LLVM 22.0.0git
BranchProbabilityInfo.h
Go to the documentation of this file.
1//===- BranchProbabilityInfo.h - Branch Probability Analysis ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass is used to evaluate branch probabilties.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
14#define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
15
16#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/IR/BasicBlock.h"
20#include "llvm/IR/CFG.h"
21#include "llvm/IR/PassManager.h"
22#include "llvm/IR/ValueHandle.h"
23#include "llvm/Pass.h"
26#include <cassert>
27#include <cstdint>
28#include <memory>
29#include <utility>
30
31namespace llvm {
32
33class Function;
34class Loop;
35class LoopInfo;
36class raw_ostream;
37class DominatorTree;
38class PostDominatorTree;
39class TargetLibraryInfo;
40class Value;
41
42/// Analysis providing branch probability information.
43///
44/// This is a function analysis which provides information on the relative
45/// probabilities of each "edge" in the function's CFG where such an edge is
46/// defined by a pair (PredBlock and an index in the successors). The
47/// probability of an edge from one block is always relative to the
48/// probabilities of other edges from the block. The probabilites of all edges
49/// from a block sum to exactly one (100%).
50/// We use a pair (PredBlock and an index in the successors) to uniquely
51/// identify an edge, since we can have multiple edges from Src to Dst.
52/// As an example, we can have a switch which jumps to Dst with value 0 and
53/// value 10.
54///
55/// Process of computing branch probabilities can be logically viewed as three
56/// step process:
57///
58/// First, if there is a profile information associated with the branch then
59/// it is trivially translated to branch probabilities. There is one exception
60/// from this rule though. Probabilities for edges leading to "unreachable"
61/// blocks (blocks with the estimated weight not greater than
62/// UNREACHABLE_WEIGHT) are evaluated according to static estimation and
63/// override profile information. If no branch probabilities were calculated
64/// on this step then take the next one.
65///
66/// Second, estimate absolute execution weights for each block based on
67/// statically known information. Roots of such information are "cold",
68/// "unreachable", "noreturn" and "unwind" blocks. Those blocks get their
69/// weights set to BlockExecWeight::COLD, BlockExecWeight::UNREACHABLE,
70/// BlockExecWeight::NORETURN and BlockExecWeight::UNWIND respectively. Then the
71/// weights are propagated to the other blocks up the domination line. In
72/// addition, if all successors have estimated weights set then maximum of these
73/// weights assigned to the block itself (while this is not ideal heuristic in
74/// theory it's simple and works reasonably well in most cases) and the process
75/// repeats. Once the process of weights propagation converges branch
76/// probabilities are set for all such branches that have at least one successor
77/// with the weight set. Default execution weight (BlockExecWeight::DEFAULT) is
78/// used for any successors which doesn't have its weight set. For loop back
79/// branches we use their weights scaled by loop trip count equal to
80/// 'LBH_TAKEN_WEIGHT/LBH_NOTTAKEN_WEIGHT'.
81///
82/// Here is a simple example demonstrating how the described algorithm works.
83///
84/// BB1
85/// / \
86/// v v
87/// BB2 BB3
88/// / \
89/// v v
90/// ColdBB UnreachBB
91///
92/// Initially, ColdBB is associated with COLD_WEIGHT and UnreachBB with
93/// UNREACHABLE_WEIGHT. COLD_WEIGHT is set to BB2 as maximum between its
94/// successors. BB1 and BB3 has no explicit estimated weights and assumed to
95/// have DEFAULT_WEIGHT. Based on assigned weights branches will have the
96/// following probabilities:
97/// P(BB1->BB2) = COLD_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
98/// 0xffff / (0xffff + 0xfffff) = 0.0588(5.9%)
99/// P(BB1->BB3) = DEFAULT_WEIGHT_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) =
100/// 0xfffff / (0xffff + 0xfffff) = 0.941(94.1%)
101/// P(BB2->ColdBB) = COLD_WEIGHT/(COLD_WEIGHT + UNREACHABLE_WEIGHT) = 1(100%)
102/// P(BB2->UnreachBB) =
103/// UNREACHABLE_WEIGHT/(COLD_WEIGHT+UNREACHABLE_WEIGHT) = 0(0%)
104///
105/// If no branch probabilities were calculated on this step then take the next
106/// one.
107///
108/// Third, apply different kinds of local heuristics for each individual
109/// branch until first match. For example probability of a pointer to be null is
110/// estimated as PH_TAKEN_WEIGHT/(PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT). If
111/// no local heuristic has been matched then branch is left with no explicit
112/// probability set and assumed to have default probability.
114public:
116
118 const TargetLibraryInfo *TLI = nullptr,
119 DominatorTree *DT = nullptr,
120 PostDominatorTree *PDT = nullptr) {
121 calculate(F, LI, TLI, DT, PDT);
122 }
123
125 : Handles(std::move(Arg.Handles)), Probs(std::move(Arg.Probs)),
126 LastF(Arg.LastF),
127 EstimatedBlockWeight(std::move(Arg.EstimatedBlockWeight)) {
128 for (auto &Handle : Handles)
129 Handle.setBPI(this);
130 }
131
134
137 Handles = std::move(RHS.Handles);
138 Probs = std::move(RHS.Probs);
139 EstimatedBlockWeight = std::move(RHS.EstimatedBlockWeight);
140 for (auto &Handle : Handles)
141 Handle.setBPI(this);
142 return *this;
143 }
144
147
148 LLVM_ABI void releaseMemory();
149
150 LLVM_ABI void print(raw_ostream &OS) const;
151
152 /// Get an edge's probability, relative to other out-edges of the Src.
153 ///
154 /// This routine provides access to the fractional probability between zero
155 /// (0%) and one (100%) of this edge executing, relative to other edges
156 /// leaving the 'Src' block. The returned probability is never zero, and can
157 /// only be one if the source block has only one successor.
159 getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const;
160
161 /// Get the probability of going from Src to Dst.
162 ///
163 /// It returns the sum of all probabilities for edges from Src to Dst.
165 const BasicBlock *Dst) const;
166
168 const_succ_iterator Dst) const;
169
170 /// Test if an edge is hot relative to other out-edges of the Src.
171 ///
172 /// Check whether this edge out of the source block is 'hot'. We define hot
173 /// as having a relative probability > 80%.
174 LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const;
175
176 /// Print an edge's probability.
177 ///
178 /// Retrieves an edge's probability similarly to \see getEdgeProbability, but
179 /// then prints that probability to the provided stream. That stream is then
180 /// returned.
182 const BasicBlock *Src,
183 const BasicBlock *Dst) const;
184
185public:
186 /// Set the raw probabilities for all edges from the given block.
187 ///
188 /// This allows a pass to explicitly set edge probabilities for a block. It
189 /// can be used when updating the CFG to update the branch probability
190 /// information.
191 LLVM_ABI void
194
195 /// Copy outgoing edge probabilities from \p Src to \p Dst.
196 ///
197 /// This allows to keep probabilities unset for the destination if they were
198 /// unset for source.
200
201 /// Swap outgoing edges probabilities for \p Src with branch terminator
203
205 static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20);
206 return IsLikely ? LikelyProb : LikelyProb.getCompl();
207 }
208
209 LLVM_ABI void calculate(const Function &F, const LoopInfo &LI,
210 const TargetLibraryInfo *TLI, DominatorTree *DT,
211 PostDominatorTree *PDT);
212
213 /// Forget analysis results for the given basic block.
214 LLVM_ABI void eraseBlock(const BasicBlock *BB);
215
216 // Data structure to track SCCs for handling irreducible loops.
217 class SccInfo {
218 // Enum of types to classify basic blocks in SCC. Basic block belonging to
219 // SCC is 'Inner' until it is either 'Header' or 'Exiting'. Note that a
220 // basic block can be 'Header' and 'Exiting' at the same time.
221 enum SccBlockType {
222 Inner = 0x0,
223 Header = 0x1,
224 Exiting = 0x2,
225 };
226 // Map of basic blocks to SCC IDs they belong to. If basic block doesn't
227 // belong to any SCC it is not in the map.
229 // Each basic block in SCC is attributed with one or several types from
230 // SccBlockType. Map value has uint32_t type (instead of SccBlockType)
231 // since basic block may be for example "Header" and "Exiting" at the same
232 // time and we need to be able to keep more than one value from
233 // SccBlockType.
235 // Vector containing classification of basic blocks for all SCCs where i'th
236 // vector element corresponds to SCC with ID equal to i.
237 using SccBlockTypeMaps = std::vector<SccBlockTypeMap>;
238
239 SccMap SccNums;
240 SccBlockTypeMaps SccBlocks;
241
242 public:
243 LLVM_ABI explicit SccInfo(const Function &F);
244
245 /// If \p BB belongs to some SCC then ID of that SCC is returned, otherwise
246 /// -1 is returned. If \p BB belongs to more than one SCC at the same time
247 /// result is undefined.
248 LLVM_ABI int getSCCNum(const BasicBlock *BB) const;
249 /// Returns true if \p BB is a 'header' block in SCC with \p SccNum ID,
250 /// false otherwise.
251 bool isSCCHeader(const BasicBlock *BB, int SccNum) const {
252 return getSccBlockType(BB, SccNum) & Header;
253 }
254 /// Returns true if \p BB is an 'exiting' block in SCC with \p SccNum ID,
255 /// false otherwise.
256 bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const {
257 return getSccBlockType(BB, SccNum) & Exiting;
258 }
259 /// Fills in \p Enters vector with all such blocks that don't belong to
260 /// SCC with \p SccNum ID but there is an edge to a block belonging to the
261 /// SCC.
262 LLVM_ABI void
263 getSccEnterBlocks(int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const;
264 /// Fills in \p Exits vector with all such blocks that don't belong to
265 /// SCC with \p SccNum ID but there is an edge from a block belonging to the
266 /// SCC.
267 LLVM_ABI void getSccExitBlocks(int SccNum,
268 SmallVectorImpl<BasicBlock *> &Exits) const;
269
270 private:
271 /// Returns \p BB's type according to classification given by SccBlockType
272 /// enum. Please note that \p BB must belong to SSC with \p SccNum ID.
273 LLVM_ABI uint32_t getSccBlockType(const BasicBlock *BB, int SccNum) const;
274 /// Calculates \p BB's type and stores it in internal data structures for
275 /// future use. Please note that \p BB must belong to SSC with \p SccNum ID.
276 void calculateSccBlockType(const BasicBlock *BB, int SccNum);
277 };
278
279private:
280 // We need to store CallbackVH's in order to correctly handle basic block
281 // removal.
282 class BasicBlockCallbackVH final : public CallbackVH {
284
285 void deleted() override {
286 assert(BPI != nullptr);
287 BPI->eraseBlock(cast<BasicBlock>(getValPtr()));
288 }
289
290 public:
291 void setBPI(BranchProbabilityInfo *BPI) { this->BPI = BPI; }
292
293 BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI = nullptr)
294 : CallbackVH(const_cast<Value *>(V)), BPI(BPI) {}
295 };
296
297 /// Pair of Loop and SCC ID number. Used to unify handling of normal and
298 /// SCC based loop representations.
299 using LoopData = std::pair<Loop *, int>;
300 /// Helper class to keep basic block along with its loop data information.
301 class LoopBlock {
302 public:
303 LLVM_ABI explicit LoopBlock(const BasicBlock *BB, const LoopInfo &LI,
304 const SccInfo &SccI);
305
306 const BasicBlock *getBlock() const { return BB; }
307 BasicBlock *getBlock() { return const_cast<BasicBlock *>(BB); }
308 LoopData getLoopData() const { return LD; }
309 Loop *getLoop() const { return LD.first; }
310 int getSccNum() const { return LD.second; }
311
312 bool belongsToLoop() const { return getLoop() || getSccNum() != -1; }
313 bool belongsToSameLoop(const LoopBlock &LB) const {
314 return (LB.getLoop() && getLoop() == LB.getLoop()) ||
315 (LB.getSccNum() != -1 && getSccNum() == LB.getSccNum());
316 }
317
318 private:
319 const BasicBlock *const BB = nullptr;
320 LoopData LD = {nullptr, -1};
321 };
322
323 // Pair of LoopBlocks representing an edge from first to second block.
324 using LoopEdge = std::pair<const LoopBlock &, const LoopBlock &>;
325
326 DenseSet<BasicBlockCallbackVH, DenseMapInfo<Value*>> Handles;
327
328 // Since we allow duplicate edges from one basic block to another, we use
329 // a pair (PredBlock and an index in the successors) to specify an edge.
330 using Edge = std::pair<const BasicBlock *, unsigned>;
331
332 DenseMap<Edge, BranchProbability> Probs;
333
334 /// Track the last function we run over for printing.
335 const Function *LastF = nullptr;
336
337 const LoopInfo *LI = nullptr;
338
339 /// Keeps information about all SCCs in a function.
340 std::unique_ptr<const SccInfo> SccI;
341
342 /// Keeps mapping of a basic block to its estimated weight.
343 SmallDenseMap<const BasicBlock *, uint32_t> EstimatedBlockWeight;
344
345 /// Keeps mapping of a loop to estimated weight to enter the loop.
346 SmallDenseMap<LoopData, uint32_t> EstimatedLoopWeight;
347
348 /// Helper to construct LoopBlock for \p BB.
349 LoopBlock getLoopBlock(const BasicBlock *BB) const {
350 return LoopBlock(BB, *LI, *SccI);
351 }
352
353 /// Returns true if destination block belongs to some loop and source block is
354 /// either doesn't belong to any loop or belongs to a loop which is not inner
355 /// relative to the destination block.
356 bool isLoopEnteringEdge(const LoopEdge &Edge) const;
357 /// Returns true if source block belongs to some loop and destination block is
358 /// either doesn't belong to any loop or belongs to a loop which is not inner
359 /// relative to the source block.
360 bool isLoopExitingEdge(const LoopEdge &Edge) const;
361 /// Returns true if \p Edge is either enters to or exits from some loop, false
362 /// in all other cases.
363 bool isLoopEnteringExitingEdge(const LoopEdge &Edge) const;
364 /// Returns true if source and destination blocks belongs to the same loop and
365 /// destination block is loop header.
366 bool isLoopBackEdge(const LoopEdge &Edge) const;
367 // Fills in \p Enters vector with all "enter" blocks to a loop \LB belongs to.
368 void getLoopEnterBlocks(const LoopBlock &LB,
369 SmallVectorImpl<BasicBlock *> &Enters) const;
370 // Fills in \p Exits vector with all "exit" blocks from a loop \LB belongs to.
371 void getLoopExitBlocks(const LoopBlock &LB,
372 SmallVectorImpl<BasicBlock *> &Exits) const;
373
374 /// Returns estimated weight for \p BB. std::nullopt if \p BB has no estimated
375 /// weight.
376 std::optional<uint32_t> getEstimatedBlockWeight(const BasicBlock *BB) const;
377
378 /// Returns estimated weight to enter \p L. In other words it is weight of
379 /// loop's header block not scaled by trip count. Returns std::nullopt if \p L
380 /// has no no estimated weight.
381 std::optional<uint32_t> getEstimatedLoopWeight(const LoopData &L) const;
382
383 /// Return estimated weight for \p Edge. Returns std::nullopt if estimated
384 /// weight is unknown.
385 std::optional<uint32_t> getEstimatedEdgeWeight(const LoopEdge &Edge) const;
386
387 /// Iterates over all edges leading from \p SrcBB to \p Successors and
388 /// returns maximum of all estimated weights. If at least one edge has unknown
389 /// estimated weight std::nullopt is returned.
390 template <class IterT>
391 std::optional<uint32_t>
392 getMaxEstimatedEdgeWeight(const LoopBlock &SrcBB,
393 iterator_range<IterT> Successors) const;
394
395 /// If \p LoopBB has no estimated weight then set it to \p BBWeight and
396 /// return true. Otherwise \p BB's weight remains unchanged and false is
397 /// returned. In addition all blocks/loops that might need their weight to be
398 /// re-estimated are put into BlockWorkList/LoopWorkList.
399 bool updateEstimatedBlockWeight(LoopBlock &LoopBB, uint32_t BBWeight,
400 SmallVectorImpl<BasicBlock *> &BlockWorkList,
401 SmallVectorImpl<LoopBlock> &LoopWorkList);
402
403 /// Starting from \p LoopBB (including \p LoopBB itself) propagate \p BBWeight
404 /// up the domination tree.
405 void propagateEstimatedBlockWeight(const LoopBlock &LoopBB, DominatorTree *DT,
406 PostDominatorTree *PDT, uint32_t BBWeight,
407 SmallVectorImpl<BasicBlock *> &WorkList,
408 SmallVectorImpl<LoopBlock> &LoopWorkList);
409
410 /// Returns block's weight encoded in the IR.
411 std::optional<uint32_t> getInitialEstimatedBlockWeight(const BasicBlock *BB);
412
413 // Computes estimated weights for all blocks in \p F.
414 void estimateBlockWeights(const Function &F, DominatorTree *DT,
415 PostDominatorTree *PDT);
416
417 /// Based on computed weights by \p computeEstimatedBlockWeight set
418 /// probabilities on branches.
419 bool calcEstimatedHeuristics(const BasicBlock *BB);
420 bool calcMetadataWeights(const BasicBlock *BB);
421 bool calcPointerHeuristics(const BasicBlock *BB);
422 bool calcZeroHeuristics(const BasicBlock *BB, const TargetLibraryInfo *TLI);
423 bool calcFloatingPointHeuristics(const BasicBlock *BB);
424};
425
426/// Analysis pass which computes \c BranchProbabilityInfo.
428 : public AnalysisInfoMixin<BranchProbabilityAnalysis> {
430
431 LLVM_ABI static AnalysisKey Key;
432
433public:
434 /// Provide the result type for this analysis pass.
436
437 /// Run the analysis pass over a function and produce BPI.
439};
440
441/// Printer pass for the \c BranchProbabilityAnalysis results.
443 : public PassInfoMixin<BranchProbabilityPrinterPass> {
444 raw_ostream &OS;
445
446public:
448
450
451 static bool isRequired() { return true; }
452};
453
454/// Legacy analysis pass which computes \c BranchProbabilityInfo.
457
458public:
459 static char ID;
460
462
463 BranchProbabilityInfo &getBPI() { return BPI; }
464 const BranchProbabilityInfo &getBPI() const { return BPI; }
465
466 void getAnalysisUsage(AnalysisUsage &AU) const override;
467 bool runOnFunction(Function &F) override;
468 void releaseMemory() override;
469 void print(raw_ostream &OS, const Module *M = nullptr) const override;
470};
471
472} // end namespace llvm
473
474#endif // LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
#define LLVM_ABI
Definition: Compiler.h:213
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
static bool runOnFunction(Function &F, bool PostInlining)
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This header defines various interfaces for pass management in LLVM.
#define F(x, y, z)
Definition: MD5.cpp:55
raw_pwrite_stream & OS
Value * RHS
API to communicate dependencies between analyses during invalidation.
Definition: PassManager.h:294
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
Represent the analysis usage information of a pass.
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
Analysis pass which computes BranchProbabilityInfo.
LLVM_ABI BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM)
Run the analysis pass over a function and produce BPI.
Legacy analysis pass which computes BranchProbabilityInfo.
const BranchProbabilityInfo & getBPI() const
bool isSCCHeader(const BasicBlock *BB, int SccNum) const
Returns true if BB is a 'header' block in SCC with SccNum ID, false otherwise.
LLVM_ABI void getSccEnterBlocks(int SccNum, SmallVectorImpl< BasicBlock * > &Enters) const
Fills in Enters vector with all such blocks that don't belong to SCC with SccNum ID but there is an e...
bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const
Returns true if BB is an 'exiting' block in SCC with SccNum ID, false otherwise.
LLVM_ABI void getSccExitBlocks(int SccNum, SmallVectorImpl< BasicBlock * > &Exits) const
Fills in Exits vector with all such blocks that don't belong to SCC with SccNum ID but there is an ed...
LLVM_ABI int getSCCNum(const BasicBlock *BB) const
If BB belongs to some SCC then ID of that SCC is returned, otherwise -1 is returned.
Analysis providing branch probability information.
LLVM_ABI void eraseBlock(const BasicBlock *BB)
Forget analysis results for the given basic block.
LLVM_ABI void setEdgeProbability(const BasicBlock *Src, const SmallVectorImpl< BranchProbability > &Probs)
Set the raw probabilities for all edges from the given block.
BranchProbabilityInfo(const BranchProbabilityInfo &)=delete
LLVM_ABI bool invalidate(Function &, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &)
LLVM_ABI BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
static BranchProbability getBranchProbStackProtector(bool IsLikely)
LLVM_ABI void calculate(const Function &F, const LoopInfo &LI, const TargetLibraryInfo *TLI, DominatorTree *DT, PostDominatorTree *PDT)
BranchProbabilityInfo & operator=(BranchProbabilityInfo &&RHS)
LLVM_ABI bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const
Test if an edge is hot relative to other out-edges of the Src.
LLVM_ABI void swapSuccEdgesProbabilities(const BasicBlock *Src)
Swap outgoing edges probabilities for Src with branch terminator.
BranchProbabilityInfo(BranchProbabilityInfo &&Arg)
LLVM_ABI void print(raw_ostream &OS) const
BranchProbabilityInfo(const Function &F, const LoopInfo &LI, const TargetLibraryInfo *TLI=nullptr, DominatorTree *DT=nullptr, PostDominatorTree *PDT=nullptr)
BranchProbabilityInfo & operator=(const BranchProbabilityInfo &)=delete
LLVM_ABI raw_ostream & printEdgeProbability(raw_ostream &OS, const BasicBlock *Src, const BasicBlock *Dst) const
Print an edge's probability.
LLVM_ABI void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst)
Copy outgoing edge probabilities from Src to Dst.
Printer pass for the BranchProbabilityAnalysis results.
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
BranchProbability getCompl() const
Value handle with callbacks on RAUW and destruction.
Definition: ValueHandle.h:384
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:165
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
PostDominatorTree Class - Concrete subclass of DominatorTree that is used to compute the post-dominat...
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
Provides information about what library functions are available for the current target.
Value * getValPtr() const
Definition: ValueHandle.h:100
friend class Value
Definition: ValueHandle.h:31
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
@ BasicBlock
Various leaf nodes.
Definition: ISDOpcodes.h:81
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1886
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:856
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition: PassManager.h:93
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition: Analysis.h:29
A CRTP mix-in to automatically provide informational APIs needed for passes.
Definition: PassManager.h:70