LLVM 22.0.0git
CoroFrame.cpp
Go to the documentation of this file.
1//===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file contains classes used to discover if for a particular value
9// its definition precedes and its uses follow a suspend block. This is
10// referred to as a suspend crossing value.
11//
12// Using the information discovered we form a Coroutine Frame structure to
13// contain those values. All uses of those values are replaced with appropriate
14// GEP + load from the coroutine frame. At the point of the definition we spill
15// the value into the coroutine frame.
16//===----------------------------------------------------------------------===//
17
18#include "CoroInternal.h"
19#include "llvm/ADT/ScopeExit.h"
22#include "llvm/IR/DIBuilder.h"
23#include "llvm/IR/DebugInfo.h"
24#include "llvm/IR/Dominators.h"
25#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Module.h"
30#include "llvm/Support/Debug.h"
40#include <algorithm>
41#include <optional>
42
43using namespace llvm;
44
45#define DEBUG_TYPE "coro-frame"
46
47namespace {
48class FrameTypeBuilder;
49// Mapping from the to-be-spilled value to all the users that need reload.
50struct FrameDataInfo {
51 // All the values (that are not allocas) that needs to be spilled to the
52 // frame.
53 coro::SpillInfo &Spills;
54 // Allocas contains all values defined as allocas that need to live in the
55 // frame.
57
58 FrameDataInfo(coro::SpillInfo &Spills,
60 : Spills(Spills), Allocas(Allocas) {}
61
62 SmallVector<Value *, 8> getAllDefs() const {
64 for (const auto &P : Spills)
65 Defs.push_back(P.first);
66 for (const auto &A : Allocas)
67 Defs.push_back(A.Alloca);
68 return Defs;
69 }
70
71 uint32_t getFieldIndex(Value *V) const {
72 auto Itr = FieldIndexMap.find(V);
73 assert(Itr != FieldIndexMap.end() &&
74 "Value does not have a frame field index");
75 return Itr->second;
76 }
77
78 void setFieldIndex(Value *V, uint32_t Index) {
79 assert((LayoutIndexUpdateStarted || FieldIndexMap.count(V) == 0) &&
80 "Cannot set the index for the same field twice.");
81 FieldIndexMap[V] = Index;
82 }
83
84 Align getAlign(Value *V) const {
85 auto Iter = FieldAlignMap.find(V);
86 assert(Iter != FieldAlignMap.end());
87 return Iter->second;
88 }
89
90 void setAlign(Value *V, Align AL) {
91 assert(FieldAlignMap.count(V) == 0);
92 FieldAlignMap.insert({V, AL});
93 }
94
95 uint64_t getDynamicAlign(Value *V) const {
96 auto Iter = FieldDynamicAlignMap.find(V);
97 assert(Iter != FieldDynamicAlignMap.end());
98 return Iter->second;
99 }
100
101 void setDynamicAlign(Value *V, uint64_t Align) {
102 assert(FieldDynamicAlignMap.count(V) == 0);
103 FieldDynamicAlignMap.insert({V, Align});
104 }
105
106 uint64_t getOffset(Value *V) const {
107 auto Iter = FieldOffsetMap.find(V);
108 assert(Iter != FieldOffsetMap.end());
109 return Iter->second;
110 }
111
112 void setOffset(Value *V, uint64_t Offset) {
113 assert(FieldOffsetMap.count(V) == 0);
114 FieldOffsetMap.insert({V, Offset});
115 }
116
117 // Remap the index of every field in the frame, using the final layout index.
118 void updateLayoutIndex(FrameTypeBuilder &B);
119
120private:
121 // LayoutIndexUpdateStarted is used to avoid updating the index of any field
122 // twice by mistake.
123 bool LayoutIndexUpdateStarted = false;
124 // Map from values to their slot indexes on the frame. They will be first set
125 // with their original insertion field index. After the frame is built, their
126 // indexes will be updated into the final layout index.
127 DenseMap<Value *, uint32_t> FieldIndexMap;
128 // Map from values to their alignment on the frame. They would be set after
129 // the frame is built.
130 DenseMap<Value *, Align> FieldAlignMap;
131 DenseMap<Value *, uint64_t> FieldDynamicAlignMap;
132 // Map from values to their offset on the frame. They would be set after
133 // the frame is built.
134 DenseMap<Value *, uint64_t> FieldOffsetMap;
135};
136} // namespace
137
138#ifndef NDEBUG
139static void dumpSpills(StringRef Title, const coro::SpillInfo &Spills) {
140 dbgs() << "------------- " << Title << " --------------\n";
141 for (const auto &E : Spills) {
142 E.first->dump();
143 dbgs() << " user: ";
144 for (auto *I : E.second)
145 I->dump();
146 }
147}
148
150 dbgs() << "------------- Allocas --------------\n";
151 for (const auto &A : Allocas) {
152 A.Alloca->dump();
153 }
154}
155#endif
156
157namespace {
158using FieldIDType = size_t;
159// We cannot rely solely on natural alignment of a type when building a
160// coroutine frame and if the alignment specified on the Alloca instruction
161// differs from the natural alignment of the alloca type we will need to insert
162// padding.
163class FrameTypeBuilder {
164private:
165 struct Field {
168 Type *Ty;
169 FieldIDType LayoutFieldIndex;
170 Align Alignment;
171 Align TyAlignment;
172 uint64_t DynamicAlignBuffer;
173 };
174
175 const DataLayout &DL;
177 uint64_t StructSize = 0;
178 Align StructAlign;
179 bool IsFinished = false;
180
181 std::optional<Align> MaxFrameAlignment;
182
184 DenseMap<Value*, unsigned> FieldIndexByKey;
185
186public:
187 FrameTypeBuilder(LLVMContext &Context, const DataLayout &DL,
188 std::optional<Align> MaxFrameAlignment)
189 : DL(DL), Context(Context), MaxFrameAlignment(MaxFrameAlignment) {}
190
191 /// Add a field to this structure for the storage of an `alloca`
192 /// instruction.
193 [[nodiscard]] FieldIDType addFieldForAlloca(AllocaInst *AI,
194 bool IsHeader = false) {
195 Type *Ty = AI->getAllocatedType();
196
197 // Make an array type if this is a static array allocation.
198 if (AI->isArrayAllocation()) {
199 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize()))
200 Ty = ArrayType::get(Ty, CI->getValue().getZExtValue());
201 else
202 report_fatal_error("Coroutines cannot handle non static allocas yet");
203 }
204
205 return addField(Ty, AI->getAlign(), IsHeader);
206 }
207
208 /// We want to put the allocas whose lifetime-ranges are not overlapped
209 /// into one slot of coroutine frame.
210 /// Consider the example at:https://bugs.llvm.org/show_bug.cgi?id=45566
211 ///
212 /// cppcoro::task<void> alternative_paths(bool cond) {
213 /// if (cond) {
214 /// big_structure a;
215 /// process(a);
216 /// co_await something();
217 /// } else {
218 /// big_structure b;
219 /// process2(b);
220 /// co_await something();
221 /// }
222 /// }
223 ///
224 /// We want to put variable a and variable b in the same slot to
225 /// reduce the size of coroutine frame.
226 ///
227 /// This function use StackLifetime algorithm to partition the AllocaInsts in
228 /// Spills to non-overlapped sets in order to put Alloca in the same
229 /// non-overlapped set into the same slot in the Coroutine Frame. Then add
230 /// field for the allocas in the same non-overlapped set by using the largest
231 /// type as the field type.
232 ///
233 /// Side Effects: Because We sort the allocas, the order of allocas in the
234 /// frame may be different with the order in the source code.
235 void addFieldForAllocas(const Function &F, FrameDataInfo &FrameData,
236 coro::Shape &Shape, bool OptimizeFrame);
237
238 /// Add a field to this structure.
239 [[nodiscard]] FieldIDType addField(Type *Ty, MaybeAlign MaybeFieldAlignment,
240 bool IsHeader = false,
241 bool IsSpillOfValue = false) {
242 assert(!IsFinished && "adding fields to a finished builder");
243 assert(Ty && "must provide a type for a field");
244
245 // The field size is always the alloc size of the type.
246 uint64_t FieldSize = DL.getTypeAllocSize(Ty);
247
248 // For an alloca with size=0, we don't need to add a field and they
249 // can just point to any index in the frame. Use index 0.
250 if (FieldSize == 0) {
251 return 0;
252 }
253
254 // The field alignment might not be the type alignment, but we need
255 // to remember the type alignment anyway to build the type.
256 // If we are spilling values we don't need to worry about ABI alignment
257 // concerns.
258 Align ABIAlign = DL.getABITypeAlign(Ty);
259 Align TyAlignment = ABIAlign;
260 if (IsSpillOfValue && MaxFrameAlignment && *MaxFrameAlignment < ABIAlign)
261 TyAlignment = *MaxFrameAlignment;
262 Align FieldAlignment = MaybeFieldAlignment.value_or(TyAlignment);
263
264 // The field alignment could be bigger than the max frame case, in that case
265 // we request additional storage to be able to dynamically align the
266 // pointer.
267 uint64_t DynamicAlignBuffer = 0;
268 if (MaxFrameAlignment && (FieldAlignment > *MaxFrameAlignment)) {
269 DynamicAlignBuffer =
270 offsetToAlignment(MaxFrameAlignment->value(), FieldAlignment);
271 FieldAlignment = *MaxFrameAlignment;
272 FieldSize = FieldSize + DynamicAlignBuffer;
273 }
274
275 // Lay out header fields immediately.
277 if (IsHeader) {
278 Offset = alignTo(StructSize, FieldAlignment);
279 StructSize = Offset + FieldSize;
280
281 // Everything else has a flexible offset.
282 } else {
284 }
285
286 Fields.push_back({FieldSize, Offset, Ty, 0, FieldAlignment, TyAlignment,
287 DynamicAlignBuffer});
288 return Fields.size() - 1;
289 }
290
291 /// Finish the layout and create the struct type with the given name.
292 StructType *finish(StringRef Name);
293
294 uint64_t getStructSize() const {
295 assert(IsFinished && "not yet finished!");
296 return StructSize;
297 }
298
299 Align getStructAlign() const {
300 assert(IsFinished && "not yet finished!");
301 return StructAlign;
302 }
303
304 FieldIDType getLayoutFieldIndex(FieldIDType Id) const {
305 assert(IsFinished && "not yet finished!");
306 return Fields[Id].LayoutFieldIndex;
307 }
308
309 Field getLayoutField(FieldIDType Id) const {
310 assert(IsFinished && "not yet finished!");
311 return Fields[Id];
312 }
313};
314} // namespace
315
316void FrameDataInfo::updateLayoutIndex(FrameTypeBuilder &B) {
317 auto Updater = [&](Value *I) {
318 auto Field = B.getLayoutField(getFieldIndex(I));
319 setFieldIndex(I, Field.LayoutFieldIndex);
320 setAlign(I, Field.Alignment);
321 uint64_t dynamicAlign =
322 Field.DynamicAlignBuffer
323 ? Field.DynamicAlignBuffer + Field.Alignment.value()
324 : 0;
325 setDynamicAlign(I, dynamicAlign);
326 setOffset(I, Field.Offset);
327 };
328 LayoutIndexUpdateStarted = true;
329 for (auto &S : Spills)
330 Updater(S.first);
331 for (const auto &A : Allocas)
332 Updater(A.Alloca);
333 LayoutIndexUpdateStarted = false;
334}
335
336void FrameTypeBuilder::addFieldForAllocas(const Function &F,
337 FrameDataInfo &FrameData,
338 coro::Shape &Shape,
339 bool OptimizeFrame) {
340 using AllocaSetType = SmallVector<AllocaInst *, 4>;
341 SmallVector<AllocaSetType, 4> NonOverlapedAllocas;
342
343 // We need to add field for allocas at the end of this function.
344 auto AddFieldForAllocasAtExit = make_scope_exit([&]() {
345 for (auto AllocaList : NonOverlapedAllocas) {
346 auto *LargestAI = *AllocaList.begin();
347 FieldIDType Id = addFieldForAlloca(LargestAI);
348 for (auto *Alloca : AllocaList)
349 FrameData.setFieldIndex(Alloca, Id);
350 }
351 });
352
353 if (!OptimizeFrame) {
354 for (const auto &A : FrameData.Allocas) {
355 AllocaInst *Alloca = A.Alloca;
356 NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca));
357 }
358 return;
359 }
360
361 // Because there are paths from the lifetime.start to coro.end
362 // for each alloca, the liferanges for every alloca is overlaped
363 // in the blocks who contain coro.end and the successor blocks.
364 // So we choose to skip there blocks when we calculate the liferange
365 // for each alloca. It should be reasonable since there shouldn't be uses
366 // in these blocks and the coroutine frame shouldn't be used outside the
367 // coroutine body.
368 //
369 // Note that the user of coro.suspend may not be SwitchInst. However, this
370 // case seems too complex to handle. And it is harmless to skip these
371 // patterns since it just prevend putting the allocas to live in the same
372 // slot.
373 DenseMap<SwitchInst *, BasicBlock *> DefaultSuspendDest;
374 for (auto *CoroSuspendInst : Shape.CoroSuspends) {
375 for (auto *U : CoroSuspendInst->users()) {
376 if (auto *ConstSWI = dyn_cast<SwitchInst>(U)) {
377 auto *SWI = const_cast<SwitchInst *>(ConstSWI);
378 DefaultSuspendDest[SWI] = SWI->getDefaultDest();
379 SWI->setDefaultDest(SWI->getSuccessor(1));
380 }
381 }
382 }
383
384 auto ExtractAllocas = [&]() {
385 AllocaSetType Allocas;
386 Allocas.reserve(FrameData.Allocas.size());
387 for (const auto &A : FrameData.Allocas)
388 Allocas.push_back(A.Alloca);
389 return Allocas;
390 };
391 StackLifetime StackLifetimeAnalyzer(F, ExtractAllocas(),
392 StackLifetime::LivenessType::May);
393 StackLifetimeAnalyzer.run();
394 auto DoAllocasInterfere = [&](const AllocaInst *AI1, const AllocaInst *AI2) {
395 return StackLifetimeAnalyzer.getLiveRange(AI1).overlaps(
396 StackLifetimeAnalyzer.getLiveRange(AI2));
397 };
398 auto GetAllocaSize = [&](const coro::AllocaInfo &A) {
399 std::optional<TypeSize> RetSize = A.Alloca->getAllocationSize(DL);
400 assert(RetSize && "Variable Length Arrays (VLA) are not supported.\n");
401 assert(!RetSize->isScalable() && "Scalable vectors are not yet supported");
402 return RetSize->getFixedValue();
403 };
404 // Put larger allocas in the front. So the larger allocas have higher
405 // priority to merge, which can save more space potentially. Also each
406 // AllocaSet would be ordered. So we can get the largest Alloca in one
407 // AllocaSet easily.
408 sort(FrameData.Allocas, [&](const auto &Iter1, const auto &Iter2) {
409 return GetAllocaSize(Iter1) > GetAllocaSize(Iter2);
410 });
411 for (const auto &A : FrameData.Allocas) {
412 AllocaInst *Alloca = A.Alloca;
413 bool Merged = false;
414 // Try to find if the Alloca does not interfere with any existing
415 // NonOverlappedAllocaSet. If it is true, insert the alloca to that
416 // NonOverlappedAllocaSet.
417 for (auto &AllocaSet : NonOverlapedAllocas) {
418 assert(!AllocaSet.empty() && "Processing Alloca Set is not empty.\n");
419 bool NoInterference = none_of(AllocaSet, [&](auto Iter) {
420 return DoAllocasInterfere(Alloca, Iter);
421 });
422 // If the alignment of A is multiple of the alignment of B, the address
423 // of A should satisfy the requirement for aligning for B.
424 //
425 // There may be other more fine-grained strategies to handle the alignment
426 // infomation during the merging process. But it seems hard to handle
427 // these strategies and benefit little.
428 bool Alignable = [&]() -> bool {
429 auto *LargestAlloca = *AllocaSet.begin();
430 return LargestAlloca->getAlign().value() % Alloca->getAlign().value() ==
431 0;
432 }();
433 bool CouldMerge = NoInterference && Alignable;
434 if (!CouldMerge)
435 continue;
436 AllocaSet.push_back(Alloca);
437 Merged = true;
438 break;
439 }
440 if (!Merged) {
441 NonOverlapedAllocas.emplace_back(AllocaSetType(1, Alloca));
442 }
443 }
444 // Recover the default target destination for each Switch statement
445 // reserved.
446 for (auto SwitchAndDefaultDest : DefaultSuspendDest) {
447 SwitchInst *SWI = SwitchAndDefaultDest.first;
448 BasicBlock *DestBB = SwitchAndDefaultDest.second;
449 SWI->setDefaultDest(DestBB);
450 }
451 // This Debug Info could tell us which allocas are merged into one slot.
452 LLVM_DEBUG(for (auto &AllocaSet
453 : NonOverlapedAllocas) {
454 if (AllocaSet.size() > 1) {
455 dbgs() << "In Function:" << F.getName() << "\n";
456 dbgs() << "Find Union Set "
457 << "\n";
458 dbgs() << "\tAllocas are \n";
459 for (auto Alloca : AllocaSet)
460 dbgs() << "\t\t" << *Alloca << "\n";
461 }
462 });
463}
464
465StructType *FrameTypeBuilder::finish(StringRef Name) {
466 assert(!IsFinished && "already finished!");
467
468 // Prepare the optimal-layout field array.
469 // The Id in the layout field is a pointer to our Field for it.
471 LayoutFields.reserve(Fields.size());
472 for (auto &Field : Fields) {
473 LayoutFields.emplace_back(&Field, Field.Size, Field.Alignment,
474 Field.Offset);
475 }
476
477 // Perform layout.
478 auto SizeAndAlign = performOptimizedStructLayout(LayoutFields);
479 StructSize = SizeAndAlign.first;
480 StructAlign = SizeAndAlign.second;
481
482 auto getField = [](const OptimizedStructLayoutField &LayoutField) -> Field & {
483 return *static_cast<Field *>(const_cast<void*>(LayoutField.Id));
484 };
485
486 // We need to produce a packed struct type if there's a field whose
487 // assigned offset isn't a multiple of its natural type alignment.
488 bool Packed = [&] {
489 for (auto &LayoutField : LayoutFields) {
490 auto &F = getField(LayoutField);
491 if (!isAligned(F.TyAlignment, LayoutField.Offset))
492 return true;
493 }
494 return false;
495 }();
496
497 // Build the struct body.
498 SmallVector<Type*, 16> FieldTypes;
499 FieldTypes.reserve(LayoutFields.size() * 3 / 2);
500 uint64_t LastOffset = 0;
501 for (auto &LayoutField : LayoutFields) {
502 auto &F = getField(LayoutField);
503
504 auto Offset = LayoutField.Offset;
505
506 // Add a padding field if there's a padding gap and we're either
507 // building a packed struct or the padding gap is more than we'd
508 // get from aligning to the field type's natural alignment.
509 assert(Offset >= LastOffset);
510 if (Offset != LastOffset) {
511 if (Packed || alignTo(LastOffset, F.TyAlignment) != Offset)
512 FieldTypes.push_back(ArrayType::get(Type::getInt8Ty(Context),
513 Offset - LastOffset));
514 }
515
516 F.Offset = Offset;
517 F.LayoutFieldIndex = FieldTypes.size();
518
519 FieldTypes.push_back(F.Ty);
520 if (F.DynamicAlignBuffer) {
521 FieldTypes.push_back(
522 ArrayType::get(Type::getInt8Ty(Context), F.DynamicAlignBuffer));
523 }
524 LastOffset = Offset + F.Size;
525 }
526
527 StructType *Ty = StructType::create(Context, FieldTypes, Name, Packed);
528
529#ifndef NDEBUG
530 // Check that the IR layout matches the offsets we expect.
531 auto Layout = DL.getStructLayout(Ty);
532 for (auto &F : Fields) {
533 assert(Ty->getElementType(F.LayoutFieldIndex) == F.Ty);
534 assert(Layout->getElementOffset(F.LayoutFieldIndex) == F.Offset);
535 }
536#endif
537
538 IsFinished = true;
539
540 return Ty;
541}
542
543static void cacheDIVar(FrameDataInfo &FrameData,
545 for (auto *V : FrameData.getAllDefs()) {
546 if (DIVarCache.contains(V))
547 continue;
548
549 auto CacheIt = [&DIVarCache, V](const auto &Container) {
550 auto *I = llvm::find_if(Container, [](auto *DDI) {
551 return DDI->getExpression()->getNumElements() == 0;
552 });
553 if (I != Container.end())
554 DIVarCache.insert({V, (*I)->getVariable()});
555 };
556 CacheIt(findDVRDeclares(V));
557 }
558}
559
560/// Create name for Type. It uses MDString to store new created string to
561/// avoid memory leak.
563 if (Ty->isIntegerTy()) {
564 // The longest name in common may be '__int_128', which has 9 bits.
565 SmallString<16> Buffer;
566 raw_svector_ostream OS(Buffer);
567 OS << "__int_" << cast<IntegerType>(Ty)->getBitWidth();
568 auto *MDName = MDString::get(Ty->getContext(), OS.str());
569 return MDName->getString();
570 }
571
572 if (Ty->isFloatingPointTy()) {
573 if (Ty->isFloatTy())
574 return "__float_";
575 if (Ty->isDoubleTy())
576 return "__double_";
577 return "__floating_type_";
578 }
579
580 if (Ty->isPointerTy())
581 return "PointerType";
582
583 if (Ty->isStructTy()) {
584 if (!cast<StructType>(Ty)->hasName())
585 return "__LiteralStructType_";
586
587 auto Name = Ty->getStructName();
588
589 SmallString<16> Buffer(Name);
590 for (auto &Iter : Buffer)
591 if (Iter == '.' || Iter == ':')
592 Iter = '_';
593 auto *MDName = MDString::get(Ty->getContext(), Buffer.str());
594 return MDName->getString();
595 }
596
597 return "UnknownType";
598}
599
600static DIType *solveDIType(DIBuilder &Builder, Type *Ty,
601 const DataLayout &Layout, DIScope *Scope,
602 unsigned LineNum,
603 DenseMap<Type *, DIType *> &DITypeCache) {
604 if (DIType *DT = DITypeCache.lookup(Ty))
605 return DT;
606
608
609 DIType *RetType = nullptr;
610
611 if (Ty->isIntegerTy()) {
612 auto BitWidth = cast<IntegerType>(Ty)->getBitWidth();
613 RetType = Builder.createBasicType(Name, BitWidth, dwarf::DW_ATE_signed,
614 llvm::DINode::FlagArtificial);
615 } else if (Ty->isFloatingPointTy()) {
616 RetType = Builder.createBasicType(Name, Layout.getTypeSizeInBits(Ty),
617 dwarf::DW_ATE_float,
618 llvm::DINode::FlagArtificial);
619 } else if (Ty->isPointerTy()) {
620 // Construct PointerType points to null (aka void *) instead of exploring
621 // pointee type to avoid infinite search problem. For example, we would be
622 // in trouble if we traverse recursively:
623 //
624 // struct Node {
625 // Node* ptr;
626 // };
627 RetType =
628 Builder.createPointerType(nullptr, Layout.getTypeSizeInBits(Ty),
629 Layout.getABITypeAlign(Ty).value() * CHAR_BIT,
630 /*DWARFAddressSpace=*/std::nullopt, Name);
631 } else if (Ty->isStructTy()) {
632 auto *DIStruct = Builder.createStructType(
633 Scope, Name, Scope->getFile(), LineNum, Layout.getTypeSizeInBits(Ty),
634 Layout.getPrefTypeAlign(Ty).value() * CHAR_BIT,
635 llvm::DINode::FlagArtificial, nullptr, llvm::DINodeArray());
636
637 auto *StructTy = cast<StructType>(Ty);
639 for (unsigned I = 0; I < StructTy->getNumElements(); I++) {
640 DIType *DITy = solveDIType(Builder, StructTy->getElementType(I), Layout,
641 DIStruct, LineNum, DITypeCache);
642 assert(DITy);
643 Elements.push_back(Builder.createMemberType(
644 DIStruct, DITy->getName(), DIStruct->getFile(), LineNum,
645 DITy->getSizeInBits(), DITy->getAlignInBits(),
646 Layout.getStructLayout(StructTy)->getElementOffsetInBits(I),
647 llvm::DINode::FlagArtificial, DITy));
648 }
649
650 Builder.replaceArrays(DIStruct, Builder.getOrCreateArray(Elements));
651
652 RetType = DIStruct;
653 } else {
654 LLVM_DEBUG(dbgs() << "Unresolved Type: " << *Ty << "\n");
655 TypeSize Size = Layout.getTypeSizeInBits(Ty);
656 auto *CharSizeType = Builder.createBasicType(
657 Name, 8, dwarf::DW_ATE_unsigned_char, llvm::DINode::FlagArtificial);
658
659 if (Size <= 8)
660 RetType = CharSizeType;
661 else {
662 if (Size % 8 != 0)
663 Size = TypeSize::getFixed(Size + 8 - (Size % 8));
664
665 RetType = Builder.createArrayType(
666 Size, Layout.getPrefTypeAlign(Ty).value(), CharSizeType,
667 Builder.getOrCreateArray(Builder.getOrCreateSubrange(0, Size / 8)));
668 }
669 }
670
671 DITypeCache.insert({Ty, RetType});
672 return RetType;
673}
674
675/// Build artificial debug info for C++ coroutine frames to allow users to
676/// inspect the contents of the frame directly
677///
678/// Create Debug information for coroutine frame with debug name "__coro_frame".
679/// The debug information for the fields of coroutine frame is constructed from
680/// the following way:
681/// 1. For all the value in the Frame, we search the use of dbg.declare to find
682/// the corresponding debug variables for the value. If we can find the
683/// debug variable, we can get full and accurate debug information.
684/// 2. If we can't get debug information in step 1 and 2, we could only try to
685/// build the DIType by Type. We did this in solveDIType. We only handle
686/// integer, float, double, integer type and struct type for now.
688 FrameDataInfo &FrameData) {
689 DISubprogram *DIS = F.getSubprogram();
690 // If there is no DISubprogram for F, it implies the function is compiled
691 // without debug info. So we also don't generate debug info for the frame.
692 if (!DIS || !DIS->getUnit() ||
694 (dwarf::SourceLanguage)DIS->getUnit()->getSourceLanguage()) ||
695 DIS->getUnit()->getEmissionKind() != DICompileUnit::DebugEmissionKind::FullDebug)
696 return;
697
698 assert(Shape.ABI == coro::ABI::Switch &&
699 "We could only build debug infomation for C++ coroutine now.\n");
700
701 DIBuilder DBuilder(*F.getParent(), /*AllowUnresolved*/ false);
702
703 DIFile *DFile = DIS->getFile();
704 unsigned LineNum = DIS->getLine();
705
706 DICompositeType *FrameDITy = DBuilder.createStructType(
707 DIS->getUnit(), Twine(F.getName() + ".coro_frame_ty").str(),
708 DFile, LineNum, Shape.FrameSize * 8,
709 Shape.FrameAlign.value() * 8, llvm::DINode::FlagArtificial, nullptr,
710 llvm::DINodeArray());
711 StructType *FrameTy = Shape.FrameTy;
713 DataLayout Layout = F.getDataLayout();
714
716 cacheDIVar(FrameData, DIVarCache);
717
718 unsigned ResumeIndex = coro::Shape::SwitchFieldIndex::Resume;
719 unsigned DestroyIndex = coro::Shape::SwitchFieldIndex::Destroy;
720 unsigned IndexIndex = Shape.SwitchLowering.IndexField;
721
723 NameCache.insert({ResumeIndex, "__resume_fn"});
724 NameCache.insert({DestroyIndex, "__destroy_fn"});
725 NameCache.insert({IndexIndex, "__coro_index"});
726
727 Type *ResumeFnTy = FrameTy->getElementType(ResumeIndex),
728 *DestroyFnTy = FrameTy->getElementType(DestroyIndex),
729 *IndexTy = FrameTy->getElementType(IndexIndex);
730
732 TyCache.insert(
733 {ResumeIndex, DBuilder.createPointerType(
734 nullptr, Layout.getTypeSizeInBits(ResumeFnTy))});
735 TyCache.insert(
736 {DestroyIndex, DBuilder.createPointerType(
737 nullptr, Layout.getTypeSizeInBits(DestroyFnTy))});
738
739 /// FIXME: If we fill the field `SizeInBits` with the actual size of
740 /// __coro_index in bits, then __coro_index wouldn't show in the debugger.
741 TyCache.insert({IndexIndex, DBuilder.createBasicType(
742 "__coro_index",
743 (Layout.getTypeSizeInBits(IndexTy) < 8)
744 ? 8
745 : Layout.getTypeSizeInBits(IndexTy),
746 dwarf::DW_ATE_unsigned_char)});
747
748 for (auto *V : FrameData.getAllDefs()) {
749 auto It = DIVarCache.find(V);
750 if (It == DIVarCache.end())
751 continue;
752
753 auto Index = FrameData.getFieldIndex(V);
754
755 NameCache.insert({Index, It->second->getName()});
756 TyCache.insert({Index, It->second->getType()});
757 }
758
759 // Cache from index to (Align, Offset Pair)
761 // The Align and Offset of Resume function and Destroy function are fixed.
762 OffsetCache.insert({ResumeIndex, {8, 0}});
763 OffsetCache.insert({DestroyIndex, {8, 8}});
764 OffsetCache.insert(
765 {IndexIndex,
767
768 for (auto *V : FrameData.getAllDefs()) {
769 auto Index = FrameData.getFieldIndex(V);
770
771 OffsetCache.insert(
772 {Index, {FrameData.getAlign(V).value(), FrameData.getOffset(V)}});
773 }
774
775 DenseMap<Type *, DIType *> DITypeCache;
776 // This counter is used to avoid same type names. e.g., there would be
777 // many i32 and i64 types in one coroutine. And we would use i32_0 and
778 // i32_1 to avoid the same type. Since it makes no sense the name of the
779 // fields confilicts with each other.
780 unsigned UnknownTypeNum = 0;
781 for (unsigned Index = 0; Index < FrameTy->getNumElements(); Index++) {
782 auto OCIt = OffsetCache.find(Index);
783 if (OCIt == OffsetCache.end())
784 continue;
785
786 std::string Name;
787 uint64_t SizeInBits;
788 uint32_t AlignInBits;
789 uint64_t OffsetInBits;
790 DIType *DITy = nullptr;
791
792 Type *Ty = FrameTy->getElementType(Index);
793 assert(Ty->isSized() && "We can't handle type which is not sized.\n");
794 SizeInBits = Layout.getTypeSizeInBits(Ty).getFixedValue();
795 AlignInBits = OCIt->second.first * 8;
796 OffsetInBits = OCIt->second.second * 8;
797
798 if (auto It = NameCache.find(Index); It != NameCache.end()) {
799 Name = It->second.str();
800 DITy = TyCache[Index];
801 } else {
802 DITy = solveDIType(DBuilder, Ty, Layout, FrameDITy, LineNum, DITypeCache);
803 assert(DITy && "SolveDIType shouldn't return nullptr.\n");
804 Name = DITy->getName().str();
805 Name += "_" + std::to_string(UnknownTypeNum);
806 UnknownTypeNum++;
807 }
808
809 Elements.push_back(DBuilder.createMemberType(
810 FrameDITy, Name, DFile, LineNum, SizeInBits, AlignInBits, OffsetInBits,
811 llvm::DINode::FlagArtificial, DITy));
812 }
813
814 DBuilder.replaceArrays(FrameDITy, DBuilder.getOrCreateArray(Elements));
815
816 auto *FrameDIVar =
817 DBuilder.createAutoVariable(DIS, "__coro_frame", DFile, LineNum,
818 FrameDITy, true, DINode::FlagArtificial);
819
820 // Subprogram would have ContainedNodes field which records the debug
821 // variables it contained. So we need to add __coro_frame to the
822 // ContainedNodes of it.
823 //
824 // If we don't add __coro_frame to the RetainedNodes, user may get
825 // `no symbol __coro_frame in context` rather than `__coro_frame`
826 // is optimized out, which is more precise.
827 auto RetainedNodes = DIS->getRetainedNodes();
828 SmallVector<Metadata *, 32> RetainedNodesVec(RetainedNodes.begin(),
829 RetainedNodes.end());
830 RetainedNodesVec.push_back(FrameDIVar);
831 DIS->replaceOperandWith(7, (MDTuple::get(F.getContext(), RetainedNodesVec)));
832
833 // Construct the location for the frame debug variable. The column number
834 // is fake but it should be fine.
835 DILocation *DILoc =
836 DILocation::get(DIS->getContext(), LineNum, /*Column=*/1, DIS);
837 assert(FrameDIVar->isValidLocationForIntrinsic(DILoc));
838
839 DbgVariableRecord *NewDVR =
840 new DbgVariableRecord(ValueAsMetadata::get(Shape.FramePtr), FrameDIVar,
841 DBuilder.createExpression(), DILoc,
842 DbgVariableRecord::LocationType::Declare);
844 It->getParent()->insertDbgRecordBefore(NewDVR, It);
845}
846
847// Build a struct that will keep state for an active coroutine.
848// struct f.frame {
849// ResumeFnTy ResumeFnAddr;
850// ResumeFnTy DestroyFnAddr;
851// ... promise (if present) ...
852// int ResumeIndex;
853// ... spills ...
854// };
856 FrameDataInfo &FrameData,
857 bool OptimizeFrame) {
858 LLVMContext &C = F.getContext();
859 const DataLayout &DL = F.getDataLayout();
860
861 // We will use this value to cap the alignment of spilled values.
862 std::optional<Align> MaxFrameAlignment;
863 if (Shape.ABI == coro::ABI::Async)
864 MaxFrameAlignment = Shape.AsyncLowering.getContextAlignment();
865 FrameTypeBuilder B(C, DL, MaxFrameAlignment);
866
867 AllocaInst *PromiseAlloca = Shape.getPromiseAlloca();
868 std::optional<FieldIDType> SwitchIndexFieldId;
869
870 if (Shape.ABI == coro::ABI::Switch) {
871 auto *FnPtrTy = PointerType::getUnqual(C);
872
873 // Add header fields for the resume and destroy functions.
874 // We can rely on these being perfectly packed.
875 (void)B.addField(FnPtrTy, std::nullopt, /*header*/ true);
876 (void)B.addField(FnPtrTy, std::nullopt, /*header*/ true);
877
878 // PromiseAlloca field needs to be explicitly added here because it's
879 // a header field with a fixed offset based on its alignment. Hence it
880 // needs special handling and cannot be added to FrameData.Allocas.
881 if (PromiseAlloca)
882 FrameData.setFieldIndex(
883 PromiseAlloca, B.addFieldForAlloca(PromiseAlloca, /*header*/ true));
884
885 // Add a field to store the suspend index. This doesn't need to
886 // be in the header.
887 unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
888 Type *IndexType = Type::getIntNTy(C, IndexBits);
889
890 SwitchIndexFieldId = B.addField(IndexType, std::nullopt);
891 } else {
892 assert(PromiseAlloca == nullptr && "lowering doesn't support promises");
893 }
894
895 // Because multiple allocas may own the same field slot,
896 // we add allocas to field here.
897 B.addFieldForAllocas(F, FrameData, Shape, OptimizeFrame);
898 // Add PromiseAlloca to Allocas list so that
899 // 1. updateLayoutIndex could update its index after
900 // `performOptimizedStructLayout`
901 // 2. it is processed in insertSpills.
902 if (Shape.ABI == coro::ABI::Switch && PromiseAlloca)
903 // We assume that the promise alloca won't be modified before
904 // CoroBegin and no alias will be create before CoroBegin.
905 FrameData.Allocas.emplace_back(
906 PromiseAlloca, DenseMap<Instruction *, std::optional<APInt>>{}, false);
907 // Create an entry for every spilled value.
908 for (auto &S : FrameData.Spills) {
909 Type *FieldType = S.first->getType();
910 // For byval arguments, we need to store the pointed value in the frame,
911 // instead of the pointer itself.
912 if (const Argument *A = dyn_cast<Argument>(S.first))
913 if (A->hasByValAttr())
914 FieldType = A->getParamByValType();
915 FieldIDType Id = B.addField(FieldType, std::nullopt, false /*header*/,
916 true /*IsSpillOfValue*/);
917 FrameData.setFieldIndex(S.first, Id);
918 }
919
920 StructType *FrameTy = [&] {
921 SmallString<32> Name(F.getName());
922 Name.append(".Frame");
923 return B.finish(Name);
924 }();
925
926 FrameData.updateLayoutIndex(B);
927 Shape.FrameAlign = B.getStructAlign();
928 Shape.FrameSize = B.getStructSize();
929
930 switch (Shape.ABI) {
931 case coro::ABI::Switch: {
932 // In the switch ABI, remember the switch-index field.
933 auto IndexField = B.getLayoutField(*SwitchIndexFieldId);
934 Shape.SwitchLowering.IndexField = IndexField.LayoutFieldIndex;
935 Shape.SwitchLowering.IndexAlign = IndexField.Alignment.value();
936 Shape.SwitchLowering.IndexOffset = IndexField.Offset;
937
938 // Also round the frame size up to a multiple of its alignment, as is
939 // generally expected in C/C++.
940 Shape.FrameSize = alignTo(Shape.FrameSize, Shape.FrameAlign);
941 break;
942 }
943
944 // In the retcon ABI, remember whether the frame is inline in the storage.
945 case coro::ABI::Retcon:
946 case coro::ABI::RetconOnce: {
947 auto Id = Shape.getRetconCoroId();
949 = (B.getStructSize() <= Id->getStorageSize() &&
950 B.getStructAlign() <= Id->getStorageAlignment());
951 break;
952 }
953 case coro::ABI::Async: {
956 // Also make the final context size a multiple of the context alignment to
957 // make allocation easier for allocators.
961 if (Shape.AsyncLowering.getContextAlignment() < Shape.FrameAlign) {
963 "The alignment requirment of frame variables cannot be higher than "
964 "the alignment of the async function context");
965 }
966 break;
967 }
968 }
969
970 return FrameTy;
971}
972
973// Replace all alloca and SSA values that are accessed across suspend points
974// with GetElementPointer from coroutine frame + loads and stores. Create an
975// AllocaSpillBB that will become the new entry block for the resume parts of
976// the coroutine:
977//
978// %hdl = coro.begin(...)
979// whatever
980//
981// becomes:
982//
983// %hdl = coro.begin(...)
984// br label %AllocaSpillBB
985//
986// AllocaSpillBB:
987// ; geps corresponding to allocas that were moved to coroutine frame
988// br label PostSpill
989//
990// PostSpill:
991// whatever
992//
993//
994static void insertSpills(const FrameDataInfo &FrameData, coro::Shape &Shape) {
995 LLVMContext &C = Shape.CoroBegin->getContext();
996 Function *F = Shape.CoroBegin->getFunction();
997 IRBuilder<> Builder(C);
998 StructType *FrameTy = Shape.FrameTy;
999 Value *FramePtr = Shape.FramePtr;
1000 DominatorTree DT(*F);
1002
1003 // Create a GEP with the given index into the coroutine frame for the original
1004 // value Orig. Appends an extra 0 index for array-allocas, preserving the
1005 // original type.
1006 auto GetFramePointer = [&](Value *Orig) -> Value * {
1007 FieldIDType Index = FrameData.getFieldIndex(Orig);
1008 SmallVector<Value *, 3> Indices = {
1009 ConstantInt::get(Type::getInt32Ty(C), 0),
1010 ConstantInt::get(Type::getInt32Ty(C), Index),
1011 };
1012
1013 if (auto *AI = dyn_cast<AllocaInst>(Orig)) {
1014 if (auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
1015 auto Count = CI->getValue().getZExtValue();
1016 if (Count > 1) {
1017 Indices.push_back(ConstantInt::get(Type::getInt32Ty(C), 0));
1018 }
1019 } else {
1020 report_fatal_error("Coroutines cannot handle non static allocas yet");
1021 }
1022 }
1023
1024 auto GEP = cast<GetElementPtrInst>(
1025 Builder.CreateInBoundsGEP(FrameTy, FramePtr, Indices));
1026 if (auto *AI = dyn_cast<AllocaInst>(Orig)) {
1027 if (FrameData.getDynamicAlign(Orig) != 0) {
1028 assert(FrameData.getDynamicAlign(Orig) == AI->getAlign().value());
1029 auto *M = AI->getModule();
1030 auto *IntPtrTy = M->getDataLayout().getIntPtrType(AI->getType());
1031 auto *PtrValue = Builder.CreatePtrToInt(GEP, IntPtrTy);
1032 auto *AlignMask =
1033 ConstantInt::get(IntPtrTy, AI->getAlign().value() - 1);
1034 PtrValue = Builder.CreateAdd(PtrValue, AlignMask);
1035 PtrValue = Builder.CreateAnd(PtrValue, Builder.CreateNot(AlignMask));
1036 return Builder.CreateIntToPtr(PtrValue, AI->getType());
1037 }
1038 // If the type of GEP is not equal to the type of AllocaInst, it implies
1039 // that the AllocaInst may be reused in the Frame slot of other
1040 // AllocaInst. So We cast GEP to the AllocaInst here to re-use
1041 // the Frame storage.
1042 //
1043 // Note: If we change the strategy dealing with alignment, we need to refine
1044 // this casting.
1045 if (GEP->getType() != Orig->getType())
1046 return Builder.CreateAddrSpaceCast(GEP, Orig->getType(),
1047 Orig->getName() + Twine(".cast"));
1048 }
1049 return GEP;
1050 };
1051
1052 for (auto const &E : FrameData.Spills) {
1053 Value *Def = E.first;
1054 auto SpillAlignment = Align(FrameData.getAlign(Def));
1055 // Create a store instruction storing the value into the
1056 // coroutine frame.
1057 BasicBlock::iterator InsertPt = coro::getSpillInsertionPt(Shape, Def, DT);
1058
1059 Type *ByValTy = nullptr;
1060 if (auto *Arg = dyn_cast<Argument>(Def)) {
1061 // If we're spilling an Argument, make sure we clear 'captures'
1062 // from the coroutine function.
1063 Arg->getParent()->removeParamAttr(Arg->getArgNo(), Attribute::Captures);
1064
1065 if (Arg->hasByValAttr())
1066 ByValTy = Arg->getParamByValType();
1067 }
1068
1069 auto Index = FrameData.getFieldIndex(Def);
1070 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1071 auto *G = Builder.CreateConstInBoundsGEP2_32(
1072 FrameTy, FramePtr, 0, Index, Def->getName() + Twine(".spill.addr"));
1073 if (ByValTy) {
1074 // For byval arguments, we need to store the pointed value in the frame,
1075 // instead of the pointer itself.
1076 auto *Value = Builder.CreateLoad(ByValTy, Def);
1077 Builder.CreateAlignedStore(Value, G, SpillAlignment);
1078 } else {
1079 Builder.CreateAlignedStore(Def, G, SpillAlignment);
1080 }
1081
1082 BasicBlock *CurrentBlock = nullptr;
1083 Value *CurrentReload = nullptr;
1084 for (auto *U : E.second) {
1085 // If we have not seen the use block, create a load instruction to reload
1086 // the spilled value from the coroutine frame. Populates the Value pointer
1087 // reference provided with the frame GEP.
1088 if (CurrentBlock != U->getParent()) {
1089 CurrentBlock = U->getParent();
1090 Builder.SetInsertPoint(CurrentBlock,
1091 CurrentBlock->getFirstInsertionPt());
1092
1093 auto *GEP = GetFramePointer(E.first);
1094 GEP->setName(E.first->getName() + Twine(".reload.addr"));
1095 if (ByValTy)
1096 CurrentReload = GEP;
1097 else
1098 CurrentReload = Builder.CreateAlignedLoad(
1099 FrameTy->getElementType(FrameData.getFieldIndex(E.first)), GEP,
1100 SpillAlignment, E.first->getName() + Twine(".reload"));
1101
1103 // Try best to find dbg.declare. If the spill is a temp, there may not
1104 // be a direct dbg.declare. Walk up the load chain to find one from an
1105 // alias.
1106 if (F->getSubprogram()) {
1107 auto *CurDef = Def;
1108 while (DVRs.empty() && isa<LoadInst>(CurDef)) {
1109 auto *LdInst = cast<LoadInst>(CurDef);
1110 // Only consider ptr to ptr same type load.
1111 if (LdInst->getPointerOperandType() != LdInst->getType())
1112 break;
1113 CurDef = LdInst->getPointerOperand();
1114 if (!isa<AllocaInst, LoadInst>(CurDef))
1115 break;
1116 DVRs = findDVRDeclares(CurDef);
1117 }
1118 }
1119
1120 auto SalvageOne = [&](DbgVariableRecord *DDI) {
1121 // This dbg.declare is preserved for all coro-split function
1122 // fragments. It will be unreachable in the main function, and
1123 // processed by coro::salvageDebugInfo() by the Cloner.
1125 ValueAsMetadata::get(CurrentReload), DDI->getVariable(),
1126 DDI->getExpression(), DDI->getDebugLoc(),
1127 DbgVariableRecord::LocationType::Declare);
1128 Builder.GetInsertPoint()->getParent()->insertDbgRecordBefore(
1129 NewDVR, Builder.GetInsertPoint());
1130 // This dbg.declare is for the main function entry point. It
1131 // will be deleted in all coro-split functions.
1132 coro::salvageDebugInfo(ArgToAllocaMap, *DDI, false /*UseEntryValue*/);
1133 };
1134 for_each(DVRs, SalvageOne);
1135 }
1136
1137 // If we have a single edge PHINode, remove it and replace it with a
1138 // reload from the coroutine frame. (We already took care of multi edge
1139 // PHINodes by normalizing them in the rewritePHIs function).
1140 if (auto *PN = dyn_cast<PHINode>(U)) {
1141 assert(PN->getNumIncomingValues() == 1 &&
1142 "unexpected number of incoming "
1143 "values in the PHINode");
1144 PN->replaceAllUsesWith(CurrentReload);
1145 PN->eraseFromParent();
1146 continue;
1147 }
1148
1149 // Replace all uses of CurrentValue in the current instruction with
1150 // reload.
1151 U->replaceUsesOfWith(Def, CurrentReload);
1152 // Instructions are added to Def's user list if the attached
1153 // debug records use Def. Update those now.
1154 for (DbgVariableRecord &DVR : filterDbgVars(U->getDbgRecordRange()))
1155 DVR.replaceVariableLocationOp(Def, CurrentReload, true);
1156 }
1157 }
1158
1159 BasicBlock *FramePtrBB = Shape.getInsertPtAfterFramePtr()->getParent();
1160
1161 auto SpillBlock = FramePtrBB->splitBasicBlock(
1162 Shape.getInsertPtAfterFramePtr(), "AllocaSpillBB");
1163 SpillBlock->splitBasicBlock(&SpillBlock->front(), "PostSpill");
1164 Shape.AllocaSpillBlock = SpillBlock;
1165
1166 // retcon and retcon.once lowering assumes all uses have been sunk.
1167 if (Shape.ABI == coro::ABI::Retcon || Shape.ABI == coro::ABI::RetconOnce ||
1168 Shape.ABI == coro::ABI::Async) {
1169 // If we found any allocas, replace all of their remaining uses with Geps.
1170 Builder.SetInsertPoint(SpillBlock, SpillBlock->begin());
1171 for (const auto &P : FrameData.Allocas) {
1172 AllocaInst *Alloca = P.Alloca;
1173 auto *G = GetFramePointer(Alloca);
1174
1175 // Remove any lifetime intrinsics, now that these are no longer allocas.
1176 for (User *U : make_early_inc_range(Alloca->users())) {
1177 auto *I = cast<Instruction>(U);
1178 if (I->isLifetimeStartOrEnd())
1179 I->eraseFromParent();
1180 }
1181
1182 // We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G))
1183 // here, as we are changing location of the instruction.
1184 G->takeName(Alloca);
1185 Alloca->replaceAllUsesWith(G);
1186 Alloca->eraseFromParent();
1187 }
1188 return;
1189 }
1190
1191 // If we found any alloca, replace all of their remaining uses with GEP
1192 // instructions. To remain debugbility, we replace the uses of allocas for
1193 // dbg.declares and dbg.values with the reload from the frame.
1194 // Note: We cannot replace the alloca with GEP instructions indiscriminately,
1195 // as some of the uses may not be dominated by CoroBegin.
1196 Builder.SetInsertPoint(Shape.AllocaSpillBlock,
1197 Shape.AllocaSpillBlock->begin());
1198 SmallVector<Instruction *, 4> UsersToUpdate;
1199 for (const auto &A : FrameData.Allocas) {
1200 AllocaInst *Alloca = A.Alloca;
1201 UsersToUpdate.clear();
1202 for (User *U : make_early_inc_range(Alloca->users())) {
1203 auto *I = cast<Instruction>(U);
1204 // It is meaningless to retain the lifetime intrinsics refer for the
1205 // member of coroutine frames and the meaningless lifetime intrinsics
1206 // are possible to block further optimizations.
1207 if (I->isLifetimeStartOrEnd())
1208 I->eraseFromParent();
1209 else if (DT.dominates(Shape.CoroBegin, I))
1210 UsersToUpdate.push_back(I);
1211 }
1212
1213 if (UsersToUpdate.empty())
1214 continue;
1215 auto *G = GetFramePointer(Alloca);
1216 G->setName(Alloca->getName() + Twine(".reload.addr"));
1217
1218 SmallVector<DbgVariableRecord *> DbgVariableRecords;
1219 findDbgUsers(Alloca, DbgVariableRecords);
1220 for (auto *DVR : DbgVariableRecords)
1221 DVR->replaceVariableLocationOp(Alloca, G);
1222
1223 for (Instruction *I : UsersToUpdate)
1224 I->replaceUsesOfWith(Alloca, G);
1225 }
1226 Builder.SetInsertPoint(&*Shape.getInsertPtAfterFramePtr());
1227 for (const auto &A : FrameData.Allocas) {
1228 AllocaInst *Alloca = A.Alloca;
1229 if (A.MayWriteBeforeCoroBegin) {
1230 // isEscaped really means potentially modified before CoroBegin.
1231 if (Alloca->isArrayAllocation())
1233 "Coroutines cannot handle copying of array allocas yet");
1234
1235 auto *G = GetFramePointer(Alloca);
1236 auto *Value = Builder.CreateLoad(Alloca->getAllocatedType(), Alloca);
1237 Builder.CreateStore(Value, G);
1238 }
1239 // For each alias to Alloca created before CoroBegin but used after
1240 // CoroBegin, we recreate them after CoroBegin by applying the offset
1241 // to the pointer in the frame.
1242 for (const auto &Alias : A.Aliases) {
1243 auto *FramePtr = GetFramePointer(Alloca);
1244 auto &Value = *Alias.second;
1245 auto ITy = IntegerType::get(C, Value.getBitWidth());
1246 auto *AliasPtr =
1247 Builder.CreatePtrAdd(FramePtr, ConstantInt::get(ITy, Value));
1248 Alias.first->replaceUsesWithIf(
1249 AliasPtr, [&](Use &U) { return DT.dominates(Shape.CoroBegin, U); });
1250 }
1251 }
1252
1253 // PromiseAlloca is not collected in FrameData.Allocas. So we don't handle
1254 // the case that the PromiseAlloca may have writes before CoroBegin in the
1255 // above codes. And it may be problematic in edge cases. See
1256 // https://github.com/llvm/llvm-project/issues/57861 for an example.
1257 if (Shape.ABI == coro::ABI::Switch && Shape.SwitchLowering.PromiseAlloca) {
1259 // If there is memory accessing to promise alloca before CoroBegin;
1260 bool HasAccessingPromiseBeforeCB = llvm::any_of(PA->uses(), [&](Use &U) {
1261 auto *Inst = dyn_cast<Instruction>(U.getUser());
1262 if (!Inst || DT.dominates(Shape.CoroBegin, Inst))
1263 return false;
1264
1265 if (auto *CI = dyn_cast<CallInst>(Inst)) {
1266 // It is fine if the call wouldn't write to the Promise.
1267 // This is possible for @llvm.coro.id intrinsics, which
1268 // would take the promise as the second argument as a
1269 // marker.
1270 if (CI->onlyReadsMemory() ||
1271 CI->onlyReadsMemory(CI->getArgOperandNo(&U)))
1272 return false;
1273 return true;
1274 }
1275
1276 return isa<StoreInst>(Inst) ||
1277 // It may take too much time to track the uses.
1278 // Be conservative about the case the use may escape.
1279 isa<GetElementPtrInst>(Inst) ||
1280 // There would always be a bitcast for the promise alloca
1281 // before we enabled Opaque pointers. And now given
1282 // opaque pointers are enabled by default. This should be
1283 // fine.
1284 isa<BitCastInst>(Inst);
1285 });
1286 if (HasAccessingPromiseBeforeCB) {
1287 Builder.SetInsertPoint(&*Shape.getInsertPtAfterFramePtr());
1288 auto *G = GetFramePointer(PA);
1289 auto *Value = Builder.CreateLoad(PA->getAllocatedType(), PA);
1290 Builder.CreateStore(Value, G);
1291 }
1292 }
1293}
1294
1295// Moves the values in the PHIs in SuccBB that correspong to PredBB into a new
1296// PHI in InsertedBB.
1298 BasicBlock *InsertedBB,
1299 BasicBlock *PredBB,
1300 PHINode *UntilPHI = nullptr) {
1301 auto *PN = cast<PHINode>(&SuccBB->front());
1302 do {
1303 int Index = PN->getBasicBlockIndex(InsertedBB);
1304 Value *V = PN->getIncomingValue(Index);
1305 PHINode *InputV = PHINode::Create(
1306 V->getType(), 1, V->getName() + Twine(".") + SuccBB->getName());
1307 InputV->insertBefore(InsertedBB->begin());
1308 InputV->addIncoming(V, PredBB);
1309 PN->setIncomingValue(Index, InputV);
1310 PN = dyn_cast<PHINode>(PN->getNextNode());
1311 } while (PN != UntilPHI);
1312}
1313
1314// Rewrites the PHI Nodes in a cleanuppad.
1315static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB,
1316 CleanupPadInst *CleanupPad) {
1317 // For every incoming edge to a CleanupPad we will create a new block holding
1318 // all incoming values in single-value PHI nodes. We will then create another
1319 // block to act as a dispather (as all unwind edges for related EH blocks
1320 // must be the same).
1321 //
1322 // cleanuppad:
1323 // %2 = phi i32[%0, %catchswitch], [%1, %catch.1]
1324 // %3 = cleanuppad within none []
1325 //
1326 // It will create:
1327 //
1328 // cleanuppad.corodispatch
1329 // %2 = phi i8[0, %catchswitch], [1, %catch.1]
1330 // %3 = cleanuppad within none []
1331 // switch i8 % 2, label %unreachable
1332 // [i8 0, label %cleanuppad.from.catchswitch
1333 // i8 1, label %cleanuppad.from.catch.1]
1334 // cleanuppad.from.catchswitch:
1335 // %4 = phi i32 [%0, %catchswitch]
1336 // br %label cleanuppad
1337 // cleanuppad.from.catch.1:
1338 // %6 = phi i32 [%1, %catch.1]
1339 // br %label cleanuppad
1340 // cleanuppad:
1341 // %8 = phi i32 [%4, %cleanuppad.from.catchswitch],
1342 // [%6, %cleanuppad.from.catch.1]
1343
1344 // Unreachable BB, in case switching on an invalid value in the dispatcher.
1345 auto *UnreachBB = BasicBlock::Create(
1346 CleanupPadBB->getContext(), "unreachable", CleanupPadBB->getParent());
1347 IRBuilder<> Builder(UnreachBB);
1348 Builder.CreateUnreachable();
1349
1350 // Create a new cleanuppad which will be the dispatcher.
1351 auto *NewCleanupPadBB =
1352 BasicBlock::Create(CleanupPadBB->getContext(),
1353 CleanupPadBB->getName() + Twine(".corodispatch"),
1354 CleanupPadBB->getParent(), CleanupPadBB);
1355 Builder.SetInsertPoint(NewCleanupPadBB);
1356 auto *SwitchType = Builder.getInt8Ty();
1357 auto *SetDispatchValuePN =
1358 Builder.CreatePHI(SwitchType, pred_size(CleanupPadBB));
1359 CleanupPad->removeFromParent();
1360 CleanupPad->insertAfter(SetDispatchValuePN->getIterator());
1361 auto *SwitchOnDispatch = Builder.CreateSwitch(SetDispatchValuePN, UnreachBB,
1362 pred_size(CleanupPadBB));
1363
1364 int SwitchIndex = 0;
1365 SmallVector<BasicBlock *, 8> Preds(predecessors(CleanupPadBB));
1366 for (BasicBlock *Pred : Preds) {
1367 // Create a new cleanuppad and move the PHI values to there.
1368 auto *CaseBB = BasicBlock::Create(CleanupPadBB->getContext(),
1369 CleanupPadBB->getName() +
1370 Twine(".from.") + Pred->getName(),
1371 CleanupPadBB->getParent(), CleanupPadBB);
1372 updatePhiNodes(CleanupPadBB, Pred, CaseBB);
1373 CaseBB->setName(CleanupPadBB->getName() + Twine(".from.") +
1374 Pred->getName());
1375 Builder.SetInsertPoint(CaseBB);
1376 Builder.CreateBr(CleanupPadBB);
1377 movePHIValuesToInsertedBlock(CleanupPadBB, CaseBB, NewCleanupPadBB);
1378
1379 // Update this Pred to the new unwind point.
1380 setUnwindEdgeTo(Pred->getTerminator(), NewCleanupPadBB);
1381
1382 // Setup the switch in the dispatcher.
1383 auto *SwitchConstant = ConstantInt::get(SwitchType, SwitchIndex);
1384 SetDispatchValuePN->addIncoming(SwitchConstant, Pred);
1385 SwitchOnDispatch->addCase(SwitchConstant, CaseBB);
1386 SwitchIndex++;
1387 }
1388}
1389
1392 for (auto &BB : F) {
1393 for (auto &Phi : BB.phis()) {
1394 if (Phi.getNumIncomingValues() == 1) {
1395 Worklist.push_back(&Phi);
1396 } else
1397 break;
1398 }
1399 }
1400 while (!Worklist.empty()) {
1401 auto *Phi = Worklist.pop_back_val();
1402 auto *OriginalValue = Phi->getIncomingValue(0);
1403 Phi->replaceAllUsesWith(OriginalValue);
1404 }
1405}
1406
1407static void rewritePHIs(BasicBlock &BB) {
1408 // For every incoming edge we will create a block holding all
1409 // incoming values in a single PHI nodes.
1410 //
1411 // loop:
1412 // %n.val = phi i32[%n, %entry], [%inc, %loop]
1413 //
1414 // It will create:
1415 //
1416 // loop.from.entry:
1417 // %n.loop.pre = phi i32 [%n, %entry]
1418 // br %label loop
1419 // loop.from.loop:
1420 // %inc.loop.pre = phi i32 [%inc, %loop]
1421 // br %label loop
1422 //
1423 // After this rewrite, further analysis will ignore any phi nodes with more
1424 // than one incoming edge.
1425
1426 // TODO: Simplify PHINodes in the basic block to remove duplicate
1427 // predecessors.
1428
1429 // Special case for CleanupPad: all EH blocks must have the same unwind edge
1430 // so we need to create an additional "dispatcher" block.
1431 if (!BB.empty()) {
1432 if (auto *CleanupPad =
1433 dyn_cast_or_null<CleanupPadInst>(BB.getFirstNonPHIIt())) {
1435 for (BasicBlock *Pred : Preds) {
1436 if (CatchSwitchInst *CS =
1437 dyn_cast<CatchSwitchInst>(Pred->getTerminator())) {
1438 // CleanupPad with a CatchSwitch predecessor: therefore this is an
1439 // unwind destination that needs to be handle specially.
1440 assert(CS->getUnwindDest() == &BB);
1441 (void)CS;
1442 rewritePHIsForCleanupPad(&BB, CleanupPad);
1443 return;
1444 }
1445 }
1446 }
1447 }
1448
1449 LandingPadInst *LandingPad = nullptr;
1450 PHINode *ReplPHI = nullptr;
1451 if (!BB.empty()) {
1452 if ((LandingPad =
1453 dyn_cast_or_null<LandingPadInst>(BB.getFirstNonPHIIt()))) {
1454 // ehAwareSplitEdge will clone the LandingPad in all the edge blocks.
1455 // We replace the original landing pad with a PHINode that will collect the
1456 // results from all of them.
1457 ReplPHI = PHINode::Create(LandingPad->getType(), 1, "");
1458 ReplPHI->insertBefore(LandingPad->getIterator());
1459 ReplPHI->takeName(LandingPad);
1460 LandingPad->replaceAllUsesWith(ReplPHI);
1461 // We will erase the original landing pad at the end of this function after
1462 // ehAwareSplitEdge cloned it in the transition blocks.
1463 }
1464 }
1465
1467 for (BasicBlock *Pred : Preds) {
1468 auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI);
1469 IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
1470
1471 // Stop the moving of values at ReplPHI, as this is either null or the PHI
1472 // that replaced the landing pad.
1473 movePHIValuesToInsertedBlock(&BB, IncomingBB, Pred, ReplPHI);
1474 }
1475
1476 if (LandingPad) {
1477 // Calls to ehAwareSplitEdge function cloned the original lading pad.
1478 // No longer need it.
1479 LandingPad->eraseFromParent();
1480 }
1481}
1482
1483static void rewritePHIs(Function &F) {
1485
1486 for (BasicBlock &BB : F)
1487 if (auto *PN = dyn_cast<PHINode>(&BB.front()))
1488 if (PN->getNumIncomingValues() > 1)
1489 WorkList.push_back(&BB);
1490
1491 for (BasicBlock *BB : WorkList)
1492 rewritePHIs(*BB);
1493}
1494
1495// Splits the block at a particular instruction unless it is the first
1496// instruction in the block with a single predecessor.
1498 auto *BB = I->getParent();
1499 if (&BB->front() == I) {
1500 if (BB->getSinglePredecessor()) {
1501 BB->setName(Name);
1502 return BB;
1503 }
1504 }
1505 return BB->splitBasicBlock(I, Name);
1506}
1507
1508// Split above and below a particular instruction so that it
1509// will be all alone by itself in a block.
1510static void splitAround(Instruction *I, const Twine &Name) {
1512 splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
1513}
1514
1515/// After we split the coroutine, will the given basic block be along
1516/// an obvious exit path for the resumption function?
1518 unsigned depth = 3) {
1519 // If we've bottomed out our depth count, stop searching and assume
1520 // that the path might loop back.
1521 if (depth == 0) return false;
1522
1523 // If this is a suspend block, we're about to exit the resumption function.
1524 if (coro::isSuspendBlock(BB))
1525 return true;
1526
1527 // Recurse into the successors.
1528 for (auto *Succ : successors(BB)) {
1529 if (!willLeaveFunctionImmediatelyAfter(Succ, depth - 1))
1530 return false;
1531 }
1532
1533 // If none of the successors leads back in a loop, we're on an exit/abort.
1534 return true;
1535}
1536
1538 // Look for a free that isn't sufficiently obviously followed by
1539 // either a suspend or a termination, i.e. something that will leave
1540 // the coro resumption frame.
1541 for (auto *U : AI->users()) {
1542 auto FI = dyn_cast<CoroAllocaFreeInst>(U);
1543 if (!FI) continue;
1544
1545 if (!willLeaveFunctionImmediatelyAfter(FI->getParent()))
1546 return true;
1547 }
1548
1549 // If we never found one, we don't need a stack save.
1550 return false;
1551}
1552
1553/// Turn each of the given local allocas into a normal (dynamic) alloca
1554/// instruction.
1556 SmallVectorImpl<Instruction*> &DeadInsts) {
1557 for (auto *AI : LocalAllocas) {
1558 IRBuilder<> Builder(AI);
1559
1560 // Save the stack depth. Try to avoid doing this if the stackrestore
1561 // is going to immediately precede a return or something.
1562 Value *StackSave = nullptr;
1564 StackSave = Builder.CreateStackSave();
1565
1566 // Allocate memory.
1567 auto Alloca = Builder.CreateAlloca(Builder.getInt8Ty(), AI->getSize());
1568 Alloca->setAlignment(AI->getAlignment());
1569
1570 for (auto *U : AI->users()) {
1571 // Replace gets with the allocation.
1572 if (isa<CoroAllocaGetInst>(U)) {
1573 U->replaceAllUsesWith(Alloca);
1574
1575 // Replace frees with stackrestores. This is safe because
1576 // alloca.alloc is required to obey a stack discipline, although we
1577 // don't enforce that structurally.
1578 } else {
1579 auto FI = cast<CoroAllocaFreeInst>(U);
1580 if (StackSave) {
1581 Builder.SetInsertPoint(FI);
1582 Builder.CreateStackRestore(StackSave);
1583 }
1584 }
1585 DeadInsts.push_back(cast<Instruction>(U));
1586 }
1587
1588 DeadInsts.push_back(AI);
1589 }
1590}
1591
1592/// Get the current swifterror value.
1594 coro::Shape &Shape) {
1595 // Make a fake function pointer as a sort of intrinsic.
1596 auto FnTy = FunctionType::get(ValueTy, {}, false);
1597 auto Fn = ConstantPointerNull::get(Builder.getPtrTy());
1598
1599 auto Call = Builder.CreateCall(FnTy, Fn, {});
1600 Shape.SwiftErrorOps.push_back(Call);
1601
1602 return Call;
1603}
1604
1605/// Set the given value as the current swifterror value.
1606///
1607/// Returns a slot that can be used as a swifterror slot.
1609 coro::Shape &Shape) {
1610 // Make a fake function pointer as a sort of intrinsic.
1611 auto FnTy = FunctionType::get(Builder.getPtrTy(),
1612 {V->getType()}, false);
1613 auto Fn = ConstantPointerNull::get(Builder.getPtrTy());
1614
1615 auto Call = Builder.CreateCall(FnTy, Fn, { V });
1616 Shape.SwiftErrorOps.push_back(Call);
1617
1618 return Call;
1619}
1620
1621/// Set the swifterror value from the given alloca before a call,
1622/// then put in back in the alloca afterwards.
1623///
1624/// Returns an address that will stand in for the swifterror slot
1625/// until splitting.
1627 AllocaInst *Alloca,
1628 coro::Shape &Shape) {
1629 auto ValueTy = Alloca->getAllocatedType();
1630 IRBuilder<> Builder(Call);
1631
1632 // Load the current value from the alloca and set it as the
1633 // swifterror value.
1634 auto ValueBeforeCall = Builder.CreateLoad(ValueTy, Alloca);
1635 auto Addr = emitSetSwiftErrorValue(Builder, ValueBeforeCall, Shape);
1636
1637 // Move to after the call. Since swifterror only has a guaranteed
1638 // value on normal exits, we can ignore implicit and explicit unwind
1639 // edges.
1640 if (isa<CallInst>(Call)) {
1641 Builder.SetInsertPoint(Call->getNextNode());
1642 } else {
1643 auto Invoke = cast<InvokeInst>(Call);
1644 Builder.SetInsertPoint(Invoke->getNormalDest()->getFirstNonPHIOrDbg());
1645 }
1646
1647 // Get the current swifterror value and store it to the alloca.
1648 auto ValueAfterCall = emitGetSwiftErrorValue(Builder, ValueTy, Shape);
1649 Builder.CreateStore(ValueAfterCall, Alloca);
1650
1651 return Addr;
1652}
1653
1654/// Eliminate a formerly-swifterror alloca by inserting the get/set
1655/// intrinsics and attempting to MemToReg the alloca away.
1657 coro::Shape &Shape) {
1658 for (Use &Use : llvm::make_early_inc_range(Alloca->uses())) {
1659 // swifterror values can only be used in very specific ways.
1660 // We take advantage of that here.
1661 auto User = Use.getUser();
1662 if (isa<LoadInst>(User) || isa<StoreInst>(User))
1663 continue;
1664
1665 assert(isa<CallInst>(User) || isa<InvokeInst>(User));
1666 auto Call = cast<Instruction>(User);
1667
1668 auto Addr = emitSetAndGetSwiftErrorValueAround(Call, Alloca, Shape);
1669
1670 // Use the returned slot address as the call argument.
1671 Use.set(Addr);
1672 }
1673
1674 // All the uses should be loads and stores now.
1675 assert(isAllocaPromotable(Alloca));
1676}
1677
1678/// "Eliminate" a swifterror argument by reducing it to the alloca case
1679/// and then loading and storing in the prologue and epilog.
1680///
1681/// The argument keeps the swifterror flag.
1683 coro::Shape &Shape,
1684 SmallVectorImpl<AllocaInst*> &AllocasToPromote) {
1685 IRBuilder<> Builder(&F.getEntryBlock(),
1686 F.getEntryBlock().getFirstNonPHIOrDbg());
1687
1688 auto ArgTy = cast<PointerType>(Arg.getType());
1689 auto ValueTy = PointerType::getUnqual(F.getContext());
1690
1691 // Reduce to the alloca case:
1692
1693 // Create an alloca and replace all uses of the arg with it.
1694 auto Alloca = Builder.CreateAlloca(ValueTy, ArgTy->getAddressSpace());
1695 Arg.replaceAllUsesWith(Alloca);
1696
1697 // Set an initial value in the alloca. swifterror is always null on entry.
1698 auto InitialValue = Constant::getNullValue(ValueTy);
1699 Builder.CreateStore(InitialValue, Alloca);
1700
1701 // Find all the suspends in the function and save and restore around them.
1702 for (auto *Suspend : Shape.CoroSuspends) {
1703 (void) emitSetAndGetSwiftErrorValueAround(Suspend, Alloca, Shape);
1704 }
1705
1706 // Find all the coro.ends in the function and restore the error value.
1707 for (auto *End : Shape.CoroEnds) {
1708 Builder.SetInsertPoint(End);
1709 auto FinalValue = Builder.CreateLoad(ValueTy, Alloca);
1710 (void) emitSetSwiftErrorValue(Builder, FinalValue, Shape);
1711 }
1712
1713 // Now we can use the alloca logic.
1714 AllocasToPromote.push_back(Alloca);
1715 eliminateSwiftErrorAlloca(F, Alloca, Shape);
1716}
1717
1718/// Eliminate all problematic uses of swifterror arguments and allocas
1719/// from the function. We'll fix them up later when splitting the function.
1721 SmallVector<AllocaInst*, 4> AllocasToPromote;
1722
1723 // Look for a swifterror argument.
1724 for (auto &Arg : F.args()) {
1725 if (!Arg.hasSwiftErrorAttr()) continue;
1726
1727 eliminateSwiftErrorArgument(F, Arg, Shape, AllocasToPromote);
1728 break;
1729 }
1730
1731 // Look for swifterror allocas.
1732 for (auto &Inst : F.getEntryBlock()) {
1733 auto Alloca = dyn_cast<AllocaInst>(&Inst);
1734 if (!Alloca || !Alloca->isSwiftError()) continue;
1735
1736 // Clear the swifterror flag.
1737 Alloca->setSwiftError(false);
1738
1739 AllocasToPromote.push_back(Alloca);
1740 eliminateSwiftErrorAlloca(F, Alloca, Shape);
1741 }
1742
1743 // If we have any allocas to promote, compute a dominator tree and
1744 // promote them en masse.
1745 if (!AllocasToPromote.empty()) {
1746 DominatorTree DT(F);
1747 PromoteMemToReg(AllocasToPromote, DT);
1748 }
1749}
1750
1751/// For each local variable that all of its user are only used inside one of
1752/// suspended region, we sink their lifetime.start markers to the place where
1753/// after the suspend block. Doing so minimizes the lifetime of each variable,
1754/// hence minimizing the amount of data we end up putting on the frame.
1756 SuspendCrossingInfo &Checker,
1757 const DominatorTree &DT) {
1758 if (F.hasOptNone())
1759 return;
1760
1761 // Collect all possible basic blocks which may dominate all uses of allocas.
1763 DomSet.insert(&F.getEntryBlock());
1764 for (auto *CSI : Shape.CoroSuspends) {
1765 BasicBlock *SuspendBlock = CSI->getParent();
1766 assert(coro::isSuspendBlock(SuspendBlock) &&
1767 SuspendBlock->getSingleSuccessor() &&
1768 "should have split coro.suspend into its own block");
1769 DomSet.insert(SuspendBlock->getSingleSuccessor());
1770 }
1771
1772 for (Instruction &I : instructions(F)) {
1773 AllocaInst* AI = dyn_cast<AllocaInst>(&I);
1774 if (!AI)
1775 continue;
1776
1777 for (BasicBlock *DomBB : DomSet) {
1778 bool Valid = true;
1780
1781 auto isLifetimeStart = [](Instruction* I) {
1782 if (auto* II = dyn_cast<IntrinsicInst>(I))
1783 return II->getIntrinsicID() == Intrinsic::lifetime_start;
1784 return false;
1785 };
1786
1787 auto collectLifetimeStart = [&](Instruction *U, AllocaInst *AI) {
1788 if (isLifetimeStart(U)) {
1789 Lifetimes.push_back(U);
1790 return true;
1791 }
1792 if (!U->hasOneUse() || U->stripPointerCasts() != AI)
1793 return false;
1794 if (isLifetimeStart(U->user_back())) {
1795 Lifetimes.push_back(U->user_back());
1796 return true;
1797 }
1798 return false;
1799 };
1800
1801 for (User *U : AI->users()) {
1802 Instruction *UI = cast<Instruction>(U);
1803 // For all users except lifetime.start markers, if they are all
1804 // dominated by one of the basic blocks and do not cross
1805 // suspend points as well, then there is no need to spill the
1806 // instruction.
1807 if (!DT.dominates(DomBB, UI->getParent()) ||
1808 Checker.isDefinitionAcrossSuspend(DomBB, UI)) {
1809 // Skip lifetime.start, GEP and bitcast used by lifetime.start
1810 // markers.
1811 if (collectLifetimeStart(UI, AI))
1812 continue;
1813 Valid = false;
1814 break;
1815 }
1816 }
1817 // Sink lifetime.start markers to dominate block when they are
1818 // only used outside the region.
1819 if (Valid && Lifetimes.size() != 0) {
1820 auto *NewLifetime = Lifetimes[0]->clone();
1821 NewLifetime->replaceUsesOfWith(NewLifetime->getOperand(0), AI);
1822 NewLifetime->insertBefore(DomBB->getTerminator()->getIterator());
1823
1824 // All the outsided lifetime.start markers are no longer necessary.
1825 for (Instruction *S : Lifetimes)
1826 S->eraseFromParent();
1827
1828 break;
1829 }
1830 }
1831 }
1832}
1833
1834static std::optional<std::pair<Value &, DIExpression &>>
1836 bool UseEntryValue, Function *F, Value *Storage,
1837 DIExpression *Expr, bool SkipOutermostLoad) {
1838 IRBuilder<> Builder(F->getContext());
1839 auto InsertPt = F->getEntryBlock().getFirstInsertionPt();
1840 while (isa<IntrinsicInst>(InsertPt))
1841 ++InsertPt;
1842 Builder.SetInsertPoint(&F->getEntryBlock(), InsertPt);
1843
1844 while (auto *Inst = dyn_cast_or_null<Instruction>(Storage)) {
1845 if (auto *LdInst = dyn_cast<LoadInst>(Inst)) {
1846 Storage = LdInst->getPointerOperand();
1847 // FIXME: This is a heuristic that works around the fact that
1848 // LLVM IR debug intrinsics cannot yet distinguish between
1849 // memory and value locations: Because a dbg.declare(alloca) is
1850 // implicitly a memory location no DW_OP_deref operation for the
1851 // last direct load from an alloca is necessary. This condition
1852 // effectively drops the *last* DW_OP_deref in the expression.
1853 if (!SkipOutermostLoad)
1855 } else if (auto *StInst = dyn_cast<StoreInst>(Inst)) {
1856 Storage = StInst->getValueOperand();
1857 } else {
1859 SmallVector<Value *, 0> AdditionalValues;
1861 *Inst, Expr ? Expr->getNumLocationOperands() : 0, Ops,
1862 AdditionalValues);
1863 if (!Op || !AdditionalValues.empty()) {
1864 // If salvaging failed or salvaging produced more than one location
1865 // operand, give up.
1866 break;
1867 }
1868 Storage = Op;
1869 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, /*StackValue*/ false);
1870 }
1871 SkipOutermostLoad = false;
1872 }
1873 if (!Storage)
1874 return std::nullopt;
1875
1876 auto *StorageAsArg = dyn_cast<Argument>(Storage);
1877 const bool IsSwiftAsyncArg =
1878 StorageAsArg && StorageAsArg->hasAttribute(Attribute::SwiftAsync);
1879
1880 // Swift async arguments are described by an entry value of the ABI-defined
1881 // register containing the coroutine context.
1882 // Entry values in variadic expressions are not supported.
1883 if (IsSwiftAsyncArg && UseEntryValue && !Expr->isEntryValue() &&
1886
1887 // If the coroutine frame is an Argument, store it in an alloca to improve
1888 // its availability (e.g. registers may be clobbered).
1889 // Avoid this if the value is guaranteed to be available through other means
1890 // (e.g. swift ABI guarantees).
1891 if (StorageAsArg && !IsSwiftAsyncArg) {
1892 auto &Cached = ArgToAllocaMap[StorageAsArg];
1893 if (!Cached) {
1894 Cached = Builder.CreateAlloca(Storage->getType(), 0, nullptr,
1895 Storage->getName() + ".debug");
1896 Builder.CreateStore(Storage, Cached);
1897 }
1898 Storage = Cached;
1899 // FIXME: LLVM lacks nuanced semantics to differentiate between
1900 // memory and direct locations at the IR level. The backend will
1901 // turn a dbg.declare(alloca, ..., DIExpression()) into a memory
1902 // location. Thus, if there are deref and offset operations in the
1903 // expression, we need to add a DW_OP_deref at the *start* of the
1904 // expression to first load the contents of the alloca before
1905 // adjusting it with the expression.
1907 }
1908
1909 Expr = Expr->foldConstantMath();
1910 return {{*Storage, *Expr}};
1911}
1912
1915 DbgVariableRecord &DVR, bool UseEntryValue) {
1916
1917 Function *F = DVR.getFunction();
1918 // Follow the pointer arithmetic all the way to the incoming
1919 // function argument and convert into a DIExpression.
1920 bool SkipOutermostLoad = DVR.isDbgDeclare();
1921 Value *OriginalStorage = DVR.getVariableLocationOp(0);
1922
1923 auto SalvagedInfo =
1924 ::salvageDebugInfoImpl(ArgToAllocaMap, UseEntryValue, F, OriginalStorage,
1925 DVR.getExpression(), SkipOutermostLoad);
1926 if (!SalvagedInfo)
1927 return;
1928
1929 Value *Storage = &SalvagedInfo->first;
1930 DIExpression *Expr = &SalvagedInfo->second;
1931
1932 DVR.replaceVariableLocationOp(OriginalStorage, Storage);
1933 DVR.setExpression(Expr);
1934 // We only hoist dbg.declare today since it doesn't make sense to hoist
1935 // dbg.value since it does not have the same function wide guarantees that
1936 // dbg.declare does.
1937 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) {
1938 std::optional<BasicBlock::iterator> InsertPt;
1939 if (auto *I = dyn_cast<Instruction>(Storage)) {
1940 InsertPt = I->getInsertionPointAfterDef();
1941 // Update DILocation only if variable was not inlined.
1942 DebugLoc ILoc = I->getDebugLoc();
1943 DebugLoc DVRLoc = DVR.getDebugLoc();
1944 if (ILoc && DVRLoc &&
1945 DVRLoc->getScope()->getSubprogram() ==
1946 ILoc->getScope()->getSubprogram())
1947 DVR.setDebugLoc(ILoc);
1948 } else if (isa<Argument>(Storage))
1949 InsertPt = F->getEntryBlock().begin();
1950 if (InsertPt) {
1951 DVR.removeFromParent();
1952 (*InsertPt)->getParent()->insertDbgRecordBefore(&DVR, *InsertPt);
1953 }
1954 }
1955}
1956
1959 // Don't eliminate swifterror in async functions that won't be split.
1960 if (Shape.ABI != coro::ABI::Async || !Shape.CoroSuspends.empty())
1962
1963 if (Shape.ABI == coro::ABI::Switch &&
1966 }
1967
1968 // Make sure that all coro.save, coro.suspend and the fallthrough coro.end
1969 // intrinsics are in their own blocks to simplify the logic of building up
1970 // SuspendCrossing data.
1971 for (auto *CSI : Shape.CoroSuspends) {
1972 if (auto *Save = CSI->getCoroSave())
1973 splitAround(Save, "CoroSave");
1974 splitAround(CSI, "CoroSuspend");
1975 }
1976
1977 // Put CoroEnds into their own blocks.
1978 for (AnyCoroEndInst *CE : Shape.CoroEnds) {
1979 splitAround(CE, "CoroEnd");
1980
1981 // Emit the musttail call function in a new block before the CoroEnd.
1982 // We do this here so that the right suspend crossing info is computed for
1983 // the uses of the musttail call function call. (Arguments to the coro.end
1984 // instructions would be ignored)
1985 if (auto *AsyncEnd = dyn_cast<CoroAsyncEndInst>(CE)) {
1986 auto *MustTailCallFn = AsyncEnd->getMustTailCallFunction();
1987 if (!MustTailCallFn)
1988 continue;
1989 IRBuilder<> Builder(AsyncEnd);
1990 SmallVector<Value *, 8> Args(AsyncEnd->args());
1991 auto Arguments = ArrayRef<Value *>(Args).drop_front(3);
1992 auto *Call = coro::createMustTailCall(
1993 AsyncEnd->getDebugLoc(), MustTailCallFn, TTI, Arguments, Builder);
1994 splitAround(Call, "MustTailCall.Before.CoroEnd");
1995 }
1996 }
1997
1998 // Later code makes structural assumptions about single predecessors phis e.g
1999 // that they are not live across a suspend point.
2001
2002 // Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
2003 // never have its definition separated from the PHI by the suspend point.
2004 rewritePHIs(F);
2005}
2006
2007void coro::BaseABI::buildCoroutineFrame(bool OptimizeFrame) {
2010
2011 const DominatorTree DT(F);
2014 sinkLifetimeStartMarkers(F, Shape, Checker, DT);
2015
2016 // All values (that are not allocas) that needs to be spilled to the frame.
2017 coro::SpillInfo Spills;
2018 // All values defined as allocas that need to live in the frame.
2020
2021 // Collect the spills for arguments and other not-materializable values.
2022 coro::collectSpillsFromArgs(Spills, F, Checker);
2023 SmallVector<Instruction *, 4> DeadInstructions;
2025 coro::collectSpillsAndAllocasFromInsts(Spills, Allocas, DeadInstructions,
2026 LocalAllocas, F, Checker, DT, Shape);
2027 coro::collectSpillsFromDbgInfo(Spills, F, Checker);
2028
2029 LLVM_DEBUG(dumpAllocas(Allocas));
2030 LLVM_DEBUG(dumpSpills("Spills", Spills));
2031
2034 sinkSpillUsesAfterCoroBegin(DT, Shape.CoroBegin, Spills, Allocas);
2035
2036 // Build frame
2037 FrameDataInfo FrameData(Spills, Allocas);
2038 Shape.FrameTy = buildFrameType(F, Shape, FrameData, OptimizeFrame);
2040 // For now, this works for C++ programs only.
2041 buildFrameDebugInfo(F, Shape, FrameData);
2042 // Insert spills and reloads
2043 insertSpills(FrameData, Shape);
2044 lowerLocalAllocas(LocalAllocas, DeadInstructions);
2045
2046 for (auto *I : DeadInstructions)
2047 I->eraseFromParent();
2048}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static void cleanupSinglePredPHIs(Function &F)
Definition: CoroFrame.cpp:1390
static std::optional< std::pair< Value &, DIExpression & > > salvageDebugInfoImpl(SmallDenseMap< Argument *, AllocaInst *, 4 > &ArgToAllocaMap, bool UseEntryValue, Function *F, Value *Storage, DIExpression *Expr, bool SkipOutermostLoad)
Definition: CoroFrame.cpp:1835
static void eliminateSwiftError(Function &F, coro::Shape &Shape)
Eliminate all problematic uses of swifterror arguments and allocas from the function.
Definition: CoroFrame.cpp:1720
static void lowerLocalAllocas(ArrayRef< CoroAllocaAllocInst * > LocalAllocas, SmallVectorImpl< Instruction * > &DeadInsts)
Turn each of the given local allocas into a normal (dynamic) alloca instruction.
Definition: CoroFrame.cpp:1555
static Value * emitSetSwiftErrorValue(IRBuilder<> &Builder, Value *V, coro::Shape &Shape)
Set the given value as the current swifterror value.
Definition: CoroFrame.cpp:1608
static Value * emitSetAndGetSwiftErrorValueAround(Instruction *Call, AllocaInst *Alloca, coro::Shape &Shape)
Set the swifterror value from the given alloca before a call, then put in back in the alloca afterwar...
Definition: CoroFrame.cpp:1626
static void cacheDIVar(FrameDataInfo &FrameData, DenseMap< Value *, DILocalVariable * > &DIVarCache)
Definition: CoroFrame.cpp:543
static bool localAllocaNeedsStackSave(CoroAllocaAllocInst *AI)
Definition: CoroFrame.cpp:1537
static void dumpAllocas(const SmallVectorImpl< coro::AllocaInfo > &Allocas)
Definition: CoroFrame.cpp:149
static void splitAround(Instruction *I, const Twine &Name)
Definition: CoroFrame.cpp:1510
static void eliminateSwiftErrorAlloca(Function &F, AllocaInst *Alloca, coro::Shape &Shape)
Eliminate a formerly-swifterror alloca by inserting the get/set intrinsics and attempting to MemToReg...
Definition: CoroFrame.cpp:1656
static void rewritePHIs(BasicBlock &BB)
Definition: CoroFrame.cpp:1407
static void movePHIValuesToInsertedBlock(BasicBlock *SuccBB, BasicBlock *InsertedBB, BasicBlock *PredBB, PHINode *UntilPHI=nullptr)
Definition: CoroFrame.cpp:1297
static void dumpSpills(StringRef Title, const coro::SpillInfo &Spills)
Definition: CoroFrame.cpp:139
static DIType * solveDIType(DIBuilder &Builder, Type *Ty, const DataLayout &Layout, DIScope *Scope, unsigned LineNum, DenseMap< Type *, DIType * > &DITypeCache)
Definition: CoroFrame.cpp:600
static bool willLeaveFunctionImmediatelyAfter(BasicBlock *BB, unsigned depth=3)
After we split the coroutine, will the given basic block be along an obvious exit path for the resump...
Definition: CoroFrame.cpp:1517
static StructType * buildFrameType(Function &F, coro::Shape &Shape, FrameDataInfo &FrameData, bool OptimizeFrame)
Definition: CoroFrame.cpp:855
static void eliminateSwiftErrorArgument(Function &F, Argument &Arg, coro::Shape &Shape, SmallVectorImpl< AllocaInst * > &AllocasToPromote)
"Eliminate" a swifterror argument by reducing it to the alloca case and then loading and storing in t...
Definition: CoroFrame.cpp:1682
static void buildFrameDebugInfo(Function &F, coro::Shape &Shape, FrameDataInfo &FrameData)
Build artificial debug info for C++ coroutine frames to allow users to inspect the contents of the fr...
Definition: CoroFrame.cpp:687
static BasicBlock * splitBlockIfNotFirst(Instruction *I, const Twine &Name)
Definition: CoroFrame.cpp:1497
static void rewritePHIsForCleanupPad(BasicBlock *CleanupPadBB, CleanupPadInst *CleanupPad)
Definition: CoroFrame.cpp:1315
static void sinkLifetimeStartMarkers(Function &F, coro::Shape &Shape, SuspendCrossingInfo &Checker, const DominatorTree &DT)
For each local variable that all of its user are only used inside one of suspended region,...
Definition: CoroFrame.cpp:1755
static StringRef solveTypeName(Type *Ty)
Create name for Type.
Definition: CoroFrame.cpp:562
static Value * emitGetSwiftErrorValue(IRBuilder<> &Builder, Type *ValueTy, coro::Shape &Shape)
Get the current swifterror value.
Definition: CoroFrame.cpp:1593
static void insertSpills(const FrameDataInfo &FrameData, coro::Shape &Shape)
Definition: CoroFrame.cpp:994
Given that RA is a live value
uint64_t Addr
std::string Name
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
static bool isLifetimeStart(const Instruction *Inst)
Definition: GVN.cpp:1213
Hexagon Common GEP
static MaybeAlign getAlign(Value *Ptr)
Definition: IRBuilder.cpp:442
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
uint64_t IntrinsicInst * II
This file provides an interface for laying out a sequence of fields as a struct in a way that attempt...
#define P(N)
static unsigned getNumElements(Type *Ty)
raw_pwrite_stream & OS
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallString class.
#define LLVM_DEBUG(...)
Definition: Debug.h:119
static const unsigned FramePtr
an instruction to allocate memory on the stack
Definition: Instructions.h:64
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
Definition: Instructions.h:153
void setSwiftError(bool V)
Specify whether this alloca is used to represent a swifterror.
Definition: Instructions.h:155
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Definition: Instructions.h:128
PointerType * getType() const
Overload to return most specific pointer type.
Definition: Instructions.h:101
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
Definition: Instructions.h:121
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
Definition: Instructions.h:132
const Value * getArraySize() const
Get the number of elements allocated.
Definition: Instructions.h:97
This class represents an incoming formal argument to a Function.
Definition: Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition: ArrayRef.h:200
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:459
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:393
bool empty() const
Definition: BasicBlock.h:481
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:337
const Instruction & front() const
Definition: BasicBlock.h:482
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:206
LLVM_ABI BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:555
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:467
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:213
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:131
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1833
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
This represents the llvm.coro.alloca.alloc instruction.
Definition: CoroInstr.h:746
void clearPromise()
Definition: CoroInstr.h:159
This represents the llvm.coro.suspend instruction.
Definition: CoroInstr.h:531
LLVM_ABI DIDerivedType * createMemberType(DIScope *Scope, StringRef Name, DIFile *File, unsigned LineNo, Metadata *SizeInBits, uint32_t AlignInBits, Metadata *OffsetInBits, DINode::DIFlags Flags, DIType *Ty, DINodeArray Annotations=nullptr)
Create debugging information entry for a member.
Definition: DIBuilder.cpp:431
LLVM_ABI DIDerivedType * createPointerType(DIType *PointeeTy, uint64_t SizeInBits, uint32_t AlignInBits=0, std::optional< unsigned > DWARFAddressSpace=std::nullopt, StringRef Name="", DINodeArray Annotations=nullptr)
Create debugging information entry for a pointer.
Definition: DIBuilder.cpp:347
LLVM_ABI DIBasicType * createBasicType(StringRef Name, uint64_t SizeInBits, unsigned Encoding, DINode::DIFlags Flags=DINode::FlagZero, uint32_t NumExtraInhabitants=0)
Create debugging information entry for a basic type.
Definition: DIBuilder.cpp:265
LLVM_ABI DISubrange * getOrCreateSubrange(int64_t Lo, int64_t Count)
Create a descriptor for a value range.
Definition: DIBuilder.cpp:821
LLVM_ABI DICompositeType * createArrayType(uint64_t Size, uint32_t AlignInBits, DIType *Ty, DINodeArray Subscripts, PointerUnion< DIExpression *, DIVariable * > DataLocation=nullptr, PointerUnion< DIExpression *, DIVariable * > Associated=nullptr, PointerUnion< DIExpression *, DIVariable * > Allocated=nullptr, PointerUnion< DIExpression *, DIVariable * > Rank=nullptr)
Create debugging information entry for an array.
Definition: DIBuilder.cpp:686
LLVM_ABI DICompositeType * createStructType(DIScope *Scope, StringRef Name, DIFile *File, unsigned LineNumber, Metadata *SizeInBits, uint32_t AlignInBits, DINode::DIFlags Flags, DIType *DerivedFrom, DINodeArray Elements, unsigned RunTimeLang=0, DIType *VTableHolder=nullptr, StringRef UniqueIdentifier="", DIType *Specification=nullptr, uint32_t NumExtraInhabitants=0)
Create debugging information entry for a struct.
Definition: DIBuilder.cpp:592
LLVM_ABI DINodeArray getOrCreateArray(ArrayRef< Metadata * > Elements)
Get a DINodeArray, create one if required.
Definition: DIBuilder.cpp:801
LLVM_ABI DIExpression * createExpression(ArrayRef< uint64_t > Addr={})
Create a new descriptor for the specified variable which has a complex address expression for its add...
Definition: DIBuilder.cpp:966
LLVM_ABI DILocalVariable * createAutoVariable(DIScope *Scope, StringRef Name, DIFile *File, unsigned LineNo, DIType *Ty, bool AlwaysPreserve=false, DINode::DIFlags Flags=DINode::FlagZero, uint32_t AlignInBits=0)
Create a new descriptor for an auto variable.
Definition: DIBuilder.cpp:924
LLVM_ABI void replaceArrays(DICompositeType *&T, DINodeArray Elements, DINodeArray TParams=DINodeArray())
Replace arrays on a composite type.
Definition: DIBuilder.cpp:1216
DWARF expression.
LLVM_ABI bool isEntryValue() const
Check if the expression consists of exactly one entry value operand.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
LLVM_ABI DIExpression * foldConstantMath()
Try to shorten an expression with constant math operations that can be evaluated at compile time.
LLVM_ABI uint64_t getNumLocationOperands() const
Return the number of unique location operands referred to (via DW_OP_LLVM_arg) in this expression; th...
static LLVM_ABI DIExpression * prepend(const DIExpression *Expr, uint8_t Flags, int64_t Offset=0)
Prepend DIExpr with a deref and offset operation and optionally turn it into a stack value or/and an ...
LLVM_ABI bool isSingleLocationExpression() const
Return whether the evaluated expression makes use of a single location at the start of the expression...
Debug location.
Base class for scope-like contexts.
DIFile * getFile() const
Subprogram description. Uses SubclassData1.
Base class for types.
StringRef getName() const
uint64_t getSizeInBits() const
LLVM_ABI uint32_t getAlignInBits() const
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
Definition: DataLayout.cpp:708
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
Definition: DataLayout.cpp:842
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:674
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Definition: DataLayout.cpp:846
LLVM_ABI void removeFromParent()
LLVM_ABI Function * getFunction()
DebugLoc getDebugLoc() const
void setDebugLoc(DebugLoc Loc)
Record of a variable value-assignment, aka a non instruction representation of the dbg....
void setExpression(DIExpression *NewExpr)
DIExpression * getExpression() const
LLVM_ABI Value * getVariableLocationOp(unsigned OpIdx) const
LLVM_ABI void replaceVariableLocationOp(Value *OldValue, Value *NewValue, bool AllowEmpty=false)
A debug info location.
Definition: DebugLoc.h:124
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:187
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:165
iterator end()
Definition: DenseMap.h:81
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:156
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:214
void reserve(size_type NumEntries)
Grow the densemap so that it can contain at least NumEntries items before resizing again.
Definition: DenseMap.h:112
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:165
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:135
AllocaInst * CreateAlloca(Type *Ty, unsigned AddrSpace, Value *ArraySize=nullptr, const Twine &Name="")
Definition: IRBuilder.h:1830
CallInst * CreateStackSave(const Twine &Name="")
Create a call to llvm.stacksave.
Definition: IRBuilder.h:1121
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
Definition: IRBuilder.h:1864
UnreachableInst * CreateUnreachable()
Definition: IRBuilder.h:1339
BasicBlock::iterator GetInsertPoint() const
Definition: IRBuilder.h:202
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2199
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition: IRBuilder.h:2036
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Definition: IRBuilder.h:1931
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition: IRBuilder.h:2494
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:1805
SwitchInst * CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases=10, MDNode *BranchWeights=nullptr, MDNode *Unpredictable=nullptr)
Create a switch instruction with the specified value, default dest, and with a hint for the number of...
Definition: IRBuilder.h:1220
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Definition: IRBuilder.h:1847
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1551
Value * CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1, const Twine &Name="")
Definition: IRBuilder.h:1970
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition: IRBuilder.h:1860
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1403
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2194
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2508
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Definition: IRBuilder.h:605
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:1191
CallInst * CreateStackRestore(Value *Ptr, const Twine &Name="")
Create a call to llvm.stackrestore.
Definition: IRBuilder.h:1128
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:207
StoreInst * CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align, bool isVolatile=false)
Definition: IRBuilder.h:1883
IntegerType * getInt8Ty()
Fetch the type representing an 8-bit integer.
Definition: IRBuilder.h:552
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2209
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2780
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
Definition: Instruction.cpp:90
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
Definition: Instruction.cpp:78
LLVM_ABI void insertBefore(InstListType::iterator InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified position.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:82
LLVM_ABI void insertAfter(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately after the specified instruction.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:319
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
The landingpad instruction holds all of the information necessary to generate correct exception handl...
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
Definition: Metadata.cpp:1078
LLVMContext & getContext() const
Definition: Metadata.h:1241
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
Definition: Metadata.cpp:607
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1522
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition: SmallString.h:26
StringRef str() const
Explicit conversion to StringRef.
Definition: SmallString.h:254
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:938
void reserve(size_type N)
Definition: SmallVector.h:664
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
Compute live ranges of allocas.
Definition: StackLifetime.h:37
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:233
TypeSize getElementOffsetInBits(unsigned Idx) const
Definition: DataLayout.h:662
Class to represent struct types.
Definition: DerivedTypes.h:218
static LLVM_ABI StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition: Type.cpp:620
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:368
Type * getElementType(unsigned N) const
Definition: DerivedTypes.h:369
bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const
Multiway switch.
void setDefaultDest(BasicBlock *DefaultCase)
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Definition: TinyPtrVector.h:29
bool empty() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:82
LLVM_ABI std::string str() const
Return the twine contents as a std::string.
Definition: Twine.cpp:17
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition: TypeSize.h:346
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:267
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:153
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
LLVM_ABI StringRef getStructName() const
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:261
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:311
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:156
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition: Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:240
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
LLVM_ABI void set(Value *Val)
Definition: Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition: Use.h:61
static LLVM_ABI ValueAsMetadata * get(Value *V)
Definition: Metadata.cpp:502
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:546
iterator_range< user_iterator > users()
Definition: Value.h:426
LLVM_ABI void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
Definition: Value.cpp:554
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1101
iterator_range< use_iterator > uses()
Definition: Value.h:380
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:396
std::function< bool(Instruction &I)> IsMaterializable
Definition: ABI.h:64
Function & F
Definition: ABI.h:59
virtual void buildCoroutineFrame(bool OptimizeFrame)
Definition: CoroFrame.cpp:2007
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:203
const ParentTy * getParent() const
Definition: ilist_node.h:34
self_iterator getIterator()
Definition: ilist_node.h:134
A raw_ostream that writes to an SmallVector or SmallString.
Definition: raw_ostream.h:692
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ Async
The "async continuation" lowering, where each suspend point creates a single continuation function.
@ RetconOnce
The "unique returned-continuation" lowering, where each suspend point creates a single continuation f...
@ Retcon
The "returned-continuation" lowering, where each suspend point creates a single continuation function...
BasicBlock::iterator getSpillInsertionPt(const coro::Shape &, Value *Def, const DominatorTree &DT)
Definition: SpillUtils.cpp:575
bool isSuspendBlock(BasicBlock *BB)
Definition: Coroutines.cpp:98
void normalizeCoroutine(Function &F, coro::Shape &Shape, TargetTransformInfo &TTI)
Definition: CoroFrame.cpp:1957
CallInst * createMustTailCall(DebugLoc Loc, Function *MustTailCallFn, TargetTransformInfo &TTI, ArrayRef< Value * > Arguments, IRBuilder<> &)
Definition: CoroSplit.cpp:1690
void sinkSpillUsesAfterCoroBegin(const DominatorTree &DT, CoroBeginInst *CoroBegin, coro::SpillInfo &Spills, SmallVectorImpl< coro::AllocaInfo > &Allocas)
Async and Retcon{Once} conventions assume that all spill uses can be sunk after the coro....
Definition: SpillUtils.cpp:528
LLVM_ABI void doRematerializations(Function &F, SuspendCrossingInfo &Checker, std::function< bool(Instruction &)> IsMaterializable)
void collectSpillsFromArgs(SpillInfo &Spills, Function &F, const SuspendCrossingInfo &Checker)
Definition: SpillUtils.cpp:445
void collectSpillsFromDbgInfo(SpillInfo &Spills, Function &F, const SuspendCrossingInfo &Checker)
Definition: SpillUtils.cpp:509
void salvageDebugInfo(SmallDenseMap< Argument *, AllocaInst *, 4 > &ArgToAllocaMap, DbgVariableRecord &DVR, bool UseEntryValue)
Attempts to rewrite the location operand of debug records in terms of the coroutine frame pointer,...
Definition: CoroFrame.cpp:1913
void collectSpillsAndAllocasFromInsts(SpillInfo &Spills, SmallVector< AllocaInfo, 8 > &Allocas, SmallVector< Instruction *, 4 > &DeadInstructions, SmallVector< CoroAllocaAllocInst *, 4 > &LocalAllocas, Function &F, const SuspendCrossingInfo &Checker, const DominatorTree &DT, const coro::Shape &Shape)
Definition: SpillUtils.cpp:454
SourceLanguage
Definition: Dwarf.h:214
bool isCPlusPlus(SourceLanguage S)
Definition: Dwarf.h:504
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:477
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1737
LLVM_ABI void PromoteMemToReg(ArrayRef< AllocaInst * > Allocas, DominatorTree &DT, AssumptionCache *AC=nullptr)
Promote the specified list of alloca instructions into scalar registers, inserting PHI nodes as appro...
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition: ScopeExit.h:59
unsigned Log2_64_Ceil(uint64_t Value)
Return the ceil log base 2 of the specified value, 64 if the value is zero.
Definition: MathExtras.h:355
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition: Alignment.h:145
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:663
auto pred_size(const MachineBasicBlock *BB)
LLVM_ABI bool isAllocaPromotable(const AllocaInst *AI)
Return true if this alloca is legal for promotion.
static Error getOffset(const SymbolRef &Sym, SectionRef Sec, uint64_t &Result)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1669
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1758
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition: Error.cpp:167
LLVM_ABI BasicBlock * ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ, LandingPadInst *OriginalPad=nullptr, PHINode *LandingPadReplacement=nullptr, const CriticalEdgeSplittingOptions &Options=CriticalEdgeSplittingOptions(), const Twine &BBName="")
Split the edge connect the specficed blocks in the case that Succ is an Exception Handling Block.
LLVM_ABI Value * salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, SmallVectorImpl< uint64_t > &Ops, SmallVectorImpl< Value * > &AdditionalValues)
Definition: Local.cpp:2274
uint64_t offsetToAlignment(uint64_t Value, Align Alignment)
Returns the offset to the next integer (mod 2**64) that is greater than or equal to Value and is a mu...
Definition: Alignment.h:197
LLVM_ABI std::pair< uint64_t, Align > performOptimizedStructLayout(MutableArrayRef< OptimizedStructLayoutField > Fields)
Compute a layout for a struct containing the given fields, making a best-effort attempt to minimize t...
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
DWARFExpression::Operation Op
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:223
LLVM_ABI void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred, BasicBlock *NewPred, PHINode *Until=nullptr)
Replaces all uses of OldPred with the NewPred block in all PHINodes in a block.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1777
LLVM_ABI TinyPtrVector< DbgVariableRecord * > findDVRDeclares(Value *V)
Finds dbg.declare records declaring local variables as living in the memory that 'V' points to.
Definition: DebugInfo.cpp:48
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI void setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ)
Sets the unwind edge of an instruction to a particular successor.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
Definition: DebugInfo.cpp:129
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
Align Alignment
The required alignment of this field.
uint64_t Offset
The offset of this field in the final layout.
uint64_t Size
The required size of this field in bytes.
static constexpr uint64_t FlexibleOffset
A special value for Offset indicating that the field can be moved anywhere.
A MapVector that performs no allocations if smaller than a certain size.
Definition: MapVector.h:249
AsyncLoweringStorage AsyncLowering
Definition: CoroShape.h:155
StructType * FrameTy
Definition: CoroShape.h:114
AnyCoroIdRetconInst * getRetconCoroId() const
Definition: CoroShape.h:163
CoroIdInst * getSwitchCoroId() const
Definition: CoroShape.h:158
coro::ABI ABI
Definition: CoroShape.h:112
Value * FramePtr
Definition: CoroShape.h:117
SmallVector< AnyCoroSuspendInst *, 4 > CoroSuspends
Definition: CoroShape.h:58
uint64_t FrameSize
Definition: CoroShape.h:116
AllocaInst * getPromiseAlloca() const
Definition: CoroShape.h:244
SwitchLoweringStorage SwitchLowering
Definition: CoroShape.h:153
CoroBeginInst * CoroBegin
Definition: CoroShape.h:54
BasicBlock::iterator getInsertPtAfterFramePtr() const
Definition: CoroShape.h:250
RetconLoweringStorage RetconLowering
Definition: CoroShape.h:154
SmallVector< AnyCoroEndInst *, 4 > CoroEnds
Definition: CoroShape.h:55
SmallVector< CallInst *, 2 > SwiftErrorOps
Definition: CoroShape.h:63
BasicBlock * AllocaSpillBlock
Definition: CoroShape.h:118