LLVM 22.0.0git
AssignmentTrackingAnalysis.cpp
Go to the documentation of this file.
1//===-- AssignmentTrackingAnalysis.cpp ------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
11#include "llvm/ADT/BitVector.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/Statistic.h"
19#include "llvm/IR/BasicBlock.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/DebugInfo.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/Instruction.h"
26#include "llvm/IR/Intrinsics.h"
27#include "llvm/IR/Module.h"
28#include "llvm/IR/PassManager.h"
29#include "llvm/IR/PrintPasses.h"
35#include <assert.h>
36#include <cstdint>
37#include <optional>
38#include <queue>
39#include <sstream>
40#include <unordered_map>
41
42using namespace llvm;
43#define DEBUG_TYPE "debug-ata"
44
45STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
46STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
47STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
48STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
49
51 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
52 cl::desc("Maximum num basic blocks before debug info dropped"),
54/// Option for debugging the pass, determines if the memory location fragment
55/// filling happens after generating the variable locations.
56static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
58/// Print the results of the analysis. Respects -filter-print-funcs.
59static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
61
62/// Coalesce adjacent dbg locs describing memory locations that have contiguous
63/// fragments. This reduces the cost of LiveDebugValues which does SSA
64/// construction for each explicitly stated variable fragment.
66 CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden);
67
68// Implicit conversions are disabled for enum class types, so unfortunately we
69// need to create a DenseMapInfo wrapper around the specified underlying type.
70template <> struct llvm::DenseMapInfo<VariableID> {
72 static inline VariableID getEmptyKey() {
73 return static_cast<VariableID>(Wrapped::getEmptyKey());
74 }
75 static inline VariableID getTombstoneKey() {
76 return static_cast<VariableID>(Wrapped::getTombstoneKey());
77 }
78 static unsigned getHashValue(const VariableID &Val) {
79 return Wrapped::getHashValue(static_cast<unsigned>(Val));
80 }
81 static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
82 return LHS == RHS;
83 }
84};
85
87
88namespace std {
89template <> struct hash<VarLocInsertPt> {
91 using result_type = std::size_t;
92
94 return std::hash<void *>()(Arg.getOpaqueValue());
95 }
96};
97} // namespace std
98
99/// Helper class to build FunctionVarLocs, since that class isn't easy to
100/// modify. TODO: There's not a great deal of value in the split, it could be
101/// worth merging the two classes.
103 friend FunctionVarLocs;
105 // Use an unordered_map so we don't invalidate iterators after
106 // insert/modifications.
107 std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst;
108
109 SmallVector<VarLocInfo> SingleLocVars;
110
111public:
112 unsigned getNumVariables() const { return Variables.size(); }
113
114 /// Find or insert \p V and return the ID.
116 return static_cast<VariableID>(Variables.insert(V));
117 }
118
119 /// Get a variable from its \p ID.
121 return Variables[static_cast<unsigned>(ID)];
122 }
123
124 /// Return ptr to wedge of defs or nullptr if no defs come just before /p
125 /// Before.
127 auto R = VarLocsBeforeInst.find(Before);
128 if (R == VarLocsBeforeInst.end())
129 return nullptr;
130 return &R->second;
131 }
132
133 /// Replace the defs that come just before /p Before with /p Wedge.
135 VarLocsBeforeInst[Before] = std::move(Wedge);
136 }
137
138 /// Add a def for a variable that is valid for its lifetime.
141 VarLocInfo VarLoc;
142 VarLoc.VariableID = insertVariable(Var);
143 VarLoc.Expr = Expr;
144 VarLoc.DL = DL;
145 VarLoc.Values = R;
146 SingleLocVars.emplace_back(VarLoc);
147 }
148
149 /// Add a def to the wedge of defs just before /p Before.
152 VarLocInfo VarLoc;
153 VarLoc.VariableID = insertVariable(Var);
154 VarLoc.Expr = Expr;
155 VarLoc.DL = DL;
156 VarLoc.Values = R;
157 VarLocsBeforeInst[Before].emplace_back(VarLoc);
158 }
159};
160
162 // Print the variable table first. TODO: Sorting by variable could make the
163 // output more stable?
164 unsigned Counter = -1;
165 OS << "=== Variables ===\n";
166 for (const DebugVariable &V : Variables) {
167 ++Counter;
168 // Skip first entry because it is a dummy entry.
169 if (Counter == 0) {
170 continue;
171 }
172 OS << "[" << Counter << "] " << V.getVariable()->getName();
173 if (auto F = V.getFragment())
174 OS << " bits [" << F->OffsetInBits << ", "
175 << F->OffsetInBits + F->SizeInBits << ")";
176 if (const auto *IA = V.getInlinedAt())
177 OS << " inlined-at " << *IA;
178 OS << "\n";
179 }
180
181 auto PrintLoc = [&OS](const VarLocInfo &Loc) {
182 OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
183 << " Expr=" << *Loc.Expr << " Values=(";
184 for (auto *Op : Loc.Values.location_ops()) {
185 errs() << Op->getName() << " ";
186 }
187 errs() << ")\n";
188 };
189
190 // Print the single location variables.
191 OS << "=== Single location vars ===\n";
192 for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
193 ++It) {
194 PrintLoc(*It);
195 }
196
197 // Print the non-single-location defs in line with IR.
198 OS << "=== In-line variable defs ===";
199 for (const BasicBlock &BB : Fn) {
200 OS << "\n" << BB.getName() << ":\n";
201 for (const Instruction &I : BB) {
202 for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
203 PrintLoc(*It);
204 }
205 OS << I << "\n";
206 }
207 }
208}
209
211 // Add the single-location variables first.
212 for (const auto &VarLoc : Builder.SingleLocVars)
213 VarLocRecords.emplace_back(VarLoc);
214 // Mark the end of the section.
215 SingleVarLocEnd = VarLocRecords.size();
216
217 // Insert a contiguous block of VarLocInfos for each instruction, mapping it
218 // to the start and end position in the vector with VarLocsBeforeInst. This
219 // block includes VarLocs for any DbgVariableRecords attached to that
220 // instruction.
221 for (auto &P : Builder.VarLocsBeforeInst) {
222 // Process VarLocs attached to a DbgRecord alongside their marker
223 // Instruction.
224 if (isa<const DbgRecord *>(P.first))
225 continue;
226 const Instruction *I = cast<const Instruction *>(P.first);
227 unsigned BlockStart = VarLocRecords.size();
228 // Any VarLocInfos attached to a DbgRecord should now be remapped to their
229 // marker Instruction, in order of DbgRecord appearance and prior to any
230 // VarLocInfos attached directly to that instruction.
231 for (const DbgVariableRecord &DVR : filterDbgVars(I->getDbgRecordRange())) {
232 // Even though DVR defines a variable location, VarLocsBeforeInst can
233 // still be empty if that VarLoc was redundant.
234 auto It = Builder.VarLocsBeforeInst.find(&DVR);
235 if (It == Builder.VarLocsBeforeInst.end())
236 continue;
237 for (const VarLocInfo &VarLoc : It->second)
238 VarLocRecords.emplace_back(VarLoc);
239 }
240 for (const VarLocInfo &VarLoc : P.second)
241 VarLocRecords.emplace_back(VarLoc);
242 unsigned BlockEnd = VarLocRecords.size();
243 // Record the start and end indices.
244 if (BlockEnd != BlockStart)
245 VarLocsBeforeInst[I] = {BlockStart, BlockEnd};
246 }
247
248 // Copy the Variables vector from the builder's UniqueVector.
249 assert(Variables.empty() && "Expect clear before init");
250 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
251 // are one-based) so reserve an extra and insert a dummy.
252 Variables.reserve(Builder.Variables.size() + 1);
253 Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
254 Variables.append(Builder.Variables.begin(), Builder.Variables.end());
255}
256
258 Variables.clear();
259 VarLocRecords.clear();
260 VarLocsBeforeInst.clear();
261 SingleVarLocEnd = 0;
262}
263
264/// Walk backwards along constant GEPs and bitcasts to the base storage from \p
265/// Start as far as possible. Prepend \Expression with the offset and append it
266/// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
267/// value and modified expression.
268static std::pair<Value *, DIExpression *>
271 APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
272 Value *End =
273 Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
275 if (OffsetInBytes.getBoolValue()) {
276 Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
278 Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
279 }
280 Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
281 return {End, Expression};
282}
283
284/// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
285/// doesn't explicitly describe a memory location with DW_OP_deref or if the
286/// expression is too complex to interpret.
287static std::optional<int64_t>
289 int64_t Offset = 0;
290 const unsigned NumElements = DIExpr->getNumElements();
291 const auto Elements = DIExpr->getElements();
292 unsigned ExpectedDerefIdx = 0;
293 // Extract the offset.
294 if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
295 Offset = Elements[1];
296 ExpectedDerefIdx = 2;
297 } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
298 ExpectedDerefIdx = 3;
299 if (Elements[2] == dwarf::DW_OP_plus)
300 Offset = Elements[1];
301 else if (Elements[2] == dwarf::DW_OP_minus)
302 Offset = -Elements[1];
303 else
304 return std::nullopt;
305 }
306
307 // If that's all there is it means there's no deref.
308 if (ExpectedDerefIdx >= NumElements)
309 return std::nullopt;
310
311 // Check the next element is DW_OP_deref - otherwise this is too complex or
312 // isn't a deref expression.
313 if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref)
314 return std::nullopt;
315
316 // Check the final operation is either the DW_OP_deref or is a fragment.
317 if (NumElements == ExpectedDerefIdx + 1)
318 return Offset; // Ends with deref.
319 unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1;
320 unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2;
321 if (NumElements == ExpectedFragFinalIdx + 1 &&
322 Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment)
323 return Offset; // Ends with deref + fragment.
324
325 // Don't bother trying to interpret anything more complex.
326 return std::nullopt;
327}
328
329/// A whole (unfragmented) source variable.
330using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
332 return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
333}
334
336 // Enabling fragment coalescing reduces compiler run time when instruction
337 // referencing is enabled. However, it may cause LiveDebugVariables to create
338 // incorrect locations. Since instruction-referencing mode effectively
339 // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
340 // has not been explicitly set and instruction-referencing is turned on.
343 return debuginfoShouldUseDebugInstrRef(F.getParent()->getTargetTriple());
345 return true;
347 return false;
348 }
349 llvm_unreachable("Unknown boolOrDefault value");
350}
351
352namespace {
353/// In dwarf emission, the following sequence
354/// 1. dbg.value ... Fragment(0, 64)
355/// 2. dbg.value ... Fragment(0, 32)
356/// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
357/// the intersection of the fragments to having "no location"). This makes
358/// sense for implicit location values because splitting the computed values
359/// could be troublesome, and is probably quite uncommon. When we convert
360/// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
361/// a location (memory) rather than a value means we don't need to worry about
362/// splitting any values, so we try to recover the rest of the fragment
363/// location here.
364/// This class performs a(nother) dataflow analysis over the function, adding
365/// variable locations so that any bits of a variable with a memory location
366/// have that location explicitly reinstated at each subsequent variable
367/// location definition that that doesn't overwrite those bits. i.e. after a
368/// variable location def, insert new defs for the memory location with
369/// fragments for the difference of "all bits currently in memory" and "the
370/// fragment of the second def".
371class MemLocFragmentFill {
372 Function &Fn;
373 FunctionVarLocsBuilder *FnVarLocs;
374 const DenseSet<DebugAggregate> *VarsWithStackSlot;
375 bool CoalesceAdjacentFragments;
376
377 // 0 = no memory location.
378 using BaseAddress = unsigned;
379 using OffsetInBitsTy = unsigned;
381 using FragsInMemMap = IntervalMap<
382 OffsetInBitsTy, BaseAddress,
384 FragTraits>;
385 FragsInMemMap::Allocator IntervalMapAlloc;
386 using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
387
388 /// IDs for memory location base addresses in maps. Use 0 to indicate that
389 /// there's no memory location.
394
395 struct FragMemLoc {
396 unsigned Var;
397 unsigned Base;
398 unsigned OffsetInBits;
399 unsigned SizeInBits;
400 DebugLoc DL;
401 };
403
404 /// BBInsertBeforeMap holds a description for the set of location defs to be
405 /// inserted after the analysis is complete. It is updated during the dataflow
406 /// and the entry for a block is CLEARED each time it is (re-)visited. After
407 /// the dataflow is complete, each block entry will contain the set of defs
408 /// calculated during the final (fixed-point) iteration.
410
411 static bool intervalMapsAreEqual(const FragsInMemMap &A,
412 const FragsInMemMap &B) {
413 auto AIt = A.begin(), AEnd = A.end();
414 auto BIt = B.begin(), BEnd = B.end();
415 for (; AIt != AEnd; ++AIt, ++BIt) {
416 if (BIt == BEnd)
417 return false; // B has fewer elements than A.
418 if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
419 return false; // Interval is different.
420 if (*AIt != *BIt)
421 return false; // Value at interval is different.
422 }
423 // AIt == AEnd. Check BIt is also now at end.
424 return BIt == BEnd;
425 }
426
427 static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
428 if (A.size() != B.size())
429 return false;
430 for (const auto &APair : A) {
431 auto BIt = B.find(APair.first);
432 if (BIt == B.end())
433 return false;
434 if (!intervalMapsAreEqual(APair.second, BIt->second))
435 return false;
436 }
437 return true;
438 }
439
440 /// Return a string for the value that \p BaseID represents.
441 std::string toString(unsigned BaseID) {
442 if (BaseID)
443 return Bases[BaseID].getVariableLocationOp(0)->getName().str();
444 else
445 return "None";
446 }
447
448 /// Format string describing an FragsInMemMap (IntervalMap) interval.
449 std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
450 std::string String;
451 std::stringstream S(String);
452 if (It.valid()) {
453 S << "[" << It.start() << ", " << It.stop()
454 << "): " << toString(It.value());
455 } else {
456 S << "invalid iterator (end)";
457 }
458 if (Newline)
459 S << "\n";
460 return S.str();
461 };
462
463 FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
464 FragsInMemMap Result(IntervalMapAlloc);
465 for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
466 LLVM_DEBUG(dbgs() << "a " << toString(AIt));
467 // This is basically copied from process() and inverted (process is
468 // performing something like a union whereas this is more of an
469 // intersect).
470
471 // There's no work to do if interval `a` overlaps no fragments in map `B`.
472 if (!B.overlaps(AIt.start(), AIt.stop()))
473 continue;
474
475 // Does StartBit intersect an existing fragment?
476 auto FirstOverlap = B.find(AIt.start());
477 assert(FirstOverlap != B.end());
478 bool IntersectStart = FirstOverlap.start() < AIt.start();
479 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
480 << ", IntersectStart: " << IntersectStart << "\n");
481
482 // Does EndBit intersect an existing fragment?
483 auto LastOverlap = B.find(AIt.stop());
484 bool IntersectEnd =
485 LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
486 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
487 << ", IntersectEnd: " << IntersectEnd << "\n");
488
489 // Check if both ends of `a` intersect the same interval `b`.
490 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
491 // Insert `a` (`a` is contained in `b`) if the values match.
492 // [ a ]
493 // [ - b - ]
494 // -
495 // [ r ]
496 LLVM_DEBUG(dbgs() << "- a is contained within "
497 << toString(FirstOverlap));
498 if (*AIt && *AIt == *FirstOverlap)
499 Result.insert(AIt.start(), AIt.stop(), *AIt);
500 } else {
501 // There's an overlap but `a` is not fully contained within
502 // `b`. Shorten any end-point intersections.
503 // [ - a - ]
504 // [ - b - ]
505 // -
506 // [ r ]
507 auto Next = FirstOverlap;
508 if (IntersectStart) {
509 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
510 << toString(FirstOverlap));
511 if (*AIt && *AIt == *FirstOverlap)
512 Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
513 ++Next;
514 }
515 // [ - a - ]
516 // [ - b - ]
517 // -
518 // [ r ]
519 if (IntersectEnd) {
520 LLVM_DEBUG(dbgs() << "- insert intersection of a and "
521 << toString(LastOverlap));
522 if (*AIt && *AIt == *LastOverlap)
523 Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
524 }
525
526 // Insert all intervals in map `B` that are contained within interval
527 // `a` where the values match.
528 // [ - - a - - ]
529 // [ b1 ] [ b2 ]
530 // -
531 // [ r1 ] [ r2 ]
532 while (Next != B.end() && Next.start() < AIt.stop() &&
533 Next.stop() <= AIt.stop()) {
535 << "- insert intersection of a and " << toString(Next));
536 if (*AIt && *AIt == *Next)
537 Result.insert(Next.start(), Next.stop(), *Next);
538 ++Next;
539 }
540 }
541 }
542 return Result;
543 }
544
545 /// Meet \p A and \p B, storing the result in \p A.
546 void meetVars(VarFragMap &A, const VarFragMap &B) {
547 // Meet A and B.
548 //
549 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
550 for (auto It = A.begin(), End = A.end(); It != End; ++It) {
551 unsigned AVar = It->first;
552 FragsInMemMap &AFrags = It->second;
553 auto BIt = B.find(AVar);
554 if (BIt == B.end()) {
555 A.erase(It);
556 continue; // Var has no bits defined in B.
557 }
558 LLVM_DEBUG(dbgs() << "meet fragment maps for "
559 << Aggregates[AVar].first->getName() << "\n");
560 AFrags = meetFragments(AFrags, BIt->second);
561 }
562 }
563
564 bool meet(const BasicBlock &BB,
565 const SmallPtrSet<BasicBlock *, 16> &Visited) {
566 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
567 << "\n");
568
569 VarFragMap BBLiveIn;
570 bool FirstMeet = true;
571 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
572 // locs.
573 for (const BasicBlock *Pred : predecessors(&BB)) {
574 // Ignore preds that haven't been processed yet. This is essentially the
575 // same as initialising all variables to implicit top value (⊤) which is
576 // the identity value for the meet operation.
577 if (!Visited.count(Pred))
578 continue;
579
580 auto PredLiveOut = LiveOut.find(Pred);
581 assert(PredLiveOut != LiveOut.end());
582
583 if (FirstMeet) {
584 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
585 BBLiveIn = PredLiveOut->second;
586 FirstMeet = false;
587 } else {
588 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
589 << "\n");
590 meetVars(BBLiveIn, PredLiveOut->second);
591 }
592
593 // An empty set is ⊥ for the intersect-like meet operation. If we've
594 // already got ⊥ there's no need to run the code - we know the result is
595 // ⊥ since `meet(a, ⊥) = ⊥`.
596 if (BBLiveIn.size() == 0)
597 break;
598 }
599
600 // If there's no LiveIn entry for the block yet, add it.
601 auto [CurrentLiveInEntry, Inserted] = LiveIn.try_emplace(&BB);
602 if (Inserted) {
603 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
604 << "\n");
605 CurrentLiveInEntry->second = std::move(BBLiveIn);
606 return /*Changed=*/true;
607 }
608
609 // If the LiveIn set has changed (expensive check) update it and return
610 // true.
611 if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
612 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
613 CurrentLiveInEntry->second = std::move(BBLiveIn);
614 return /*Changed=*/true;
615 }
616
617 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
618 return /*Changed=*/false;
619 }
620
621 void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
622 unsigned StartBit, unsigned EndBit, unsigned Base,
623 DebugLoc DL) {
624 assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
625 if (!Base)
626 return;
627 FragMemLoc Loc;
628 Loc.Var = Var;
629 Loc.OffsetInBits = StartBit;
630 Loc.SizeInBits = EndBit - StartBit;
631 assert(Base && "Expected a non-zero ID for Base address");
632 Loc.Base = Base;
633 Loc.DL = DL;
634 BBInsertBeforeMap[&BB][Before].push_back(Loc);
635 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
636 << " bits [" << StartBit << ", " << EndBit << ")\n");
637 }
638
639 /// Inserts a new dbg def if the interval found when looking up \p StartBit
640 /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
641 /// indicates - assuming StartBit->EndBit has just been inserted - that the
642 /// slice has been coalesced in the map).
643 void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
644 unsigned StartBit, unsigned EndBit, unsigned Base,
645 DebugLoc DL, const FragsInMemMap &FragMap) {
646 if (!CoalesceAdjacentFragments)
647 return;
648 // We've inserted the location into the map. The map will have coalesced
649 // adjacent intervals (variable fragments) that describe the same memory
650 // location. Use this knowledge to insert a debug location that describes
651 // that coalesced fragment. This may eclipse other locs we've just
652 // inserted. This is okay as redundant locs will be cleaned up later.
653 auto CoalescedFrag = FragMap.find(StartBit);
654 // Bail if no coalescing has taken place.
655 if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit)
656 return;
657
658 LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start()
659 << " to " << CoalescedFrag.stop() << "\n");
660 insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(),
661 Base, DL);
662 }
663
664 void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB,
665 VarFragMap &LiveSet) {
666 DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
667 if (skipVariable(DbgVar.getVariable()))
668 return;
669 // Don't bother doing anything for this variables if we know it's fully
670 // promoted. We're only interested in variables that (sometimes) live on
671 // the stack here.
672 if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
673 return;
674 unsigned Var = Aggregates.insert(
675 DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
676
677 // [StartBit: EndBit) are the bits affected by this def.
678 const DIExpression *DIExpr = VarLoc.Expr;
679 unsigned StartBit;
680 unsigned EndBit;
681 if (auto Frag = DIExpr->getFragmentInfo()) {
682 StartBit = Frag->OffsetInBits;
683 EndBit = StartBit + Frag->SizeInBits;
684 } else {
685 assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
686 StartBit = 0;
687 EndBit = *DbgVar.getVariable()->getSizeInBits();
688 }
689
690 // We will only fill fragments for simple memory-describing dbg.value
691 // intrinsics. If the fragment offset is the same as the offset from the
692 // base pointer, do The Thing, otherwise fall back to normal dbg.value
693 // behaviour. AssignmentTrackingLowering has generated DIExpressions
694 // written in terms of the base pointer.
695 // TODO: Remove this condition since the fragment offset doesn't always
696 // equal the offset from base pointer (e.g. for a SROA-split variable).
697 const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
698 const unsigned Base =
699 DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
700 ? Bases.insert(VarLoc.Values)
701 : 0;
702 LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
703 << StartBit << ", " << EndBit << "): " << toString(Base)
704 << "\n");
705
706 // First of all, any locs that use mem that are disrupted need reinstating.
707 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
708 // with existing intervals so this code involves a lot of fiddling around
709 // with intervals to do that manually.
710 auto FragIt = LiveSet.find(Var);
711
712 // Check if the variable does not exist in the map.
713 if (FragIt == LiveSet.end()) {
714 // Add this variable to the BB map.
715 auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
716 assert(P.second && "Var already in map?");
717 // Add the interval to the fragment map.
718 P.first->second.insert(StartBit, EndBit, Base);
719 return;
720 }
721 // The variable has an entry in the map.
722
723 FragsInMemMap &FragMap = FragIt->second;
724 // First check the easy case: the new fragment `f` doesn't overlap with any
725 // intervals.
726 if (!FragMap.overlaps(StartBit, EndBit)) {
727 LLVM_DEBUG(dbgs() << "- No overlaps\n");
728 FragMap.insert(StartBit, EndBit, Base);
729 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
730 FragMap);
731 return;
732 }
733 // There is at least one overlap.
734
735 // Does StartBit intersect an existing fragment?
736 auto FirstOverlap = FragMap.find(StartBit);
737 assert(FirstOverlap != FragMap.end());
738 bool IntersectStart = FirstOverlap.start() < StartBit;
739
740 // Does EndBit intersect an existing fragment?
741 auto LastOverlap = FragMap.find(EndBit);
742 bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
743
744 // Check if both ends of `f` intersect the same interval `i`.
745 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
746 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
747 // Shorten `i` so that there's space to insert `f`.
748 // [ f ]
749 // [ - i - ]
750 // +
751 // [ i ][ f ][ i ]
752
753 // Save values for use after inserting a new interval.
754 auto EndBitOfOverlap = FirstOverlap.stop();
755 unsigned OverlapValue = FirstOverlap.value();
756
757 // Shorten the overlapping interval.
758 FirstOverlap.setStop(StartBit);
759 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
760 OverlapValue, VarLoc.DL);
761
762 // Insert a new interval to represent the end part.
763 FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
764 insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
765 VarLoc.DL);
766
767 // Insert the new (middle) fragment now there is space.
768 FragMap.insert(StartBit, EndBit, Base);
769 } else {
770 // There's an overlap but `f` may not be fully contained within
771 // `i`. Shorten any end-point intersections so that we can then
772 // insert `f`.
773 // [ - f - ]
774 // [ - i - ]
775 // | |
776 // [ i ]
777 // Shorten any end-point intersections.
778 if (IntersectStart) {
779 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
780 // Split off at the intersection.
781 FirstOverlap.setStop(StartBit);
782 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
783 *FirstOverlap, VarLoc.DL);
784 }
785 // [ - f - ]
786 // [ - i - ]
787 // | |
788 // [ i ]
789 if (IntersectEnd) {
790 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
791 // Split off at the intersection.
792 LastOverlap.setStart(EndBit);
793 insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
794 VarLoc.DL);
795 }
796
797 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
798 // FirstOverlap and LastOverlap have been shortened such that they're
799 // no longer overlapping with [StartBit, EndBit). Delete any overlaps
800 // that remain (these will be fully contained within `f`).
801 // [ - f - ] }
802 // [ - i - ] } Intersection shortening that has happened above.
803 // | | }
804 // [ i ] }
805 // -----------------
806 // [i2 ] } Intervals fully contained within `f` get erased.
807 // -----------------
808 // [ - f - ][ i ] } Completed insertion.
809 auto It = FirstOverlap;
810 if (IntersectStart)
811 ++It; // IntersectStart: first overlap has been shortened.
812 while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
813 LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
814 It.erase(); // This increments It after removing the interval.
815 }
816 // We've dealt with all the overlaps now!
817 assert(!FragMap.overlaps(StartBit, EndBit));
818 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
819 FragMap.insert(StartBit, EndBit, Base);
820 }
821
822 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
823 FragMap);
824 }
825
826 bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
827
828 void process(BasicBlock &BB, VarFragMap &LiveSet) {
829 BBInsertBeforeMap[&BB].clear();
830 for (auto &I : BB) {
831 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
832 if (const auto *Locs = FnVarLocs->getWedge(&DVR)) {
833 for (const VarLocInfo &Loc : *Locs) {
834 addDef(Loc, &DVR, *I.getParent(), LiveSet);
835 }
836 }
837 }
838 if (const auto *Locs = FnVarLocs->getWedge(&I)) {
839 for (const VarLocInfo &Loc : *Locs) {
840 addDef(Loc, &I, *I.getParent(), LiveSet);
841 }
842 }
843 }
844 }
845
846public:
847 MemLocFragmentFill(Function &Fn,
848 const DenseSet<DebugAggregate> *VarsWithStackSlot,
849 bool CoalesceAdjacentFragments)
850 : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot),
851 CoalesceAdjacentFragments(CoalesceAdjacentFragments) {}
852
853 /// Add variable locations to \p FnVarLocs so that any bits of a variable
854 /// with a memory location have that location explicitly reinstated at each
855 /// subsequent variable location definition that that doesn't overwrite those
856 /// bits. i.e. after a variable location def, insert new defs for the memory
857 /// location with fragments for the difference of "all bits currently in
858 /// memory" and "the fragment of the second def". e.g.
859 ///
860 /// Before:
861 ///
862 /// var x bits 0 to 63: value in memory
863 /// more instructions
864 /// var x bits 0 to 31: value is %0
865 ///
866 /// After:
867 ///
868 /// var x bits 0 to 63: value in memory
869 /// more instructions
870 /// var x bits 0 to 31: value is %0
871 /// var x bits 32 to 61: value in memory ; <-- new loc def
872 ///
873 void run(FunctionVarLocsBuilder *FnVarLocs) {
875 return;
876
877 this->FnVarLocs = FnVarLocs;
878
879 // Prepare for traversal.
880 //
882 std::priority_queue<unsigned int, std::vector<unsigned int>,
883 std::greater<unsigned int>>
884 Worklist;
885 std::priority_queue<unsigned int, std::vector<unsigned int>,
886 std::greater<unsigned int>>
887 Pending;
890 { // Init OrderToBB and BBToOrder.
891 unsigned int RPONumber = 0;
892 for (BasicBlock *BB : RPOT) {
893 OrderToBB[RPONumber] = BB;
894 BBToOrder[BB] = RPONumber;
895 Worklist.push(RPONumber);
896 ++RPONumber;
897 }
898 LiveIn.reserve(RPONumber);
899 LiveOut.reserve(RPONumber);
900 }
901
902 // Perform the traversal.
903 //
904 // This is a standard "intersect of predecessor outs" dataflow problem. To
905 // solve it, we perform meet() and process() using the two worklist method
906 // until the LiveIn data for each block becomes unchanging.
907 //
908 // This dataflow is essentially working on maps of sets and at each meet we
909 // intersect the maps and the mapped sets. So, initialized live-in maps
910 // monotonically decrease in value throughout the dataflow.
912 while (!Worklist.empty() || !Pending.empty()) {
913 // We track what is on the pending worklist to avoid inserting the same
914 // thing twice. We could avoid this with a custom priority queue, but
915 // this is probably not worth it.
917 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
918 while (!Worklist.empty()) {
919 BasicBlock *BB = OrderToBB[Worklist.top()];
920 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
921 Worklist.pop();
922 bool InChanged = meet(*BB, Visited);
923 // Always consider LiveIn changed on the first visit.
924 InChanged |= Visited.insert(BB).second;
925 if (InChanged) {
927 << BB->getName() << " has new InLocs, process it\n");
928 // Mutate a copy of LiveIn while processing BB. Once we've processed
929 // the terminator LiveSet is the LiveOut set for BB.
930 // This is an expensive copy!
931 VarFragMap LiveSet = LiveIn[BB];
932
933 // Process the instructions in the block.
934 process(*BB, LiveSet);
935
936 // Relatively expensive check: has anything changed in LiveOut for BB?
937 if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
938 LLVM_DEBUG(dbgs() << BB->getName()
939 << " has new OutLocs, add succs to worklist: [ ");
940 LiveOut[BB] = std::move(LiveSet);
941 for (BasicBlock *Succ : successors(BB)) {
942 if (OnPending.insert(Succ).second) {
943 LLVM_DEBUG(dbgs() << Succ->getName() << " ");
944 Pending.push(BBToOrder[Succ]);
945 }
946 }
947 LLVM_DEBUG(dbgs() << "]\n");
948 }
949 }
950 }
951 Worklist.swap(Pending);
952 // At this point, pending must be empty, since it was just the empty
953 // worklist
954 assert(Pending.empty() && "Pending should be empty");
955 }
956
957 // Insert new location defs.
958 for (auto &Pair : BBInsertBeforeMap) {
959 InsertMap &Map = Pair.second;
960 for (auto &Pair : Map) {
961 auto InsertBefore = Pair.first;
962 assert(InsertBefore && "should never be null");
963 auto FragMemLocs = Pair.second;
964 auto &Ctx = Fn.getContext();
965
966 for (auto &FragMemLoc : FragMemLocs) {
967 DIExpression *Expr = DIExpression::get(Ctx, {});
968 if (FragMemLoc.SizeInBits !=
969 *Aggregates[FragMemLoc.Var].first->getSizeInBits())
971 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
973 FragMemLoc.OffsetInBits / 8);
974 DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
975 FragMemLoc.DL.getInlinedAt());
976 FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
977 Bases[FragMemLoc.Base]);
978 }
979 }
980 }
981 }
982};
983
984/// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
985/// that interprets assignment tracking debug info metadata and stores in IR to
986/// create a map of variable locations.
987class AssignmentTrackingLowering {
988public:
989 /// The kind of location in use for a variable, where Mem is the stack home,
990 /// Val is an SSA value or const, and None means that there is not one single
991 /// kind (either because there are multiple or because there is none; it may
992 /// prove useful to split this into two values in the future).
993 ///
994 /// LocKind is a join-semilattice with the partial order:
995 /// None > Mem, Val
996 ///
997 /// i.e.
998 /// join(Mem, Mem) = Mem
999 /// join(Val, Val) = Val
1000 /// join(Mem, Val) = None
1001 /// join(None, Mem) = None
1002 /// join(None, Val) = None
1003 /// join(None, None) = None
1004 ///
1005 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
1006 /// to name assignments and are not tracking the actual stored values.
1007 /// Therefore currently there's no way to ensure that Mem values and Val
1008 /// values are the same. This could be a future extension, though it's not
1009 /// clear that many additional locations would be recovered that way in
1010 /// practice as the likelihood of this sitation arising naturally seems
1011 /// incredibly low.
1012 enum class LocKind { Mem, Val, None };
1013
1014 /// An abstraction of the assignment of a value to a variable or memory
1015 /// location.
1016 ///
1017 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
1018 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
1019 /// can't) know the ID of the last assignment that took place.
1020 ///
1021 /// The Status of the Assignment (Known or NoneOrPhi) is another
1022 /// join-semilattice. The partial order is:
1023 /// NoneOrPhi > Known {id_0, id_1, ...id_N}
1024 ///
1025 /// i.e. for all values x and y where x != y:
1026 /// join(x, x) = x
1027 /// join(x, y) = NoneOrPhi
1028 struct Assignment {
1029 enum S { Known, NoneOrPhi } Status;
1030 /// ID of the assignment. nullptr if Status is not Known.
1031 DIAssignID *ID;
1032 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
1033 /// May be nullptr.
1034 DbgVariableRecord *Source = nullptr;
1035
1036 bool isSameSourceAssignment(const Assignment &Other) const {
1037 // Don't include Source in the equality check. Assignments are
1038 // defined by their ID, not debug intrinsic(s).
1039 return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
1040 }
1041 void dump(raw_ostream &OS) {
1042 static const char *LUT[] = {"Known", "NoneOrPhi"};
1043 OS << LUT[Status] << "(id=";
1044 if (ID)
1045 OS << ID;
1046 else
1047 OS << "null";
1048 OS << ", s=";
1049 if (!Source)
1050 OS << "null";
1051 else
1052 OS << Source;
1053 OS << ")";
1054 }
1055
1056 static Assignment make(DIAssignID *ID, DbgVariableRecord *Source) {
1057 assert((!Source || Source->isDbgAssign()) &&
1058 "Cannot make an assignment from a non-assign DbgVariableRecord");
1059 return Assignment(Known, ID, Source);
1060 }
1061 static Assignment makeFromMemDef(DIAssignID *ID) {
1062 return Assignment(Known, ID);
1063 }
1064 static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr); }
1065 // Again, need a Top value?
1066 Assignment() : Status(NoneOrPhi), ID(nullptr) {} // Can we delete this?
1067 Assignment(S Status, DIAssignID *ID) : Status(Status), ID(ID) {
1068 // If the Status is Known then we expect there to be an assignment ID.
1069 assert(Status == NoneOrPhi || ID);
1070 }
1071 Assignment(S Status, DIAssignID *ID, DbgVariableRecord *Source)
1072 : Status(Status), ID(ID), Source(Source) {
1073 // If the Status is Known then we expect there to be an assignment ID.
1074 assert(Status == NoneOrPhi || ID);
1075 }
1076 };
1077
1078 using AssignmentMap = SmallVector<Assignment>;
1081 using UntaggedStoreAssignmentMap =
1082 DenseMap<const Instruction *,
1084 using UnknownStoreAssignmentMap =
1086
1087private:
1088 /// The highest numbered VariableID for partially promoted variables plus 1,
1089 /// the values for which start at 1.
1090 unsigned TrackedVariablesVectorSize = 0;
1091 /// Map a variable to the set of variables that it fully contains.
1092 OverlapMap VarContains;
1093 /// Map untagged stores to the variable fragments they assign to. Used by
1094 /// processUntaggedInstruction.
1095 UntaggedStoreAssignmentMap UntaggedStoreVars;
1096 /// Map untagged unknown stores (e.g. strided/masked store intrinsics)
1097 /// to the variables they may assign to. Used by processUntaggedInstruction.
1098 UnknownStoreAssignmentMap UnknownStoreVars;
1099
1100 // Machinery to defer inserting dbg.values.
1102 InstInsertMap InsertBeforeMap;
1103 /// Clear the location definitions currently cached for insertion after /p
1104 /// After.
1105 void resetInsertionPoint(Instruction &After);
1106 void resetInsertionPoint(DbgVariableRecord &After);
1107
1108 void emitDbgValue(LocKind Kind, DbgVariableRecord *, VarLocInsertPt After);
1109
1110 static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A,
1111 const AssignmentMap &B) {
1112 return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) {
1113 return A[VarID].isSameSourceAssignment(B[VarID]);
1114 });
1115 }
1116
1117 /// Represents the stack and debug assignments in a block. Used to describe
1118 /// the live-in and live-out values for blocks, as well as the "current"
1119 /// value as we process each instruction in a block.
1120 struct BlockInfo {
1121 /// The set of variables (VariableID) being tracked in this block.
1122 BitVector VariableIDsInBlock;
1123 /// Dominating assignment to memory for each variable, indexed by
1124 /// VariableID.
1125 AssignmentMap StackHomeValue;
1126 /// Dominating assignemnt to each variable, indexed by VariableID.
1127 AssignmentMap DebugValue;
1128 /// Location kind for each variable. LiveLoc indicates whether the
1129 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1130 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1131 /// preference. This cannot be derived by inspecting DebugValue and
1132 /// StackHomeValue due to the fact that there's no distinction in
1133 /// Assignment (the class) between whether an assignment is unknown or a
1134 /// merge of multiple assignments (both are Status::NoneOrPhi). In other
1135 /// words, the memory location may well be valid while both DebugValue and
1136 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1137 /// Indexed by VariableID.
1138 LocMap LiveLoc;
1139
1140 public:
1141 enum AssignmentKind { Stack, Debug };
1142 const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const {
1143 switch (Kind) {
1144 case Stack:
1145 return StackHomeValue;
1146 case Debug:
1147 return DebugValue;
1148 }
1149 llvm_unreachable("Unknown AssignmentKind");
1150 }
1151 AssignmentMap &getAssignmentMap(AssignmentKind Kind) {
1152 return const_cast<AssignmentMap &>(
1153 const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind));
1154 }
1155
1156 bool isVariableTracked(VariableID Var) const {
1157 return VariableIDsInBlock[static_cast<unsigned>(Var)];
1158 }
1159
1160 const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const {
1161 assert(isVariableTracked(Var) && "Var not tracked in block");
1162 return getAssignmentMap(Kind)[static_cast<unsigned>(Var)];
1163 }
1164
1165 LocKind getLocKind(VariableID Var) const {
1166 assert(isVariableTracked(Var) && "Var not tracked in block");
1167 return LiveLoc[static_cast<unsigned>(Var)];
1168 }
1169
1170 /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
1171 /// fragments contained win \p Var.
1172 void setLocKind(VariableID Var, LocKind K) {
1173 VariableIDsInBlock.set(static_cast<unsigned>(Var));
1174 LiveLoc[static_cast<unsigned>(Var)] = K;
1175 }
1176
1177 /// Set the assignment in the \p Kind assignment map for \p Var only: does
1178 /// not set the assignment for VariableIDs of fragments contained win \p
1179 /// Var.
1180 void setAssignment(AssignmentKind Kind, VariableID Var,
1181 const Assignment &AV) {
1182 VariableIDsInBlock.set(static_cast<unsigned>(Var));
1183 getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV;
1184 }
1185
1186 /// Return true if there is an assignment matching \p AV in the \p Kind
1187 /// assignment map. Does consider assignments for VariableIDs of fragments
1188 /// contained win \p Var.
1189 bool hasAssignment(AssignmentKind Kind, VariableID Var,
1190 const Assignment &AV) const {
1191 if (!isVariableTracked(Var))
1192 return false;
1193 return AV.isSameSourceAssignment(getAssignment(Kind, Var));
1194 }
1195
1196 /// Compare every element in each map to determine structural equality
1197 /// (slow).
1198 bool operator==(const BlockInfo &Other) const {
1199 return VariableIDsInBlock == Other.VariableIDsInBlock &&
1200 LiveLoc == Other.LiveLoc &&
1201 mapsAreEqual(VariableIDsInBlock, StackHomeValue,
1202 Other.StackHomeValue) &&
1203 mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue);
1204 }
1205 bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
1206 bool isValid() {
1207 return LiveLoc.size() == DebugValue.size() &&
1208 LiveLoc.size() == StackHomeValue.size();
1209 }
1210
1211 /// Clear everything and initialise with ⊤-values for all variables.
1212 void init(int NumVars) {
1213 StackHomeValue.clear();
1214 DebugValue.clear();
1215 LiveLoc.clear();
1216 VariableIDsInBlock = BitVector(NumVars);
1217 StackHomeValue.insert(StackHomeValue.begin(), NumVars,
1218 Assignment::makeNoneOrPhi());
1219 DebugValue.insert(DebugValue.begin(), NumVars,
1220 Assignment::makeNoneOrPhi());
1221 LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None);
1222 }
1223
1224 /// Helper for join.
1225 template <typename ElmtType, typename FnInputType>
1226 static void joinElmt(int Index, SmallVector<ElmtType> &Target,
1227 const SmallVector<ElmtType> &A,
1228 const SmallVector<ElmtType> &B,
1229 ElmtType (*Fn)(FnInputType, FnInputType)) {
1230 Target[Index] = Fn(A[Index], B[Index]);
1231 }
1232
1233 /// See comment for AssignmentTrackingLowering::joinBlockInfo.
1234 static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) {
1235 // Join A and B.
1236 //
1237 // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
1238 // Difference = join(x, ⊤) for x where Var(x) is in A xor B
1239 // Join = Intersect ∪ Difference
1240 //
1241 // This is achieved by performing a join on elements from A and B with
1242 // variables common to both A and B (join elements indexed by var
1243 // intersect), then adding ⊤-value elements for vars in A xor B. The
1244 // latter part is equivalent to performing join on elements with variables
1245 // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤.
1246 // BlockInfo::init initializes all variable entries to the ⊤ value so we
1247 // don't need to explicitly perform that step as Join.VariableIDsInBlock
1248 // is set to the union of the variables in A and B at the end of this
1249 // function.
1250 BlockInfo Join;
1251 Join.init(NumVars);
1252
1253 BitVector Intersect = A.VariableIDsInBlock;
1254 Intersect &= B.VariableIDsInBlock;
1255
1256 for (auto VarID : Intersect.set_bits()) {
1257 joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind);
1258 joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue,
1259 joinAssignment);
1260 joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue,
1261 joinAssignment);
1262 }
1263
1264 Join.VariableIDsInBlock = A.VariableIDsInBlock;
1265 Join.VariableIDsInBlock |= B.VariableIDsInBlock;
1266 assert(Join.isValid());
1267 return Join;
1268 }
1269 };
1270
1271 Function &Fn;
1272 const DataLayout &Layout;
1273 const DenseSet<DebugAggregate> *VarsWithStackSlot;
1274 FunctionVarLocsBuilder *FnVarLocs;
1277
1278 /// Helper for process methods to track variables touched each frame.
1279 DenseSet<VariableID> VarsTouchedThisFrame;
1280
1281 /// The set of variables that sometimes are not located in their stack home.
1282 DenseSet<DebugAggregate> NotAlwaysStackHomed;
1283
1284 VariableID getVariableID(const DebugVariable &Var) {
1285 return FnVarLocs->insertVariable(Var);
1286 }
1287
1288 /// Join the LiveOut values of preds that are contained in \p Visited into
1289 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1290 /// values monotonically increase. See the @link joinMethods join methods
1291 /// @endlink documentation for more info.
1292 bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
1293 ///@name joinMethods
1294 /// Functions that implement `join` (the least upper bound) for the
1295 /// join-semilattice types used in the dataflow. There is an explicit bottom
1296 /// value (⊥) for some types and and explicit top value (⊤) for all types.
1297 /// By definition:
1298 ///
1299 /// Join(A, B) >= A && Join(A, B) >= B
1300 /// Join(A, ⊥) = A
1301 /// Join(A, ⊤) = ⊤
1302 ///
1303 /// These invariants are important for monotonicity.
1304 ///
1305 /// For the map-type functions, all unmapped keys in an empty map are
1306 /// associated with a bottom value (⊥). This represents their values being
1307 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1308 /// only present in one) represents either a variable going out of scope or
1309 /// dropped debug info. It is assumed the key is associated with a top value
1310 /// (⊤) in this case (unknown location / assignment).
1311 ///@{
1312 static LocKind joinKind(LocKind A, LocKind B);
1313 static Assignment joinAssignment(const Assignment &A, const Assignment &B);
1314 BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
1315 ///@}
1316
1317 /// Process the instructions in \p BB updating \p LiveSet along the way. \p
1318 /// LiveSet must be initialized with the current live-in locations before
1319 /// calling this.
1320 void process(BasicBlock &BB, BlockInfo *LiveSet);
1321 ///@name processMethods
1322 /// Methods to process instructions in order to update the LiveSet (current
1323 /// location information).
1324 ///@{
1325 void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
1326 /// Update \p LiveSet after encountering an instruction with a DIAssignID
1327 /// attachment, \p I.
1328 void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1329 /// Update \p LiveSet after encountering an instruciton without a DIAssignID
1330 /// attachment, \p I.
1331 void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1332 void processUnknownStoreToVariable(Instruction &I, VariableID &Var,
1333 BlockInfo *LiveSet);
1334 void processDbgAssign(DbgVariableRecord *Assign, BlockInfo *LiveSet);
1335 void processDbgVariableRecord(DbgVariableRecord &DVR, BlockInfo *LiveSet);
1336 void processDbgValue(DbgVariableRecord *DbgValue, BlockInfo *LiveSet);
1337 /// Add an assignment to memory for the variable /p Var.
1338 void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1339 /// Add an assignment to the variable /p Var.
1340 void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1341 ///@}
1342
1343 /// Set the LocKind for \p Var.
1344 void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
1345 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1346 /// have been called for \p Var first.
1347 LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
1348 /// Return true if \p Var has an assignment in \p M matching \p AV.
1349 bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind,
1350 VariableID Var, const Assignment &AV);
1351 /// Return the set of VariableIDs corresponding the fragments contained fully
1352 /// within the variable/fragment \p Var.
1353 ArrayRef<VariableID> getContainedFragments(VariableID Var) const;
1354
1355 /// Mark \p Var as having been touched this frame. Note, this applies only
1356 /// to the exact fragment \p Var and not to any fragments contained within.
1357 void touchFragment(VariableID Var);
1358
1359 /// Emit info for variables that are fully promoted.
1360 bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
1361
1362public:
1363 AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
1364 const DenseSet<DebugAggregate> *VarsWithStackSlot)
1365 : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
1366 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1367 /// true if any variable locations have been added to FnVarLocs.
1368 bool run(FunctionVarLocsBuilder *FnVarLocs);
1369};
1370} // namespace
1371
1373AssignmentTrackingLowering::getContainedFragments(VariableID Var) const {
1374 auto R = VarContains.find(Var);
1375 if (R == VarContains.end())
1376 return {};
1377 return R->second;
1378}
1379
1380void AssignmentTrackingLowering::touchFragment(VariableID Var) {
1381 VarsTouchedThisFrame.insert(Var);
1382}
1383
1384void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
1385 LocKind K) {
1386 auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
1387 LiveSet->setLocKind(Var, K);
1388 touchFragment(Var);
1389 };
1390 SetKind(LiveSet, Var, K);
1391
1392 // Update the LocKind for all fragments contained within Var.
1393 for (VariableID Frag : getContainedFragments(Var))
1394 SetKind(LiveSet, Frag, K);
1395}
1396
1397AssignmentTrackingLowering::LocKind
1398AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
1399 return LiveSet->getLocKind(Var);
1400}
1401
1402void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
1403 const Assignment &AV) {
1404 LiveSet->setAssignment(BlockInfo::Stack, Var, AV);
1405
1406 // Use this assignment for all fragments contained within Var, but do not
1407 // provide a Source because we cannot convert Var's value to a value for the
1408 // fragment.
1409 Assignment FragAV = AV;
1410 FragAV.Source = nullptr;
1411 for (VariableID Frag : getContainedFragments(Var))
1412 LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV);
1413}
1414
1415void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
1416 const Assignment &AV) {
1417 LiveSet->setAssignment(BlockInfo::Debug, Var, AV);
1418
1419 // Use this assignment for all fragments contained within Var, but do not
1420 // provide a Source because we cannot convert Var's value to a value for the
1421 // fragment.
1422 Assignment FragAV = AV;
1423 FragAV.Source = nullptr;
1424 for (VariableID Frag : getContainedFragments(Var))
1425 LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV);
1426}
1427
1429 return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
1430}
1431
1433 assert(DVR.isDbgAssign() &&
1434 "Cannot get a DIAssignID from a non-assign DbgVariableRecord!");
1435 return DVR.getAssignID();
1436}
1437
1438/// Return true if \p Var has an assignment in \p M matching \p AV.
1439bool AssignmentTrackingLowering::hasVarWithAssignment(
1440 BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var,
1441 const Assignment &AV) {
1442 if (!LiveSet->hasAssignment(Kind, Var, AV))
1443 return false;
1444
1445 // Check all the frags contained within Var as these will have all been
1446 // mapped to AV at the last store to Var.
1447 for (VariableID Frag : getContainedFragments(Var))
1448 if (!LiveSet->hasAssignment(Kind, Frag, AV))
1449 return false;
1450 return true;
1451}
1452
1453#ifndef NDEBUG
1454const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
1455 using LocKind = AssignmentTrackingLowering::LocKind;
1456 switch (Loc) {
1457 case LocKind::Val:
1458 return "Val";
1459 case LocKind::Mem:
1460 return "Mem";
1461 case LocKind::None:
1462 return "None";
1463 };
1464 llvm_unreachable("unknown LocKind");
1465}
1466#endif
1467
1469 auto NextIt = ++(DVR->getIterator());
1470 if (NextIt == DVR->getMarker()->getDbgRecordRange().end())
1471 return DVR->getMarker()->MarkedInstr;
1472 return &*NextIt;
1473}
1475 const Instruction *Next = Inst->getNextNode();
1476 if (!Next->hasDbgRecords())
1477 return Next;
1478 return &*Next->getDbgRecordRange().begin();
1479}
1481 if (isa<const Instruction *>(InsertPt))
1482 return getNextNode(cast<const Instruction *>(InsertPt));
1483 return getNextNode(cast<const DbgRecord *>(InsertPt));
1484}
1485
1486void AssignmentTrackingLowering::emitDbgValue(
1487 AssignmentTrackingLowering::LocKind Kind, DbgVariableRecord *Source,
1488 VarLocInsertPt After) {
1489
1490 DILocation *DL = Source->getDebugLoc();
1491 auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) {
1492 assert(Expr);
1493 if (!Val)
1495 PoisonValue::get(Type::getInt1Ty(Source->getContext())));
1496
1497 // Find a suitable insert point.
1498 auto InsertBefore = getNextNode(After);
1499 assert(InsertBefore && "Shouldn't be inserting after a terminator");
1500
1501 VariableID Var = getVariableID(DebugVariable(Source));
1502 VarLocInfo VarLoc;
1503 VarLoc.VariableID = Var;
1504 VarLoc.Expr = Expr;
1505 VarLoc.Values = RawLocationWrapper(Val);
1506 VarLoc.DL = DL;
1507 // Insert it into the map for later.
1508 InsertBeforeMap[InsertBefore].push_back(VarLoc);
1509 };
1510
1511 // NOTE: This block can mutate Kind.
1512 if (Kind == LocKind::Mem) {
1513 assert(Source->isDbgAssign());
1515 // Check the address hasn't been dropped (e.g. the debug uses may not have
1516 // been replaced before deleting a Value).
1517 if (Assign->isKillAddress()) {
1518 // The address isn't valid so treat this as a non-memory def.
1519 Kind = LocKind::Val;
1520 } else {
1521 Value *Val = Assign->getAddress();
1522 DIExpression *Expr = Assign->getAddressExpression();
1523 assert(!Expr->getFragmentInfo() &&
1524 "fragment info should be stored in value-expression only");
1525 // Copy the fragment info over from the value-expression to the new
1526 // DIExpression.
1527 if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
1528 auto FragInfo = *OptFragInfo;
1530 Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
1531 }
1532 // The address-expression has an implicit deref, add it now.
1533 std::tie(Val, Expr) =
1534 walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
1535 Emit(ValueAsMetadata::get(Val), Expr);
1536 return;
1537 }
1538 }
1539
1540 if (Kind == LocKind::Val) {
1541 Emit(Source->getRawLocation(), Source->getExpression());
1542 return;
1543 }
1544
1545 if (Kind == LocKind::None) {
1546 Emit(nullptr, Source->getExpression());
1547 return;
1548 }
1549}
1550
1551void AssignmentTrackingLowering::processNonDbgInstruction(
1552 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1553 if (I.hasMetadata(LLVMContext::MD_DIAssignID))
1554 processTaggedInstruction(I, LiveSet);
1555 else
1556 processUntaggedInstruction(I, LiveSet);
1557}
1558
1559void AssignmentTrackingLowering::processUnknownStoreToVariable(
1560 Instruction &I, VariableID &Var, BlockInfo *LiveSet) {
1561 // We may have assigned to some unknown fragment of the variable, so
1562 // treat the memory assignment as unknown for now.
1563 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1564 // If we weren't already using a memory location, we don't need to do
1565 // anything more.
1566 if (getLocKind(LiveSet, Var) != LocKind::Mem)
1567 return;
1568 // If there is a live debug value for this variable, fall back to using
1569 // that.
1570 Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var);
1571 if (DbgAV.Status != Assignment::NoneOrPhi && DbgAV.Source) {
1572 LLVM_DEBUG(dbgs() << "Switching to fallback debug value: ";
1573 DbgAV.dump(dbgs()); dbgs() << "\n");
1574 setLocKind(LiveSet, Var, LocKind::Val);
1575 emitDbgValue(LocKind::Val, DbgAV.Source, &I);
1576 return;
1577 }
1578 // Otherwise, find a suitable insert point, before the next instruction or
1579 // DbgRecord after I.
1580 auto InsertBefore = getNextNode(&I);
1581 assert(InsertBefore && "Shouldn't be inserting after a terminator");
1582
1583 // Get DILocation for this assignment.
1584 DebugVariable V = FnVarLocs->getVariable(Var);
1585 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
1586 const DILocation *DILoc = DILocation::get(
1587 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
1588
1589 VarLocInfo VarLoc;
1590 VarLoc.VariableID = Var;
1591 VarLoc.Expr = DIExpression::get(I.getContext(), {});
1592 VarLoc.Values = RawLocationWrapper(
1594 VarLoc.DL = DILoc;
1595 InsertBeforeMap[InsertBefore].push_back(VarLoc);
1596}
1597
1598void AssignmentTrackingLowering::processUntaggedInstruction(
1599 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1600 // Interpret stack stores that are not tagged as an assignment in memory for
1601 // the variables associated with that address. These stores may not be tagged
1602 // because a) the store cannot be represented using dbg.assigns (non-const
1603 // length or offset) or b) the tag was accidentally dropped during
1604 // optimisations. For these stores we fall back to assuming that the stack
1605 // home is a valid location for the variables. The benefit is that this
1606 // prevents us missing an assignment and therefore incorrectly maintaining
1607 // earlier location definitions, and in many cases it should be a reasonable
1608 // assumption. However, this will occasionally lead to slight
1609 // inaccuracies. The value of a hoisted untagged store will be visible
1610 // "early", for example.
1611 assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
1612 auto It = UntaggedStoreVars.find(&I);
1613 if (It == UntaggedStoreVars.end()) {
1614 // It is possible that we have an untagged unknown store, i.e. one that
1615 // cannot be represented as a simple (base, offset, size) - in this case we
1616 // should undef the memory location of the variable, as if we had a tagged
1617 // store that did not match the current assignment.
1618 // FIXME: It should be possible to support these stores, but it would
1619 // require more extensive changes to our representation of assignments.
1620 if (auto UnhandledStoreIt = UnknownStoreVars.find(&I);
1621 UnhandledStoreIt != UnknownStoreVars.end()) {
1622 LLVM_DEBUG(dbgs() << "Processing untagged unknown store " << I << "\n");
1623 for (auto &Var : UnhandledStoreIt->second)
1624 processUnknownStoreToVariable(I, Var, LiveSet);
1625 }
1626 return; // No variables associated with the store destination.
1627 }
1628
1629 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1630 << "\n");
1631 // Iterate over the variables that this store affects, add a NoneOrPhi dbg
1632 // and mem def, set lockind to Mem, and emit a location def for each.
1633 for (auto [Var, Info] : It->second) {
1634 // This instruction is treated as both a debug and memory assignment,
1635 // meaning the memory location should be used. We don't have an assignment
1636 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1637 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1638 addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1639 setLocKind(LiveSet, Var, LocKind::Mem);
1640 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem)
1641 << "\n");
1642 // Build the dbg location def to insert.
1643 //
1644 // DIExpression: Add fragment and offset.
1645 DebugVariable V = FnVarLocs->getVariable(Var);
1646 DIExpression *DIE = DIExpression::get(I.getContext(), {});
1647 if (auto Frag = V.getFragment()) {
1648 auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
1649 Frag->SizeInBits);
1650 assert(R && "unexpected createFragmentExpression failure");
1651 DIE = *R;
1652 }
1654 if (Info.OffsetInBits)
1655 Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
1656 Ops.push_back(dwarf::DW_OP_deref);
1657 DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
1658 /*EntryValue=*/false);
1659 // Find a suitable insert point, before the next instruction or DbgRecord
1660 // after I.
1661 auto InsertBefore = getNextNode(&I);
1662 assert(InsertBefore && "Shouldn't be inserting after a terminator");
1663
1664 // Get DILocation for this unrecorded assignment.
1665 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
1666 const DILocation *DILoc = DILocation::get(
1667 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
1668
1669 VarLocInfo VarLoc;
1670 VarLoc.VariableID = static_cast<VariableID>(Var);
1671 VarLoc.Expr = DIE;
1672 VarLoc.Values = RawLocationWrapper(
1673 ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base)));
1674 VarLoc.DL = DILoc;
1675 // 3. Insert it into the map for later.
1676 InsertBeforeMap[InsertBefore].push_back(VarLoc);
1677 }
1678}
1679
1680void AssignmentTrackingLowering::processTaggedInstruction(
1681 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1682 auto LinkedDPAssigns = at::getDVRAssignmentMarkers(&I);
1683 // No dbg.assign intrinsics linked.
1684 // FIXME: All vars that have a stack slot this store modifies that don't have
1685 // a dbg.assign linked to it should probably treat this like an untagged
1686 // store.
1687 if (LinkedDPAssigns.empty())
1688 return;
1689
1690 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
1691 for (DbgVariableRecord *Assign : LinkedDPAssigns) {
1692 VariableID Var = getVariableID(DebugVariable(Assign));
1693 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1694 // that is linked to a store.
1695 assert(VarsWithStackSlot->count(getAggregate(Assign)) &&
1696 "expected Assign's variable to have stack slot");
1697
1698 Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
1699 addMemDef(LiveSet, Var, AV);
1700
1701 LLVM_DEBUG(dbgs() << " linked to " << *Assign << "\n");
1702 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1703 << " -> ");
1704
1705 // The last assignment to the stack is now AV. Check if the last debug
1706 // assignment has a matching Assignment.
1707 if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) {
1708 // The StackHomeValue and DebugValue for this variable match so we can
1709 // emit a stack home location here.
1710 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1711 LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
1712 LLVM_DEBUG(dbgs() << " Debug val: ";
1713 LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs());
1714 dbgs() << "\n");
1715 setLocKind(LiveSet, Var, LocKind::Mem);
1716 emitDbgValue(LocKind::Mem, Assign, &I);
1717 return;
1718 }
1719
1720 // The StackHomeValue and DebugValue for this variable do not match. I.e.
1721 // The value currently stored in the stack is not what we'd expect to
1722 // see, so we cannot use emit a stack home location here. Now we will
1723 // look at the live LocKind for the variable and determine an appropriate
1724 // dbg.value to emit.
1725 LocKind PrevLoc = getLocKind(LiveSet, Var);
1726 switch (PrevLoc) {
1727 case LocKind::Val: {
1728 // The value in memory in memory has changed but we're not currently
1729 // using the memory location. Do nothing.
1730 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1731 setLocKind(LiveSet, Var, LocKind::Val);
1732 } break;
1733 case LocKind::Mem: {
1734 // There's been an assignment to memory that we were using as a
1735 // location for this variable, and the Assignment doesn't match what
1736 // we'd expect to see in memory.
1737 Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var);
1738 if (DbgAV.Status == Assignment::NoneOrPhi) {
1739 // We need to terminate any previously open location now.
1740 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1741 setLocKind(LiveSet, Var, LocKind::None);
1742 emitDbgValue(LocKind::None, Assign, &I);
1743 } else {
1744 // The previous DebugValue Value can be used here.
1745 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1746 setLocKind(LiveSet, Var, LocKind::Val);
1747 if (DbgAV.Source) {
1748 emitDbgValue(LocKind::Val, DbgAV.Source, &I);
1749 } else {
1750 // PrevAV.Source is nullptr so we must emit undef here.
1751 emitDbgValue(LocKind::None, Assign, &I);
1752 }
1753 }
1754 } break;
1755 case LocKind::None: {
1756 // There's been an assignment to memory and we currently are
1757 // not tracking a location for the variable. Do not emit anything.
1758 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1759 setLocKind(LiveSet, Var, LocKind::None);
1760 } break;
1761 }
1762 }
1763}
1764
1765void AssignmentTrackingLowering::processDbgAssign(DbgVariableRecord *DbgAssign,
1766 BlockInfo *LiveSet) {
1767 // Only bother tracking variables that are at some point stack homed. Other
1768 // variables can be dealt with trivially later.
1769 if (!VarsWithStackSlot->count(getAggregate(DbgAssign)))
1770 return;
1771
1772 VariableID Var = getVariableID(DebugVariable(DbgAssign));
1773 Assignment AV = Assignment::make(getIDFromMarker(*DbgAssign), DbgAssign);
1774 addDbgDef(LiveSet, Var, AV);
1775
1776 LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign << "\n";);
1777 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1778 << " -> ");
1779
1780 // Check if the DebugValue and StackHomeValue both hold the same
1781 // Assignment.
1782 if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) {
1783 // They match. We can use the stack home because the debug intrinsics
1784 // state that an assignment happened here, and we know that specific
1785 // assignment was the last one to take place in memory for this variable.
1786 LocKind Kind;
1787 if (DbgAssign->isKillAddress()) {
1788 LLVM_DEBUG(
1789 dbgs()
1790 << "Val, Stack matches Debug program but address is killed\n";);
1791 Kind = LocKind::Val;
1792 } else {
1793 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1794 Kind = LocKind::Mem;
1795 };
1796 setLocKind(LiveSet, Var, Kind);
1797 emitDbgValue(Kind, DbgAssign, DbgAssign);
1798 } else {
1799 // The last assignment to the memory location isn't the one that we want
1800 // to show to the user so emit a dbg.value(Value). Value may be undef.
1801 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1802 setLocKind(LiveSet, Var, LocKind::Val);
1803 emitDbgValue(LocKind::Val, DbgAssign, DbgAssign);
1804 }
1805}
1806
1807void AssignmentTrackingLowering::processDbgValue(DbgVariableRecord *DbgValue,
1808 BlockInfo *LiveSet) {
1809 // Only other tracking variables that are at some point stack homed.
1810 // Other variables can be dealt with trivally later.
1811 if (!VarsWithStackSlot->count(getAggregate(DbgValue)))
1812 return;
1813
1814 VariableID Var = getVariableID(DebugVariable(DbgValue));
1815 // We have no ID to create an Assignment with so we mark this assignment as
1816 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1817 // the assignment responsible for setting this value.
1818 // This is fine; dbg.values are essentially interchangable with unlinked
1819 // dbg.assigns, and some passes such as mem2reg and instcombine add them to
1820 // PHIs for promoted variables.
1821 Assignment AV = Assignment::makeNoneOrPhi();
1822 addDbgDef(LiveSet, Var, AV);
1823
1824 LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue << "\n";);
1825 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
1826 << " -> Val, dbg.value override");
1827
1828 setLocKind(LiveSet, Var, LocKind::Val);
1829 emitDbgValue(LocKind::Val, DbgValue, DbgValue);
1830}
1831
1833 if (auto F = DbgValue.getExpression()->getFragmentInfo())
1834 return F->SizeInBits == 0;
1835 return false;
1836}
1837
1838void AssignmentTrackingLowering::processDbgVariableRecord(
1839 DbgVariableRecord &DVR, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1840 // Ignore assignments to zero bits of the variable.
1841 if (hasZeroSizedFragment(DVR))
1842 return;
1843
1844 if (DVR.isDbgAssign())
1845 processDbgAssign(&DVR, LiveSet);
1846 else if (DVR.isDbgValue())
1847 processDbgValue(&DVR, LiveSet);
1848}
1849
1850void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
1851 assert(!After.isTerminator() && "Can't insert after a terminator");
1852 auto *R = InsertBeforeMap.find(getNextNode(&After));
1853 if (R == InsertBeforeMap.end())
1854 return;
1855 R->second.clear();
1856}
1857void AssignmentTrackingLowering::resetInsertionPoint(DbgVariableRecord &After) {
1858 auto *R = InsertBeforeMap.find(getNextNode(&After));
1859 if (R == InsertBeforeMap.end())
1860 return;
1861 R->second.clear();
1862}
1863
1864void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
1865 // If the block starts with DbgRecords, we need to process those DbgRecords as
1866 // their own frame without processing any instructions first.
1867 bool ProcessedLeadingDbgRecords = !BB.begin()->hasDbgRecords();
1868 for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
1869 assert(VarsTouchedThisFrame.empty());
1870 // Process the instructions in "frames". A "frame" includes a single
1871 // non-debug instruction followed any debug instructions before the
1872 // next non-debug instruction.
1873
1874 // Skip the current instruction if it has unprocessed DbgRecords attached
1875 // (see comment above `ProcessedLeadingDbgRecords`).
1876 if (ProcessedLeadingDbgRecords) {
1877 // II is now either a debug intrinsic, a non-debug instruction with no
1878 // attached DbgRecords, or a non-debug instruction with attached processed
1879 // DbgRecords.
1880 // II has not been processed.
1881 if (II->isTerminator())
1882 break;
1883 resetInsertionPoint(*II);
1884 processNonDbgInstruction(*II, LiveSet);
1885 assert(LiveSet->isValid());
1886 ++II;
1887 }
1888 // II is now either a debug intrinsic, a non-debug instruction with no
1889 // attached DbgRecords, or a non-debug instruction with attached unprocessed
1890 // DbgRecords.
1891 if (II != EI && II->hasDbgRecords()) {
1892 // Skip over non-variable debug records (i.e., labels). They're going to
1893 // be read from IR (possibly re-ordering them within the debug record
1894 // range) rather than from the analysis results.
1895 for (DbgVariableRecord &DVR : filterDbgVars(II->getDbgRecordRange())) {
1896 resetInsertionPoint(DVR);
1897 processDbgVariableRecord(DVR, LiveSet);
1898 assert(LiveSet->isValid());
1899 }
1900 }
1901 ProcessedLeadingDbgRecords = true;
1902 // II is now a non-debug instruction either with no attached DbgRecords, or
1903 // with attached processed DbgRecords. II has not been processed, and all
1904 // debug instructions or DbgRecords in the frame preceding II have been
1905 // processed.
1906
1907 // We've processed everything in the "frame". Now determine which variables
1908 // cannot be represented by a dbg.declare.
1909 for (auto Var : VarsTouchedThisFrame) {
1910 LocKind Loc = getLocKind(LiveSet, Var);
1911 // If a variable's LocKind is anything other than LocKind::Mem then we
1912 // must note that it cannot be represented with a dbg.declare.
1913 // Note that this check is enough without having to check the result of
1914 // joins() because for join to produce anything other than Mem after
1915 // we've already seen a Mem we'd be joining None or Val with Mem. In that
1916 // case, we've already hit this codepath when we set the LocKind to Val
1917 // or None in that block.
1918 if (Loc != LocKind::Mem) {
1919 DebugVariable DbgVar = FnVarLocs->getVariable(Var);
1920 DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
1921 NotAlwaysStackHomed.insert(Aggr);
1922 }
1923 }
1924 VarsTouchedThisFrame.clear();
1925 }
1926}
1927
1928AssignmentTrackingLowering::LocKind
1929AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
1930 // Partial order:
1931 // None > Mem, Val
1932 return A == B ? A : LocKind::None;
1933}
1934
1935AssignmentTrackingLowering::Assignment
1936AssignmentTrackingLowering::joinAssignment(const Assignment &A,
1937 const Assignment &B) {
1938 // Partial order:
1939 // NoneOrPhi(null, null) > Known(v, ?s)
1940
1941 // If either are NoneOrPhi the join is NoneOrPhi.
1942 // If either value is different then the result is
1943 // NoneOrPhi (joining two values is a Phi).
1944 if (!A.isSameSourceAssignment(B))
1945 return Assignment::makeNoneOrPhi();
1946 if (A.Status == Assignment::NoneOrPhi)
1947 return Assignment::makeNoneOrPhi();
1948
1949 // Source is used to lookup the value + expression in the debug program if
1950 // the stack slot gets assigned a value earlier than expected. Because
1951 // we're only tracking the one dbg.assign, we can't capture debug PHIs.
1952 // It's unlikely that we're losing out on much coverage by avoiding that
1953 // extra work.
1954 // The Source may differ in this situation:
1955 // Pred.1:
1956 // dbg.assign i32 0, ..., !1, ...
1957 // Pred.2:
1958 // dbg.assign i32 1, ..., !1, ...
1959 // Here the same assignment (!1) was performed in both preds in the source,
1960 // but we can't use either one unless they are identical (e.g. .we don't
1961 // want to arbitrarily pick between constant values).
1962 auto JoinSource = [&]() -> DbgVariableRecord * {
1963 if (A.Source == B.Source)
1964 return A.Source;
1965 if (!A.Source || !B.Source)
1966 return nullptr;
1967 if (A.Source->isEquivalentTo(*B.Source))
1968 return A.Source;
1969 return nullptr;
1970 };
1971 DbgVariableRecord *Source = JoinSource();
1972 assert(A.Status == B.Status && A.Status == Assignment::Known);
1973 assert(A.ID == B.ID);
1974 return Assignment::make(A.ID, Source);
1975}
1976
1977AssignmentTrackingLowering::BlockInfo
1978AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
1979 const BlockInfo &B) {
1980 return BlockInfo::join(A, B, TrackedVariablesVectorSize);
1981}
1982
1983bool AssignmentTrackingLowering::join(
1984 const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
1985
1987 // Ignore backedges if we have not visited the predecessor yet. As the
1988 // predecessor hasn't yet had locations propagated into it, most locations
1989 // will not yet be valid, so treat them as all being uninitialized and
1990 // potentially valid. If a location guessed to be correct here is
1991 // invalidated later, we will remove it when we revisit this block. This
1992 // is essentially the same as initialising all LocKinds and Assignments to
1993 // an implicit ⊥ value which is the identity value for the join operation.
1994 for (const BasicBlock *Pred : predecessors(&BB)) {
1995 if (Visited.count(Pred))
1996 VisitedPreds.push_back(Pred);
1997 }
1998
1999 // No preds visited yet.
2000 if (VisitedPreds.empty()) {
2001 auto It = LiveIn.try_emplace(&BB, BlockInfo());
2002 bool DidInsert = It.second;
2003 if (DidInsert)
2004 It.first->second.init(TrackedVariablesVectorSize);
2005 return /*Changed*/ DidInsert;
2006 }
2007
2008 // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
2009 if (VisitedPreds.size() == 1) {
2010 const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second;
2011
2012 // Check if there isn't an entry, or there is but the LiveIn set has
2013 // changed (expensive check).
2014 auto [CurrentLiveInEntry, Inserted] = LiveIn.try_emplace(&BB, PredLiveOut);
2015 if (Inserted)
2016 return /*Changed*/ true;
2017 if (PredLiveOut != CurrentLiveInEntry->second) {
2018 CurrentLiveInEntry->second = PredLiveOut;
2019 return /*Changed*/ true;
2020 }
2021 return /*Changed*/ false;
2022 }
2023
2024 // More than one pred. Join LiveOuts of blocks 1 and 2.
2025 assert(VisitedPreds.size() > 1);
2026 const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second;
2027 const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second;
2028 BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1);
2029
2030 // Join the LiveOuts of subsequent blocks.
2031 ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2);
2032 for (const BasicBlock *Pred : Tail) {
2033 const auto &PredLiveOut = LiveOut.find(Pred);
2034 assert(PredLiveOut != LiveOut.end() &&
2035 "block should have been processed already");
2036 BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
2037 }
2038
2039 // Save the joined result for BB.
2040 auto CurrentLiveInEntry = LiveIn.find(&BB);
2041 // Check if there isn't an entry, or there is but the LiveIn set has changed
2042 // (expensive check).
2043 if (CurrentLiveInEntry == LiveIn.end())
2044 LiveIn.try_emplace(&BB, std::move(BBLiveIn));
2045 else if (BBLiveIn != CurrentLiveInEntry->second)
2046 CurrentLiveInEntry->second = std::move(BBLiveIn);
2047 else
2048 return /*Changed*/ false;
2049 return /*Changed*/ true;
2050}
2051
2052/// Return true if A fully contains B.
2055 auto ALeft = A.OffsetInBits;
2056 auto BLeft = B.OffsetInBits;
2057 if (BLeft < ALeft)
2058 return false;
2059
2060 auto ARight = ALeft + A.SizeInBits;
2061 auto BRight = BLeft + B.SizeInBits;
2062 if (BRight > ARight)
2063 return false;
2064 return true;
2065}
2066
2067static std::optional<at::AssignmentInfo>
2069 // Don't bother checking if this is an AllocaInst. We know this
2070 // instruction has no tag which means there are no variables associated
2071 // with it.
2072 if (const auto *SI = dyn_cast<StoreInst>(&I))
2073 return at::getAssignmentInfo(Layout, SI);
2074 if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
2075 return at::getAssignmentInfo(Layout, MI);
2076 // Alloca or non-store-like inst.
2077 return std::nullopt;
2078}
2079
2081 auto *II = dyn_cast<IntrinsicInst>(&I);
2082 if (!II)
2083 return nullptr;
2084 Intrinsic::ID ID = II->getIntrinsicID();
2085 if (ID != Intrinsic::experimental_vp_strided_store &&
2086 ID != Intrinsic::masked_store && ID != Intrinsic::vp_scatter &&
2087 ID != Intrinsic::masked_scatter && ID != Intrinsic::vp_store &&
2088 ID != Intrinsic::masked_compressstore)
2089 return nullptr;
2090 Value *MemOp = II->getArgOperand(1);
2091 // We don't actually use the constant offset for now, but we may in future,
2092 // and the non-accumulating versions do not support a vector of pointers.
2093 APInt Offset(Layout.getIndexTypeSizeInBits(MemOp->getType()), 0);
2094 Value *Base = MemOp->stripAndAccumulateConstantOffsets(Layout, Offset, true);
2095 // For Base pointers that are not an alloca instruction we don't need to do
2096 // anything, and simply return nullptr.
2097 return dyn_cast<AllocaInst>(Base);
2098}
2099
2100/// Build a map of {Variable x: Variables y} where all variable fragments
2101/// contained within the variable fragment x are in set y. This means that
2102/// y does not contain all overlaps because partial overlaps are excluded.
2103///
2104/// While we're iterating over the function, add single location defs for
2105/// dbg.declares to \p FnVarLocs.
2106///
2107/// Variables that are interesting to this pass in are added to
2108/// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
2109/// the last interesting variable plus 1, meaning variables with ID 1
2110/// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
2111/// subsequent variables are either stack homed or fully promoted.
2112///
2113/// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
2114/// the stored-to variable fragments, and UnknownStoreVars with a mapping
2115/// of untagged unknown stores to the stored-to variable aggregates.
2116///
2117/// These tasks are bundled together to reduce the number of times we need
2118/// to iterate over the function as they can be achieved together in one pass.
2120 Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
2121 const DenseSet<DebugAggregate> &VarsWithStackSlot,
2124 unsigned &TrackedVariablesVectorSize) {
2126 // Map of Variable: [Fragments].
2128 // Iterate over all instructions:
2129 // - dbg.declare -> add single location variable record
2130 // - dbg.* -> Add fragments to FragmentMap
2131 // - untagged store -> Add fragments to FragmentMap and update
2132 // UntaggedStoreVars, or add to UnknownStoreVars if
2133 // we can't determine the fragment overlap.
2134 // We need to add fragments for untagged stores too so that we can correctly
2135 // clobber overlapped fragment locations later.
2137 auto ProcessDbgRecord = [&](DbgVariableRecord *Record) {
2138 if (Record->isDbgDeclare()) {
2139 DPDeclares.push_back(Record);
2140 return;
2141 }
2143 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2144 if (!VarsWithStackSlot.contains(DA))
2145 return;
2146 if (Seen.insert(DV).second)
2147 FragmentMap[DA].push_back(DV);
2148 };
2149 for (auto &BB : Fn) {
2150 for (auto &I : BB) {
2151 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2152 ProcessDbgRecord(&DVR);
2154 // Find markers linked to this alloca.
2155 auto HandleDbgAssignForStore = [&](DbgVariableRecord *Assign) {
2156 std::optional<DIExpression::FragmentInfo> FragInfo;
2157
2158 // Skip this assignment if the affected bits are outside of the
2159 // variable fragment.
2161 I.getDataLayout(), Info->Base,
2162 Info->OffsetInBits, Info->SizeInBits, Assign, FragInfo) ||
2163 (FragInfo && FragInfo->SizeInBits == 0))
2164 return;
2165
2166 // FragInfo from calculateFragmentIntersect is nullopt if the
2167 // resultant fragment matches DAI's fragment or entire variable - in
2168 // which case copy the fragment info from DAI. If FragInfo is still
2169 // nullopt after the copy it means "no fragment info" instead, which
2170 // is how it is usually interpreted.
2171 if (!FragInfo)
2172 FragInfo = Assign->getExpression()->getFragmentInfo();
2173
2174 DebugVariable DV =
2175 DebugVariable(Assign->getVariable(), FragInfo,
2176 Assign->getDebugLoc().getInlinedAt());
2177 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2178 if (!VarsWithStackSlot.contains(DA))
2179 return;
2180
2181 // Cache this info for later.
2182 UntaggedStoreVars[&I].push_back(
2183 {FnVarLocs->insertVariable(DV), *Info});
2184
2185 if (Seen.insert(DV).second)
2186 FragmentMap[DA].push_back(DV);
2187 };
2189 HandleDbgAssignForStore(DVR);
2190 } else if (auto *AI = getUnknownStore(I, Fn.getDataLayout())) {
2191 // Find markers linked to this alloca.
2192 auto HandleDbgAssignForUnknownStore = [&](DbgVariableRecord *Assign) {
2193 // Because we can't currently represent the fragment info for this
2194 // store, we treat it as an unusable store to the whole variable.
2195 DebugVariable DV =
2196 DebugVariable(Assign->getVariable(), std::nullopt,
2197 Assign->getDebugLoc().getInlinedAt());
2198 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2199 if (!VarsWithStackSlot.contains(DA))
2200 return;
2201
2202 // Cache this info for later.
2203 UnknownStoreVars[&I].push_back(FnVarLocs->insertVariable(DV));
2204 };
2206 HandleDbgAssignForUnknownStore(DVR);
2207 }
2208 }
2209 }
2210
2211 // Sort the fragment map for each DebugAggregate in ascending
2212 // order of fragment size - there should be no duplicates.
2213 for (auto &Pair : FragmentMap) {
2214 SmallVector<DebugVariable, 8> &Frags = Pair.second;
2215 std::sort(Frags.begin(), Frags.end(),
2216 [](const DebugVariable &Next, const DebugVariable &Elmt) {
2217 return Elmt.getFragmentOrDefault().SizeInBits >
2218 Next.getFragmentOrDefault().SizeInBits;
2219 });
2220 // Check for duplicates.
2221 assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end());
2222 }
2223
2224 // Build the map.
2226 for (auto &Pair : FragmentMap) {
2227 auto &Frags = Pair.second;
2228 for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
2229 DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
2230 // Find the frags that this is contained within.
2231 //
2232 // Because Frags is sorted by size and none have the same offset and
2233 // size, we know that this frag can only be contained by subsequent
2234 // elements.
2236 ++OtherIt;
2237 VariableID ThisVar = FnVarLocs->insertVariable(*It);
2238 for (; OtherIt != IEnd; ++OtherIt) {
2239 DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
2240 VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
2241 if (fullyContains(OtherFrag, Frag))
2242 Map[OtherVar].push_back(ThisVar);
2243 }
2244 }
2245 }
2246
2247 // VariableIDs are 1-based so the variable-tracking bitvector needs
2248 // NumVariables plus 1 bits.
2249 TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1;
2250
2251 // Finally, insert the declares afterwards, so the first IDs are all
2252 // partially stack homed vars.
2253 for (auto *DVR : DPDeclares)
2254 FnVarLocs->addSingleLocVar(DebugVariable(DVR), DVR->getExpression(),
2255 DVR->getDebugLoc(),
2257 return Map;
2258}
2259
2260bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
2261 if (Fn.size() > MaxNumBlocks) {
2262 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
2263 << ": too many blocks (" << Fn.size() << ")\n");
2264 at::deleteAll(&Fn);
2265 return false;
2266 }
2267
2268 FnVarLocs = FnVarLocsBuilder;
2269
2270 // The general structure here is inspired by VarLocBasedImpl.cpp
2271 // (LiveDebugValues).
2272
2273 // Build the variable fragment overlap map.
2274 // Note that this pass doesn't handle partial overlaps correctly (FWIW
2275 // neither does LiveDebugVariables) because that is difficult to do and
2276 // appears to be rare occurance.
2278 Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars, UnknownStoreVars,
2279 TrackedVariablesVectorSize);
2280
2281 // Prepare for traversal.
2283 std::priority_queue<unsigned int, std::vector<unsigned int>,
2284 std::greater<unsigned int>>
2285 Worklist;
2286 std::priority_queue<unsigned int, std::vector<unsigned int>,
2287 std::greater<unsigned int>>
2288 Pending;
2291 { // Init OrderToBB and BBToOrder.
2292 unsigned int RPONumber = 0;
2293 for (BasicBlock *BB : RPOT) {
2294 OrderToBB[RPONumber] = BB;
2295 BBToOrder[BB] = RPONumber;
2296 Worklist.push(RPONumber);
2297 ++RPONumber;
2298 }
2299 LiveIn.reserve(RPONumber);
2300 LiveOut.reserve(RPONumber);
2301 }
2302
2303 // Perform the traversal.
2304 //
2305 // This is a standard "union of predecessor outs" dataflow problem. To solve
2306 // it, we perform join() and process() using the two worklist method until
2307 // the LiveIn data for each block becomes unchanging. The "proof" that this
2308 // terminates can be put together by looking at the comments around LocKind,
2309 // Assignment, and the various join methods, which show that all the elements
2310 // involved are made up of join-semilattices; LiveIn(n) can only
2311 // monotonically increase in value throughout the dataflow.
2312 //
2314 while (!Worklist.empty()) {
2315 // We track what is on the pending worklist to avoid inserting the same
2316 // thing twice.
2318 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2319 while (!Worklist.empty()) {
2320 BasicBlock *BB = OrderToBB[Worklist.top()];
2321 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
2322 Worklist.pop();
2323 bool InChanged = join(*BB, Visited);
2324 // Always consider LiveIn changed on the first visit.
2325 InChanged |= Visited.insert(BB).second;
2326 if (InChanged) {
2327 LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
2328 // Mutate a copy of LiveIn while processing BB. After calling process
2329 // LiveSet is the LiveOut set for BB.
2330 BlockInfo LiveSet = LiveIn[BB];
2331
2332 // Process the instructions in the block.
2333 process(*BB, &LiveSet);
2334
2335 // Relatively expensive check: has anything changed in LiveOut for BB?
2336 if (LiveOut[BB] != LiveSet) {
2337 LLVM_DEBUG(dbgs() << BB->getName()
2338 << " has new OutLocs, add succs to worklist: [ ");
2339 LiveOut[BB] = std::move(LiveSet);
2340 for (BasicBlock *Succ : successors(BB)) {
2341 if (OnPending.insert(Succ).second) {
2342 LLVM_DEBUG(dbgs() << Succ->getName() << " ");
2343 Pending.push(BBToOrder[Succ]);
2344 }
2345 }
2346 LLVM_DEBUG(dbgs() << "]\n");
2347 }
2348 }
2349 }
2350 Worklist.swap(Pending);
2351 // At this point, pending must be empty, since it was just the empty
2352 // worklist
2353 assert(Pending.empty() && "Pending should be empty");
2354 }
2355
2356 // That's the hard part over. Now we just have some admin to do.
2357
2358 // Record whether we inserted any intrinsics.
2359 bool InsertedAnyIntrinsics = false;
2360
2361 // Identify and add defs for single location variables.
2362 //
2363 // Go through all of the defs that we plan to add. If the aggregate variable
2364 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2365 // location def and omit the rest. Add an entry to AlwaysStackHomed so that
2366 // we can identify those uneeded defs later.
2367 DenseSet<DebugAggregate> AlwaysStackHomed;
2368 for (const auto &Pair : InsertBeforeMap) {
2369 auto &Vec = Pair.second;
2370 for (VarLocInfo VarLoc : Vec) {
2371 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2372 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2373
2374 // Skip this Var if it's not always stack homed.
2375 if (NotAlwaysStackHomed.contains(Aggr))
2376 continue;
2377
2378 // Skip complex cases such as when different fragments of a variable have
2379 // been split into different allocas. Skipping in this case means falling
2380 // back to using a list of defs (which could reduce coverage, but is no
2381 // less correct).
2382 bool Simple =
2383 VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
2384 if (!Simple) {
2385 NotAlwaysStackHomed.insert(Aggr);
2386 continue;
2387 }
2388
2389 // All source assignments to this variable remain and all stores to any
2390 // part of the variable store to the same address (with varying
2391 // offsets). We can just emit a single location for the whole variable.
2392 //
2393 // Unless we've already done so, create the single location def now.
2394 if (AlwaysStackHomed.insert(Aggr).second) {
2395 assert(!VarLoc.Values.hasArgList());
2396 // TODO: When more complex cases are handled VarLoc.Expr should be
2397 // built appropriately rather than always using an empty DIExpression.
2398 // The assert below is a reminder.
2399 assert(Simple);
2400 VarLoc.Expr = DIExpression::get(Fn.getContext(), {});
2401 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2402 FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values);
2403 InsertedAnyIntrinsics = true;
2404 }
2405 }
2406 }
2407
2408 // Insert the other DEFs.
2409 for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
2411 for (const VarLocInfo &VarLoc : Vec) {
2412 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2413 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2414 // If this variable is always stack homed then we have already inserted a
2415 // dbg.declare and deleted this dbg.value.
2416 if (AlwaysStackHomed.contains(Aggr))
2417 continue;
2418 NewDefs.push_back(VarLoc);
2419 InsertedAnyIntrinsics = true;
2420 }
2421
2422 FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
2423 }
2424
2425 InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
2426
2427 return InsertedAnyIntrinsics;
2428}
2429
2430bool AssignmentTrackingLowering::emitPromotedVarLocs(
2431 FunctionVarLocsBuilder *FnVarLocs) {
2432 bool InsertedAnyIntrinsics = false;
2433 // Go through every block, translating debug intrinsics for fully promoted
2434 // variables into FnVarLocs location defs. No analysis required for these.
2435 auto TranslateDbgRecord = [&](DbgVariableRecord *Record) {
2436 // Skip variables that haven't been promoted - we've dealt with those
2437 // already.
2438 if (VarsWithStackSlot->contains(getAggregate(Record)))
2439 return;
2440 auto InsertBefore = getNextNode(Record);
2441 assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
2442 FnVarLocs->addVarLoc(InsertBefore, DebugVariable(Record),
2443 Record->getExpression(), Record->getDebugLoc(),
2444 RawLocationWrapper(Record->getRawLocation()));
2445 InsertedAnyIntrinsics = true;
2446 };
2447 for (auto &BB : Fn) {
2448 for (auto &I : BB) {
2449 // Skip instructions other than dbg.values and dbg.assigns.
2450 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2451 if (DVR.isDbgValue() || DVR.isDbgAssign())
2452 TranslateDbgRecord(&DVR);
2453 }
2454 }
2455 return InsertedAnyIntrinsics;
2456}
2457
2458/// Remove redundant definitions within sequences of consecutive location defs.
2459/// This is done using a backward scan to keep the last def describing a
2460/// specific variable/fragment.
2461///
2462/// This implements removeRedundantDbgInstrsUsingBackwardScan from
2463/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2464/// FunctionVarLocsBuilder instead of with intrinsics.
2465static bool
2467 FunctionVarLocsBuilder &FnVarLocs) {
2468 bool Changed = false;
2469 SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes;
2470 // Scan over the entire block, not just over the instructions mapped by
2471 // FnVarLocs, because wedges in FnVarLocs may only be separated by debug
2472 // instructions.
2473 for (const Instruction &I : reverse(*BB)) {
2474 // Sequence of consecutive defs ended. Clear map for the next one.
2475 VariableDefinedBytes.clear();
2476
2477 auto HandleLocsForWedge = [&](auto *WedgePosition) {
2478 // Get the location defs that start just before this instruction.
2479 const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2480 if (!Locs)
2481 return;
2482
2483 NumWedgesScanned++;
2484 bool ChangedThisWedge = false;
2485 // The new pruned set of defs, reversed because we're scanning backwards.
2486 SmallVector<VarLocInfo> NewDefsReversed;
2487
2488 // Iterate over the existing defs in reverse.
2489 for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
2490 NumDefsScanned++;
2491 DebugAggregate Aggr =
2492 getAggregate(FnVarLocs.getVariable(RIt->VariableID));
2493 uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0);
2494 uint64_t SizeInBytes = divideCeil(SizeInBits, 8);
2495
2496 // Cutoff for large variables to prevent expensive bitvector operations.
2497 const uint64_t MaxSizeBytes = 2048;
2498
2499 if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) {
2500 // If the size is unknown (0) then keep this location def to be safe.
2501 // Do the same for defs of large variables, which would be expensive
2502 // to represent with a BitVector.
2503 NewDefsReversed.push_back(*RIt);
2504 continue;
2505 }
2506
2507 // Only keep this location definition if it is not fully eclipsed by
2508 // other definitions in this wedge that come after it
2509
2510 // Inert the bytes the location definition defines.
2511 auto InsertResult =
2512 VariableDefinedBytes.try_emplace(Aggr, BitVector(SizeInBytes));
2513 bool FirstDefinition = InsertResult.second;
2514 BitVector &DefinedBytes = InsertResult.first->second;
2515
2517 RIt->Expr->getFragmentInfo().value_or(
2518 DIExpression::FragmentInfo(SizeInBits, 0));
2519 bool InvalidFragment = Fragment.endInBits() > SizeInBits;
2520 uint64_t StartInBytes = Fragment.startInBits() / 8;
2521 uint64_t EndInBytes = divideCeil(Fragment.endInBits(), 8);
2522
2523 // If this defines any previously undefined bytes, keep it.
2524 if (FirstDefinition || InvalidFragment ||
2525 DefinedBytes.find_first_unset_in(StartInBytes, EndInBytes) != -1) {
2526 if (!InvalidFragment)
2527 DefinedBytes.set(StartInBytes, EndInBytes);
2528 NewDefsReversed.push_back(*RIt);
2529 continue;
2530 }
2531
2532 // Redundant def found: throw it away. Since the wedge of defs is being
2533 // rebuilt, doing nothing is the same as deleting an entry.
2534 ChangedThisWedge = true;
2535 NumDefsRemoved++;
2536 }
2537
2538 // Un-reverse the defs and replace the wedge with the pruned version.
2539 if (ChangedThisWedge) {
2540 std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
2541 FnVarLocs.setWedge(WedgePosition, std::move(NewDefsReversed));
2542 NumWedgesChanged++;
2543 Changed = true;
2544 }
2545 };
2546 HandleLocsForWedge(&I);
2547 for (DbgVariableRecord &DVR : reverse(filterDbgVars(I.getDbgRecordRange())))
2548 HandleLocsForWedge(&DVR);
2549 }
2550
2551 return Changed;
2552}
2553
2554/// Remove redundant location defs using a forward scan. This can remove a
2555/// location definition that is redundant due to indicating that a variable has
2556/// the same value as is already being indicated by an earlier def.
2557///
2558/// This implements removeRedundantDbgInstrsUsingForwardScan from
2559/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2560/// FunctionVarLocsBuilder instead of with intrinsics
2561static bool
2563 FunctionVarLocsBuilder &FnVarLocs) {
2564 bool Changed = false;
2566 VariableMap;
2567
2568 // Scan over the entire block, not just over the instructions mapped by
2569 // FnVarLocs, because wedges in FnVarLocs may only be separated by debug
2570 // instructions.
2571 for (const Instruction &I : *BB) {
2572 // Get the defs that come just before this instruction.
2573 auto HandleLocsForWedge = [&](auto *WedgePosition) {
2574 const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2575 if (!Locs)
2576 return;
2577
2578 NumWedgesScanned++;
2579 bool ChangedThisWedge = false;
2580 // The new pruned set of defs.
2582
2583 // Iterate over the existing defs.
2584 for (const VarLocInfo &Loc : *Locs) {
2585 NumDefsScanned++;
2586 DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2587 std::nullopt, Loc.DL.getInlinedAt());
2588 auto [VMI, Inserted] = VariableMap.try_emplace(Key);
2589
2590 // Update the map if we found a new value/expression describing the
2591 // variable, or if the variable wasn't mapped already.
2592 if (Inserted || VMI->second.first != Loc.Values ||
2593 VMI->second.second != Loc.Expr) {
2594 VMI->second = {Loc.Values, Loc.Expr};
2595 NewDefs.push_back(Loc);
2596 continue;
2597 }
2598
2599 // Did not insert this Loc, which is the same as removing it.
2600 ChangedThisWedge = true;
2601 NumDefsRemoved++;
2602 }
2603
2604 // Replace the existing wedge with the pruned version.
2605 if (ChangedThisWedge) {
2606 FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2607 NumWedgesChanged++;
2608 Changed = true;
2609 }
2610 };
2611
2612 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2613 HandleLocsForWedge(&DVR);
2614 HandleLocsForWedge(&I);
2615 }
2616
2617 return Changed;
2618}
2619
2620static bool
2622 FunctionVarLocsBuilder &FnVarLocs) {
2623 assert(BB->isEntryBlock());
2624 // Do extra work to ensure that we remove semantically unimportant undefs.
2625 //
2626 // This is to work around the fact that SelectionDAG will hoist dbg.values
2627 // using argument values to the top of the entry block. That can move arg
2628 // dbg.values before undef and constant dbg.values which they previously
2629 // followed. The easiest thing to do is to just try to feed SelectionDAG
2630 // input it's happy with.
2631 //
2632 // Map of {Variable x: Fragments y} where the fragments y of variable x have
2633 // have at least one non-undef location defined already. Don't use directly,
2634 // instead call DefineBits and HasDefinedBits.
2636 VarsWithDef;
2637 // Specify that V (a fragment of A) has a non-undef location.
2638 auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2639 VarsWithDef[A].insert(V.getFragmentOrDefault());
2640 };
2641 // Return true if a non-undef location has been defined for V (a fragment of
2642 // A). Doesn't imply that the location is currently non-undef, just that a
2643 // non-undef location has been seen previously.
2644 auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2645 auto FragsIt = VarsWithDef.find(A);
2646 if (FragsIt == VarsWithDef.end())
2647 return false;
2648 return llvm::any_of(FragsIt->second, [V](auto Frag) {
2649 return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
2650 });
2651 };
2652
2653 bool Changed = false;
2654
2655 // Scan over the entire block, not just over the instructions mapped by
2656 // FnVarLocs, because wedges in FnVarLocs may only be separated by debug
2657 // instructions.
2658 for (const Instruction &I : *BB) {
2659 // Get the defs that come just before this instruction.
2660 auto HandleLocsForWedge = [&](auto *WedgePosition) {
2661 const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2662 if (!Locs)
2663 return;
2664
2665 NumWedgesScanned++;
2666 bool ChangedThisWedge = false;
2667 // The new pruned set of defs.
2669
2670 // Iterate over the existing defs.
2671 for (const VarLocInfo &Loc : *Locs) {
2672 NumDefsScanned++;
2673 DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2674 Loc.DL.getInlinedAt()};
2675 DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
2676
2677 // Remove undef entries that are encountered before any non-undef
2678 // intrinsics from the entry block.
2679 if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) {
2680 // Did not insert this Loc, which is the same as removing it.
2681 NumDefsRemoved++;
2682 ChangedThisWedge = true;
2683 continue;
2684 }
2685
2686 DefineBits(Aggr, Var);
2687 NewDefs.push_back(Loc);
2688 }
2689
2690 // Replace the existing wedge with the pruned version.
2691 if (ChangedThisWedge) {
2692 FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2693 NumWedgesChanged++;
2694 Changed = true;
2695 }
2696 };
2697 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
2698 HandleLocsForWedge(&DVR);
2699 HandleLocsForWedge(&I);
2700 }
2701
2702 return Changed;
2703}
2704
2706 FunctionVarLocsBuilder &FnVarLocs) {
2707 bool MadeChanges = false;
2708 MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
2709 if (BB->isEntryBlock())
2710 MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
2711 MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
2712
2713 if (MadeChanges)
2714 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
2715 << "\n");
2716 return MadeChanges;
2717}
2718
2721 for (auto &BB : Fn) {
2722 for (auto &I : BB) {
2723 // Any variable linked to an instruction is considered
2724 // interesting. Ideally we only need to check Allocas, however, a
2725 // DIAssignID might get dropped from an alloca but not stores. In that
2726 // case, we need to consider the variable interesting for NFC behaviour
2727 // with this change. TODO: Consider only looking at allocas.
2729 Result.insert({DVR->getVariable(), DVR->getDebugLoc().getInlinedAt()});
2730 }
2731 }
2732 }
2733 return Result;
2734}
2735
2736static void analyzeFunction(Function &Fn, const DataLayout &Layout,
2737 FunctionVarLocsBuilder *FnVarLocs) {
2738 // The analysis will generate location definitions for all variables, but we
2739 // only need to perform a dataflow on the set of variables which have a stack
2740 // slot. Find those now.
2741 DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
2742
2743 bool Changed = false;
2744
2745 // Use a scope block to clean up AssignmentTrackingLowering before running
2746 // MemLocFragmentFill to reduce peak memory consumption.
2747 {
2748 AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
2749 Changed = Pass.run(FnVarLocs);
2750 }
2751
2752 if (Changed) {
2753 MemLocFragmentFill Pass(Fn, &VarsWithStackSlot,
2755 Pass.run(FnVarLocs);
2756
2757 // Remove redundant entries. As well as reducing memory consumption and
2758 // avoiding waiting cycles later by burning some now, this has another
2759 // important job. That is to work around some SelectionDAG quirks. See
2760 // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2761 for (auto &BB : Fn)
2762 removeRedundantDbgLocs(&BB, *FnVarLocs);
2763 }
2764}
2765
2769 if (!isAssignmentTrackingEnabled(*F.getParent()))
2770 return FunctionVarLocs();
2771
2772 auto &DL = F.getDataLayout();
2773
2774 FunctionVarLocsBuilder Builder;
2775 analyzeFunction(F, DL, &Builder);
2776
2777 // Save these results.
2779 Results.init(Builder);
2780 return Results;
2781}
2782
2783AnalysisKey DebugAssignmentTrackingAnalysis::Key;
2784
2789 return PreservedAnalyses::all();
2790}
2791
2793 if (!isAssignmentTrackingEnabled(*F.getParent()))
2794 return false;
2795
2796 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
2797 << "\n");
2798
2799 // Clear previous results.
2800 Results->clear();
2801
2802 FunctionVarLocsBuilder Builder;
2803 analyzeFunction(F, F.getDataLayout(), &Builder);
2804
2805 // Save these results.
2806 Results->init(Builder);
2807
2808 if (PrintResults && isFunctionInPrintList(F.getName()))
2809 Results->print(errs(), F);
2810
2811 // Return false because this pass does not modify the function.
2812 return false;
2813}
2814
2816 : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
2817
2819
2821 "Assignment Tracking Analysis", false, true)
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
std::pair< const DILocalVariable *, const DILocation * > DebugAggregate
A whole (unfragmented) source variable.
VarLocInsertPt getNextNode(const DbgRecord *DVR)
static void analyzeFunction(Function &Fn, const DataLayout &Layout, FunctionVarLocsBuilder *FnVarLocs)
static std::pair< Value *, DIExpression * > walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start, DIExpression *Expression)
Walk backwards along constant GEPs and bitcasts to the base storage from Start as far as possible.
static DenseSet< DebugAggregate > findVarsWithStackSlot(Function &Fn)
static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(Function &Fn, FunctionVarLocsBuilder *FnVarLocs, const DenseSet< DebugAggregate > &VarsWithStackSlot, AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars, AssignmentTrackingLowering::UnknownStoreAssignmentMap &UnknownStoreVars, unsigned &TrackedVariablesVectorSize)
Build a map of {Variable x: Variables y} where all variable fragments contained within the variable f...
static bool fullyContains(DIExpression::FragmentInfo A, DIExpression::FragmentInfo B)
Return true if A fully contains B.
static std::optional< at::AssignmentInfo > getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout)
static bool removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB, FunctionVarLocsBuilder &FnVarLocs)
static cl::opt< bool > PrintResults("print-debug-ata", cl::init(false), cl::Hidden)
Print the results of the analysis. Respects -filter-print-funcs.
const char * locStr(AssignmentTrackingLowering::LocKind Loc)
PointerUnion< const Instruction *, const DbgRecord * > VarLocInsertPt
static bool removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB, FunctionVarLocsBuilder &FnVarLocs)
Remove redundant location defs using a forward scan.
static bool removeRedundantDbgLocs(const BasicBlock *BB, FunctionVarLocsBuilder &FnVarLocs)
static cl::opt< bool > EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true), cl::Hidden)
Option for debugging the pass, determines if the memory location fragment filling happens after gener...
static DIAssignID * getIDFromMarker(const DbgVariableRecord &DVR)
static DebugAggregate getAggregate(const DebugVariable &Var)
static bool hasZeroSizedFragment(DbgVariableRecord &DbgValue)
static DIAssignID * getIDFromInst(const Instruction &I)
AllocaInst * getUnknownStore(const Instruction &I, const DataLayout &Layout)
static std::optional< int64_t > getDerefOffsetInBytes(const DIExpression *DIExpr)
Extract the offset used in DIExpr.
static bool removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB, FunctionVarLocsBuilder &FnVarLocs)
Remove redundant definitions within sequences of consecutive location defs.
static cl::opt< cl::boolOrDefault > CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden)
Coalesce adjacent dbg locs describing memory locations that have contiguous fragments.
static cl::opt< unsigned > MaxNumBlocks("debug-ata-max-blocks", cl::init(10000), cl::desc("Maximum num basic blocks before debug info dropped"), cl::Hidden)
static bool shouldCoalesceFragments(Function &F)
This file implements the BitVector class.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
static ManagedStatic< cl::opt< bool, true >, CreateDebug > Debug
Definition: Debug.cpp:147
This file defines DenseMapInfo traits for DenseMap.
This file contains constants used for implementing Dwarf debug support.
uint32_t Index
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1328
bool End
Definition: ELF_riscv.cpp:480
#define DEBUG_TYPE
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
This file implements a coalescing interval map for small objects.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
#define P(N)
FunctionAnalysisManager FAM
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:56
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
Scalar Replacement Of Aggregates
Definition: SROA.cpp:5814
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define LLVM_DEBUG(...)
Definition: Debug.h:119
static const char LUT[]
Value * RHS
Value * LHS
Helper class to build FunctionVarLocs, since that class isn't easy to modify.
void setWedge(VarLocInsertPt Before, SmallVector< VarLocInfo > &&Wedge)
Replace the defs that come just before /p Before with /p Wedge.
const SmallVectorImpl< VarLocInfo > * getWedge(VarLocInsertPt Before) const
Return ptr to wedge of defs or nullptr if no defs come just before /p Before.
void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL, RawLocationWrapper R)
Add a def for a variable that is valid for its lifetime.
VariableID insertVariable(DebugVariable V)
Find or insert V and return the ID.
void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr, DebugLoc DL, RawLocationWrapper R)
Add a def to the wedge of defs just before /p Before.
const DebugVariable & getVariable(VariableID ID) const
Get a variable from its ID.
Class recording the (high level) value of a variable.
Class for arbitrary precision integers.
Definition: APInt.h:78
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1540
bool getBoolValue() const
Convert APInt to a boolean value.
Definition: APInt.h:471
an instruction to allocate memory on the stack
Definition: Instructions.h:64
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:412
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition: ArrayRef.h:200
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
iterator end()
Definition: BasicBlock.h:472
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:459
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
Definition: BasicBlock.cpp:549
int find_first_unset_in(unsigned Begin, unsigned End) const
find_first_unset_in - Returns the index of the first unset bit in the range [Begin,...
Definition: BitVector.h:261
BitVector & set()
Definition: BitVector.h:351
iterator_range< const_set_bits_iterator > set_bits() const
Definition: BitVector.h:140
Assignment ID.
A structured debug information entry.
Definition: DIE.h:828
DWARF expression.
static LLVM_ABI DIExpression * append(const DIExpression *Expr, ArrayRef< uint64_t > Ops)
Append the opcodes Ops to DIExpr.
unsigned getNumElements() const
LLVM_ABI bool startsWithDeref() const
Return whether the first element a DW_OP_deref.
static LLVM_ABI std::optional< FragmentInfo > getFragmentInfo(expr_op_iterator Start, expr_op_iterator End)
Retrieve the details of this fragment expression.
ArrayRef< uint64_t > getElements() const
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
static LLVM_ABI DIExpression * prependOpcodes(const DIExpression *Expr, SmallVectorImpl< uint64_t > &Ops, bool StackValue=false, bool EntryValue=false)
Prepend DIExpr with the given opcodes and optionally turn it into a stack value.
Debug location.
LLVM_ABI std::optional< uint64_t > getSizeInBits() const
Determines the size of the variable's type.
StringRef getName() const
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
Definition: DataLayout.cpp:753
Instruction * MarkedInstr
Link back to the Instruction that owns this marker.
LLVM_ABI iterator_range< simple_ilist< DbgRecord >::iterator > getDbgRecordRange()
Produce a range over all the DbgRecords in this Marker.
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
Record of a variable value-assignment, aka a non instruction representation of the dbg....
LLVM_ABI bool isKillAddress() const
Check whether this kills the address component.
LLVM_ABI DIAssignID * getAssignID() const
DIExpression * getExpression() const
DILocalVariable * getVariable() const
Metadata * getRawLocation() const
Returns the metadata operand for the first location description.
Result run(Function &F, FunctionAnalysisManager &FAM)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM)
A debug info location.
Definition: DebugLoc.h:124
LLVM_ABI DILocation * getInlinedAt() const
Definition: DebugLoc.cpp:69
Identifies a unique instance of a variable.
const DILocation * getInlinedAt() const
const DILocalVariable * getVariable() const
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:177
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition: DenseMap.h:245
iterator end()
Definition: DenseMap.h:87
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:230
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Definition: DenseMap.h:124
Implements a dense probed hash-table based set.
Definition: DenseSet.h:263
Class representing an expression and its matching format.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
Data structure describing the variable locations in a function.
void print(raw_ostream &OS, const Function &Fn) const
const VarLocInfo * locs_begin(const Instruction *Before) const
First variable location definition that comes before Before.
const VarLocInfo * single_locs_begin() const
const VarLocInfo * locs_end(const Instruction *Before) const
One past the last variable location definition that comes before Before.
const VarLocInfo * single_locs_end() const
One past the last single-location variable location definition.
void init(FunctionVarLocsBuilder &Builder)
const DataLayout & getDataLayout() const
Get the data layout of the module this function belongs to.
Definition: Function.cpp:363
size_t size() const
Definition: Function.h:856
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:359
iterator_range< simple_ilist< DbgRecord >::iterator > getDbgRecordRange() const
Return a range over the DbgRecords attached to this instruction.
Definition: Instruction.h:105
bool isTerminator() const
Definition: Instruction.h:315
LLVM_ABI bool hasDbgRecords() const
Returns true if any DbgRecords are attached to this instruction.
const_iterator begin() const
Definition: IntervalMap.h:1147
void insert(KeyT a, KeyT b, ValT y)
insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
Definition: IntervalMap.h:1130
void clear()
clear - Remove all entries.
Definition: IntervalMap.h:1331
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1565
void push_back(MachineInstr *MI)
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
Root of the metadata hierarchy.
Definition: Metadata.h:63
Pass interface - Implemented by all 'passes'.
Definition: Pass.h:99
A discriminated union of two or more pointer types, with the discriminator in the low bit of the poin...
Definition: PointerUnion.h:118
void * getOpaqueValue() const
Definition: PointerUnion.h:199
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1885
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:118
Lightweight class that wraps the location operand metadata of a debug intrinsic.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:470
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:938
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
Target - Wrapper for Target specific information.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
UniqueVector - This class produces a sequential ID number (base 1) for each unique entry that is adde...
Definition: UniqueVector.h:24
unsigned insert(const T &Entry)
insert - Append entry to the vector if it doesn't already exist.
Definition: UniqueVector.h:40
size_t size() const
size - Returns the number of entries in the vector.
Definition: UniqueVector.h:87
iterator end()
Return an iterator to the end of the vector.
Definition: UniqueVector.h:81
iterator begin()
Return an iterator to the start of the vector.
Definition: UniqueVector.h:75
static LLVM_ABI ValueAsMetadata * get(Value *V)
Definition: Metadata.cpp:502
LLVM Value Representation.
Definition: Value.h:75
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:194
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition: DenseSet.h:169
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:174
self_iterator getIterator()
Definition: ilist_node.h:134
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:359
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:126
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
LLVM_ABI void deleteAll(Function *F)
Remove all Assignment Tracking related intrinsics and metadata from F.
Definition: DebugInfo.cpp:1917
SmallVector< DbgVariableRecord * > getDVRAssignmentMarkers(const Instruction *Inst)
Return a range of dbg_assign records for which Inst performs the assignment they encode.
Definition: DebugInfo.h:201
LLVM_ABI std::optional< AssignmentInfo > getAssignmentInfo(const DataLayout &DL, const MemIntrinsic *I)
Definition: DebugInfo.cpp:2007
LLVM_ABI bool calculateFragmentIntersect(const DataLayout &DL, const Value *Dest, uint64_t SliceOffsetInBits, uint64_t SliceSizeInBits, const DbgVariableRecord *DVRAssign, std::optional< DIExpression::FragmentInfo > &Result)
Calculate the fragment of the variable in DAI covered from (Dest + SliceOffsetInBits) to to (Dest + S...
Definition: DebugInfo.cpp:1930
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
@ DW_OP_LLVM_fragment
Only used in LLVM metadata.
Definition: Dwarf.h:143
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
@ Offset
Definition: DWP.cpp:477
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1744
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr, unsigned DynamicVGPRBlockSize=0)
auto successors(const MachineBasicBlock *BB)
bool operator!=(uint64_t V1, const APInt &V2)
Definition: APInt.h:2113
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:428
@ None
Definition: CodeGenData.h:107
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
std::tuple< const DIScope *, const DIScope *, const DILocalVariable * > VarID
A unique key that represents a debug variable.
bool isFunctionInPrintList(StringRef FunctionName)
VariableID
Type wrapper for integer ID for Variables. 0 is reserved.
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition: MathExtras.h:399
LLVM_ABI bool isAssignmentTrackingEnabled(const Module &M)
Return true if assignment tracking is enabled for module M.
Definition: DebugInfo.cpp:2259
auto predecessors(const MachineBasicBlock *BB)
const char * toString(DWARFSectionKind Kind)
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
bool debuginfoShouldUseDebugInstrRef(const Triple &T)
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:856
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:29
uint64_t startInBits() const
Return the index of the first bit of the fragment.
uint64_t endInBits() const
Return the index of the bit after the end of the fragment, e.g.
static bool isEqual(const VariableID &LHS, const VariableID &RHS)
static unsigned getHashValue(const VariableID &Val)
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:54
Variable location definition used by FunctionVarLocs.
RawLocationWrapper Values
result_type operator()(const argument_type &Arg) const