LLVM 22.0.0git
BlockFrequencyInfoImpl.h
Go to the documentation of this file.
1//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Shared implementation of BlockFrequency for IR and Machine Instructions.
10// See the documentation below for BlockFrequencyInfoImpl for details.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
15#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DenseSet.h"
25#include "llvm/ADT/Twine.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/ValueHandle.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/Format.h"
38#include <algorithm>
39#include <cassert>
40#include <cstddef>
41#include <cstdint>
42#include <deque>
43#include <iterator>
44#include <limits>
45#include <list>
46#include <optional>
47#include <queue>
48#include <string>
49#include <utility>
50#include <vector>
51
52#define DEBUG_TYPE "block-freq"
53
54namespace llvm {
56
60
61class BranchProbabilityInfo;
62class Function;
63class Loop;
64class LoopInfo;
65class MachineBasicBlock;
66class MachineBranchProbabilityInfo;
67class MachineFunction;
68class MachineLoop;
69class MachineLoopInfo;
70
71namespace bfi_detail {
72
73struct IrreducibleGraph;
74
75/// Mass of a block.
76///
77/// This class implements a sort of fixed-point fraction always between 0.0 and
78/// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
79/// 1.0.
80///
81/// Masses can be added and subtracted. Simple saturation arithmetic is used,
82/// so arithmetic operations never overflow or underflow.
83///
84/// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
85/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
86/// quite, maximum precision).
87///
88/// Masses can be scaled by \a BranchProbability at maximum precision.
89class BlockMass {
90 uint64_t Mass = 0;
91
92public:
93 BlockMass() = default;
94 explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
95
96 static BlockMass getEmpty() { return BlockMass(); }
97
98 static BlockMass getFull() {
99 return BlockMass(std::numeric_limits<uint64_t>::max());
100 }
101
102 uint64_t getMass() const { return Mass; }
103
104 bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
105 bool isEmpty() const { return !Mass; }
106
107 bool operator!() const { return isEmpty(); }
108
109 /// Add another mass.
110 ///
111 /// Adds another mass, saturating at \a isFull() rather than overflowing.
113 uint64_t Sum = Mass + X.Mass;
114 Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
115 return *this;
116 }
117
118 /// Subtract another mass.
119 ///
120 /// Subtracts another mass, saturating at \a isEmpty() rather than
121 /// undeflowing.
123 uint64_t Diff = Mass - X.Mass;
124 Mass = Diff > Mass ? 0 : Diff;
125 return *this;
126 }
127
129 Mass = P.scale(Mass);
130 return *this;
131 }
132
133 bool operator==(BlockMass X) const { return Mass == X.Mass; }
134 bool operator!=(BlockMass X) const { return Mass != X.Mass; }
135 bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
136 bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
137 bool operator<(BlockMass X) const { return Mass < X.Mass; }
138 bool operator>(BlockMass X) const { return Mass > X.Mass; }
139
140 /// Convert to scaled number.
141 ///
142 /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty()
143 /// gives slightly above 0.0.
145
146 void dump() const;
148};
149
151 return BlockMass(L) += R;
152}
154 return BlockMass(L) -= R;
155}
157 return BlockMass(L) *= R;
158}
160 return BlockMass(R) *= L;
161}
162
164 return X.print(OS);
165}
166
167} // end namespace bfi_detail
168
169/// Base class for BlockFrequencyInfoImpl
170///
171/// BlockFrequencyInfoImplBase has supporting data structures and some
172/// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
173/// the block type (or that call such algorithms) are skipped here.
174///
175/// Nevertheless, the majority of the overall algorithm documentation lives with
176/// BlockFrequencyInfoImpl. See there for details.
178public:
181
182 /// Representative of a block.
183 ///
184 /// This is a simple wrapper around an index into the reverse-post-order
185 /// traversal of the blocks.
186 ///
187 /// Unlike a block pointer, its order has meaning (location in the
188 /// topological sort) and it's class is the same regardless of block type.
189 struct BlockNode {
191
193
194 BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
196
197 bool operator==(const BlockNode &X) const { return Index == X.Index; }
198 bool operator!=(const BlockNode &X) const { return Index != X.Index; }
199 bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
200 bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
201 bool operator<(const BlockNode &X) const { return Index < X.Index; }
202 bool operator>(const BlockNode &X) const { return Index > X.Index; }
203
204 bool isValid() const { return Index <= getMaxIndex(); }
205
206 static size_t getMaxIndex() {
207 return std::numeric_limits<uint32_t>::max() - 1;
208 }
209 };
210
211 /// Stats about a block itself.
215 };
216
217 /// Data about a loop.
218 ///
219 /// Contains the data necessary to represent a loop as a pseudo-node once it's
220 /// packaged.
221 struct LoopData {
225
226 LoopData *Parent; ///< The parent loop.
227 bool IsPackaged = false; ///< Whether this has been packaged.
228 uint32_t NumHeaders = 1; ///< Number of headers.
229 ExitMap Exits; ///< Successor edges (and weights).
230 NodeList Nodes; ///< Header and the members of the loop.
231 HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
234
236 : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
237
238 template <class It1, class It2>
239 LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
240 It2 LastOther)
241 : Parent(Parent), Nodes(FirstHeader, LastHeader) {
243 Nodes.insert(Nodes.end(), FirstOther, LastOther);
245 }
246
247 bool isHeader(const BlockNode &Node) const {
248 if (isIrreducible())
249 return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
250 Node);
251 return Node == Nodes[0];
252 }
253
254 BlockNode getHeader() const { return Nodes[0]; }
255 bool isIrreducible() const { return NumHeaders > 1; }
256
258 assert(isHeader(B) && "this is only valid on loop header blocks");
259 if (isIrreducible())
260 return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
261 Nodes.begin();
262 return 0;
263 }
264
266 return Nodes.begin() + NumHeaders;
267 }
268
272 }
273 };
274
275 /// Index of loop information.
276 struct WorkingData {
277 BlockNode Node; ///< This node.
278 LoopData *Loop = nullptr; ///< The loop this block is inside.
279 BlockMass Mass; ///< Mass distribution from the entry block.
280
282
283 bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
284
285 bool isDoubleLoopHeader() const {
286 return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
287 Loop->Parent->isHeader(Node);
288 }
289
291 if (!isLoopHeader())
292 return Loop;
293 if (!isDoubleLoopHeader())
294 return Loop->Parent;
295 return Loop->Parent->Parent;
296 }
297
298 /// Resolve a node to its representative.
299 ///
300 /// Get the node currently representing Node, which could be a containing
301 /// loop.
302 ///
303 /// This function should only be called when distributing mass. As long as
304 /// there are no irreducible edges to Node, then it will have complexity
305 /// O(1) in this context.
306 ///
307 /// In general, the complexity is O(L), where L is the number of loop
308 /// headers Node has been packaged into. Since this method is called in
309 /// the context of distributing mass, L will be the number of loop headers
310 /// an early exit edge jumps out of.
312 auto *L = getPackagedLoop();
313 return L ? L->getHeader() : Node;
314 }
315
317 if (!Loop || !Loop->IsPackaged)
318 return nullptr;
319 auto *L = Loop;
320 while (L->Parent && L->Parent->IsPackaged)
321 L = L->Parent;
322 return L;
323 }
324
325 /// Get the appropriate mass for a node.
326 ///
327 /// Get appropriate mass for Node. If Node is a loop-header (whose loop
328 /// has been packaged), returns the mass of its pseudo-node. If it's a
329 /// node inside a packaged loop, it returns the loop's mass.
331 if (!isAPackage())
332 return Mass;
333 if (!isADoublePackage())
334 return Loop->Mass;
335 return Loop->Parent->Mass;
336 }
337
338 /// Has ContainingLoop been packaged up?
339 bool isPackaged() const { return getResolvedNode() != Node; }
340
341 /// Has Loop been packaged up?
342 bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
343
344 /// Has Loop been packaged up twice?
345 bool isADoublePackage() const {
346 return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
347 }
348 };
349
350 /// Unscaled probability weight.
351 ///
352 /// Probability weight for an edge in the graph (including the
353 /// successor/target node).
354 ///
355 /// All edges in the original function are 32-bit. However, exit edges from
356 /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
357 /// space in general.
358 ///
359 /// In addition to the raw weight amount, Weight stores the type of the edge
360 /// in the current context (i.e., the context of the loop being processed).
361 /// Is this a local edge within the loop, an exit from the loop, or a
362 /// backedge to the loop header?
363 struct Weight {
368
369 Weight() = default;
372 };
373
374 /// Distribution of unscaled probability weight.
375 ///
376 /// Distribution of unscaled probability weight to a set of successors.
377 ///
378 /// This class collates the successor edge weights for later processing.
379 ///
380 /// \a DidOverflow indicates whether \a Total did overflow while adding to
381 /// the distribution. It should never overflow twice.
384
385 WeightList Weights; ///< Individual successor weights.
386 uint64_t Total = 0; ///< Sum of all weights.
387 bool DidOverflow = false; ///< Whether \a Total did overflow.
388
389 Distribution() = default;
390
391 void addLocal(const BlockNode &Node, uint64_t Amount) {
392 add(Node, Amount, Weight::Local);
393 }
394
395 void addExit(const BlockNode &Node, uint64_t Amount) {
396 add(Node, Amount, Weight::Exit);
397 }
398
399 void addBackedge(const BlockNode &Node, uint64_t Amount) {
400 add(Node, Amount, Weight::Backedge);
401 }
402
403 /// Normalize the distribution.
404 ///
405 /// Combines multiple edges to the same \a Weight::TargetNode and scales
406 /// down so that \a Total fits into 32-bits.
407 ///
408 /// This is linear in the size of \a Weights. For the vast majority of
409 /// cases, adjacent edge weights are combined by sorting WeightList and
410 /// combining adjacent weights. However, for very large edge lists an
411 /// auxiliary hash table is used.
412 void normalize();
413
414 private:
415 void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
416 };
417
418 /// Data about each block. This is used downstream.
419 std::vector<FrequencyData> Freqs;
420
421 /// Whether each block is an irreducible loop header.
422 /// This is used downstream.
424
425 /// Loop data: see initializeLoops().
426 std::vector<WorkingData> Working;
427
428 /// Indexed information about loops.
429 std::list<LoopData> Loops;
430
431 /// Virtual destructor.
432 ///
433 /// Need a virtual destructor to mask the compiler warning about
434 /// getBlockName().
435 virtual ~BlockFrequencyInfoImplBase() = default;
436
437 /// Add all edges out of a packaged loop to the distribution.
438 ///
439 /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
440 /// successor edge.
441 ///
442 /// \return \c true unless there's an irreducible backedge.
443 bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
444 Distribution &Dist);
445
446 /// Add an edge to the distribution.
447 ///
448 /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
449 /// edge is local/exit/backedge is in the context of LoopHead. Otherwise,
450 /// every edge should be a local edge (since all the loops are packaged up).
451 ///
452 /// \return \c true unless aborted due to an irreducible backedge.
453 bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
454 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
455
456 /// Analyze irreducible SCCs.
457 ///
458 /// Separate irreducible SCCs from \c G, which is an explicit graph of \c
459 /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
460 /// Insert them into \a Loops before \c Insert.
461 ///
462 /// \return the \c LoopData nodes representing the irreducible SCCs.
465 std::list<LoopData>::iterator Insert);
466
467 /// Update a loop after packaging irreducible SCCs inside of it.
468 ///
469 /// Update \c OuterLoop. Before finding irreducible control flow, it was
470 /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
471 /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged
472 /// up need to be removed from \a OuterLoop::Nodes.
473 void updateLoopWithIrreducible(LoopData &OuterLoop);
474
475 /// Distribute mass according to a distribution.
476 ///
477 /// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
478 /// backedges and exits are stored in its entry in Loops.
479 ///
480 /// Mass is distributed in parallel from two copies of the source mass.
481 void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
482 Distribution &Dist);
483
484 /// Compute the loop scale for a loop.
486
487 /// Adjust the mass of all headers in an irreducible loop.
488 ///
489 /// Initially, irreducible loops are assumed to distribute their mass
490 /// equally among its headers. This can lead to wrong frequency estimates
491 /// since some headers may be executed more frequently than others.
492 ///
493 /// This adjusts header mass distribution so it matches the weights of
494 /// the backedges going into each of the loop headers.
496
498
499 /// Package up a loop.
501
502 /// Unwrap loops.
503 void unwrapLoops();
504
505 /// Finalize frequency metrics.
506 ///
507 /// Calculates final frequencies and cleans up no-longer-needed data
508 /// structures.
509 void finalizeMetrics();
510
511 /// Clear all memory.
512 void clear();
513
514 virtual std::string getBlockName(const BlockNode &Node) const;
515 std::string getLoopName(const LoopData &Loop) const;
516
517 virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
518 void dump() const { print(dbgs()); }
519
520 Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
521
522 BlockFrequency getBlockFreq(const BlockNode &Node) const;
523 std::optional<uint64_t>
524 getBlockProfileCount(const Function &F, const BlockNode &Node,
525 bool AllowSynthetic = false) const;
526 std::optional<uint64_t>
528 bool AllowSynthetic = false) const;
529 bool isIrrLoopHeader(const BlockNode &Node);
530
531 void setBlockFreq(const BlockNode &Node, BlockFrequency Freq);
532
534 assert(!Freqs.empty());
535 return BlockFrequency(Freqs[0].Integer);
536 }
537};
538
539namespace bfi_detail {
540
541template <class BlockT> struct TypeMap {};
542template <> struct TypeMap<BasicBlock> {
547 using LoopT = Loop;
549};
550template <> struct TypeMap<MachineBasicBlock> {
557};
558
559template <class BlockT, class BFIImplT>
561
562/// Get the name of a MachineBasicBlock.
563///
564/// Get the name of a MachineBasicBlock. It's templated so that including from
565/// CodeGen is unnecessary (that would be a layering issue).
566///
567/// This is used mainly for debug output. The name is similar to
568/// MachineBasicBlock::getFullName(), but skips the name of the function.
569template <class BlockT> std::string getBlockName(const BlockT *BB) {
570 assert(BB && "Unexpected nullptr");
571 auto MachineName = "BB" + Twine(BB->getNumber());
572 if (BB->getBasicBlock())
573 return (MachineName + "[" + BB->getName() + "]").str();
574 return MachineName.str();
575}
576/// Get the name of a BasicBlock.
577template <> inline std::string getBlockName(const BasicBlock *BB) {
578 assert(BB && "Unexpected nullptr");
579 return BB->getName().str();
580}
581
582/// Graph of irreducible control flow.
583///
584/// This graph is used for determining the SCCs in a loop (or top-level
585/// function) that has irreducible control flow.
586///
587/// During the block frequency algorithm, the local graphs are defined in a
588/// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
589/// graphs for most edges, but getting others from \a LoopData::ExitMap. The
590/// latter only has successor information.
591///
592/// \a IrreducibleGraph makes this graph explicit. It's in a form that can use
593/// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
594/// and it explicitly lists predecessors and successors. The initialization
595/// that relies on \c MachineBasicBlock is defined in the header.
598
600
602 struct IrrNode {
604 unsigned NumIn = 0;
605 std::deque<const IrrNode *> Edges;
606
608
609 using iterator = std::deque<const IrrNode *>::const_iterator;
610
611 iterator pred_begin() const { return Edges.begin(); }
612 iterator succ_begin() const { return Edges.begin() + NumIn; }
613 iterator pred_end() const { return succ_begin(); }
614 iterator succ_end() const { return Edges.end(); }
615 };
617 const IrrNode *StartIrr = nullptr;
618 std::vector<IrrNode> Nodes;
620
621 /// Construct an explicit graph containing irreducible control flow.
622 ///
623 /// Construct an explicit graph of the control flow in \c OuterLoop (or the
624 /// top-level function, if \c OuterLoop is \c nullptr). Uses \c
625 /// addBlockEdges to add block successors that have not been packaged into
626 /// loops.
627 ///
628 /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
629 /// user of this.
630 template <class BlockEdgesAdder>
632 BlockEdgesAdder addBlockEdges) : BFI(BFI) {
633 initialize(OuterLoop, addBlockEdges);
634 }
635
636 template <class BlockEdgesAdder>
637 void initialize(const BFIBase::LoopData *OuterLoop,
638 BlockEdgesAdder addBlockEdges);
639 void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
640 void addNodesInFunction();
641
642 void addNode(const BlockNode &Node) {
643 Nodes.emplace_back(Node);
644 BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
645 }
646
647 void indexNodes();
648 template <class BlockEdgesAdder>
649 void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
650 BlockEdgesAdder addBlockEdges);
651 void addEdge(IrrNode &Irr, const BlockNode &Succ,
652 const BFIBase::LoopData *OuterLoop);
653};
654
655template <class BlockEdgesAdder>
657 BlockEdgesAdder addBlockEdges) {
658 if (OuterLoop) {
659 addNodesInLoop(*OuterLoop);
660 for (auto N : OuterLoop->Nodes)
661 addEdges(N, OuterLoop, addBlockEdges);
662 } else {
664 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
665 addEdges(Index, OuterLoop, addBlockEdges);
666 }
668}
669
670template <class BlockEdgesAdder>
672 const BFIBase::LoopData *OuterLoop,
673 BlockEdgesAdder addBlockEdges) {
674 auto L = Lookup.find(Node.Index);
675 if (L == Lookup.end())
676 return;
677 IrrNode &Irr = *L->second;
678 const auto &Working = BFI.Working[Node.Index];
679
680 if (Working.isAPackage())
681 for (const auto &I : Working.Loop->Exits)
682 addEdge(Irr, I.first, OuterLoop);
683 else
684 addBlockEdges(*this, Irr, OuterLoop);
685}
686
687} // end namespace bfi_detail
688
689/// Shared implementation for block frequency analysis.
690///
691/// This is a shared implementation of BlockFrequencyInfo and
692/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
693/// blocks.
694///
695/// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
696/// which is called the header. A given loop, L, can have sub-loops, which are
697/// loops within the subgraph of L that exclude its header. (A "trivial" SCC
698/// consists of a single block that does not have a self-edge.)
699///
700/// In addition to loops, this algorithm has limited support for irreducible
701/// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are
702/// discovered on the fly, and modelled as loops with multiple headers.
703///
704/// The headers of irreducible sub-SCCs consist of its entry blocks and all
705/// nodes that are targets of a backedge within it (excluding backedges within
706/// true sub-loops). Block frequency calculations act as if a block is
707/// inserted that intercepts all the edges to the headers. All backedges and
708/// entries point to this block. Its successors are the headers, which split
709/// the frequency evenly.
710///
711/// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
712/// separates mass distribution from loop scaling, and dithers to eliminate
713/// probability mass loss.
714///
715/// The implementation is split between BlockFrequencyInfoImpl, which knows the
716/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
717/// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
718/// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
719/// reverse-post order. This gives two advantages: it's easy to compare the
720/// relative ordering of two nodes, and maps keyed on BlockT can be represented
721/// by vectors.
722///
723/// This algorithm is O(V+E), unless there is irreducible control flow, in
724/// which case it's O(V*E) in the worst case.
725///
726/// These are the main stages:
727///
728/// 0. Reverse post-order traversal (\a initializeRPOT()).
729///
730/// Run a single post-order traversal and save it (in reverse) in RPOT.
731/// All other stages make use of this ordering. Save a lookup from BlockT
732/// to BlockNode (the index into RPOT) in Nodes.
733///
734/// 1. Loop initialization (\a initializeLoops()).
735///
736/// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
737/// the algorithm. In particular, store the immediate members of each loop
738/// in reverse post-order.
739///
740/// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
741///
742/// For each loop (bottom-up), distribute mass through the DAG resulting
743/// from ignoring backedges and treating sub-loops as a single pseudo-node.
744/// Track the backedge mass distributed to the loop header, and use it to
745/// calculate the loop scale (number of loop iterations). Immediate
746/// members that represent sub-loops will already have been visited and
747/// packaged into a pseudo-node.
748///
749/// Distributing mass in a loop is a reverse-post-order traversal through
750/// the loop. Start by assigning full mass to the Loop header. For each
751/// node in the loop:
752///
753/// - Fetch and categorize the weight distribution for its successors.
754/// If this is a packaged-subloop, the weight distribution is stored
755/// in \a LoopData::Exits. Otherwise, fetch it from
756/// BranchProbabilityInfo.
757///
758/// - Each successor is categorized as \a Weight::Local, a local edge
759/// within the current loop, \a Weight::Backedge, a backedge to the
760/// loop header, or \a Weight::Exit, any successor outside the loop.
761/// The weight, the successor, and its category are stored in \a
762/// Distribution. There can be multiple edges to each successor.
763///
764/// - If there's a backedge to a non-header, there's an irreducible SCC.
765/// The usual flow is temporarily aborted. \a
766/// computeIrreducibleMass() finds the irreducible SCCs within the
767/// loop, packages them up, and restarts the flow.
768///
769/// - Normalize the distribution: scale weights down so that their sum
770/// is 32-bits, and coalesce multiple edges to the same node.
771///
772/// - Distribute the mass accordingly, dithering to minimize mass loss,
773/// as described in \a distributeMass().
774///
775/// In the case of irreducible loops, instead of a single loop header,
776/// there will be several. The computation of backedge masses is similar
777/// but instead of having a single backedge mass, there will be one
778/// backedge per loop header. In these cases, each backedge will carry
779/// a mass proportional to the edge weights along the corresponding
780/// path.
781///
782/// At the end of propagation, the full mass assigned to the loop will be
783/// distributed among the loop headers proportionally according to the
784/// mass flowing through their backedges.
785///
786/// Finally, calculate the loop scale from the accumulated backedge mass.
787///
788/// 3. Distribute mass in the function (\a computeMassInFunction()).
789///
790/// Finally, distribute mass through the DAG resulting from packaging all
791/// loops in the function. This uses the same algorithm as distributing
792/// mass in a loop, except that there are no exit or backedge edges.
793///
794/// 4. Unpackage loops (\a unwrapLoops()).
795///
796/// Initialize each block's frequency to a floating point representation of
797/// its mass.
798///
799/// Visit loops top-down, scaling the frequencies of its immediate members
800/// by the loop's pseudo-node's frequency.
801///
802/// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
803///
804/// Using the min and max frequencies as a guide, translate floating point
805/// frequencies to an appropriate range in uint64_t.
806///
807/// It has some known flaws.
808///
809/// - The model of irreducible control flow is a rough approximation.
810///
811/// Modelling irreducible control flow exactly involves setting up and
812/// solving a group of infinite geometric series. Such precision is
813/// unlikely to be worthwhile, since most of our algorithms give up on
814/// irreducible control flow anyway.
815///
816/// Nevertheless, we might find that we need to get closer. Here's a sort
817/// of TODO list for the model with diminishing returns, to be completed as
818/// necessary.
819///
820/// - The headers for the \a LoopData representing an irreducible SCC
821/// include non-entry blocks. When these extra blocks exist, they
822/// indicate a self-contained irreducible sub-SCC. We could treat them
823/// as sub-loops, rather than arbitrarily shoving the problematic
824/// blocks into the headers of the main irreducible SCC.
825///
826/// - Entry frequencies are assumed to be evenly split between the
827/// headers of a given irreducible SCC, which is the only option if we
828/// need to compute mass in the SCC before its parent loop. Instead,
829/// we could partially compute mass in the parent loop, and stop when
830/// we get to the SCC. Here, we have the correct ratio of entry
831/// masses, which we can use to adjust their relative frequencies.
832/// Compute mass in the SCC, and then continue propagation in the
833/// parent.
834///
835/// - We can propagate mass iteratively through the SCC, for some fixed
836/// number of iterations. Each iteration starts by assigning the entry
837/// blocks their backedge mass from the prior iteration. The final
838/// mass for each block (and each exit, and the total backedge mass
839/// used for computing loop scale) is the sum of all iterations.
840/// (Running this until fixed point would "solve" the geometric
841/// series by simulation.)
843 using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
844 using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT;
845 using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
846 using BranchProbabilityInfoT =
848 using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
849 using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
852 using BFICallbackVH =
854
855 const BranchProbabilityInfoT *BPI = nullptr;
856 const LoopInfoT *LI = nullptr;
857 const FunctionT *F = nullptr;
858
859 // All blocks in reverse postorder.
860 std::vector<const BlockT *> RPOT;
862
863 using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
864
865 rpot_iterator rpot_begin() const { return RPOT.begin(); }
866 rpot_iterator rpot_end() const { return RPOT.end(); }
867
868 size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
869
870 BlockNode getNode(const rpot_iterator &I) const {
871 return BlockNode(getIndex(I));
872 }
873
874 BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; }
875
876 const BlockT *getBlock(const BlockNode &Node) const {
877 assert(Node.Index < RPOT.size());
878 return RPOT[Node.Index];
879 }
880
881 /// Run (and save) a post-order traversal.
882 ///
883 /// Saves a reverse post-order traversal of all the nodes in \a F.
884 void initializeRPOT();
885
886 /// Initialize loop data.
887 ///
888 /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from
889 /// each block to the deepest loop it's in, but we need the inverse. For each
890 /// loop, we store in reverse post-order its "immediate" members, defined as
891 /// the header, the headers of immediate sub-loops, and all other blocks in
892 /// the loop that are not in sub-loops.
893 void initializeLoops();
894
895 /// Propagate to a block's successors.
896 ///
897 /// In the context of distributing mass through \c OuterLoop, divide the mass
898 /// currently assigned to \c Node between its successors.
899 ///
900 /// \return \c true unless there's an irreducible backedge.
901 bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
902
903 /// Compute mass in a particular loop.
904 ///
905 /// Assign mass to \c Loop's header, and then for each block in \c Loop in
906 /// reverse post-order, distribute mass to its successors. Only visits nodes
907 /// that have not been packaged into sub-loops.
908 ///
909 /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
910 /// \return \c true unless there's an irreducible backedge.
911 bool computeMassInLoop(LoopData &Loop);
912
913 /// Try to compute mass in the top-level function.
914 ///
915 /// Assign mass to the entry block, and then for each block in reverse
916 /// post-order, distribute mass to its successors. Skips nodes that have
917 /// been packaged into loops.
918 ///
919 /// \pre \a computeMassInLoops() has been called.
920 /// \return \c true unless there's an irreducible backedge.
921 bool tryToComputeMassInFunction();
922
923 /// Compute mass in (and package up) irreducible SCCs.
924 ///
925 /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
926 /// of \c Insert), and call \a computeMassInLoop() on each of them.
927 ///
928 /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
929 ///
930 /// \pre \a computeMassInLoop() has been called for each subloop of \c
931 /// OuterLoop.
932 /// \pre \c Insert points at the last loop successfully processed by \a
933 /// computeMassInLoop().
934 /// \pre \c OuterLoop has irreducible SCCs.
935 void computeIrreducibleMass(LoopData *OuterLoop,
936 std::list<LoopData>::iterator Insert);
937
938 /// Compute mass in all loops.
939 ///
940 /// For each loop bottom-up, call \a computeMassInLoop().
941 ///
942 /// \a computeMassInLoop() aborts (and returns \c false) on loops that
943 /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then
944 /// re-enter \a computeMassInLoop().
945 ///
946 /// \post \a computeMassInLoop() has returned \c true for every loop.
947 void computeMassInLoops();
948
949 /// Compute mass in the top-level function.
950 ///
951 /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
952 /// compute mass in the top-level function.
953 ///
954 /// \post \a tryToComputeMassInFunction() has returned \c true.
955 void computeMassInFunction();
956
957 std::string getBlockName(const BlockNode &Node) const override {
958 return bfi_detail::getBlockName(getBlock(Node));
959 }
960
961 /// The current implementation for computing relative block frequencies does
962 /// not handle correctly control-flow graphs containing irreducible loops. To
963 /// resolve the problem, we apply a post-processing step, which iteratively
964 /// updates block frequencies based on the frequencies of their predesessors.
965 /// This corresponds to finding the stationary point of the Markov chain by
966 /// an iterative method aka "PageRank computation".
967 /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but
968 /// typically converges faster.
969 ///
970 /// Decide whether we want to apply iterative inference for a given function.
971 bool needIterativeInference() const;
972
973 /// Apply an iterative post-processing to infer correct counts for irr loops.
974 void applyIterativeInference();
975
976 using ProbMatrixType = std::vector<std::vector<std::pair<size_t, Scaled64>>>;
977
978 /// Run iterative inference for a probability matrix and initial frequencies.
979 void iterativeInference(const ProbMatrixType &ProbMatrix,
980 std::vector<Scaled64> &Freq) const;
981
982 /// Find all blocks to apply inference on, that is, reachable from the entry
983 /// and backward reachable from exists along edges with positive probability.
984 void findReachableBlocks(std::vector<const BlockT *> &Blocks) const;
985
986 /// Build a matrix of probabilities with transitions (edges) between the
987 /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P
988 void initTransitionProbabilities(
989 const std::vector<const BlockT *> &Blocks,
990 const DenseMap<const BlockT *, size_t> &BlockIndex,
991 ProbMatrixType &ProbMatrix) const;
992
993#ifndef NDEBUG
994 /// Compute the discrepancy between current block frequencies and the
995 /// probability matrix.
996 Scaled64 discrepancy(const ProbMatrixType &ProbMatrix,
997 const std::vector<Scaled64> &Freq) const;
998#endif
999
1000public:
1002
1003 const FunctionT *getFunction() const { return F; }
1004
1005 void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
1006 const LoopInfoT &LI);
1007
1009
1010 BlockFrequency getBlockFreq(const BlockT *BB) const {
1011 return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
1012 }
1013
1014 std::optional<uint64_t>
1015 getBlockProfileCount(const Function &F, const BlockT *BB,
1016 bool AllowSynthetic = false) const {
1018 AllowSynthetic);
1019 }
1020
1021 std::optional<uint64_t>
1023 bool AllowSynthetic = false) const {
1025 AllowSynthetic);
1026 }
1027
1028 bool isIrrLoopHeader(const BlockT *BB) {
1030 }
1031
1032 void setBlockFreq(const BlockT *BB, BlockFrequency Freq);
1033
1034 void forgetBlock(const BlockT *BB) {
1035 // We don't erase corresponding items from `Freqs`, `RPOT` and other to
1036 // avoid invalidating indices. Doing so would have saved some memory, but
1037 // it's not worth it.
1038 Nodes.erase(BB);
1039 }
1040
1041 Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
1043 }
1044
1045 const BranchProbabilityInfoT &getBPI() const { return *BPI; }
1046
1047 /// Print the frequencies for the current function.
1048 ///
1049 /// Prints the frequencies for the blocks in the current function.
1050 ///
1051 /// Blocks are printed in the natural iteration order of the function, rather
1052 /// than reverse post-order. This provides two advantages: writing -analyze
1053 /// tests is easier (since blocks come out in source order), and even
1054 /// unreachable blocks are printed.
1055 ///
1056 /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1057 /// we need to override it here.
1058 raw_ostream &print(raw_ostream &OS) const override;
1059
1061
1063};
1064
1065namespace bfi_detail {
1066
1067template <class BFIImplT>
1068class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH {
1069 BFIImplT *BFIImpl;
1070
1071public:
1072 BFICallbackVH() = default;
1073
1074 BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl)
1075 : CallbackVH(BB), BFIImpl(BFIImpl) {}
1076
1077 virtual ~BFICallbackVH() = default;
1078
1079 void deleted() override {
1080 BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr()));
1081 }
1082};
1083
1084/// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles
1085/// don't apply to them.
1086template <class BFIImplT>
1088public:
1089 BFICallbackVH() = default;
1090 BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {}
1091};
1092
1093} // end namespace bfi_detail
1094
1095template <class BT>
1097 const BranchProbabilityInfoT &BPI,
1098 const LoopInfoT &LI) {
1099 // Save the parameters.
1100 this->BPI = &BPI;
1101 this->LI = &LI;
1102 this->F = &F;
1103
1104 // Clean up left-over data structures.
1106 RPOT.clear();
1107 Nodes.clear();
1108
1109 // Initialize.
1110 LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1111 << "\n================="
1112 << std::string(F.getName().size(), '=') << "\n");
1113 initializeRPOT();
1114 initializeLoops();
1115
1116 // Visit loops in post-order to find the local mass distribution, and then do
1117 // the full function.
1118 computeMassInLoops();
1119 computeMassInFunction();
1120 unwrapLoops();
1121 // Apply a post-processing step improving computed frequencies for functions
1122 // with irreducible loops.
1123 if (needIterativeInference())
1124 applyIterativeInference();
1125 finalizeMetrics();
1126
1128 // To detect BFI queries for unknown blocks, add entries for unreachable
1129 // blocks, if any. This is to distinguish between known/existing unreachable
1130 // blocks and unknown blocks.
1131 for (const BlockT &BB : F)
1132 if (!Nodes.count(&BB))
1133 setBlockFreq(&BB, BlockFrequency());
1134 }
1135}
1136
1137template <class BT>
1139 BlockFrequency Freq) {
1140 auto [It, Inserted] = Nodes.try_emplace(BB);
1141 if (!Inserted)
1142 BlockFrequencyInfoImplBase::setBlockFreq(It->second.first, Freq);
1143 else {
1144 // If BB is a newly added block after BFI is done, we need to create a new
1145 // BlockNode for it assigned with a new index. The index can be determined
1146 // by the size of Freqs.
1147 BlockNode NewNode(Freqs.size());
1148 It->second = {NewNode, BFICallbackVH(BB, this)};
1149 Freqs.emplace_back();
1151 }
1152}
1153
1154template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1155 const BlockT *Entry = &F->front();
1156 RPOT.reserve(F->size());
1157 std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1158 std::reverse(RPOT.begin(), RPOT.end());
1159
1160 assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1161 "More nodes in function than Block Frequency Info supports");
1162
1163 LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1164 for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1165 BlockNode Node = getNode(I);
1166 LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1167 << "\n");
1168 Nodes[*I] = {Node, BFICallbackVH(*I, this)};
1169 }
1170
1171 Working.reserve(RPOT.size());
1172 for (size_t Index = 0; Index < RPOT.size(); ++Index)
1173 Working.emplace_back(Index);
1174 Freqs.resize(RPOT.size());
1175}
1176
1177template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1178 LLVM_DEBUG(dbgs() << "loop-detection\n");
1179 if (LI->empty())
1180 return;
1181
1182 // Visit loops top down and assign them an index.
1183 std::deque<std::pair<const LoopT *, LoopData *>> Q;
1184 for (const LoopT *L : *LI)
1185 Q.emplace_back(L, nullptr);
1186 while (!Q.empty()) {
1187 const LoopT *Loop = Q.front().first;
1188 LoopData *Parent = Q.front().second;
1189 Q.pop_front();
1190
1191 BlockNode Header = getNode(Loop->getHeader());
1192 assert(Header.isValid());
1193
1194 Loops.emplace_back(Parent, Header);
1195 Working[Header.Index].Loop = &Loops.back();
1196 LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1197
1198 for (const LoopT *L : *Loop)
1199 Q.emplace_back(L, &Loops.back());
1200 }
1201
1202 // Visit nodes in reverse post-order and add them to their deepest containing
1203 // loop.
1204 for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1205 // Loop headers have already been mostly mapped.
1206 if (Working[Index].isLoopHeader()) {
1207 LoopData *ContainingLoop = Working[Index].getContainingLoop();
1208 if (ContainingLoop)
1209 ContainingLoop->Nodes.push_back(Index);
1210 continue;
1211 }
1212
1213 const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1214 if (!Loop)
1215 continue;
1216
1217 // Add this node to its containing loop's member list.
1218 BlockNode Header = getNode(Loop->getHeader());
1219 assert(Header.isValid());
1220 const auto &HeaderData = Working[Header.Index];
1221 assert(HeaderData.isLoopHeader());
1222
1223 Working[Index].Loop = HeaderData.Loop;
1224 HeaderData.Loop->Nodes.push_back(Index);
1225 LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1226 << ": member = " << getBlockName(Index) << "\n");
1227 }
1228}
1229
1230template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1231 // Visit loops with the deepest first, and the top-level loops last.
1232 for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1233 if (computeMassInLoop(*L))
1234 continue;
1235 auto Next = std::next(L);
1236 computeIrreducibleMass(&*L, L.base());
1237 L = std::prev(Next);
1238 if (computeMassInLoop(*L))
1239 continue;
1240 llvm_unreachable("unhandled irreducible control flow");
1241 }
1242}
1243
1244template <class BT>
1245bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1246 // Compute mass in loop.
1247 LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1248
1249 if (Loop.isIrreducible()) {
1250 LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1251 Distribution Dist;
1252 unsigned NumHeadersWithWeight = 0;
1253 std::optional<uint64_t> MinHeaderWeight;
1254 DenseSet<uint32_t> HeadersWithoutWeight;
1255 HeadersWithoutWeight.reserve(Loop.NumHeaders);
1256 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1257 auto &HeaderNode = Loop.Nodes[H];
1258 const BlockT *Block = getBlock(HeaderNode);
1259 IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1260 std::optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1261 if (!HeaderWeight) {
1262 LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1263 << getBlockName(HeaderNode) << "\n");
1264 HeadersWithoutWeight.insert(H);
1265 continue;
1266 }
1267 LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1268 << " has irr loop header weight " << *HeaderWeight
1269 << "\n");
1270 NumHeadersWithWeight++;
1271 uint64_t HeaderWeightValue = *HeaderWeight;
1272 if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1273 MinHeaderWeight = HeaderWeightValue;
1274 if (HeaderWeightValue) {
1275 Dist.addLocal(HeaderNode, HeaderWeightValue);
1276 }
1277 }
1278 // As a heuristic, if some headers don't have a weight, give them the
1279 // minimum weight seen (not to disrupt the existing trends too much by
1280 // using a weight that's in the general range of the other headers' weights,
1281 // and the minimum seems to perform better than the average.)
1282 // FIXME: better update in the passes that drop the header weight.
1283 // If no headers have a weight, give them even weight (use weight 1).
1284 if (!MinHeaderWeight)
1285 MinHeaderWeight = 1;
1286 for (uint32_t H : HeadersWithoutWeight) {
1287 auto &HeaderNode = Loop.Nodes[H];
1288 assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1289 "Shouldn't have a weight metadata");
1290 uint64_t MinWeight = *MinHeaderWeight;
1291 LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1292 << getBlockName(HeaderNode) << "\n");
1293 if (MinWeight)
1294 Dist.addLocal(HeaderNode, MinWeight);
1295 }
1296 distributeIrrLoopHeaderMass(Dist);
1297 for (const BlockNode &M : Loop.Nodes)
1298 if (!propagateMassToSuccessors(&Loop, M))
1299 llvm_unreachable("unhandled irreducible control flow");
1300 if (NumHeadersWithWeight == 0)
1301 // No headers have a metadata. Adjust header mass.
1302 adjustLoopHeaderMass(Loop);
1303 } else {
1304 Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1305 if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1306 llvm_unreachable("irreducible control flow to loop header!?");
1307 for (const BlockNode &M : Loop.members())
1308 if (!propagateMassToSuccessors(&Loop, M))
1309 // Irreducible backedge.
1310 return false;
1311 }
1312
1313 computeLoopScale(Loop);
1314 packageLoop(Loop);
1315 return true;
1316}
1317
1318template <class BT>
1319bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1320 // Compute mass in function.
1321 LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1322 assert(!Working.empty() && "no blocks in function");
1323 assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1324
1325 Working[0].getMass() = BlockMass::getFull();
1326 for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1327 // Check for nodes that have been packaged.
1328 BlockNode Node = getNode(I);
1329 if (Working[Node.Index].isPackaged())
1330 continue;
1331
1332 if (!propagateMassToSuccessors(nullptr, Node))
1333 return false;
1334 }
1335 return true;
1336}
1337
1338template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1339 if (tryToComputeMassInFunction())
1340 return;
1341 computeIrreducibleMass(nullptr, Loops.begin());
1342 if (tryToComputeMassInFunction())
1343 return;
1344 llvm_unreachable("unhandled irreducible control flow");
1345}
1346
1347template <class BT>
1348bool BlockFrequencyInfoImpl<BT>::needIterativeInference() const {
1350 return false;
1351 if (!F->getFunction().hasProfileData())
1352 return false;
1353 // Apply iterative inference only if the function contains irreducible loops;
1354 // otherwise, computed block frequencies are reasonably correct.
1355 for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1356 if (L->isIrreducible())
1357 return true;
1358 }
1359 return false;
1360}
1361
1362template <class BT> void BlockFrequencyInfoImpl<BT>::applyIterativeInference() {
1363 // Extract blocks for processing: a block is considered for inference iff it
1364 // can be reached from the entry by edges with a positive probability.
1365 // Non-processed blocks are assigned with the zero frequency and are ignored
1366 // in the computation
1367 std::vector<const BlockT *> ReachableBlocks;
1368 findReachableBlocks(ReachableBlocks);
1369 if (ReachableBlocks.empty())
1370 return;
1371
1372 // The map is used to index successors/predecessors of reachable blocks in
1373 // the ReachableBlocks vector
1374 DenseMap<const BlockT *, size_t> BlockIndex;
1375 // Extract initial frequencies for the reachable blocks
1376 auto Freq = std::vector<Scaled64>(ReachableBlocks.size());
1377 Scaled64 SumFreq;
1378 for (size_t I = 0; I < ReachableBlocks.size(); I++) {
1379 const BlockT *BB = ReachableBlocks[I];
1380 BlockIndex[BB] = I;
1381 Freq[I] = getFloatingBlockFreq(BB);
1382 SumFreq += Freq[I];
1383 }
1384 assert(!SumFreq.isZero() && "empty initial block frequencies");
1385
1386 LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName()
1387 << " with " << ReachableBlocks.size() << " blocks\n");
1388
1389 // Normalizing frequencies so they sum up to 1.0
1390 for (auto &Value : Freq) {
1391 Value /= SumFreq;
1392 }
1393
1394 // Setting up edge probabilities using sparse matrix representation:
1395 // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P
1396 ProbMatrixType ProbMatrix;
1397 initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix);
1398
1399 // Run the propagation
1400 iterativeInference(ProbMatrix, Freq);
1401
1402 // Assign computed frequency values
1403 for (const BlockT &BB : *F) {
1404 auto Node = getNode(&BB);
1405 if (!Node.isValid())
1406 continue;
1407 if (auto It = BlockIndex.find(&BB); It != BlockIndex.end())
1408 Freqs[Node.Index].Scaled = Freq[It->second];
1409 else
1410 Freqs[Node.Index].Scaled = Scaled64::getZero();
1411 }
1412}
1413
1414template <class BT>
1415void BlockFrequencyInfoImpl<BT>::iterativeInference(
1416 const ProbMatrixType &ProbMatrix, std::vector<Scaled64> &Freq) const {
1418 "incorrectly specified precision");
1419 // Convert double precision to Scaled64
1420 const auto Precision =
1421 Scaled64::getInverse(static_cast<uint64_t>(1.0 / IterativeBFIPrecision));
1422 const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size();
1423
1424#ifndef NDEBUG
1425 LLVM_DEBUG(dbgs() << " Initial discrepancy = "
1426 << discrepancy(ProbMatrix, Freq).toString() << "\n");
1427#endif
1428
1429 // Successors[I] holds unique sucessors of the I-th block
1430 auto Successors = std::vector<std::vector<size_t>>(Freq.size());
1431 for (size_t I = 0; I < Freq.size(); I++) {
1432 for (const auto &Jump : ProbMatrix[I]) {
1433 Successors[Jump.first].push_back(I);
1434 }
1435 }
1436
1437 // To speedup computation, we maintain a set of "active" blocks whose
1438 // frequencies need to be updated based on the incoming edges.
1439 // The set is dynamic and changes after every update. Initially all blocks
1440 // with a positive frequency are active
1441 auto IsActive = BitVector(Freq.size(), false);
1442 std::queue<size_t> ActiveSet;
1443 for (size_t I = 0; I < Freq.size(); I++) {
1444 if (Freq[I] > 0) {
1445 ActiveSet.push(I);
1446 IsActive[I] = true;
1447 }
1448 }
1449
1450 // Iterate over the blocks propagating frequencies
1451 size_t It = 0;
1452 while (It++ < MaxIterations && !ActiveSet.empty()) {
1453 size_t I = ActiveSet.front();
1454 ActiveSet.pop();
1455 IsActive[I] = false;
1456
1457 // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix.
1458 // A special care is taken for self-edges that needs to be scaled by
1459 // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges
1460 Scaled64 NewFreq;
1461 Scaled64 OneMinusSelfProb = Scaled64::getOne();
1462 for (const auto &Jump : ProbMatrix[I]) {
1463 if (Jump.first == I) {
1464 OneMinusSelfProb -= Jump.second;
1465 } else {
1466 NewFreq += Freq[Jump.first] * Jump.second;
1467 }
1468 }
1469 if (OneMinusSelfProb != Scaled64::getOne())
1470 NewFreq /= OneMinusSelfProb;
1471
1472 // If the block's frequency has changed enough, then
1473 // make sure the block and its successors are in the active set
1474 auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I];
1475 if (Change > Precision) {
1476 ActiveSet.push(I);
1477 IsActive[I] = true;
1478 for (size_t Succ : Successors[I]) {
1479 if (!IsActive[Succ]) {
1480 ActiveSet.push(Succ);
1481 IsActive[Succ] = true;
1482 }
1483 }
1484 }
1485
1486 // Update the frequency for the block
1487 Freq[I] = NewFreq;
1488 }
1489
1490 LLVM_DEBUG(dbgs() << " Completed " << It << " inference iterations"
1491 << format(" (%0.0f per block)", double(It) / Freq.size())
1492 << "\n");
1493#ifndef NDEBUG
1494 LLVM_DEBUG(dbgs() << " Final discrepancy = "
1495 << discrepancy(ProbMatrix, Freq).toString() << "\n");
1496#endif
1497}
1498
1499template <class BT>
1500void BlockFrequencyInfoImpl<BT>::findReachableBlocks(
1501 std::vector<const BlockT *> &Blocks) const {
1502 // Find all blocks to apply inference on, that is, reachable from the entry
1503 // along edges with non-zero probablities
1504 std::queue<const BlockT *> Queue;
1505 SmallPtrSet<const BlockT *, 8> Reachable;
1506 const BlockT *Entry = &F->front();
1507 Queue.push(Entry);
1508 Reachable.insert(Entry);
1509 while (!Queue.empty()) {
1510 const BlockT *SrcBB = Queue.front();
1511 Queue.pop();
1512 for (const BlockT *DstBB : children<const BlockT *>(SrcBB)) {
1513 auto EP = BPI->getEdgeProbability(SrcBB, DstBB);
1514 if (EP.isZero())
1515 continue;
1516 if (Reachable.insert(DstBB).second)
1517 Queue.push(DstBB);
1518 }
1519 }
1520
1521 // Find all blocks to apply inference on, that is, backward reachable from
1522 // the entry along (backward) edges with non-zero probablities
1523 SmallPtrSet<const BlockT *, 8> InverseReachable;
1524 for (const BlockT &BB : *F) {
1525 // An exit block is a block without any successors
1526 bool HasSucc = !llvm::children<const BlockT *>(&BB).empty();
1527 if (!HasSucc && Reachable.count(&BB)) {
1528 Queue.push(&BB);
1529 InverseReachable.insert(&BB);
1530 }
1531 }
1532 while (!Queue.empty()) {
1533 const BlockT *SrcBB = Queue.front();
1534 Queue.pop();
1535 for (const BlockT *DstBB : inverse_children<const BlockT *>(SrcBB)) {
1536 auto EP = BPI->getEdgeProbability(DstBB, SrcBB);
1537 if (EP.isZero())
1538 continue;
1539 if (InverseReachable.insert(DstBB).second)
1540 Queue.push(DstBB);
1541 }
1542 }
1543
1544 // Collect the result
1545 Blocks.reserve(F->size());
1546 for (const BlockT &BB : *F) {
1547 if (Reachable.count(&BB) && InverseReachable.count(&BB)) {
1548 Blocks.push_back(&BB);
1549 }
1550 }
1551}
1552
1553template <class BT>
1554void BlockFrequencyInfoImpl<BT>::initTransitionProbabilities(
1555 const std::vector<const BlockT *> &Blocks,
1556 const DenseMap<const BlockT *, size_t> &BlockIndex,
1557 ProbMatrixType &ProbMatrix) const {
1558 const size_t NumBlocks = Blocks.size();
1559 auto Succs = std::vector<std::vector<std::pair<size_t, Scaled64>>>(NumBlocks);
1560 auto SumProb = std::vector<Scaled64>(NumBlocks);
1561
1562 // Find unique successors and corresponding probabilities for every block
1563 for (size_t Src = 0; Src < NumBlocks; Src++) {
1564 const BlockT *BB = Blocks[Src];
1565 SmallPtrSet<const BlockT *, 2> UniqueSuccs;
1566 for (const auto SI : children<const BlockT *>(BB)) {
1567 // Ignore cold blocks
1568 auto BlockIndexIt = BlockIndex.find(SI);
1569 if (BlockIndexIt == BlockIndex.end())
1570 continue;
1571 // Ignore parallel edges between BB and SI blocks
1572 if (!UniqueSuccs.insert(SI).second)
1573 continue;
1574 // Ignore jumps with zero probability
1575 auto EP = BPI->getEdgeProbability(BB, SI);
1576 if (EP.isZero())
1577 continue;
1578
1579 auto EdgeProb =
1580 Scaled64::getFraction(EP.getNumerator(), EP.getDenominator());
1581 size_t Dst = BlockIndexIt->second;
1582 Succs[Src].push_back(std::make_pair(Dst, EdgeProb));
1583 SumProb[Src] += EdgeProb;
1584 }
1585 }
1586
1587 // Add transitions for every jump with positive branch probability
1588 ProbMatrix = ProbMatrixType(NumBlocks);
1589 for (size_t Src = 0; Src < NumBlocks; Src++) {
1590 // Ignore blocks w/o successors
1591 if (Succs[Src].empty())
1592 continue;
1593
1594 assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block");
1595 for (auto &Jump : Succs[Src]) {
1596 size_t Dst = Jump.first;
1597 Scaled64 Prob = Jump.second;
1598 ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src]));
1599 }
1600 }
1601
1602 // Add transitions from sinks to the source
1603 size_t EntryIdx = BlockIndex.find(&F->front())->second;
1604 for (size_t Src = 0; Src < NumBlocks; Src++) {
1605 if (Succs[Src].empty()) {
1606 ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne()));
1607 }
1608 }
1609}
1610
1611#ifndef NDEBUG
1612template <class BT>
1613BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl<BT>::discrepancy(
1614 const ProbMatrixType &ProbMatrix, const std::vector<Scaled64> &Freq) const {
1615 assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block");
1616 Scaled64 Discrepancy;
1617 for (size_t I = 0; I < ProbMatrix.size(); I++) {
1618 Scaled64 Sum;
1619 for (const auto &Jump : ProbMatrix[I]) {
1620 Sum += Freq[Jump.first] * Jump.second;
1621 }
1622 Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I];
1623 }
1624 // Normalizing by the frequency of the entry block
1625 return Discrepancy / Freq[0];
1626}
1627#endif
1628
1629template <class BT>
1630void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1631 LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1632 LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1633 if (OuterLoop) dbgs()
1634 << "loop: " << getLoopName(*OuterLoop) << "\n";
1635 else dbgs() << "function\n");
1636
1637 using namespace bfi_detail;
1638
1639 auto addBlockEdges = [&](IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1640 const LoopData *OuterLoop) {
1641 const BlockT *BB = RPOT[Irr.Node.Index];
1642 for (const auto *Succ : children<const BlockT *>(BB))
1643 G.addEdge(Irr, getNode(Succ), OuterLoop);
1644 };
1645 IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1646
1647 for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1648 computeMassInLoop(L);
1649
1650 if (!OuterLoop)
1651 return;
1652 updateLoopWithIrreducible(*OuterLoop);
1653}
1654
1655// A helper function that converts a branch probability into weight.
1657 return Prob.getNumerator();
1658}
1659
1660template <class BT>
1661bool
1662BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1663 const BlockNode &Node) {
1664 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1665 // Calculate probability for successors.
1666 Distribution Dist;
1667 if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1668 assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1669 if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1670 // Irreducible backedge.
1671 return false;
1672 } else {
1673 const BlockT *BB = getBlock(Node);
1674 for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
1675 SE = GraphTraits<const BlockT *>::child_end(BB);
1676 SI != SE; ++SI)
1677 if (!addToDist(
1678 Dist, OuterLoop, Node, getNode(*SI),
1679 getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1680 // Irreducible backedge.
1681 return false;
1682 }
1683
1684 // Distribute mass to successors, saving exit and backedge data in the
1685 // loop header.
1686 distributeMass(Node, OuterLoop, Dist);
1687 return true;
1688}
1689
1690template <class BT>
1692 if (!F)
1693 return OS;
1694 OS << "block-frequency-info: " << F->getName() << "\n";
1695 for (const BlockT &BB : *F) {
1696 OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1697 getFloatingBlockFreq(&BB).print(OS, 5)
1698 << ", int = " << getBlockFreq(&BB).getFrequency();
1699 if (std::optional<uint64_t> ProfileCount =
1701 F->getFunction(), getNode(&BB)))
1702 OS << ", count = " << *ProfileCount;
1703 if (std::optional<uint64_t> IrrLoopHeaderWeight =
1704 BB.getIrrLoopHeaderWeight())
1705 OS << ", irr_loop_header_weight = " << *IrrLoopHeaderWeight;
1706 OS << "\n";
1707 }
1708
1709 // Add an extra newline for readability.
1710 OS << "\n";
1711 return OS;
1712}
1713
1714template <class BT>
1717 bool Match = true;
1720 for (auto &Entry : Nodes) {
1721 const BlockT *BB = Entry.first;
1722 if (BB) {
1723 ValidNodes[BB] = Entry.second.first;
1724 }
1725 }
1726 for (auto &Entry : Other.Nodes) {
1727 const BlockT *BB = Entry.first;
1728 if (BB) {
1729 OtherValidNodes[BB] = Entry.second.first;
1730 }
1731 }
1732 unsigned NumValidNodes = ValidNodes.size();
1733 unsigned NumOtherValidNodes = OtherValidNodes.size();
1734 if (NumValidNodes != NumOtherValidNodes) {
1735 Match = false;
1736 dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs "
1737 << NumOtherValidNodes << "\n";
1738 } else {
1739 for (auto &Entry : ValidNodes) {
1740 const BlockT *BB = Entry.first;
1741 BlockNode Node = Entry.second;
1742 if (auto It = OtherValidNodes.find(BB); It != OtherValidNodes.end()) {
1743 BlockNode OtherNode = It->second;
1744 const auto &Freq = Freqs[Node.Index];
1745 const auto &OtherFreq = Other.Freqs[OtherNode.Index];
1746 if (Freq.Integer != OtherFreq.Integer) {
1747 Match = false;
1748 dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " "
1749 << Freq.Integer << " vs " << OtherFreq.Integer << "\n";
1750 }
1751 } else {
1752 Match = false;
1753 dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index "
1754 << Node.Index << " does not exist in Other.\n";
1755 }
1756 }
1757 // If there's a valid node in OtherValidNodes that's not in ValidNodes,
1758 // either the above num check or the check on OtherValidNodes will fail.
1759 }
1760 if (!Match) {
1761 dbgs() << "This\n";
1762 print(dbgs());
1763 dbgs() << "Other\n";
1764 Other.print(dbgs());
1765 }
1766 assert(Match && "BFI mismatch");
1767}
1768
1769// Graph trait base class for block frequency information graph
1770// viewer.
1771
1773
1774template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1777 using NodeRef = typename GTraits::NodeRef;
1778 using EdgeIter = typename GTraits::ChildIteratorType;
1779 using NodeIter = typename GTraits::nodes_iterator;
1780
1782
1783 explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1785
1786 static StringRef getGraphName(const BlockFrequencyInfoT *G) {
1787 return G->getFunction()->getName();
1788 }
1789
1790 std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1791 unsigned HotPercentThreshold = 0) {
1792 std::string Result;
1793 if (!HotPercentThreshold)
1794 return Result;
1795
1796 // Compute MaxFrequency on the fly:
1797 if (!MaxFrequency) {
1798 for (NodeIter I = GTraits::nodes_begin(Graph),
1799 E = GTraits::nodes_end(Graph);
1800 I != E; ++I) {
1801 NodeRef N = *I;
1802 MaxFrequency =
1803 std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1804 }
1805 }
1806 BlockFrequency Freq = Graph->getBlockFreq(Node);
1807 BlockFrequency HotFreq =
1809 BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1810
1811 if (Freq < HotFreq)
1812 return Result;
1813
1814 raw_string_ostream OS(Result);
1815 OS << "color=\"red\"";
1816 OS.flush();
1817 return Result;
1818 }
1819
1820 std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1821 GVDAGType GType, int layout_order = -1) {
1822 std::string Result;
1823 raw_string_ostream OS(Result);
1824
1825 if (layout_order != -1)
1826 OS << Node->getName() << "[" << layout_order << "] : ";
1827 else
1828 OS << Node->getName() << " : ";
1829 switch (GType) {
1830 case GVDT_Fraction:
1831 OS << printBlockFreq(*Graph, *Node);
1832 break;
1833 case GVDT_Integer:
1834 OS << Graph->getBlockFreq(Node).getFrequency();
1835 break;
1836 case GVDT_Count: {
1837 auto Count = Graph->getBlockProfileCount(Node);
1838 if (Count)
1839 OS << *Count;
1840 else
1841 OS << "Unknown";
1842 break;
1843 }
1844 case GVDT_None:
1845 llvm_unreachable("If we are not supposed to render a graph we should "
1846 "never reach this point.");
1847 }
1848 return Result;
1849 }
1850
1852 const BlockFrequencyInfoT *BFI,
1853 const BranchProbabilityInfoT *BPI,
1854 unsigned HotPercentThreshold = 0) {
1855 std::string Str;
1856 if (!BPI)
1857 return Str;
1858
1859 BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1860 uint32_t N = BP.getNumerator();
1861 uint32_t D = BP.getDenominator();
1862 double Percent = 100.0 * N / D;
1864 OS << format("label=\"%.1f%%\"", Percent);
1865
1866 if (HotPercentThreshold) {
1867 BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1869 BranchProbability(HotPercentThreshold, 100);
1870
1871 if (EFreq >= HotFreq) {
1872 OS << ",color=\"red\"";
1873 }
1874 }
1875
1876 OS.flush();
1877 return Str;
1878 }
1879};
1880
1881} // end namespace llvm
1882
1883#undef DEBUG_TYPE
1884
1885#endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
This file implements the BitVector class.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
uint32_t Index
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file defines the little GraphTraits<X> template class that should be specialized by classes that...
Hexagon Hardware Loops
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:546
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
#define H(x, y, z)
Definition: MD5.cpp:57
Branch Probability Basic Block static false std::string getBlockName(const MachineBasicBlock *BB)
Helper to print the name of a MBB.
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
raw_pwrite_stream & OS
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the SparseBitVector class.
#define LLVM_DEBUG(...)
Definition: Debug.h:119
Value handle that asserts if the Value is deleted.
Definition: ValueHandle.h:265
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
Base class for BlockFrequencyInfoImpl.
std::vector< WorkingData > Working
Loop data: see initializeLoops().
virtual ~BlockFrequencyInfoImplBase()=default
Virtual destructor.
std::list< LoopData > Loops
Indexed information about loops.
bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist)
Add all edges out of a packaged loop to the distribution.
std::string getLoopName(const LoopData &Loop) const
bool isIrrLoopHeader(const BlockNode &Node)
void computeLoopScale(LoopData &Loop)
Compute the loop scale for a loop.
void packageLoop(LoopData &Loop)
Package up a loop.
virtual raw_ostream & print(raw_ostream &OS) const
virtual std::string getBlockName(const BlockNode &Node) const
void finalizeMetrics()
Finalize frequency metrics.
void setBlockFreq(const BlockNode &Node, BlockFrequency Freq)
void updateLoopWithIrreducible(LoopData &OuterLoop)
Update a loop after packaging irreducible SCCs inside of it.
std::optional< uint64_t > getBlockProfileCount(const Function &F, const BlockNode &Node, bool AllowSynthetic=false) const
BlockFrequency getBlockFreq(const BlockNode &Node) const
void distributeIrrLoopHeaderMass(Distribution &Dist)
iterator_range< std::list< LoopData >::iterator > analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop, std::list< LoopData >::iterator Insert)
Analyze irreducible SCCs.
bool addToDist(Distribution &Dist, const LoopData *OuterLoop, const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight)
Add an edge to the distribution.
std::optional< uint64_t > getProfileCountFromFreq(const Function &F, BlockFrequency Freq, bool AllowSynthetic=false) const
Scaled64 getFloatingBlockFreq(const BlockNode &Node) const
void distributeMass(const BlockNode &Source, LoopData *OuterLoop, Distribution &Dist)
Distribute mass according to a distribution.
SparseBitVector IsIrrLoopHeader
Whether each block is an irreducible loop header.
std::vector< FrequencyData > Freqs
Data about each block. This is used downstream.
void adjustLoopHeaderMass(LoopData &Loop)
Adjust the mass of all headers in an irreducible loop.
Shared implementation for block frequency analysis.
bool isIrrLoopHeader(const BlockT *BB)
std::optional< uint64_t > getBlockProfileCount(const Function &F, const BlockT *BB, bool AllowSynthetic=false) const
const BranchProbabilityInfoT & getBPI() const
const FunctionT * getFunction() const
void verifyMatch(BlockFrequencyInfoImpl< BT > &Other) const
Scaled64 getFloatingBlockFreq(const BlockT *BB) const
std::optional< uint64_t > getProfileCountFromFreq(const Function &F, BlockFrequency Freq, bool AllowSynthetic=false) const
void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, const LoopInfoT &LI)
void setBlockFreq(const BlockT *BB, BlockFrequency Freq)
raw_ostream & print(raw_ostream &OS) const override
Print the frequencies for the current function.
BlockFrequency getBlockFreq(const BlockT *BB) const
Analysis providing branch probability information.
static LLVM_ABI BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
static uint32_t getDenominator()
uint32_t getNumerator() const
Value handle with callbacks on RAUW and destruction.
Definition: ValueHandle.h:384
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:203
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:177
bool erase(const KeyT &Val)
Definition: DenseMap.h:319
unsigned size() const
Definition: DenseMap.h:120
iterator begin()
Definition: DenseMap.h:78
iterator end()
Definition: DenseMap.h:87
Class to represent profile counts.
Definition: Function.h:297
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:40
Simple representation of a scaled number.
Definition: ScaledNumber.h:496
size_t size() const
Definition: SmallVector.h:79
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:806
void resize(size_type N)
Definition: SmallVector.h:639
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:233
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
void deleted() override
Callback for Value destruction.
BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl)
bool operator<(BlockMass X) const
bool operator>(BlockMass X) const
raw_ostream & print(raw_ostream &OS) const
bool operator==(BlockMass X) const
BlockMass & operator-=(BlockMass X)
Subtract another mass.
bool operator<=(BlockMass X) const
BlockMass & operator*=(BranchProbability P)
bool operator!=(BlockMass X) const
BlockMass & operator+=(BlockMass X)
Add another mass.
bool operator>=(BlockMass X) const
ScaledNumber< uint64_t > toScaled() const
Convert to scaled number.
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:662
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Entry
Definition: COFF.h:862
std::string getBlockName(const BlockT *BB)
Get the name of a MachineBasicBlock.
BlockMass operator*(BlockMass L, BranchProbability R)
BlockMass operator+(BlockMass L, BlockMass R)
raw_ostream & operator<<(raw_ostream &OS, BlockMass X)
BlockMass operator-(BlockMass L, BlockMass R)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2)
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr, unsigned DynamicVGPRBlockSize=0)
uint32_t getWeightFromBranchProb(const BranchProbability Prob)
Function::ProfileCount ProfileCount
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
llvm::cl::opt< unsigned > IterativeBFIMaxIterationsPerBlock
po_iterator< T > po_begin(const T &G)
llvm::cl::opt< bool > UseIterativeBFIInference
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition: Format.h:126
llvm::cl::opt< bool > CheckBFIUnknownBlockQueries
@ Other
Any other memory.
const char * toString(DWARFSectionKind Kind)
LLVM_ABI Printable printBlockFreq(const BlockFrequencyInfo &BFI, BlockFrequency Freq)
Print the block frequency Freq relative to the current functions entry frequency.
po_iterator< T > po_end(const T &G)
llvm::cl::opt< double > IterativeBFIPrecision
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:856
#define N
std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph, unsigned HotPercentThreshold=0)
typename GTraits::nodes_iterator NodeIter
typename GTraits::NodeRef NodeRef
typename GTraits::ChildIteratorType EdgeIter
std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph, GVDAGType GType, int layout_order=-1)
std::string getEdgeAttributes(NodeRef Node, EdgeIter EI, const BlockFrequencyInfoT *BFI, const BranchProbabilityInfoT *BPI, unsigned HotPercentThreshold=0)
BFIDOTGraphTraitsBase(bool isSimple=false)
static StringRef getGraphName(const BlockFrequencyInfoT *G)
Distribution of unscaled probability weight.
void addBackedge(const BlockNode &Node, uint64_t Amount)
WeightList Weights
Individual successor weights.
void addExit(const BlockNode &Node, uint64_t Amount)
void addLocal(const BlockNode &Node, uint64_t Amount)
bool isHeader(const BlockNode &Node) const
LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, It2 LastOther)
ExitMap Exits
Successor edges (and weights).
bool IsPackaged
Whether this has been packaged.
LoopData(LoopData *Parent, const BlockNode &Header)
NodeList::const_iterator members_end() const
NodeList::const_iterator members_begin() const
NodeList Nodes
Header and the members of the loop.
HeaderMassList BackedgeMass
Mass returned to each loop header.
HeaderMassList::difference_type getHeaderIndex(const BlockNode &B)
iterator_range< NodeList::const_iterator > members() const
Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
bool isPackaged() const
Has ContainingLoop been packaged up?
BlockMass Mass
Mass distribution from the entry block.
BlockMass & getMass()
Get the appropriate mass for a node.
bool isAPackage() const
Has Loop been packaged up?
LoopData * Loop
The loop this block is inside.
BlockNode getResolvedNode() const
Resolve a node to its representative.
bool isADoublePackage() const
Has Loop been packaged up twice?
DefaultDOTGraphTraits - This class provides the default implementations of all of the DOTGraphTraits ...
typename GraphType::UnknownGraphTypeError NodeRef
Definition: GraphTraits.h:95
std::deque< const IrrNode * >::const_iterator iterator
Graph of irreducible control flow.
IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges)
Construct an explicit graph containing irreducible control flow.
void addEdge(IrrNode &Irr, const BlockNode &Succ, const BFIBase::LoopData *OuterLoop)
void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges)
SmallDenseMap< uint32_t, IrrNode *, 4 > Lookup
void initialize(const BFIBase::LoopData *OuterLoop, BlockEdgesAdder addBlockEdges)
void addNodesInLoop(const BFIBase::LoopData &OuterLoop)