484 if (!Subtarget->hasMVEIntegerOps())
15487 EVT VT =
N->getValueType(0);
15518 EVT VT =
N->getValueType(0);
15519 SDNode *Elt =
N->getOperand(1).getNode();
15534 Vec, V,
N->getOperand(2));
15544 EVT VT =
N->getValueType(0);
15553 Ext.getOperand(0).getValueType() == MVT::f32)
15554 Ext = Ext.getOperand(0);
15556 !isa<ConstantSDNode>(Ext.getOperand(1)) ||
15557 Ext.getConstantOperandVal(1) % 2 != 0)
15559 if (Ext->hasOneUse() && (Ext->user_begin()->getOpcode() ==
ISD::SINT_TO_FP ||
15563 SDValue Op0 = Ext.getOperand(0);
15566 unsigned Lane = Ext.getConstantOperandVal(1);
15572 return V->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15573 isa<ConstantSDNode>(V->getOperand(1)) &&
15574 V->getConstantOperandVal(1) == Lane + 1 &&
15575 V->getOperand(0).getResNo() == ResNo;
15577 if (OtherIt == Op0->
users().end())
15582 SDValue OtherExt(*OtherIt, 0);
15595 DCI.
DAG.
getConstant(Ext.getConstantOperandVal(1) / 2, dl, MVT::i32));
15607 EVT VT =
N->getValueType(0);
15613 if (VT == MVT::f16 &&
X.getValueType() == MVT::i32)
15615 if (VT == MVT::i32 &&
X.getValueType() == MVT::f16)
15617 if (VT == MVT::f32 &&
X.getValueType() == MVT::i32)
15620 while (
X.getValueType() != VT &&
X->getOpcode() ==
ISD::BITCAST)
15621 X =
X->getOperand(0);
15622 if (
X.getValueType() == VT)
15628 isa<ConstantSDNode>(
N->getOperand(1)) &&
15630 return Op0.
getOperand(
N->getConstantOperandVal(1));
15635 isa<ConstantSDNode>(
N->getOperand(1)) &&
15640 unsigned Offset =
N->getConstantOperandVal(1);
15652 unsigned Idx =
N->getConstantOperandVal(1);
15666 EVT VT =
N->getValueType(0);
15670 cast<VTSDNode>(
N->getOperand(1))->getVT() ==
15671 Op.getOperand(0).getValueType().getScalarType())
15681 SDValue SubVec =
N->getOperand(1);
15682 uint64_t IdxVal =
N->getConstantOperandVal(2);
15693 if (IdxVal == 0 && Vec.
isUndef())
15699 (IdxVal != 0 && IdxVal != NumSubElts))
15772 EVT VT =
N->getValueType(0);
15783 unsigned HalfElts = NumElts/2;
15785 for (
unsigned n = 0; n < NumElts; ++n) {
15788 if (MaskElt < (
int)HalfElts)
15790 else if (MaskElt >= (
int)NumElts && MaskElt < (
int)(NumElts + HalfElts))
15791 NewElt = HalfElts + MaskElt - NumElts;
15834 bool SimpleConstIncOnly,
15842 bool isLoadOp =
true;
15843 bool isLaneOp =
false;
15846 bool hasAlignment =
true;
15847 unsigned NewOpc = 0;
15848 unsigned NumVecs = 0;
15849 if (
Target.isIntrinsic) {
15850 unsigned IntNo =
N->getConstantOperandVal(1);
15854 case Intrinsic::arm_neon_vld1:
15858 case Intrinsic::arm_neon_vld2:
15862 case Intrinsic::arm_neon_vld3:
15866 case Intrinsic::arm_neon_vld4:
15870 case Intrinsic::arm_neon_vld1x2:
15873 hasAlignment =
false;
15875 case Intrinsic::arm_neon_vld1x3:
15878 hasAlignment =
false;
15880 case Intrinsic::arm_neon_vld1x4:
15883 hasAlignment =
false;
15885 case Intrinsic::arm_neon_vld2dup:
15889 case Intrinsic::arm_neon_vld3dup:
15893 case Intrinsic::arm_neon_vld4dup:
15897 case Intrinsic::arm_neon_vld2lane:
15902 case Intrinsic::arm_neon_vld3lane:
15907 case Intrinsic::arm_neon_vld4lane:
15912 case Intrinsic::arm_neon_vst1:
15917 case Intrinsic::arm_neon_vst2:
15922 case Intrinsic::arm_neon_vst3:
15927 case Intrinsic::arm_neon_vst4:
15932 case Intrinsic::arm_neon_vst2lane:
15938 case Intrinsic::arm_neon_vst3lane:
15944 case Intrinsic::arm_neon_vst4lane:
15950 case Intrinsic::arm_neon_vst1x2:
15954 hasAlignment =
false;
15956 case Intrinsic::arm_neon_vst1x3:
15960 hasAlignment =
false;
15962 case Intrinsic::arm_neon_vst1x4:
15966 hasAlignment =
false;
15971 switch (
N->getOpcode()) {
16007 VecTy =
N->getValueType(0);
16008 }
else if (
Target.isIntrinsic) {
16009 VecTy =
N->getOperand(
Target.AddrOpIdx + 1).getValueType();
16012 "Node has to be a load, a store, or an intrinsic!");
16013 VecTy =
N->getOperand(1).getValueType();
16021 if (isLaneOp || isVLDDUPOp)
16024 if (NumBytes >= 3 * 16 &&
User.ConstInc != NumBytes) {
16030 if (SimpleConstIncOnly &&
User.ConstInc != NumBytes)
16039 EVT AlignedVecTy = VecTy;
16056 if (isa<LSBaseSDNode>(
N)) {
16059 assert(NumVecs == 1 &&
"Unexpected multi-element generic load/store.");
16060 assert(!isLaneOp &&
"Unexpected generic load/store lane.");
16071 Alignment =
Align(1);
16077 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
16079 for (n = 0; n < NumResultVecs; ++n)
16080 Tys[n] = AlignedVecTy;
16081 Tys[n++] = MVT::i32;
16082 Tys[n] = MVT::Other;
16097 unsigned LastOperand =
16098 hasAlignment ?
N->getNumOperands() - 1 :
N->getNumOperands();
16099 for (
unsigned i =
Target.AddrOpIdx + 1; i < LastOperand; ++i)
16108 if (AlignedVecTy != VecTy &&
N->getOpcode() ==
ISD::STORE) {
16119 for (
unsigned i = 0; i < NumResultVecs; ++i)
16124 if (AlignedVecTy != VecTy &&
N->getOpcode() ==
ISD::LOAD) {
16125 SDValue &LdVal = NewResults[0];
16161 switch (
N->getOpcode()) {
16164 if (isa<ConstantSDNode>(
N->getOperand(1))) {
16165 *
Ptr =
N->getOperand(0);
16166 *CInc =
N->getOperand(1);
16172 if (isa<ConstantSDNode>(
N->getOperand(2))) {
16173 *
Ptr =
N->getOperand(1);
16174 *CInc =
N->getOperand(2);
16212 unsigned ConstInc =
16217 if (BaseUpdates.
size() >= MaxBaseUpdates)
16237 unsigned UserOffset =
16240 if (!UserOffset || UserOffset <=
Offset)
16243 unsigned NewConstInc = UserOffset -
Offset;
16246 if (BaseUpdates.
size() >= MaxBaseUpdates)
16253 unsigned NumValidUpd = BaseUpdates.
size();
16254 for (
unsigned I = 0;
I < NumValidUpd;
I++) {
16265 return LHS.ConstInc <
RHS.ConstInc;
16294 unsigned IntNo =
N->getConstantOperandVal(1);
16295 if (IntNo == Intrinsic::arm_mve_vst2q &&
N->getConstantOperandVal(5) != 1)
16297 if (IntNo == Intrinsic::arm_mve_vst4q &&
N->getConstantOperandVal(7) != 3)
16320 bool isLoadOp =
true;
16321 unsigned NewOpc = 0;
16322 unsigned NumVecs = 0;
16326 case Intrinsic::arm_mve_vld2q:
16330 case Intrinsic::arm_mve_vld4q:
16334 case Intrinsic::arm_mve_vst2q:
16339 case Intrinsic::arm_mve_vst4q:
16349 VecTy =
N->getValueType(0);
16351 VecTy =
N->getOperand(3).getValueType();
16365 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
16367 for (n = 0; n < NumResultVecs; ++n)
16369 Tys[n++] = MVT::i32;
16370 Tys[n] = MVT::Other;
16379 for (
unsigned i = 3; i <
N->getNumOperands(); ++i)
16387 for (
unsigned i = 0; i < NumResultVecs; ++i)
16406 EVT VT =
N->getValueType(0);
16412 SDNode *VLD =
N->getOperand(0).getNode();
16415 unsigned NumVecs = 0;
16416 unsigned NewOpc = 0;
16418 if (IntNo == Intrinsic::arm_neon_vld2lane) {
16421 }
else if (IntNo == Intrinsic::arm_neon_vld3lane) {
16424 }
else if (IntNo == Intrinsic::arm_neon_vld4lane) {
16436 if (
Use.getResNo() == NumVecs)
16440 VLDLaneNo !=
User->getConstantOperandVal(1))
16447 for (n = 0; n < NumVecs; ++n)
16449 Tys[n] = MVT::Other;
16459 unsigned ResNo =
Use.getResNo();
16461 if (ResNo == NumVecs)
16468 std::vector<SDValue> VLDDupResults;
16469 for (
unsigned n = 0; n < NumVecs; ++n)
16483 EVT VT =
N->getValueType(0);
16486 if (Subtarget->hasMVEIntegerOps()) {
16490 ExtractVT = MVT::i32;
16492 N->getOperand(0),
N->getOperand(1));
16504 Op =
Op.getOperand(0);
16509 unsigned EltSize =
Op.getScalarValueSizeInBits();
16511 unsigned Imm =
Op.getConstantOperandVal(0);
16527 if (Subtarget->hasMVEIntegerOps()) {
16530 if (
Op.getValueType() == MVT::f32)
16533 else if (
Op.getValueType() == MVT::f16)
16538 if (!Subtarget->hasNEON())
16545 if (LD &&
Op.hasOneUse() && LD->isUnindexed() &&
16546 LD->getMemoryVT() ==
N->getValueType(0).getVectorElementType()) {
16547 SDValue Ops[] = {LD->getOperand(0), LD->getOperand(1),
16552 LD->getMemoryVT(), LD->getMemOperand());
16563 EVT VT =
N->getValueType(0);
16585 assert(StVT != VT &&
"Cannot truncate to the same type");
16595 if (0 != (NumElems * FromEltSz) % ToEltSz)
16598 unsigned SizeRatio = FromEltSz / ToEltSz;
16603 NumElems * SizeRatio);
16609 for (
unsigned i = 0; i < NumElems; ++i)
16623 MVT StoreType = MVT::i8;
16625 if (TLI.
isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
16644 unsigned E = (ToEltSz * NumElems) / StoreType.
getSizeInBits();
16645 for (
unsigned I = 0;
I < E;
I++) {
16676 if (FromEltVT != MVT::f32 || ToEltVT != MVT::f16)
16679 unsigned NumElements = 4;
16696 unsigned Off0 = Rev ? NumElts : 0;
16697 unsigned Off1 = Rev ? 0 : NumElts;
16699 for (
unsigned I = 0;
I < NumElts;
I += 2) {
16700 if (M[
I] >= 0 && M[
I] != (
int)(Off0 +
I / 2))
16702 if (M[
I + 1] >= 0 && M[
I + 1] != (
int)(Off1 +
I / 2))
16709 if (
auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Trunc.
getOperand(0)))
16710 if (isVMOVNShuffle(Shuffle,
false) || isVMOVNShuffle(Shuffle,
true))
16730 unsigned NewOffset = i * NumElements * ToEltVT.
getSizeInBits() / 8;
16745 NewToVT, Alignment, MMOFlags, AAInfo);
16778 unsigned NewOffset =
16786 NewToVT, Alignment, MMOFlags, AAInfo);
16808 {Extract.getOperand(0), Extract.getOperand(1)});
16839 if (Subtarget->hasNEON())
16843 if (Subtarget->hasMVEFloatOps())
16847 if (Subtarget->hasMVEIntegerOps()) {
16922 if (!Subtarget->hasNEON())
16926 if (!
Op.getValueType().isVector() || !
Op.getValueType().isSimple() ||
16931 if (!isa<BuildVectorSDNode>(ConstVec))
16934 MVT FloatTy =
Op.getSimpleValueType().getVectorElementType();
16936 MVT IntTy =
N->getSimpleValueType(0).getVectorElementType();
16938 unsigned NumLanes =
Op.getValueType().getVectorNumElements();
16939 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
16950 if (
C == -1 ||
C == 0 ||
C > 32)
16955 unsigned IntrinsicOpcode =
isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
16956 Intrinsic::arm_neon_vcvtfp2fxu;
16959 DAG.
getConstant(IntrinsicOpcode, dl, MVT::i32),
Op->getOperand(0),
16962 if (IntBits < FloatBits)
16970 if (!Subtarget->hasMVEFloatOps())
16978 EVT VT =
N->getValueType(0);
16983 auto isIdentitySplat = [&](
SDValue Op,
bool NSZ) {
16987 uint64_t ImmVal =
Op.getOperand(0).getConstantOperandVal(0);
16988 if (VT == MVT::v4f32 && (ImmVal == 1664 || (ImmVal == 0 && NSZ)))
16990 if (VT == MVT::v8f16 && (ImmVal == 2688 || (ImmVal == 0 && NSZ)))
17003 if (!isIdentitySplat(Op1.
getOperand(2), NSZ))
17014 EVT VT =
N->getValueType(0);
17017 if (!
N->getFlags().hasAllowReassociation())
17024 unsigned Opc =
A.getConstantOperandVal(0);
17025 if (
Opc != Intrinsic::arm_mve_vcmlaq)
17030 A.getOperand(3),
A.getOperand(4));
17062 if (!Subtarget->hasNEON())
17066 unsigned OpOpcode =
Op.getNode()->getOpcode();
17067 if (!
N->getValueType(0).isVector() || !
N->getValueType(0).isSimple() ||
17071 SDValue ConstVec =
N->getOperand(1);
17072 if (!isa<BuildVectorSDNode>(ConstVec))
17075 MVT FloatTy =
N->getSimpleValueType(0).getVectorElementType();
17077 MVT IntTy =
Op.getOperand(0).getSimpleValueType().getVectorElementType();
17079 unsigned NumLanes =
Op.getValueType().getVectorNumElements();
17080 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
17100 int32_t
C = IntVal.exactLogBase2();
17101 if (
C == -1 ||
C == 0 ||
C > 32)
17107 if (IntBits < FloatBits)
17109 NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, ConvInput);
17111 unsigned IntrinsicOpcode =
isSigned ? Intrinsic::arm_neon_vcvtfxs2fp
17112 : Intrinsic::arm_neon_vcvtfxu2fp;
17120 if (!ST->hasMVEIntegerOps())
17124 EVT ResVT =
N->getValueType(0);
17152 EVT AVT =
A.getValueType();
17158 auto ExtendIfNeeded = [&](
SDValue A,
unsigned ExtendCode) {
17159 EVT AVT =
A.getValueType();
17171 if (ExtTypeMatches(
A, ExtTypes))
17172 return ExtendIfNeeded(
A, ExtendCode);
17175 auto IsPredVADDV = [&](
MVT RetTy,
unsigned ExtendCode,
17182 if (Ext->getOpcode() != ExtendCode)
17185 if (ExtTypeMatches(
A, ExtTypes))
17186 return ExtendIfNeeded(
A, ExtendCode);
17199 if (ResVT !=
RetTy)
17202 if (
Mul->getOpcode() == ExtendCode &&
17203 Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
17205 Mul =
Mul->getOperand(0);
17214 if (ExtTypeMatches(
A, ExtTypes) && ExtTypeMatches(
B, ExtTypes)) {
17215 A = ExtendIfNeeded(
A, ExtendCode);
17216 B = ExtendIfNeeded(
B, ExtendCode);
17234 if (
Mul->getOpcode() == ExtendCode &&
17235 Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
17237 Mul =
Mul->getOperand(0);
17246 if (ExtTypeMatches(
A, ExtTypes) && ExtTypeMatches(
B, ExtTypes)) {
17247 A = ExtendIfNeeded(
A, ExtendCode);
17248 B = ExtendIfNeeded(
B, ExtendCode);
17259 EVT VT = Ops[0].getValueType();
17260 if (VT == MVT::v16i8) {
17262 "Unexpected illegal long reduction opcode");
17267 DAG.
getVTList(MVT::v8i16, MVT::v8i16), Ops[0]);
17270 DAG.
getVTList(MVT::v8i16, MVT::v8i16), Ops[1]);
17291 if (IsVMLAV(MVT::i64,
ISD::SIGN_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
17294 if (IsVMLAV(MVT::i64,
ISD::ZERO_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
17358 Op =
Op->getOperand(1);
17360 Op->getOperand(0)->getOpcode() ==
ISD::MUL) {
17362 if (
Mul->getOperand(0) ==
Mul->getOperand(1) &&
17379 unsigned VecOp =
N->getOperand(0).getValueType().isVector() ? 0 : 2;
17380 auto *Shuf = dyn_cast<ShuffleVectorSDNode>(
N->getOperand(VecOp));
17381 if (!Shuf || !Shuf->getOperand(1).isUndef())
17386 APInt SetElts(Mask.size(), 0);
17387 for (
int E : Mask) {
17388 if (E < 0 || E >= (
int)Mask.size())
17395 if (
N->getNumOperands() != VecOp + 1) {
17396 auto *Shuf2 = dyn_cast<ShuffleVectorSDNode>(
N->getOperand(VecOp + 1));
17397 if (!Shuf2 || !Shuf2->getOperand(1).isUndef() || Shuf2->getMask() != Mask)
17403 if (
Op.getValueType().isVector())
17415 unsigned IsTop =
N->getConstantOperandVal(2);
17422 if (Op0->
isUndef() && !IsTop)
17436 unsigned NumElts =
N->getValueType(0).getVectorNumElements();
17438 APInt Op0DemandedElts =
17439 IsTop ? Op1DemandedElts
17454 unsigned IsTop =
N->getConstantOperandVal(2);
17456 unsigned NumElts =
N->getValueType(0).getVectorNumElements();
17457 APInt Op0DemandedElts =
17469 EVT VT =
N->getValueType(0);
17473 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(
LHS);
17474 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(
RHS);
17476 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
17477 LHS.getOperand(1).isUndef() &&
RHS.getOperand(1).isUndef() &&
17481 LHS.getOperand(0),
RHS.getOperand(0));
17495 if (
auto C = dyn_cast<ConstantSDNode>(
N->getOperand(2))) {
17496 int ShiftAmt =
C->getSExtValue();
17497 if (ShiftAmt == 0) {
17503 if (ShiftAmt >= -32 && ShiftAmt < 0) {
17504 unsigned NewOpcode =
17520 unsigned IntNo =
N->getConstantOperandVal(0);
17531 case Intrinsic::arm_neon_vshifts:
17532 case Intrinsic::arm_neon_vshiftu:
17533 case Intrinsic::arm_neon_vrshifts:
17534 case Intrinsic::arm_neon_vrshiftu:
17535 case Intrinsic::arm_neon_vrshiftn:
17536 case Intrinsic::arm_neon_vqshifts:
17537 case Intrinsic::arm_neon_vqshiftu:
17538 case Intrinsic::arm_neon_vqshiftsu:
17539 case Intrinsic::arm_neon_vqshiftns:
17540 case Intrinsic::arm_neon_vqshiftnu:
17541 case Intrinsic::arm_neon_vqshiftnsu:
17542 case Intrinsic::arm_neon_vqrshiftns:
17543 case Intrinsic::arm_neon_vqrshiftnu:
17544 case Intrinsic::arm_neon_vqrshiftnsu: {
17545 EVT VT =
N->getOperand(1).getValueType();
17547 unsigned VShiftOpc = 0;
17550 case Intrinsic::arm_neon_vshifts:
17551 case Intrinsic::arm_neon_vshiftu:
17556 if (
isVShiftRImm(
N->getOperand(2), VT,
false,
true, Cnt)) {
17563 case Intrinsic::arm_neon_vrshifts:
17564 case Intrinsic::arm_neon_vrshiftu:
17569 case Intrinsic::arm_neon_vqshifts:
17570 case Intrinsic::arm_neon_vqshiftu:
17575 case Intrinsic::arm_neon_vqshiftsu:
17580 case Intrinsic::arm_neon_vrshiftn:
17581 case Intrinsic::arm_neon_vqshiftns:
17582 case Intrinsic::arm_neon_vqshiftnu:
17583 case Intrinsic::arm_neon_vqshiftnsu:
17584 case Intrinsic::arm_neon_vqrshiftns:
17585 case Intrinsic::arm_neon_vqrshiftnu:
17586 case Intrinsic::arm_neon_vqrshiftnsu:
17598 case Intrinsic::arm_neon_vshifts:
17599 case Intrinsic::arm_neon_vshiftu:
17602 case Intrinsic::arm_neon_vrshifts:
17605 case Intrinsic::arm_neon_vrshiftu:
17608 case Intrinsic::arm_neon_vrshiftn:
17611 case Intrinsic::arm_neon_vqshifts:
17614 case Intrinsic::arm_neon_vqshiftu:
17617 case Intrinsic::arm_neon_vqshiftsu:
17620 case Intrinsic::arm_neon_vqshiftns:
17623 case Intrinsic::arm_neon_vqshiftnu:
17626 case Intrinsic::arm_neon_vqshiftnsu:
17629 case Intrinsic::arm_neon_vqrshiftns:
17632 case Intrinsic::arm_neon_vqrshiftnu:
17635 case Intrinsic::arm_neon_vqrshiftnsu:
17641 return DAG.
getNode(VShiftOpc, dl,
N->getValueType(0),
17642 N->getOperand(1), DAG.
getConstant(Cnt, dl, MVT::i32));
17645 case Intrinsic::arm_neon_vshiftins: {
17646 EVT VT =
N->getOperand(1).getValueType();
17648 unsigned VShiftOpc = 0;
17652 else if (
isVShiftRImm(
N->getOperand(3), VT,
false,
true, Cnt))
17659 return DAG.
getNode(VShiftOpc, dl,
N->getValueType(0),
17660 N->getOperand(1),
N->getOperand(2),
17664 case Intrinsic::arm_neon_vqrshifts:
17665 case Intrinsic::arm_neon_vqrshiftu:
17669 case Intrinsic::arm_neon_vbsl: {
17672 N->getOperand(2),
N->getOperand(3));
17674 case Intrinsic::arm_mve_vqdmlah:
17675 case Intrinsic::arm_mve_vqdmlash:
17676 case Intrinsic::arm_mve_vqrdmlah:
17677 case Intrinsic::arm_mve_vqrdmlash:
17678 case Intrinsic::arm_mve_vmla_n_predicated:
17679 case Intrinsic::arm_mve_vmlas_n_predicated:
17680 case Intrinsic::arm_mve_vqdmlah_predicated:
17681 case Intrinsic::arm_mve_vqdmlash_predicated:
17682 case Intrinsic::arm_mve_vqrdmlah_predicated:
17683 case Intrinsic::arm_mve_vqrdmlash_predicated: {
17688 unsigned BitWidth =
N->getValueType(0).getScalarSizeInBits();
17695 case Intrinsic::arm_mve_minv:
17696 case Intrinsic::arm_mve_maxv:
17697 case Intrinsic::arm_mve_minav:
17698 case Intrinsic::arm_mve_maxav:
17699 case Intrinsic::arm_mve_minv_predicated:
17700 case Intrinsic::arm_mve_maxv_predicated:
17701 case Intrinsic::arm_mve_minav_predicated:
17702 case Intrinsic::arm_mve_maxav_predicated: {
17705 unsigned BitWidth =
N->getOperand(2)->getValueType(0).getScalarSizeInBits();
17712 case Intrinsic::arm_mve_addv: {
17715 bool Unsigned =
N->getConstantOperandVal(2);
17720 case Intrinsic::arm_mve_addlv:
17721 case Intrinsic::arm_mve_addlv_predicated: {
17724 bool Unsigned =
N->getConstantOperandVal(2);
17725 unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ?
17730 for (
unsigned i = 1, e =
N->getNumOperands(); i < e; i++)
17753 EVT VT =
N->getValueType(0);
17755 if (ST->isThumb1Only() &&
N->getOpcode() ==
ISD::SHL && VT == MVT::i32 &&
17756 N->getOperand(0)->getOpcode() ==
ISD::AND &&
17757 N->getOperand(0)->hasOneUse()) {
17765 ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(
N->getOperand(1));
17774 if (AndMask == 255 || AndMask == 65535)
17778 if (MaskedBits > ShiftAmt) {
17793 if (ST->hasMVEIntegerOps())
17798 switch (
N->getOpcode()) {
17811 if (
isVShiftRImm(
N->getOperand(1), VT,
false,
false, Cnt)) {
17812 unsigned VShiftOpc =
17815 return DAG.
getNode(VShiftOpc, dl, VT,
N->getOperand(0),
17831 if (!LD->isSimple() || !N0.
hasOneUse() || LD->isIndexed() ||
17834 EVT FromVT = LD->getValueType(0);
17835 EVT ToVT =
N->getValueType(0);
17842 unsigned NumElements = 0;
17843 if (ToEltVT == MVT::i32 && FromEltVT == MVT::i8)
17845 if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16)
17847 if (NumElements == 0 ||
17857 SDValue BasePtr = LD->getBasePtr();
17858 Align Alignment = LD->getBaseAlign();
17879 LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
17880 Alignment, MMOFlags, AAInfo);
17886 if (FromEltVT == MVT::f16) {
17889 for (
unsigned i = 0; i < Loads.
size(); i++) {
17915 if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
17919 EVT VT =
N->getValueType(0);
17923 if (VT == MVT::i32 &&
17924 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
17926 isa<ConstantSDNode>(Lane)) {
17929 switch (
N->getOpcode()) {
17943 if (ST->hasMVEIntegerOps())
17952 if (ST->hasMVEFloatOps())
17963 if ((Subtarget->isThumb() || !Subtarget->hasV6Ops()) &&
17967 EVT VT =
Op.getValueType();
17970 if (VT != MVT::i32 ||
17972 !isa<ConstantSDNode>(
Op.getOperand(1)) ||
17983 APInt MaxC = Max.getConstantOperandAPInt(1);
17986 !(MinC + 1).isPowerOf2())
18004 EVT VT =
N->getValueType(0);
18007 if (VT == MVT::i32)
18010 if (!ST->hasMVEIntegerOps())
18016 if (VT != MVT::v4i32 && VT != MVT::v8i16)
18019 auto IsSignedSaturate = [&](
SDNode *Min,
SDNode *Max) {
18027 if (VT == MVT::v4i32)
18028 SaturateC =
APInt(32, (1 << 15) - 1,
true);
18030 SaturateC =
APInt(16, (1 << 7) - 1,
true);
18037 MaxC != ~SaturateC)
18042 if (IsSignedSaturate(
N, N0.
getNode())) {
18045 if (VT == MVT::v4i32) {
18046 HalfVT = MVT::v8i16;
18047 ExtVT = MVT::v4i16;
18049 HalfVT = MVT::v16i8;
18064 auto IsUnsignedSaturate = [&](
SDNode *Min) {
18070 if (VT == MVT::v4i32)
18071 SaturateC =
APInt(32, (1 << 16) - 1,
true);
18073 SaturateC =
APInt(16, (1 << 8) - 1,
true);
18082 if (IsUnsignedSaturate(
N)) {
18086 if (VT == MVT::v4i32) {
18087 HalfVT = MVT::v8i16;
18088 ExtConst = 0x0000FFFF;
18090 HalfVT = MVT::v16i8;
18112 const APInt *CV = &
C->getAPIntValue();
18130 SDValue Op0 = CMOV->getOperand(0);
18131 SDValue Op1 = CMOV->getOperand(1);
18132 auto CC = CMOV->getConstantOperandAPInt(2).getLimitedValue();
18133 SDValue CmpZ = CMOV->getOperand(3);
18169 unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
18176 if ((OrCI & Known.
Zero) != OrCI)
18182 EVT VT =
X.getValueType();
18183 unsigned BitInX = AndC->
logBase2();
18191 for (
unsigned BitInY = 0, NumActiveBits = OrCI.
getActiveBits();
18192 BitInY < NumActiveBits; ++BitInY) {
18193 if (OrCI[BitInY] == 0)
18196 Mask.setBit(BitInY);
18213 switch (
N->getOpcode()) {
18217 if (!isa<ConstantSDNode>(
N.getOperand(1)))
18219 if (!cast<ConstantSDNode>(
N.getOperand(1))->isOne())
18225 auto *Const = dyn_cast<ConstantSDNode>(
N.getOperand(1));
18228 if (Const->isZero())
18230 else if (Const->isOne())
18234 CC = cast<CondCodeSDNode>(
N.getOperand(2))->get();
18238 unsigned IntOp =
N.getConstantOperandVal(1);
18239 if (IntOp != Intrinsic::test_start_loop_iterations &&
18240 IntOp != Intrinsic::loop_decrement_reg)
18266 bool Negate =
false;
18272 Cond =
N->getOperand(1);
18273 Dest =
N->getOperand(2);
18276 CC = cast<CondCodeSDNode>(
N->getOperand(1))->get();
18277 Cond =
N->getOperand(2);
18278 Dest =
N->getOperand(4);
18279 if (
auto *Const = dyn_cast<ConstantSDNode>(
N->getOperand(3))) {
18280 if (!Const->isOne() && !Const->isZero())
18282 Imm = Const->getZExtValue();
18310 assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
18311 "unsupported condition");
18316 unsigned IntOp =
Int->getConstantOperandVal(1);
18317 assert((
N->hasOneUse() &&
N->user_begin()->getOpcode() ==
ISD::BR) &&
18318 "expected single br user");
18319 SDNode *Br = *
N->user_begin();
18329 if (IntOp == Intrinsic::test_start_loop_iterations) {
18333 if (IsTrueIfZero(CC, Imm)) {
18334 SDValue Ops[] = {Chain, Setup, Dest};
18339 UpdateUncondBr(Br, Dest, DAG);
18341 SDValue Ops[] = {Chain, Setup, OtherTarget};
18354 DAG.
getVTList(MVT::i32, MVT::Other), Args);
18358 SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
18362 if (
Target == OtherTarget)
18363 UpdateUncondBr(Br, Dest, DAG);
18399 LHS->getOperand(0)->getOperand(2),
18400 LHS->getOperand(0)->getOperand(3));
18414 EVT VT =
N->getValueType(0);
18418 SDValue FalseVal =
N->getOperand(0);
18419 SDValue TrueVal =
N->getOperand(1);
18424 if (!Subtarget->
isThumb1Only() && Subtarget->hasV6T2Ops()) {
18462 LHS->getOperand(2),
LHS->getOperand(3));
18472 if (
N->getConstantOperandVal(2) ==
ARMCC::EQ ||
18476 if (
N->getConstantOperandVal(2) ==
ARMCC::NE)
18478 return DAG.
getNode(
N->getOpcode(),
SDLoc(
N), MVT::i32,
N->getOperand(0),
18487 if (!Subtarget->
isThumb1Only() && Subtarget->hasV5TOps()) {
18552 const APInt *TrueConst;
18554 ((FalseVal.getOpcode() ==
ARMISD::SUBC && FalseVal.getOperand(0) ==
LHS &&
18555 FalseVal.getOperand(1) ==
RHS) ||
18559 unsigned ShiftAmount = TrueConst->
logBase2();
18574 if (Known.
Zero == 0xfffffffe)
18577 else if (Known.
Zero == 0xffffff00)
18580 else if (Known.
Zero == 0xffff0000)
18593 EVT DstVT =
N->getValueType(0);
18596 if (ST->hasMVEIntegerOps() && Src.getOpcode() ==
ARMISD::VDUP) {
18597 EVT SrcVT = Src.getValueType();
18605 Src.getOperand(0).getValueType().getScalarSizeInBits() <=
18606 Src.getValueType().getScalarSizeInBits())
18607 Src = Src.getOperand(0);
18611 EVT SrcVT = Src.getValueType();
18631 EVT VT =
N->getValueType(0);
18639 if (
N->getNumOperands() == 2 &&
18643 N->getOperand(0).getOperand(1),
18644 N->getOperand(1).getOperand(0),
18645 N->getOperand(1).getOperand(1));
18648 if (
N->getNumOperands() == 2 &&
18651 auto *S0 = cast<ShuffleVectorSDNode>(
N->getOperand(0).getNode());
18652 auto *
S1 = cast<ShuffleVectorSDNode>(
N->getOperand(1).getNode());
18654 if (S0->getOperand(0) ==
S1->getOperand(0) &&
18655 S0->getOperand(1) ==
S1->getOperand(1)) {
18658 Mask.append(
S1->getMask().begin(),
S1->getMask().end());
18678 return Op.getOpcode() == ISD::BUILD_VECTOR ||
18679 Op.getOpcode() == ISD::VECTOR_SHUFFLE ||
18680 (Op.getOpcode() == ISD::BITCAST &&
18681 Op.getOperand(0).getOpcode() == ISD::BUILD_VECTOR);
18684 for (
unsigned Op = 0;
Op <
N->getNumOperands();
Op++) {
18686 for (
unsigned i = 0; i < O.getValueType().getVectorNumElements(); i++) {
18703 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18704 int NumIns =
N->getNumOperands();
18705 assert((NumIns == 2 || NumIns == 4) &&
18706 "Expected 2 or 4 inputs to an MVETrunc");
18708 if (
N->getNumOperands() == 4)
18712 for (
int I = 0;
I < NumIns;
I++) {
18714 ISD::ADD,
DL, StackPtr.getValueType(), StackPtr,
18734 if (!LD || !LD->isSimple() || !N0.
hasOneUse() || LD->isIndexed())
18737 EVT FromVT = LD->getMemoryVT();
18738 EVT ToVT =
N->getValueType(0);
18745 unsigned NumElements = 0;
18746 if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
18748 if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
18750 assert(NumElements != 0);
18756 LD->getExtensionType() != NewExtType)
18763 SDValue BasePtr = LD->getBasePtr();
18764 Align Alignment = LD->getBaseAlign();
18783 LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
18784 Alignment, MMOFlags, AAInfo);
18800 EVT VT =
N->getValueType(0);
18802 assert(
N->getNumValues() == 2 &&
"Expected MVEEXT with 2 elements");
18803 assert((VT == MVT::v4i32 || VT == MVT::v8i16) &&
"Unexpected MVEEXT type");
18805 EVT ExtVT =
N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18807 auto Extend = [&](
SDValue V) {
18817 SDValue Ext = Extend(
N->getOperand(0));
18822 if (
auto *SVN = dyn_cast<ShuffleVectorSDNode>(
N->getOperand(0))) {
18825 assert(Mask.size() == SVN->getValueType(0).getVectorNumElements());
18830 auto CheckInregMask = [&](
int Start,
int Offset) {
18838 if (CheckInregMask(0, 0))
18840 else if (CheckInregMask(0, 1))
18841 V0 = Extend(DAG.
getNode(Rev,
DL, SVN->getValueType(0), Op0));
18842 else if (CheckInregMask(0, Mask.size()))
18844 else if (CheckInregMask(0, Mask.size() + 1))
18845 V0 = Extend(DAG.
getNode(Rev,
DL, SVN->getValueType(0), Op1));
18850 V1 = Extend(DAG.
getNode(Rev,
DL, SVN->getValueType(0), Op1));
18854 V1 = Extend(DAG.
getNode(Rev,
DL, SVN->getValueType(0), Op0));
18861 if (
N->getOperand(0)->getOpcode() ==
ISD::LOAD)
18871 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18872 int NumOuts =
N->getNumValues();
18873 assert((NumOuts == 2 || NumOuts == 4) &&
18874 "Expected 2 or 4 outputs to an MVEEXT");
18875 EVT LoadVT =
N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18877 if (
N->getNumOperands() == 4)
18883 StackPtr, MPI,
Align(4));
18886 for (
int I = 0;
I < NumOuts;
I++) {
18888 ISD::ADD,
DL, StackPtr.getValueType(), StackPtr,
18889 DAG.
getConstant(
I * 16 / NumOuts,
DL, StackPtr.getValueType()));
18894 VT, Chain,
Ptr, MPI, LoadVT,
Align(4));
18903 switch (
N->getOpcode()) {
19020 unsigned BitWidth =
N->getValueType(0).getSizeInBits();
19027 unsigned BitWidth =
N->getValueType(0).getSizeInBits();
19038 unsigned BitWidth =
N->getValueType(0).getSizeInBits();
19046 unsigned LowWidth =
N->getOperand(0).getValueType().getSizeInBits();
19048 unsigned HighWidth =
N->getOperand(1).getValueType().getSizeInBits();
19056 unsigned HighWidth =
N->getOperand(0).getValueType().getSizeInBits();
19058 unsigned LowWidth =
N->getOperand(1).getValueType().getSizeInBits();
19066 unsigned BitWidth =
N->getValueType(0).getSizeInBits();
19077 unsigned BitWidth =
N->getValueType(0).getSizeInBits();
19085 if (
N->getOperand(1) ==
N->getOperand(2))
19086 return N->getOperand(1);
19090 switch (
N->getConstantOperandVal(1)) {
19091 case Intrinsic::arm_neon_vld1:
19092 case Intrinsic::arm_neon_vld1x2:
19093 case Intrinsic::arm_neon_vld1x3:
19094 case Intrinsic::arm_neon_vld1x4:
19095 case Intrinsic::arm_neon_vld2:
19096 case Intrinsic::arm_neon_vld3:
19097 case Intrinsic::arm_neon_vld4:
19098 case Intrinsic::arm_neon_vld2lane:
19099 case Intrinsic::arm_neon_vld3lane:
19100 case Intrinsic::arm_neon_vld4lane:
19101 case Intrinsic::arm_neon_vld2dup:
19102 case Intrinsic::arm_neon_vld3dup:
19103 case Intrinsic::arm_neon_vld4dup:
19104 case Intrinsic::arm_neon_vst1:
19105 case Intrinsic::arm_neon_vst1x2:
19106 case Intrinsic::arm_neon_vst1x3:
19107 case Intrinsic::arm_neon_vst1x4:
19108 case Intrinsic::arm_neon_vst2:
19109 case Intrinsic::arm_neon_vst3:
19110 case Intrinsic::arm_neon_vst4:
19111 case Intrinsic::arm_neon_vst2lane:
19112 case Intrinsic::arm_neon_vst3lane:
19113 case Intrinsic::arm_neon_vst4lane:
19115 case Intrinsic::arm_mve_vld2q:
19116 case Intrinsic::arm_mve_vld4q:
19117 case Intrinsic::arm_mve_vst2q:
19118 case Intrinsic::arm_mve_vst4q:
19135 unsigned *
Fast)
const {
19144 if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
19146 if (AllowsUnaligned) {
19148 *
Fast = Subtarget->hasV7Ops();
19153 if (Ty == MVT::f64 || Ty == MVT::v2f64) {
19157 if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->
isLittle())) {
19164 if (!Subtarget->hasMVEIntegerOps())
19168 if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1 ||
19169 Ty == MVT::v2i1)) {
19177 if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
19193 if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
19194 Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
19195 Ty == MVT::v2f64) {
19208 if ((
Op.isMemcpy() ||
Op.isZeroMemset()) && Subtarget->hasNEON() &&
19209 !FuncAttributes.
hasFnAttr(Attribute::NoImplicitFloat)) {
19211 if (
Op.size() >= 16 &&
19217 }
else if (
Op.size() >= 8 &&
19238 return (SrcBits == 64 && DestBits == 32);
19247 return (SrcBits == 64 && DestBits == 32);
19283 return Subtarget->hasFullFP16();
19290 if (!Subtarget->hasMVEIntegerOps())
19308 if (
auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.
getOperand(0))) {
19309 if (Ld->isExpandingLoad())
19313 if (Subtarget->hasMVEIntegerOps())
19358bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(
const MachineFunction &MF,
19360 if (Subtarget->useSoftFloat())
19369 return Subtarget->hasMVEFloatOps();
19387 unsigned Scale = 1;
19404 if ((V & (Scale - 1)) != 0)
19406 return isUInt<5>(V / Scale);
19413 if (VT.
isVector() && Subtarget->hasNEON())
19416 !Subtarget->hasMVEFloatOps())
19419 bool IsNeg =
false;
19425 unsigned NumBytes = std::max((
unsigned)VT.
getSizeInBits() / 8, 1U);
19428 if (VT.
isVector() && Subtarget->hasMVEIntegerOps()) {
19432 return isShiftedUInt<7,2>(V);
19435 return isShiftedUInt<7,1>(V);
19437 return isUInt<7>(V);
19444 if (VT.
isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
19445 return isShiftedUInt<8, 1>(V);
19448 return isShiftedUInt<8, 2>(V);
19450 if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
19453 return isUInt<8>(V);
19454 return isUInt<12>(V);
19480 default:
return false;
19485 return isUInt<12>(V);
19488 return isUInt<8>(V);
19493 return isShiftedUInt<8, 2>(V);
19499 int Scale = AM.
Scale;
19504 default:
return false;
19512 Scale = Scale & ~1;
19513 return Scale == 2 || Scale == 4 || Scale == 8;
19530 if (Scale & 1)
return false;
19537 const int Scale = AM.
Scale;
19547 return (Scale == 1) || (!AM.
HasBaseReg && Scale == 2);
19563 switch (AM.
Scale) {
19580 int Scale = AM.
Scale;
19582 default:
return false;
19586 if (Scale < 0) Scale = -Scale;
19594 if (Scale == 1 || (AM.
HasBaseReg && Scale == -1))
19607 if (Scale & 1)
return false;
19620 if (!Subtarget->isThumb())
19627 return Imm >= 0 && Imm <= 255;
19637 if (!Subtarget->isThumb())
19642 return AbsImm <= 255;
19677 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
19681 int RHSC = (int)
RHS->getZExtValue();
19682 if (RHSC < 0 && RHSC > -256) {
19692 }
else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
19695 int RHSC = (int)
RHS->getZExtValue();
19696 if (RHSC < 0 && RHSC > -0x1000) {
19738 int RHSC = (int)
RHS->getZExtValue();
19739 if (RHSC < 0 && RHSC > -0x100) {
19744 }
else if (RHSC > 0 && RHSC < 0x100) {
19755 bool isSEXTLoad,
bool IsMasked,
bool isLE,
19760 if (!isa<ConstantSDNode>(
Ptr->getOperand(1)))
19766 bool CanChangeType = isLE && !IsMasked;
19769 int RHSC = (int)
RHS->getZExtValue();
19771 auto IsInRange = [&](
int RHSC,
int Limit,
int Scale) {
19772 if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
19777 }
else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
19788 if (VT == MVT::v4i16) {
19789 if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2))
19791 }
else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
19792 if (IsInRange(RHSC, 0x80, 1))
19794 }
else if (Alignment >= 4 &&
19795 (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
19796 IsInRange(RHSC, 0x80, 4))
19798 else if (Alignment >= 2 &&
19799 (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
19800 IsInRange(RHSC, 0x80, 2))
19802 else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
19821 bool isSEXTLoad =
false;
19822 bool IsMasked =
false;
19824 Ptr = LD->getBasePtr();
19825 VT = LD->getMemoryVT();
19826 Alignment = LD->getAlign();
19828 }
else if (
StoreSDNode *ST = dyn_cast<StoreSDNode>(
N)) {
19829 Ptr = ST->getBasePtr();
19830 VT = ST->getMemoryVT();
19831 Alignment = ST->getAlign();
19833 Ptr = LD->getBasePtr();
19834 VT = LD->getMemoryVT();
19835 Alignment = LD->getAlign();
19839 Ptr = ST->getBasePtr();
19840 VT = ST->getMemoryVT();
19841 Alignment = ST->getAlign();
19847 bool isLegal =
false;
19849 isLegal = Subtarget->hasMVEIntegerOps() &&
19851 Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked,
19879 bool isSEXTLoad =
false, isNonExt;
19880 bool IsMasked =
false;
19882 VT = LD->getMemoryVT();
19883 Ptr = LD->getBasePtr();
19884 Alignment = LD->getAlign();
19887 }
else if (
StoreSDNode *ST = dyn_cast<StoreSDNode>(
N)) {
19888 VT = ST->getMemoryVT();
19889 Ptr = ST->getBasePtr();
19890 Alignment = ST->getAlign();
19891 isNonExt = !ST->isTruncatingStore();
19893 VT = LD->getMemoryVT();
19894 Ptr = LD->getBasePtr();
19895 Alignment = LD->getAlign();
19900 VT = ST->getMemoryVT();
19901 Ptr = ST->getBasePtr();
19902 Alignment = ST->getAlign();
19903 isNonExt = !ST->isTruncatingStore();
19911 assert(
Op->getValueType(0) == MVT::i32 &&
"Non-i32 post-inc op?!");
19912 if (
Op->getOpcode() !=
ISD::ADD || !isNonExt)
19914 auto *
RHS = dyn_cast<ConstantSDNode>(
Op->getOperand(1));
19915 if (!
RHS ||
RHS->getZExtValue() != 4)
19917 if (Alignment <
Align(4))
19921 Base =
Op->getOperand(0);
19927 bool isLegal =
false;
19929 isLegal = Subtarget->hasMVEIntegerOps() &&
19962 const APInt &DemandedElts,
19964 unsigned Depth)
const {
19967 switch (
Op.getOpcode()) {
19974 if (
Op.getResNo() == 0) {
20000 case Intrinsic::arm_ldaex:
20001 case Intrinsic::arm_ldrex: {
20002 EVT VT = cast<MemIntrinsicSDNode>(
Op)->getMemoryVT();
20016 const APInt &Mask =
Op.getConstantOperandAPInt(2);
20017 Known.
Zero &= Mask;
20023 const SDValue &SrcSV =
Op.getOperand(0);
20029 "VGETLANE index out of bounds");
20034 EVT VT =
Op.getValueType();
20041 Known = Known.
sext(DstSz);
20043 Known = Known.
zext(DstSz);
20051 Known = KnownOp.
zext(32);
20091 EVT VT =
Op.getValueType();
20097 assert(VT == MVT::i32 &&
"Unexpected integer type");
20104 unsigned Mask =
C->getZExtValue();
20107 unsigned ShrunkMask = Mask & Demanded;
20108 unsigned ExpandedMask = Mask | ~Demanded;
20112 if (ShrunkMask == 0)
20118 if (ExpandedMask == ~0U)
20121 auto IsLegalMask = [ShrunkMask, ExpandedMask](
unsigned Mask) ->
bool {
20122 return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
20124 auto UseMask = [Mask,
Op, VT, &TLO](
unsigned NewMask) ->
bool {
20125 if (NewMask == Mask)
20134 if (IsLegalMask(0xFF))
20135 return UseMask(0xFF);
20138 if (IsLegalMask(0xFFFF))
20139 return UseMask(0xFFFF);
20143 if (ShrunkMask < 256)
20144 return UseMask(ShrunkMask);
20148 if ((
int)ExpandedMask <= -2 && (
int)ExpandedMask >= -256)
20149 return UseMask(ExpandedMask);
20164 unsigned Depth)
const {
20165 unsigned Opc =
Op.getOpcode();
20173 if (
Op.getResNo() == 0 && !
Op->hasAnyUseOfValue(1) &&
20174 isa<ConstantSDNode>(
Op->getOperand(2))) {
20175 unsigned ShAmt =
Op->getConstantOperandVal(2);
20187 unsigned ModImm =
Op.getConstantOperandVal(1);
20188 unsigned EltBits = 0;
20190 if ((OriginalDemandedBits & Mask) == 0)
20196 Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO,
Depth);
20205 if (!Subtarget->hasV6Ops())
20211 SplitString(AsmStr, AsmPieces,
";\n");
20213 switch (AsmPieces.
size()) {
20214 default:
return false;
20216 AsmStr = AsmPieces[0];
20218 SplitString(AsmStr, AsmPieces,
" \t,");
20221 if (AsmPieces.
size() == 3 && AsmPieces[0] ==
"rev" &&
20222 AsmPieces[1] ==
"$0" && AsmPieces[2] ==
"$1" &&
20223 IA->getConstraintString().starts_with(
"=l,l")) {
20246 if (ConstraintVT.
isVector() && Subtarget->hasNEON() &&
20258 unsigned S = Constraint.
size();
20260 switch (Constraint[0]) {
20272 }
else if (S == 2) {
20273 switch (Constraint[0]) {
20290 Value *CallOperandVal =
info.CallOperandVal;
20293 if (!CallOperandVal)
20297 switch (*constraint) {
20303 if (Subtarget->isThumb())
20318 if (PR == 0 || VT == MVT::Other)
20320 return (ARM::SPRRegClass.
contains(PR) && VT != MVT::f32 && VT != MVT::i32) ||
20321 (ARM::DPRRegClass.contains(PR) && VT != MVT::f64 &&
20325using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
20329 switch (Constraint.
size()) {
20332 switch (Constraint[0]) {
20334 if (Subtarget->isThumb())
20335 return RCPair(0U, &ARM::tGPRRegClass);
20336 return RCPair(0U, &ARM::GPRRegClass);
20338 if (Subtarget->isThumb())
20339 return RCPair(0U, &ARM::hGPRRegClass);
20343 return RCPair(0U, &ARM::tGPRRegClass);
20344 return RCPair(0U, &ARM::GPRRegClass);
20346 if (VT == MVT::Other)
20348 if (VT == MVT::f32 || VT == MVT::f16 || VT == MVT::bf16)
20349 return RCPair(0U, &ARM::SPRRegClass);
20351 return RCPair(0U, &ARM::DPRRegClass);
20353 return RCPair(0U, &ARM::QPRRegClass);
20356 if (VT == MVT::Other)
20358 if (VT == MVT::f32 || VT == MVT::f16 || VT == MVT::bf16)
20359 return RCPair(0U, &ARM::SPR_8RegClass);
20361 return RCPair(0U, &ARM::DPR_8RegClass);
20363 return RCPair(0U, &ARM::QPR_8RegClass);
20366 if (VT == MVT::Other)
20368 if (VT == MVT::f32 || VT == MVT::i32 || VT == MVT::f16 || VT == MVT::bf16)
20369 return RCPair(0U, &ARM::SPRRegClass);
20371 return RCPair(0U, &ARM::DPR_VFP2RegClass);
20373 return RCPair(0U, &ARM::QPR_VFP2RegClass);
20379 if (Constraint[0] ==
'T') {
20380 switch (Constraint[1]) {
20384 return RCPair(0U, &ARM::tGPREvenRegClass);
20386 return RCPair(0U, &ARM::tGPROddRegClass);
20395 if (
StringRef(
"{cc}").equals_insensitive(Constraint))
20396 return std::make_pair(
unsigned(ARM::CPSR), &ARM::CCRRegClass);
20400 return {0,
nullptr};
20408 std::vector<SDValue> &Ops,
20413 if (Constraint.
size() != 1)
20416 char ConstraintLetter = Constraint[0];
20417 switch (ConstraintLetter) {
20420 case 'I':
case 'J':
case 'K':
case 'L':
20421 case 'M':
case 'N':
case 'O':
20426 int64_t CVal64 =
C->getSExtValue();
20427 int CVal = (int) CVal64;
20430 if (CVal != CVal64)
20433 switch (ConstraintLetter) {
20437 if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
20438 if (CVal >= 0 && CVal <= 65535)
20445 if (CVal >= 0 && CVal <= 255)
20447 }
else if (Subtarget->
isThumb2()) {
20466 if (CVal >= -255 && CVal <= -1)
20472 if (CVal >= -4095 && CVal <= 4095)
20485 }
else if (Subtarget->
isThumb2()) {
20508 if (CVal >= -7 && CVal < 7)
20510 }
else if (Subtarget->
isThumb2()) {
20533 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
20539 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
20547 if (CVal >= 0 && CVal <= 31)
20556 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
20565 if (Result.getNode()) {
20566 Ops.push_back(Result);
20576 "Unhandled Opcode in getDivRemLibcall");
20582 case MVT::i8: LC =
isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
break;
20583 case MVT::i16: LC =
isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
break;
20584 case MVT::i32: LC =
isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
break;
20585 case MVT::i64: LC =
isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
break;
20594 "Unhandled Opcode in getDivRemArgList");
20598 for (
unsigned i = 0, e =
N->getNumOperands(); i != e; ++i) {
20599 EVT ArgVT =
N->getOperand(i).getValueType();
20604 Args.push_back(Entry);
20615 "Register-based DivRem lowering only");
20616 unsigned Opcode =
Op->getOpcode();
20618 "Invalid opcode for Div/Rem lowering");
20620 EVT VT =
Op->getValueType(0);
20623 if (VT == MVT::i64 && isa<ConstantSDNode>(
Op.getOperand(1))) {
20642 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
20643 : Subtarget->hasDivideInARMMode();
20644 if (hasDivide &&
Op->getValueType(0).isSimple() &&
20645 Op->getSimpleValueType(0) == MVT::i32) {
20647 const SDValue Dividend =
Op->getOperand(0);
20648 const SDValue Divisor =
Op->getOperand(1);
20649 SDValue Div = DAG.
getNode(DivOpcode, dl, VT, Dividend, Divisor);
20653 SDValue Values[2] = {Div, Rem};
20685 EVT VT =
N->getValueType(0);
20687 if (VT == MVT::i64 && isa<ConstantSDNode>(
N->getOperand(1))) {
20691 Result[0], Result[1]);
20695 std::vector<Type*> RetTyParams;
20696 Type *RetTyElement;
20706 RetTyParams.push_back(RetTyElement);
20707 RetTyParams.push_back(RetTyElement);
20724 CallLoweringInfo CLI(DAG);
20728 std::pair<SDValue, SDValue> CallResult =
LowerCallTo(CLI);
20731 SDNode *ResNode = CallResult.first.getNode();
20746 "no-stack-arg-probe")) {
20748 cast<ConstantSDNode>(
Op.getOperand(2))->getMaybeAlignValue();
20750 Chain =
SP.getValue(1);
20773 SDValue Ops[2] = { NewSP, Chain };
20778 bool IsStrict =
Op->isStrictFPOpcode();
20779 SDValue SrcVal =
Op.getOperand(IsStrict ? 1 : 0);
20780 const unsigned DstSz =
Op.getValueType().getSizeInBits();
20782 assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
20783 "Unexpected type for custom-lowering FP_EXTEND");
20786 "With both FP DP and 16, any FP conversion is legal!");
20788 assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
20789 "With FP16, 16 to 32 conversion is legal!");
20792 if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
20797 Loc,
Op.getValueType(), SrcVal);
20810 MakeLibCallOptions CallOptions;
20812 for (
unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
20813 bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
20814 MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
20815 MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
20819 {DstVT, MVT::Other}, {Chain, SrcVal});
20826 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20827 "Unexpected type for custom-lowering FP_EXTEND");
20828 std::tie(SrcVal, Chain) =
makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20833 return IsStrict ? DAG.
getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
20837 bool IsStrict =
Op->isStrictFPOpcode();
20839 SDValue SrcVal =
Op.getOperand(IsStrict ? 1 : 0);
20841 EVT DstVT =
Op.getValueType();
20842 const unsigned DstSz =
Op.getValueType().getSizeInBits();
20845 assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
20846 "Unexpected type for custom-lowering FP_ROUND");
20849 "With both FP DP and 16, any FP conversion is legal!");
20854 if (SrcSz == 32 && Subtarget->hasFP16())
20859 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20860 "Unexpected type for custom-lowering FP_ROUND");
20861 MakeLibCallOptions CallOptions;
20864 std::tie(Result, Chain) =
makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20876 if (v == 0xffffffff)
20888 bool ForCodeSize)
const {
20891 if (VT == MVT::f16 && Subtarget->hasFullFP16())
20893 if (VT == MVT::f32 && Subtarget->hasFullFP16() &&
20896 if (VT == MVT::f32)
20898 if (VT == MVT::f64 && Subtarget->hasFP64())
20909 unsigned Intrinsic)
const {
20910 switch (Intrinsic) {
20911 case Intrinsic::arm_neon_vld1:
20912 case Intrinsic::arm_neon_vld2:
20913 case Intrinsic::arm_neon_vld3:
20914 case Intrinsic::arm_neon_vld4:
20915 case Intrinsic::arm_neon_vld2lane:
20916 case Intrinsic::arm_neon_vld3lane:
20917 case Intrinsic::arm_neon_vld4lane:
20918 case Intrinsic::arm_neon_vld2dup:
20919 case Intrinsic::arm_neon_vld3dup:
20920 case Intrinsic::arm_neon_vld4dup: {
20923 auto &
DL =
I.getDataLayout();
20924 uint64_t NumElts =
DL.getTypeSizeInBits(
I.getType()) / 64;
20926 Info.ptrVal =
I.getArgOperand(0);
20928 Value *AlignArg =
I.getArgOperand(
I.arg_size() - 1);
20929 Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
20934 case Intrinsic::arm_neon_vld1x2:
20935 case Intrinsic::arm_neon_vld1x3:
20936 case Intrinsic::arm_neon_vld1x4: {
20939 auto &
DL =
I.getDataLayout();
20940 uint64_t NumElts =
DL.getTypeSizeInBits(
I.getType()) / 64;
20942 Info.ptrVal =
I.getArgOperand(
I.arg_size() - 1);
20944 Info.align =
I.getParamAlign(
I.arg_size() - 1).valueOrOne();
20949 case Intrinsic::arm_neon_vst1:
20950 case Intrinsic::arm_neon_vst2:
20951 case Intrinsic::arm_neon_vst3:
20952 case Intrinsic::arm_neon_vst4:
20953 case Intrinsic::arm_neon_vst2lane:
20954 case Intrinsic::arm_neon_vst3lane:
20955 case Intrinsic::arm_neon_vst4lane: {
20958 auto &
DL =
I.getDataLayout();
20959 unsigned NumElts = 0;
20960 for (
unsigned ArgI = 1, ArgE =
I.arg_size(); ArgI < ArgE; ++ArgI) {
20961 Type *ArgTy =
I.getArgOperand(ArgI)->getType();
20964 NumElts +=
DL.getTypeSizeInBits(ArgTy) / 64;
20967 Info.ptrVal =
I.getArgOperand(0);
20969 Value *AlignArg =
I.getArgOperand(
I.arg_size() - 1);
20970 Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
20975 case Intrinsic::arm_neon_vst1x2:
20976 case Intrinsic::arm_neon_vst1x3:
20977 case Intrinsic::arm_neon_vst1x4: {
20980 auto &
DL =
I.getDataLayout();
20981 unsigned NumElts = 0;
20982 for (
unsigned ArgI = 1, ArgE =
I.arg_size(); ArgI < ArgE; ++ArgI) {
20983 Type *ArgTy =
I.getArgOperand(ArgI)->getType();
20986 NumElts +=
DL.getTypeSizeInBits(ArgTy) / 64;
20989 Info.ptrVal =
I.getArgOperand(0);
20991 Info.align =
I.getParamAlign(0).valueOrOne();
20996 case Intrinsic::arm_mve_vld2q:
20997 case Intrinsic::arm_mve_vld4q: {
21000 Type *VecTy = cast<StructType>(
I.getType())->getElementType(1);
21001 unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4;
21003 Info.ptrVal =
I.getArgOperand(0);
21010 case Intrinsic::arm_mve_vst2q:
21011 case Intrinsic::arm_mve_vst4q: {
21014 Type *VecTy =
I.getArgOperand(1)->getType();
21015 unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4;
21017 Info.ptrVal =
I.getArgOperand(0);
21024 case Intrinsic::arm_mve_vldr_gather_base:
21025 case Intrinsic::arm_mve_vldr_gather_base_predicated: {
21027 Info.ptrVal =
nullptr;
21033 case Intrinsic::arm_mve_vldr_gather_base_wb:
21034 case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: {
21036 Info.ptrVal =
nullptr;
21042 case Intrinsic::arm_mve_vldr_gather_offset:
21043 case Intrinsic::arm_mve_vldr_gather_offset_predicated: {
21045 Info.ptrVal =
nullptr;
21047 unsigned MemSize = cast<ConstantInt>(
I.getArgOperand(2))->getZExtValue();
21054 case Intrinsic::arm_mve_vstr_scatter_base:
21055 case Intrinsic::arm_mve_vstr_scatter_base_predicated: {
21057 Info.ptrVal =
nullptr;
21063 case Intrinsic::arm_mve_vstr_scatter_base_wb:
21064 case Intrinsic::arm_mve_vstr_scatter_base_wb_predicated: {
21066 Info.ptrVal =
nullptr;
21072 case Intrinsic::arm_mve_vstr_scatter_offset:
21073 case Intrinsic::arm_mve_vstr_scatter_offset_predicated: {
21075 Info.ptrVal =
nullptr;
21077 unsigned MemSize = cast<ConstantInt>(
I.getArgOperand(3))->getZExtValue();
21084 case Intrinsic::arm_ldaex:
21085 case Intrinsic::arm_ldrex: {
21086 auto &
DL =
I.getDataLayout();
21087 Type *ValTy =
I.getParamElementType(0);
21090 Info.ptrVal =
I.getArgOperand(0);
21092 Info.align =
DL.getABITypeAlign(ValTy);
21096 case Intrinsic::arm_stlex:
21097 case Intrinsic::arm_strex: {
21098 auto &
DL =
I.getDataLayout();
21099 Type *ValTy =
I.getParamElementType(1);
21102 Info.ptrVal =
I.getArgOperand(1);
21104 Info.align =
DL.getABITypeAlign(ValTy);
21108 case Intrinsic::arm_stlexd:
21109 case Intrinsic::arm_strexd:
21111 Info.memVT = MVT::i64;
21112 Info.ptrVal =
I.getArgOperand(2);
21118 case Intrinsic::arm_ldaexd:
21119 case Intrinsic::arm_ldrexd:
21121 Info.memVT = MVT::i64;
21122 Info.ptrVal =
I.getArgOperand(0);
21142 if (Bits == 0 || Bits > 32)
21148 unsigned Index)
const {
21158 if (!Subtarget->hasDataBarrier()) {
21162 if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
21197 if (Subtarget->preferISHSTBarriers())
21230 bool has64BitAtomicStore;
21232 has64BitAtomicStore =
false;
21233 else if (Subtarget->isThumb())
21234 has64BitAtomicStore = Subtarget->hasV7Ops();
21236 has64BitAtomicStore = Subtarget->hasV6Ops();
21238 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
21252 bool has64BitAtomicLoad;
21254 has64BitAtomicLoad =
false;
21255 else if (Subtarget->isThumb())
21256 has64BitAtomicLoad = Subtarget->hasV7Ops();
21258 has64BitAtomicLoad = Subtarget->hasV6Ops();
21275 hasAtomicRMW = Subtarget->hasV8MBaselineOps();
21276 else if (Subtarget->isThumb())
21277 hasAtomicRMW = Subtarget->hasV7Ops();
21279 hasAtomicRMW = Subtarget->hasV6Ops();
21280 if (
Size <= (Subtarget->
isMClass() ? 32U : 64U) && hasAtomicRMW) {
21303 bool HasAtomicCmpXchg;
21305 HasAtomicCmpXchg = Subtarget->hasV8MBaselineOps();
21306 else if (Subtarget->isThumb())
21307 HasAtomicCmpXchg = Subtarget->hasV7Ops();
21309 HasAtomicCmpXchg = Subtarget->hasV6Ops();
21311 HasAtomicCmpXchg &&
Size <= (Subtarget->
isMClass() ? 32U : 64U))
21318 return InsertFencesForAtomic;
21327 RTLIB::LibcallImpl SecurityCheckCookieLibcall =
21329 if (SecurityCheckCookieLibcall == RTLIB::Unsupported)
21333 M.getOrInsertGlobal(
"__security_cookie",
21341 F->addParamAttr(0, Attribute::AttrKind::InReg);
21346 RTLIB::LibcallImpl SecurityCheckCookie =
21348 if (SecurityCheckCookie != RTLIB::Unsupported)
21354 unsigned &
Cost)
const {
21356 if (!Subtarget->hasNEON())
21368 if (!isa<ConstantInt>(
Idx))
21383 return Subtarget->hasV5TOps() && !Subtarget->
isThumb1Only();
21387 return Subtarget->hasV5TOps() && !Subtarget->
isThumb1Only();
21392 if (!Subtarget->hasV7Ops())
21398 if (!Mask || Mask->getValue().getBitWidth() > 32u)
21400 auto MaskVal =
unsigned(Mask->getValue().getZExtValue());
21425 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
21437 Lo, Builder.
CreateShl(
Hi, ConstantInt::get(ValueTy, 32)),
"val64");
21440 Type *Tys[] = {
Addr->getType() };
21441 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
21445 0,
Attribute::get(M->getContext(), Attribute::ElementType, ValueTy));
21451 if (!Subtarget->hasV7Ops())
21467 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
21477 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
21478 Type *Tys[] = {
Addr->getType() };
21500 return (
DL.getTypeSizeInBits(VecTy) + 127) / 128;
21507 unsigned VecSize =
DL.getTypeSizeInBits(VecTy);
21510 if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
21518 if (Subtarget->hasMVEIntegerOps() && Factor == 3)
21526 if (ElSize != 8 && ElSize != 16 && ElSize != 32)
21529 if (Subtarget->hasMVEIntegerOps() && Alignment < ElSize / 8)
21534 if (Subtarget->hasNEON() && VecSize == 64)
21536 return VecSize % 128 == 0;
21540 if (Subtarget->hasNEON())
21542 if (Subtarget->hasMVEIntegerOps())
21562 "Invalid interleave factor");
21563 assert(!Shuffles.
empty() &&
"Empty shufflevector input");
21565 "Unmatched number of shufflevectors and indices");
21567 auto *LI = dyn_cast<LoadInst>(Load);
21570 assert(!Mask && GapMask.
popcount() == Factor &&
"Unexpected mask on a load");
21572 auto *VecTy = cast<FixedVectorType>(Shuffles[0]->
getType());
21573 Type *EltTy = VecTy->getElementType();
21576 Align Alignment = LI->getAlign();
21594 Value *BaseAddr = LI->getPointerOperand();
21596 if (NumLoads > 1) {
21600 VecTy->getNumElements() / NumLoads);
21606 if (Subtarget->hasNEON()) {
21607 Type *PtrTy = Builder.
getPtrTy(LI->getPointerAddressSpace());
21608 Type *Tys[] = {VecTy, PtrTy};
21609 static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
21610 Intrinsic::arm_neon_vld3,
21611 Intrinsic::arm_neon_vld4};
21620 assert((Factor == 2 || Factor == 4) &&
21621 "expected interleave factor of 2 or 4 for MVE");
21623 Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
21624 Type *PtrTy = Builder.
getPtrTy(LI->getPointerAddressSpace());
21625 Type *Tys[] = {VecTy, PtrTy};
21639 for (
unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
21644 VecTy->getNumElements() * Factor);
21650 for (
unsigned i = 0; i < Shuffles.
size(); i++) {
21652 unsigned Index = Indices[i];
21662 SubVecs[SV].push_back(SubVec);
21671 auto &SubVec = SubVecs[SVI];
21674 SVI->replaceAllUsesWith(WideVec);
21710 const APInt &GapMask)
const {
21712 "Invalid interleave factor");
21713 auto *SI = dyn_cast<StoreInst>(Store);
21717 "Unexpected mask on store");
21719 auto *VecTy = cast<FixedVectorType>(SVI->
getType());
21720 assert(VecTy->getNumElements() % Factor == 0 &&
"Invalid interleaved store");
21722 unsigned LaneLen = VecTy->getNumElements() / Factor;
21723 Type *EltTy = VecTy->getElementType();
21727 Align Alignment = SI->getAlign();
21744 Type *IntTy =
DL.getIntPtrType(EltTy);
21756 Value *BaseAddr = SI->getPointerOperand();
21758 if (NumStores > 1) {
21761 LaneLen /= NumStores;
21771 if (Subtarget->hasNEON()) {
21772 static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
21773 Intrinsic::arm_neon_vst3,
21774 Intrinsic::arm_neon_vst4};
21775 Type *PtrTy = Builder.
getPtrTy(SI->getPointerAddressSpace());
21776 Type *Tys[] = {PtrTy, SubVecTy};
21784 assert((Factor == 2 || Factor == 4) &&
21785 "expected interleave factor of 2 or 4 for MVE");
21787 Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
21788 Type *PtrTy = Builder.
getPtrTy(SI->getPointerAddressSpace());
21789 Type *Tys[] = {PtrTy, SubVecTy};
21794 for (
unsigned F = 0;
F < Factor;
F++) {
21802 for (
unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
21805 if (StoreCount > 0)
21807 BaseAddr, LaneLen * Factor);
21812 for (
unsigned i = 0; i < Factor; i++) {
21813 unsigned IdxI = StoreCount * LaneLen * Factor + i;
21814 if (Mask[IdxI] >= 0) {
21818 unsigned StartMask = 0;
21819 for (
unsigned j = 1; j < LaneLen; j++) {
21820 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
21821 if (Mask[IdxJ * Factor + IdxI] >= 0) {
21822 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
21852 if (
auto *ST = dyn_cast<StructType>(Ty)) {
21853 for (
unsigned i = 0; i < ST->getNumElements(); ++i) {
21857 Members += SubMembers;
21859 }
else if (
auto *AT = dyn_cast<ArrayType>(Ty)) {
21863 Members += SubMembers * AT->getNumElements();
21874 }
else if (
auto *VT = dyn_cast<VectorType>(Ty)) {
21881 return VT->getPrimitiveSizeInBits().getFixedValue() == 64;
21883 return VT->getPrimitiveSizeInBits().getFixedValue() == 128;
21885 switch (VT->getPrimitiveSizeInBits().getFixedValue()) {
21898 return (Members > 0 && Members <= 4);
21904 const Align ABITypeAlign =
DL.getABITypeAlign(ArgTy);
21906 return ABITypeAlign;
21911 assert(StackAlign &&
"data layout string is missing stack alignment");
21912 return std::min(ABITypeAlign, *StackAlign);
21921 if (getEffectiveCallingConv(CallConv, isVarArg) !=
21931 return IsHA || IsIntArray;
21935 const Constant *PersonalityFn)
const {
21943 const Constant *PersonalityFn)
const {
21956void ARMTargetLowering::insertCopiesSplitCSR(
21960 const MCPhysReg *IStart =
TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
21970 RC = &ARM::GPRRegClass;
21971 else if (ARM::DPRRegClass.
contains(*
I))
21972 RC = &ARM::DPRRegClass;
21982 assert(Entry->getParent()->getFunction().hasFnAttribute(
21983 Attribute::NoUnwind) &&
21984 "Function should be nounwind in insertCopiesSplitCSR!");
21985 Entry->addLiveIn(*
I);
21990 for (
auto *Exit : Exits)
21992 TII->get(TargetOpcode::COPY), *
I)
22003 return Subtarget->hasMVEIntegerOps();
22008 auto *VTy = dyn_cast<FixedVectorType>(Ty);
22013 unsigned NumElements = VTy->getNumElements();
22020 if (ScalarTy->isHalfTy() || ScalarTy->isFloatTy())
22021 return Subtarget->hasMVEFloatOps();
22026 return Subtarget->hasMVEIntegerOps() &&
22027 (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
22028 ScalarTy->isIntegerTy(32));
22040 assert(TyWidth >= 128 &&
"Width of vector type must be at least 128 bits");
22042 if (TyWidth > 128) {
22047 ArrayRef<int> UpperSplitMask(&SplitSeqVec[Stride], Stride);
22049 auto *LowerSplitA =
B.CreateShuffleVector(InputA, LowerSplitMask);
22050 auto *LowerSplitB =
B.CreateShuffleVector(InputB, LowerSplitMask);
22051 auto *UpperSplitA =
B.CreateShuffleVector(InputA, UpperSplitMask);
22052 auto *UpperSplitB =
B.CreateShuffleVector(InputB, UpperSplitMask);
22053 Value *LowerSplitAcc =
nullptr;
22054 Value *UpperSplitAcc =
nullptr;
22057 LowerSplitAcc =
B.CreateShuffleVector(
Accumulator, LowerSplitMask);
22058 UpperSplitAcc =
B.CreateShuffleVector(
Accumulator, UpperSplitMask);
22062 B, OperationType, Rotation, LowerSplitA, LowerSplitB, LowerSplitAcc);
22064 B, OperationType, Rotation, UpperSplitA, UpperSplitB, UpperSplitAcc);
22067 return B.CreateShuffleVector(LowerSplitInt, UpperSplitInt, JoinMask);
22074 ConstRotation = ConstantInt::get(IntTy, (
int)Rotation);
22077 return B.CreateIntrinsic(Intrinsic::arm_mve_vcmlaq, Ty,
22079 return B.CreateIntrinsic(Intrinsic::arm_mve_vcmulq, Ty,
22080 {ConstRotation, InputB, InputA});
22085 auto *ConstHalving = ConstantInt::get(IntTy, 1);
22088 ConstRotation = ConstantInt::get(IntTy, 0);
22090 ConstRotation = ConstantInt::get(IntTy, 1);
22092 if (!ConstRotation)
22095 return B.CreateIntrinsic(Intrinsic::arm_mve_vcaddq, Ty,
22096 {ConstHalving, ConstRotation, InputA, InputB});
unsigned const MachineRegisterInfo * MRI
static bool isAddSubSExt(SDValue N, SelectionDAG &DAG)
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt)
isVShiftRImm - Check if this is a valid build_vector for the immediate operand of a vector shift righ...
static bool isExtendedBUILD_VECTOR(SDValue N, SelectionDAG &DAG, bool isSigned)
static bool isZeroExtended(SDValue N, SelectionDAG &DAG)
static const MCPhysReg GPRArgRegs[]
static SDValue GeneratePerfectShuffle(unsigned ID, SDValue V1, SDValue V2, unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &DL)
GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit the specified operations t...
constexpr MVT FlagsVT
Value type used for NZCV flags.
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt)
getVShiftImm - Check if this is a valid build_vector for the immediate operand of a vector shift oper...
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG)
static bool isSignExtended(SDValue N, SelectionDAG &DAG)
static bool isAddSubZExt(SDValue N, SelectionDAG &DAG)
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt)
isVShiftLImm - Check if this is a valid build_vector for the immediate operand of a vector shift left...
static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls)
Return true if the calling convention is one that we can guarantee TCO for.
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
amdgpu aa AMDGPU Address space based Alias Analysis Wrapper
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG)
static bool isStore(int Opcode)
static bool isThumb(const MCSubtargetInfo &STI)
static SDValue LowerUADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG)
static SDValue PerformExtractEltToVMOVRRD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool isIncompatibleReg(const MCPhysReg &PR, MVT VT)
static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG)
static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, const EVT &OrigTy, const EVT &ExtTy, unsigned ExtOpcode)
AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total value size to 64 bits.
static cl::opt< unsigned > ConstpoolPromotionMaxSize("arm-promote-constant-max-size", cl::Hidden, cl::desc("Maximum size of constant to promote into a constant pool"), cl::init(64))
static bool isZeroOrAllOnes(SDValue N, bool AllOnes)
static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static bool isVTBLMask(ArrayRef< int > M, EVT VT)
static SDValue PerformSUBCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
static cl::opt< bool > EnableConstpoolPromotion("arm-promote-constant", cl::Hidden, cl::desc("Enable / disable promotion of unnamed_addr constants into " "constant pools"), cl::init(false))
static SDValue PerformFAddVSelectCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformExtractFpToIntStores(StoreSDNode *St, SelectionDAG &DAG)
static SDValue PerformVDUPCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
static SDValue PerformExtractEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *ST)
static const APInt * isPowerOf2Constant(SDValue V)
static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) can replace combinations of ...
static SDValue PerformVMOVhrCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG)
static SDValue LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op, ArrayRef< int > ShuffleMask, SelectionDAG &DAG)
static bool isValidMVECond(unsigned CC, bool IsFloat)
static SDValue PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC)
IntCCToARMCC - Convert a DAG integer condition code to an ARM CC.
static SDValue PerformSTORECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformSTORECombine - Target-specific dag combine xforms for ISD::STORE.
static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry, SelectionDAG &DAG)
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static bool isGTorGE(ISD::CondCode CC)
static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a vldN-lane (N > 1) intrinsic,...
static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask)
static bool isReverseMask(ArrayRef< int > M, EVT VT)
static bool isVZIP_v_undef_Mask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of "vector_shuffle v,...
static SDValue PerformSELECTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformVECTOR_REG_CASTCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue PerformVMulVCTPCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
PerformVMulVCTPCombine - VCVT (fixed-point to floating-point, Advanced SIMD) can replace combinations...
static SDValue createGPRPairNode2xi32(SelectionDAG &DAG, SDValue V0, SDValue V1)
static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG)
static bool findPointerConstIncrement(SDNode *N, SDValue *Ptr, SDValue *CInc)
static bool isVTRNMask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static bool CanInvertMVEVCMP(SDValue N)
static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG)
static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformShiftCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *ST)
PerformShiftCombine - Checks for immediate versions of vector shifts and lowers them.
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, ARMCC::CondCodes &CondCode2)
FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG)
static EVT getVectorTyFromPredicateVector(EVT VT)
static SDValue PerformFADDVCMLACombine(SDNode *N, SelectionDAG &DAG)
static SDValue handleCMSEValue(const SDValue &Value, const ISD::InputArg &Arg, SelectionDAG &DAG, const SDLoc &DL)
static SDValue PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
static bool isSRL16(const SDValue &Op)
static SDValue PerformVMOVrhCombine(SDNode *N, SelectionDAG &DAG)
static SDValue PerformLOADCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue IsCMPZCSINC(SDNode *Cmp, ARMCC::CondCodes &CC)
static unsigned getPointerConstIncrement(unsigned Opcode, SDValue Ptr, SDValue Inc, const SelectionDAG &DAG)
static SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, TargetLowering::DAGCombinerInfo &DCI)
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static Register genTPEntry(MachineBasicBlock *TpEntry, MachineBasicBlock *TpLoopBody, MachineBasicBlock *TpExit, Register OpSizeReg, const TargetInstrInfo *TII, DebugLoc Dl, MachineRegisterInfo &MRI)
Adds logic in loop entry MBB to calculate loop iteration count and adds t2WhileLoopSetup and t2WhileL...
static SDValue createGPRPairNodei64(SelectionDAG &DAG, SDValue V)
static bool isLTorLE(ISD::CondCode CC)
static SDValue PerformVCMPCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl, SelectionDAG &DAG)
static EVT getExtensionTo64Bits(const EVT &OrigVT)
static SDValue PerformBITCASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *ST)
static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG)
static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr, MachineBasicBlock *BB, const TargetRegisterInfo *TRI)
static SDValue PerformCMPZCombine(SDNode *N, SelectionDAG &DAG)
static bool hasNormalLoadOperand(SDNode *N)
hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node are normal,...
static SDValue PerformInsertEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
PerformInsertEltCombine - Target-specific dag combine xforms for ISD::INSERT_VECTOR_ELT.
static SDValue PerformVDUPLANECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformVDUPLANECombine - Target-specific dag combine xforms for ARMISD::VDUPLANE.
static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG, const ARMSubtarget *ST)
static cl::opt< unsigned > ConstpoolPromotionMaxTotal("arm-promote-constant-max-total", cl::Hidden, cl::desc("Maximum size of ALL constants to promote into a constant pool"), cl::init(128))
static SDValue LowerTruncatei1(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
static RTLIB::Libcall getDivRemLibcall(const SDNode *N, MVT::SimpleValueType SVT)
static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG &DAG)
SkipLoadExtensionForVMULL - return a load of the original vector size that does not do any sign/zero ...
static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static const MCPhysReg GPRArgRegs[]
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombineWithOperands - Try DAG combinations for an ADD with operands N0 and N1.
static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT, SelectionDAG &DAG)
static bool isVZIPMask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
static SDValue PerformORCombineToSMULWBT(SDNode *OR, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static bool isVTRN_v_undef_Mask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of "vector_shuffle v,...
static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue FindBFIToCombineWith(SDNode *N)
static SDValue LowerADDSUBSAT(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT, SelectionDAG &DAG)
static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode, bool &swpCmpOps, bool &swpVselOps)
static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG)
static bool isS16(const SDValue &Op, SelectionDAG &DAG)
static bool isSRA16(const SDValue &Op)
constexpr MVT FlagsVT
Value type used for "flags" operands / results (either CPSR or FPSCR_NZCV).
static SDValue AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op, ArrayRef< int > ShuffleMask, SelectionDAG &DAG)
static SDValue LowerInterruptReturn(SmallVectorImpl< SDValue > &RetOps, const SDLoc &DL, SelectionDAG &DAG)
static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl, SelectionDAG &DAG)
static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, SDValue &RetVal1, SDValue &RetVal2)
static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue PerformVLDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool isSHL16(const SDValue &Op)
static bool isVEXTMask(ArrayRef< int > M, EVT VT, bool &ReverseVEXT, unsigned &Imm)
static SDValue PerformMVEVLDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
cl::opt< unsigned > ArmMaxBaseUpdatesToCheck("arm-max-base-updates-to-check", cl::Hidden, cl::desc("Maximum number of base-updates to check generating postindex."), cl::init(64))
static bool isTruncMask(ArrayRef< int > M, EVT VT, bool Top, bool SingleSource)
static SDValue PerformADDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2)
Return the load opcode for a given load size.
static bool isLegalT2AddressImmediate(int64_t V, EVT VT, const ARMSubtarget *Subtarget)
static bool isLegalMVEShuffleOp(unsigned PFEntry)
static SDValue PerformSignExtendInregCombine(SDNode *N, SelectionDAG &DAG)
static SDValue PerformShuffleVMOVNCombine(ShuffleVectorSDNode *N, SelectionDAG &DAG)
static bool isVUZPMask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG)
PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for ISD::VECTOR_SHUFFLE.
static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG)
SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND, ANY_EXTEND,...
static bool isVMOVNTruncMask(ArrayRef< int > M, EVT ToVT, bool rev)
static SDValue PerformVQMOVNCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static MachineBasicBlock * OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ)
static SDValue LowerVecReduceMinMax(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue PerformAddcSubcCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformVSELECTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static TargetLowering::ArgListTy getDivRemArgList(const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget)
static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl)
getZeroVector - Returns a vector of specified type with all zero elements.
static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG)
static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St, SelectionDAG &DAG)
static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG)
static ARMCC::CondCodes getVCMPCondCode(SDValue N)
static cl::opt< bool > ARMInterworking("arm-interworking", cl::Hidden, cl::desc("Enable / disable ARM interworking (for debugging only)"), cl::init(true))
static void ReplaceREADCYCLECOUNTER(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformORCombineToBFI(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC, bool &Invert, SDValue &OtherOp, SelectionDAG &DAG)
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue PerformVSetCCToVCTPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue LowerBUILD_VECTORToVIDUP(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static bool isZeroVector(SDValue N)
static SDValue PerformAddeSubeCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static void ReplaceCMP_SWAP_64Results(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG)
static bool isLowerSaturate(const SDValue LHS, const SDValue RHS, const SDValue TrueVal, const SDValue FalseVal, const ISD::CondCode CC, const SDValue K)
static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG)
static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos, const TargetInstrInfo *TII, const DebugLoc &dl, unsigned StSize, unsigned Data, unsigned AddrIn, unsigned AddrOut, bool IsThumb1, bool IsThumb2)
Emit a post-increment store operation with given size.
static bool isVMOVNMask(ArrayRef< int > M, EVT VT, bool Top, bool SingleSource)
static SDValue CombineBaseUpdate(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
CombineBaseUpdate - Target-specific DAG combine function for VLDDUP, NEON load/store intrinsics,...
static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG)
static SDValue PerformSubCSINCCombine(SDNode *N, SelectionDAG &DAG)
static SDValue PerformVMOVRRDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformVMOVRRDCombine - Target-specific dag combine xforms for ARMISD::VMOVRRD.
static SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformCSETCombine(SDNode *N, SelectionDAG &DAG)
static SDValue PerformVMOVNCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue PerformInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue LowerVectorExtend(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain)
static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, ArrayRef< int > ShuffleMask, SelectionDAG &DAG)
static SDValue PerformVMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformVMULCombine Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the special multi...
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG)
static SDValue PerformBFICombine(SDNode *N, SelectionDAG &DAG)
static SDValue PerformORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformORCombine - Target-specific dag combine xforms for ISD::OR.
static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG)
static SDValue PerformTruncatingStoreCombine(StoreSDNode *St, SelectionDAG &DAG)
static unsigned SelectPairHalf(unsigned Elements, ArrayRef< int > Mask, unsigned Index)
static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos, const TargetInstrInfo *TII, const DebugLoc &dl, unsigned LdSize, unsigned Data, unsigned AddrIn, unsigned AddrOut, bool IsThumb1, bool IsThumb2)
Emit a post-increment load operation with given size.
static SDValue TryDistrubutionADDVecReduce(SDNode *N, SelectionDAG &DAG)
static bool isValidBaseUpdate(SDNode *N, SDNode *User)
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, const ARMSubtarget *ST, const SDLoc &dl)
static bool IsQRMVEInstruction(const SDNode *N, const SDNode *Op)
static SDValue PerformMinMaxToSatCombine(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformXORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment, bool isSEXTLoad, bool IsMasked, bool isLE, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG)
std::pair< unsigned, const TargetRegisterClass * > RCPair
static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, TargetLowering::DAGCombinerInfo &DCI, bool AllOnes=false)
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, ISD::ZERO_EXTEND,...
static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
cl::opt< unsigned > MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden, cl::desc("Maximum interleave factor for MVE VLDn to generate."), cl::init(2))
static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, unsigned SplatBitSize, SelectionDAG &DAG, const SDLoc &dl, EVT &VT, EVT VectorVT, VMOVModImmType type)
isVMOVModifiedImm - Check if the specified splat value corresponds to a valid vector constant for a N...
static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC, SelectionDAG &DAG)
BC is a bitcast that is about to be turned into a VMOVDRR.
static SDValue promoteToConstantPool(const ARMTargetLowering *TLI, const GlobalValue *GV, SelectionDAG &DAG, EVT PtrVT, const SDLoc &dl)
static unsigned isNEONTwoResultShuffleMask(ArrayRef< int > ShuffleMask, EVT VT, unsigned &WhichResult, bool &isV_UNDEF)
Check if ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN), and return the corresponding AR...
static bool BitsProperlyConcatenate(const APInt &A, const APInt &B)
static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG)
static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG)
static bool TryCombineBaseUpdate(struct BaseUpdateTarget &Target, struct BaseUpdateUser &User, bool SimpleConstIncOnly, TargetLowering::DAGCombinerInfo &DCI)
static bool allUsersAreInFunction(const Value *V, const Function *F)
Return true if all users of V are within function F, looking through ConstantExprs.
static bool isSingletonVEXTMask(ArrayRef< int > M, EVT VT, unsigned &Imm)
static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG)
PerformVMOVDRRCombine - Target-specific dag combine xforms for ARMISD::VMOVDRR.
static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V, SDValue &SatK)
static bool isLegalAddressImmediate(int64_t V, EVT VT, const ARMSubtarget *Subtarget)
isLegalAddressImmediate - Return true if the integer value can be used as the offset of the target ad...
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static bool isLegalT1AddressImmediate(int64_t V, EVT VT)
static SDValue CombineANDShift(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG)
static SDValue PerformSHLSimplify(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *ST)
static SDValue PerformADDECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformADDECombine - Target-specific dag combine transform from ARMISD::ADDC, ARMISD::ADDE,...
static SDValue PerformReduceShuffleCombine(SDNode *N, SelectionDAG &DAG)
static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue LowerTruncate(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformHWLoopCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *ST)
static SDValue PerformSplittingMVETruncToNarrowingStores(StoreSDNode *St, SelectionDAG &DAG)
static bool isVUZP_v_undef_Mask(ArrayRef< int > M, EVT VT, unsigned &WhichResult)
isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of "vector_shuffle v,...
static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base, uint64_t &Members)
static SDValue PerformMULCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue LowerReverse_VECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
static SDValue PerformANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static SDValue PerformADDVecReduce(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG)
static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm, bool &Negate)
static bool canChangeToInt(SDValue Op, bool &SeenZero, const ARMSubtarget *Subtarget)
canChangeToInt - Given the fp compare operand, return true if it is suitable to morph to an integer c...
static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2)
Return the store opcode for a given store size.
static bool IsVUZPShuffleNode(SDNode *N)
static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget, MachineInstr &MI, const SDNode *Node)
Attaches vregs to MEMCPY that it will use as scratch registers when it is expanded into LDM/STM.
static bool isFloatingPointZero(SDValue Op)
isFloatingPointZero - Return true if this is +0.0.
static SDValue findMUL_LOHI(SDValue V)
static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue PerformORCombine_i1(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *Subtarget)
static SDValue PerformSplittingMVEEXTToWideningLoad(SDNode *N, SelectionDAG &DAG)
static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG)
static void genTPLoopBody(MachineBasicBlock *TpLoopBody, MachineBasicBlock *TpEntry, MachineBasicBlock *TpExit, const TargetInstrInfo *TII, DebugLoc Dl, MachineRegisterInfo &MRI, Register OpSrcReg, Register OpDestReg, Register ElementCountReg, Register TotalIterationsReg, bool IsMemcpy)
Adds logic in the loopBody MBB to generate MVE_VCTP, t2DoLoopDec and t2DoLoopEnd.
static SDValue PerformBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const ARMSubtarget *Subtarget)
PerformBUILD_VECTORCombine - Target-specific dag combine xforms for ISD::BUILD_VECTOR.
static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG, const ARMSubtarget *ST)
static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG, const ARMSubtarget *ST)
PerformMinMaxCombine - Target-specific DAG combining for creating truncating saturates.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
This file implements the BitVector class.
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static void createLoadIntrinsic(IntrinsicInst *II, LoadInst *LI, Value *Offset, dxil::ResourceTypeInfo &RTI)
static void createStoreIntrinsic(IntrinsicInst *II, StoreInst *SI, Value *Offset, dxil::ResourceTypeInfo &RTI)
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
const HexagonInstrInfo * TII
Module.h This file contains the declarations for the Module class.
std::pair< Value *, Value * > ShuffleOps
We are building a shuffle to create V, which is a sequence of insertelement, extractelement pairs.
static Value * LowerCTPOP(LLVMContext &Context, Value *V, Instruction *IP)
Emit the code to lower ctpop of V before the specified instruction IP.
loop Loop Strength Reduction
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
Register const TargetRegisterInfo * TRI
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
static SymbolRef::Type getType(const Symbol *Sym)
This file describes how to lower LLVM code to machine code.
static X86::CondCode getSwappedCondition(X86::CondCode CC)
Assuming the flags are set by MI(a,b), return the condition code if we modify the instructions such t...
static constexpr int Concat[]
static bool isIntrinsic(const CallBase &Call, Intrinsic::ID ID)
bool getExactInverse(APFloat *Inv) const
If this value is normal and has an exact, normal, multiplicative inverse, store it in inv and return ...
APInt bitcastToAPInt() const
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
unsigned popcount() const
Count the number of bits set.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
int64_t getSExtValue() const
Get sign extended value.
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
unsigned countr_one() const
Count the number of trailing one bits.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
An arbitrary precision integer that knows its signedness.
virtual const ARMBaseRegisterInfo & getRegisterInfo() const =0
const uint32_t * getSjLjDispatchPreservedMask(const MachineFunction &MF) const
const MCPhysReg * getCalleeSavedRegs(const MachineFunction *MF) const override
Code Generation virtual methods...
Register getFrameRegister(const MachineFunction &MF) const override
const uint32_t * getCallPreservedMask(const MachineFunction &MF, CallingConv::ID) const override
const uint32_t * getTLSCallPreservedMask(const MachineFunction &MF) const
const uint32_t * getThisReturnPreservedMask(const MachineFunction &MF, CallingConv::ID) const
getThisReturnPreservedMask - Returns a call preserved mask specific to the case that 'returned' is on...
static ARMConstantPoolConstant * Create(const Constant *C, unsigned ID)
static ARMConstantPoolMBB * Create(LLVMContext &C, const MachineBasicBlock *mbb, unsigned ID, unsigned char PCAdj)
static ARMConstantPoolSymbol * Create(LLVMContext &C, StringRef s, unsigned ID, unsigned char PCAdj)
ARMConstantPoolValue - ARM specific constantpool value.
ARMFunctionInfo - This class is derived from MachineFunctionInfo and contains private ARM-specific in...
int getVarArgsFrameIndex() const
int getPromotedConstpoolIncrease() const
SmallPtrSet< const GlobalVariable *, 2 > & getGlobalsPromotedToConstantPool()
void setArgumentStackToRestore(unsigned v)
bool branchTargetEnforcement() const
unsigned createPICLabelUId()
void setPromotedConstpoolIncrease(int Sz)
bool isThumb1OnlyFunction() const
void setArgRegsSaveSize(unsigned s)
bool shouldSignReturnAddress() const
bool isCmseNSEntryFunction() const
void setReturnRegsCount(unsigned s)
void setVarArgsFrameIndex(int Index)
unsigned getArgRegsSaveSize() const
void markGlobalAsPromotedToConstantPool(const GlobalVariable *GV)
Indicate to the backend that GV has had its storage changed to inside a constant pool.
void setIsSplitCSR(bool s)
void setArgumentStackSize(unsigned size)
unsigned getArgumentStackSize() const
bool isTargetMachO() const
bool isTargetAEABI() const
bool supportsTailCall() const
const Triple & getTargetTriple() const
const ARMBaseInstrInfo * getInstrInfo() const override
bool isThumb1Only() const
bool hasFPARMv8Base() const
bool isTargetWindows() const
bool isGVIndirectSymbol(const GlobalValue *GV) const
True if the GV will be accessed via an indirect symbol.
const ARMTargetLowering * getTargetLowering() const override
bool isTargetDarwin() const
const ARMBaseRegisterInfo * getRegisterInfo() const override
bool isTargetAndroid() const
bool isTargetCOFF() const
bool isTargetGNUAEABI() const
unsigned getPreferBranchLogAlignment() const
bool useNEONForSinglePrecisionFP() const
bool hasAnyDataBarrier() const
bool allowsUnalignedMem() const
bool isTargetMuslAEABI() const
Align getDualLoadStoreAlignment() const
bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT, unsigned SelectOpcode, SDValue X, SDValue Y) const override
Return true if pulling a binary operation into a select with an identity constant is profitable.
bool isReadOnly(const GlobalValue *GV) const
unsigned getMaxSupportedInterleaveFactor() const override
Get the maximum supported factor for interleaved memory accesses.
TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override
Returns how the given (atomic) load should be expanded by the IR-level AtomicExpand pass.
unsigned getNumInterleavedAccesses(VectorType *VecTy, const DataLayout &DL) const
Returns the number of interleaved accesses that will be generated when lowering accesses of the given...
bool shouldInsertFencesForAtomic(const Instruction *I) const override
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const override
Return the correct alignment for the current calling convention.
bool isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const override
Return true if it is profitable to move this shift by a constant amount through its operand,...
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const override
Examine constraint string and operand type and determine a weight value.
bool shouldExpandCmpUsingSelects(EVT VT) const override
Should we expand [US]CMP nodes using two selects and two compares, or by doing arithmetic on boolean ...
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
isLegalAddressingMode - Return true if the addressing mode represented by AM is legal for this target...
const ARMSubtarget * getSubtarget() const
bool isLegalT2ScaledAddressingMode(const AddrMode &AM, EVT VT) const
bool isLegalT1ScaledAddressingMode(const AddrMode &AM, EVT VT) const
Returns true if the addressing mode representing by AM is legal for the Thumb1 target,...
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override
getPreIndexedAddressParts - returns true by value, base pointer and offset pointer and addressing mod...
bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, Align &PrefAlign) const override
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
ReplaceNodeResults - Replace the results of node with an illegal result type with new values built ou...
void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const override
bool isMulAddWithConstProfitable(SDValue AddNode, SDValue ConstNode) const override
Return true if it may be profitable to transform (mul (add x, c1), c2) -> (add (mul x,...
bool isLegalAddImmediate(int64_t Imm) const override
isLegalAddImmediate - Return true if the specified immediate is legal add immediate,...
EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &FuncAttributes) const override
Returns the target specific optimal type for load and store operations as a result of memset,...
Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
bool isFNegFree(EVT VT) const override
Return true if an fneg operation is free to the point where it is never worthwhile to replace it with...
void finalizeLowering(MachineFunction &MF) const override
Execute target specific actions to finalize target lowering.
SDValue PerformMVETruncCombine(SDNode *N, DAGCombinerInfo &DCI) const
bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize=false) const override
isFPImmLegal - Returns true if the target can instruction select the specified FP immediate natively.
ConstraintType getConstraintType(StringRef Constraint) const override
getConstraintType - Given a constraint letter, return the type of constraint it is for this target.
bool preferIncOfAddToSubOfNot(EVT VT) const override
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
Function * getSSPStackGuardCheck(const Module &M) const override
If the target has a standard stack protection check function that performs validation and error handl...
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const override
Returns how the given (atomic) store should be expanded by the IR-level AtomicExpand pass into.
void insertSSPDeclarations(Module &M) const override
Inserts necessary declarations for SSP (stack protection) purpose.
SDValue PerformIntrinsicCombine(SDNode *N, DAGCombinerInfo &DCI) const
PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
bool isDesirableToCommuteXorWithShift(const SDNode *N) const override
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
bool ExpandInlineAsm(CallInst *CI) const override
This hook allows the target to expand an inline asm call to be explicit llvm code if it wants to.
SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const
PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
Value * createComplexDeinterleavingIR(IRBuilderBase &B, ComplexDeinterleavingOperation OperationType, ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB, Value *Accumulator=nullptr) const override
Create the IR node for the given complex deinterleaving operation.
bool isComplexDeinterleavingSupported() const override
Does this target support complex deinterleaving.
SDValue PerformMVEExtCombine(SDNode *N, DAGCombinerInfo &DCI) const
bool shouldFoldConstantShiftPairToMask(const SDNode *N, CombineLevel Level) const override
Return true if it is profitable to fold a pair of shifts into a mask.
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &OriginalDemandedBits, const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
getSetCCResultType - Return the value type to use for ISD::SETCC.
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
Value * emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const override
Perform a store-conditional operation to Addr.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
CCAssignFn * CCAssignFnForReturn(CallingConv::ID CC, bool isVarArg) const
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const override
createFastISel - This method returns a target specific FastISel object, or null if the target does no...
void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const override
This method should be implemented by targets that mark instructions with the 'hasPostISelHook' flag.
TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override
Return true if EXTRACT_SUBVECTOR is cheap for this result type with this index.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
getTgtMemIntrinsic - Represent NEON load and store intrinsics as MemIntrinsicNodes.
bool isTruncateFree(Type *SrcTy, Type *DstTy) const override
Return true if it's free to truncate a value of type FromTy to type ToTy.
bool isShuffleMaskLegal(ArrayRef< int > M, EVT VT) const override
isShuffleMaskLegal - Targets can use this to indicate that they only support some VECTOR_SHUFFLE oper...
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Returns true if it is beneficial to convert a load of a constant to just the constant itself.
bool lowerInterleavedStore(Instruction *Store, Value *Mask, ShuffleVectorInst *SVI, unsigned Factor, const APInt &GapMask) const override
Lower an interleaved store into a vstN intrinsic.
const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const override
getRegClassFor - Return the register class that should be used for the specified value type.
bool useLoadStackGuardNode(const Module &M) const override
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
bool lowerInterleavedLoad(Instruction *Load, Value *Mask, ArrayRef< ShuffleVectorInst * > Shuffles, ArrayRef< unsigned > Indices, unsigned Factor, const APInt &GapMask) const override
Lower an interleaved load into a vldN intrinsic.
std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const override
Return the largest legal super-reg register class of the register class for the specified type and it...
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const override
ARMTargetLowering(const TargetMachine &TM, const ARMSubtarget &STI)
bool isComplexDeinterleavingOperationSupported(ComplexDeinterleavingOperation Operation, Type *Ty) const override
Does this target support complex deinterleaving with the given operation and type.
SDValue PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const
PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
Type * shouldConvertSplatType(ShuffleVectorInst *SVI) const override
Given a shuffle vector SVI representing a vector splat, return a new scalar type of size equal to SVI...
Value * emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const override
Perform a load-linked operation on Addr, returning a "Value *" with the corresponding pointee type.
Instruction * makeDMB(IRBuilderBase &Builder, ARM_MB::MemBOpt Domain) const
bool isLegalICmpImmediate(int64_t Imm) const override
isLegalICmpImmediate - Return true if the specified immediate is legal icmp immediate,...
const char * LowerXConstraint(EVT ConstraintVT) const override
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
bool isDesirableToTransformToIntegerOp(unsigned Opc, EVT VT) const override
Return true if it is profitable for dag combiner to transform a floating point op of specified opcode...
TargetLoweringBase::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
CCAssignFn * CCAssignFnForCall(CallingConv::ID CC, bool isVarArg) const
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const override
allowsMisalignedMemoryAccesses - Returns true if the target allows unaligned memory accesses of the s...
bool isLegalInterleavedAccessType(unsigned Factor, FixedVectorType *VecTy, Align Alignment, const DataLayout &DL) const
Returns true if VecTy is a legal interleaved access type.
bool isVectorLoadExtDesirable(SDValue ExtVal) const override
Return true if folding a vector load into ExtVal (a sign, zero, or any extend node) is profitable.
bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const override
Return true if the target can combine store(extractelement VectorTy, Idx).
bool useSoftFloat() const override
bool alignLoopsWithOptSize() const override
Should loops be aligned even when the function is marked OptSize (but not MinSize).
SDValue PerformCMOVToBFICombine(SDNode *N, SelectionDAG &DAG) const
bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override
Return true if a truncation from FromTy to ToTy is permitted when deciding whether a call is in tail ...
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
LowerAsmOperandForConstraint - Lower the specified operand into the Ops vector.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override
Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT from min(max(fptoi)) satur...
bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const override
Returns true if an argument of type Ty needs to be passed in a contiguous block of registers in calli...
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
const ARMBaseTargetMachine & getTM() const
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override
Return if the target supports combining a chain like:
ShiftLegalizationStrategy preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const override
bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const override
getPostIndexedAddressParts - returns true by value, base pointer and offset pointer and addressing mo...
Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const override
Inserts in the IR a target-specific intrinsic specifying a fence.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
An instruction that atomically checks whether a specified value is in a memory location,...
an instruction that atomically reads a memory location, combines it with another value,...
bool isFloatingPointOperation() const
LLVM_ABI bool hasFnAttr(Attribute::AttrKind Kind) const
Return true if the attribute exists for the function.
static LLVM_ABI Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val=0)
Return a uniquified Attribute object.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
The address of a basic block.
static BranchProbability getZero()
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
CCState - This class holds information needed while lowering arguments and return values.
void getInRegsParamInfo(unsigned InRegsParamRecordIndex, unsigned &BeginReg, unsigned &EndReg) const
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
static LLVM_ABI bool resultsCompatible(CallingConv::ID CalleeCC, CallingConv::ID CallerCC, MachineFunction &MF, LLVMContext &C, const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn CalleeFn, CCAssignFn CallerFn)
Returns true if the results of the two calling conventions are compatible.
MCRegister AllocateReg(MCPhysReg Reg)
AllocateReg - Attempt to allocate one register.
LLVM_ABI bool CheckReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
CheckReturn - Analyze the return values of a function, returning true if the return can be performed ...
LLVM_ABI void AnalyzeReturn(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeReturn - Analyze the returned values of a return, incorporating info about the result values i...
void rewindByValRegsInfo()
unsigned getInRegsParamsProcessed() const
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd)
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
unsigned getInRegsParamsCount() const
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
LocInfo getLocInfo() const
int64_t getLocMemOffset() const
unsigned getValNo() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
Value * getCalledOperand() const
AttributeList getAttributes() const
Return the attributes for this call.
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
const APFloat & getValueAPF() const
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
int64_t getSExtValue() const
This is an important base class in LLVM.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
MaybeAlign getStackAlignment() const
Returns the natural stack alignment, or MaybeAlign() if one wasn't specified.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
LLVM_ABI Align getPreferredAlign(const GlobalVariable *GV) const
Returns the preferred alignment of the specified global.
StringRef getPrivateGlobalPrefix() const
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
iterator find(const_arg_type_t< KeyT > Val)
Implements a dense probed hash-table based set.
Diagnostic information for unsupported feature in backend.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
A handy container for a FunctionType+Callee-pointer pair, which can be passed around as a single enti...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Type * getParamType(unsigned i) const
Parameter type accessors.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
bool hasStructRetAttr() const
Determine if the function returns a structure through first or second pointer argument.
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
const GlobalValue * getGlobal() const
bool hasExternalWeakLinkage() const
bool hasDLLImportStorageClass() const
Module * getParent()
Get the module that this global value is contained inside of...
bool isStrongDefinitionForLinker() const
Returns true if this global's definition will be the one chosen by the linker.
@ InternalLinkage
Rename collisions when linking (static functions).
Common base class shared among various IRBuilders.
Value * CreateZExtOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0, const Twine &Name="")
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
BasicBlock * GetInsertBlock() const
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Value * CreateTruncOrBitCast(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
std::optional< unsigned > getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const
Return the cycle for the given class and operand.
bool isEmpty() const
Returns true if there are no itineraries.
LLVM_ABI bool hasAtomicStore() const LLVM_READONLY
Return true if this atomic instruction stores to memory.
Class to represent integer types.
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
static bool LowerToByteSwap(CallInst *CI)
Try to replace a call instruction with a call to a bswap intrinsic.
This is an important class for using LLVM in a threaded context.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
An instruction for reading from memory.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
Describe properties that are true of each instruction in the target description file.
unsigned getSchedClass() const
Return the scheduling class for this instruction.
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
ArrayRef< MCOperandInfo > operands() const
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
int getOperandConstraint(unsigned OpNum, MCOI::OperandConstraint Constraint) const
Returns the value of the specified operand constraint if it is present.
Wrapper class representing physical registers. Should be passed by value.
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
static MVT getFloatingPointVT(unsigned BitWidth)
static auto integer_fixedlen_vector_valuetypes()
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static LLVM_ABI MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
static auto fp_valuetypes()
bool is64BitVector() const
Return true if this is a 64-bit vector type.
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
bool isEHPad() const
Returns true if the block is a landing pad.
LLVM_ABI MachineBasicBlock * getFallThrough(bool JumpToFallThrough=true)
Return the fallthrough block if the block can implicitly transfer control to the block after it by fa...
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI bool canFallThrough()
Return true if the block can implicitly transfer control to the block after it by falling off the end...
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
LLVM_ABI void removeSuccessor(MachineBasicBlock *Succ, bool NormalizeSuccProbs=false)
Remove successor from the successors list of this MachineBasicBlock.
LLVM_ABI MachineBasicBlock * splitAt(MachineInstr &SplitInst, bool UpdateLiveIns=true, LiveIntervals *LIS=nullptr)
Split a basic block into 2 pieces at SplitPoint.
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
LLVM_ABI instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
iterator_range< succ_iterator > successors()
iterator_range< pred_iterator > predecessors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
LLVM_ABI void moveAfter(MachineBasicBlock *NewBefore)
void setIsEHPad(bool V=true)
Indicates the block is a landing pad.
The MachineConstantPool class keeps track of constants referenced by a function which must be spilled...
unsigned getConstantPoolIndex(const Constant *C, Align Alignment)
getConstantPoolIndex - Create a new entry in the constant pool or return an existing one.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
LLVM_ABI void computeMaxCallFrameSize(MachineFunction &MF, std::vector< MachineBasicBlock::iterator > *FrameSDOps=nullptr)
Computes the maximum size of a callframe.
void setAdjustsStack(bool V)
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
bool hasVAStart() const
Returns true if the function calls the llvm.va_start intrinsic.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
int getFunctionContextIndex() const
Return the index for the function context object.
Properties which a MachineFunction may have at a given point in time.
unsigned getFunctionNumber() const
getFunctionNumber - Return a unique ID for the current function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
void push_back(MachineBasicBlock *MBB)
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
MachineConstantPool * getConstantPool()
getConstantPool - Return the constant pool object for the current function.
const MachineFunctionProperties & getProperties() const
Get the function properties.
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned TargetFlags=0) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addConstantPoolIndex(unsigned Idx, int Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addJumpTableIndex(unsigned Idx, unsigned TargetFlags=0) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr reads the specified register.
bool definesRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr fully defines the specified register.
const MachineOperand & getOperand(unsigned i) const
LLVM_ABI unsigned createJumpTableIndex(const std::vector< MachineBasicBlock * > &DestBBs)
createJumpTableIndex - Create a new jump table.
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MONonTemporal
The memory access is non-temporal.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
Flags getFlags() const
Return the raw flags of the source value,.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
static MachineOperand CreateImm(int64_t Val)
Register getReg() const
getReg - Returns the register number.
LLVM_ABI void setIsDef(bool Val=true)
Change a def to a use, or a use to a def.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
This class is used to represent an MLOAD node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
This is an abstract virtual class for memory operations.
Align getBaseAlign() const
Returns alignment and volatility of the memory access.
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
A Module instance is used to store all the information related to an LLVM module.
virtual void print(raw_ostream &OS, const Module *M) const
print - Print out the internal state of the pass.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< use_iterator > uses()
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
bool isPredecessorOf(const SDNode *N) const
Return true if this node is a predecessor of N.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
iterator_range< user_iterator > users()
void setFlags(SDNodeFlags NewFlags)
user_iterator user_begin() const
Provide iteration support to walk over all users of an SDNode.
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
unsigned getNumOperands() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
std::pair< SDValue, SDValue > SplitVectorOperand(const SDNode *N, unsigned OpNo)
Split the node's operand with EXTRACT_SUBVECTOR and return the low/high part.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
void addCallSiteInfo(const SDNode *Node, CallSiteInfo &&CallInfo)
Set CallSiteInfo to be associated with Node.
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
int getSplatIndex() const
ArrayRef< int > getMask() const
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
void reserve(size_type NewNumEntries)
void insert_range(Range &&R)
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
iterator insert(iterator I, T &&Elt)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
This class is used to represent ISD::STORE nodes.
const SDValue & getBasePtr() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
StringRef - Represent a constant reference to a string, i.e.
const unsigned char * bytes_end() const
constexpr size_t size() const
size - Get the string size.
const unsigned char * bytes_begin() const
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
static LLVM_ABI StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
ShiftLegalizationStrategy
Return the preferred strategy to legalize tihs SHIFT instruction, with ExpansionFactor being the recu...
void setMinStackArgumentAlignment(Align Alignment)
Set the minimum stack alignment of an argument.
const TargetMachine & getTargetMachine() const
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
virtual unsigned getMaxSupportedInterleaveFactor() const
Get the maximum supported factor for interleaved memory accesses.
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual ShiftLegalizationStrategy preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
static StringRef getLibcallImplName(RTLIB::LibcallImpl Call)
Get the libcall routine name for the specified libcall implementation.
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
void setLibcallImpl(RTLIB::Libcall Call, RTLIB::LibcallImpl Impl)
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
bool isPositionIndependent() const
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
TLSModel::Model getTLSModel(const GlobalValue *GV) const
Returns the TLS model which should be used for the given global variable.
ExceptionHandling getExceptionModel() const
Return the ExceptionHandling to use, considering TargetOptions and the Triple's default.
const Triple & getTargetTriple() const
bool useEmulatedTLS() const
Returns true if this target uses emulated TLS.
virtual const TargetSubtargetInfo * getSubtargetImpl(const Function &) const
Virtual method implemented by subclasses that returns a reference to that target's TargetSubtargetInf...
unsigned EnableFastISel
EnableFastISel - This flag enables fast-path instruction selection which trades away generated code q...
unsigned GuaranteedTailCallOpt
GuaranteedTailCallOpt - This flag is enabled when -tailcallopt is specified on the commandline.
unsigned EmitCallGraphSection
Emit section containing call graph metadata.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
ObjectFormatType getObjectFormat() const
Get the object format for this triple.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isArrayTy() const
True if this is an instance of ArrayType.
LLVM_ABI void dump() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Type * getArrayElementType() const
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
A Use represents the edge between a Value definition and its users.
User * getUser() const
Returns the User that contains this Use.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
Base class of all SIMD vector types.
Type * getElementType() const
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getFixedValue() const
const ParentTy * getParent() const
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
static CondCodes getOppositeCondition(CondCodes CC)
@ SECREL
Thread Pointer Offset.
@ SBREL
Section Relative (Windows TLS)
@ GOTTPOFF
Global Offset Table, PC Relative.
@ TPOFF
Global Offset Table, Thread Pointer Offset.
TOF
Target Operand Flag enum.
@ MO_NONLAZY
MO_NONLAZY - This is an independent flag, on a symbol operand "FOO" it represents a symbol which,...
@ MO_SBREL
MO_SBREL - On a symbol operand, this represents a static base relative relocation.
@ MO_DLLIMPORT
MO_DLLIMPORT - On a symbol operand, this represents that the reference to the symbol is for an import...
@ MO_GOT
MO_GOT - On a symbol operand, this represents a GOT relative relocation.
@ MO_COFFSTUB
MO_COFFSTUB - On a symbol operand "FOO", this indicates that the reference is actually to the "....
static ShiftOpc getShiftOpcForNode(unsigned Opcode)
int getSOImmVal(unsigned Arg)
getSOImmVal - Given a 32-bit immediate, if it is something that can fit into an shifter_operand immed...
int getFP32Imm(const APInt &Imm)
getFP32Imm - Return an 8-bit floating-point version of the 32-bit floating-point value.
uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits)
decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the element value and the element ...
unsigned getAM2Offset(unsigned AM2Opc)
bool isThumbImmShiftedVal(unsigned V)
isThumbImmShiftedVal - Return true if the specified value can be obtained by left shifting a 8-bit im...
int getT2SOImmVal(unsigned Arg)
getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit into a Thumb-2 shifter_oper...
unsigned createVMOVModImm(unsigned OpCmode, unsigned Val)
int getFP64Imm(const APInt &Imm)
getFP64Imm - Return an 8-bit floating-point version of the 64-bit floating-point value.
int getFP16Imm(const APInt &Imm)
getFP16Imm - Return an 8-bit floating-point version of the 16-bit floating-point value.
unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm)
int getFP32FP16Imm(const APInt &Imm)
If this is a FP16Imm encoded as a fp32 value, return the 8-bit encoding for it.
AddrOpc getAM2Op(unsigned AM2Opc)
bool isBitFieldInvertedMask(unsigned v)
const unsigned FPStatusBits
const unsigned FPReservedBits
const unsigned RoundingBitsPos
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Swift
Calling convention for Swift.
@ ARM_APCS
ARM Procedure Calling Standard (obsolete, but still used on some targets).
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ ARM_AAPCS
ARM Architecture Procedure Calling Standard calling convention (aka EABI).
@ CXX_FAST_TLS
Used for access functions.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
@ ARM_AAPCS_VFP
Same as ARM_AAPCS, but uses hard floating point ABI.
@ C
The default llvm calling convention, compatible with C.
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ SET_FPENV
Sets the current floating-point environment.
@ MLOAD
Masked load and store - consecutive vector load and store operations with additional mask operand tha...
@ EH_SJLJ_LONGJMP
OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer) This corresponds to the eh.sjlj.longjmp intrinsic.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ATOMIC_STORE
OUTCHAIN = ATOMIC_STORE(INCHAIN, val, ptr) This corresponds to "store atomic" instruction.
@ RESET_FPENV
Set floating-point environment to default state.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ SET_FPMODE
Sets the current dynamic floating-point control modes.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ EH_SJLJ_SETUP_DISPATCH
OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN) The target initializes the dispatch table here.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ VECREDUCE_FMAX
FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ ATOMIC_FENCE
OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope) This corresponds to the fence instruction.
@ RESET_FPMODE
Sets default dynamic floating-point control modes.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ FLDEXP
FLDEXP - ldexp, inspired by libm (op0 * 2**op1).
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SET_ROUNDING
Set rounding mode.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ BR
Control flow instructions. These all have token chains.
@ VECREDUCE_FADD
These reductions have relaxed evaluation order semantics, and have a single vector operand.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ PREFETCH
PREFETCH - This corresponds to a prefetch intrinsic.
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ BR_CC
BR_CC - Conditional branch.
@ SSUBO
Same for subtraction.
@ BR_JT
BR_JT - Jumptable branch.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ ATOMIC_LOAD
Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr) This corresponds to "load atomic" instruction.
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ VECREDUCE_ADD
Integer reductions may have a result type larger than the vector element type.
@ GET_ROUNDING
Returns current rounding mode: -1 Undefined 0 Round to 0 1 Round to nearest, ties to even 2 Round to ...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ GET_FPMODE
Reads the current dynamic floating-point control modes.
@ GET_FPENV
Gets the current floating-point environment.
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ ATOMIC_CMP_SWAP
Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap) For double-word atomic operations: ValLo,...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ SMULO
Same for multiplication.
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ BF16_TO_FP
BF16_TO_FP, FP_TO_BF16 - These operators are used to perform promotions and truncation for bfloat16.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ READCYCLECOUNTER
READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ ATOMIC_SWAP
Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt) Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN,...
@ FFREXP
FFREXP - frexp, extract fractional and exponent component of a floating-point value.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ SPONENTRY
SPONENTRY - Represents the llvm.sponentry intrinsic.
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ EH_SJLJ_SETJMP
RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer) This corresponds to the eh.sjlj....
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ BRCOND
BRCOND - Conditional branch.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
static const int LAST_INDEXED_MODE
bool isNormalLoad(const SDNode *N)
Returns true if the specified node is a non-extending and unindexed load.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOUINT(EVT OpVT, EVT RetVT)
getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPEXT(EVT OpVT, EVT RetVT)
getFPEXT - Return the FPEXT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Define
Register definition.
@ Kill
The last use of a register.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
bool RetFastCC_ARM_APCS(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
void stable_sort(R &&Range)
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
bool HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, const ARMSubtarget *Subtarget, bool ForCodesize=false)
Returns true if Val1 has a lower Constant Materialization Cost than Val2.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
bool isStrongerThanMonotonic(AtomicOrdering AO)
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
bool CC_ARM_AAPCS(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
constexpr bool isMask_32(uint32_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
@ SjLj
setjmp/longjmp based exceptions
bool RetCC_ARM_AAPCS_VFP(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
bool RetCC_ARM_APCS(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
bool RetCC_ARM_AAPCS(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
LLVM_ABI Value * concatenateVectors(IRBuilderBase &Builder, ArrayRef< Value * > Vecs)
Concatenate a list of vectors.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
void shuffle(Iterator first, Iterator last, RNG &&g)
bool CC_ARM_APCS_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
static std::array< MachineOperand, 2 > predOps(ARMCC::CondCodes Pred, unsigned PredReg=0)
Get the operands corresponding to the given Pred value.
constexpr bool isShiftedMask_32(uint32_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (32 bit ver...
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
bool isReleaseOrStronger(AtomicOrdering AO)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool FastCC_ARM_APCS(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
ComplexDeinterleavingOperation
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool CC_ARM_Win32_CFGuard_Check(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
AtomicOrdering
Atomic ordering for LLVM's memory model.
ComplexDeinterleavingRotation
unsigned ConstantMaterializationCost(unsigned Val, const ARMSubtarget *Subtarget, bool ForCodesize=false)
Returns the number of instructions required to materialize the given constant in a register,...
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
DWARFExpression::Operation Op
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr U AbsoluteValue(T X)
Return the absolute value of a signed integer, converted to the corresponding unsigned integer type.
bool isAcquireOrStronger(AtomicOrdering AO)
constexpr unsigned BitWidth
static MachineOperand t1CondCodeOp(bool isDead=false)
Get the operand corresponding to the conditional code result for Thumb1.
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
constexpr bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
static MachineOperand condCodeOp(unsigned CCReg=0)
Get the operand corresponding to the conditional code result.
bool isVREVMask(ArrayRef< int > M, EVT VT, unsigned BlockSize)
isVREVMask - Check if a vector shuffle corresponds to a VREV instruction with the specified blocksize...
unsigned gettBLXrOpcode(const MachineFunction &MF)
bool CC_ARM_APCS(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
bool CC_ARM_AAPCS_VFP(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
LLVM_ABI llvm::SmallVector< int, 16 > createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs)
Create a sequential shuffle mask.
unsigned convertAddSubFlagsOpcode(unsigned OldOpc)
Map pseudo instructions that imply an 'S' bit onto real opcodes.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
static const unsigned PerfectShuffleTable[6561+1]
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Load/store instruction that can be merged with a base address update.
SDNode * N
Instruction that updates a pointer.
unsigned ConstInc
Pointer increment value if it is a constant, or 0 otherwise.
SDValue Inc
Pointer increment operand.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
static constexpr roundingMode rmTowardZero
This struct is a compact representation of a valid (non-zero power of two) alignment.
uint64_t value() const
This is a hole in the type system and should not be abused.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
EVT getDoubleNumVectorElementsVT(LLVMContext &Context) const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
static EVT getFloatingPointVT(unsigned BitWidth)
Returns the EVT that represents a floating-point type with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
bool is64BitVector() const
Return true if this is a 64-bit vector type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
bool isUnknown() const
Returns true if we don't know any bits.
unsigned getBitWidth() const
Get the bit width of this value.
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
APInt getSignedMinValue() const
Return the minimal signed value possible given these KnownBits.
SmallVector< ArgRegPair, 1 > ArgRegPairs
Vector of call argument and its forwarding register.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getJumpTable(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a jump table entry.
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoSignedZeros() const
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This contains information for each constraint that we are lowering.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setInRegister(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
SmallVector< ISD::InputArg, 32 > Ins
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
bool isAfterLegalizeDAG() const
LLVM_ABI void AddToWorklist(SDNode *N)
bool isCalledByLegalizer() const
bool isBeforeLegalize() const
LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)