LLVM 22.0.0git
DAGCombiner.cpp
Go to the documentation of this file.
1//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
10// both before and after the DAG is legalized.
11//
12// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
13// primarily intended to handle simplification opportunities that are implicit
14// in the LLVM IR and exposed by the various codegen lowering phases.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/APFloat.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallSet.h"
29#include "llvm/ADT/Statistic.h"
51#include "llvm/IR/Attributes.h"
52#include "llvm/IR/Constant.h"
53#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/Function.h"
56#include "llvm/IR/Metadata.h"
61#include "llvm/Support/Debug.h"
69#include <algorithm>
70#include <cassert>
71#include <cstdint>
72#include <functional>
73#include <iterator>
74#include <optional>
75#include <string>
76#include <tuple>
77#include <utility>
78#include <variant>
79
80#include "MatchContext.h"
81
82using namespace llvm;
83using namespace llvm::SDPatternMatch;
84
85#define DEBUG_TYPE "dagcombine"
86
87STATISTIC(NodesCombined , "Number of dag nodes combined");
88STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
89STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
90STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
91STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
92STATISTIC(SlicedLoads, "Number of load sliced");
93STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
94
95DEBUG_COUNTER(DAGCombineCounter, "dagcombine",
96 "Controls whether a DAG combine is performed for a node");
97
98static cl::opt<bool>
99CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
100 cl::desc("Enable DAG combiner's use of IR alias analysis"));
101
102static cl::opt<bool>
103UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
104 cl::desc("Enable DAG combiner's use of TBAA"));
105
106#ifndef NDEBUG
108CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
109 cl::desc("Only use DAG-combiner alias analysis in this"
110 " function"));
111#endif
112
113/// Hidden option to stress test load slicing, i.e., when this option
114/// is enabled, load slicing bypasses most of its profitability guards.
115static cl::opt<bool>
116StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
117 cl::desc("Bypass the profitability model of load slicing"),
118 cl::init(false));
119
120static cl::opt<bool>
121 MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
122 cl::desc("DAG combiner may split indexing from loads"));
123
124static cl::opt<bool>
125 EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
126 cl::desc("DAG combiner enable merging multiple stores "
127 "into a wider store"));
128
130 "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
131 cl::desc("Limit the number of operands to inline for Token Factors"));
132
134 "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
135 cl::desc("Limit the number of times for the same StoreNode and RootNode "
136 "to bail out in store merging dependence check"));
137
139 "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true),
140 cl::desc("DAG combiner enable reducing the width of load/op/store "
141 "sequence"));
143 "combiner-reduce-load-op-store-width-force-narrowing-profitable",
144 cl::Hidden, cl::init(false),
145 cl::desc("DAG combiner force override the narrowing profitable check when "
146 "reducing the width of load/op/store sequences"));
147
149 "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true),
150 cl::desc("DAG combiner enable load/<replace bytes>/store with "
151 "a narrower store"));
152
153static cl::opt<bool> DisableCombines("combiner-disabled", cl::Hidden,
154 cl::init(false),
155 cl::desc("Disable the DAG combiner"));
156
157namespace {
158
159 class DAGCombiner {
160 SelectionDAG &DAG;
161 const TargetLowering &TLI;
162 const SelectionDAGTargetInfo *STI;
164 CodeGenOptLevel OptLevel;
165 bool LegalDAG = false;
166 bool LegalOperations = false;
167 bool LegalTypes = false;
168 bool ForCodeSize;
169 bool DisableGenericCombines;
170
171 /// Worklist of all of the nodes that need to be simplified.
172 ///
173 /// This must behave as a stack -- new nodes to process are pushed onto the
174 /// back and when processing we pop off of the back.
175 ///
176 /// The worklist will not contain duplicates but may contain null entries
177 /// due to nodes being deleted from the underlying DAG. For fast lookup and
178 /// deduplication, the index of the node in this vector is stored in the
179 /// node in SDNode::CombinerWorklistIndex.
181
182 /// This records all nodes attempted to be added to the worklist since we
183 /// considered a new worklist entry. As we keep do not add duplicate nodes
184 /// in the worklist, this is different from the tail of the worklist.
186
187 /// Map from candidate StoreNode to the pair of RootNode and count.
188 /// The count is used to track how many times we have seen the StoreNode
189 /// with the same RootNode bail out in dependence check. If we have seen
190 /// the bail out for the same pair many times over a limit, we won't
191 /// consider the StoreNode with the same RootNode as store merging
192 /// candidate again.
194
195 // BatchAA - Used for DAG load/store alias analysis.
196 BatchAAResults *BatchAA;
197
198 /// This caches all chains that have already been processed in
199 /// DAGCombiner::getStoreMergeCandidates() and found to have no mergeable
200 /// stores candidates.
201 SmallPtrSet<SDNode *, 4> ChainsWithoutMergeableStores;
202
203 /// When an instruction is simplified, add all users of the instruction to
204 /// the work lists because they might get more simplified now.
205 void AddUsersToWorklist(SDNode *N) {
206 for (SDNode *Node : N->users())
207 AddToWorklist(Node);
208 }
209
210 /// Convenient shorthand to add a node and all of its user to the worklist.
211 void AddToWorklistWithUsers(SDNode *N) {
212 AddUsersToWorklist(N);
213 AddToWorklist(N);
214 }
215
216 // Prune potentially dangling nodes. This is called after
217 // any visit to a node, but should also be called during a visit after any
218 // failed combine which may have created a DAG node.
219 void clearAddedDanglingWorklistEntries() {
220 // Check any nodes added to the worklist to see if they are prunable.
221 while (!PruningList.empty()) {
222 auto *N = PruningList.pop_back_val();
223 if (N->use_empty())
224 recursivelyDeleteUnusedNodes(N);
225 }
226 }
227
228 SDNode *getNextWorklistEntry() {
229 // Before we do any work, remove nodes that are not in use.
230 clearAddedDanglingWorklistEntries();
231 SDNode *N = nullptr;
232 // The Worklist holds the SDNodes in order, but it may contain null
233 // entries.
234 while (!N && !Worklist.empty()) {
235 N = Worklist.pop_back_val();
236 }
237
238 if (N) {
239 assert(N->getCombinerWorklistIndex() >= 0 &&
240 "Found a worklist entry without a corresponding map entry!");
241 // Set to -2 to indicate that we combined the node.
242 N->setCombinerWorklistIndex(-2);
243 }
244 return N;
245 }
246
247 /// Call the node-specific routine that folds each particular type of node.
248 SDValue visit(SDNode *N);
249
250 public:
251 DAGCombiner(SelectionDAG &D, BatchAAResults *BatchAA, CodeGenOptLevel OL)
252 : DAG(D), TLI(D.getTargetLoweringInfo()),
253 STI(D.getSubtarget().getSelectionDAGInfo()), OptLevel(OL),
254 BatchAA(BatchAA) {
255 ForCodeSize = DAG.shouldOptForSize();
256 DisableGenericCombines =
257 DisableCombines || (STI && STI->disableGenericCombines(OptLevel));
258
259 MaximumLegalStoreInBits = 0;
260 // We use the minimum store size here, since that's all we can guarantee
261 // for the scalable vector types.
262 for (MVT VT : MVT::all_valuetypes())
263 if (EVT(VT).isSimple() && VT != MVT::Other &&
264 TLI.isTypeLegal(EVT(VT)) &&
265 VT.getSizeInBits().getKnownMinValue() >= MaximumLegalStoreInBits)
266 MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinValue();
267 }
268
269 void ConsiderForPruning(SDNode *N) {
270 // Mark this for potential pruning.
271 PruningList.insert(N);
272 }
273
274 /// Add to the worklist making sure its instance is at the back (next to be
275 /// processed.)
276 void AddToWorklist(SDNode *N, bool IsCandidateForPruning = true,
277 bool SkipIfCombinedBefore = false) {
278 assert(N->getOpcode() != ISD::DELETED_NODE &&
279 "Deleted Node added to Worklist");
280
281 // Skip handle nodes as they can't usefully be combined and confuse the
282 // zero-use deletion strategy.
283 if (N->getOpcode() == ISD::HANDLENODE)
284 return;
285
286 if (SkipIfCombinedBefore && N->getCombinerWorklistIndex() == -2)
287 return;
288
289 if (IsCandidateForPruning)
290 ConsiderForPruning(N);
291
292 if (N->getCombinerWorklistIndex() < 0) {
293 N->setCombinerWorklistIndex(Worklist.size());
294 Worklist.push_back(N);
295 }
296 }
297
298 /// Remove all instances of N from the worklist.
299 void removeFromWorklist(SDNode *N) {
300 PruningList.remove(N);
301 StoreRootCountMap.erase(N);
302
303 int WorklistIndex = N->getCombinerWorklistIndex();
304 // If not in the worklist, the index might be -1 or -2 (was combined
305 // before). As the node gets deleted anyway, there's no need to update
306 // the index.
307 if (WorklistIndex < 0)
308 return; // Not in the worklist.
309
310 // Null out the entry rather than erasing it to avoid a linear operation.
311 Worklist[WorklistIndex] = nullptr;
312 N->setCombinerWorklistIndex(-1);
313 }
314
315 void deleteAndRecombine(SDNode *N);
316 bool recursivelyDeleteUnusedNodes(SDNode *N);
317
318 /// Replaces all uses of the results of one DAG node with new values.
319 SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
320 bool AddTo = true);
321
322 /// Replaces all uses of the results of one DAG node with new values.
323 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
324 return CombineTo(N, &Res, 1, AddTo);
325 }
326
327 /// Replaces all uses of the results of one DAG node with new values.
328 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
329 bool AddTo = true) {
330 SDValue To[] = { Res0, Res1 };
331 return CombineTo(N, To, 2, AddTo);
332 }
333
334 SDValue CombineTo(SDNode *N, SmallVectorImpl<SDValue> *To,
335 bool AddTo = true) {
336 return CombineTo(N, To->data(), To->size(), AddTo);
337 }
338
339 void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
340
341 private:
342 unsigned MaximumLegalStoreInBits;
343
344 /// Check the specified integer node value to see if it can be simplified or
345 /// if things it uses can be simplified by bit propagation.
346 /// If so, return true.
347 bool SimplifyDemandedBits(SDValue Op) {
348 unsigned BitWidth = Op.getScalarValueSizeInBits();
349 APInt DemandedBits = APInt::getAllOnes(BitWidth);
350 return SimplifyDemandedBits(Op, DemandedBits);
351 }
352
353 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
354 EVT VT = Op.getValueType();
355 APInt DemandedElts = VT.isFixedLengthVector()
357 : APInt(1, 1);
358 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, false);
359 }
360
361 /// Check the specified vector node value to see if it can be simplified or
362 /// if things it uses can be simplified as it only uses some of the
363 /// elements. If so, return true.
364 bool SimplifyDemandedVectorElts(SDValue Op) {
365 // TODO: For now just pretend it cannot be simplified.
366 if (Op.getValueType().isScalableVector())
367 return false;
368
369 unsigned NumElts = Op.getValueType().getVectorNumElements();
370 APInt DemandedElts = APInt::getAllOnes(NumElts);
371 return SimplifyDemandedVectorElts(Op, DemandedElts);
372 }
373
374 bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
375 const APInt &DemandedElts,
376 bool AssumeSingleUse = false);
377 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
378 bool AssumeSingleUse = false);
379
380 bool CombineToPreIndexedLoadStore(SDNode *N);
381 bool CombineToPostIndexedLoadStore(SDNode *N);
382 SDValue SplitIndexingFromLoad(LoadSDNode *LD);
383 bool SliceUpLoad(SDNode *N);
384
385 // Looks up the chain to find a unique (unaliased) store feeding the passed
386 // load. If no such store is found, returns a nullptr.
387 // Note: This will look past a CALLSEQ_START if the load is chained to it so
388 // so that it can find stack stores for byval params.
389 StoreSDNode *getUniqueStoreFeeding(LoadSDNode *LD, int64_t &Offset);
390 // Scalars have size 0 to distinguish from singleton vectors.
391 SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
392 bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
393 bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
394
395 void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
396 SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
397 SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
398 SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
399 SDValue PromoteIntBinOp(SDValue Op);
400 SDValue PromoteIntShiftOp(SDValue Op);
401 SDValue PromoteExtend(SDValue Op);
402 bool PromoteLoad(SDValue Op);
403
404 SDValue foldShiftToAvg(SDNode *N, const SDLoc &DL);
405 // Fold `a bitwiseop (~b +/- c)` -> `a bitwiseop ~(b -/+ c)`
406 SDValue foldBitwiseOpWithNeg(SDNode *N, const SDLoc &DL, EVT VT);
407
408 SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
409 SDValue RHS, SDValue True, SDValue False,
410 ISD::CondCode CC);
411
412 /// Call the node-specific routine that knows how to fold each
413 /// particular type of node. If that doesn't do anything, try the
414 /// target-specific DAG combines.
415 SDValue combine(SDNode *N);
416
417 // Visitation implementation - Implement dag node combining for different
418 // node types. The semantics are as follows:
419 // Return Value:
420 // SDValue.getNode() == 0 - No change was made
421 // SDValue.getNode() == N - N was replaced, is dead and has been handled.
422 // otherwise - N should be replaced by the returned Operand.
423 //
424 SDValue visitTokenFactor(SDNode *N);
425 SDValue visitMERGE_VALUES(SDNode *N);
426 SDValue visitADD(SDNode *N);
427 SDValue visitADDLike(SDNode *N);
428 SDValue visitADDLikeCommutative(SDValue N0, SDValue N1,
429 SDNode *LocReference);
430 SDValue visitPTRADD(SDNode *N);
431 SDValue visitSUB(SDNode *N);
432 SDValue visitADDSAT(SDNode *N);
433 SDValue visitSUBSAT(SDNode *N);
434 SDValue visitADDC(SDNode *N);
435 SDValue visitADDO(SDNode *N);
436 SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
437 SDValue visitSUBC(SDNode *N);
438 SDValue visitSUBO(SDNode *N);
439 SDValue visitADDE(SDNode *N);
440 SDValue visitUADDO_CARRY(SDNode *N);
441 SDValue visitSADDO_CARRY(SDNode *N);
442 SDValue visitUADDO_CARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
443 SDNode *N);
444 SDValue visitSADDO_CARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
445 SDNode *N);
446 SDValue visitSUBE(SDNode *N);
447 SDValue visitUSUBO_CARRY(SDNode *N);
448 SDValue visitSSUBO_CARRY(SDNode *N);
449 template <class MatchContextClass> SDValue visitMUL(SDNode *N);
450 SDValue visitMULFIX(SDNode *N);
451 SDValue useDivRem(SDNode *N);
452 SDValue visitSDIV(SDNode *N);
453 SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
454 SDValue visitUDIV(SDNode *N);
455 SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
456 SDValue visitREM(SDNode *N);
457 SDValue visitMULHU(SDNode *N);
458 SDValue visitMULHS(SDNode *N);
459 SDValue visitAVG(SDNode *N);
460 SDValue visitABD(SDNode *N);
461 SDValue visitSMUL_LOHI(SDNode *N);
462 SDValue visitUMUL_LOHI(SDNode *N);
463 SDValue visitMULO(SDNode *N);
464 SDValue visitIMINMAX(SDNode *N);
465 SDValue visitAND(SDNode *N);
466 SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
467 SDValue visitOR(SDNode *N);
468 SDValue visitORLike(SDValue N0, SDValue N1, const SDLoc &DL);
469 SDValue visitXOR(SDNode *N);
470 SDValue SimplifyVCastOp(SDNode *N, const SDLoc &DL);
471 SDValue SimplifyVBinOp(SDNode *N, const SDLoc &DL);
472 SDValue visitSHL(SDNode *N);
473 SDValue visitSRA(SDNode *N);
474 SDValue visitSRL(SDNode *N);
475 SDValue visitFunnelShift(SDNode *N);
476 SDValue visitSHLSAT(SDNode *N);
477 SDValue visitRotate(SDNode *N);
478 SDValue visitABS(SDNode *N);
479 SDValue visitBSWAP(SDNode *N);
480 SDValue visitBITREVERSE(SDNode *N);
481 SDValue visitCTLZ(SDNode *N);
482 SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
483 SDValue visitCTTZ(SDNode *N);
484 SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
485 SDValue visitCTPOP(SDNode *N);
486 SDValue visitSELECT(SDNode *N);
487 SDValue visitVSELECT(SDNode *N);
488 SDValue visitVP_SELECT(SDNode *N);
489 SDValue visitSELECT_CC(SDNode *N);
490 SDValue visitSETCC(SDNode *N);
491 SDValue visitSETCCCARRY(SDNode *N);
492 SDValue visitSIGN_EXTEND(SDNode *N);
493 SDValue visitZERO_EXTEND(SDNode *N);
494 SDValue visitANY_EXTEND(SDNode *N);
495 SDValue visitAssertExt(SDNode *N);
496 SDValue visitAssertAlign(SDNode *N);
497 SDValue visitSIGN_EXTEND_INREG(SDNode *N);
498 SDValue visitEXTEND_VECTOR_INREG(SDNode *N);
499 SDValue visitTRUNCATE(SDNode *N);
500 SDValue visitTRUNCATE_USAT_U(SDNode *N);
501 SDValue visitBITCAST(SDNode *N);
502 SDValue visitFREEZE(SDNode *N);
503 SDValue visitBUILD_PAIR(SDNode *N);
504 SDValue visitFADD(SDNode *N);
505 SDValue visitVP_FADD(SDNode *N);
506 SDValue visitVP_FSUB(SDNode *N);
507 SDValue visitSTRICT_FADD(SDNode *N);
508 SDValue visitFSUB(SDNode *N);
509 SDValue visitFMUL(SDNode *N);
510 template <class MatchContextClass> SDValue visitFMA(SDNode *N);
511 SDValue visitFMAD(SDNode *N);
512 SDValue visitFDIV(SDNode *N);
513 SDValue visitFREM(SDNode *N);
514 SDValue visitFSQRT(SDNode *N);
515 SDValue visitFCOPYSIGN(SDNode *N);
516 SDValue visitFPOW(SDNode *N);
517 SDValue visitFCANONICALIZE(SDNode *N);
518 SDValue visitSINT_TO_FP(SDNode *N);
519 SDValue visitUINT_TO_FP(SDNode *N);
520 SDValue visitFP_TO_SINT(SDNode *N);
521 SDValue visitFP_TO_UINT(SDNode *N);
522 SDValue visitXROUND(SDNode *N);
523 SDValue visitFP_ROUND(SDNode *N);
524 SDValue visitFP_EXTEND(SDNode *N);
525 SDValue visitFNEG(SDNode *N);
526 SDValue visitFABS(SDNode *N);
527 SDValue visitFCEIL(SDNode *N);
528 SDValue visitFTRUNC(SDNode *N);
529 SDValue visitFFREXP(SDNode *N);
530 SDValue visitFFLOOR(SDNode *N);
531 SDValue visitFMinMax(SDNode *N);
532 SDValue visitBRCOND(SDNode *N);
533 SDValue visitBR_CC(SDNode *N);
534 SDValue visitLOAD(SDNode *N);
535
536 SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
537 SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
538 SDValue replaceStoreOfInsertLoad(StoreSDNode *ST);
539
540 bool refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(SDNode *N);
541
542 SDValue visitSTORE(SDNode *N);
543 SDValue visitATOMIC_STORE(SDNode *N);
544 SDValue visitLIFETIME_END(SDNode *N);
545 SDValue visitINSERT_VECTOR_ELT(SDNode *N);
546 SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
547 SDValue visitBUILD_VECTOR(SDNode *N);
548 SDValue visitCONCAT_VECTORS(SDNode *N);
549 SDValue visitVECTOR_INTERLEAVE(SDNode *N);
550 SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
551 SDValue visitVECTOR_SHUFFLE(SDNode *N);
552 SDValue visitSCALAR_TO_VECTOR(SDNode *N);
553 SDValue visitINSERT_SUBVECTOR(SDNode *N);
554 SDValue visitVECTOR_COMPRESS(SDNode *N);
555 SDValue visitMLOAD(SDNode *N);
556 SDValue visitMSTORE(SDNode *N);
557 SDValue visitMGATHER(SDNode *N);
558 SDValue visitMSCATTER(SDNode *N);
559 SDValue visitMHISTOGRAM(SDNode *N);
560 SDValue visitPARTIAL_REDUCE_MLA(SDNode *N);
561 SDValue visitVPGATHER(SDNode *N);
562 SDValue visitVPSCATTER(SDNode *N);
563 SDValue visitVP_STRIDED_LOAD(SDNode *N);
564 SDValue visitVP_STRIDED_STORE(SDNode *N);
565 SDValue visitFP_TO_FP16(SDNode *N);
566 SDValue visitFP16_TO_FP(SDNode *N);
567 SDValue visitFP_TO_BF16(SDNode *N);
568 SDValue visitBF16_TO_FP(SDNode *N);
569 SDValue visitVECREDUCE(SDNode *N);
570 SDValue visitVPOp(SDNode *N);
571 SDValue visitGET_FPENV_MEM(SDNode *N);
572 SDValue visitSET_FPENV_MEM(SDNode *N);
573
574 template <class MatchContextClass>
575 SDValue visitFADDForFMACombine(SDNode *N);
576 template <class MatchContextClass>
577 SDValue visitFSUBForFMACombine(SDNode *N);
578 SDValue visitFMULForFMADistributiveCombine(SDNode *N);
579
580 SDValue XformToShuffleWithZero(SDNode *N);
581 bool reassociationCanBreakAddressingModePattern(unsigned Opc,
582 const SDLoc &DL,
583 SDNode *N,
584 SDValue N0,
585 SDValue N1);
586 SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
587 SDValue N1, SDNodeFlags Flags);
588 SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
589 SDValue N1, SDNodeFlags Flags);
590 SDValue reassociateReduction(unsigned RedOpc, unsigned Opc, const SDLoc &DL,
591 EVT VT, SDValue N0, SDValue N1,
592 SDNodeFlags Flags = SDNodeFlags());
593
594 SDValue visitShiftByConstant(SDNode *N);
595
596 SDValue foldSelectOfConstants(SDNode *N);
597 SDValue foldVSelectOfConstants(SDNode *N);
598 SDValue foldBinOpIntoSelect(SDNode *BO);
599 bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
600 SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
601 SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
602 SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
603 SDValue N2, SDValue N3, ISD::CondCode CC,
604 bool NotExtCompare = false);
605 SDValue convertSelectOfFPConstantsToLoadOffset(
606 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
607 ISD::CondCode CC);
608 SDValue foldSignChangeInBitcast(SDNode *N);
609 SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
610 SDValue N2, SDValue N3, ISD::CondCode CC);
611 SDValue foldSelectOfBinops(SDNode *N);
612 SDValue foldSextSetcc(SDNode *N);
613 SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
614 const SDLoc &DL);
615 SDValue foldSubToUSubSat(EVT DstVT, SDNode *N, const SDLoc &DL);
616 SDValue foldABSToABD(SDNode *N, const SDLoc &DL);
617 SDValue foldSelectToABD(SDValue LHS, SDValue RHS, SDValue True,
618 SDValue False, ISD::CondCode CC, const SDLoc &DL);
619 SDValue foldSelectToUMin(SDValue LHS, SDValue RHS, SDValue True,
620 SDValue False, ISD::CondCode CC, const SDLoc &DL);
621 SDValue unfoldMaskedMerge(SDNode *N);
622 SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
623 SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
624 const SDLoc &DL, bool foldBooleans);
625 SDValue rebuildSetCC(SDValue N);
626
627 bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
628 SDValue &CC, bool MatchStrict = false) const;
629 bool isOneUseSetCC(SDValue N) const;
630
631 SDValue foldAddToAvg(SDNode *N, const SDLoc &DL);
632 SDValue foldSubToAvg(SDNode *N, const SDLoc &DL);
633
634 SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
635 unsigned HiOp);
636 SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
637 SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
638 const TargetLowering &TLI);
639 SDValue foldPartialReduceMLAMulOp(SDNode *N);
640 SDValue foldPartialReduceAdd(SDNode *N);
641
642 SDValue CombineExtLoad(SDNode *N);
643 SDValue CombineZExtLogicopShiftLoad(SDNode *N);
644 SDValue combineRepeatedFPDivisors(SDNode *N);
645 SDValue combineFMulOrFDivWithIntPow2(SDNode *N);
646 SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf);
647 SDValue mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex);
648 SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
649 SDValue combineInsertEltToLoad(SDNode *N, unsigned InsIndex);
650 SDValue BuildSDIV(SDNode *N);
651 SDValue BuildSDIVPow2(SDNode *N);
652 SDValue BuildUDIV(SDNode *N);
653 SDValue BuildSREMPow2(SDNode *N);
654 SDValue buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N);
655 SDValue BuildLogBase2(SDValue V, const SDLoc &DL,
656 bool KnownNeverZero = false,
657 bool InexpensiveOnly = false,
658 std::optional<EVT> OutVT = std::nullopt);
659 SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
660 SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
661 SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
662 SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
663 SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
664 SDNodeFlags Flags, bool Reciprocal);
665 SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
666 SDNodeFlags Flags, bool Reciprocal);
667 SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
668 bool DemandHighBits = true);
669 SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
670 SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
671 SDValue InnerPos, SDValue InnerNeg, bool FromAdd,
672 bool HasPos, unsigned PosOpcode,
673 unsigned NegOpcode, const SDLoc &DL);
674 SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg,
675 SDValue InnerPos, SDValue InnerNeg, bool FromAdd,
676 bool HasPos, unsigned PosOpcode,
677 unsigned NegOpcode, const SDLoc &DL);
678 SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL,
679 bool FromAdd);
680 SDValue MatchLoadCombine(SDNode *N);
681 SDValue mergeTruncStores(StoreSDNode *N);
682 SDValue reduceLoadWidth(SDNode *N);
683 SDValue ReduceLoadOpStoreWidth(SDNode *N);
684 SDValue splitMergedValStore(StoreSDNode *ST);
685 SDValue TransformFPLoadStorePair(SDNode *N);
686 SDValue convertBuildVecZextToZext(SDNode *N);
687 SDValue convertBuildVecZextToBuildVecWithZeros(SDNode *N);
688 SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
689 SDValue reduceBuildVecTruncToBitCast(SDNode *N);
690 SDValue reduceBuildVecToShuffle(SDNode *N);
691 SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
692 ArrayRef<int> VectorMask, SDValue VecIn1,
693 SDValue VecIn2, unsigned LeftIdx,
694 bool DidSplitVec);
695 SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
696
697 /// Walk up chain skipping non-aliasing memory nodes,
698 /// looking for aliasing nodes and adding them to the Aliases vector.
699 void GatherAllAliases(SDNode *N, SDValue OriginalChain,
700 SmallVectorImpl<SDValue> &Aliases);
701
702 /// Return true if there is any possibility that the two addresses overlap.
703 bool mayAlias(SDNode *Op0, SDNode *Op1) const;
704
705 /// Walk up chain skipping non-aliasing memory nodes, looking for a better
706 /// chain (aliasing node.)
707 SDValue FindBetterChain(SDNode *N, SDValue Chain);
708
709 /// Try to replace a store and any possibly adjacent stores on
710 /// consecutive chains with better chains. Return true only if St is
711 /// replaced.
712 ///
713 /// Notice that other chains may still be replaced even if the function
714 /// returns false.
715 bool findBetterNeighborChains(StoreSDNode *St);
716
717 // Helper for findBetterNeighborChains. Walk up store chain add additional
718 // chained stores that do not overlap and can be parallelized.
719 bool parallelizeChainedStores(StoreSDNode *St);
720
721 /// Holds a pointer to an LSBaseSDNode as well as information on where it
722 /// is located in a sequence of memory operations connected by a chain.
723 struct MemOpLink {
724 // Ptr to the mem node.
725 LSBaseSDNode *MemNode;
726
727 // Offset from the base ptr.
728 int64_t OffsetFromBase;
729
730 MemOpLink(LSBaseSDNode *N, int64_t Offset)
731 : MemNode(N), OffsetFromBase(Offset) {}
732 };
733
734 // Classify the origin of a stored value.
735 enum class StoreSource { Unknown, Constant, Extract, Load };
736 StoreSource getStoreSource(SDValue StoreVal) {
737 switch (StoreVal.getOpcode()) {
738 case ISD::Constant:
739 case ISD::ConstantFP:
740 return StoreSource::Constant;
744 return StoreSource::Constant;
745 return StoreSource::Unknown;
748 return StoreSource::Extract;
749 case ISD::LOAD:
750 return StoreSource::Load;
751 default:
752 return StoreSource::Unknown;
753 }
754 }
755
756 /// This is a helper function for visitMUL to check the profitability
757 /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
758 /// MulNode is the original multiply, AddNode is (add x, c1),
759 /// and ConstNode is c2.
760 bool isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode,
761 SDValue ConstNode);
762
763 /// This is a helper function for visitAND and visitZERO_EXTEND. Returns
764 /// true if the (and (load x) c) pattern matches an extload. ExtVT returns
765 /// the type of the loaded value to be extended.
766 bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
767 EVT LoadResultTy, EVT &ExtVT);
768
769 /// Helper function to calculate whether the given Load/Store can have its
770 /// width reduced to ExtVT.
771 bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
772 EVT &MemVT, unsigned ShAmt = 0);
773
774 /// Used by BackwardsPropagateMask to find suitable loads.
775 bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
776 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
777 ConstantSDNode *Mask, SDNode *&NodeToMask);
778 /// Attempt to propagate a given AND node back to load leaves so that they
779 /// can be combined into narrow loads.
780 bool BackwardsPropagateMask(SDNode *N);
781
782 /// Helper function for mergeConsecutiveStores which merges the component
783 /// store chains.
784 SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
785 unsigned NumStores);
786
787 /// Helper function for mergeConsecutiveStores which checks if all the store
788 /// nodes have the same underlying object. We can still reuse the first
789 /// store's pointer info if all the stores are from the same object.
790 bool hasSameUnderlyingObj(ArrayRef<MemOpLink> StoreNodes);
791
792 /// This is a helper function for mergeConsecutiveStores. When the source
793 /// elements of the consecutive stores are all constants or all extracted
794 /// vector elements, try to merge them into one larger store introducing
795 /// bitcasts if necessary. \return True if a merged store was created.
796 bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
797 EVT MemVT, unsigned NumStores,
798 bool IsConstantSrc, bool UseVector,
799 bool UseTrunc);
800
801 /// This is a helper function for mergeConsecutiveStores. Stores that
802 /// potentially may be merged with St are placed in StoreNodes. On success,
803 /// returns a chain predecessor to all store candidates.
804 SDNode *getStoreMergeCandidates(StoreSDNode *St,
805 SmallVectorImpl<MemOpLink> &StoreNodes);
806
807 /// Helper function for mergeConsecutiveStores. Checks if candidate stores
808 /// have indirect dependency through their operands. RootNode is the
809 /// predecessor to all stores calculated by getStoreMergeCandidates and is
810 /// used to prune the dependency check. \return True if safe to merge.
811 bool checkMergeStoreCandidatesForDependencies(
812 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
813 SDNode *RootNode);
814
815 /// Helper function for tryStoreMergeOfLoads. Checks if the load/store
816 /// chain has a call in it. \return True if a call is found.
817 bool hasCallInLdStChain(StoreSDNode *St, LoadSDNode *Ld);
818
819 /// This is a helper function for mergeConsecutiveStores. Given a list of
820 /// store candidates, find the first N that are consecutive in memory.
821 /// Returns 0 if there are not at least 2 consecutive stores to try merging.
822 unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
823 int64_t ElementSizeBytes) const;
824
825 /// This is a helper function for mergeConsecutiveStores. It is used for
826 /// store chains that are composed entirely of constant values.
827 bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes,
828 unsigned NumConsecutiveStores,
829 EVT MemVT, SDNode *Root, bool AllowVectors);
830
831 /// This is a helper function for mergeConsecutiveStores. It is used for
832 /// store chains that are composed entirely of extracted vector elements.
833 /// When extracting multiple vector elements, try to store them in one
834 /// vector store rather than a sequence of scalar stores.
835 bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes,
836 unsigned NumConsecutiveStores, EVT MemVT,
837 SDNode *Root);
838
839 /// This is a helper function for mergeConsecutiveStores. It is used for
840 /// store chains that are composed entirely of loaded values.
841 bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
842 unsigned NumConsecutiveStores, EVT MemVT,
843 SDNode *Root, bool AllowVectors,
844 bool IsNonTemporalStore, bool IsNonTemporalLoad);
845
846 /// Merge consecutive store operations into a wide store.
847 /// This optimization uses wide integers or vectors when possible.
848 /// \return true if stores were merged.
849 bool mergeConsecutiveStores(StoreSDNode *St);
850
851 /// Try to transform a truncation where C is a constant:
852 /// (trunc (and X, C)) -> (and (trunc X), (trunc C))
853 ///
854 /// \p N needs to be a truncation and its first operand an AND. Other
855 /// requirements are checked by the function (e.g. that trunc is
856 /// single-use) and if missed an empty SDValue is returned.
857 SDValue distributeTruncateThroughAnd(SDNode *N);
858
859 /// Helper function to determine whether the target supports operation
860 /// given by \p Opcode for type \p VT, that is, whether the operation
861 /// is legal or custom before legalizing operations, and whether is
862 /// legal (but not custom) after legalization.
863 bool hasOperation(unsigned Opcode, EVT VT) {
864 return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations);
865 }
866
867 bool hasUMin(EVT VT) const {
868 auto LK = TLI.getTypeConversion(*DAG.getContext(), VT);
869 return (LK.first == TargetLoweringBase::TypeLegal ||
871 TLI.isOperationLegalOrCustom(ISD::UMIN, LK.second);
872 }
873
874 public:
875 /// Runs the dag combiner on all nodes in the work list
876 void Run(CombineLevel AtLevel);
877
878 SelectionDAG &getDAG() const { return DAG; }
879
880 /// Convenience wrapper around TargetLowering::getShiftAmountTy.
881 EVT getShiftAmountTy(EVT LHSTy) {
882 return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout());
883 }
884
885 /// This method returns true if we are running before type legalization or
886 /// if the specified VT is legal.
887 bool isTypeLegal(const EVT &VT) {
888 if (!LegalTypes) return true;
889 return TLI.isTypeLegal(VT);
890 }
891
892 /// Convenience wrapper around TargetLowering::getSetCCResultType
893 EVT getSetCCResultType(EVT VT) const {
894 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
895 }
896
897 void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
898 SDValue OrigLoad, SDValue ExtLoad,
899 ISD::NodeType ExtType);
900 };
901
902/// This class is a DAGUpdateListener that removes any deleted
903/// nodes from the worklist.
904class WorklistRemover : public SelectionDAG::DAGUpdateListener {
905 DAGCombiner &DC;
906
907public:
908 explicit WorklistRemover(DAGCombiner &dc)
909 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
910
911 void NodeDeleted(SDNode *N, SDNode *E) override {
912 DC.removeFromWorklist(N);
913 }
914};
915
916class WorklistInserter : public SelectionDAG::DAGUpdateListener {
917 DAGCombiner &DC;
918
919public:
920 explicit WorklistInserter(DAGCombiner &dc)
921 : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
922
923 // FIXME: Ideally we could add N to the worklist, but this causes exponential
924 // compile time costs in large DAGs, e.g. Halide.
925 void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
926};
927
928} // end anonymous namespace
929
930//===----------------------------------------------------------------------===//
931// TargetLowering::DAGCombinerInfo implementation
932//===----------------------------------------------------------------------===//
933
935 ((DAGCombiner*)DC)->AddToWorklist(N);
936}
937
939CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
940 return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
941}
942
944CombineTo(SDNode *N, SDValue Res, bool AddTo) {
945 return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
946}
947
949CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
950 return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
951}
952
955 return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N);
956}
957
960 return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
961}
962
963//===----------------------------------------------------------------------===//
964// Helper Functions
965//===----------------------------------------------------------------------===//
966
967void DAGCombiner::deleteAndRecombine(SDNode *N) {
968 removeFromWorklist(N);
969
970 // If the operands of this node are only used by the node, they will now be
971 // dead. Make sure to re-visit them and recursively delete dead nodes.
972 for (const SDValue &Op : N->ops())
973 // For an operand generating multiple values, one of the values may
974 // become dead allowing further simplification (e.g. split index
975 // arithmetic from an indexed load).
976 if (Op->hasOneUse() || Op->getNumValues() > 1)
977 AddToWorklist(Op.getNode());
978
979 DAG.DeleteNode(N);
980}
981
982// APInts must be the same size for most operations, this helper
983// function zero extends the shorter of the pair so that they match.
984// We provide an Offset so that we can create bitwidths that won't overflow.
985static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
986 unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
987 LHS = LHS.zext(Bits);
988 RHS = RHS.zext(Bits);
989}
990
991// Return true if this node is a setcc, or is a select_cc
992// that selects between the target values used for true and false, making it
993// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
994// the appropriate nodes based on the type of node we are checking. This
995// simplifies life a bit for the callers.
996bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
997 SDValue &CC, bool MatchStrict) const {
998 if (N.getOpcode() == ISD::SETCC) {
999 LHS = N.getOperand(0);
1000 RHS = N.getOperand(1);
1001 CC = N.getOperand(2);
1002 return true;
1003 }
1004
1005 if (MatchStrict &&
1006 (N.getOpcode() == ISD::STRICT_FSETCC ||
1007 N.getOpcode() == ISD::STRICT_FSETCCS)) {
1008 LHS = N.getOperand(1);
1009 RHS = N.getOperand(2);
1010 CC = N.getOperand(3);
1011 return true;
1012 }
1013
1014 if (N.getOpcode() != ISD::SELECT_CC || !TLI.isConstTrueVal(N.getOperand(2)) ||
1015 !TLI.isConstFalseVal(N.getOperand(3)))
1016 return false;
1017
1018 if (TLI.getBooleanContents(N.getValueType()) ==
1020 return false;
1021
1022 LHS = N.getOperand(0);
1023 RHS = N.getOperand(1);
1024 CC = N.getOperand(4);
1025 return true;
1026}
1027
1028/// Return true if this is a SetCC-equivalent operation with only one use.
1029/// If this is true, it allows the users to invert the operation for free when
1030/// it is profitable to do so.
1031bool DAGCombiner::isOneUseSetCC(SDValue N) const {
1032 SDValue N0, N1, N2;
1033 if (isSetCCEquivalent(N, N0, N1, N2) && N->hasOneUse())
1034 return true;
1035 return false;
1036}
1037
1039 if (!ScalarTy.isSimple())
1040 return false;
1041
1042 uint64_t MaskForTy = 0ULL;
1043 switch (ScalarTy.getSimpleVT().SimpleTy) {
1044 case MVT::i8:
1045 MaskForTy = 0xFFULL;
1046 break;
1047 case MVT::i16:
1048 MaskForTy = 0xFFFFULL;
1049 break;
1050 case MVT::i32:
1051 MaskForTy = 0xFFFFFFFFULL;
1052 break;
1053 default:
1054 return false;
1055 break;
1056 }
1057
1058 APInt Val;
1059 if (ISD::isConstantSplatVector(N, Val))
1060 return Val.getLimitedValue() == MaskForTy;
1061
1062 return false;
1063}
1064
1065// Determines if it is a constant integer or a splat/build vector of constant
1066// integers (and undefs).
1067// Do not permit build vector implicit truncation.
1068static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
1070 return !(Const->isOpaque() && NoOpaques);
1071 if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR)
1072 return false;
1073 unsigned BitWidth = N.getScalarValueSizeInBits();
1074 for (const SDValue &Op : N->op_values()) {
1075 if (Op.isUndef())
1076 continue;
1078 if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
1079 (Const->isOpaque() && NoOpaques))
1080 return false;
1081 }
1082 return true;
1083}
1084
1085// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
1086// undef's.
1087static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
1088 if (V.getOpcode() != ISD::BUILD_VECTOR)
1089 return false;
1090 return isConstantOrConstantVector(V, NoOpaques) ||
1092}
1093
1094// Determine if this an indexed load with an opaque target constant index.
1095static bool canSplitIdx(LoadSDNode *LD) {
1096 return MaySplitLoadIndex &&
1097 (LD->getOperand(2).getOpcode() != ISD::TargetConstant ||
1098 !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque());
1099}
1100
1101bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
1102 const SDLoc &DL,
1103 SDNode *N,
1104 SDValue N0,
1105 SDValue N1) {
1106 // Currently this only tries to ensure we don't undo the GEP splits done by
1107 // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
1108 // we check if the following transformation would be problematic:
1109 // (load/store (add, (add, x, offset1), offset2)) ->
1110 // (load/store (add, x, offset1+offset2)).
1111
1112 // (load/store (add, (add, x, y), offset2)) ->
1113 // (load/store (add, (add, x, offset2), y)).
1114
1115 if (!N0.isAnyAdd())
1116 return false;
1117
1118 // Check for vscale addressing modes.
1119 // (load/store (add/sub (add x, y), vscale))
1120 // (load/store (add/sub (add x, y), (lsl vscale, C)))
1121 // (load/store (add/sub (add x, y), (mul vscale, C)))
1122 if ((N1.getOpcode() == ISD::VSCALE ||
1123 ((N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::MUL) &&
1124 N1.getOperand(0).getOpcode() == ISD::VSCALE &&
1126 N1.getValueType().getFixedSizeInBits() <= 64) {
1127 int64_t ScalableOffset = N1.getOpcode() == ISD::VSCALE
1128 ? N1.getConstantOperandVal(0)
1129 : (N1.getOperand(0).getConstantOperandVal(0) *
1130 (N1.getOpcode() == ISD::SHL
1131 ? (1LL << N1.getConstantOperandVal(1))
1132 : N1.getConstantOperandVal(1)));
1133 if (Opc == ISD::SUB)
1134 ScalableOffset = -ScalableOffset;
1135 if (all_of(N->users(), [&](SDNode *Node) {
1136 if (auto *LoadStore = dyn_cast<MemSDNode>(Node);
1137 LoadStore && LoadStore->getBasePtr().getNode() == N) {
1138 TargetLoweringBase::AddrMode AM;
1139 AM.HasBaseReg = true;
1140 AM.ScalableOffset = ScalableOffset;
1141 EVT VT = LoadStore->getMemoryVT();
1142 unsigned AS = LoadStore->getAddressSpace();
1143 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
1144 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy,
1145 AS);
1146 }
1147 return false;
1148 }))
1149 return true;
1150 }
1151
1152 if (Opc != ISD::ADD && Opc != ISD::PTRADD)
1153 return false;
1154
1155 auto *C2 = dyn_cast<ConstantSDNode>(N1);
1156 if (!C2)
1157 return false;
1158
1159 const APInt &C2APIntVal = C2->getAPIntValue();
1160 if (C2APIntVal.getSignificantBits() > 64)
1161 return false;
1162
1163 if (auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1164 if (N0.hasOneUse())
1165 return false;
1166
1167 const APInt &C1APIntVal = C1->getAPIntValue();
1168 const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
1169 if (CombinedValueIntVal.getSignificantBits() > 64)
1170 return false;
1171 const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
1172
1173 for (SDNode *Node : N->users()) {
1174 if (auto *LoadStore = dyn_cast<MemSDNode>(Node)) {
1175 // Is x[offset2] already not a legal addressing mode? If so then
1176 // reassociating the constants breaks nothing (we test offset2 because
1177 // that's the one we hope to fold into the load or store).
1178 TargetLoweringBase::AddrMode AM;
1179 AM.HasBaseReg = true;
1180 AM.BaseOffs = C2APIntVal.getSExtValue();
1181 EVT VT = LoadStore->getMemoryVT();
1182 unsigned AS = LoadStore->getAddressSpace();
1183 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
1184 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1185 continue;
1186
1187 // Would x[offset1+offset2] still be a legal addressing mode?
1188 AM.BaseOffs = CombinedValue;
1189 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1190 return true;
1191 }
1192 }
1193 } else {
1194 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N0.getOperand(1)))
1195 if (GA->getOpcode() == ISD::GlobalAddress && TLI.isOffsetFoldingLegal(GA))
1196 return false;
1197
1198 for (SDNode *Node : N->users()) {
1199 auto *LoadStore = dyn_cast<MemSDNode>(Node);
1200 if (!LoadStore)
1201 return false;
1202
1203 // Is x[offset2] a legal addressing mode? If so then
1204 // reassociating the constants breaks address pattern
1205 TargetLoweringBase::AddrMode AM;
1206 AM.HasBaseReg = true;
1207 AM.BaseOffs = C2APIntVal.getSExtValue();
1208 EVT VT = LoadStore->getMemoryVT();
1209 unsigned AS = LoadStore->getAddressSpace();
1210 Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
1211 if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
1212 return false;
1213 }
1214 return true;
1215 }
1216
1217 return false;
1218}
1219
1220/// Helper for DAGCombiner::reassociateOps. Try to reassociate (Opc N0, N1) if
1221/// \p N0 is the same kind of operation as \p Opc.
1222SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
1223 SDValue N0, SDValue N1,
1224 SDNodeFlags Flags) {
1225 EVT VT = N0.getValueType();
1226
1227 if (N0.getOpcode() != Opc)
1228 return SDValue();
1229
1230 SDValue N00 = N0.getOperand(0);
1231 SDValue N01 = N0.getOperand(1);
1232
1234 SDNodeFlags NewFlags;
1235 if (N0.getOpcode() == ISD::ADD && N0->getFlags().hasNoUnsignedWrap() &&
1236 Flags.hasNoUnsignedWrap())
1237 NewFlags |= SDNodeFlags::NoUnsignedWrap;
1238
1240 // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
1241 if (SDValue OpNode = DAG.FoldConstantArithmetic(Opc, DL, VT, {N01, N1})) {
1242 NewFlags.setDisjoint(Flags.hasDisjoint() &&
1243 N0->getFlags().hasDisjoint());
1244 return DAG.getNode(Opc, DL, VT, N00, OpNode, NewFlags);
1245 }
1246 return SDValue();
1247 }
1248 if (TLI.isReassocProfitable(DAG, N0, N1)) {
1249 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
1250 // iff (op x, c1) has one use
1251 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1, NewFlags);
1252 return DAG.getNode(Opc, DL, VT, OpNode, N01, NewFlags);
1253 }
1254 }
1255
1256 // Check for repeated operand logic simplifications.
1257 if (Opc == ISD::AND || Opc == ISD::OR) {
1258 // (N00 & N01) & N00 --> N00 & N01
1259 // (N00 & N01) & N01 --> N00 & N01
1260 // (N00 | N01) | N00 --> N00 | N01
1261 // (N00 | N01) | N01 --> N00 | N01
1262 if (N1 == N00 || N1 == N01)
1263 return N0;
1264 }
1265 if (Opc == ISD::XOR) {
1266 // (N00 ^ N01) ^ N00 --> N01
1267 if (N1 == N00)
1268 return N01;
1269 // (N00 ^ N01) ^ N01 --> N00
1270 if (N1 == N01)
1271 return N00;
1272 }
1273
1274 if (TLI.isReassocProfitable(DAG, N0, N1)) {
1275 if (N1 != N01) {
1276 // Reassociate if (op N00, N1) already exist
1277 if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N00, N1})) {
1278 // if Op (Op N00, N1), N01 already exist
1279 // we need to stop reassciate to avoid dead loop
1280 if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N01}))
1281 return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N01);
1282 }
1283 }
1284
1285 if (N1 != N00) {
1286 // Reassociate if (op N01, N1) already exist
1287 if (SDNode *NE = DAG.getNodeIfExists(Opc, DAG.getVTList(VT), {N01, N1})) {
1288 // if Op (Op N01, N1), N00 already exist
1289 // we need to stop reassciate to avoid dead loop
1290 if (!DAG.doesNodeExist(Opc, DAG.getVTList(VT), {SDValue(NE, 0), N00}))
1291 return DAG.getNode(Opc, DL, VT, SDValue(NE, 0), N00);
1292 }
1293 }
1294
1295 // Reassociate the operands from (OR/AND (OR/AND(N00, N001)), N1) to (OR/AND
1296 // (OR/AND(N00, N1)), N01) when N00 and N1 are comparisons with the same
1297 // predicate or to (OR/AND (OR/AND(N1, N01)), N00) when N01 and N1 are
1298 // comparisons with the same predicate. This enables optimizations as the
1299 // following one:
1300 // CMP(A,C)||CMP(B,C) => CMP(MIN/MAX(A,B), C)
1301 // CMP(A,C)&&CMP(B,C) => CMP(MIN/MAX(A,B), C)
1302 if (Opc == ISD::AND || Opc == ISD::OR) {
1303 if (N1->getOpcode() == ISD::SETCC && N00->getOpcode() == ISD::SETCC &&
1304 N01->getOpcode() == ISD::SETCC) {
1305 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1.getOperand(2))->get();
1306 ISD::CondCode CC00 = cast<CondCodeSDNode>(N00.getOperand(2))->get();
1307 ISD::CondCode CC01 = cast<CondCodeSDNode>(N01.getOperand(2))->get();
1308 if (CC1 == CC00 && CC1 != CC01) {
1309 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N00, N1, Flags);
1310 return DAG.getNode(Opc, DL, VT, OpNode, N01, Flags);
1311 }
1312 if (CC1 == CC01 && CC1 != CC00) {
1313 SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N01, N1, Flags);
1314 return DAG.getNode(Opc, DL, VT, OpNode, N00, Flags);
1315 }
1316 }
1317 }
1318 }
1319
1320 return SDValue();
1321}
1322
1323/// Try to reassociate commutative (Opc N0, N1) if either \p N0 or \p N1 is the
1324/// same kind of operation as \p Opc.
1325SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
1326 SDValue N1, SDNodeFlags Flags) {
1327 assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");
1328
1329 // Floating-point reassociation is not allowed without loose FP math.
1330 if (N0.getValueType().isFloatingPoint() ||
1332 if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
1333 return SDValue();
1334
1335 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1, Flags))
1336 return Combined;
1337 if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0, Flags))
1338 return Combined;
1339 return SDValue();
1340}
1341
1342// Try to fold Opc(vecreduce(x), vecreduce(y)) -> vecreduce(Opc(x, y))
1343// Note that we only expect Flags to be passed from FP operations. For integer
1344// operations they need to be dropped.
1345SDValue DAGCombiner::reassociateReduction(unsigned RedOpc, unsigned Opc,
1346 const SDLoc &DL, EVT VT, SDValue N0,
1347 SDValue N1, SDNodeFlags Flags) {
1348 if (N0.getOpcode() == RedOpc && N1.getOpcode() == RedOpc &&
1349 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType() &&
1350 N0->hasOneUse() && N1->hasOneUse() &&
1352 TLI.shouldReassociateReduction(RedOpc, N0.getOperand(0).getValueType())) {
1353 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
1354 return DAG.getNode(RedOpc, DL, VT,
1355 DAG.getNode(Opc, DL, N0.getOperand(0).getValueType(),
1356 N0.getOperand(0), N1.getOperand(0)));
1357 }
1358
1359 // Reassociate op(op(vecreduce(a), b), op(vecreduce(c), d)) into
1360 // op(vecreduce(op(a, c)), op(b, d)), to combine the reductions into a
1361 // single node.
1362 SDValue A, B, C, D, RedA, RedB;
1363 if (sd_match(N0, m_OneUse(m_c_BinOp(
1364 Opc,
1365 m_AllOf(m_OneUse(m_UnaryOp(RedOpc, m_Value(A))),
1366 m_Value(RedA)),
1367 m_Value(B)))) &&
1369 Opc,
1370 m_AllOf(m_OneUse(m_UnaryOp(RedOpc, m_Value(C))),
1371 m_Value(RedB)),
1372 m_Value(D)))) &&
1373 !sd_match(B, m_UnaryOp(RedOpc, m_Value())) &&
1374 !sd_match(D, m_UnaryOp(RedOpc, m_Value())) &&
1375 A.getValueType() == C.getValueType() &&
1376 hasOperation(Opc, A.getValueType()) &&
1377 TLI.shouldReassociateReduction(RedOpc, VT)) {
1378 if ((Opc == ISD::FADD || Opc == ISD::FMUL) &&
1379 (!N0->getFlags().hasAllowReassociation() ||
1381 !RedA->getFlags().hasAllowReassociation() ||
1382 !RedB->getFlags().hasAllowReassociation()))
1383 return SDValue();
1384 SelectionDAG::FlagInserter FlagsInserter(
1385 DAG, Flags & N0->getFlags() & N1->getFlags() & RedA->getFlags() &
1386 RedB->getFlags());
1387 SDValue Op = DAG.getNode(Opc, DL, A.getValueType(), A, C);
1388 SDValue Red = DAG.getNode(RedOpc, DL, VT, Op);
1389 SDValue Op2 = DAG.getNode(Opc, DL, VT, B, D);
1390 return DAG.getNode(Opc, DL, VT, Red, Op2);
1391 }
1392 return SDValue();
1393}
1394
1395SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
1396 bool AddTo) {
1397 assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
1398 ++NodesCombined;
1399 LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
1400 To[0].dump(&DAG);
1401 dbgs() << " and " << NumTo - 1 << " other values\n");
1402 for (unsigned i = 0, e = NumTo; i != e; ++i)
1403 assert((!To[i].getNode() ||
1404 N->getValueType(i) == To[i].getValueType()) &&
1405 "Cannot combine value to value of different type!");
1406
1407 WorklistRemover DeadNodes(*this);
1408 DAG.ReplaceAllUsesWith(N, To);
1409 if (AddTo) {
1410 // Push the new nodes and any users onto the worklist
1411 for (unsigned i = 0, e = NumTo; i != e; ++i) {
1412 if (To[i].getNode())
1413 AddToWorklistWithUsers(To[i].getNode());
1414 }
1415 }
1416
1417 // Finally, if the node is now dead, remove it from the graph. The node
1418 // may not be dead if the replacement process recursively simplified to
1419 // something else needing this node.
1420 if (N->use_empty())
1421 deleteAndRecombine(N);
1422 return SDValue(N, 0);
1423}
1424
1425void DAGCombiner::
1426CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
1427 // Replace the old value with the new one.
1428 ++NodesCombined;
1429 LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.dump(&DAG);
1430 dbgs() << "\nWith: "; TLO.New.dump(&DAG); dbgs() << '\n');
1431
1432 // Replace all uses.
1433 DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
1434
1435 // Push the new node and any (possibly new) users onto the worklist.
1436 AddToWorklistWithUsers(TLO.New.getNode());
1437
1438 // Finally, if the node is now dead, remove it from the graph.
1439 recursivelyDeleteUnusedNodes(TLO.Old.getNode());
1440}
1441
1442/// Check the specified integer node value to see if it can be simplified or if
1443/// things it uses can be simplified by bit propagation. If so, return true.
1444bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
1445 const APInt &DemandedElts,
1446 bool AssumeSingleUse) {
1447 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1448 KnownBits Known;
1449 if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0,
1450 AssumeSingleUse))
1451 return false;
1452
1453 // Revisit the node.
1454 AddToWorklist(Op.getNode());
1455
1456 CommitTargetLoweringOpt(TLO);
1457 return true;
1458}
1459
1460/// Check the specified vector node value to see if it can be simplified or
1461/// if things it uses can be simplified as it only uses some of the elements.
1462/// If so, return true.
1463bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
1464 const APInt &DemandedElts,
1465 bool AssumeSingleUse) {
1466 TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
1467 APInt KnownUndef, KnownZero;
1468 if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
1469 TLO, 0, AssumeSingleUse))
1470 return false;
1471
1472 // Revisit the node.
1473 AddToWorklist(Op.getNode());
1474
1475 CommitTargetLoweringOpt(TLO);
1476 return true;
1477}
1478
1479void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
1480 SDLoc DL(Load);
1481 EVT VT = Load->getValueType(0);
1482 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
1483
1484 LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
1485 Trunc.dump(&DAG); dbgs() << '\n');
1486
1487 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
1488 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
1489
1490 AddToWorklist(Trunc.getNode());
1491 recursivelyDeleteUnusedNodes(Load);
1492}
1493
1494SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
1495 Replace = false;
1496 SDLoc DL(Op);
1497 if (ISD::isUNINDEXEDLoad(Op.getNode())) {
1498 LoadSDNode *LD = cast<LoadSDNode>(Op);
1499 EVT MemVT = LD->getMemoryVT();
1501 : LD->getExtensionType();
1502 Replace = true;
1503 return DAG.getExtLoad(ExtType, DL, PVT,
1504 LD->getChain(), LD->getBasePtr(),
1505 MemVT, LD->getMemOperand());
1506 }
1507
1508 unsigned Opc = Op.getOpcode();
1509 switch (Opc) {
1510 default: break;
1511 case ISD::AssertSext:
1512 if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
1513 return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
1514 break;
1515 case ISD::AssertZext:
1516 if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
1517 return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
1518 break;
1519 case ISD::Constant: {
1520 unsigned ExtOpc =
1521 Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1522 return DAG.getNode(ExtOpc, DL, PVT, Op);
1523 }
1524 }
1525
1526 if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
1527 return SDValue();
1528 return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
1529}
1530
1531SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
1533 return SDValue();
1534 EVT OldVT = Op.getValueType();
1535 SDLoc DL(Op);
1536 bool Replace = false;
1537 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1538 if (!NewOp.getNode())
1539 return SDValue();
1540 AddToWorklist(NewOp.getNode());
1541
1542 if (Replace)
1543 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1544 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
1545 DAG.getValueType(OldVT));
1546}
1547
1548SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
1549 EVT OldVT = Op.getValueType();
1550 SDLoc DL(Op);
1551 bool Replace = false;
1552 SDValue NewOp = PromoteOperand(Op, PVT, Replace);
1553 if (!NewOp.getNode())
1554 return SDValue();
1555 AddToWorklist(NewOp.getNode());
1556
1557 if (Replace)
1558 ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
1559 return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
1560}
1561
1562/// Promote the specified integer binary operation if the target indicates it is
1563/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1564/// i32 since i16 instructions are longer.
1565SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
1566 if (!LegalOperations)
1567 return SDValue();
1568
1569 EVT VT = Op.getValueType();
1570 if (VT.isVector() || !VT.isInteger())
1571 return SDValue();
1572
1573 // If operation type is 'undesirable', e.g. i16 on x86, consider
1574 // promoting it.
1575 unsigned Opc = Op.getOpcode();
1576 if (TLI.isTypeDesirableForOp(Opc, VT))
1577 return SDValue();
1578
1579 EVT PVT = VT;
1580 // Consult target whether it is a good idea to promote this operation and
1581 // what's the right type to promote it to.
1582 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1583 assert(PVT != VT && "Don't know what type to promote to!");
1584
1585 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
1586
1587 bool Replace0 = false;
1588 SDValue N0 = Op.getOperand(0);
1589 SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
1590
1591 bool Replace1 = false;
1592 SDValue N1 = Op.getOperand(1);
1593 SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
1594 SDLoc DL(Op);
1595
1596 SDValue RV =
1597 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
1598
1599 // We are always replacing N0/N1's use in N and only need additional
1600 // replacements if there are additional uses.
1601 // Note: We are checking uses of the *nodes* (SDNode) rather than values
1602 // (SDValue) here because the node may reference multiple values
1603 // (for example, the chain value of a load node).
1604 Replace0 &= !N0->hasOneUse();
1605 Replace1 &= (N0 != N1) && !N1->hasOneUse();
1606
1607 // Combine Op here so it is preserved past replacements.
1608 CombineTo(Op.getNode(), RV);
1609
1610 // If operands have a use ordering, make sure we deal with
1611 // predecessor first.
1612 if (Replace0 && Replace1 && N0->isPredecessorOf(N1.getNode())) {
1613 std::swap(N0, N1);
1614 std::swap(NN0, NN1);
1615 }
1616
1617 if (Replace0) {
1618 AddToWorklist(NN0.getNode());
1619 ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
1620 }
1621 if (Replace1) {
1622 AddToWorklist(NN1.getNode());
1623 ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
1624 }
1625 return Op;
1626 }
1627 return SDValue();
1628}
1629
1630/// Promote the specified integer shift operation if the target indicates it is
1631/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
1632/// i32 since i16 instructions are longer.
1633SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
1634 if (!LegalOperations)
1635 return SDValue();
1636
1637 EVT VT = Op.getValueType();
1638 if (VT.isVector() || !VT.isInteger())
1639 return SDValue();
1640
1641 // If operation type is 'undesirable', e.g. i16 on x86, consider
1642 // promoting it.
1643 unsigned Opc = Op.getOpcode();
1644 if (TLI.isTypeDesirableForOp(Opc, VT))
1645 return SDValue();
1646
1647 EVT PVT = VT;
1648 // Consult target whether it is a good idea to promote this operation and
1649 // what's the right type to promote it to.
1650 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1651 assert(PVT != VT && "Don't know what type to promote to!");
1652
1653 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
1654
1655 bool Replace = false;
1656 SDValue N0 = Op.getOperand(0);
1657 if (Opc == ISD::SRA)
1658 N0 = SExtPromoteOperand(N0, PVT);
1659 else if (Opc == ISD::SRL)
1660 N0 = ZExtPromoteOperand(N0, PVT);
1661 else
1662 N0 = PromoteOperand(N0, PVT, Replace);
1663
1664 if (!N0.getNode())
1665 return SDValue();
1666
1667 SDLoc DL(Op);
1668 SDValue N1 = Op.getOperand(1);
1669 SDValue RV =
1670 DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
1671
1672 if (Replace)
1673 ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
1674
1675 // Deal with Op being deleted.
1676 if (Op && Op.getOpcode() != ISD::DELETED_NODE)
1677 return RV;
1678 }
1679 return SDValue();
1680}
1681
1682SDValue DAGCombiner::PromoteExtend(SDValue Op) {
1683 if (!LegalOperations)
1684 return SDValue();
1685
1686 EVT VT = Op.getValueType();
1687 if (VT.isVector() || !VT.isInteger())
1688 return SDValue();
1689
1690 // If operation type is 'undesirable', e.g. i16 on x86, consider
1691 // promoting it.
1692 unsigned Opc = Op.getOpcode();
1693 if (TLI.isTypeDesirableForOp(Opc, VT))
1694 return SDValue();
1695
1696 EVT PVT = VT;
1697 // Consult target whether it is a good idea to promote this operation and
1698 // what's the right type to promote it to.
1699 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1700 assert(PVT != VT && "Don't know what type to promote to!");
1701 // fold (aext (aext x)) -> (aext x)
1702 // fold (aext (zext x)) -> (zext x)
1703 // fold (aext (sext x)) -> (sext x)
1704 LLVM_DEBUG(dbgs() << "\nPromoting "; Op.dump(&DAG));
1705 return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
1706 }
1707 return SDValue();
1708}
1709
1710bool DAGCombiner::PromoteLoad(SDValue Op) {
1711 if (!LegalOperations)
1712 return false;
1713
1714 if (!ISD::isUNINDEXEDLoad(Op.getNode()))
1715 return false;
1716
1717 EVT VT = Op.getValueType();
1718 if (VT.isVector() || !VT.isInteger())
1719 return false;
1720
1721 // If operation type is 'undesirable', e.g. i16 on x86, consider
1722 // promoting it.
1723 unsigned Opc = Op.getOpcode();
1724 if (TLI.isTypeDesirableForOp(Opc, VT))
1725 return false;
1726
1727 EVT PVT = VT;
1728 // Consult target whether it is a good idea to promote this operation and
1729 // what's the right type to promote it to.
1730 if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
1731 assert(PVT != VT && "Don't know what type to promote to!");
1732
1733 SDLoc DL(Op);
1734 SDNode *N = Op.getNode();
1735 LoadSDNode *LD = cast<LoadSDNode>(N);
1736 EVT MemVT = LD->getMemoryVT();
1738 : LD->getExtensionType();
1739 SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
1740 LD->getChain(), LD->getBasePtr(),
1741 MemVT, LD->getMemOperand());
1742 SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
1743
1744 LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
1745 Result.dump(&DAG); dbgs() << '\n');
1746
1747 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
1748 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
1749
1750 AddToWorklist(Result.getNode());
1751 recursivelyDeleteUnusedNodes(N);
1752 return true;
1753 }
1754
1755 return false;
1756}
1757
1758/// Recursively delete a node which has no uses and any operands for
1759/// which it is the only use.
1760///
1761/// Note that this both deletes the nodes and removes them from the worklist.
1762/// It also adds any nodes who have had a user deleted to the worklist as they
1763/// may now have only one use and subject to other combines.
1764bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
1765 if (!N->use_empty())
1766 return false;
1767
1768 SmallSetVector<SDNode *, 16> Nodes;
1769 Nodes.insert(N);
1770 do {
1771 N = Nodes.pop_back_val();
1772 if (!N)
1773 continue;
1774
1775 if (N->use_empty()) {
1776 for (const SDValue &ChildN : N->op_values())
1777 Nodes.insert(ChildN.getNode());
1778
1779 removeFromWorklist(N);
1780 DAG.DeleteNode(N);
1781 } else {
1782 AddToWorklist(N);
1783 }
1784 } while (!Nodes.empty());
1785 return true;
1786}
1787
1788//===----------------------------------------------------------------------===//
1789// Main DAG Combiner implementation
1790//===----------------------------------------------------------------------===//
1791
1792void DAGCombiner::Run(CombineLevel AtLevel) {
1793 // set the instance variables, so that the various visit routines may use it.
1794 Level = AtLevel;
1795 LegalDAG = Level >= AfterLegalizeDAG;
1796 LegalOperations = Level >= AfterLegalizeVectorOps;
1797 LegalTypes = Level >= AfterLegalizeTypes;
1798
1799 WorklistInserter AddNodes(*this);
1800
1801 // Add all the dag nodes to the worklist.
1802 //
1803 // Note: All nodes are not added to PruningList here, this is because the only
1804 // nodes which can be deleted are those which have no uses and all other nodes
1805 // which would otherwise be added to the worklist by the first call to
1806 // getNextWorklistEntry are already present in it.
1807 for (SDNode &Node : DAG.allnodes())
1808 AddToWorklist(&Node, /* IsCandidateForPruning */ Node.use_empty());
1809
1810 // Create a dummy node (which is not added to allnodes), that adds a reference
1811 // to the root node, preventing it from being deleted, and tracking any
1812 // changes of the root.
1813 HandleSDNode Dummy(DAG.getRoot());
1814
1815 // While we have a valid worklist entry node, try to combine it.
1816 while (SDNode *N = getNextWorklistEntry()) {
1817 // If N has no uses, it is dead. Make sure to revisit all N's operands once
1818 // N is deleted from the DAG, since they too may now be dead or may have a
1819 // reduced number of uses, allowing other xforms.
1820 if (recursivelyDeleteUnusedNodes(N))
1821 continue;
1822
1823 WorklistRemover DeadNodes(*this);
1824
1825 // If this combine is running after legalizing the DAG, re-legalize any
1826 // nodes pulled off the worklist.
1827 if (LegalDAG) {
1828 SmallSetVector<SDNode *, 16> UpdatedNodes;
1829 bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
1830
1831 for (SDNode *LN : UpdatedNodes)
1832 AddToWorklistWithUsers(LN);
1833
1834 if (!NIsValid)
1835 continue;
1836 }
1837
1838 LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
1839
1840 // Add any operands of the new node which have not yet been combined to the
1841 // worklist as well. getNextWorklistEntry flags nodes that have been
1842 // combined before. Because the worklist uniques things already, this won't
1843 // repeatedly process the same operand.
1844 for (const SDValue &ChildN : N->op_values())
1845 AddToWorklist(ChildN.getNode(), /*IsCandidateForPruning=*/true,
1846 /*SkipIfCombinedBefore=*/true);
1847
1848 SDValue RV = combine(N);
1849
1850 if (!RV.getNode())
1851 continue;
1852
1853 ++NodesCombined;
1854
1855 // Invalidate cached info.
1856 ChainsWithoutMergeableStores.clear();
1857
1858 // If we get back the same node we passed in, rather than a new node or
1859 // zero, we know that the node must have defined multiple values and
1860 // CombineTo was used. Since CombineTo takes care of the worklist
1861 // mechanics for us, we have no work to do in this case.
1862 if (RV.getNode() == N)
1863 continue;
1864
1865 assert(N->getOpcode() != ISD::DELETED_NODE &&
1866 RV.getOpcode() != ISD::DELETED_NODE &&
1867 "Node was deleted but visit returned new node!");
1868
1869 LLVM_DEBUG(dbgs() << " ... into: "; RV.dump(&DAG));
1870
1871 if (N->getNumValues() == RV->getNumValues())
1872 DAG.ReplaceAllUsesWith(N, RV.getNode());
1873 else {
1874 assert(N->getValueType(0) == RV.getValueType() &&
1875 N->getNumValues() == 1 && "Type mismatch");
1876 DAG.ReplaceAllUsesWith(N, &RV);
1877 }
1878
1879 // Push the new node and any users onto the worklist. Omit this if the
1880 // new node is the EntryToken (e.g. if a store managed to get optimized
1881 // out), because re-visiting the EntryToken and its users will not uncover
1882 // any additional opportunities, but there may be a large number of such
1883 // users, potentially causing compile time explosion.
1884 if (RV.getOpcode() != ISD::EntryToken)
1885 AddToWorklistWithUsers(RV.getNode());
1886
1887 // Finally, if the node is now dead, remove it from the graph. The node
1888 // may not be dead if the replacement process recursively simplified to
1889 // something else needing this node. This will also take care of adding any
1890 // operands which have lost a user to the worklist.
1891 recursivelyDeleteUnusedNodes(N);
1892 }
1893
1894 // If the root changed (e.g. it was a dead load, update the root).
1895 DAG.setRoot(Dummy.getValue());
1896 DAG.RemoveDeadNodes();
1897}
1898
1899SDValue DAGCombiner::visit(SDNode *N) {
1900 // clang-format off
1901 switch (N->getOpcode()) {
1902 default: break;
1903 case ISD::TokenFactor: return visitTokenFactor(N);
1904 case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
1905 case ISD::ADD: return visitADD(N);
1906 case ISD::PTRADD: return visitPTRADD(N);
1907 case ISD::SUB: return visitSUB(N);
1908 case ISD::SADDSAT:
1909 case ISD::UADDSAT: return visitADDSAT(N);
1910 case ISD::SSUBSAT:
1911 case ISD::USUBSAT: return visitSUBSAT(N);
1912 case ISD::ADDC: return visitADDC(N);
1913 case ISD::SADDO:
1914 case ISD::UADDO: return visitADDO(N);
1915 case ISD::SUBC: return visitSUBC(N);
1916 case ISD::SSUBO:
1917 case ISD::USUBO: return visitSUBO(N);
1918 case ISD::ADDE: return visitADDE(N);
1919 case ISD::UADDO_CARRY: return visitUADDO_CARRY(N);
1920 case ISD::SADDO_CARRY: return visitSADDO_CARRY(N);
1921 case ISD::SUBE: return visitSUBE(N);
1922 case ISD::USUBO_CARRY: return visitUSUBO_CARRY(N);
1923 case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N);
1924 case ISD::SMULFIX:
1925 case ISD::SMULFIXSAT:
1926 case ISD::UMULFIX:
1927 case ISD::UMULFIXSAT: return visitMULFIX(N);
1928 case ISD::MUL: return visitMUL<EmptyMatchContext>(N);
1929 case ISD::SDIV: return visitSDIV(N);
1930 case ISD::UDIV: return visitUDIV(N);
1931 case ISD::SREM:
1932 case ISD::UREM: return visitREM(N);
1933 case ISD::MULHU: return visitMULHU(N);
1934 case ISD::MULHS: return visitMULHS(N);
1935 case ISD::AVGFLOORS:
1936 case ISD::AVGFLOORU:
1937 case ISD::AVGCEILS:
1938 case ISD::AVGCEILU: return visitAVG(N);
1939 case ISD::ABDS:
1940 case ISD::ABDU: return visitABD(N);
1941 case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
1942 case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
1943 case ISD::SMULO:
1944 case ISD::UMULO: return visitMULO(N);
1945 case ISD::SMIN:
1946 case ISD::SMAX:
1947 case ISD::UMIN:
1948 case ISD::UMAX: return visitIMINMAX(N);
1949 case ISD::AND: return visitAND(N);
1950 case ISD::OR: return visitOR(N);
1951 case ISD::XOR: return visitXOR(N);
1952 case ISD::SHL: return visitSHL(N);
1953 case ISD::SRA: return visitSRA(N);
1954 case ISD::SRL: return visitSRL(N);
1955 case ISD::ROTR:
1956 case ISD::ROTL: return visitRotate(N);
1957 case ISD::FSHL:
1958 case ISD::FSHR: return visitFunnelShift(N);
1959 case ISD::SSHLSAT:
1960 case ISD::USHLSAT: return visitSHLSAT(N);
1961 case ISD::ABS: return visitABS(N);
1962 case ISD::BSWAP: return visitBSWAP(N);
1963 case ISD::BITREVERSE: return visitBITREVERSE(N);
1964 case ISD::CTLZ: return visitCTLZ(N);
1965 case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
1966 case ISD::CTTZ: return visitCTTZ(N);
1967 case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
1968 case ISD::CTPOP: return visitCTPOP(N);
1969 case ISD::SELECT: return visitSELECT(N);
1970 case ISD::VSELECT: return visitVSELECT(N);
1971 case ISD::SELECT_CC: return visitSELECT_CC(N);
1972 case ISD::SETCC: return visitSETCC(N);
1973 case ISD::SETCCCARRY: return visitSETCCCARRY(N);
1974 case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
1975 case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
1976 case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
1977 case ISD::AssertSext:
1978 case ISD::AssertZext: return visitAssertExt(N);
1979 case ISD::AssertAlign: return visitAssertAlign(N);
1980 case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
1983 case ISD::ANY_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N);
1984 case ISD::TRUNCATE: return visitTRUNCATE(N);
1985 case ISD::TRUNCATE_USAT_U: return visitTRUNCATE_USAT_U(N);
1986 case ISD::BITCAST: return visitBITCAST(N);
1987 case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
1988 case ISD::FADD: return visitFADD(N);
1989 case ISD::STRICT_FADD: return visitSTRICT_FADD(N);
1990 case ISD::FSUB: return visitFSUB(N);
1991 case ISD::FMUL: return visitFMUL(N);
1992 case ISD::FMA: return visitFMA<EmptyMatchContext>(N);
1993 case ISD::FMAD: return visitFMAD(N);
1994 case ISD::FDIV: return visitFDIV(N);
1995 case ISD::FREM: return visitFREM(N);
1996 case ISD::FSQRT: return visitFSQRT(N);
1997 case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
1998 case ISD::FPOW: return visitFPOW(N);
1999 case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
2000 case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
2001 case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
2002 case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
2003 case ISD::LROUND:
2004 case ISD::LLROUND:
2005 case ISD::LRINT:
2006 case ISD::LLRINT: return visitXROUND(N);
2007 case ISD::FP_ROUND: return visitFP_ROUND(N);
2008 case ISD::FP_EXTEND: return visitFP_EXTEND(N);
2009 case ISD::FNEG: return visitFNEG(N);
2010 case ISD::FABS: return visitFABS(N);
2011 case ISD::FFLOOR: return visitFFLOOR(N);
2012 case ISD::FMINNUM:
2013 case ISD::FMAXNUM:
2014 case ISD::FMINIMUM:
2015 case ISD::FMAXIMUM:
2016 case ISD::FMINIMUMNUM:
2017 case ISD::FMAXIMUMNUM: return visitFMinMax(N);
2018 case ISD::FCEIL: return visitFCEIL(N);
2019 case ISD::FTRUNC: return visitFTRUNC(N);
2020 case ISD::FFREXP: return visitFFREXP(N);
2021 case ISD::BRCOND: return visitBRCOND(N);
2022 case ISD::BR_CC: return visitBR_CC(N);
2023 case ISD::LOAD: return visitLOAD(N);
2024 case ISD::STORE: return visitSTORE(N);
2025 case ISD::ATOMIC_STORE: return visitATOMIC_STORE(N);
2026 case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
2027 case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
2028 case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
2029 case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
2030 case ISD::VECTOR_INTERLEAVE: return visitVECTOR_INTERLEAVE(N);
2031 case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
2032 case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
2033 case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
2034 case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
2035 case ISD::MGATHER: return visitMGATHER(N);
2036 case ISD::MLOAD: return visitMLOAD(N);
2037 case ISD::MSCATTER: return visitMSCATTER(N);
2038 case ISD::MSTORE: return visitMSTORE(N);
2039 case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM: return visitMHISTOGRAM(N);
2040 case ISD::PARTIAL_REDUCE_SMLA:
2041 case ISD::PARTIAL_REDUCE_UMLA:
2042 case ISD::PARTIAL_REDUCE_SUMLA:
2043 return visitPARTIAL_REDUCE_MLA(N);
2044 case ISD::VECTOR_COMPRESS: return visitVECTOR_COMPRESS(N);
2045 case ISD::LIFETIME_END: return visitLIFETIME_END(N);
2046 case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
2047 case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
2048 case ISD::FP_TO_BF16: return visitFP_TO_BF16(N);
2049 case ISD::BF16_TO_FP: return visitBF16_TO_FP(N);
2050 case ISD::FREEZE: return visitFREEZE(N);
2051 case ISD::GET_FPENV_MEM: return visitGET_FPENV_MEM(N);
2052 case ISD::SET_FPENV_MEM: return visitSET_FPENV_MEM(N);
2053 case ISD::FCANONICALIZE: return visitFCANONICALIZE(N);
2054 case ISD::VECREDUCE_FADD:
2055 case ISD::VECREDUCE_FMUL:
2056 case ISD::VECREDUCE_ADD:
2057 case ISD::VECREDUCE_MUL:
2058 case ISD::VECREDUCE_AND:
2059 case ISD::VECREDUCE_OR:
2060 case ISD::VECREDUCE_XOR:
2061 case ISD::VECREDUCE_SMAX:
2062 case ISD::VECREDUCE_SMIN:
2063 case ISD::VECREDUCE_UMAX:
2064 case ISD::VECREDUCE_UMIN:
2065 case ISD::VECREDUCE_FMAX:
2066 case ISD::VECREDUCE_FMIN:
2067 case ISD::VECREDUCE_FMAXIMUM:
2068 case ISD::VECREDUCE_FMINIMUM: return visitVECREDUCE(N);
2069#define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...) case ISD::SDOPC:
2070#include "llvm/IR/VPIntrinsics.def"
2071 return visitVPOp(N);
2072 }
2073 // clang-format on
2074 return SDValue();
2075}
2076
2077SDValue DAGCombiner::combine(SDNode *N) {
2078 if (!DebugCounter::shouldExecute(DAGCombineCounter))
2079 return SDValue();
2080
2081 SDValue RV;
2082 if (!DisableGenericCombines)
2083 RV = visit(N);
2084
2085 // If nothing happened, try a target-specific DAG combine.
2086 if (!RV.getNode()) {
2087 assert(N->getOpcode() != ISD::DELETED_NODE &&
2088 "Node was deleted but visit returned NULL!");
2089
2090 if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
2091 TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
2092
2093 // Expose the DAG combiner to the target combiner impls.
2094 TargetLowering::DAGCombinerInfo
2095 DagCombineInfo(DAG, Level, false, this);
2096
2097 RV = TLI.PerformDAGCombine(N, DagCombineInfo);
2098 }
2099 }
2100
2101 // If nothing happened still, try promoting the operation.
2102 if (!RV.getNode()) {
2103 switch (N->getOpcode()) {
2104 default: break;
2105 case ISD::ADD:
2106 case ISD::SUB:
2107 case ISD::MUL:
2108 case ISD::AND:
2109 case ISD::OR:
2110 case ISD::XOR:
2111 RV = PromoteIntBinOp(SDValue(N, 0));
2112 break;
2113 case ISD::SHL:
2114 case ISD::SRA:
2115 case ISD::SRL:
2116 RV = PromoteIntShiftOp(SDValue(N, 0));
2117 break;
2118 case ISD::SIGN_EXTEND:
2119 case ISD::ZERO_EXTEND:
2120 case ISD::ANY_EXTEND:
2121 RV = PromoteExtend(SDValue(N, 0));
2122 break;
2123 case ISD::LOAD:
2124 if (PromoteLoad(SDValue(N, 0)))
2125 RV = SDValue(N, 0);
2126 break;
2127 }
2128 }
2129
2130 // If N is a commutative binary node, try to eliminate it if the commuted
2131 // version is already present in the DAG.
2132 if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode())) {
2133 SDValue N0 = N->getOperand(0);
2134 SDValue N1 = N->getOperand(1);
2135
2136 // Constant operands are canonicalized to RHS.
2137 if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
2138 SDValue Ops[] = {N1, N0};
2139 SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
2140 N->getFlags());
2141 if (CSENode)
2142 return SDValue(CSENode, 0);
2143 }
2144 }
2145
2146 return RV;
2147}
2148
2149/// Given a node, return its input chain if it has one, otherwise return a null
2150/// sd operand.
2152 if (unsigned NumOps = N->getNumOperands()) {
2153 if (N->getOperand(0).getValueType() == MVT::Other)
2154 return N->getOperand(0);
2155 if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
2156 return N->getOperand(NumOps-1);
2157 for (unsigned i = 1; i < NumOps-1; ++i)
2158 if (N->getOperand(i).getValueType() == MVT::Other)
2159 return N->getOperand(i);
2160 }
2161 return SDValue();
2162}
2163
2164SDValue DAGCombiner::visitFCANONICALIZE(SDNode *N) {
2165 SDValue Operand = N->getOperand(0);
2166 EVT VT = Operand.getValueType();
2167 SDLoc dl(N);
2168
2169 // Canonicalize undef to quiet NaN.
2170 if (Operand.isUndef()) {
2171 APFloat CanonicalQNaN = APFloat::getQNaN(VT.getFltSemantics());
2172 return DAG.getConstantFP(CanonicalQNaN, dl, VT);
2173 }
2174 return SDValue();
2175}
2176
2177SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
2178 // If N has two operands, where one has an input chain equal to the other,
2179 // the 'other' chain is redundant.
2180 if (N->getNumOperands() == 2) {
2181 if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
2182 return N->getOperand(0);
2183 if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
2184 return N->getOperand(1);
2185 }
2186
2187 // Don't simplify token factors if optnone.
2188 if (OptLevel == CodeGenOptLevel::None)
2189 return SDValue();
2190
2191 // Don't simplify the token factor if the node itself has too many operands.
2192 if (N->getNumOperands() > TokenFactorInlineLimit)
2193 return SDValue();
2194
2195 // If the sole user is a token factor, we should make sure we have a
2196 // chance to merge them together. This prevents TF chains from inhibiting
2197 // optimizations.
2198 if (N->hasOneUse() && N->user_begin()->getOpcode() == ISD::TokenFactor)
2199 AddToWorklist(*(N->user_begin()));
2200
2201 SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
2202 SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
2203 SmallPtrSet<SDNode*, 16> SeenOps;
2204 bool Changed = false; // If we should replace this token factor.
2205
2206 // Start out with this token factor.
2207 TFs.push_back(N);
2208
2209 // Iterate through token factors. The TFs grows when new token factors are
2210 // encountered.
2211 for (unsigned i = 0; i < TFs.size(); ++i) {
2212 // Limit number of nodes to inline, to avoid quadratic compile times.
2213 // We have to add the outstanding Token Factors to Ops, otherwise we might
2214 // drop Ops from the resulting Token Factors.
2215 if (Ops.size() > TokenFactorInlineLimit) {
2216 for (unsigned j = i; j < TFs.size(); j++)
2217 Ops.emplace_back(TFs[j], 0);
2218 // Drop unprocessed Token Factors from TFs, so we do not add them to the
2219 // combiner worklist later.
2220 TFs.resize(i);
2221 break;
2222 }
2223
2224 SDNode *TF = TFs[i];
2225 // Check each of the operands.
2226 for (const SDValue &Op : TF->op_values()) {
2227 switch (Op.getOpcode()) {
2228 case ISD::EntryToken:
2229 // Entry tokens don't need to be added to the list. They are
2230 // redundant.
2231 Changed = true;
2232 break;
2233
2234 case ISD::TokenFactor:
2235 if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
2236 // Queue up for processing.
2237 TFs.push_back(Op.getNode());
2238 Changed = true;
2239 break;
2240 }
2241 [[fallthrough]];
2242
2243 default:
2244 // Only add if it isn't already in the list.
2245 if (SeenOps.insert(Op.getNode()).second)
2246 Ops.push_back(Op);
2247 else
2248 Changed = true;
2249 break;
2250 }
2251 }
2252 }
2253
2254 // Re-visit inlined Token Factors, to clean them up in case they have been
2255 // removed. Skip the first Token Factor, as this is the current node.
2256 for (unsigned i = 1, e = TFs.size(); i < e; i++)
2257 AddToWorklist(TFs[i]);
2258
2259 // Remove Nodes that are chained to another node in the list. Do so
2260 // by walking up chains breath-first stopping when we've seen
2261 // another operand. In general we must climb to the EntryNode, but we can exit
2262 // early if we find all remaining work is associated with just one operand as
2263 // no further pruning is possible.
2264
2265 // List of nodes to search through and original Ops from which they originate.
2267 SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
2268 SmallPtrSet<SDNode *, 16> SeenChains;
2269 bool DidPruneOps = false;
2270
2271 unsigned NumLeftToConsider = 0;
2272 for (const SDValue &Op : Ops) {
2273 Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
2274 OpWorkCount.push_back(1);
2275 }
2276
2277 auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
2278 // If this is an Op, we can remove the op from the list. Remark any
2279 // search associated with it as from the current OpNumber.
2280 if (SeenOps.contains(Op)) {
2281 Changed = true;
2282 DidPruneOps = true;
2283 unsigned OrigOpNumber = 0;
2284 while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
2285 OrigOpNumber++;
2286 assert((OrigOpNumber != Ops.size()) &&
2287 "expected to find TokenFactor Operand");
2288 // Re-mark worklist from OrigOpNumber to OpNumber
2289 for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
2290 if (Worklist[i].second == OrigOpNumber) {
2291 Worklist[i].second = OpNumber;
2292 }
2293 }
2294 OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
2295 OpWorkCount[OrigOpNumber] = 0;
2296 NumLeftToConsider--;
2297 }
2298 // Add if it's a new chain
2299 if (SeenChains.insert(Op).second) {
2300 OpWorkCount[OpNumber]++;
2301 Worklist.push_back(std::make_pair(Op, OpNumber));
2302 }
2303 };
2304
2305 for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
2306 // We need at least be consider at least 2 Ops to prune.
2307 if (NumLeftToConsider <= 1)
2308 break;
2309 auto CurNode = Worklist[i].first;
2310 auto CurOpNumber = Worklist[i].second;
2311 assert((OpWorkCount[CurOpNumber] > 0) &&
2312 "Node should not appear in worklist");
2313 switch (CurNode->getOpcode()) {
2314 case ISD::EntryToken:
2315 // Hitting EntryToken is the only way for the search to terminate without
2316 // hitting
2317 // another operand's search. Prevent us from marking this operand
2318 // considered.
2319 NumLeftToConsider++;
2320 break;
2321 case ISD::TokenFactor:
2322 for (const SDValue &Op : CurNode->op_values())
2323 AddToWorklist(i, Op.getNode(), CurOpNumber);
2324 break;
2325 case ISD::LIFETIME_START:
2326 case ISD::LIFETIME_END:
2327 case ISD::CopyFromReg:
2328 case ISD::CopyToReg:
2329 AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
2330 break;
2331 default:
2332 if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
2333 AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
2334 break;
2335 }
2336 OpWorkCount[CurOpNumber]--;
2337 if (OpWorkCount[CurOpNumber] == 0)
2338 NumLeftToConsider--;
2339 }
2340
2341 // If we've changed things around then replace token factor.
2342 if (Changed) {
2344 if (Ops.empty()) {
2345 // The entry token is the only possible outcome.
2346 Result = DAG.getEntryNode();
2347 } else {
2348 if (DidPruneOps) {
2349 SmallVector<SDValue, 8> PrunedOps;
2350 //
2351 for (const SDValue &Op : Ops) {
2352 if (SeenChains.count(Op.getNode()) == 0)
2353 PrunedOps.push_back(Op);
2354 }
2355 Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
2356 } else {
2357 Result = DAG.getTokenFactor(SDLoc(N), Ops);
2358 }
2359 }
2360 return Result;
2361 }
2362 return SDValue();
2363}
2364
2365/// MERGE_VALUES can always be eliminated.
2366SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
2367 WorklistRemover DeadNodes(*this);
2368 // Replacing results may cause a different MERGE_VALUES to suddenly
2369 // be CSE'd with N, and carry its uses with it. Iterate until no
2370 // uses remain, to ensure that the node can be safely deleted.
2371 // First add the users of this node to the work list so that they
2372 // can be tried again once they have new operands.
2373 AddUsersToWorklist(N);
2374 do {
2375 // Do as a single replacement to avoid rewalking use lists.
2377 DAG.ReplaceAllUsesWith(N, Ops.data());
2378 } while (!N->use_empty());
2379 deleteAndRecombine(N);
2380 return SDValue(N, 0); // Return N so it doesn't get rechecked!
2381}
2382
2383/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
2384/// ConstantSDNode pointer else nullptr.
2387 return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
2388}
2389
2390// isTruncateOf - If N is a truncate of some other value, return true, record
2391// the value being truncated in Op and which of Op's bits are zero/one in Known.
2392// This function computes KnownBits to avoid a duplicated call to
2393// computeKnownBits in the caller.
2395 KnownBits &Known) {
2396 if (N->getOpcode() == ISD::TRUNCATE) {
2397 Op = N->getOperand(0);
2398 Known = DAG.computeKnownBits(Op);
2399 if (N->getFlags().hasNoUnsignedWrap())
2400 Known.Zero.setBitsFrom(N.getScalarValueSizeInBits());
2401 return true;
2402 }
2403
2404 if (N.getValueType().getScalarType() != MVT::i1 ||
2405 !sd_match(
2407 return false;
2408
2409 Known = DAG.computeKnownBits(Op);
2410 return (Known.Zero | 1).isAllOnes();
2411}
2412
2413/// Return true if 'Use' is a load or a store that uses N as its base pointer
2414/// and that N may be folded in the load / store addressing mode.
2416 const TargetLowering &TLI) {
2417 EVT VT;
2418 unsigned AS;
2419
2420 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
2421 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
2422 return false;
2423 VT = LD->getMemoryVT();
2424 AS = LD->getAddressSpace();
2425 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
2426 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
2427 return false;
2428 VT = ST->getMemoryVT();
2429 AS = ST->getAddressSpace();
2431 if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
2432 return false;
2433 VT = LD->getMemoryVT();
2434 AS = LD->getAddressSpace();
2436 if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
2437 return false;
2438 VT = ST->getMemoryVT();
2439 AS = ST->getAddressSpace();
2440 } else {
2441 return false;
2442 }
2443
2445 if (N->isAnyAdd()) {
2446 AM.HasBaseReg = true;
2448 if (Offset)
2449 // [reg +/- imm]
2450 AM.BaseOffs = Offset->getSExtValue();
2451 else
2452 // [reg +/- reg]
2453 AM.Scale = 1;
2454 } else if (N->getOpcode() == ISD::SUB) {
2455 AM.HasBaseReg = true;
2457 if (Offset)
2458 // [reg +/- imm]
2459 AM.BaseOffs = -Offset->getSExtValue();
2460 else
2461 // [reg +/- reg]
2462 AM.Scale = 1;
2463 } else {
2464 return false;
2465 }
2466
2467 return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
2468 VT.getTypeForEVT(*DAG.getContext()), AS);
2469}
2470
2471/// This inverts a canonicalization in IR that replaces a variable select arm
2472/// with an identity constant. Codegen improves if we re-use the variable
2473/// operand rather than load a constant. This can also be converted into a
2474/// masked vector operation if the target supports it.
2476 bool ShouldCommuteOperands) {
2477 // Match a select as operand 1. The identity constant that we are looking for
2478 // is only valid as operand 1 of a non-commutative binop.
2479 SDValue N0 = N->getOperand(0);
2480 SDValue N1 = N->getOperand(1);
2481 if (ShouldCommuteOperands)
2482 std::swap(N0, N1);
2483
2484 unsigned SelOpcode = N1.getOpcode();
2485 if ((SelOpcode != ISD::VSELECT && SelOpcode != ISD::SELECT) ||
2486 !N1.hasOneUse())
2487 return SDValue();
2488
2489 // We can't hoist all instructions because of immediate UB (not speculatable).
2490 // For example div/rem by zero.
2492 return SDValue();
2493
2494 unsigned Opcode = N->getOpcode();
2495 EVT VT = N->getValueType(0);
2496 SDValue Cond = N1.getOperand(0);
2497 SDValue TVal = N1.getOperand(1);
2498 SDValue FVal = N1.getOperand(2);
2499 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2500
2501 // This transform increases uses of N0, so freeze it to be safe.
2502 // binop N0, (vselect Cond, IDC, FVal) --> vselect Cond, N0, (binop N0, FVal)
2503 unsigned OpNo = ShouldCommuteOperands ? 0 : 1;
2504 if (isNeutralConstant(Opcode, N->getFlags(), TVal, OpNo) &&
2505 TLI.shouldFoldSelectWithIdentityConstant(Opcode, VT, SelOpcode, N0,
2506 FVal)) {
2507 SDValue F0 = DAG.getFreeze(N0);
2508 SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, FVal, N->getFlags());
2509 return DAG.getSelect(SDLoc(N), VT, Cond, F0, NewBO);
2510 }
2511 // binop N0, (vselect Cond, TVal, IDC) --> vselect Cond, (binop N0, TVal), N0
2512 if (isNeutralConstant(Opcode, N->getFlags(), FVal, OpNo) &&
2513 TLI.shouldFoldSelectWithIdentityConstant(Opcode, VT, SelOpcode, N0,
2514 TVal)) {
2515 SDValue F0 = DAG.getFreeze(N0);
2516 SDValue NewBO = DAG.getNode(Opcode, SDLoc(N), VT, F0, TVal, N->getFlags());
2517 return DAG.getSelect(SDLoc(N), VT, Cond, NewBO, F0);
2518 }
2519
2520 return SDValue();
2521}
2522
2523SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
2524 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2525 assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
2526 "Unexpected binary operator");
2527
2528 if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, false))
2529 return Sel;
2530
2531 if (TLI.isCommutativeBinOp(BO->getOpcode()))
2532 if (SDValue Sel = foldSelectWithIdentityConstant(BO, DAG, true))
2533 return Sel;
2534
2535 // Don't do this unless the old select is going away. We want to eliminate the
2536 // binary operator, not replace a binop with a select.
2537 // TODO: Handle ISD::SELECT_CC.
2538 unsigned SelOpNo = 0;
2539 SDValue Sel = BO->getOperand(0);
2540 auto BinOpcode = BO->getOpcode();
2541 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
2542 SelOpNo = 1;
2543 Sel = BO->getOperand(1);
2544
2545 // Peek through trunc to shift amount type.
2546 if ((BinOpcode == ISD::SHL || BinOpcode == ISD::SRA ||
2547 BinOpcode == ISD::SRL) && Sel.hasOneUse()) {
2548 // This is valid when the truncated bits of x are already zero.
2549 SDValue Op;
2550 KnownBits Known;
2551 if (isTruncateOf(DAG, Sel, Op, Known) &&
2553 Sel = Op;
2554 }
2555 }
2556
2557 if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
2558 return SDValue();
2559
2560 SDValue CT = Sel.getOperand(1);
2561 if (!isConstantOrConstantVector(CT, true) &&
2563 return SDValue();
2564
2565 SDValue CF = Sel.getOperand(2);
2566 if (!isConstantOrConstantVector(CF, true) &&
2568 return SDValue();
2569
2570 // Bail out if any constants are opaque because we can't constant fold those.
2571 // The exception is "and" and "or" with either 0 or -1 in which case we can
2572 // propagate non constant operands into select. I.e.:
2573 // and (select Cond, 0, -1), X --> select Cond, 0, X
2574 // or X, (select Cond, -1, 0) --> select Cond, -1, X
2575 bool CanFoldNonConst =
2576 (BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
2579
2580 SDValue CBO = BO->getOperand(SelOpNo ^ 1);
2581 if (!CanFoldNonConst &&
2582 !isConstantOrConstantVector(CBO, true) &&
2584 return SDValue();
2585
2586 SDLoc DL(Sel);
2587 SDValue NewCT, NewCF;
2588 EVT VT = BO->getValueType(0);
2589
2590 if (CanFoldNonConst) {
2591 // If CBO is an opaque constant, we can't rely on getNode to constant fold.
2592 if ((BinOpcode == ISD::AND && isNullOrNullSplat(CT)) ||
2593 (BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CT)))
2594 NewCT = CT;
2595 else
2596 NewCT = CBO;
2597
2598 if ((BinOpcode == ISD::AND && isNullOrNullSplat(CF)) ||
2599 (BinOpcode == ISD::OR && isAllOnesOrAllOnesSplat(CF)))
2600 NewCF = CF;
2601 else
2602 NewCF = CBO;
2603 } else {
2604 // We have a select-of-constants followed by a binary operator with a
2605 // constant. Eliminate the binop by pulling the constant math into the
2606 // select. Example: add (select Cond, CT, CF), CBO --> select Cond, CT +
2607 // CBO, CF + CBO
2608 NewCT = SelOpNo ? DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CBO, CT})
2609 : DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CT, CBO});
2610 if (!NewCT)
2611 return SDValue();
2612
2613 NewCF = SelOpNo ? DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CBO, CF})
2614 : DAG.FoldConstantArithmetic(BinOpcode, DL, VT, {CF, CBO});
2615 if (!NewCF)
2616 return SDValue();
2617 }
2618
2619 return DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF, BO->getFlags());
2620}
2621
2623 SelectionDAG &DAG) {
2624 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2625 "Expecting add or sub");
2626
2627 // Match a constant operand and a zext operand for the math instruction:
2628 // add Z, C
2629 // sub C, Z
2630 bool IsAdd = N->getOpcode() == ISD::ADD;
2631 SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
2632 SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
2633 auto *CN = dyn_cast<ConstantSDNode>(C);
2634 if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
2635 return SDValue();
2636
2637 // Match the zext operand as a setcc of a boolean.
2638 if (Z.getOperand(0).getValueType() != MVT::i1)
2639 return SDValue();
2640
2641 // Match the compare as: setcc (X & 1), 0, eq.
2642 if (!sd_match(Z.getOperand(0), m_SetCC(m_And(m_Value(), m_One()), m_Zero(),
2644 return SDValue();
2645
2646 // We are adding/subtracting a constant and an inverted low bit. Turn that
2647 // into a subtract/add of the low bit with incremented/decremented constant:
2648 // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
2649 // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
2650 EVT VT = C.getValueType();
2651 SDValue LowBit = DAG.getZExtOrTrunc(Z.getOperand(0).getOperand(0), DL, VT);
2652 SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT)
2653 : DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
2654 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
2655}
2656
2657// Attempt to form avgceil(A, B) from (A | B) - ((A ^ B) >> 1)
2658SDValue DAGCombiner::foldSubToAvg(SDNode *N, const SDLoc &DL) {
2659 SDValue N0 = N->getOperand(0);
2660 EVT VT = N0.getValueType();
2661 SDValue A, B;
2662
2663 if ((!LegalOperations || hasOperation(ISD::AVGCEILU, VT)) &&
2665 m_Srl(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
2666 return DAG.getNode(ISD::AVGCEILU, DL, VT, A, B);
2667 }
2668 if ((!LegalOperations || hasOperation(ISD::AVGCEILS, VT)) &&
2670 m_Sra(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
2671 return DAG.getNode(ISD::AVGCEILS, DL, VT, A, B);
2672 }
2673 return SDValue();
2674}
2675
2676/// Try to fold a pointer arithmetic node.
2677/// This needs to be done separately from normal addition, because pointer
2678/// addition is not commutative.
2679SDValue DAGCombiner::visitPTRADD(SDNode *N) {
2680 SDValue N0 = N->getOperand(0);
2681 SDValue N1 = N->getOperand(1);
2682 EVT PtrVT = N0.getValueType();
2683 EVT IntVT = N1.getValueType();
2684 SDLoc DL(N);
2685
2686 // This is already ensured by an assert in SelectionDAG::getNode(). Several
2687 // combines here depend on this assumption.
2688 assert(PtrVT == IntVT &&
2689 "PTRADD with different operand types is not supported");
2690
2691 // fold (ptradd x, 0) -> x
2692 if (isNullConstant(N1))
2693 return N0;
2694
2695 // fold (ptradd 0, x) -> x
2696 if (PtrVT == IntVT && isNullConstant(N0))
2697 return N1;
2698
2699 if (N0.getOpcode() == ISD::PTRADD &&
2700 !reassociationCanBreakAddressingModePattern(ISD::PTRADD, DL, N, N0, N1)) {
2701 SDValue X = N0.getOperand(0);
2702 SDValue Y = N0.getOperand(1);
2703 SDValue Z = N1;
2704 bool N0OneUse = N0.hasOneUse();
2705 bool YIsConstant = DAG.isConstantIntBuildVectorOrConstantInt(Y);
2706 bool ZIsConstant = DAG.isConstantIntBuildVectorOrConstantInt(Z);
2707
2708 // (ptradd (ptradd x, y), z) -> (ptradd x, (add y, z)) if:
2709 // * y is a constant and (ptradd x, y) has one use; or
2710 // * y and z are both constants.
2711 if ((YIsConstant && N0OneUse) || (YIsConstant && ZIsConstant)) {
2712 // If both additions in the original were NUW, the new ones are as well.
2713 SDNodeFlags Flags =
2714 (N->getFlags() & N0->getFlags()) & SDNodeFlags::NoUnsignedWrap;
2715 SDValue Add = DAG.getNode(ISD::ADD, DL, IntVT, {Y, Z}, Flags);
2716 AddToWorklist(Add.getNode());
2717 return DAG.getMemBasePlusOffset(X, Add, DL, Flags);
2718 }
2719 }
2720
2721 // The following combines can turn in-bounds pointer arithmetic out of bounds.
2722 // That is problematic for settings like AArch64's CPA, which checks that
2723 // intermediate results of pointer arithmetic remain in bounds. The target
2724 // therefore needs to opt-in to enable them.
2726 DAG.getMachineFunction().getFunction(), PtrVT))
2727 return SDValue();
2728
2729 if (N0.getOpcode() == ISD::PTRADD && isa<ConstantSDNode>(N1)) {
2730 // Fold (ptradd (ptradd GA, v), c) -> (ptradd (ptradd GA, c) v) with
2731 // global address GA and constant c, such that c can be folded into GA.
2732 // TODO: Support constant vector splats.
2733 SDValue GAValue = N0.getOperand(0);
2734 if (const GlobalAddressSDNode *GA =
2736 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2737 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
2738 // If both additions in the original were NUW, reassociation preserves
2739 // that.
2740 SDNodeFlags Flags =
2741 (N->getFlags() & N0->getFlags()) & SDNodeFlags::NoUnsignedWrap;
2742 SDValue Inner = DAG.getMemBasePlusOffset(GAValue, N1, DL, Flags);
2743 AddToWorklist(Inner.getNode());
2744 return DAG.getMemBasePlusOffset(Inner, N0.getOperand(1), DL, Flags);
2745 }
2746 }
2747 }
2748
2749 if (N1.getOpcode() == ISD::ADD && N1.hasOneUse()) {
2750 // (ptradd x, (add y, z)) -> (ptradd (ptradd x, y), z) if z is a constant,
2751 // y is not, and (add y, z) is used only once.
2752 // (ptradd x, (add y, z)) -> (ptradd (ptradd x, z), y) if y is a constant,
2753 // z is not, and (add y, z) is used only once.
2754 // The goal is to move constant offsets to the outermost ptradd, to create
2755 // more opportunities to fold offsets into memory instructions.
2756 // Together with the another combine above, this also implements
2757 // (ptradd (ptradd x, y), z) -> (ptradd (ptradd x, z), y)).
2758 SDValue X = N0;
2759 SDValue Y = N1.getOperand(0);
2760 SDValue Z = N1.getOperand(1);
2761 bool YIsConstant = DAG.isConstantIntBuildVectorOrConstantInt(Y);
2762 bool ZIsConstant = DAG.isConstantIntBuildVectorOrConstantInt(Z);
2763
2764 // If both additions in the original were NUW, reassociation preserves that.
2765 SDNodeFlags ReassocFlags =
2766 (N->getFlags() & N1->getFlags()) & SDNodeFlags::NoUnsignedWrap;
2767
2768 if (ZIsConstant != YIsConstant) {
2769 if (YIsConstant)
2770 std::swap(Y, Z);
2771 SDValue Inner = DAG.getMemBasePlusOffset(X, Y, DL, ReassocFlags);
2772 AddToWorklist(Inner.getNode());
2773 return DAG.getMemBasePlusOffset(Inner, Z, DL, ReassocFlags);
2774 }
2775 }
2776
2777 // Transform (ptradd a, b) -> (or disjoint a, b) if it is equivalent and if
2778 // that transformation can't block an offset folding at any use of the ptradd.
2779 // This should be done late, after legalization, so that it doesn't block
2780 // other ptradd combines that could enable more offset folding.
2781 if (LegalOperations && DAG.haveNoCommonBitsSet(N0, N1)) {
2782 bool TransformCannotBreakAddrMode = none_of(N->users(), [&](SDNode *User) {
2783 return canFoldInAddressingMode(N, User, DAG, TLI);
2784 });
2785
2786 if (TransformCannotBreakAddrMode)
2787 return DAG.getNode(ISD::OR, DL, PtrVT, N0, N1, SDNodeFlags::Disjoint);
2788 }
2789
2790 return SDValue();
2791}
2792
2793/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
2794/// a shift and add with a different constant.
2796 SelectionDAG &DAG) {
2797 assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
2798 "Expecting add or sub");
2799
2800 // We need a constant operand for the add/sub, and the other operand is a
2801 // logical shift right: add (srl), C or sub C, (srl).
2802 bool IsAdd = N->getOpcode() == ISD::ADD;
2803 SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
2804 SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
2805 if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) ||
2806 ShiftOp.getOpcode() != ISD::SRL)
2807 return SDValue();
2808
2809 // The shift must be of a 'not' value.
2810 SDValue Not = ShiftOp.getOperand(0);
2811 if (!Not.hasOneUse() || !isBitwiseNot(Not))
2812 return SDValue();
2813
2814 // The shift must be moving the sign bit to the least-significant-bit.
2815 EVT VT = ShiftOp.getValueType();
2816 SDValue ShAmt = ShiftOp.getOperand(1);
2817 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
2818 if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
2819 return SDValue();
2820
2821 // Eliminate the 'not' by adjusting the shift and add/sub constant:
2822 // add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
2823 // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
2824 if (SDValue NewC = DAG.FoldConstantArithmetic(
2825 IsAdd ? ISD::ADD : ISD::SUB, DL, VT,
2826 {ConstantOp, DAG.getConstant(1, DL, VT)})) {
2827 SDValue NewShift = DAG.getNode(IsAdd ? ISD::SRA : ISD::SRL, DL, VT,
2828 Not.getOperand(0), ShAmt);
2829 return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC);
2830 }
2831
2832 return SDValue();
2833}
2834
2835static bool
2837 return (isBitwiseNot(Op0) && Op0.getOperand(0) == Op1) ||
2838 (isBitwiseNot(Op1) && Op1.getOperand(0) == Op0);
2839}
2840
2841/// Try to fold a node that behaves like an ADD (note that N isn't necessarily
2842/// an ISD::ADD here, it could for example be an ISD::OR if we know that there
2843/// are no common bits set in the operands).
2844SDValue DAGCombiner::visitADDLike(SDNode *N) {
2845 SDValue N0 = N->getOperand(0);
2846 SDValue N1 = N->getOperand(1);
2847 EVT VT = N0.getValueType();
2848 SDLoc DL(N);
2849
2850 // fold (add x, undef) -> undef
2851 if (N0.isUndef())
2852 return N0;
2853 if (N1.isUndef())
2854 return N1;
2855
2856 // fold (add c1, c2) -> c1+c2
2857 if (SDValue C = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}))
2858 return C;
2859
2860 // canonicalize constant to RHS
2863 return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
2864
2865 if (areBitwiseNotOfEachother(N0, N1))
2866 return DAG.getConstant(APInt::getAllOnes(VT.getScalarSizeInBits()), DL, VT);
2867
2868 // fold vector ops
2869 if (VT.isVector()) {
2870 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
2871 return FoldedVOp;
2872
2873 // fold (add x, 0) -> x, vector edition
2875 return N0;
2876 }
2877
2878 // fold (add x, 0) -> x
2879 if (isNullConstant(N1))
2880 return N0;
2881
2882 if (N0.getOpcode() == ISD::SUB) {
2883 SDValue N00 = N0.getOperand(0);
2884 SDValue N01 = N0.getOperand(1);
2885
2886 // fold ((A-c1)+c2) -> (A+(c2-c1))
2887 if (SDValue Sub = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N01}))
2888 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
2889
2890 // fold ((c1-A)+c2) -> (c1+c2)-A
2891 if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N00}))
2892 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
2893 }
2894
2895 // add (sext i1 X), 1 -> zext (not i1 X)
2896 // We don't transform this pattern:
2897 // add (zext i1 X), -1 -> sext (not i1 X)
2898 // because most (?) targets generate better code for the zext form.
2899 if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
2900 isOneOrOneSplat(N1)) {
2901 SDValue X = N0.getOperand(0);
2902 if ((!LegalOperations ||
2903 (TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
2905 X.getScalarValueSizeInBits() == 1) {
2906 SDValue Not = DAG.getNOT(DL, X, X.getValueType());
2907 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
2908 }
2909 }
2910
2911 // Fold (add (or x, c0), c1) -> (add x, (c0 + c1))
2912 // iff (or x, c0) is equivalent to (add x, c0).
2913 // Fold (add (xor x, c0), c1) -> (add x, (c0 + c1))
2914 // iff (xor x, c0) is equivalent to (add x, c0).
2915 if (DAG.isADDLike(N0)) {
2916 SDValue N01 = N0.getOperand(1);
2917 if (SDValue Add = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N01}))
2918 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add);
2919 }
2920
2921 if (SDValue NewSel = foldBinOpIntoSelect(N))
2922 return NewSel;
2923
2924 // reassociate add
2925 if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N, N0, N1)) {
2926 if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
2927 return RADD;
2928
2929 // Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is
2930 // equivalent to (add x, c).
2931 // Reassociate (add (xor x, c), y) -> (add add(x, y), c)) if (xor x, c) is
2932 // equivalent to (add x, c).
2933 // Do this optimization only when adding c does not introduce instructions
2934 // for adding carries.
2935 auto ReassociateAddOr = [&](SDValue N0, SDValue N1) {
2936 if (DAG.isADDLike(N0) && N0.hasOneUse() &&
2937 isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
2938 // If N0's type does not split or is a sign mask, it does not introduce
2939 // add carry.
2940 auto TyActn = TLI.getTypeAction(*DAG.getContext(), N0.getValueType());
2941 bool NoAddCarry = TyActn == TargetLoweringBase::TypeLegal ||
2944 if (NoAddCarry)
2945 return DAG.getNode(
2946 ISD::ADD, DL, VT,
2947 DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
2948 N0.getOperand(1));
2949 }
2950 return SDValue();
2951 };
2952 if (SDValue Add = ReassociateAddOr(N0, N1))
2953 return Add;
2954 if (SDValue Add = ReassociateAddOr(N1, N0))
2955 return Add;
2956
2957 // Fold add(vecreduce(x), vecreduce(y)) -> vecreduce(add(x, y))
2958 if (SDValue SD =
2959 reassociateReduction(ISD::VECREDUCE_ADD, ISD::ADD, DL, VT, N0, N1))
2960 return SD;
2961 }
2962
2963 SDValue A, B, C, D;
2964
2965 // fold ((0-A) + B) -> B-A
2966 if (sd_match(N0, m_Neg(m_Value(A))))
2967 return DAG.getNode(ISD::SUB, DL, VT, N1, A);
2968
2969 // fold (A + (0-B)) -> A-B
2970 if (sd_match(N1, m_Neg(m_Value(B))))
2971 return DAG.getNode(ISD::SUB, DL, VT, N0, B);
2972
2973 // fold (A+(B-A)) -> B
2974 if (sd_match(N1, m_Sub(m_Value(B), m_Specific(N0))))
2975 return B;
2976
2977 // fold ((B-A)+A) -> B
2978 if (sd_match(N0, m_Sub(m_Value(B), m_Specific(N1))))
2979 return B;
2980
2981 // fold ((A-B)+(C-A)) -> (C-B)
2982 if (sd_match(N0, m_Sub(m_Value(A), m_Value(B))) &&
2984 return DAG.getNode(ISD::SUB, DL, VT, C, B);
2985
2986 // fold ((A-B)+(B-C)) -> (A-C)
2987 if (sd_match(N0, m_Sub(m_Value(A), m_Value(B))) &&
2989 return DAG.getNode(ISD::SUB, DL, VT, A, C);
2990
2991 // fold (A+(B-(A+C))) to (B-C)
2992 // fold (A+(B-(C+A))) to (B-C)
2993 if (sd_match(N1, m_Sub(m_Value(B), m_Add(m_Specific(N0), m_Value(C)))))
2994 return DAG.getNode(ISD::SUB, DL, VT, B, C);
2995
2996 // fold (A+((B-A)+or-C)) to (B+or-C)
2997 if (sd_match(N1,
2999 m_Sub(m_Sub(m_Value(B), m_Specific(N0)), m_Value(C)))))
3000 return DAG.getNode(N1.getOpcode(), DL, VT, B, C);
3001
3002 // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
3003 if (sd_match(N0, m_OneUse(m_Sub(m_Value(A), m_Value(B)))) &&
3004 sd_match(N1, m_OneUse(m_Sub(m_Value(C), m_Value(D)))) &&
3006 return DAG.getNode(ISD::SUB, DL, VT,
3007 DAG.getNode(ISD::ADD, SDLoc(N0), VT, A, C),
3008 DAG.getNode(ISD::ADD, SDLoc(N1), VT, B, D));
3009
3010 // fold (add (umax X, C), -C) --> (usubsat X, C)
3011 if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
3012 auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
3013 return (!Max && !Op) ||
3014 (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
3015 };
3016 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
3017 /*AllowUndefs*/ true))
3018 return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
3019 N0.getOperand(1));
3020 }
3021
3023 return SDValue(N, 0);
3024
3025 if (isOneOrOneSplat(N1)) {
3026 // fold (add (xor a, -1), 1) -> (sub 0, a)
3027 if (isBitwiseNot(N0))
3028 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
3029 N0.getOperand(0));
3030
3031 // fold (add (add (xor a, -1), b), 1) -> (sub b, a)
3032 if (N0.getOpcode() == ISD::ADD) {
3033 SDValue A, Xor;
3034
3035 if (isBitwiseNot(N0.getOperand(0))) {
3036 A = N0.getOperand(1);
3037 Xor = N0.getOperand(0);
3038 } else if (isBitwiseNot(N0.getOperand(1))) {
3039 A = N0.getOperand(0);
3040 Xor = N0.getOperand(1);
3041 }
3042
3043 if (Xor)
3044 return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
3045 }
3046
3047 // Look for:
3048 // add (add x, y), 1
3049 // And if the target does not like this form then turn into:
3050 // sub y, (xor x, -1)
3051 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD &&
3052 N0.hasOneUse() &&
3053 // Limit this to after legalization if the add has wrap flags
3054 (Level >= AfterLegalizeDAG || (!N->getFlags().hasNoUnsignedWrap() &&
3055 !N->getFlags().hasNoSignedWrap()))) {
3056 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
3057 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
3058 }
3059 }
3060
3061 // (x - y) + -1 -> add (xor y, -1), x
3062 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
3063 isAllOnesOrAllOnesSplat(N1, /*AllowUndefs=*/true)) {
3064 SDValue Not = DAG.getNOT(DL, N0.getOperand(1), VT);
3065 return DAG.getNode(ISD::ADD, DL, VT, Not, N0.getOperand(0));
3066 }
3067
3068 // Fold add(mul(add(A, CA), CM), CB) -> add(mul(A, CM), CM*CA+CB).
3069 // This can help if the inner add has multiple uses.
3070 APInt CM, CA;
3071 if (ConstantSDNode *CB = dyn_cast<ConstantSDNode>(N1)) {
3072 if (VT.getScalarSizeInBits() <= 64) {
3074 m_ConstInt(CM)))) &&
3076 (CA * CM + CB->getAPIntValue()).getSExtValue())) {
3077 SDNodeFlags Flags;
3078 // If all the inputs are nuw, the outputs can be nuw. If all the input
3079 // are _also_ nsw the outputs can be too.
3080 if (N->getFlags().hasNoUnsignedWrap() &&
3081 N0->getFlags().hasNoUnsignedWrap() &&
3084 if (N->getFlags().hasNoSignedWrap() &&
3085 N0->getFlags().hasNoSignedWrap() &&
3088 }
3089 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N1), VT, A,
3090 DAG.getConstant(CM, DL, VT), Flags);
3091 return DAG.getNode(
3092 ISD::ADD, DL, VT, Mul,
3093 DAG.getConstant(CA * CM + CB->getAPIntValue(), DL, VT), Flags);
3094 }
3095 // Also look in case there is an intermediate add.
3096 if (sd_match(N0, m_OneUse(m_Add(
3098 m_ConstInt(CM))),
3099 m_Value(B)))) &&
3101 (CA * CM + CB->getAPIntValue()).getSExtValue())) {
3102 SDNodeFlags Flags;
3103 // If all the inputs are nuw, the outputs can be nuw. If all the input
3104 // are _also_ nsw the outputs can be too.
3105 SDValue OMul =
3106 N0.getOperand(0) == B ? N0.getOperand(1) : N0.getOperand(0);
3107 if (N->getFlags().hasNoUnsignedWrap() &&
3108 N0->getFlags().hasNoUnsignedWrap() &&
3109 OMul->getFlags().hasNoUnsignedWrap() &&
3110 OMul.getOperand(0)->getFlags().hasNoUnsignedWrap()) {
3112 if (N->getFlags().hasNoSignedWrap() &&
3113 N0->getFlags().hasNoSignedWrap() &&
3114 OMul->getFlags().hasNoSignedWrap() &&
3115 OMul.getOperand(0)->getFlags().hasNoSignedWrap())
3117 }
3118 SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N1), VT, A,
3119 DAG.getConstant(CM, DL, VT), Flags);
3120 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N1), VT, Mul, B, Flags);
3121 return DAG.getNode(
3122 ISD::ADD, DL, VT, Add,
3123 DAG.getConstant(CA * CM + CB->getAPIntValue(), DL, VT), Flags);
3124 }
3125 }
3126 }
3127
3128 if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
3129 return Combined;
3130
3131 if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
3132 return Combined;
3133
3134 return SDValue();
3135}
3136
3137// Attempt to form avgfloor(A, B) from (A & B) + ((A ^ B) >> 1)
3138SDValue DAGCombiner::foldAddToAvg(SDNode *N, const SDLoc &DL) {
3139 SDValue N0 = N->getOperand(0);
3140 EVT VT = N0.getValueType();
3141 SDValue A, B;
3142
3143 if ((!LegalOperations || hasOperation(ISD::AVGFLOORU, VT)) &&
3145 m_Srl(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
3146 return DAG.getNode(ISD::AVGFLOORU, DL, VT, A, B);
3147 }
3148 if ((!LegalOperations || hasOperation(ISD::AVGFLOORS, VT)) &&
3150 m_Sra(m_Xor(m_Deferred(A), m_Deferred(B)), m_One())))) {
3151 return DAG.getNode(ISD::AVGFLOORS, DL, VT, A, B);
3152 }
3153
3154 return SDValue();
3155}
3156
3157SDValue DAGCombiner::visitADD(SDNode *N) {
3158 SDValue N0 = N->getOperand(0);
3159 SDValue N1 = N->getOperand(1);
3160 EVT VT = N0.getValueType();
3161 SDLoc DL(N);
3162
3163 if (SDValue Combined = visitADDLike(N))
3164 return Combined;
3165
3166 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DL, DAG))
3167 return V;
3168
3169 if (SDValue V = foldAddSubOfSignBit(N, DL, DAG))
3170 return V;
3171
3172 if (SDValue V = MatchRotate(N0, N1, SDLoc(N), /*FromAdd=*/true))
3173 return V;
3174
3175 // Try to match AVGFLOOR fixedwidth pattern
3176 if (SDValue V = foldAddToAvg(N, DL))
3177 return V;
3178
3179 // fold (a+b) -> (a|b) iff a and b share no bits.
3180 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
3181 DAG.haveNoCommonBitsSet(N0, N1))
3182 return DAG.getNode(ISD::OR, DL, VT, N0, N1, SDNodeFlags::Disjoint);
3183
3184 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
3185 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) {
3186 const APInt &C0 = N0->getConstantOperandAPInt(0);
3187 const APInt &C1 = N1->getConstantOperandAPInt(0);
3188 return DAG.getVScale(DL, VT, C0 + C1);
3189 }
3190
3191 // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
3192 if (N0.getOpcode() == ISD::ADD &&
3193 N0.getOperand(1).getOpcode() == ISD::VSCALE &&
3194 N1.getOpcode() == ISD::VSCALE) {
3195 const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0);
3196 const APInt &VS1 = N1->getConstantOperandAPInt(0);
3197 SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1);
3198 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS);
3199 }
3200
3201 // Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2))
3202 if (N0.getOpcode() == ISD::STEP_VECTOR &&
3203 N1.getOpcode() == ISD::STEP_VECTOR) {
3204 const APInt &C0 = N0->getConstantOperandAPInt(0);
3205 const APInt &C1 = N1->getConstantOperandAPInt(0);
3206 APInt NewStep = C0 + C1;
3207 return DAG.getStepVector(DL, VT, NewStep);
3208 }
3209
3210 // Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2)
3211 if (N0.getOpcode() == ISD::ADD &&
3213 N1.getOpcode() == ISD::STEP_VECTOR) {
3214 const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0);
3215 const APInt &SV1 = N1->getConstantOperandAPInt(0);
3216 APInt NewStep = SV0 + SV1;
3217 SDValue SV = DAG.getStepVector(DL, VT, NewStep);
3218 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV);
3219 }
3220
3221 return SDValue();
3222}
3223
3224SDValue DAGCombiner::visitADDSAT(SDNode *N) {
3225 unsigned Opcode = N->getOpcode();
3226 SDValue N0 = N->getOperand(0);
3227 SDValue N1 = N->getOperand(1);
3228 EVT VT = N0.getValueType();
3229 bool IsSigned = Opcode == ISD::SADDSAT;
3230 SDLoc DL(N);
3231
3232 // fold (add_sat x, undef) -> -1
3233 if (N0.isUndef() || N1.isUndef())
3234 return DAG.getAllOnesConstant(DL, VT);
3235
3236 // fold (add_sat c1, c2) -> c3
3237 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
3238 return C;
3239
3240 // canonicalize constant to RHS
3243 return DAG.getNode(Opcode, DL, VT, N1, N0);
3244
3245 // fold vector ops
3246 if (VT.isVector()) {
3247 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
3248 return FoldedVOp;
3249
3250 // fold (add_sat x, 0) -> x, vector edition
3252 return N0;
3253 }
3254
3255 // fold (add_sat x, 0) -> x
3256 if (isNullConstant(N1))
3257 return N0;
3258
3259 // If it cannot overflow, transform into an add.
3260 if (DAG.willNotOverflowAdd(IsSigned, N0, N1))
3261 return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
3262
3263 return SDValue();
3264}
3265
3267 bool ForceCarryReconstruction = false) {
3268 bool Masked = false;
3269
3270 // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
3271 while (true) {
3272 if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
3273 V = V.getOperand(0);
3274 continue;
3275 }
3276
3277 if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
3278 if (ForceCarryReconstruction)
3279 return V;
3280
3281 Masked = true;
3282 V = V.getOperand(0);
3283 continue;
3284 }
3285
3286 if (ForceCarryReconstruction && V.getValueType() == MVT::i1)
3287 return V;
3288
3289 break;
3290 }
3291
3292 // If this is not a carry, return.
3293 if (V.getResNo() != 1)
3294 return SDValue();
3295
3296 if (V.getOpcode() != ISD::UADDO_CARRY && V.getOpcode() != ISD::USUBO_CARRY &&
3297 V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
3298 return SDValue();
3299
3300 EVT VT = V->getValueType(0);
3301 if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
3302 return SDValue();
3303
3304 // If the result is masked, then no matter what kind of bool it is we can
3305 // return. If it isn't, then we need to make sure the bool type is either 0 or
3306 // 1 and not other values.
3307 if (Masked ||
3308 TLI.getBooleanContents(V.getValueType()) ==
3310 return V;
3311
3312 return SDValue();
3313}
3314
3315/// Given the operands of an add/sub operation, see if the 2nd operand is a
3316/// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
3317/// the opcode and bypass the mask operation.
3318static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
3319 SelectionDAG &DAG, const SDLoc &DL) {
3320 if (N1.getOpcode() == ISD::ZERO_EXTEND)
3321 N1 = N1.getOperand(0);
3322
3323 if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
3324 return SDValue();
3325
3326 EVT VT = N0.getValueType();
3327 SDValue N10 = N1.getOperand(0);
3328 if (N10.getValueType() != VT && N10.getOpcode() == ISD::TRUNCATE)
3329 N10 = N10.getOperand(0);
3330
3331 if (N10.getValueType() != VT)
3332 return SDValue();
3333
3334 if (DAG.ComputeNumSignBits(N10) != VT.getScalarSizeInBits())
3335 return SDValue();
3336
3337 // add N0, (and (AssertSext X, i1), 1) --> sub N0, X
3338 // sub N0, (and (AssertSext X, i1), 1) --> add N0, X
3339 return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N10);
3340}
3341
3342/// Helper for doing combines based on N0 and N1 being added to each other.
3343SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
3344 SDNode *LocReference) {
3345 EVT VT = N0.getValueType();
3346 SDLoc DL(LocReference);
3347
3348 // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
3349 SDValue Y, N;
3350 if (sd_match(N1, m_Shl(m_Neg(m_Value(Y)), m_Value(N))))
3351 return DAG.getNode(ISD::SUB, DL, VT, N0,
3352 DAG.getNode(ISD::SHL, DL, VT, Y, N));
3353
3354 if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
3355 return V;
3356
3357 // Look for:
3358 // add (add x, 1), y
3359 // And if the target does not like this form then turn into:
3360 // sub y, (xor x, -1)
3361 if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.getOpcode() == ISD::ADD &&
3362 N0.hasOneUse() && isOneOrOneSplat(N0.getOperand(1)) &&
3363 // Limit this to after legalization if the add has wrap flags
3364 (Level >= AfterLegalizeDAG || (!N0->getFlags().hasNoUnsignedWrap() &&
3365 !N0->getFlags().hasNoSignedWrap()))) {
3366 SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
3367 return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
3368 }
3369
3370 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse()) {
3371 // Hoist one-use subtraction by non-opaque constant:
3372 // (x - C) + y -> (x + y) - C
3373 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
3374 if (isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
3375 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
3376 return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
3377 }
3378 // Hoist one-use subtraction from non-opaque constant:
3379 // (C - x) + y -> (y - x) + C
3380 if (isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
3381 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
3382 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
3383 }
3384 }
3385
3386 // add (mul x, C), x -> mul x, C+1
3387 if (N0.getOpcode() == ISD::MUL && N0.getOperand(0) == N1 &&
3388 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true) &&
3389 N0.hasOneUse()) {
3390 SDValue NewC = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
3391 DAG.getConstant(1, DL, VT));
3392 return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), NewC);
3393 }
3394
3395 // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
3396 // rather than 'add 0/-1' (the zext should get folded).
3397 // add (sext i1 Y), X --> sub X, (zext i1 Y)
3398 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
3399 N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
3401 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
3402 return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
3403 }
3404
3405 // add X, (sextinreg Y i1) -> sub X, (and Y 1)
3406 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
3407 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
3408 if (TN->getVT() == MVT::i1) {
3409 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
3410 DAG.getConstant(1, DL, VT));
3411 return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
3412 }
3413 }
3414
3415 // (add X, (uaddo_carry Y, 0, Carry)) -> (uaddo_carry X, Y, Carry)
3416 if (N1.getOpcode() == ISD::UADDO_CARRY && isNullConstant(N1.getOperand(1)) &&
3417 N1.getResNo() == 0)
3418 return DAG.getNode(ISD::UADDO_CARRY, DL, N1->getVTList(),
3419 N0, N1.getOperand(0), N1.getOperand(2));
3420
3421 // (add X, Carry) -> (uaddo_carry X, 0, Carry)
3423 if (SDValue Carry = getAsCarry(TLI, N1))
3424 return DAG.getNode(ISD::UADDO_CARRY, DL,
3425 DAG.getVTList(VT, Carry.getValueType()), N0,
3426 DAG.getConstant(0, DL, VT), Carry);
3427
3428 return SDValue();
3429}
3430
3431SDValue DAGCombiner::visitADDC(SDNode *N) {
3432 SDValue N0 = N->getOperand(0);
3433 SDValue N1 = N->getOperand(1);
3434 EVT VT = N0.getValueType();
3435 SDLoc DL(N);
3436
3437 // If the flag result is dead, turn this into an ADD.
3438 if (!N->hasAnyUseOfValue(1))
3439 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
3440 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3441
3442 // canonicalize constant to RHS.
3443 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3444 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3445 if (N0C && !N1C)
3446 return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
3447
3448 // fold (addc x, 0) -> x + no carry out
3449 if (isNullConstant(N1))
3450 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
3451 DL, MVT::Glue));
3452
3453 // If it cannot overflow, transform into an add.
3455 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
3456 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
3457
3458 return SDValue();
3459}
3460
3461/**
3462 * Flips a boolean if it is cheaper to compute. If the Force parameters is set,
3463 * then the flip also occurs if computing the inverse is the same cost.
3464 * This function returns an empty SDValue in case it cannot flip the boolean
3465 * without increasing the cost of the computation. If you want to flip a boolean
3466 * no matter what, use DAG.getLogicalNOT.
3467 */
3469 const TargetLowering &TLI,
3470 bool Force) {
3471 if (Force && isa<ConstantSDNode>(V))
3472 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
3473
3474 if (V.getOpcode() != ISD::XOR)
3475 return SDValue();
3476
3477 if (DAG.isBoolConstant(V.getOperand(1)) == true)
3478 return V.getOperand(0);
3479 if (Force && isConstOrConstSplat(V.getOperand(1), false))
3480 return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
3481 return SDValue();
3482}
3483
3484SDValue DAGCombiner::visitADDO(SDNode *N) {
3485 SDValue N0 = N->getOperand(0);
3486 SDValue N1 = N->getOperand(1);
3487 EVT VT = N0.getValueType();
3488 bool IsSigned = (ISD::SADDO == N->getOpcode());
3489
3490 EVT CarryVT = N->getValueType(1);
3491 SDLoc DL(N);
3492
3493 // If the flag result is dead, turn this into an ADD.
3494 if (!N->hasAnyUseOfValue(1))
3495 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
3496 DAG.getUNDEF(CarryVT));
3497
3498 // canonicalize constant to RHS.
3501 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
3502
3503 // fold (addo x, 0) -> x + no carry out
3504 if (isNullOrNullSplat(N1))
3505 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
3506
3507 // If it cannot overflow, transform into an add.
3508 if (DAG.willNotOverflowAdd(IsSigned, N0, N1))
3509 return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
3510 DAG.getConstant(0, DL, CarryVT));
3511
3512 if (IsSigned) {
3513 // fold (saddo (xor a, -1), 1) -> (ssub 0, a).
3514 if (isBitwiseNot(N0) && isOneOrOneSplat(N1))
3515 return DAG.getNode(ISD::SSUBO, DL, N->getVTList(),
3516 DAG.getConstant(0, DL, VT), N0.getOperand(0));
3517 } else {
3518 // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
3519 if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
3520 SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
3521 DAG.getConstant(0, DL, VT), N0.getOperand(0));
3522 return CombineTo(
3523 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
3524 }
3525
3526 if (SDValue Combined = visitUADDOLike(N0, N1, N))
3527 return Combined;
3528
3529 if (SDValue Combined = visitUADDOLike(N1, N0, N))
3530 return Combined;
3531 }
3532
3533 return SDValue();
3534}
3535
3536SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
3537 EVT VT = N0.getValueType();
3538 if (VT.isVector())
3539 return SDValue();
3540
3541 // (uaddo X, (uaddo_carry Y, 0, Carry)) -> (uaddo_carry X, Y, Carry)
3542 // If Y + 1 cannot overflow.
3543 if (N1.getOpcode() == ISD::UADDO_CARRY && isNullConstant(N1.getOperand(1))) {
3544 SDValue Y = N1.getOperand(0);
3545 SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
3547 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(), N0, Y,
3548 N1.getOperand(2));
3549 }
3550
3551 // (uaddo X, Carry) -> (uaddo_carry X, 0, Carry)
3553 if (SDValue Carry = getAsCarry(TLI, N1))
3554 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(), N0,
3555 DAG.getConstant(0, SDLoc(N), VT), Carry);
3556
3557 return SDValue();
3558}
3559
3560SDValue DAGCombiner::visitADDE(SDNode *N) {
3561 SDValue N0 = N->getOperand(0);
3562 SDValue N1 = N->getOperand(1);
3563 SDValue CarryIn = N->getOperand(2);
3564
3565 // canonicalize constant to RHS
3566 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3567 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3568 if (N0C && !N1C)
3569 return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
3570 N1, N0, CarryIn);
3571
3572 // fold (adde x, y, false) -> (addc x, y)
3573 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
3574 return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
3575
3576 return SDValue();
3577}
3578
3579SDValue DAGCombiner::visitUADDO_CARRY(SDNode *N) {
3580 SDValue N0 = N->getOperand(0);
3581 SDValue N1 = N->getOperand(1);
3582 SDValue CarryIn = N->getOperand(2);
3583 SDLoc DL(N);
3584
3585 // canonicalize constant to RHS
3586 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3587 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3588 if (N0C && !N1C)
3589 return DAG.getNode(ISD::UADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn);
3590
3591 // fold (uaddo_carry x, y, false) -> (uaddo x, y)
3592 if (isNullConstant(CarryIn)) {
3593 if (!LegalOperations ||
3594 TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
3595 return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
3596 }
3597
3598 // fold (uaddo_carry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
3599 if (isNullConstant(N0) && isNullConstant(N1)) {
3600 EVT VT = N0.getValueType();
3601 EVT CarryVT = CarryIn.getValueType();
3602 SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
3603 AddToWorklist(CarryExt.getNode());
3604 return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
3605 DAG.getConstant(1, DL, VT)),
3606 DAG.getConstant(0, DL, CarryVT));
3607 }
3608
3609 if (SDValue Combined = visitUADDO_CARRYLike(N0, N1, CarryIn, N))
3610 return Combined;
3611
3612 if (SDValue Combined = visitUADDO_CARRYLike(N1, N0, CarryIn, N))
3613 return Combined;
3614
3615 // We want to avoid useless duplication.
3616 // TODO: This is done automatically for binary operations. As UADDO_CARRY is
3617 // not a binary operation, this is not really possible to leverage this
3618 // existing mechanism for it. However, if more operations require the same
3619 // deduplication logic, then it may be worth generalize.
3620 SDValue Ops[] = {N1, N0, CarryIn};
3621 SDNode *CSENode =
3622 DAG.getNodeIfExists(ISD::UADDO_CARRY, N->getVTList(), Ops, N->getFlags());
3623 if (CSENode)
3624 return SDValue(CSENode, 0);
3625
3626 return SDValue();
3627}
3628
3629/**
3630 * If we are facing some sort of diamond carry propagation pattern try to
3631 * break it up to generate something like:
3632 * (uaddo_carry X, 0, (uaddo_carry A, B, Z):Carry)
3633 *
3634 * The end result is usually an increase in operation required, but because the
3635 * carry is now linearized, other transforms can kick in and optimize the DAG.
3636 *
3637 * Patterns typically look something like
3638 * (uaddo A, B)
3639 * / \
3640 * Carry Sum
3641 * | \
3642 * | (uaddo_carry *, 0, Z)
3643 * | /
3644 * \ Carry
3645 * | /
3646 * (uaddo_carry X, *, *)
3647 *
3648 * But numerous variation exist. Our goal is to identify A, B, X and Z and
3649 * produce a combine with a single path for carry propagation.
3650 */
3652 SelectionDAG &DAG, SDValue X,
3653 SDValue Carry0, SDValue Carry1,
3654 SDNode *N) {
3655 if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
3656 return SDValue();
3657 if (Carry1.getOpcode() != ISD::UADDO)
3658 return SDValue();
3659
3660 SDValue Z;
3661
3662 /**
3663 * First look for a suitable Z. It will present itself in the form of
3664 * (uaddo_carry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
3665 */
3666 if (Carry0.getOpcode() == ISD::UADDO_CARRY &&
3667 isNullConstant(Carry0.getOperand(1))) {
3668 Z = Carry0.getOperand(2);
3669 } else if (Carry0.getOpcode() == ISD::UADDO &&
3670 isOneConstant(Carry0.getOperand(1))) {
3671 EVT VT = Carry0->getValueType(1);
3672 Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
3673 } else {
3674 // We couldn't find a suitable Z.
3675 return SDValue();
3676 }
3677
3678
3679 auto cancelDiamond = [&](SDValue A,SDValue B) {
3680 SDLoc DL(N);
3681 SDValue NewY =
3682 DAG.getNode(ISD::UADDO_CARRY, DL, Carry0->getVTList(), A, B, Z);
3683 Combiner.AddToWorklist(NewY.getNode());
3684 return DAG.getNode(ISD::UADDO_CARRY, DL, N->getVTList(), X,
3685 DAG.getConstant(0, DL, X.getValueType()),
3686 NewY.getValue(1));
3687 };
3688
3689 /**
3690 * (uaddo A, B)
3691 * |
3692 * Sum
3693 * |
3694 * (uaddo_carry *, 0, Z)
3695 */
3696 if (Carry0.getOperand(0) == Carry1.getValue(0)) {
3697 return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
3698 }
3699
3700 /**
3701 * (uaddo_carry A, 0, Z)
3702 * |
3703 * Sum
3704 * |
3705 * (uaddo *, B)
3706 */
3707 if (Carry1.getOperand(0) == Carry0.getValue(0)) {
3708 return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
3709 }
3710
3711 if (Carry1.getOperand(1) == Carry0.getValue(0)) {
3712 return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
3713 }
3714
3715 return SDValue();
3716}
3717
3718// If we are facing some sort of diamond carry/borrow in/out pattern try to
3719// match patterns like:
3720//
3721// (uaddo A, B) CarryIn
3722// | \ |
3723// | \ |
3724// PartialSum PartialCarryOutX /
3725// | | /
3726// | ____|____________/
3727// | / |
3728// (uaddo *, *) \________
3729// | \ \
3730// | \ |
3731// | PartialCarryOutY |
3732// | \ |
3733// | \ /
3734// AddCarrySum | ______/
3735// | /
3736// CarryOut = (or *, *)
3737//
3738// And generate UADDO_CARRY (or USUBO_CARRY) with two result values:
3739//
3740// {AddCarrySum, CarryOut} = (uaddo_carry A, B, CarryIn)
3741//
3742// Our goal is to identify A, B, and CarryIn and produce UADDO_CARRY/USUBO_CARRY
3743// with a single path for carry/borrow out propagation.
3745 SDValue N0, SDValue N1, SDNode *N) {
3746 SDValue Carry0 = getAsCarry(TLI, N0);
3747 if (!Carry0)
3748 return SDValue();
3749 SDValue Carry1 = getAsCarry(TLI, N1);
3750 if (!Carry1)
3751 return SDValue();
3752
3753 unsigned Opcode = Carry0.getOpcode();
3754 if (Opcode != Carry1.getOpcode())
3755 return SDValue();
3756 if (Opcode != ISD::UADDO && Opcode != ISD::USUBO)
3757 return SDValue();
3758 // Guarantee identical type of CarryOut
3759 EVT CarryOutType = N->getValueType(0);
3760 if (CarryOutType != Carry0.getValue(1).getValueType() ||
3761 CarryOutType != Carry1.getValue(1).getValueType())
3762 return SDValue();
3763
3764 // Canonicalize the add/sub of A and B (the top node in the above ASCII art)
3765 // as Carry0 and the add/sub of the carry in as Carry1 (the middle node).
3766 if (Carry1.getNode()->isOperandOf(Carry0.getNode()))
3767 std::swap(Carry0, Carry1);
3768
3769 // Check if nodes are connected in expected way.
3770 if (Carry1.getOperand(0) != Carry0.getValue(0) &&
3771 Carry1.getOperand(1) != Carry0.getValue(0))
3772 return SDValue();
3773
3774 // The carry in value must be on the righthand side for subtraction.
3775 unsigned CarryInOperandNum =
3776 Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0;
3777 if (Opcode == ISD::USUBO && CarryInOperandNum != 1)
3778 return SDValue();
3779 SDValue CarryIn = Carry1.getOperand(CarryInOperandNum);
3780
3781 unsigned NewOp = Opcode == ISD::UADDO ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
3782 if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType()))
3783 return SDValue();
3784
3785 // Verify that the carry/borrow in is plausibly a carry/borrow bit.
3786 CarryIn = getAsCarry(TLI, CarryIn, true);
3787 if (!CarryIn)
3788 return SDValue();
3789
3790 SDLoc DL(N);
3791 CarryIn = DAG.getBoolExtOrTrunc(CarryIn, DL, Carry1->getValueType(1),
3792 Carry1->getValueType(0));
3793 SDValue Merged =
3794 DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0),
3795 Carry0.getOperand(1), CarryIn);
3796
3797 // Please note that because we have proven that the result of the UADDO/USUBO
3798 // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
3799 // therefore prove that if the first UADDO/USUBO overflows, the second
3800 // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
3801 // maximum value.
3802 //
3803 // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
3804 // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
3805 //
3806 // This is important because it means that OR and XOR can be used to merge
3807 // carry flags; and that AND can return a constant zero.
3808 //
3809 // TODO: match other operations that can merge flags (ADD, etc)
3810 DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0));
3811 if (N->getOpcode() == ISD::AND)
3812 return DAG.getConstant(0, DL, CarryOutType);
3813 return Merged.getValue(1);
3814}
3815
3816SDValue DAGCombiner::visitUADDO_CARRYLike(SDValue N0, SDValue N1,
3817 SDValue CarryIn, SDNode *N) {
3818 // fold (uaddo_carry (xor a, -1), b, c) -> (usubo_carry b, a, !c) and flip
3819 // carry.
3820 if (isBitwiseNot(N0))
3821 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
3822 SDLoc DL(N);
3823 SDValue Sub = DAG.getNode(ISD::USUBO_CARRY, DL, N->getVTList(), N1,
3824 N0.getOperand(0), NotC);
3825 return CombineTo(
3826 N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
3827 }
3828
3829 // Iff the flag result is dead:
3830 // (uaddo_carry (add|uaddo X, Y), 0, Carry) -> (uaddo_carry X, Y, Carry)
3831 // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
3832 // or the dependency between the instructions.
3833 if ((N0.getOpcode() == ISD::ADD ||
3834 (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
3835 N0.getValue(1) != CarryIn)) &&
3836 isNullConstant(N1) && !N->hasAnyUseOfValue(1))
3837 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), N->getVTList(),
3838 N0.getOperand(0), N0.getOperand(1), CarryIn);
3839
3840 /**
3841 * When one of the uaddo_carry argument is itself a carry, we may be facing
3842 * a diamond carry propagation. In which case we try to transform the DAG
3843 * to ensure linear carry propagation if that is possible.
3844 */
3845 if (auto Y = getAsCarry(TLI, N1)) {
3846 // Because both are carries, Y and Z can be swapped.
3847 if (auto R = combineUADDO_CARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
3848 return R;
3849 if (auto R = combineUADDO_CARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
3850 return R;
3851 }
3852
3853 return SDValue();
3854}
3855
3856SDValue DAGCombiner::visitSADDO_CARRYLike(SDValue N0, SDValue N1,
3857 SDValue CarryIn, SDNode *N) {
3858 // fold (saddo_carry (xor a, -1), b, c) -> (ssubo_carry b, a, !c)
3859 if (isBitwiseNot(N0)) {
3860 if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true))
3861 return DAG.getNode(ISD::SSUBO_CARRY, SDLoc(N), N->getVTList(), N1,
3862 N0.getOperand(0), NotC);
3863 }
3864
3865 return SDValue();
3866}
3867
3868SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) {
3869 SDValue N0 = N->getOperand(0);
3870 SDValue N1 = N->getOperand(1);
3871 SDValue CarryIn = N->getOperand(2);
3872 SDLoc DL(N);
3873
3874 // canonicalize constant to RHS
3875 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
3876 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
3877 if (N0C && !N1C)
3878 return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn);
3879
3880 // fold (saddo_carry x, y, false) -> (saddo x, y)
3881 if (isNullConstant(CarryIn)) {
3882 if (!LegalOperations ||
3883 TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0)))
3884 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1);
3885 }
3886
3887 if (SDValue Combined = visitSADDO_CARRYLike(N0, N1, CarryIn, N))
3888 return Combined;
3889
3890 if (SDValue Combined = visitSADDO_CARRYLike(N1, N0, CarryIn, N))
3891 return Combined;
3892
3893 return SDValue();
3894}
3895
3896// Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a
3897// clamp/truncation if necessary.
3899 SDValue RHS, SelectionDAG &DAG,
3900 const SDLoc &DL) {
3901 assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() &&
3902 "Illegal truncation");
3903
3904 if (DstVT == SrcVT)
3905 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
3906
3907 // If the LHS is zero-extended then we can perform the USUBSAT as DstVT by
3908 // clamping RHS.
3910 DstVT.getScalarSizeInBits());
3911 if (!DAG.MaskedValueIsZero(LHS, UpperBits))
3912 return SDValue();
3913
3914 SDValue SatLimit =
3916 DstVT.getScalarSizeInBits()),
3917 DL, SrcVT);
3918 RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit);
3919 RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS);
3920 LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS);
3921 return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
3922}
3923
3924// Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to
3925// usubsat(a,b), optionally as a truncated type.
3926SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N, const SDLoc &DL) {
3927 if (N->getOpcode() != ISD::SUB ||
3928 !(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT)))
3929 return SDValue();
3930
3931 EVT SubVT = N->getValueType(0);
3932 SDValue Op0 = N->getOperand(0);
3933 SDValue Op1 = N->getOperand(1);
3934
3935 // Try to find umax(a,b) - b or a - umin(a,b) patterns
3936 // they may be converted to usubsat(a,b).
3937 if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
3938 SDValue MaxLHS = Op0.getOperand(0);
3939 SDValue MaxRHS = Op0.getOperand(1);
3940 if (MaxLHS == Op1)
3941 return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, DL);
3942 if (MaxRHS == Op1)
3943 return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, DL);
3944 }
3945
3946 if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) {
3947 SDValue MinLHS = Op1.getOperand(0);
3948 SDValue MinRHS = Op1.getOperand(1);
3949 if (MinLHS == Op0)
3950 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, DL);
3951 if (MinRHS == Op0)
3952 return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, DL);
3953 }
3954
3955 // sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit)))
3956 if (Op1.getOpcode() == ISD::TRUNCATE &&
3957 Op1.getOperand(0).getOpcode() == ISD::UMIN &&
3958 Op1.getOperand(0).hasOneUse()) {
3959 SDValue MinLHS = Op1.getOperand(0).getOperand(0);
3960 SDValue MinRHS = Op1.getOperand(0).getOperand(1);
3961 if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0)
3962 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS,
3963 DAG, DL);
3964 if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0)
3965 return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS,
3966 DAG, DL);
3967 }
3968
3969 return SDValue();
3970}
3971
3972// Refinement of DAG/Type Legalisation (promotion) when CTLZ is used for
3973// counting leading ones. Broadly, it replaces the substraction with a left
3974// shift.
3975//
3976// * DAG Legalisation Pattern:
3977//
3978// (sub (ctlz (zeroextend (not Src)))
3979// BitWidthDiff)
3980//
3981// if BitWidthDiff == BitWidth(Node) - BitWidth(Src)
3982// -->
3983//
3984// (ctlz_zero_undef (not (shl (anyextend Src)
3985// BitWidthDiff)))
3986//
3987// * Type Legalisation Pattern:
3988//
3989// (sub (ctlz (and (xor Src XorMask)
3990// AndMask))
3991// BitWidthDiff)
3992//
3993// if AndMask has only trailing ones
3994// and MaskBitWidth(AndMask) == BitWidth(Node) - BitWidthDiff
3995// and XorMask has more trailing ones than AndMask
3996// -->
3997//
3998// (ctlz_zero_undef (not (shl Src BitWidthDiff)))
3999template <class MatchContextClass>
4001 const SDLoc DL(N);
4002 SDValue N0 = N->getOperand(0);
4003 EVT VT = N0.getValueType();
4004 unsigned BitWidth = VT.getScalarSizeInBits();
4005
4006 MatchContextClass Matcher(DAG, DAG.getTargetLoweringInfo(), N);
4007
4008 APInt AndMask;
4009 APInt XorMask;
4010 APInt BitWidthDiff;
4011
4012 SDValue CtlzOp;
4013 SDValue Src;
4014
4015 if (!sd_context_match(
4016 N, Matcher, m_Sub(m_Ctlz(m_Value(CtlzOp)), m_ConstInt(BitWidthDiff))))
4017 return SDValue();
4018
4019 if (sd_context_match(CtlzOp, Matcher, m_ZExt(m_Not(m_Value(Src))))) {
4020 // DAG Legalisation Pattern:
4021 // (sub (ctlz (zero_extend (not Op)) BitWidthDiff))
4022 if ((BitWidth - Src.getValueType().getScalarSizeInBits()) != BitWidthDiff)
4023 return SDValue();
4024
4025 Src = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Src);
4026 } else if (sd_context_match(CtlzOp, Matcher,
4027 m_And(m_Xor(m_Value(Src), m_ConstInt(XorMask)),
4028 m_ConstInt(AndMask)))) {
4029 // Type Legalisation Pattern:
4030 // (sub (ctlz (and (xor Op XorMask) AndMask)) BitWidthDiff)
4031 unsigned AndMaskWidth = BitWidth - BitWidthDiff.getZExtValue();
4032 if (!(AndMask.isMask(AndMaskWidth) && XorMask.countr_one() >= AndMaskWidth))
4033 return SDValue();
4034 } else
4035 return SDValue();
4036
4037 SDValue ShiftConst = DAG.getShiftAmountConstant(BitWidthDiff, VT, DL);
4038 SDValue LShift = Matcher.getNode(ISD::SHL, DL, VT, Src, ShiftConst);
4039 SDValue Not =
4040 Matcher.getNode(ISD::XOR, DL, VT, LShift, DAG.getAllOnesConstant(DL, VT));
4041
4042 return Matcher.getNode(ISD::CTLZ_ZERO_UNDEF, DL, VT, Not);
4043}
4044
4045// Fold sub(x, mul(divrem(x,y)[0], y)) to divrem(x, y)[1]
4047 const SDLoc &DL) {
4048 assert(N->getOpcode() == ISD::SUB && "Node must be a SUB");
4049 SDValue Sub0 = N->getOperand(0);
4050 SDValue Sub1 = N->getOperand(1);
4051
4052 auto CheckAndFoldMulCase = [&](SDValue DivRem, SDValue MaybeY) -> SDValue {
4053 if ((DivRem.getOpcode() == ISD::SDIVREM ||
4054 DivRem.getOpcode() == ISD::UDIVREM) &&
4055 DivRem.getResNo() == 0 && DivRem.getOperand(0) == Sub0 &&
4056 DivRem.getOperand(1) == MaybeY) {
4057 return SDValue(DivRem.getNode(), 1);
4058 }
4059 return SDValue();
4060 };
4061
4062 if (Sub1.getOpcode() == ISD::MUL) {
4063 // (sub x, (mul divrem(x,y)[0], y))
4064 SDValue Mul0 = Sub1.getOperand(0);
4065 SDValue Mul1 = Sub1.getOperand(1);
4066
4067 if (SDValue Res = CheckAndFoldMulCase(Mul0, Mul1))
4068 return Res;
4069
4070 if (SDValue Res = CheckAndFoldMulCase(Mul1, Mul0))
4071 return Res;
4072
4073 } else if (Sub1.getOpcode() == ISD::SHL) {
4074 // Handle (sub x, (shl divrem(x,y)[0], C)) where y = 1 << C
4075 SDValue Shl0 = Sub1.getOperand(0);
4076 SDValue Shl1 = Sub1.getOperand(1);
4077 // Check if Shl0 is divrem(x, Y)[0]
4078 if ((Shl0.getOpcode() == ISD::SDIVREM ||
4079 Shl0.getOpcode() == ISD::UDIVREM) &&
4080 Shl0.getResNo() == 0 && Shl0.getOperand(0) == Sub0) {
4081
4082 SDValue Divisor = Shl0.getOperand(1);
4083
4084 ConstantSDNode *DivC = isConstOrConstSplat(Divisor);
4086 if (!DivC || !ShC)
4087 return SDValue();
4088
4089 if (DivC->getAPIntValue().isPowerOf2() &&
4090 DivC->getAPIntValue().logBase2() == ShC->getAPIntValue())
4091 return SDValue(Shl0.getNode(), 1);
4092 }
4093 }
4094 return SDValue();
4095}
4096
4097// Since it may not be valid to emit a fold to zero for vector initializers
4098// check if we can before folding.
4099static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
4100 SelectionDAG &DAG, bool LegalOperations) {
4101 if (!VT.isVector())
4102 return DAG.getConstant(0, DL, VT);
4103 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
4104 return DAG.getConstant(0, DL, VT);
4105 return SDValue();
4106}
4107
4108SDValue DAGCombiner::visitSUB(SDNode *N) {
4109 SDValue N0 = N->getOperand(0);
4110 SDValue N1 = N->getOperand(1);
4111 EVT VT = N0.getValueType();
4112 unsigned BitWidth = VT.getScalarSizeInBits();
4113 SDLoc DL(N);
4114
4116 return V;
4117
4118 // fold (sub x, x) -> 0
4119 if (N0 == N1)
4120 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
4121
4122 // fold (sub c1, c2) -> c3
4123 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1}))
4124 return C;
4125
4126 // fold vector ops
4127 if (VT.isVector()) {
4128 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
4129 return FoldedVOp;
4130
4131 // fold (sub x, 0) -> x, vector edition
4133 return N0;
4134 }
4135
4136 // (sub x, ([v]select (ult x, y), 0, y)) -> (umin x, (sub x, y))
4137 // (sub x, ([v]select (uge x, y), y, 0)) -> (umin x, (sub x, y))
4138 if (N1.hasOneUse() && hasUMin(VT)) {
4139 SDValue Y;
4140 auto MS0 = m_Specific(N0);
4141 auto MVY = m_Value(Y);
4142 auto MZ = m_Zero();
4143 auto MCC1 = m_SpecificCondCode(ISD::SETULT);
4144 auto MCC2 = m_SpecificCondCode(ISD::SETUGE);
4145
4146 if (sd_match(N1, m_SelectCCLike(MS0, MVY, MZ, m_Deferred(Y), MCC1)) ||
4147 sd_match(N1, m_SelectCCLike(MS0, MVY, m_Deferred(Y), MZ, MCC2)) ||
4148 sd_match(N1, m_VSelect(m_SetCC(MS0, MVY, MCC1), MZ, m_Deferred(Y))) ||
4149 sd_match(N1, m_VSelect(m_SetCC(MS0, MVY, MCC2), m_Deferred(Y), MZ)))
4150
4151 return DAG.getNode(ISD::UMIN, DL, VT, N0,
4152 DAG.getNode(ISD::SUB, DL, VT, N0, Y));
4153 }
4154
4155 if (SDValue NewSel = foldBinOpIntoSelect(N))
4156 return NewSel;
4157
4158 // fold (sub x, c) -> (add x, -c)
4159 if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1))
4160 return DAG.getNode(ISD::ADD, DL, VT, N0,
4161 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
4162
4163 if (isNullOrNullSplat(N0)) {
4164 // Right-shifting everything out but the sign bit followed by negation is
4165 // the same as flipping arithmetic/logical shift type without the negation:
4166 // -(X >>u 31) -> (X >>s 31)
4167 // -(X >>s 31) -> (X >>u 31)
4168 if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
4169 ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
4170 if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
4171 auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
4172 if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
4173 return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
4174 }
4175 }
4176
4177 // 0 - X --> 0 if the sub is NUW.
4178 if (N->getFlags().hasNoUnsignedWrap())
4179 return N0;
4180
4182 // N1 is either 0 or the minimum signed value. If the sub is NSW, then
4183 // N1 must be 0 because negating the minimum signed value is undefined.
4184 if (N->getFlags().hasNoSignedWrap())
4185 return N0;
4186
4187 // 0 - X --> X if X is 0 or the minimum signed value.
4188 return N1;
4189 }
4190
4191 // Convert 0 - abs(x).
4192 if (N1.getOpcode() == ISD::ABS && N1.hasOneUse() &&
4194 if (SDValue Result = TLI.expandABS(N1.getNode(), DAG, true))
4195 return Result;
4196
4197 // Similar to the previous rule, but this time targeting an expanded abs.
4198 // (sub 0, (max X, (sub 0, X))) --> (min X, (sub 0, X))
4199 // as well as
4200 // (sub 0, (min X, (sub 0, X))) --> (max X, (sub 0, X))
4201 // Note that these two are applicable to both signed and unsigned min/max.
4202 SDValue X;
4203 SDValue S0;
4204 auto NegPat = m_AllOf(m_Neg(m_Deferred(X)), m_Value(S0));
4205 if (sd_match(N1, m_OneUse(m_AnyOf(m_SMax(m_Value(X), NegPat),
4206 m_UMax(m_Value(X), NegPat),
4207 m_SMin(m_Value(X), NegPat),
4208 m_UMin(m_Value(X), NegPat))))) {
4209 unsigned NewOpc = ISD::getInverseMinMaxOpcode(N1->getOpcode());
4210 if (hasOperation(NewOpc, VT))
4211 return DAG.getNode(NewOpc, DL, VT, X, S0);
4212 }
4213
4214 // Fold neg(splat(neg(x)) -> splat(x)
4215 if (VT.isVector()) {
4216 SDValue N1S = DAG.getSplatValue(N1, true);
4217 if (N1S && N1S.getOpcode() == ISD::SUB &&
4218 isNullConstant(N1S.getOperand(0)))
4219 return DAG.getSplat(VT, DL, N1S.getOperand(1));
4220 }
4221
4222 // sub 0, (and x, 1) --> SIGN_EXTEND_INREG x, i1
4223 if (N1.getOpcode() == ISD::AND && N1.hasOneUse() &&
4224 isOneOrOneSplat(N1->getOperand(1))) {
4225 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), 1);
4226 if (VT.isVector())
4227 ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT,
4231 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N1->getOperand(0),
4232 DAG.getValueType(ExtVT));
4233 }
4234 }
4235 }
4236
4237 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
4239 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
4240
4241 // fold (A - (0-B)) -> A+B
4242 if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
4243 return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
4244
4245 // fold A-(A-B) -> B
4246 if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
4247 return N1.getOperand(1);
4248
4249 // fold (A+B)-A -> B
4250 if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
4251 return N0.getOperand(1);
4252
4253 // fold (A+B)-B -> A
4254 if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
4255 return N0.getOperand(0);
4256
4257 // fold (A+C1)-C2 -> A+(C1-C2)
4258 if (N0.getOpcode() == ISD::ADD) {
4259 SDValue N01 = N0.getOperand(1);
4260 if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N01, N1}))
4261 return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
4262 }
4263
4264 // fold C2-(A+C1) -> (C2-C1)-A
4265 if (N1.getOpcode() == ISD::ADD) {
4266 SDValue N11 = N1.getOperand(1);
4267 if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}))
4268 return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
4269 }
4270
4271 // fold (A-C1)-C2 -> A-(C1+C2)
4272 if (N0.getOpcode() == ISD::SUB) {
4273 SDValue N01 = N0.getOperand(1);
4274 if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N01, N1}))
4275 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
4276 }
4277
4278 // fold (c1-A)-c2 -> (c1-c2)-A
4279 if (N0.getOpcode() == ISD::SUB) {
4280 SDValue N00 = N0.getOperand(0);
4281 if (SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N00, N1}))
4282 return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
4283 }
4284
4285 SDValue A, B, C;
4286
4287 // fold ((A+(B+C))-B) -> A+C
4288 if (sd_match(N0, m_Add(m_Value(A), m_Add(m_Specific(N1), m_Value(C)))))
4289 return DAG.getNode(ISD::ADD, DL, VT, A, C);
4290
4291 // fold ((A+(B-C))-B) -> A-C
4292 if (sd_match(N0, m_Add(m_Value(A), m_Sub(m_Specific(N1), m_Value(C)))))
4293 return DAG.getNode(ISD::SUB, DL, VT, A, C);
4294
4295 // fold ((A-(B-C))-C) -> A-B
4296 if (sd_match(N0, m_Sub(m_Value(A), m_Sub(m_Value(B), m_Specific(N1)))))
4297 return DAG.getNode(ISD::SUB, DL, VT, A, B);
4298
4299 // fold (A-(B-C)) -> A+(C-B)
4300 if (sd_match(N1, m_OneUse(m_Sub(m_Value(B), m_Value(C)))))
4301 return DAG.getNode(ISD::ADD, DL, VT, N0,
4302 DAG.getNode(ISD::SUB, DL, VT, C, B));
4303
4304 // A - (A & B) -> A & (~B)
4305 if (sd_match(N1, m_And(m_Specific(N0), m_Value(B))) &&
4306 (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true)))
4307 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getNOT(DL, B, VT));
4308
4309 // fold (A - (-B * C)) -> (A + (B * C))
4310 if (sd_match(N1, m_OneUse(m_Mul(m_Neg(m_Value(B)), m_Value(C)))))
4311 return DAG.getNode(ISD::ADD, DL, VT, N0,
4312 DAG.getNode(ISD::MUL, DL, VT, B, C));
4313
4314 // If either operand of a sub is undef, the result is undef
4315 if (N0.isUndef())
4316 return N0;
4317 if (N1.isUndef())
4318 return N1;
4319
4320 if (SDValue V = foldAddSubBoolOfMaskedVal(N, DL, DAG))
4321 return V;
4322
4323 if (SDValue V = foldAddSubOfSignBit(N, DL, DAG))
4324 return V;
4325
4326 // Try to match AVGCEIL fixedwidth pattern
4327 if (SDValue V = foldSubToAvg(N, DL))
4328 return V;
4329
4330 if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, DL))
4331 return V;
4332
4333 if (SDValue V = foldSubToUSubSat(VT, N, DL))
4334 return V;
4335
4336 if (SDValue V = foldRemainderIdiom(N, DAG, DL))
4337 return V;
4338
4339 // (A - B) - 1 -> add (xor B, -1), A
4341 m_One(/*AllowUndefs=*/true))))
4342 return DAG.getNode(ISD::ADD, DL, VT, A, DAG.getNOT(DL, B, VT));
4343
4344 // Look for:
4345 // sub y, (xor x, -1)
4346 // And if the target does not like this form then turn into:
4347 // add (add x, y), 1
4348 if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
4349 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
4350 return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
4351 }
4352
4353 // Hoist one-use addition by non-opaque constant:
4354 // (x + C) - y -> (x - y) + C
4355 if (!reassociationCanBreakAddressingModePattern(ISD::SUB, DL, N, N0, N1) &&
4356 N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
4357 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
4358 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
4359 return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
4360 }
4361 // y - (x + C) -> (y - x) - C
4362 if (N1.getOpcode() == ISD::ADD && N1.hasOneUse() &&
4363 isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
4364 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
4365 return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
4366 }
4367 // (x - C) - y -> (x - y) - C
4368 // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
4369 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
4370 isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
4371 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
4372 return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
4373 }
4374 // (C - x) - y -> C - (x + y)
4375 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
4376 isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
4377 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
4378 return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
4379 }
4380
4381 // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
4382 // rather than 'sub 0/1' (the sext should get folded).
4383 // sub X, (zext i1 Y) --> add X, (sext i1 Y)
4384 if (N1.getOpcode() == ISD::ZERO_EXTEND &&
4385 N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
4386 TLI.getBooleanContents(VT) ==
4388 SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
4389 return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
4390 }
4391
4392 // fold B = sra (A, size(A)-1); sub (xor (A, B), B) -> (abs A)
4393 if ((!LegalOperations || hasOperation(ISD::ABS, VT)) &&
4395 sd_match(N0, m_Xor(m_Specific(A), m_Specific(N1))))
4396 return DAG.getNode(ISD::ABS, DL, VT, A);
4397
4398 // If the relocation model supports it, consider symbol offsets.
4399 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
4400 if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
4401 // fold (sub Sym+c1, Sym+c2) -> c1-c2
4402 if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
4403 if (GA->getGlobal() == GB->getGlobal())
4404 return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
4405 DL, VT);
4406 }
4407
4408 // sub X, (sextinreg Y i1) -> add X, (and Y 1)
4409 if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4410 VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
4411 if (TN->getVT() == MVT::i1) {
4412 SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
4413 DAG.getConstant(1, DL, VT));
4414 return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
4415 }
4416 }
4417
4418 // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C))
4419 if (N1.getOpcode() == ISD::VSCALE && N1.hasOneUse()) {
4420 const APInt &IntVal = N1.getConstantOperandAPInt(0);
4421 return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal));
4422 }
4423
4424 // canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C))
4425 if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) {
4426 APInt NewStep = -N1.getConstantOperandAPInt(0);
4427 return DAG.getNode(ISD::ADD, DL, VT, N0,
4428 DAG.getStepVector(DL, VT, NewStep));
4429 }
4430
4431 // Prefer an add for more folding potential and possibly better codegen:
4432 // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
4433 if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
4434 SDValue ShAmt = N1.getOperand(1);
4435 ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
4436 if (ShAmtC && ShAmtC->getAPIntValue() == (BitWidth - 1)) {
4437 SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
4438 return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
4439 }
4440 }
4441
4442 // As with the previous fold, prefer add for more folding potential.
4443 // Subtracting SMIN/0 is the same as adding SMIN/0:
4444 // N0 - (X << BW-1) --> N0 + (X << BW-1)
4445 if (N1.getOpcode() == ISD::SHL) {
4446 ConstantSDNode *ShlC = isConstOrConstSplat(N1.getOperand(1));
4447 if (ShlC && ShlC->getAPIntValue() == (BitWidth - 1))
4448 return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
4449 }
4450
4451 // (sub (usubo_carry X, 0, Carry), Y) -> (usubo_carry X, Y, Carry)
4452 if (N0.getOpcode() == ISD::USUBO_CARRY && isNullConstant(N0.getOperand(1)) &&
4453 N0.getResNo() == 0 && N0.hasOneUse())
4454 return DAG.getNode(ISD::USUBO_CARRY, DL, N0->getVTList(),
4455 N0.getOperand(0), N1, N0.getOperand(2));
4456
4458 // (sub Carry, X) -> (uaddo_carry (sub 0, X), 0, Carry)
4459 if (SDValue Carry = getAsCarry(TLI, N0)) {
4460 SDValue X = N1;
4461 SDValue Zero = DAG.getConstant(0, DL, VT);
4462 SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X);
4463 return DAG.getNode(ISD::UADDO_CARRY, DL,
4464 DAG.getVTList(VT, Carry.getValueType()), NegX, Zero,
4465 Carry);
4466 }
4467 }
4468
4469 // If there's no chance of borrowing from adjacent bits, then sub is xor:
4470 // sub C0, X --> xor X, C0
4471 if (ConstantSDNode *C0 = isConstOrConstSplat(N0)) {
4472 if (!C0->isOpaque()) {
4473 const APInt &C0Val = C0->getAPIntValue();
4474 const APInt &MaybeOnes = ~DAG.computeKnownBits(N1).Zero;
4475 if ((C0Val - MaybeOnes) == (C0Val ^ MaybeOnes))
4476 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
4477 }
4478 }
4479
4480 // smax(a,b) - smin(a,b) --> abds(a,b)
4481 if ((!LegalOperations || hasOperation(ISD::ABDS, VT)) &&
4482 sd_match(N0, m_SMaxLike(m_Value(A), m_Value(B))) &&
4484 return DAG.getNode(ISD::ABDS, DL, VT, A, B);
4485
4486 // smin(a,b) - smax(a,b) --> neg(abds(a,b))
4487 if (hasOperation(ISD::ABDS, VT) &&
4488 sd_match(N0, m_SMinLike(m_Value(A), m_Value(B))) &&
4490 return DAG.getNegative(DAG.getNode(ISD::ABDS, DL, VT, A, B), DL, VT);
4491
4492 // umax(a,b) - umin(a,b) --> abdu(a,b)
4493 if ((!LegalOperations || hasOperation(ISD::ABDU, VT)) &&
4494 sd_match(N0, m_UMaxLike(m_Value(A), m_Value(B))) &&
4496 return DAG.getNode(ISD::ABDU, DL, VT, A, B);
4497
4498 // umin(a,b) - umax(a,b) --> neg(abdu(a,b))
4499 if (hasOperation(ISD::ABDU, VT) &&
4500 sd_match(N0, m_UMinLike(m_Value(A), m_Value(B))) &&
4502 return DAG.getNegative(DAG.getNode(ISD::ABDU, DL, VT, A, B), DL, VT);
4503
4504 return SDValue();
4505}
4506
4507SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
4508 unsigned Opcode = N->getOpcode();
4509 SDValue N0 = N->getOperand(0);
4510 SDValue N1 = N->getOperand(1);
4511 EVT VT = N0.getValueType();
4512 bool IsSigned = Opcode == ISD::SSUBSAT;
4513 SDLoc DL(N);
4514
4515 // fold (sub_sat x, undef) -> 0
4516 if (N0.isUndef() || N1.isUndef())
4517 return DAG.getConstant(0, DL, VT);
4518
4519 // fold (sub_sat x, x) -> 0
4520 if (N0 == N1)
4521 return DAG.getConstant(0, DL, VT);
4522
4523 // fold (sub_sat c1, c2) -> c3
4524 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
4525 return C;
4526
4527 // fold vector ops
4528 if (VT.isVector()) {
4529 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
4530 return FoldedVOp;
4531
4532 // fold (sub_sat x, 0) -> x, vector edition
4534 return N0;
4535 }
4536
4537 // fold (sub_sat x, 0) -> x
4538 if (isNullConstant(N1))
4539 return N0;
4540
4541 // If it cannot overflow, transform into an sub.
4542 if (DAG.willNotOverflowSub(IsSigned, N0, N1))
4543 return DAG.getNode(ISD::SUB, DL, VT, N0, N1);
4544
4545 return SDValue();
4546}
4547
4548SDValue DAGCombiner::visitSUBC(SDNode *N) {
4549 SDValue N0 = N->getOperand(0);
4550 SDValue N1 = N->getOperand(1);
4551 EVT VT = N0.getValueType();
4552 SDLoc DL(N);
4553
4554 // If the flag result is dead, turn this into an SUB.
4555 if (!N->hasAnyUseOfValue(1))
4556 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
4557 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
4558
4559 // fold (subc x, x) -> 0 + no borrow
4560 if (N0 == N1)
4561 return CombineTo(N, DAG.getConstant(0, DL, VT),
4562 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
4563
4564 // fold (subc x, 0) -> x + no borrow
4565 if (isNullConstant(N1))
4566 return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
4567
4568 // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
4569 if (isAllOnesConstant(N0))
4570 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
4571 DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
4572
4573 return SDValue();
4574}
4575
4576SDValue DAGCombiner::visitSUBO(SDNode *N) {
4577 SDValue N0 = N->getOperand(0);
4578 SDValue N1 = N->getOperand(1);
4579 EVT VT = N0.getValueType();
4580 bool IsSigned = (ISD::SSUBO == N->getOpcode());
4581
4582 EVT CarryVT = N->getValueType(1);
4583 SDLoc DL(N);
4584
4585 // If the flag result is dead, turn this into an SUB.
4586 if (!N->hasAnyUseOfValue(1))
4587 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
4588 DAG.getUNDEF(CarryVT));
4589
4590 // fold (subo x, x) -> 0 + no borrow
4591 if (N0 == N1)
4592 return CombineTo(N, DAG.getConstant(0, DL, VT),
4593 DAG.getConstant(0, DL, CarryVT));
4594
4595 // fold (subox, c) -> (addo x, -c)
4596 if (ConstantSDNode *N1C = getAsNonOpaqueConstant(N1))
4597 if (IsSigned && !N1C->isMinSignedValue())
4598 return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
4599 DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
4600
4601 // fold (subo x, 0) -> x + no borrow
4602 if (isNullOrNullSplat(N1))
4603 return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
4604
4605 // If it cannot overflow, transform into an sub.
4606 if (DAG.willNotOverflowSub(IsSigned, N0, N1))
4607 return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
4608 DAG.getConstant(0, DL, CarryVT));
4609
4610 // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
4611 if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
4612 return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
4613 DAG.getConstant(0, DL, CarryVT));
4614
4615 return SDValue();
4616}
4617
4618SDValue DAGCombiner::visitSUBE(SDNode *N) {
4619 SDValue N0 = N->getOperand(0);
4620 SDValue N1 = N->getOperand(1);
4621 SDValue CarryIn = N->getOperand(2);
4622
4623 // fold (sube x, y, false) -> (subc x, y)
4624 if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
4625 return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
4626
4627 return SDValue();
4628}
4629
4630SDValue DAGCombiner::visitUSUBO_CARRY(SDNode *N) {
4631 SDValue N0 = N->getOperand(0);
4632 SDValue N1 = N->getOperand(1);
4633 SDValue CarryIn = N->getOperand(2);
4634
4635 // fold (usubo_carry x, y, false) -> (usubo x, y)
4636 if (isNullConstant(CarryIn)) {
4637 if (!LegalOperations ||
4638 TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
4639 return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
4640 }
4641
4642 return SDValue();
4643}
4644
4645SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) {
4646 SDValue N0 = N->getOperand(0);
4647 SDValue N1 = N->getOperand(1);
4648 SDValue CarryIn = N->getOperand(2);
4649
4650 // fold (ssubo_carry x, y, false) -> (ssubo x, y)
4651 if (isNullConstant(CarryIn)) {
4652 if (!LegalOperations ||
4653 TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0)))
4654 return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1);
4655 }
4656
4657 return SDValue();
4658}
4659
4660// Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
4661// UMULFIXSAT here.
4662SDValue DAGCombiner::visitMULFIX(SDNode *N) {
4663 SDValue N0 = N->getOperand(0);
4664 SDValue N1 = N->getOperand(1);
4665 SDValue Scale = N->getOperand(2);
4666 EVT VT = N0.getValueType();
4667
4668 // fold (mulfix x, undef, scale) -> 0
4669 if (N0.isUndef() || N1.isUndef())
4670 return DAG.getConstant(0, SDLoc(N), VT);
4671
4672 // Canonicalize constant to RHS (vector doesn't have to splat)
4675 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
4676
4677 // fold (mulfix x, 0, scale) -> 0
4678 if (isNullConstant(N1))
4679 return DAG.getConstant(0, SDLoc(N), VT);
4680
4681 return SDValue();
4682}
4683
4684template <class MatchContextClass> SDValue DAGCombiner::visitMUL(SDNode *N) {
4685 SDValue N0 = N->getOperand(0);
4686 SDValue N1 = N->getOperand(1);
4687 EVT VT = N0.getValueType();
4688 unsigned BitWidth = VT.getScalarSizeInBits();
4689 SDLoc DL(N);
4690 bool UseVP = std::is_same_v<MatchContextClass, VPMatchContext>;
4691 MatchContextClass Matcher(DAG, TLI, N);
4692
4693 // fold (mul x, undef) -> 0
4694 if (N0.isUndef() || N1.isUndef())
4695 return DAG.getConstant(0, DL, VT);
4696
4697 // fold (mul c1, c2) -> c1*c2
4698 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, DL, VT, {N0, N1}))
4699 return C;
4700
4701 // canonicalize constant to RHS (vector doesn't have to splat)
4704 return Matcher.getNode(ISD::MUL, DL, VT, N1, N0);
4705
4706 bool N1IsConst = false;
4707 bool N1IsOpaqueConst = false;
4708 APInt ConstValue1;
4709
4710 // fold vector ops
4711 if (VT.isVector()) {
4712 // TODO: Change this to use SimplifyVBinOp when it supports VP op.
4713 if (!UseVP)
4714 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
4715 return FoldedVOp;
4716
4717 N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
4718 assert((!N1IsConst || ConstValue1.getBitWidth() == BitWidth) &&
4719 "Splat APInt should be element width");
4720 } else {
4721 N1IsConst = isa<ConstantSDNode>(N1);
4722 if (N1IsConst) {
4723 ConstValue1 = N1->getAsAPIntVal();
4724 N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
4725 }
4726 }
4727
4728 // fold (mul x, 0) -> 0
4729 if (N1IsConst && ConstValue1.isZero())
4730 return N1;
4731
4732 // fold (mul x, 1) -> x
4733 if (N1IsConst && ConstValue1.isOne())
4734 return N0;
4735
4736 if (!UseVP)
4737 if (SDValue NewSel = foldBinOpIntoSelect(N))
4738 return NewSel;
4739
4740 // fold (mul x, -1) -> 0-x
4741 if (N1IsConst && ConstValue1.isAllOnes())
4742 return Matcher.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
4743
4744 // fold (mul x, (1 << c)) -> x << c
4745 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
4746 (!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
4747 if (SDValue LogBase2 = BuildLogBase2(N1, DL)) {
4748 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
4749 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
4750 SDNodeFlags Flags;
4751 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap());
4752 // TODO: Preserve setNoSignedWrap if LogBase2 isn't BitWidth - 1.
4753 return Matcher.getNode(ISD::SHL, DL, VT, N0, Trunc, Flags);
4754 }
4755 }
4756
4757 // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
4758 if (N1IsConst && !N1IsOpaqueConst && ConstValue1.isNegatedPowerOf2()) {
4759 unsigned Log2Val = (-ConstValue1).logBase2();
4760
4761 // FIXME: If the input is something that is easily negated (e.g. a
4762 // single-use add), we should put the negate there.
4763 return Matcher.getNode(
4764 ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
4765 Matcher.getNode(ISD::SHL, DL, VT, N0,
4766 DAG.getShiftAmountConstant(Log2Val, VT, DL)));
4767 }
4768
4769 // Attempt to reuse an existing umul_lohi/smul_lohi node, but only if the
4770 // hi result is in use in case we hit this mid-legalization.
4771 if (!UseVP) {
4772 for (unsigned LoHiOpc : {ISD::UMUL_LOHI, ISD::SMUL_LOHI}) {
4773 if (!LegalOperations || TLI.isOperationLegalOrCustom(LoHiOpc, VT)) {
4774 SDVTList LoHiVT = DAG.getVTList(VT, VT);
4775 // TODO: Can we match commutable operands with getNodeIfExists?
4776 if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N0, N1}))
4777 if (LoHi->hasAnyUseOfValue(1))
4778 return SDValue(LoHi, 0);
4779 if (SDNode *LoHi = DAG.getNodeIfExists(LoHiOpc, LoHiVT, {N1, N0}))
4780 if (LoHi->hasAnyUseOfValue(1))
4781 return SDValue(LoHi, 0);
4782 }
4783 }
4784 }
4785
4786 // Try to transform:
4787 // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub.
4788 // mul x, (2^N + 1) --> add (shl x, N), x
4789 // mul x, (2^N - 1) --> sub (shl x, N), x
4790 // Examples: x * 33 --> (x << 5) + x
4791 // x * 15 --> (x << 4) - x
4792 // x * -33 --> -((x << 5) + x)
4793 // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
4794 // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub.
4795 // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
4796 // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
4797 // Examples: x * 0x8800 --> (x << 15) + (x << 11)
4798 // x * 0xf800 --> (x << 16) - (x << 11)
4799 // x * -0x8800 --> -((x << 15) + (x << 11))
4800 // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16)
4801 if (!UseVP && N1IsConst &&
4802 TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
4803 // TODO: We could handle more general decomposition of any constant by
4804 // having the target set a limit on number of ops and making a
4805 // callback to determine that sequence (similar to sqrt expansion).
4806 unsigned MathOp = ISD::DELETED_NODE;
4807 APInt MulC = ConstValue1.abs();
4808 // The constant `2` should be treated as (2^0 + 1).
4809 unsigned TZeros = MulC == 2 ? 0 : MulC.countr_zero();
4810 MulC.lshrInPlace(TZeros);
4811 if ((MulC - 1).isPowerOf2())
4812 MathOp = ISD::ADD;
4813 else if ((MulC + 1).isPowerOf2())
4814 MathOp = ISD::SUB;
4815
4816 if (MathOp != ISD::DELETED_NODE) {
4817 unsigned ShAmt =
4818 MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
4819 ShAmt += TZeros;
4820 assert(ShAmt < BitWidth &&
4821 "multiply-by-constant generated out of bounds shift");
4822 SDValue Shl =
4823 DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
4824 SDValue R =
4825 TZeros ? DAG.getNode(MathOp, DL, VT, Shl,
4826 DAG.getNode(ISD::SHL, DL, VT, N0,
4827 DAG.getConstant(TZeros, DL, VT)))
4828 : DAG.getNode(MathOp, DL, VT, Shl, N0);
4829 if (ConstValue1.isNegative())
4830 R = DAG.getNegative(R, DL, VT);
4831 return R;
4832 }
4833 }
4834
4835 // (mul (shl X, c1), c2) -> (mul X, c2 << c1)
4836 if (sd_context_match(N0, Matcher, m_Opc(ISD::SHL))) {
4837 SDValue N01 = N0.getOperand(1);
4838 if (SDValue C3 = DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N1, N01}))
4839 return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), C3);
4840 }
4841
4842 // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
4843 // use.
4844 {
4845 SDValue Sh, Y;
4846
4847 // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
4848 if (sd_context_match(N0, Matcher, m_OneUse(m_Opc(ISD::SHL))) &&
4850 Sh = N0; Y = N1;
4851 } else if (sd_context_match(N1, Matcher, m_OneUse(m_Opc(ISD::SHL))) &&
4853 Sh = N1; Y = N0;
4854 }
4855
4856 if (Sh.getNode()) {
4857 SDValue Mul = Matcher.getNode(ISD::MUL, DL, VT, Sh.getOperand(0), Y);
4858 return Matcher.getNode(ISD::SHL, DL, VT, Mul, Sh.getOperand(1));
4859 }
4860 }
4861
4862 // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
4863 if (sd_context_match(N0, Matcher, m_Opc(ISD::ADD)) &&
4867 return Matcher.getNode(
4868 ISD::ADD, DL, VT,
4869 Matcher.getNode(ISD::MUL, SDLoc(N0), VT, N0.getOperand(0), N1),
4870 Matcher.getNode(ISD::MUL, SDLoc(N1), VT, N0.getOperand(1), N1));
4871
4872 // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
4873 ConstantSDNode *NC1 = isConstOrConstSplat(N1);
4874 if (!UseVP && N0.getOpcode() == ISD::VSCALE && NC1) {
4875 const APInt &C0 = N0.getConstantOperandAPInt(0);
4876 const APInt &C1 = NC1->getAPIntValue();
4877 return DAG.getVScale(DL, VT, C0 * C1);
4878 }
4879
4880 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
4881 APInt MulVal;
4882 if (!UseVP && N0.getOpcode() == ISD::STEP_VECTOR &&
4883 ISD::isConstantSplatVector(N1.getNode(), MulVal)) {
4884 const APInt &C0 = N0.getConstantOperandAPInt(0);
4885 APInt NewStep = C0 * MulVal;
4886 return DAG.getStepVector(DL, VT, NewStep);
4887 }
4888
4889 // Fold Y = sra (X, size(X)-1); mul (or (Y, 1), X) -> (abs X)
4890 SDValue X;
4891 if (!UseVP && (!LegalOperations || hasOperation(ISD::ABS, VT)) &&
4893 N, Matcher,
4895 m_Deferred(X)))) {
4896 return Matcher.getNode(ISD::ABS, DL, VT, X);
4897 }
4898
4899 // Fold ((mul x, 0/undef) -> 0,
4900 // (mul x, 1) -> x) -> x)
4901 // -> and(x, mask)
4902 // We can replace vectors with '0' and '1' factors with a clearing mask.
4903 if (VT.isFixedLengthVector()) {
4904 unsigned NumElts = VT.getVectorNumElements();
4905 SmallBitVector ClearMask;
4906 ClearMask.reserve(NumElts);
4907 auto IsClearMask = [&ClearMask](ConstantSDNode *V) {
4908 if (!V || V->isZero()) {
4909 ClearMask.push_back(true);
4910 return true;
4911 }
4912 ClearMask.push_back(false);
4913 return V->isOne();
4914 };
4915 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) &&
4916 ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) {
4917 assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector");
4918 EVT LegalSVT = N1.getOperand(0).getValueType();
4919 SDValue Zero = DAG.getConstant(0, DL, LegalSVT);
4920 SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT);
4922 for (unsigned I = 0; I != NumElts; ++I)
4923 if (ClearMask[I])
4924 Mask[I] = Zero;
4925 return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask));
4926 }
4927 }
4928
4929 // reassociate mul
4930 // TODO: Change reassociateOps to support vp ops.
4931 if (!UseVP)
4932 if (SDValue RMUL = reassociateOps(ISD::MUL, DL, N0, N1, N->getFlags()))
4933 return RMUL;
4934
4935 // Fold mul(vecreduce(x), vecreduce(y)) -> vecreduce(mul(x, y))
4936 // TODO: Change reassociateReduction to support vp ops.
4937 if (!UseVP)
4938 if (SDValue SD =
4939 reassociateReduction(ISD::VECREDUCE_MUL, ISD::MUL, DL, VT, N0, N1))
4940 return SD;
4941
4942 // Simplify the operands using demanded-bits information.
4944 return SDValue(N, 0);
4945
4946 return SDValue();
4947}
4948
4949/// Return true if divmod libcall is available.
4951 const TargetLowering &TLI) {
4952 RTLIB::Libcall LC;
4953 EVT NodeType = Node->getValueType(0);
4954 if (!NodeType.isSimple())
4955 return false;
4956 switch (NodeType.getSimpleVT().SimpleTy) {
4957 default: return false; // No libcall for vector types.
4958 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
4959 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
4960 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
4961 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
4962 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
4963 }
4964
4965 return TLI.getLibcallName(LC) != nullptr;
4966}
4967
4968/// Issue divrem if both quotient and remainder are needed.
4969SDValue DAGCombiner::useDivRem(SDNode *Node) {
4970 if (Node->use_empty())
4971 return SDValue(); // This is a dead node, leave it alone.
4972
4973 unsigned Opcode = Node->getOpcode();
4974 bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
4975 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
4976
4977 // DivMod lib calls can still work on non-legal types if using lib-calls.
4978 EVT VT = Node->getValueType(0);
4979 if (VT.isVector() || !VT.isInteger())
4980 return SDValue();
4981
4982 if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
4983 return SDValue();
4984
4985 // If DIVREM is going to get expanded into a libcall,
4986 // but there is no libcall available, then don't combine.
4987 if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
4989 return SDValue();
4990
4991 // If div is legal, it's better to do the normal expansion
4992 unsigned OtherOpcode = 0;
4993 if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
4994 OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
4995 if (TLI.isOperationLegalOrCustom(Opcode, VT))
4996 return SDValue();
4997 } else {
4998 OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
4999 if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
5000 return SDValue();
5001 }
5002
5003 SDValue Op0 = Node->getOperand(0);
5004 SDValue Op1 = Node->getOperand(1);
5005 SDValue combined;
5006 for (SDNode *User : Op0->users()) {
5007 if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
5008 User->use_empty())
5009 continue;
5010 // Convert the other matching node(s), too;
5011 // otherwise, the DIVREM may get target-legalized into something
5012 // target-specific that we won't be able to recognize.
5013 unsigned UserOpc = User->getOpcode();
5014 if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
5015 User->getOperand(0) == Op0 &&
5016 User->getOperand(1) == Op1) {
5017 if (!combined) {
5018 if (UserOpc == OtherOpcode) {
5019 SDVTList VTs = DAG.getVTList(VT, VT);
5020 combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
5021 } else if (UserOpc == DivRemOpc) {
5022 combined = SDValue(User, 0);
5023 } else {
5024 assert(UserOpc == Opcode);
5025 continue;
5026 }
5027 }
5028 if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
5029 CombineTo(User, combined);
5030 else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
5031 CombineTo(User, combined.getValue(1));
5032 }
5033 }
5034 return combined;
5035}
5036
5038 SDValue N0 = N->getOperand(0);
5039 SDValue N1 = N->getOperand(1);
5040 EVT VT = N->getValueType(0);
5041 SDLoc DL(N);
5042
5043 unsigned Opc = N->getOpcode();
5044 bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
5046
5047 // X / undef -> undef
5048 // X % undef -> undef
5049 // X / 0 -> undef
5050 // X % 0 -> undef
5051 // NOTE: This includes vectors where any divisor element is zero/undef.
5052 if (DAG.isUndef(Opc, {N0, N1}))
5053 return DAG.getUNDEF(VT);
5054
5055 // undef / X -> 0
5056 // undef % X -> 0
5057 if (N0.isUndef())
5058 return DAG.getConstant(0, DL, VT);
5059
5060 // 0 / X -> 0
5061 // 0 % X -> 0
5063 if (N0C && N0C->isZero())
5064 return N0;
5065
5066 // X / X -> 1
5067 // X % X -> 0
5068 if (N0 == N1)
5069 return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
5070
5071 // X / 1 -> X
5072 // X % 1 -> 0
5073 // If this is a boolean op (single-bit element type), we can't have
5074 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
5075 // TODO: Similarly, if we're zero-extending a boolean divisor, then assume
5076 // it's a 1.
5077 if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
5078 return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
5079
5080 return SDValue();
5081}
5082
5083SDValue DAGCombiner::visitSDIV(SDNode *N) {
5084 SDValue N0 = N->getOperand(0);
5085 SDValue N1 = N->getOperand(1);
5086 EVT VT = N->getValueType(0);
5087 EVT CCVT = getSetCCResultType(VT);
5088 SDLoc DL(N);
5089
5090 // fold (sdiv c1, c2) -> c1/c2
5091 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1}))
5092 return C;
5093
5094 // fold vector ops
5095 if (VT.isVector())
5096 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5097 return FoldedVOp;
5098
5099 // fold (sdiv X, -1) -> 0-X
5100 ConstantSDNode *N1C = isConstOrConstSplat(N1);
5101 if (N1C && N1C->isAllOnes())
5102 return DAG.getNegative(N0, DL, VT);
5103
5104 // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
5105 if (N1C && N1C->isMinSignedValue())
5106 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
5107 DAG.getConstant(1, DL, VT),
5108 DAG.getConstant(0, DL, VT));
5109
5110 if (SDValue V = simplifyDivRem(N, DAG))
5111 return V;
5112
5113 if (SDValue NewSel = foldBinOpIntoSelect(N))
5114 return NewSel;
5115
5116 // If we know the sign bits of both operands are zero, strength reduce to a
5117 // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
5118 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
5119 return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
5120
5121 if (SDValue V = visitSDIVLike(N0, N1, N)) {
5122 // If the corresponding remainder node exists, update its users with
5123 // (Dividend - (Quotient * Divisor).
5124 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
5125 { N0, N1 })) {
5126 // If the sdiv has the exact flag we shouldn't propagate it to the
5127 // remainder node.
5128 if (!N->getFlags().hasExact()) {
5129 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
5130 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
5131 AddToWorklist(Mul.getNode());
5132 AddToWorklist(Sub.getNode());
5133 CombineTo(RemNode, Sub);
5134 }
5135 }
5136 return V;
5137 }
5138
5139 // sdiv, srem -> sdivrem
5140 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
5141 // true. Otherwise, we break the simplification logic in visitREM().
5142 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5143 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
5144 if (SDValue DivRem = useDivRem(N))
5145 return DivRem;
5146
5147 return SDValue();
5148}
5149
5150static bool isDivisorPowerOfTwo(SDValue Divisor) {
5151 // Helper for determining whether a value is a power-2 constant scalar or a
5152 // vector of such elements.
5153 auto IsPowerOfTwo = [](ConstantSDNode *C) {
5154 if (C->isZero() || C->isOpaque())
5155 return false;
5156 if (C->getAPIntValue().isPowerOf2())
5157 return true;
5158 if (C->getAPIntValue().isNegatedPowerOf2())
5159 return true;
5160 return false;
5161 };
5162
5163 return ISD::matchUnaryPredicate(Divisor, IsPowerOfTwo);
5164}
5165
5166SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
5167 SDLoc DL(N);
5168 EVT VT = N->getValueType(0);
5169 EVT CCVT = getSetCCResultType(VT);
5170 unsigned BitWidth = VT.getScalarSizeInBits();
5171
5172 // fold (sdiv X, pow2) -> simple ops after legalize
5173 // FIXME: We check for the exact bit here because the generic lowering gives
5174 // better results in that case. The target-specific lowering should learn how
5175 // to handle exact sdivs efficiently.
5176 if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1)) {
5177 // Target-specific implementation of sdiv x, pow2.
5178 if (SDValue Res = BuildSDIVPow2(N))
5179 return Res;
5180
5181 // Create constants that are functions of the shift amount value.
5182 EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
5183 SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
5184 SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
5185 C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
5186 SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
5187 if (!isConstantOrConstantVector(Inexact))
5188 return SDValue();
5189
5190 // Splat the sign bit into the register
5191 SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
5192 DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
5193 AddToWorklist(Sign.getNode());
5194
5195 // Add (N0 < 0) ? abs2 - 1 : 0;
5196 SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
5197 AddToWorklist(Srl.getNode());
5198 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
5199 AddToWorklist(Add.getNode());
5200 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
5201 AddToWorklist(Sra.getNode());
5202
5203 // Special case: (sdiv X, 1) -> X
5204 // Special Case: (sdiv X, -1) -> 0-X
5205 SDValue One = DAG.getConstant(1, DL, VT);
5207 SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
5208 SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
5209 SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
5210 Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
5211
5212 // If dividing by a positive value, we're done. Otherwise, the result must
5213 // be negated.
5214 SDValue Zero = DAG.getConstant(0, DL, VT);
5215 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
5216
5217 // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
5218 SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
5219 SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
5220 return Res;
5221 }
5222
5223 // If integer divide is expensive and we satisfy the requirements, emit an
5224 // alternate sequence. Targets may check function attributes for size/speed
5225 // trade-offs.
5226 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5228 !TLI.isIntDivCheap(N->getValueType(0), Attr))
5229 if (SDValue Op = BuildSDIV(N))
5230 return Op;
5231
5232 return SDValue();
5233}
5234
5235SDValue DAGCombiner::visitUDIV(SDNode *N) {
5236 SDValue N0 = N->getOperand(0);
5237 SDValue N1 = N->getOperand(1);
5238 EVT VT = N->getValueType(0);
5239 EVT CCVT = getSetCCResultType(VT);
5240 SDLoc DL(N);
5241
5242 // fold (udiv c1, c2) -> c1/c2
5243 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1}))
5244 return C;
5245
5246 // fold vector ops
5247 if (VT.isVector())
5248 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5249 return FoldedVOp;
5250
5251 // fold (udiv X, -1) -> select(X == -1, 1, 0)
5252 ConstantSDNode *N1C = isConstOrConstSplat(N1);
5253 if (N1C && N1C->isAllOnes() && CCVT.isVector() == VT.isVector()) {
5254 return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
5255 DAG.getConstant(1, DL, VT),
5256 DAG.getConstant(0, DL, VT));
5257 }
5258
5259 if (SDValue V = simplifyDivRem(N, DAG))
5260 return V;
5261
5262 if (SDValue NewSel = foldBinOpIntoSelect(N))
5263 return NewSel;
5264
5265 if (SDValue V = visitUDIVLike(N0, N1, N)) {
5266 // If the corresponding remainder node exists, update its users with
5267 // (Dividend - (Quotient * Divisor).
5268 if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
5269 { N0, N1 })) {
5270 // If the udiv has the exact flag we shouldn't propagate it to the
5271 // remainder node.
5272 if (!N->getFlags().hasExact()) {
5273 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
5274 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
5275 AddToWorklist(Mul.getNode());
5276 AddToWorklist(Sub.getNode());
5277 CombineTo(RemNode, Sub);
5278 }
5279 }
5280 return V;
5281 }
5282
5283 // sdiv, srem -> sdivrem
5284 // If the divisor is constant, then return DIVREM only if isIntDivCheap() is
5285 // true. Otherwise, we break the simplification logic in visitREM().
5286 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5287 if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
5288 if (SDValue DivRem = useDivRem(N))
5289 return DivRem;
5290
5291 // Simplify the operands using demanded-bits information.
5292 // We don't have demanded bits support for UDIV so this just enables constant
5293 // folding based on known bits.
5295 return SDValue(N, 0);
5296
5297 return SDValue();
5298}
5299
5300SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
5301 SDLoc DL(N);
5302 EVT VT = N->getValueType(0);
5303
5304 // fold (udiv x, (1 << c)) -> x >>u c
5305 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true)) {
5306 if (SDValue LogBase2 = BuildLogBase2(N1, DL)) {
5307 AddToWorklist(LogBase2.getNode());
5308
5309 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
5310 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
5311 AddToWorklist(Trunc.getNode());
5312 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
5313 }
5314 }
5315
5316 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
5317 if (N1.getOpcode() == ISD::SHL) {
5318 SDValue N10 = N1.getOperand(0);
5319 if (isConstantOrConstantVector(N10, /*NoOpaques*/ true)) {
5320 if (SDValue LogBase2 = BuildLogBase2(N10, DL)) {
5321 AddToWorklist(LogBase2.getNode());
5322
5323 EVT ADDVT = N1.getOperand(1).getValueType();
5324 SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
5325 AddToWorklist(Trunc.getNode());
5326 SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
5327 AddToWorklist(Add.getNode());
5328 return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
5329 }
5330 }
5331 }
5332
5333 // fold (udiv x, c) -> alternate
5334 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5336 !TLI.isIntDivCheap(N->getValueType(0), Attr))
5337 if (SDValue Op = BuildUDIV(N))
5338 return Op;
5339
5340 return SDValue();
5341}
5342
5343SDValue DAGCombiner::buildOptimizedSREM(SDValue N0, SDValue N1, SDNode *N) {
5344 if (!N->getFlags().hasExact() && isDivisorPowerOfTwo(N1) &&
5345 !DAG.doesNodeExist(ISD::SDIV, N->getVTList(), {N0, N1})) {
5346 // Target-specific implementation of srem x, pow2.
5347 if (SDValue Res = BuildSREMPow2(N))
5348 return Res;
5349 }
5350 return SDValue();
5351}
5352
5353// handles ISD::SREM and ISD::UREM
5354SDValue DAGCombiner::visitREM(SDNode *N) {
5355 unsigned Opcode = N->getOpcode();
5356 SDValue N0 = N->getOperand(0);
5357 SDValue N1 = N->getOperand(1);
5358 EVT VT = N->getValueType(0);
5359 EVT CCVT = getSetCCResultType(VT);
5360
5361 bool isSigned = (Opcode == ISD::SREM);
5362 SDLoc DL(N);
5363
5364 // fold (rem c1, c2) -> c1%c2
5365 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
5366 return C;
5367
5368 // fold (urem X, -1) -> select(FX == -1, 0, FX)
5369 // Freeze the numerator to avoid a miscompile with an undefined value.
5370 if (!isSigned && llvm::isAllOnesOrAllOnesSplat(N1, /*AllowUndefs*/ false) &&
5371 CCVT.isVector() == VT.isVector()) {
5372 SDValue F0 = DAG.getFreeze(N0);
5373 SDValue EqualsNeg1 = DAG.getSetCC(DL, CCVT, F0, N1, ISD::SETEQ);
5374 return DAG.getSelect(DL, VT, EqualsNeg1, DAG.getConstant(0, DL, VT), F0);
5375 }
5376
5377 if (SDValue V = simplifyDivRem(N, DAG))
5378 return V;
5379
5380 if (SDValue NewSel = foldBinOpIntoSelect(N))
5381 return NewSel;
5382
5383 if (isSigned) {
5384 // If we know the sign bits of both operands are zero, strength reduce to a
5385 // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
5386 if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
5387 return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
5388 } else {
5389 if (DAG.isKnownToBeAPowerOfTwo(N1)) {
5390 // fold (urem x, pow2) -> (and x, pow2-1)
5391 SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
5392 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
5393 AddToWorklist(Add.getNode());
5394 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
5395 }
5396 // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
5397 // fold (urem x, (lshr pow2, y)) -> (and x, (add (lshr pow2, y), -1))
5398 // TODO: We should sink the following into isKnownToBePowerOfTwo
5399 // using a OrZero parameter analogous to our handling in ValueTracking.
5400 if ((N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) &&
5402 SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
5403 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
5404 AddToWorklist(Add.getNode());
5405 return DAG.getNode(ISD::AND, DL, VT, N0, Add);
5406 }
5407 }
5408
5409 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5410
5411 // If X/C can be simplified by the division-by-constant logic, lower
5412 // X%C to the equivalent of X-X/C*C.
5413 // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
5414 // speculative DIV must not cause a DIVREM conversion. We guard against this
5415 // by skipping the simplification if isIntDivCheap(). When div is not cheap,
5416 // combine will not return a DIVREM. Regardless, checking cheapness here
5417 // makes sense since the simplification results in fatter code.
5418 if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
5419 if (isSigned) {
5420 // check if we can build faster implementation for srem
5421 if (SDValue OptimizedRem = buildOptimizedSREM(N0, N1, N))
5422 return OptimizedRem;
5423 }
5424
5425 SDValue OptimizedDiv =
5426 isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
5427 if (OptimizedDiv.getNode() && OptimizedDiv.getNode() != N) {
5428 // If the equivalent Div node also exists, update its users.
5429 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
5430 if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
5431 { N0, N1 }))
5432 CombineTo(DivNode, OptimizedDiv);
5433 SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
5434 SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
5435 AddToWorklist(OptimizedDiv.getNode());
5436 AddToWorklist(Mul.getNode());
5437 return Sub;
5438 }
5439 }
5440
5441 // sdiv, srem -> sdivrem
5442 if (SDValue DivRem = useDivRem(N))
5443 return DivRem.getValue(1);
5444
5445 // fold urem(urem(A, BCst), Op1Cst) -> urem(A, Op1Cst)
5446 // iff urem(BCst, Op1Cst) == 0
5447 SDValue A;
5448 APInt Op1Cst, BCst;
5449 if (sd_match(N, m_URem(m_URem(m_Value(A), m_ConstInt(BCst)),
5450 m_ConstInt(Op1Cst))) &&
5451 BCst.urem(Op1Cst).isZero()) {
5452 return DAG.getNode(ISD::UREM, DL, VT, A, DAG.getConstant(Op1Cst, DL, VT));
5453 }
5454
5455 // fold srem(srem(A, BCst), Op1Cst) -> srem(A, Op1Cst)
5456 // iff srem(BCst, Op1Cst) == 0 && Op1Cst != 1
5457 if (sd_match(N, m_SRem(m_SRem(m_Value(A), m_ConstInt(BCst)),
5458 m_ConstInt(Op1Cst))) &&
5459 BCst.srem(Op1Cst).isZero() && !Op1Cst.isAllOnes()) {
5460 return DAG.getNode(ISD::SREM, DL, VT, A, DAG.getConstant(Op1Cst, DL, VT));
5461 }
5462
5463 return SDValue();
5464}
5465
5466SDValue DAGCombiner::visitMULHS(SDNode *N) {
5467 SDValue N0 = N->getOperand(0);
5468 SDValue N1 = N->getOperand(1);
5469 EVT VT = N->getValueType(0);
5470 SDLoc DL(N);
5471
5472 // fold (mulhs c1, c2)
5473 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1}))
5474 return C;
5475
5476 // canonicalize constant to RHS.
5479 return DAG.getNode(ISD::MULHS, DL, N->getVTList(), N1, N0);
5480
5481 if (VT.isVector()) {
5482 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5483 return FoldedVOp;
5484
5485 // fold (mulhs x, 0) -> 0
5486 // do not return N1, because undef node may exist.
5488 return DAG.getConstant(0, DL, VT);
5489 }
5490
5491 // fold (mulhs x, 0) -> 0
5492 if (isNullConstant(N1))
5493 return N1;
5494
5495 // fold (mulhs x, 1) -> (sra x, size(x)-1)
5496 if (isOneConstant(N1))
5497 return DAG.getNode(
5498 ISD::SRA, DL, VT, N0,
5500
5501 // fold (mulhs x, undef) -> 0
5502 if (N0.isUndef() || N1.isUndef())
5503 return DAG.getConstant(0, DL, VT);
5504
5505 // If the type twice as wide is legal, transform the mulhs to a wider multiply
5506 // plus a shift.
5507 if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() &&
5508 !VT.isVector()) {
5509 MVT Simple = VT.getSimpleVT();
5510 unsigned SimpleSize = Simple.getSizeInBits();
5511 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
5512 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
5513 N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
5514 N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
5515 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
5516 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
5517 DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
5518 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
5519 }
5520 }
5521
5522 return SDValue();
5523}
5524
5525SDValue DAGCombiner::visitMULHU(SDNode *N) {
5526 SDValue N0 = N->getOperand(0);
5527 SDValue N1 = N->getOperand(1);
5528 EVT VT = N->getValueType(0);
5529 SDLoc DL(N);
5530
5531 // fold (mulhu c1, c2)
5532 if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1}))
5533 return C;
5534
5535 // canonicalize constant to RHS.
5538 return DAG.getNode(ISD::MULHU, DL, N->getVTList(), N1, N0);
5539
5540 if (VT.isVector()) {
5541 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5542 return FoldedVOp;
5543
5544 // fold (mulhu x, 0) -> 0
5545 // do not return N1, because undef node may exist.
5547 return DAG.getConstant(0, DL, VT);
5548 }
5549
5550 // fold (mulhu x, 0) -> 0
5551 if (isNullConstant(N1))
5552 return N1;
5553
5554 // fold (mulhu x, 1) -> 0
5555 if (isOneConstant(N1))
5556 return DAG.getConstant(0, DL, VT);
5557
5558 // fold (mulhu x, undef) -> 0
5559 if (N0.isUndef() || N1.isUndef())
5560 return DAG.getConstant(0, DL, VT);
5561
5562 // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
5563 if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
5564 hasOperation(ISD::SRL, VT)) {
5565 if (SDValue LogBase2 = BuildLogBase2(N1, DL)) {
5566 unsigned NumEltBits = VT.getScalarSizeInBits();
5567 SDValue SRLAmt = DAG.getNode(
5568 ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
5569 EVT ShiftVT = getShiftAmountTy(N0.getValueType());
5570 SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
5571 return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
5572 }
5573 }
5574
5575 // If the type twice as wide is legal, transform the mulhu to a wider multiply
5576 // plus a shift.
5577 if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() &&
5578 !VT.isVector()) {
5579 MVT Simple = VT.getSimpleVT();
5580 unsigned SimpleSize = Simple.getSizeInBits();
5581 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
5582 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
5583 N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
5584 N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
5585 N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
5586 N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
5587 DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
5588 return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
5589 }
5590 }
5591
5592 // Simplify the operands using demanded-bits information.
5593 // We don't have demanded bits support for MULHU so this just enables constant
5594 // folding based on known bits.
5596 return SDValue(N, 0);
5597
5598 return SDValue();
5599}
5600
5601SDValue DAGCombiner::visitAVG(SDNode *N) {
5602 unsigned Opcode = N->getOpcode();
5603 SDValue N0 = N->getOperand(0);
5604 SDValue N1 = N->getOperand(1);
5605 EVT VT = N->getValueType(0);
5606 SDLoc DL(N);
5607 bool IsSigned = Opcode == ISD::AVGCEILS || Opcode == ISD::AVGFLOORS;
5608
5609 // fold (avg c1, c2)
5610 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
5611 return C;
5612
5613 // canonicalize constant to RHS.
5616 return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0);
5617
5618 if (VT.isVector())
5619 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5620 return FoldedVOp;
5621
5622 // fold (avg x, undef) -> x
5623 if (N0.isUndef())
5624 return N1;
5625 if (N1.isUndef())
5626 return N0;
5627
5628 // fold (avg x, x) --> x
5629 if (N0 == N1 && Level >= AfterLegalizeTypes)
5630 return N0;
5631
5632 // fold (avgfloor x, 0) -> x >> 1
5633 SDValue X, Y;
5635 return DAG.getNode(ISD::SRA, DL, VT, X,
5636 DAG.getShiftAmountConstant(1, VT, DL));
5638 return DAG.getNode(ISD::SRL, DL, VT, X,
5639 DAG.getShiftAmountConstant(1, VT, DL));
5640
5641 // fold avgu(zext(x), zext(y)) -> zext(avgu(x, y))
5642 // fold avgs(sext(x), sext(y)) -> sext(avgs(x, y))
5643 if (!IsSigned &&
5644 sd_match(N, m_BinOp(Opcode, m_ZExt(m_Value(X)), m_ZExt(m_Value(Y)))) &&
5645 X.getValueType() == Y.getValueType() &&
5646 hasOperation(Opcode, X.getValueType())) {
5647 SDValue AvgU = DAG.getNode(Opcode, DL, X.getValueType(), X, Y);
5648 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, AvgU);
5649 }
5650 if (IsSigned &&
5651 sd_match(N, m_BinOp(Opcode, m_SExt(m_Value(X)), m_SExt(m_Value(Y)))) &&
5652 X.getValueType() == Y.getValueType() &&
5653 hasOperation(Opcode, X.getValueType())) {
5654 SDValue AvgS = DAG.getNode(Opcode, DL, X.getValueType(), X, Y);
5655 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, AvgS);
5656 }
5657
5658 // Fold avgflooru(x,y) -> avgceilu(x,y-1) iff y != 0
5659 // Fold avgflooru(x,y) -> avgceilu(x-1,y) iff x != 0
5660 // Check if avgflooru isn't legal/custom but avgceilu is.
5661 if (Opcode == ISD::AVGFLOORU && !hasOperation(ISD::AVGFLOORU, VT) &&
5662 (!LegalOperations || hasOperation(ISD::AVGCEILU, VT))) {
5663 if (DAG.isKnownNeverZero(N1))
5664 return DAG.getNode(
5665 ISD::AVGCEILU, DL, VT, N0,
5666 DAG.getNode(ISD::ADD, DL, VT, N1, DAG.getAllOnesConstant(DL, VT)));
5667 if (DAG.isKnownNeverZero(N0))
5668 return DAG.getNode(
5669 ISD::AVGCEILU, DL, VT, N1,
5670 DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getAllOnesConstant(DL, VT)));
5671 }
5672
5673 // Fold avgfloor((add nw x,y), 1) -> avgceil(x,y)
5674 // Fold avgfloor((add nw x,1), y) -> avgceil(x,y)
5675 if ((Opcode == ISD::AVGFLOORU && hasOperation(ISD::AVGCEILU, VT)) ||
5676 (Opcode == ISD::AVGFLOORS && hasOperation(ISD::AVGCEILS, VT))) {
5677 SDValue Add;
5678 if (sd_match(N,
5679 m_c_BinOp(Opcode,
5681 m_One())) ||
5682 sd_match(N, m_c_BinOp(Opcode,
5684 m_Value(Y)))) {
5685
5686 if (IsSigned && Add->getFlags().hasNoSignedWrap())
5687 return DAG.getNode(ISD::AVGCEILS, DL, VT, X, Y);
5688
5689 if (!IsSigned && Add->getFlags().hasNoUnsignedWrap())
5690 return DAG.getNode(ISD::AVGCEILU, DL, VT, X, Y);
5691 }
5692 }
5693
5694 // Fold avgfloors(x,y) -> avgflooru(x,y) if both x and y are non-negative
5695 if (Opcode == ISD::AVGFLOORS && hasOperation(ISD::AVGFLOORU, VT)) {
5696 if (DAG.SignBitIsZero(N0) && DAG.SignBitIsZero(N1))
5697 return DAG.getNode(ISD::AVGFLOORU, DL, VT, N0, N1);
5698 }
5699
5700 return SDValue();
5701}
5702
5703SDValue DAGCombiner::visitABD(SDNode *N) {
5704 unsigned Opcode = N->getOpcode();
5705 SDValue N0 = N->getOperand(0);
5706 SDValue N1 = N->getOperand(1);
5707 EVT VT = N->getValueType(0);
5708 SDLoc DL(N);
5709
5710 // fold (abd c1, c2)
5711 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
5712 return C;
5713
5714 // canonicalize constant to RHS.
5717 return DAG.getNode(Opcode, DL, N->getVTList(), N1, N0);
5718
5719 if (VT.isVector())
5720 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
5721 return FoldedVOp;
5722
5723 // fold (abd x, undef) -> 0
5724 if (N0.isUndef() || N1.isUndef())
5725 return DAG.getConstant(0, DL, VT);
5726
5727 // fold (abd x, x) -> 0
5728 if (N0 == N1)
5729 return DAG.getConstant(0, DL, VT);
5730
5731 SDValue X;
5732
5733 // fold (abds x, 0) -> abs x
5735 (!LegalOperations || hasOperation(ISD::ABS, VT)))
5736 return DAG.getNode(ISD::ABS, DL, VT, X);
5737
5738 // fold (abdu x, 0) -> x
5740 return X;
5741
5742 // fold (abds x, y) -> (abdu x, y) iff both args are known positive
5743 if (Opcode == ISD::ABDS && hasOperation(ISD::ABDU, VT) &&
5744 DAG.SignBitIsZero(N0) && DAG.SignBitIsZero(N1))
5745 return DAG.getNode(ISD::ABDU, DL, VT, N1, N0);
5746
5747 return SDValue();
5748}
5749
5750/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
5751/// give the opcodes for the two computations that are being performed. Return
5752/// true if a simplification was made.
5753SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
5754 unsigned HiOp) {
5755 // If the high half is not needed, just compute the low half.
5756 bool HiExists = N->hasAnyUseOfValue(1);
5757 if (!HiExists && (!LegalOperations ||
5758 TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
5759 SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
5760 return CombineTo(N, Res, Res);
5761 }
5762
5763 // If the low half is not needed, just compute the high half.
5764 bool LoExists = N->hasAnyUseOfValue(0);
5765 if (!LoExists && (!LegalOperations ||
5766 TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
5767 SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
5768 return CombineTo(N, Res, Res);
5769 }
5770
5771 // If both halves are used, return as it is.
5772 if (LoExists && HiExists)
5773 return SDValue();
5774
5775 // If the two computed results can be simplified separately, separate them.
5776 if (LoExists) {
5777 SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
5778 AddToWorklist(Lo.getNode());
5779 SDValue LoOpt = combine(Lo.getNode());
5780 if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
5781 (!LegalOperations ||
5782 TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
5783 return CombineTo(N, LoOpt, LoOpt);
5784 }
5785
5786 if (HiExists) {
5787 SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
5788 AddToWorklist(Hi.getNode());
5789 SDValue HiOpt = combine(Hi.getNode());
5790 if (HiOpt.getNode() && HiOpt != Hi &&
5791 (!LegalOperations ||
5792 TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
5793 return CombineTo(N, HiOpt, HiOpt);
5794 }
5795
5796 return SDValue();
5797}
5798
5799SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
5800 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
5801 return Res;
5802
5803 SDValue N0 = N->getOperand(0);
5804 SDValue N1 = N->getOperand(1);
5805 EVT VT = N->getValueType(0);
5806 SDLoc DL(N);
5807
5808 // Constant fold.
5810 return DAG.getNode(ISD::SMUL_LOHI, DL, N->getVTList(), N0, N1);
5811
5812 // canonicalize constant to RHS (vector doesn't have to splat)
5815 return DAG.getNode(ISD::SMUL_LOHI, DL, N->getVTList(), N1, N0);
5816
5817 // If the type is twice as wide is legal, transform the mulhu to a wider
5818 // multiply plus a shift.
5819 if (VT.isSimple() && !VT.isVector()) {
5820 MVT Simple = VT.getSimpleVT();
5821 unsigned SimpleSize = Simple.getSizeInBits();
5822 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
5823 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
5824 SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
5825 SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
5826 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
5827 // Compute the high part as N1.
5828 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
5829 DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
5830 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
5831 // Compute the low part as N0.
5832 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
5833 return CombineTo(N, Lo, Hi);
5834 }
5835 }
5836
5837 return SDValue();
5838}
5839
5840SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
5841 if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
5842 return Res;
5843
5844 SDValue N0 = N->getOperand(0);
5845 SDValue N1 = N->getOperand(1);
5846 EVT VT = N->getValueType(0);
5847 SDLoc DL(N);
5848
5849 // Constant fold.
5851 return DAG.getNode(ISD::UMUL_LOHI, DL, N->getVTList(), N0, N1);
5852
5853 // canonicalize constant to RHS (vector doesn't have to splat)
5856 return DAG.getNode(ISD::UMUL_LOHI, DL, N->getVTList(), N1, N0);
5857
5858 // (umul_lohi N0, 0) -> (0, 0)
5859 if (isNullConstant(N1)) {
5860 SDValue Zero = DAG.getConstant(0, DL, VT);
5861 return CombineTo(N, Zero, Zero);
5862 }
5863
5864 // (umul_lohi N0, 1) -> (N0, 0)
5865 if (isOneConstant(N1)) {
5866 SDValue Zero = DAG.getConstant(0, DL, VT);
5867 return CombineTo(N, N0, Zero);
5868 }
5869
5870 // If the type is twice as wide is legal, transform the mulhu to a wider
5871 // multiply plus a shift.
5872 if (VT.isSimple() && !VT.isVector()) {
5873 MVT Simple = VT.getSimpleVT();
5874 unsigned SimpleSize = Simple.getSizeInBits();
5875 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
5876 if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
5877 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
5878 SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
5879 Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
5880 // Compute the high part as N1.
5881 Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
5882 DAG.getShiftAmountConstant(SimpleSize, NewVT, DL));
5883 Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
5884 // Compute the low part as N0.
5885 Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
5886 return CombineTo(N, Lo, Hi);
5887 }
5888 }
5889
5890 return SDValue();
5891}
5892
5893SDValue DAGCombiner::visitMULO(SDNode *N) {
5894 SDValue N0 = N->getOperand(0);
5895 SDValue N1 = N->getOperand(1);
5896 EVT VT = N0.getValueType();
5897 bool IsSigned = (ISD::SMULO == N->getOpcode());
5898
5899 EVT CarryVT = N->getValueType(1);
5900 SDLoc DL(N);
5901
5902 ConstantSDNode *N0C = isConstOrConstSplat(N0);
5903 ConstantSDNode *N1C = isConstOrConstSplat(N1);
5904
5905 // fold operation with constant operands.
5906 // TODO: Move this to FoldConstantArithmetic when it supports nodes with
5907 // multiple results.
5908 if (N0C && N1C) {
5909 bool Overflow;
5910 APInt Result =
5911 IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow)
5912 : N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow);
5913 return CombineTo(N, DAG.getConstant(Result, DL, VT),
5914 DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT));
5915 }
5916
5917 // canonicalize constant to RHS.
5920 return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
5921
5922 // fold (mulo x, 0) -> 0 + no carry out
5923 if (isNullOrNullSplat(N1))
5924 return CombineTo(N, DAG.getConstant(0, DL, VT),
5925 DAG.getConstant(0, DL, CarryVT));
5926
5927 // (mulo x, 2) -> (addo x, x)
5928 // FIXME: This needs a freeze.
5929 if (N1C && N1C->getAPIntValue() == 2 &&
5930 (!IsSigned || VT.getScalarSizeInBits() > 2))
5931 return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
5932 N->getVTList(), N0, N0);
5933
5934 // A 1 bit SMULO overflows if both inputs are 1.
5935 if (IsSigned && VT.getScalarSizeInBits() == 1) {
5936 SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1);
5937 SDValue Cmp = DAG.getSetCC(DL, CarryVT, And,
5938 DAG.getConstant(0, DL, VT), ISD::SETNE);
5939 return CombineTo(N, And, Cmp);
5940 }
5941
5942 // If it cannot overflow, transform into a mul.
5943 if (DAG.willNotOverflowMul(IsSigned, N0, N1))
5944 return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
5945 DAG.getConstant(0, DL, CarryVT));
5946 return SDValue();
5947}
5948
5949// Function to calculate whether the Min/Max pair of SDNodes (potentially
5950// swapped around) make a signed saturate pattern, clamping to between a signed
5951// saturate of -2^(BW-1) and 2^(BW-1)-1, or an unsigned saturate of 0 and 2^BW.
5952// Returns the node being clamped and the bitwidth of the clamp in BW. Should
5953// work with both SMIN/SMAX nodes and setcc/select combo. The operands are the
5954// same as SimplifySelectCC. N0<N1 ? N2 : N3.
5956 SDValue N3, ISD::CondCode CC, unsigned &BW,
5957 bool &Unsigned, SelectionDAG &DAG) {
5958 auto isSignedMinMax = [&](SDValue N0, SDValue N1, SDValue N2, SDValue N3,
5959 ISD::CondCode CC) {
5960 // The compare and select operand should be the same or the select operands
5961 // should be truncated versions of the comparison.
5962 if (N0 != N2 && (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0)))
5963 return 0;
5964 // The constants need to be the same or a truncated version of each other.
5967 if (!N1C || !N3C)
5968 return 0;
5969 const APInt &C1 = N1C->getAPIntValue().trunc(N1.getScalarValueSizeInBits());
5970 const APInt &C2 = N3C->getAPIntValue().trunc(N3.getScalarValueSizeInBits());
5971 if (C1.getBitWidth() < C2.getBitWidth() || C1 != C2.sext(C1.getBitWidth()))
5972 return 0;
5973 return CC == ISD::SETLT ? ISD::SMIN : (CC == ISD::SETGT ? ISD::SMAX : 0);
5974 };
5975
5976 // Check the initial value is a SMIN/SMAX equivalent.
5977 unsigned Opcode0 = isSignedMinMax(N0, N1, N2, N3, CC);
5978 if (!Opcode0)
5979 return SDValue();
5980
5981 // We could only need one range check, if the fptosi could never produce
5982 // the upper value.
5983 if (N0.getOpcode() == ISD::FP_TO_SINT && Opcode0 == ISD::SMAX) {
5984 if (isNullOrNullSplat(N3)) {
5985 EVT IntVT = N0.getValueType().getScalarType();
5986 EVT FPVT = N0.getOperand(0).getValueType().getScalarType();
5987 if (FPVT.isSimple()) {
5988 Type *InputTy = FPVT.getTypeForEVT(*DAG.getContext());
5989 const fltSemantics &Semantics = InputTy->getFltSemantics();
5990 uint32_t MinBitWidth =
5991 APFloatBase::semanticsIntSizeInBits(Semantics, /*isSigned*/ true);
5992 if (IntVT.getSizeInBits() >= MinBitWidth) {
5993 Unsigned = true;
5994 BW = PowerOf2Ceil(MinBitWidth);
5995 return N0;
5996 }
5997 }
5998 }
5999 }
6000
6001 SDValue N00, N01, N02, N03;
6002 ISD::CondCode N0CC;
6003 switch (N0.getOpcode()) {
6004 case ISD::SMIN:
6005 case ISD::SMAX:
6006 N00 = N02 = N0.getOperand(0);
6007 N01 = N03 = N0.getOperand(1);
6008 N0CC = N0.getOpcode() == ISD::SMIN ? ISD::SETLT : ISD::SETGT;
6009 break;
6010 case ISD::SELECT_CC:
6011 N00 = N0.getOperand(0);
6012 N01 = N0.getOperand(1);
6013 N02 = N0.getOperand(2);
6014 N03 = N0.getOperand(3);
6015 N0CC = cast<CondCodeSDNode>(N0.getOperand(4))->get();
6016 break;
6017 case ISD::SELECT:
6018 case ISD::VSELECT:
6019 if (N0.getOperand(0).getOpcode() != ISD::SETCC)
6020 return SDValue();
6021 N00 = N0.getOperand(0).getOperand(0);
6022 N01 = N0.getOperand(0).getOperand(1);
6023 N02 = N0.getOperand(1);
6024 N03 = N0.getOperand(2);
6025 N0CC = cast<CondCodeSDNode>(N0.getOperand(0).getOperand(2))->get();
6026 break;
6027 default:
6028 return SDValue();
6029 }
6030
6031 unsigned Opcode1 = isSignedMinMax(N00, N01, N02, N03, N0CC);
6032 if (!Opcode1 || Opcode0 == Opcode1)
6033 return SDValue();
6034
6035 ConstantSDNode *MinCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N1 : N01);
6036 ConstantSDNode *MaxCOp = isConstOrConstSplat(Opcode0 == ISD::SMIN ? N01 : N1);
6037 if (!MinCOp || !MaxCOp || MinCOp->getValueType(0) != MaxCOp->getValueType(0))
6038 return SDValue();
6039
6040 const APInt &MinC = MinCOp->getAPIntValue();
6041 const APInt &MaxC = MaxCOp->getAPIntValue();
6042 APInt MinCPlus1 = MinC + 1;
6043 if (-MaxC == MinCPlus1 && MinCPlus1.isPowerOf2()) {
6044 BW = MinCPlus1.exactLogBase2() + 1;
6045 Unsigned = false;
6046 return N02;
6047 }
6048
6049 if (MaxC == 0 && MinCPlus1.isPowerOf2()) {
6050 BW = MinCPlus1.exactLogBase2();
6051 Unsigned = true;
6052 return N02;
6053 }
6054
6055 return SDValue();
6056}
6057
6059 SDValue N3, ISD::CondCode CC,
6060 SelectionDAG &DAG) {
6061 unsigned BW;
6062 bool Unsigned;
6063 SDValue Fp = isSaturatingMinMax(N0, N1, N2, N3, CC, BW, Unsigned, DAG);
6064 if (!Fp || Fp.getOpcode() != ISD::FP_TO_SINT)
6065 return SDValue();
6066 EVT FPVT = Fp.getOperand(0).getValueType();
6067 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW);
6068 if (FPVT.isVector())
6069 NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT,
6070 FPVT.getVectorElementCount());
6071 unsigned NewOpc = Unsigned ? ISD::FP_TO_UINT_SAT : ISD::FP_TO_SINT_SAT;
6072 if (!DAG.getTargetLoweringInfo().shouldConvertFpToSat(NewOpc, FPVT, NewVT))
6073 return SDValue();
6074 SDLoc DL(Fp);
6075 SDValue Sat = DAG.getNode(NewOpc, DL, NewVT, Fp.getOperand(0),
6076 DAG.getValueType(NewVT.getScalarType()));
6077 return DAG.getExtOrTrunc(!Unsigned, Sat, DL, N2->getValueType(0));
6078}
6079
6081 SDValue N3, ISD::CondCode CC,
6082 SelectionDAG &DAG) {
6083 // We are looking for UMIN(FPTOUI(X), (2^n)-1), which may have come via a
6084 // select/vselect/select_cc. The two operands pairs for the select (N2/N3) may
6085 // be truncated versions of the setcc (N0/N1).
6086 if ((N0 != N2 &&
6087 (N2.getOpcode() != ISD::TRUNCATE || N0 != N2.getOperand(0))) ||
6088 N0.getOpcode() != ISD::FP_TO_UINT || CC != ISD::SETULT)
6089 return SDValue();
6092 if (!N1C || !N3C)
6093 return SDValue();
6094 const APInt &C1 = N1C->getAPIntValue();
6095 const APInt &C3 = N3C->getAPIntValue();
6096 if (!(C1 + 1).isPowerOf2() || C1.getBitWidth() < C3.getBitWidth() ||
6097 C1 != C3.zext(C1.getBitWidth()))
6098 return SDValue();
6099
6100 unsigned BW = (C1 + 1).exactLogBase2();
6101 EVT FPVT = N0.getOperand(0).getValueType();
6102 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), BW);
6103 if (FPVT.isVector())
6104 NewVT = EVT::getVectorVT(*DAG.getContext(), NewVT,
6105 FPVT.getVectorElementCount());
6107 FPVT, NewVT))
6108 return SDValue();
6109
6110 SDValue Sat =
6111 DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), NewVT, N0.getOperand(0),
6112 DAG.getValueType(NewVT.getScalarType()));
6113 return DAG.getZExtOrTrunc(Sat, SDLoc(N0), N3.getValueType());
6114}
6115
6116SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
6117 SDValue N0 = N->getOperand(0);
6118 SDValue N1 = N->getOperand(1);
6119 EVT VT = N0.getValueType();
6120 unsigned Opcode = N->getOpcode();
6121 SDLoc DL(N);
6122
6123 // fold operation with constant operands.
6124 if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
6125 return C;
6126
6127 // If the operands are the same, this is a no-op.
6128 if (N0 == N1)
6129 return N0;
6130
6131 // Fold operation with vscale operands.
6132 if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) {
6133 uint64_t C0 = N0->getConstantOperandVal(0);
6134 uint64_t C1 = N1->getConstantOperandVal(0);
6135 if (Opcode == ISD::UMAX)
6136 return C0 > C1 ? N0 : N1;
6137 else if (Opcode == ISD::UMIN)
6138 return C0 > C1 ? N1 : N0;
6139 }
6140
6141 // canonicalize constant to RHS
6144 return DAG.getNode(Opcode, DL, VT, N1, N0);
6145
6146 // fold vector ops
6147 if (VT.isVector())
6148 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
6149 return FoldedVOp;
6150
6151 // reassociate minmax
6152 if (SDValue RMINMAX = reassociateOps(Opcode, DL, N0, N1, N->getFlags()))
6153 return RMINMAX;
6154
6155 // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
6156 // Only do this if:
6157 // 1. The current op isn't legal and the flipped is.
6158 // 2. The saturation pattern is broken by canonicalization in InstCombine.
6159 bool IsOpIllegal = !TLI.isOperationLegal(Opcode, VT);
6160 bool IsSatBroken = Opcode == ISD::UMIN && N0.getOpcode() == ISD::SMAX;
6161 if ((IsSatBroken || IsOpIllegal) && (N0.isUndef() || DAG.SignBitIsZero(N0)) &&
6162 (N1.isUndef() || DAG.SignBitIsZero(N1))) {
6163 unsigned AltOpcode;
6164 switch (Opcode) {
6165 case ISD::SMIN: AltOpcode = ISD::UMIN; break;
6166 case ISD::SMAX: AltOpcode = ISD::UMAX; break;
6167 case ISD::UMIN: AltOpcode = ISD::SMIN; break;
6168 case ISD::UMAX: AltOpcode = ISD::SMAX; break;
6169 default: llvm_unreachable("Unknown MINMAX opcode");
6170 }
6171 if ((IsSatBroken && IsOpIllegal) || TLI.isOperationLegal(AltOpcode, VT))
6172 return DAG.getNode(AltOpcode, DL, VT, N0, N1);
6173 }
6174
6175 if (Opcode == ISD::SMIN || Opcode == ISD::SMAX)
6177 N0, N1, N0, N1, Opcode == ISD::SMIN ? ISD::SETLT : ISD::SETGT, DAG))
6178 return S;
6179 if (Opcode == ISD::UMIN)
6180 if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N0, N1, ISD::SETULT, DAG))
6181 return S;
6182
6183 // Fold min/max(vecreduce(x), vecreduce(y)) -> vecreduce(min/max(x, y))
6184 auto ReductionOpcode = [](unsigned Opcode) {
6185 switch (Opcode) {
6186 case ISD::SMIN:
6187 return ISD::VECREDUCE_SMIN;
6188 case ISD::SMAX:
6189 return ISD::VECREDUCE_SMAX;
6190 case ISD::UMIN:
6191 return ISD::VECREDUCE_UMIN;
6192 case ISD::UMAX:
6193 return ISD::VECREDUCE_UMAX;
6194 default:
6195 llvm_unreachable("Unexpected opcode");
6196 }
6197 };
6198 if (SDValue SD = reassociateReduction(ReductionOpcode(Opcode), Opcode,
6199 SDLoc(N), VT, N0, N1))
6200 return SD;
6201
6202 // Simplify the operands using demanded-bits information.
6204 return SDValue(N, 0);
6205
6206 return SDValue();
6207}
6208
6209/// If this is a bitwise logic instruction and both operands have the same
6210/// opcode, try to sink the other opcode after the logic instruction.
6211SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
6212 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
6213 EVT VT = N0.getValueType();
6214 unsigned LogicOpcode = N->getOpcode();
6215 unsigned HandOpcode = N0.getOpcode();
6216 assert(ISD::isBitwiseLogicOp(LogicOpcode) && "Expected logic opcode");
6217 assert(HandOpcode == N1.getOpcode() && "Bad input!");
6218
6219 // Bail early if none of these transforms apply.
6220 if (N0.getNumOperands() == 0)
6221 return SDValue();
6222
6223 // FIXME: We should check number of uses of the operands to not increase
6224 // the instruction count for all transforms.
6225
6226 // Handle size-changing casts (or sign_extend_inreg).
6227 SDValue X = N0.getOperand(0);
6228 SDValue Y = N1.getOperand(0);
6229 EVT XVT = X.getValueType();
6230 SDLoc DL(N);
6231 if (ISD::isExtOpcode(HandOpcode) || ISD::isExtVecInRegOpcode(HandOpcode) ||
6232 (HandOpcode == ISD::SIGN_EXTEND_INREG &&
6233 N0.getOperand(1) == N1.getOperand(1))) {
6234 // If both operands have other uses, this transform would create extra
6235 // instructions without eliminating anything.
6236 if (!N0.hasOneUse() && !N1.hasOneUse())
6237 return SDValue();
6238 // We need matching integer source types.
6239 if (XVT != Y.getValueType())
6240 return SDValue();
6241 // Don't create an illegal op during or after legalization. Don't ever
6242 // create an unsupported vector op.
6243 if ((VT.isVector() || LegalOperations) &&
6244 !TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
6245 return SDValue();
6246 // Avoid infinite looping with PromoteIntBinOp.
6247 // TODO: Should we apply desirable/legal constraints to all opcodes?
6248 if ((HandOpcode == ISD::ANY_EXTEND ||
6249 HandOpcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6250 LegalTypes && !TLI.isTypeDesirableForOp(LogicOpcode, XVT))
6251 return SDValue();
6252 // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
6253 SDNodeFlags LogicFlags;
6254 LogicFlags.setDisjoint(N->getFlags().hasDisjoint() &&
6255 ISD::isExtOpcode(HandOpcode));
6256 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y, LogicFlags);
6257 if (HandOpcode == ISD::SIGN_EXTEND_INREG)
6258 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
6259 return DAG.getNode(HandOpcode, DL, VT, Logic);
6260 }
6261
6262 // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
6263 if (HandOpcode == ISD::TRUNCATE) {
6264 // If both operands have other uses, this transform would create extra
6265 // instructions without eliminating anything.
6266 if (!N0.hasOneUse() && !N1.hasOneUse())
6267 return SDValue();
6268 // We need matching source types.
6269 if (XVT != Y.getValueType())
6270 return SDValue();
6271 // Don't create an illegal op during or after legalization.
6272 if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
6273 return SDValue();
6274 // Be extra careful sinking truncate. If it's free, there's no benefit in
6275 // widening a binop. Also, don't create a logic op on an illegal type.
6276 if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
6277 return SDValue();
6278 if (!TLI.isTypeLegal(XVT))
6279 return SDValue();
6280 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
6281 return DAG.getNode(HandOpcode, DL, VT, Logic);
6282 }
6283
6284 // For binops SHL/SRL/SRA/AND:
6285 // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
6286 if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
6287 HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
6288 N0.getOperand(1) == N1.getOperand(1)) {
6289 // If either operand has other uses, this transform is not an improvement.
6290 if (!N0.hasOneUse() || !N1.hasOneUse())
6291 return SDValue();
6292 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
6293 return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
6294 }
6295
6296 // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
6297 if (HandOpcode == ISD::BSWAP) {
6298 // If either operand has other uses, this transform is not an improvement.
6299 if (!N0.hasOneUse() || !N1.hasOneUse())
6300 return SDValue();
6301 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
6302 return DAG.getNode(HandOpcode, DL, VT, Logic);
6303 }
6304
6305 // For funnel shifts FSHL/FSHR:
6306 // logic_op (OP x, x1, s), (OP y, y1, s) -->
6307 // --> OP (logic_op x, y), (logic_op, x1, y1), s
6308 if ((HandOpcode == ISD::FSHL || HandOpcode == ISD::FSHR) &&
6309 N0.getOperand(2) == N1.getOperand(2)) {
6310 if (!N0.hasOneUse() || !N1.hasOneUse())
6311 return SDValue();
6312 SDValue X1 = N0.getOperand(1);
6313 SDValue Y1 = N1.getOperand(1);
6314 SDValue S = N0.getOperand(2);
6315 SDValue Logic0 = DAG.getNode(LogicOpcode, DL, VT, X, Y);
6316 SDValue Logic1 = DAG.getNode(LogicOpcode, DL, VT, X1, Y1);
6317 return DAG.getNode(HandOpcode, DL, VT, Logic0, Logic1, S);
6318 }
6319
6320 // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
6321 // Only perform this optimization up until type legalization, before
6322 // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
6323 // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
6324 // we don't want to undo this promotion.
6325 // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
6326 // on scalars.
6327 if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
6328 Level <= AfterLegalizeTypes) {
6329 // Input types must be integer and the same.
6330 if (XVT.isInteger() && XVT == Y.getValueType() &&
6331 !(VT.isVector() && TLI.isTypeLegal(VT) &&
6332 !XVT.isVector() && !TLI.isTypeLegal(XVT))) {
6333 SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
6334 return DAG.getNode(HandOpcode, DL, VT, Logic);
6335 }
6336 }
6337
6338 // Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
6339 // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
6340 // If both shuffles use the same mask, and both shuffle within a single
6341 // vector, then it is worthwhile to move the swizzle after the operation.
6342 // The type-legalizer generates this pattern when loading illegal
6343 // vector types from memory. In many cases this allows additional shuffle
6344 // optimizations.
6345 // There are other cases where moving the shuffle after the xor/and/or
6346 // is profitable even if shuffles don't perform a swizzle.
6347 // If both shuffles use the same mask, and both shuffles have the same first
6348 // or second operand, then it might still be profitable to move the shuffle
6349 // after the xor/and/or operation.
6350 if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
6351 auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
6352 auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
6353 assert(X.getValueType() == Y.getValueType() &&
6354 "Inputs to shuffles are not the same type");
6355
6356 // Check that both shuffles use the same mask. The masks are known to be of
6357 // the same length because the result vector type is the same.
6358 // Check also that shuffles have only one use to avoid introducing extra
6359 // instructions.
6360 if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
6361 !SVN0->getMask().equals(SVN1->getMask()))
6362 return SDValue();
6363
6364 // Don't try to fold this node if it requires introducing a
6365 // build vector of all zeros that might be illegal at this stage.
6366 SDValue ShOp = N0.getOperand(1);
6367 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
6368 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
6369
6370 // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
6371 if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
6372 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
6373 N0.getOperand(0), N1.getOperand(0));
6374 return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
6375 }
6376
6377 // Don't try to fold this node if it requires introducing a
6378 // build vector of all zeros that might be illegal at this stage.
6379 ShOp = N0.getOperand(0);
6380 if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
6381 ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
6382
6383 // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
6384 if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
6385 SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
6386 N1.getOperand(1));
6387 return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
6388 }
6389 }
6390
6391 return SDValue();
6392}
6393
6394/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
6395SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
6396 const SDLoc &DL) {
6397 SDValue LL, LR, RL, RR, N0CC, N1CC;
6398 if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
6399 !isSetCCEquivalent(N1, RL, RR, N1CC))
6400 return SDValue();
6401
6402 assert(N0.getValueType() == N1.getValueType() &&
6403 "Unexpected operand types for bitwise logic op");
6404 assert(LL.getValueType() == LR.getValueType() &&
6405 RL.getValueType() == RR.getValueType() &&
6406 "Unexpected operand types for setcc");
6407
6408 // If we're here post-legalization or the logic op type is not i1, the logic
6409 // op type must match a setcc result type. Also, all folds require new
6410 // operations on the left and right operands, so those types must match.
6411 EVT VT = N0.getValueType();
6412 EVT OpVT = LL.getValueType();
6413 if (LegalOperations || VT.getScalarType() != MVT::i1)
6414 if (VT != getSetCCResultType(OpVT))
6415 return SDValue();
6416 if (OpVT != RL.getValueType())
6417 return SDValue();
6418
6419 ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
6420 ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
6421 bool IsInteger = OpVT.isInteger();
6422 if (LR == RR && CC0 == CC1 && IsInteger) {
6423 bool IsZero = isNullOrNullSplat(LR);
6424 bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
6425
6426 // All bits clear?
6427 bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
6428 // All sign bits clear?
6429 bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
6430 // Any bits set?
6431 bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
6432 // Any sign bits set?
6433 bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
6434
6435 // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
6436 // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
6437 // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
6438 // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
6439 if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
6440 SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
6441 AddToWorklist(Or.getNode());
6442 return DAG.getSetCC(DL, VT, Or, LR, CC1);
6443 }
6444
6445 // All bits set?
6446 bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
6447 // All sign bits set?
6448 bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
6449 // Any bits clear?
6450 bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
6451 // Any sign bits clear?
6452 bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
6453
6454 // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
6455 // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
6456 // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
6457 // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
6458 if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
6459 SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
6460 AddToWorklist(And.getNode());
6461 return DAG.getSetCC(DL, VT, And, LR, CC1);
6462 }
6463 }
6464
6465 // TODO: What is the 'or' equivalent of this fold?
6466 // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
6467 if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
6468 IsInteger && CC0 == ISD::SETNE &&
6469 ((isNullConstant(LR) && isAllOnesConstant(RR)) ||
6470 (isAllOnesConstant(LR) && isNullConstant(RR)))) {
6471 SDValue One = DAG.getConstant(1, DL, OpVT);
6472 SDValue Two = DAG.getConstant(2, DL, OpVT);
6473 SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
6474 AddToWorklist(Add.getNode());
6475 return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
6476 }
6477
6478 // Try more general transforms if the predicates match and the only user of
6479 // the compares is the 'and' or 'or'.
6480 if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
6481 N0.hasOneUse() && N1.hasOneUse()) {
6482 // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
6483 // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
6484 if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
6485 SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
6486 SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
6487 SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
6488 SDValue Zero = DAG.getConstant(0, DL, OpVT);
6489 return DAG.getSetCC(DL, VT, Or, Zero, CC1);
6490 }
6491
6492 // Turn compare of constants whose difference is 1 bit into add+and+setcc.
6493 if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
6494 // Match a shared variable operand and 2 non-opaque constant operands.
6495 auto MatchDiffPow2 = [&](ConstantSDNode *C0, ConstantSDNode *C1) {
6496 // The difference of the constants must be a single bit.
6497 const APInt &CMax =
6498 APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue());
6499 const APInt &CMin =
6500 APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue());
6501 return !C0->isOpaque() && !C1->isOpaque() && (CMax - CMin).isPowerOf2();
6502 };
6503 if (LL == RL && ISD::matchBinaryPredicate(LR, RR, MatchDiffPow2)) {
6504 // and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) -->
6505 // setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq
6506 SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR);
6507 SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR);
6508 SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min);
6509 SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min);
6510 SDValue Mask = DAG.getNOT(DL, Diff, OpVT);
6511 SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask);
6512 SDValue Zero = DAG.getConstant(0, DL, OpVT);
6513 return DAG.getSetCC(DL, VT, And, Zero, CC0);
6514 }
6515 }
6516 }
6517
6518 // Canonicalize equivalent operands to LL == RL.
6519 if (LL == RR && LR == RL) {
6521 std::swap(RL, RR);
6522 }
6523
6524 // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
6525 // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
6526 if (LL == RL && LR == RR) {
6527 ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT)
6528 : ISD::getSetCCOrOperation(CC0, CC1, OpVT);
6529 if (NewCC != ISD::SETCC_INVALID &&
6530 (!LegalOperations ||
6531 (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
6532 TLI.isOperationLegal(ISD::SETCC, OpVT))))
6533 return DAG.getSetCC(DL, VT, LL, LR, NewCC);
6534 }
6535
6536 return SDValue();
6537}
6538
6539static bool arebothOperandsNotSNan(SDValue Operand1, SDValue Operand2,
6540 SelectionDAG &DAG) {
6541 return DAG.isKnownNeverSNaN(Operand2) && DAG.isKnownNeverSNaN(Operand1);
6542}
6543
6544static bool arebothOperandsNotNan(SDValue Operand1, SDValue Operand2,
6545 SelectionDAG &DAG) {
6546 return DAG.isKnownNeverNaN(Operand2) && DAG.isKnownNeverNaN(Operand1);
6547}
6548
6549// FIXME: use FMINIMUMNUM if possible, such as for RISC-V.
6550static unsigned getMinMaxOpcodeForFP(SDValue Operand1, SDValue Operand2,
6551 ISD::CondCode CC, unsigned OrAndOpcode,
6552 SelectionDAG &DAG,
6553 bool isFMAXNUMFMINNUM_IEEE,
6554 bool isFMAXNUMFMINNUM) {
6555 // The optimization cannot be applied for all the predicates because
6556 // of the way FMINNUM/FMAXNUM and FMINNUM_IEEE/FMAXNUM_IEEE handle
6557 // NaNs. For FMINNUM_IEEE/FMAXNUM_IEEE, the optimization cannot be
6558 // applied at all if one of the operands is a signaling NaN.
6559
6560 // It is safe to use FMINNUM_IEEE/FMAXNUM_IEEE if all the operands
6561 // are non NaN values.
6562 if (((CC == ISD::SETLT || CC == ISD::SETLE) && (OrAndOpcode == ISD::OR)) ||
6563 ((CC == ISD::SETGT || CC == ISD::SETGE) && (OrAndOpcode == ISD::AND))) {
6564 return arebothOperandsNotNan(Operand1, Operand2, DAG) &&
6565 isFMAXNUMFMINNUM_IEEE
6566 ? ISD::FMINNUM_IEEE
6568 }
6569
6570 if (((CC == ISD::SETGT || CC == ISD::SETGE) && (OrAndOpcode == ISD::OR)) ||
6571 ((CC == ISD::SETLT || CC == ISD::SETLE) && (OrAndOpcode == ISD::AND))) {
6572 return arebothOperandsNotNan(Operand1, Operand2, DAG) &&
6573 isFMAXNUMFMINNUM_IEEE
6574 ? ISD::FMAXNUM_IEEE
6576 }
6577
6578 // Both FMINNUM/FMAXNUM and FMINNUM_IEEE/FMAXNUM_IEEE handle quiet
6579 // NaNs in the same way. But, FMINNUM/FMAXNUM and FMINNUM_IEEE/
6580 // FMAXNUM_IEEE handle signaling NaNs differently. If we cannot prove
6581 // that there are not any sNaNs, then the optimization is not valid
6582 // for FMINNUM_IEEE/FMAXNUM_IEEE. In the presence of sNaNs, we apply
6583 // the optimization using FMINNUM/FMAXNUM for the following cases. If
6584 // we can prove that we do not have any sNaNs, then we can do the
6585 // optimization using FMINNUM_IEEE/FMAXNUM_IEEE for the following
6586 // cases.
6587 if (((CC == ISD::SETOLT || CC == ISD::SETOLE) && (OrAndOpcode == ISD::OR)) ||
6588 ((CC == ISD::SETUGT || CC == ISD::SETUGE) && (OrAndOpcode == ISD::AND))) {
6589 return isFMAXNUMFMINNUM ? ISD::FMINNUM
6590 : arebothOperandsNotSNan(Operand1, Operand2, DAG) &&
6591 isFMAXNUMFMINNUM_IEEE
6592 ? ISD::FMINNUM_IEEE
6594 }
6595
6596 if (((CC == ISD::SETOGT || CC == ISD::SETOGE) && (OrAndOpcode == ISD::OR)) ||
6597 ((CC == ISD::SETULT || CC == ISD::SETULE) && (OrAndOpcode == ISD::AND))) {
6598 return isFMAXNUMFMINNUM ? ISD::FMAXNUM
6599 : arebothOperandsNotSNan(Operand1, Operand2, DAG) &&
6600 isFMAXNUMFMINNUM_IEEE
6601 ? ISD::FMAXNUM_IEEE
6603 }
6604
6605 return ISD::DELETED_NODE;
6606}
6607
6610 assert(
6611 (LogicOp->getOpcode() == ISD::AND || LogicOp->getOpcode() == ISD::OR) &&
6612 "Invalid Op to combine SETCC with");
6613
6614 // TODO: Search past casts/truncates.
6615 SDValue LHS = LogicOp->getOperand(0);
6616 SDValue RHS = LogicOp->getOperand(1);
6617 if (LHS->getOpcode() != ISD::SETCC || RHS->getOpcode() != ISD::SETCC ||
6618 !LHS->hasOneUse() || !RHS->hasOneUse())
6619 return SDValue();
6620
6621 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6623 LogicOp, LHS.getNode(), RHS.getNode());
6624
6625 SDValue LHS0 = LHS->getOperand(0);
6626 SDValue RHS0 = RHS->getOperand(0);
6627 SDValue LHS1 = LHS->getOperand(1);
6628 SDValue RHS1 = RHS->getOperand(1);
6629 // TODO: We don't actually need a splat here, for vectors we just need the
6630 // invariants to hold for each element.
6631 auto *LHS1C = isConstOrConstSplat(LHS1);
6632 auto *RHS1C = isConstOrConstSplat(RHS1);
6633 ISD::CondCode CCL = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
6634 ISD::CondCode CCR = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
6635 EVT VT = LogicOp->getValueType(0);
6636 EVT OpVT = LHS0.getValueType();
6637 SDLoc DL(LogicOp);
6638
6639 // Check if the operands of an and/or operation are comparisons and if they
6640 // compare against the same value. Replace the and/or-cmp-cmp sequence with
6641 // min/max cmp sequence. If LHS1 is equal to RHS1, then the or-cmp-cmp
6642 // sequence will be replaced with min-cmp sequence:
6643 // (LHS0 < LHS1) | (RHS0 < RHS1) -> min(LHS0, RHS0) < LHS1
6644 // and and-cmp-cmp will be replaced with max-cmp sequence:
6645 // (LHS0 < LHS1) & (RHS0 < RHS1) -> max(LHS0, RHS0) < LHS1
6646 // The optimization does not work for `==` or `!=` .
6647 // The two comparisons should have either the same predicate or the
6648 // predicate of one of the comparisons is the opposite of the other one.
6649 bool isFMAXNUMFMINNUM_IEEE = TLI.isOperationLegal(ISD::FMAXNUM_IEEE, OpVT) &&
6650 TLI.isOperationLegal(ISD::FMINNUM_IEEE, OpVT);
6651 bool isFMAXNUMFMINNUM = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, OpVT) &&
6652 TLI.isOperationLegalOrCustom(ISD::FMINNUM, OpVT);
6653 if (((OpVT.isInteger() && TLI.isOperationLegal(ISD::UMAX, OpVT) &&
6654 TLI.isOperationLegal(ISD::SMAX, OpVT) &&
6655 TLI.isOperationLegal(ISD::UMIN, OpVT) &&
6656 TLI.isOperationLegal(ISD::SMIN, OpVT)) ||
6657 (OpVT.isFloatingPoint() &&
6658 (isFMAXNUMFMINNUM_IEEE || isFMAXNUMFMINNUM))) &&
6660 CCL != ISD::SETFALSE && CCL != ISD::SETO && CCL != ISD::SETUO &&
6661 CCL != ISD::SETTRUE &&
6662 (CCL == CCR || CCL == ISD::getSetCCSwappedOperands(CCR))) {
6663
6664 SDValue CommonValue, Operand1, Operand2;
6666 if (CCL == CCR) {
6667 if (LHS0 == RHS0) {
6668 CommonValue = LHS0;
6669 Operand1 = LHS1;
6670 Operand2 = RHS1;
6672 } else if (LHS1 == RHS1) {
6673 CommonValue = LHS1;
6674 Operand1 = LHS0;
6675 Operand2 = RHS0;
6676 CC = CCL;
6677 }
6678 } else {
6679 assert(CCL == ISD::getSetCCSwappedOperands(CCR) && "Unexpected CC");
6680 if (LHS0 == RHS1) {
6681 CommonValue = LHS0;
6682 Operand1 = LHS1;
6683 Operand2 = RHS0;
6684 CC = CCR;
6685 } else if (RHS0 == LHS1) {
6686 CommonValue = LHS1;
6687 Operand1 = LHS0;
6688 Operand2 = RHS1;
6689 CC = CCL;
6690 }
6691 }
6692
6693 // Don't do this transform for sign bit tests. Let foldLogicOfSetCCs
6694 // handle it using OR/AND.
6695 if (CC == ISD::SETLT && isNullOrNullSplat(CommonValue))
6696 CC = ISD::SETCC_INVALID;
6697 else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CommonValue))
6698 CC = ISD::SETCC_INVALID;
6699
6700 if (CC != ISD::SETCC_INVALID) {
6701 unsigned NewOpcode = ISD::DELETED_NODE;
6702 bool IsSigned = isSignedIntSetCC(CC);
6703 if (OpVT.isInteger()) {
6704 bool IsLess = (CC == ISD::SETLE || CC == ISD::SETULE ||
6705 CC == ISD::SETLT || CC == ISD::SETULT);
6706 bool IsOr = (LogicOp->getOpcode() == ISD::OR);
6707 if (IsLess == IsOr)
6708 NewOpcode = IsSigned ? ISD::SMIN : ISD::UMIN;
6709 else
6710 NewOpcode = IsSigned ? ISD::SMAX : ISD::UMAX;
6711 } else if (OpVT.isFloatingPoint())
6712 NewOpcode =
6713 getMinMaxOpcodeForFP(Operand1, Operand2, CC, LogicOp->getOpcode(),
6714 DAG, isFMAXNUMFMINNUM_IEEE, isFMAXNUMFMINNUM);
6715
6716 if (NewOpcode != ISD::DELETED_NODE) {
6717 SDValue MinMaxValue =
6718 DAG.getNode(NewOpcode, DL, OpVT, Operand1, Operand2);
6719 return DAG.getSetCC(DL, VT, MinMaxValue, CommonValue, CC);
6720 }
6721 }
6722 }
6723
6724 if (LHS0 == LHS1 && RHS0 == RHS1 && CCL == CCR &&
6725 LHS0.getValueType() == RHS0.getValueType() &&
6726 ((LogicOp->getOpcode() == ISD::AND && CCL == ISD::SETO) ||
6727 (LogicOp->getOpcode() == ISD::OR && CCL == ISD::SETUO)))
6728 return DAG.getSetCC(DL, VT, LHS0, RHS0, CCL);
6729
6730 if (TargetPreference == AndOrSETCCFoldKind::None)
6731 return SDValue();
6732
6733 if (CCL == CCR &&
6734 CCL == (LogicOp->getOpcode() == ISD::AND ? ISD::SETNE : ISD::SETEQ) &&
6735 LHS0 == RHS0 && LHS1C && RHS1C && OpVT.isInteger()) {
6736 const APInt &APLhs = LHS1C->getAPIntValue();
6737 const APInt &APRhs = RHS1C->getAPIntValue();
6738
6739 // Preference is to use ISD::ABS or we already have an ISD::ABS (in which
6740 // case this is just a compare).
6741 if (APLhs == (-APRhs) &&
6742 ((TargetPreference & AndOrSETCCFoldKind::ABS) ||
6743 DAG.doesNodeExist(ISD::ABS, DAG.getVTList(OpVT), {LHS0}))) {
6744 const APInt &C = APLhs.isNegative() ? APRhs : APLhs;
6745 // (icmp eq A, C) | (icmp eq A, -C)
6746 // -> (icmp eq Abs(A), C)
6747 // (icmp ne A, C) & (icmp ne A, -C)
6748 // -> (icmp ne Abs(A), C)
6749 SDValue AbsOp = DAG.getNode(ISD::ABS, DL, OpVT, LHS0);
6750 return DAG.getNode(ISD::SETCC, DL, VT, AbsOp,
6751 DAG.getConstant(C, DL, OpVT), LHS.getOperand(2));
6752 } else if (TargetPreference &
6754
6755 // AndOrSETCCFoldKind::AddAnd:
6756 // A == C0 | A == C1
6757 // IF IsPow2(smax(C0, C1)-smin(C0, C1))
6758 // -> ((A - smin(C0, C1)) & ~(smax(C0, C1)-smin(C0, C1))) == 0
6759 // A != C0 & A != C1
6760 // IF IsPow2(smax(C0, C1)-smin(C0, C1))
6761 // -> ((A - smin(C0, C1)) & ~(smax(C0, C1)-smin(C0, C1))) != 0
6762
6763 // AndOrSETCCFoldKind::NotAnd:
6764 // A == C0 | A == C1
6765 // IF smax(C0, C1) == -1 AND IsPow2(smax(C0, C1) - smin(C0, C1))
6766 // -> ~A & smin(C0, C1) == 0
6767 // A != C0 & A != C1
6768 // IF smax(C0, C1) == -1 AND IsPow2(smax(C0, C1) - smin(C0, C1))
6769 // -> ~A & smin(C0, C1) != 0
6770
6771 const APInt &MaxC = APIntOps::smax(APRhs, APLhs);
6772 const APInt &MinC = APIntOps::smin(APRhs, APLhs);
6773 APInt Dif = MaxC - MinC;
6774 if (!Dif.isZero() && Dif.isPowerOf2()) {
6775 if (MaxC.isAllOnes() &&
6776 (TargetPreference & AndOrSETCCFoldKind::NotAnd)) {
6777 SDValue NotOp = DAG.getNOT(DL, LHS0, OpVT);
6778 SDValue AndOp = DAG.getNode(ISD::AND, DL, OpVT, NotOp,
6779 DAG.getConstant(MinC, DL, OpVT));
6780 return DAG.getNode(ISD::SETCC, DL, VT, AndOp,
6781 DAG.getConstant(0, DL, OpVT), LHS.getOperand(2));
6782 } else if (TargetPreference & AndOrSETCCFoldKind::AddAnd) {
6783
6784 SDValue AddOp = DAG.getNode(ISD::ADD, DL, OpVT, LHS0,
6785 DAG.getConstant(-MinC, DL, OpVT));
6786 SDValue AndOp = DAG.getNode(ISD::AND, DL, OpVT, AddOp,
6787 DAG.getConstant(~Dif, DL, OpVT));
6788 return DAG.getNode(ISD::SETCC, DL, VT, AndOp,
6789 DAG.getConstant(0, DL, OpVT), LHS.getOperand(2));
6790 }
6791 }
6792 }
6793 }
6794
6795 return SDValue();
6796}
6797
6798// Combine `(select c, (X & 1), 0)` -> `(and (zext c), X)`.
6799// We canonicalize to the `select` form in the middle end, but the `and` form
6800// gets better codegen and all tested targets (arm, x86, riscv)
6802 const SDLoc &DL, SelectionDAG &DAG) {
6803 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6804 if (!isNullConstant(F))
6805 return SDValue();
6806
6807 EVT CondVT = Cond.getValueType();
6808 if (TLI.getBooleanContents(CondVT) !=
6810 return SDValue();
6811
6812 if (T.getOpcode() != ISD::AND)
6813 return SDValue();
6814
6815 if (!isOneConstant(T.getOperand(1)))
6816 return SDValue();
6817
6818 EVT OpVT = T.getValueType();
6819
6820 SDValue CondMask =
6821 OpVT == CondVT ? Cond : DAG.getBoolExtOrTrunc(Cond, DL, OpVT, CondVT);
6822 return DAG.getNode(ISD::AND, DL, OpVT, CondMask, T.getOperand(0));
6823}
6824
6825/// This contains all DAGCombine rules which reduce two values combined by
6826/// an And operation to a single value. This makes them reusable in the context
6827/// of visitSELECT(). Rules involving constants are not included as
6828/// visitSELECT() already handles those cases.
6829SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
6830 EVT VT = N1.getValueType();
6831 SDLoc DL(N);
6832
6833 // fold (and x, undef) -> 0
6834 if (N0.isUndef() || N1.isUndef())
6835 return DAG.getConstant(0, DL, VT);
6836
6837 if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
6838 return V;
6839
6840 // Canonicalize:
6841 // and(x, add) -> and(add, x)
6842 if (N1.getOpcode() == ISD::ADD)
6843 std::swap(N0, N1);
6844
6845 // TODO: Rewrite this to return a new 'AND' instead of using CombineTo.
6846 if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
6847 VT.isScalarInteger() && VT.getSizeInBits() <= 64 && N0->hasOneUse()) {
6848 if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
6849 if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
6850 // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
6851 // immediate for an add, but it is legal if its top c2 bits are set,
6852 // transform the ADD so the immediate doesn't need to be materialized
6853 // in a register.
6854 APInt ADDC = ADDI->getAPIntValue();
6855 APInt SRLC = SRLI->getAPIntValue();
6856 if (ADDC.getSignificantBits() <= 64 && SRLC.ult(VT.getSizeInBits()) &&
6857 !TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
6859 SRLC.getZExtValue());
6860 if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
6861 ADDC |= Mask;
6862 if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
6863 SDLoc DL0(N0);
6864 SDValue NewAdd =
6865 DAG.getNode(ISD::ADD, DL0, VT,
6866 N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
6867 CombineTo(N0.getNode(), NewAdd);
6868 // Return N so it doesn't get rechecked!
6869 return SDValue(N, 0);
6870 }
6871 }
6872 }
6873 }
6874 }
6875 }
6876
6877 return SDValue();
6878}
6879
6880bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
6881 EVT LoadResultTy, EVT &ExtVT) {
6882 if (!AndC->getAPIntValue().isMask())
6883 return false;
6884
6885 unsigned ActiveBits = AndC->getAPIntValue().countr_one();
6886
6887 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
6888 EVT LoadedVT = LoadN->getMemoryVT();
6889
6890 if (ExtVT == LoadedVT &&
6891 (!LegalOperations ||
6892 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
6893 // ZEXTLOAD will match without needing to change the size of the value being
6894 // loaded.
6895 return true;
6896 }
6897
6898 // Do not change the width of a volatile or atomic loads.
6899 if (!LoadN->isSimple())
6900 return false;
6901
6902 // Do not generate loads of non-round integer types since these can
6903 // be expensive (and would be wrong if the type is not byte sized).
6904 if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
6905 return false;
6906
6907 if (LegalOperations &&
6908 !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
6909 return false;
6910
6911 if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT, /*ByteOffset=*/0))
6912 return false;
6913
6914 return true;
6915}
6916
6917bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
6918 ISD::LoadExtType ExtType, EVT &MemVT,
6919 unsigned ShAmt) {
6920 if (!LDST)
6921 return false;
6922
6923 // Only allow byte offsets.
6924 if (ShAmt % 8)
6925 return false;
6926 const unsigned ByteShAmt = ShAmt / 8;
6927
6928 // Do not generate loads of non-round integer types since these can
6929 // be expensive (and would be wrong if the type is not byte sized).
6930 if (!MemVT.isRound())
6931 return false;
6932
6933 // Don't change the width of a volatile or atomic loads.
6934 if (!LDST->isSimple())
6935 return false;
6936
6937 EVT LdStMemVT = LDST->getMemoryVT();
6938
6939 // Bail out when changing the scalable property, since we can't be sure that
6940 // we're actually narrowing here.
6941 if (LdStMemVT.isScalableVector() != MemVT.isScalableVector())
6942 return false;
6943
6944 // Verify that we are actually reducing a load width here.
6945 if (LdStMemVT.bitsLT(MemVT))
6946 return false;
6947
6948 // Ensure that this isn't going to produce an unsupported memory access.
6949 if (ShAmt) {
6950 const Align LDSTAlign = LDST->getAlign();
6951 const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt);
6952 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
6953 LDST->getAddressSpace(), NarrowAlign,
6954 LDST->getMemOperand()->getFlags()))
6955 return false;
6956 }
6957
6958 // It's not possible to generate a constant of extended or untyped type.
6959 EVT PtrType = LDST->getBasePtr().getValueType();
6960 if (PtrType == MVT::Untyped || PtrType.isExtended())
6961 return false;
6962
6963 if (isa<LoadSDNode>(LDST)) {
6964 LoadSDNode *Load = cast<LoadSDNode>(LDST);
6965 // Don't transform one with multiple uses, this would require adding a new
6966 // load.
6967 if (!SDValue(Load, 0).hasOneUse())
6968 return false;
6969
6970 if (LegalOperations &&
6971 !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
6972 return false;
6973
6974 // For the transform to be legal, the load must produce only two values
6975 // (the value loaded and the chain). Don't transform a pre-increment
6976 // load, for example, which produces an extra value. Otherwise the
6977 // transformation is not equivalent, and the downstream logic to replace
6978 // uses gets things wrong.
6979 if (Load->getNumValues() > 2)
6980 return false;
6981
6982 // If the load that we're shrinking is an extload and we're not just
6983 // discarding the extension we can't simply shrink the load. Bail.
6984 // TODO: It would be possible to merge the extensions in some cases.
6985 if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
6986 Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
6987 return false;
6988
6989 if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT, ByteShAmt))
6990 return false;
6991 } else {
6992 assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
6993 StoreSDNode *Store = cast<StoreSDNode>(LDST);
6994 // Can't write outside the original store
6995 if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
6996 return false;
6997
6998 if (LegalOperations &&
6999 !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
7000 return false;
7001 }
7002 return true;
7003}
7004
7005bool DAGCombiner::SearchForAndLoads(SDNode *N,
7006 SmallVectorImpl<LoadSDNode*> &Loads,
7007 SmallPtrSetImpl<SDNode*> &NodesWithConsts,
7008 ConstantSDNode *Mask,
7009 SDNode *&NodeToMask) {
7010 // Recursively search for the operands, looking for loads which can be
7011 // narrowed.
7012 for (SDValue Op : N->op_values()) {
7013 if (Op.getValueType().isVector())
7014 return false;
7015
7016 // Some constants may need fixing up later if they are too large.
7017 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
7018 assert(ISD::isBitwiseLogicOp(N->getOpcode()) &&
7019 "Expected bitwise logic operation");
7020 if (!C->getAPIntValue().isSubsetOf(Mask->getAPIntValue()))
7021 NodesWithConsts.insert(N);
7022 continue;
7023 }
7024
7025 if (!Op.hasOneUse())
7026 return false;
7027
7028 switch(Op.getOpcode()) {
7029 case ISD::LOAD: {
7030 auto *Load = cast<LoadSDNode>(Op);
7031 EVT ExtVT;
7032 if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
7033 isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
7034
7035 // ZEXTLOAD is already small enough.
7036 if (Load->getExtensionType() == ISD::ZEXTLOAD &&
7037 ExtVT.bitsGE(Load->getMemoryVT()))
7038 continue;
7039
7040 // Use LE to convert equal sized loads to zext.
7041 if (ExtVT.bitsLE(Load->getMemoryVT()))
7042 Loads.push_back(Load);
7043
7044 continue;
7045 }
7046 return false;
7047 }
7048 case ISD::ZERO_EXTEND:
7049 case ISD::AssertZext: {
7050 unsigned ActiveBits = Mask->getAPIntValue().countr_one();
7051 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
7052 EVT VT = Op.getOpcode() == ISD::AssertZext ?
7053 cast<VTSDNode>(Op.getOperand(1))->getVT() :
7054 Op.getOperand(0).getValueType();
7055
7056 // We can accept extending nodes if the mask is wider or an equal
7057 // width to the original type.
7058 if (ExtVT.bitsGE(VT))
7059 continue;
7060 break;
7061 }
7062 case ISD::OR:
7063 case ISD::XOR:
7064 case ISD::AND:
7065 if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
7066 NodeToMask))
7067 return false;
7068 continue;
7069 }
7070
7071 // Allow one node which will masked along with any loads found.
7072 if (NodeToMask)
7073 return false;
7074
7075 // Also ensure that the node to be masked only produces one data result.
7076 NodeToMask = Op.getNode();
7077 if (NodeToMask->getNumValues() > 1) {
7078 bool HasValue = false;
7079 for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
7080 MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
7081 if (VT != MVT::Glue && VT != MVT::Other) {
7082 if (HasValue) {
7083 NodeToMask = nullptr;
7084 return false;
7085 }
7086 HasValue = true;
7087 }
7088 }
7089 assert(HasValue && "Node to be masked has no data result?");
7090 }
7091 }
7092 return true;
7093}
7094
7095bool DAGCombiner::BackwardsPropagateMask(SDNode *N) {
7096 auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
7097 if (!Mask)
7098 return false;
7099
7100 if (!Mask->getAPIntValue().isMask())
7101 return false;
7102
7103 // No need to do anything if the and directly uses a load.
7104 if (isa<LoadSDNode>(N->getOperand(0)))
7105 return false;
7106
7108 SmallPtrSet<SDNode*, 2> NodesWithConsts;
7109 SDNode *FixupNode = nullptr;
7110 if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
7111 if (Loads.empty())
7112 return false;
7113
7114 LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
7115 SDValue MaskOp = N->getOperand(1);
7116
7117 // If it exists, fixup the single node we allow in the tree that needs
7118 // masking.
7119 if (FixupNode) {
7120 LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
7121 SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
7122 FixupNode->getValueType(0),
7123 SDValue(FixupNode, 0), MaskOp);
7124 DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
7125 if (And.getOpcode() == ISD ::AND)
7126 DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
7127 }
7128
7129 // Narrow any constants that need it.
7130 for (auto *LogicN : NodesWithConsts) {
7131 SDValue Op0 = LogicN->getOperand(0);
7132 SDValue Op1 = LogicN->getOperand(1);
7133
7134 // We only need to fix AND if both inputs are constants. And we only need
7135 // to fix one of the constants.
7136 if (LogicN->getOpcode() == ISD::AND &&
7138 continue;
7139
7140 if (isa<ConstantSDNode>(Op0) && LogicN->getOpcode() != ISD::AND)
7141 Op0 =
7142 DAG.getNode(ISD::AND, SDLoc(Op0), Op0.getValueType(), Op0, MaskOp);
7143
7144 if (isa<ConstantSDNode>(Op1))
7145 Op1 =
7146 DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), Op1, MaskOp);
7147
7148 if (isa<ConstantSDNode>(Op0) && !isa<ConstantSDNode>(Op1))
7149 std::swap(Op0, Op1);
7150
7151 DAG.UpdateNodeOperands(LogicN, Op0, Op1);
7152 }
7153
7154 // Create narrow loads.
7155 for (auto *Load : Loads) {
7156 LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
7157 SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
7158 SDValue(Load, 0), MaskOp);
7159 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
7160 if (And.getOpcode() == ISD ::AND)
7161 And = SDValue(
7162 DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
7163 SDValue NewLoad = reduceLoadWidth(And.getNode());
7164 assert(NewLoad &&
7165 "Shouldn't be masking the load if it can't be narrowed");
7166 CombineTo(Load, NewLoad, NewLoad.getValue(1));
7167 }
7168 DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
7169 return true;
7170 }
7171 return false;
7172}
7173
7174// Unfold
7175// x & (-1 'logical shift' y)
7176// To
7177// (x 'opposite logical shift' y) 'logical shift' y
7178// if it is better for performance.
7179SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
7180 assert(N->getOpcode() == ISD::AND);
7181
7182 SDValue N0 = N->getOperand(0);
7183 SDValue N1 = N->getOperand(1);
7184
7185 // Do we actually prefer shifts over mask?
7187 return SDValue();
7188
7189 // Try to match (-1 '[outer] logical shift' y)
7190 unsigned OuterShift;
7191 unsigned InnerShift; // The opposite direction to the OuterShift.
7192 SDValue Y; // Shift amount.
7193 auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
7194 if (!M.hasOneUse())
7195 return false;
7196 OuterShift = M->getOpcode();
7197 if (OuterShift == ISD::SHL)
7198 InnerShift = ISD::SRL;
7199 else if (OuterShift == ISD::SRL)
7200 InnerShift = ISD::SHL;
7201 else
7202 return false;
7203 if (!isAllOnesConstant(M->getOperand(0)))
7204 return false;
7205 Y = M->getOperand(1);
7206 return true;
7207 };
7208
7209 SDValue X;
7210 if (matchMask(N1))
7211 X = N0;
7212 else if (matchMask(N0))
7213 X = N1;
7214 else
7215 return SDValue();
7216
7217 SDLoc DL(N);
7218 EVT VT = N->getValueType(0);
7219
7220 // tmp = x 'opposite logical shift' y
7221 SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
7222 // ret = tmp 'logical shift' y
7223 SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
7224
7225 return T1;
7226}
7227
7228/// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
7229/// For a target with a bit test, this is expected to become test + set and save
7230/// at least 1 instruction.
7232 assert(And->getOpcode() == ISD::AND && "Expected an 'and' op");
7233
7234 // Look through an optional extension.
7235 SDValue And0 = And->getOperand(0), And1 = And->getOperand(1);
7236 if (And0.getOpcode() == ISD::ANY_EXTEND && And0.hasOneUse())
7237 And0 = And0.getOperand(0);
7238 if (!isOneConstant(And1) || !And0.hasOneUse())
7239 return SDValue();
7240
7241 SDValue Src = And0;
7242
7243 // Attempt to find a 'not' op.
7244 // TODO: Should we favor test+set even without the 'not' op?
7245 bool FoundNot = false;
7246 if (isBitwiseNot(Src)) {
7247 FoundNot = true;
7248 Src = Src.getOperand(0);
7249
7250 // Look though an optional truncation. The source operand may not be the
7251 // same type as the original 'and', but that is ok because we are masking
7252 // off everything but the low bit.
7253 if (Src.getOpcode() == ISD::TRUNCATE && Src.hasOneUse())
7254 Src = Src.getOperand(0);
7255 }
7256
7257 // Match a shift-right by constant.
7258 if (Src.getOpcode() != ISD::SRL || !Src.hasOneUse())
7259 return SDValue();
7260
7261 // This is probably not worthwhile without a supported type.
7262 EVT SrcVT = Src.getValueType();
7263 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7264 if (!TLI.isTypeLegal(SrcVT))
7265 return SDValue();
7266
7267 // We might have looked through casts that make this transform invalid.
7268 unsigned BitWidth = SrcVT.getScalarSizeInBits();
7269 SDValue ShiftAmt = Src.getOperand(1);
7270 auto *ShiftAmtC = dyn_cast<ConstantSDNode>(ShiftAmt);
7271 if (!ShiftAmtC || !ShiftAmtC->getAPIntValue().ult(BitWidth))
7272 return SDValue();
7273
7274 // Set source to shift source.
7275 Src = Src.getOperand(0);
7276
7277 // Try again to find a 'not' op.
7278 // TODO: Should we favor test+set even with two 'not' ops?
7279 if (!FoundNot) {
7280 if (!isBitwiseNot(Src))
7281 return SDValue();
7282 Src = Src.getOperand(0);
7283 }
7284
7285 if (!TLI.hasBitTest(Src, ShiftAmt))
7286 return SDValue();
7287
7288 // Turn this into a bit-test pattern using mask op + setcc:
7289 // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
7290 // and (srl (not X), C)), 1 --> (and X, 1<<C) == 0
7291 SDLoc DL(And);
7292 SDValue X = DAG.getZExtOrTrunc(Src, DL, SrcVT);
7293 EVT CCVT =
7294 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7295 SDValue Mask = DAG.getConstant(
7296 APInt::getOneBitSet(BitWidth, ShiftAmtC->getZExtValue()), DL, SrcVT);
7297 SDValue NewAnd = DAG.getNode(ISD::AND, DL, SrcVT, X, Mask);
7298 SDValue Zero = DAG.getConstant(0, DL, SrcVT);
7299 SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
7300 return DAG.getZExtOrTrunc(Setcc, DL, And->getValueType(0));
7301}
7302
7303/// For targets that support usubsat, match a bit-hack form of that operation
7304/// that ends in 'and' and convert it.
7306 EVT VT = N->getValueType(0);
7307 unsigned BitWidth = VT.getScalarSizeInBits();
7308 APInt SignMask = APInt::getSignMask(BitWidth);
7309
7310 // (i8 X ^ 128) & (i8 X s>> 7) --> usubsat X, 128
7311 // (i8 X + 128) & (i8 X s>> 7) --> usubsat X, 128
7312 // xor/add with SMIN (signmask) are logically equivalent.
7313 SDValue X;
7314 if (!sd_match(N, m_And(m_OneUse(m_Xor(m_Value(X), m_SpecificInt(SignMask))),
7316 m_SpecificInt(BitWidth - 1))))) &&
7319 m_SpecificInt(BitWidth - 1))))))
7320 return SDValue();
7321
7322 return DAG.getNode(ISD::USUBSAT, DL, VT, X,
7323 DAG.getConstant(SignMask, DL, VT));
7324}
7325
7326/// Given a bitwise logic operation N with a matching bitwise logic operand,
7327/// fold a pattern where 2 of the source operands are identically shifted
7328/// values. For example:
7329/// ((X0 << Y) | Z) | (X1 << Y) --> ((X0 | X1) << Y) | Z
7331 SelectionDAG &DAG) {
7332 unsigned LogicOpcode = N->getOpcode();
7333 assert(ISD::isBitwiseLogicOp(LogicOpcode) &&
7334 "Expected bitwise logic operation");
7335
7336 if (!LogicOp.hasOneUse() || !ShiftOp.hasOneUse())
7337 return SDValue();
7338
7339 // Match another bitwise logic op and a shift.
7340 unsigned ShiftOpcode = ShiftOp.getOpcode();
7341 if (LogicOp.getOpcode() != LogicOpcode ||
7342 !(ShiftOpcode == ISD::SHL || ShiftOpcode == ISD::SRL ||
7343 ShiftOpcode == ISD::SRA))
7344 return SDValue();
7345
7346 // Match another shift op inside the first logic operand. Handle both commuted
7347 // possibilities.
7348 // LOGIC (LOGIC (SH X0, Y), Z), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
7349 // LOGIC (LOGIC Z, (SH X0, Y)), (SH X1, Y) --> LOGIC (SH (LOGIC X0, X1), Y), Z
7350 SDValue X1 = ShiftOp.getOperand(0);
7351 SDValue Y = ShiftOp.getOperand(1);
7352 SDValue X0, Z;
7353 if (LogicOp.getOperand(0).getOpcode() == ShiftOpcode &&
7354 LogicOp.getOperand(0).getOperand(1) == Y) {
7355 X0 = LogicOp.getOperand(0).getOperand(0);
7356 Z = LogicOp.getOperand(1);
7357 } else if (LogicOp.getOperand(1).getOpcode() == ShiftOpcode &&
7358 LogicOp.getOperand(1).getOperand(1) == Y) {
7359 X0 = LogicOp.getOperand(1).getOperand(0);
7360 Z = LogicOp.getOperand(0);
7361 } else {
7362 return SDValue();
7363 }
7364
7365 EVT VT = N->getValueType(0);
7366 SDLoc DL(N);
7367 SDValue LogicX = DAG.getNode(LogicOpcode, DL, VT, X0, X1);
7368 SDValue NewShift = DAG.getNode(ShiftOpcode, DL, VT, LogicX, Y);
7369 return DAG.getNode(LogicOpcode, DL, VT, NewShift, Z);
7370}
7371
7372/// Given a tree of logic operations with shape like
7373/// (LOGIC (LOGIC (X, Y), LOGIC (Z, Y)))
7374/// try to match and fold shift operations with the same shift amount.
7375/// For example:
7376/// LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W) -->
7377/// --> LOGIC (SH (LOGIC X0, X1), Y), (LOGIC Z, W)
7379 SDValue RightHand, SelectionDAG &DAG) {
7380 unsigned LogicOpcode = N->getOpcode();
7381 assert(ISD::isBitwiseLogicOp(LogicOpcode) &&
7382 "Expected bitwise logic operation");
7383 if (LeftHand.getOpcode() != LogicOpcode ||
7384 RightHand.getOpcode() != LogicOpcode)
7385 return SDValue();
7386 if (!LeftHand.hasOneUse() || !RightHand.hasOneUse())
7387 return SDValue();
7388
7389 // Try to match one of following patterns:
7390 // LOGIC (LOGIC (SH X0, Y), Z), (LOGIC (SH X1, Y), W)
7391 // LOGIC (LOGIC (SH X0, Y), Z), (LOGIC W, (SH X1, Y))
7392 // Note that foldLogicOfShifts will handle commuted versions of the left hand
7393 // itself.
7394 SDValue CombinedShifts, W;
7395 SDValue R0 = RightHand.getOperand(0);
7396 SDValue R1 = RightHand.getOperand(1);
7397 if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R0, DAG)))
7398 W = R1;
7399 else if ((CombinedShifts = foldLogicOfShifts(N, LeftHand, R1, DAG)))
7400 W = R0;
7401 else
7402 return SDValue();
7403
7404 EVT VT = N->getValueType(0);
7405 SDLoc DL(N);
7406 return DAG.getNode(LogicOpcode, DL, VT, CombinedShifts, W);
7407}
7408
7409/// Fold "masked merge" expressions like `(m & x) | (~m & y)` and its DeMorgan
7410/// variant `(~m | x) & (m | y)` into the equivalent `((x ^ y) & m) ^ y)`
7411/// pattern. This is typically a better representation for targets without a
7412/// fused "and-not" operation.
7414 const TargetLowering &TLI, const SDLoc &DL) {
7415 // Note that masked-merge variants using XOR or ADD expressions are
7416 // normalized to OR by InstCombine so we only check for OR or AND.
7417 assert((Node->getOpcode() == ISD::OR || Node->getOpcode() == ISD::AND) &&
7418 "Must be called with ISD::OR or ISD::AND node");
7419
7420 // If the target supports and-not, don't fold this.
7421 if (TLI.hasAndNot(SDValue(Node, 0)))
7422 return SDValue();
7423
7424 SDValue M, X, Y;
7425
7426 if (sd_match(Node,
7428 m_OneUse(m_And(m_Deferred(M), m_Value(X))))) ||
7429 sd_match(Node,
7431 m_OneUse(m_Or(m_Deferred(M), m_Value(Y)))))) {
7432 EVT VT = M.getValueType();
7433 SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, X, Y);
7434 SDValue And = DAG.getNode(ISD::AND, DL, VT, Xor, M);
7435 return DAG.getNode(ISD::XOR, DL, VT, And, Y);
7436 }
7437 return SDValue();
7438}
7439
7440SDValue DAGCombiner::visitAND(SDNode *N) {
7441 SDValue N0 = N->getOperand(0);
7442 SDValue N1 = N->getOperand(1);
7443 EVT VT = N1.getValueType();
7444 SDLoc DL(N);
7445
7446 // x & x --> x
7447 if (N0 == N1)
7448 return N0;
7449
7450 // fold (and c1, c2) -> c1&c2
7451 if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, DL, VT, {N0, N1}))
7452 return C;
7453
7454 // canonicalize constant to RHS
7457 return DAG.getNode(ISD::AND, DL, VT, N1, N0);
7458
7459 if (areBitwiseNotOfEachother(N0, N1))
7460 return DAG.getConstant(APInt::getZero(VT.getScalarSizeInBits()), DL, VT);
7461
7462 // fold vector ops
7463 if (VT.isVector()) {
7464 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
7465 return FoldedVOp;
7466
7467 // fold (and x, 0) -> 0, vector edition
7469 // do not return N1, because undef node may exist in N1
7471 N1.getValueType());
7472
7473 // fold (and x, -1) -> x, vector edition
7475 return N0;
7476
7477 // fold (and (masked_load) (splat_vec (x, ...))) to zext_masked_load
7478 auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0);
7479 ConstantSDNode *Splat = isConstOrConstSplat(N1, true, true);
7480 if (MLoad && MLoad->getExtensionType() == ISD::EXTLOAD && Splat) {
7481 EVT LoadVT = MLoad->getMemoryVT();
7482 EVT ExtVT = VT;
7483 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) {
7484 // For this AND to be a zero extension of the masked load the elements
7485 // of the BuildVec must mask the bottom bits of the extended element
7486 // type
7487 uint64_t ElementSize =
7489 if (Splat->getAPIntValue().isMask(ElementSize)) {
7490 SDValue NewLoad = DAG.getMaskedLoad(
7491 ExtVT, DL, MLoad->getChain(), MLoad->getBasePtr(),
7492 MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(),
7493 LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(),
7494 ISD::ZEXTLOAD, MLoad->isExpandingLoad());
7495 bool LoadHasOtherUsers = !N0.hasOneUse();
7496 CombineTo(N, NewLoad);
7497 if (LoadHasOtherUsers)
7498 CombineTo(MLoad, NewLoad.getValue(0), NewLoad.getValue(1));
7499 return SDValue(N, 0);
7500 }
7501 }
7502 }
7503 }
7504
7505 // fold (and x, -1) -> x
7506 if (isAllOnesConstant(N1))
7507 return N0;
7508
7509 // if (and x, c) is known to be zero, return 0
7510 unsigned BitWidth = VT.getScalarSizeInBits();
7511 ConstantSDNode *N1C = isConstOrConstSplat(N1);
7513 return DAG.getConstant(0, DL, VT);
7514
7515 if (SDValue R = foldAndOrOfSETCC(N, DAG))
7516 return R;
7517
7518 if (SDValue NewSel = foldBinOpIntoSelect(N))
7519 return NewSel;
7520
7521 // reassociate and
7522 if (SDValue RAND = reassociateOps(ISD::AND, DL, N0, N1, N->getFlags()))
7523 return RAND;
7524
7525 // Fold and(vecreduce(x), vecreduce(y)) -> vecreduce(and(x, y))
7526 if (SDValue SD =
7527 reassociateReduction(ISD::VECREDUCE_AND, ISD::AND, DL, VT, N0, N1))
7528 return SD;
7529
7530 // fold (and (or x, C), D) -> D if (C & D) == D
7531 auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
7532 return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
7533 };
7534 if (N0.getOpcode() == ISD::OR &&
7535 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
7536 return N1;
7537
7538 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
7539 SDValue N0Op0 = N0.getOperand(0);
7540 EVT SrcVT = N0Op0.getValueType();
7541 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
7542 APInt Mask = ~N1C->getAPIntValue();
7543 Mask = Mask.trunc(SrcBitWidth);
7544
7545 // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
7546 if (DAG.MaskedValueIsZero(N0Op0, Mask))
7547 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0Op0);
7548
7549 // fold (and (any_ext V), c) -> (zero_ext (and (trunc V), c)) if profitable.
7550 if (N1C->getAPIntValue().countLeadingZeros() >= (BitWidth - SrcBitWidth) &&
7551 TLI.isTruncateFree(VT, SrcVT) && TLI.isZExtFree(SrcVT, VT) &&
7552 TLI.isTypeDesirableForOp(ISD::AND, SrcVT) &&
7553 TLI.isNarrowingProfitable(N, VT, SrcVT))
7554 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT,
7555 DAG.getNode(ISD::AND, DL, SrcVT, N0Op0,
7556 DAG.getZExtOrTrunc(N1, DL, SrcVT)));
7557 }
7558
7559 // fold (and (ext (and V, c1)), c2) -> (and (ext V), (and c1, (ext c2)))
7560 if (ISD::isExtOpcode(N0.getOpcode())) {
7561 unsigned ExtOpc = N0.getOpcode();
7562 SDValue N0Op0 = N0.getOperand(0);
7563 if (N0Op0.getOpcode() == ISD::AND &&
7564 (ExtOpc != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0Op0, VT)) &&
7565 N0->hasOneUse() && N0Op0->hasOneUse()) {
7566 if (SDValue NewExt = DAG.FoldConstantArithmetic(ExtOpc, DL, VT,
7567 {N0Op0.getOperand(1)})) {
7568 if (SDValue NewMask =
7569 DAG.FoldConstantArithmetic(ISD::AND, DL, VT, {N1, NewExt})) {
7570 return DAG.getNode(ISD::AND, DL, VT,
7571 DAG.getNode(ExtOpc, DL, VT, N0Op0.getOperand(0)),
7572 NewMask);
7573 }
7574 }
7575 }
7576 }
7577
7578 // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
7579 // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
7580 // already be zero by virtue of the width of the base type of the load.
7581 //
7582 // the 'X' node here can either be nothing or an extract_vector_elt to catch
7583 // more cases.
7584 if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7586 N0.getOperand(0).getOpcode() == ISD::LOAD &&
7587 N0.getOperand(0).getResNo() == 0) ||
7588 (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
7589 auto *Load =
7590 cast<LoadSDNode>((N0.getOpcode() == ISD::LOAD) ? N0 : N0.getOperand(0));
7591
7592 // Get the constant (if applicable) the zero'th operand is being ANDed with.
7593 // This can be a pure constant or a vector splat, in which case we treat the
7594 // vector as a scalar and use the splat value.
7595 APInt Constant = APInt::getZero(1);
7596 if (const ConstantSDNode *C = isConstOrConstSplat(
7597 N1, /*AllowUndefs=*/false, /*AllowTruncation=*/true)) {
7598 Constant = C->getAPIntValue();
7599 } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
7600 unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
7601 APInt SplatValue, SplatUndef;
7602 unsigned SplatBitSize;
7603 bool HasAnyUndefs;
7604 // Endianness should not matter here. Code below makes sure that we only
7605 // use the result if the SplatBitSize is a multiple of the vector element
7606 // size. And after that we AND all element sized parts of the splat
7607 // together. So the end result should be the same regardless of in which
7608 // order we do those operations.
7609 const bool IsBigEndian = false;
7610 bool IsSplat =
7611 Vector->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
7612 HasAnyUndefs, EltBitWidth, IsBigEndian);
7613
7614 // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
7615 // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
7616 if (IsSplat && (SplatBitSize % EltBitWidth) == 0) {
7617 // Undef bits can contribute to a possible optimisation if set, so
7618 // set them.
7619 SplatValue |= SplatUndef;
7620
7621 // The splat value may be something like "0x00FFFFFF", which means 0 for
7622 // the first vector value and FF for the rest, repeating. We need a mask
7623 // that will apply equally to all members of the vector, so AND all the
7624 // lanes of the constant together.
7625 Constant = APInt::getAllOnes(EltBitWidth);
7626 for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
7627 Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
7628 }
7629 }
7630
7631 // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
7632 // actually legal and isn't going to get expanded, else this is a false
7633 // optimisation.
7634 bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
7635 Load->getValueType(0),
7636 Load->getMemoryVT());
7637
7638 // Resize the constant to the same size as the original memory access before
7639 // extension. If it is still the AllOnesValue then this AND is completely
7640 // unneeded.
7641 Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
7642
7643 bool B;
7644 switch (Load->getExtensionType()) {
7645 default: B = false; break;
7646 case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
7647 case ISD::ZEXTLOAD:
7648 case ISD::NON_EXTLOAD: B = true; break;
7649 }
7650
7651 if (B && Constant.isAllOnes()) {
7652 // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
7653 // preserve semantics once we get rid of the AND.
7654 SDValue NewLoad(Load, 0);
7655
7656 // Fold the AND away. NewLoad may get replaced immediately.
7657 CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
7658
7659 if (Load->getExtensionType() == ISD::EXTLOAD) {
7660 NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
7661 Load->getValueType(0), SDLoc(Load),
7662 Load->getChain(), Load->getBasePtr(),
7663 Load->getOffset(), Load->getMemoryVT(),
7664 Load->getMemOperand());
7665 // Replace uses of the EXTLOAD with the new ZEXTLOAD.
7666 if (Load->getNumValues() == 3) {
7667 // PRE/POST_INC loads have 3 values.
7668 SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
7669 NewLoad.getValue(2) };
7670 CombineTo(Load, To, 3, true);
7671 } else {
7672 CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
7673 }
7674 }
7675
7676 return SDValue(N, 0); // Return N so it doesn't get rechecked!
7677 }
7678 }
7679
7680 // Try to convert a constant mask AND into a shuffle clear mask.
7681 if (VT.isVector())
7682 if (SDValue Shuffle = XformToShuffleWithZero(N))
7683 return Shuffle;
7684
7685 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
7686 return Combined;
7687
7688 if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() && N1C &&
7690 SDValue Ext = N0.getOperand(0);
7691 EVT ExtVT = Ext->getValueType(0);
7692 SDValue Extendee = Ext->getOperand(0);
7693
7694 unsigned ScalarWidth = Extendee.getValueType().getScalarSizeInBits();
7695 if (N1C->getAPIntValue().isMask(ScalarWidth) &&
7696 (!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, ExtVT))) {
7697 // (and (extract_subvector (zext|anyext|sext v) _) iN_mask)
7698 // => (extract_subvector (iN_zeroext v))
7699 SDValue ZeroExtExtendee =
7700 DAG.getNode(ISD::ZERO_EXTEND, DL, ExtVT, Extendee);
7701
7702 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ZeroExtExtendee,
7703 N0.getOperand(1));
7704 }
7705 }
7706
7707 // fold (and (masked_gather x)) -> (zext_masked_gather x)
7708 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
7709 EVT MemVT = GN0->getMemoryVT();
7710 EVT ScalarVT = MemVT.getScalarType();
7711
7712 if (SDValue(GN0, 0).hasOneUse() &&
7713 isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) &&
7715 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
7716 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
7717
7718 SDValue ZExtLoad = DAG.getMaskedGather(
7719 DAG.getVTList(VT, MVT::Other), MemVT, DL, Ops, GN0->getMemOperand(),
7720 GN0->getIndexType(), ISD::ZEXTLOAD);
7721
7722 CombineTo(N, ZExtLoad);
7723 AddToWorklist(ZExtLoad.getNode());
7724 // Avoid recheck of N.
7725 return SDValue(N, 0);
7726 }
7727 }
7728
7729 // fold (and (load x), 255) -> (zextload x, i8)
7730 // fold (and (extload x, i16), 255) -> (zextload x, i8)
7731 if (N1C && N0.getOpcode() == ISD::LOAD && !VT.isVector())
7732 if (SDValue Res = reduceLoadWidth(N))
7733 return Res;
7734
7735 if (LegalTypes) {
7736 // Attempt to propagate the AND back up to the leaves which, if they're
7737 // loads, can be combined to narrow loads and the AND node can be removed.
7738 // Perform after legalization so that extend nodes will already be
7739 // combined into the loads.
7740 if (BackwardsPropagateMask(N))
7741 return SDValue(N, 0);
7742 }
7743
7744 if (SDValue Combined = visitANDLike(N0, N1, N))
7745 return Combined;
7746
7747 // Simplify: (and (op x...), (op y...)) -> (op (and x, y))
7748 if (N0.getOpcode() == N1.getOpcode())
7749 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
7750 return V;
7751
7752 if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
7753 return R;
7754 if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG))
7755 return R;
7756
7757 // Fold (and X, (bswap (not Y))) -> (and X, (not (bswap Y)))
7758 // Fold (and X, (bitreverse (not Y))) -> (and X, (not (bitreverse Y)))
7759 SDValue X, Y, Z, NotY;
7760 for (unsigned Opc : {ISD::BSWAP, ISD::BITREVERSE})
7761 if (sd_match(N,
7762 m_And(m_Value(X), m_OneUse(m_UnaryOp(Opc, m_Value(NotY))))) &&
7763 sd_match(NotY, m_Not(m_Value(Y))) &&
7764 (TLI.hasAndNot(SDValue(N, 0)) || NotY->hasOneUse()))
7765 return DAG.getNode(ISD::AND, DL, VT, X,
7766 DAG.getNOT(DL, DAG.getNode(Opc, DL, VT, Y), VT));
7767
7768 // Fold (and X, (rot (not Y), Z)) -> (and X, (not (rot Y, Z)))
7769 for (unsigned Opc : {ISD::ROTL, ISD::ROTR})
7770 if (sd_match(N, m_And(m_Value(X),
7771 m_OneUse(m_BinOp(Opc, m_Value(NotY), m_Value(Z))))) &&
7772 sd_match(NotY, m_Not(m_Value(Y))) &&
7773 (TLI.hasAndNot(SDValue(N, 0)) || NotY->hasOneUse()))
7774 return DAG.getNode(ISD::AND, DL, VT, X,
7775 DAG.getNOT(DL, DAG.getNode(Opc, DL, VT, Y, Z), VT));
7776
7777 // Fold (and X, (add (not Y), Z)) -> (and X, (not (sub Y, Z)))
7778 // Fold (and X, (sub (not Y), Z)) -> (and X, (not (add Y, Z)))
7779 if (TLI.hasAndNot(SDValue(N, 0)))
7780 if (SDValue Folded = foldBitwiseOpWithNeg(N, DL, VT))
7781 return Folded;
7782
7783 // Fold (and (srl X, C), 1) -> (srl X, BW-1) for signbit extraction
7784 // If we are shifting down an extended sign bit, see if we can simplify
7785 // this to shifting the MSB directly to expose further simplifications.
7786 // This pattern often appears after sext_inreg legalization.
7787 APInt Amt;
7788 if (sd_match(N, m_And(m_Srl(m_Value(X), m_ConstInt(Amt)), m_One())) &&
7789 Amt.ult(BitWidth - 1) && Amt.uge(BitWidth - DAG.ComputeNumSignBits(X)))
7790 return DAG.getNode(ISD::SRL, DL, VT, X,
7791 DAG.getShiftAmountConstant(BitWidth - 1, VT, DL));
7792
7793 // Masking the negated extension of a boolean is just the zero-extended
7794 // boolean:
7795 // and (sub 0, zext(bool X)), 1 --> zext(bool X)
7796 // and (sub 0, sext(bool X)), 1 --> zext(bool X)
7797 //
7798 // Note: the SimplifyDemandedBits fold below can make an information-losing
7799 // transform, and then we have no way to find this better fold.
7800 if (sd_match(N, m_And(m_Sub(m_Zero(), m_Value(X)), m_One()))) {
7801 if (X.getOpcode() == ISD::ZERO_EXTEND &&
7802 X.getOperand(0).getScalarValueSizeInBits() == 1)
7803 return X;
7804 if (X.getOpcode() == ISD::SIGN_EXTEND &&
7805 X.getOperand(0).getScalarValueSizeInBits() == 1)
7806 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, X.getOperand(0));
7807 }
7808
7809 // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
7810 // fold (and (sra)) -> (and (srl)) when possible.
7812 return SDValue(N, 0);
7813
7814 // fold (zext_inreg (extload x)) -> (zextload x)
7815 // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
7816 if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
7817 (ISD::isEXTLoad(N0.getNode()) ||
7818 (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
7819 auto *LN0 = cast<LoadSDNode>(N0);
7820 EVT MemVT = LN0->getMemoryVT();
7821 // If we zero all the possible extended bits, then we can turn this into
7822 // a zextload if we are running before legalize or the operation is legal.
7823 unsigned ExtBitSize = N1.getScalarValueSizeInBits();
7824 unsigned MemBitSize = MemVT.getScalarSizeInBits();
7825 APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
7826 if (DAG.MaskedValueIsZero(N1, ExtBits) &&
7827 ((!LegalOperations && LN0->isSimple()) ||
7828 TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
7829 SDValue ExtLoad =
7830 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
7831 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
7832 AddToWorklist(N);
7833 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
7834 return SDValue(N, 0); // Return N so it doesn't get rechecked!
7835 }
7836 }
7837
7838 // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
7839 if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
7840 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
7841 N0.getOperand(1), false))
7842 return BSwap;
7843 }
7844
7845 if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
7846 return Shifts;
7847
7848 if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
7849 return V;
7850
7851 // Recognize the following pattern:
7852 //
7853 // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask)
7854 //
7855 // where bitmask is a mask that clears the upper bits of AndVT. The
7856 // number of bits in bitmask must be a power of two.
7857 auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) {
7858 if (LHS->getOpcode() != ISD::SIGN_EXTEND)
7859 return false;
7860
7862 if (!C)
7863 return false;
7864
7865 if (!C->getAPIntValue().isMask(
7866 LHS.getOperand(0).getValueType().getFixedSizeInBits()))
7867 return false;
7868
7869 return true;
7870 };
7871
7872 // Replace (and (sign_extend ...) #bitmask) with (zero_extend ...).
7873 if (IsAndZeroExtMask(N0, N1))
7874 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
7875
7876 if (hasOperation(ISD::USUBSAT, VT))
7877 if (SDValue V = foldAndToUsubsat(N, DAG, DL))
7878 return V;
7879
7880 // Postpone until legalization completed to avoid interference with bswap
7881 // folding
7882 if (LegalOperations || VT.isVector())
7883 if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
7884 return R;
7885
7886 if (VT.isScalarInteger() && VT != MVT::i1)
7887 if (SDValue R = foldMaskedMerge(N, DAG, TLI, DL))
7888 return R;
7889
7890 return SDValue();
7891}
7892
7893/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
7894SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
7895 bool DemandHighBits) {
7896 if (!LegalOperations)
7897 return SDValue();
7898
7899 EVT VT = N->getValueType(0);
7900 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
7901 return SDValue();
7903 return SDValue();
7904
7905 // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
7906 bool LookPassAnd0 = false;
7907 bool LookPassAnd1 = false;
7908 if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
7909 std::swap(N0, N1);
7910 if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
7911 std::swap(N0, N1);
7912 if (N0.getOpcode() == ISD::AND) {
7913 if (!N0->hasOneUse())
7914 return SDValue();
7915 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
7916 // Also handle 0xffff since the LHS is guaranteed to have zeros there.
7917 // This is needed for X86.
7918 if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
7919 N01C->getZExtValue() != 0xFFFF))
7920 return SDValue();
7921 N0 = N0.getOperand(0);
7922 LookPassAnd0 = true;
7923 }
7924
7925 if (N1.getOpcode() == ISD::AND) {
7926 if (!N1->hasOneUse())
7927 return SDValue();
7928 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7929 if (!N11C || N11C->getZExtValue() != 0xFF)
7930 return SDValue();
7931 N1 = N1.getOperand(0);
7932 LookPassAnd1 = true;
7933 }
7934
7935 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
7936 std::swap(N0, N1);
7937 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
7938 return SDValue();
7939 if (!N0->hasOneUse() || !N1->hasOneUse())
7940 return SDValue();
7941
7942 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
7943 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
7944 if (!N01C || !N11C)
7945 return SDValue();
7946 if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
7947 return SDValue();
7948
7949 // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
7950 SDValue N00 = N0->getOperand(0);
7951 if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
7952 if (!N00->hasOneUse())
7953 return SDValue();
7954 ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
7955 if (!N001C || N001C->getZExtValue() != 0xFF)
7956 return SDValue();
7957 N00 = N00.getOperand(0);
7958 LookPassAnd0 = true;
7959 }
7960
7961 SDValue N10 = N1->getOperand(0);
7962 if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
7963 if (!N10->hasOneUse())
7964 return SDValue();
7965 ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
7966 // Also allow 0xFFFF since the bits will be shifted out. This is needed
7967 // for X86.
7968 if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
7969 N101C->getZExtValue() != 0xFFFF))
7970 return SDValue();
7971 N10 = N10.getOperand(0);
7972 LookPassAnd1 = true;
7973 }
7974
7975 if (N00 != N10)
7976 return SDValue();
7977
7978 // Make sure everything beyond the low halfword gets set to zero since the SRL
7979 // 16 will clear the top bits.
7980 unsigned OpSizeInBits = VT.getSizeInBits();
7981 if (OpSizeInBits > 16) {
7982 // If the left-shift isn't masked out then the only way this is a bswap is
7983 // if all bits beyond the low 8 are 0. In that case the entire pattern
7984 // reduces to a left shift anyway: leave it for other parts of the combiner.
7985 if (DemandHighBits && !LookPassAnd0)
7986 return SDValue();
7987
7988 // However, if the right shift isn't masked out then it might be because
7989 // it's not needed. See if we can spot that too. If the high bits aren't
7990 // demanded, we only need bits 23:16 to be zero. Otherwise, we need all
7991 // upper bits to be zero.
7992 if (!LookPassAnd1) {
7993 unsigned HighBit = DemandHighBits ? OpSizeInBits : 24;
7994 if (!DAG.MaskedValueIsZero(N10,
7995 APInt::getBitsSet(OpSizeInBits, 16, HighBit)))
7996 return SDValue();
7997 }
7998 }
7999
8000 SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
8001 if (OpSizeInBits > 16) {
8002 SDLoc DL(N);
8003 Res = DAG.getNode(ISD::SRL, DL, VT, Res,
8004 DAG.getShiftAmountConstant(OpSizeInBits - 16, VT, DL));
8005 }
8006 return Res;
8007}
8008
8009/// Return true if the specified node is an element that makes up a 32-bit
8010/// packed halfword byteswap.
8011/// ((x & 0x000000ff) << 8) |
8012/// ((x & 0x0000ff00) >> 8) |
8013/// ((x & 0x00ff0000) << 8) |
8014/// ((x & 0xff000000) >> 8)
8016 if (!N->hasOneUse())
8017 return false;
8018
8019 unsigned Opc = N.getOpcode();
8020 if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
8021 return false;
8022
8023 SDValue N0 = N.getOperand(0);
8024 unsigned Opc0 = N0.getOpcode();
8025 if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
8026 return false;
8027
8028 ConstantSDNode *N1C = nullptr;
8029 // SHL or SRL: look upstream for AND mask operand
8030 if (Opc == ISD::AND)
8031 N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
8032 else if (Opc0 == ISD::AND)
8034 if (!N1C)
8035 return false;
8036
8037 unsigned MaskByteOffset;
8038 switch (N1C->getZExtValue()) {
8039 default:
8040 return false;
8041 case 0xFF: MaskByteOffset = 0; break;
8042 case 0xFF00: MaskByteOffset = 1; break;
8043 case 0xFFFF:
8044 // In case demanded bits didn't clear the bits that will be shifted out.
8045 // This is needed for X86.
8046 if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
8047 MaskByteOffset = 1;
8048 break;
8049 }
8050 return false;
8051 case 0xFF0000: MaskByteOffset = 2; break;
8052 case 0xFF000000: MaskByteOffset = 3; break;
8053 }
8054
8055 // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
8056 if (Opc == ISD::AND) {
8057 if (MaskByteOffset == 0 || MaskByteOffset == 2) {
8058 // (x >> 8) & 0xff
8059 // (x >> 8) & 0xff0000
8060 if (Opc0 != ISD::SRL)
8061 return false;
8063 if (!C || C->getZExtValue() != 8)
8064 return false;
8065 } else {
8066 // (x << 8) & 0xff00
8067 // (x << 8) & 0xff000000
8068 if (Opc0 != ISD::SHL)
8069 return false;
8071 if (!C || C->getZExtValue() != 8)
8072 return false;
8073 }
8074 } else if (Opc == ISD::SHL) {
8075 // (x & 0xff) << 8
8076 // (x & 0xff0000) << 8
8077 if (MaskByteOffset != 0 && MaskByteOffset != 2)
8078 return false;
8079 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
8080 if (!C || C->getZExtValue() != 8)
8081 return false;
8082 } else { // Opc == ISD::SRL
8083 // (x & 0xff00) >> 8
8084 // (x & 0xff000000) >> 8
8085 if (MaskByteOffset != 1 && MaskByteOffset != 3)
8086 return false;
8087 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
8088 if (!C || C->getZExtValue() != 8)
8089 return false;
8090 }
8091
8092 if (Parts[MaskByteOffset])
8093 return false;
8094
8095 Parts[MaskByteOffset] = N0.getOperand(0).getNode();
8096 return true;
8097}
8098
8099// Match 2 elements of a packed halfword bswap.
8101 if (N.getOpcode() == ISD::OR)
8102 return isBSwapHWordElement(N.getOperand(0), Parts) &&
8103 isBSwapHWordElement(N.getOperand(1), Parts);
8104
8105 if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) {
8106 ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1));
8107 if (!C || C->getAPIntValue() != 16)
8108 return false;
8109 Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode();
8110 return true;
8111 }
8112
8113 return false;
8114}
8115
8116// Match this pattern:
8117// (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
8118// And rewrite this to:
8119// (rotr (bswap A), 16)
8121 SelectionDAG &DAG, SDNode *N, SDValue N0,
8122 SDValue N1, EVT VT) {
8123 assert(N->getOpcode() == ISD::OR && VT == MVT::i32 &&
8124 "MatchBSwapHWordOrAndAnd: expecting i32");
8125 if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
8126 return SDValue();
8127 if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND)
8128 return SDValue();
8129 // TODO: this is too restrictive; lifting this restriction requires more tests
8130 if (!N0->hasOneUse() || !N1->hasOneUse())
8131 return SDValue();
8134 if (!Mask0 || !Mask1)
8135 return SDValue();
8136 if (Mask0->getAPIntValue() != 0xff00ff00 ||
8137 Mask1->getAPIntValue() != 0x00ff00ff)
8138 return SDValue();
8139 SDValue Shift0 = N0.getOperand(0);
8140 SDValue Shift1 = N1.getOperand(0);
8141 if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL)
8142 return SDValue();
8143 ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1));
8144 ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1));
8145 if (!ShiftAmt0 || !ShiftAmt1)
8146 return SDValue();
8147 if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8)
8148 return SDValue();
8149 if (Shift0.getOperand(0) != Shift1.getOperand(0))
8150 return SDValue();
8151
8152 SDLoc DL(N);
8153 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0));
8154 SDValue ShAmt = DAG.getShiftAmountConstant(16, VT, DL);
8155 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
8156}
8157
8158/// Match a 32-bit packed halfword bswap. That is
8159/// ((x & 0x000000ff) << 8) |
8160/// ((x & 0x0000ff00) >> 8) |
8161/// ((x & 0x00ff0000) << 8) |
8162/// ((x & 0xff000000) >> 8)
8163/// => (rotl (bswap x), 16)
8164SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
8165 if (!LegalOperations)
8166 return SDValue();
8167
8168 EVT VT = N->getValueType(0);
8169 if (VT != MVT::i32)
8170 return SDValue();
8172 return SDValue();
8173
8174 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT))
8175 return BSwap;
8176
8177 // Try again with commuted operands.
8178 if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT))
8179 return BSwap;
8180
8181
8182 // Look for either
8183 // (or (bswaphpair), (bswaphpair))
8184 // (or (or (bswaphpair), (and)), (and))
8185 // (or (or (and), (bswaphpair)), (and))
8186 SDNode *Parts[4] = {};
8187
8188 if (isBSwapHWordPair(N0, Parts)) {
8189 // (or (or (and), (and)), (or (and), (and)))
8190 if (!isBSwapHWordPair(N1, Parts))
8191 return SDValue();
8192 } else if (N0.getOpcode() == ISD::OR) {
8193 // (or (or (or (and), (and)), (and)), (and))
8194 if (!isBSwapHWordElement(N1, Parts))
8195 return SDValue();
8196 SDValue N00 = N0.getOperand(0);
8197 SDValue N01 = N0.getOperand(1);
8198 if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) &&
8199 !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts)))
8200 return SDValue();
8201 } else {
8202 return SDValue();
8203 }
8204
8205 // Make sure the parts are all coming from the same node.
8206 if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
8207 return SDValue();
8208
8209 SDLoc DL(N);
8210 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
8211 SDValue(Parts[0], 0));
8212
8213 // Result of the bswap should be rotated by 16. If it's not legal, then
8214 // do (x << 16) | (x >> 16).
8215 SDValue ShAmt = DAG.getShiftAmountConstant(16, VT, DL);
8217 return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
8219 return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
8220 return DAG.getNode(ISD::OR, DL, VT,
8221 DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
8222 DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
8223}
8224
8225/// This contains all DAGCombine rules which reduce two values combined by
8226/// an Or operation to a single value \see visitANDLike().
8227SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, const SDLoc &DL) {
8228 EVT VT = N1.getValueType();
8229
8230 // fold (or x, undef) -> -1
8231 if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
8232 return DAG.getAllOnesConstant(DL, VT);
8233
8234 if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
8235 return V;
8236
8237 // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
8238 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
8239 // Don't increase # computations.
8240 (N0->hasOneUse() || N1->hasOneUse())) {
8241 // We can only do this xform if we know that bits from X that are set in C2
8242 // but not in C1 are already zero. Likewise for Y.
8243 if (const ConstantSDNode *N0O1C =
8245 if (const ConstantSDNode *N1O1C =
8247 // We can only do this xform if we know that bits from X that are set in
8248 // C2 but not in C1 are already zero. Likewise for Y.
8249 const APInt &LHSMask = N0O1C->getAPIntValue();
8250 const APInt &RHSMask = N1O1C->getAPIntValue();
8251
8252 if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
8253 DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
8254 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
8255 N0.getOperand(0), N1.getOperand(0));
8256 return DAG.getNode(ISD::AND, DL, VT, X,
8257 DAG.getConstant(LHSMask | RHSMask, DL, VT));
8258 }
8259 }
8260 }
8261 }
8262
8263 // (or (and X, M), (and X, N)) -> (and X, (or M, N))
8264 if (N0.getOpcode() == ISD::AND &&
8265 N1.getOpcode() == ISD::AND &&
8266 N0.getOperand(0) == N1.getOperand(0) &&
8267 // Don't increase # computations.
8268 (N0->hasOneUse() || N1->hasOneUse())) {
8269 SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
8270 N0.getOperand(1), N1.getOperand(1));
8271 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
8272 }
8273
8274 return SDValue();
8275}
8276
8277/// OR combines for which the commuted variant will be tried as well.
8279 SDNode *N) {
8280 EVT VT = N0.getValueType();
8281 unsigned BW = VT.getScalarSizeInBits();
8282 SDLoc DL(N);
8283
8284 auto peekThroughResize = [](SDValue V) {
8285 if (V->getOpcode() == ISD::ZERO_EXTEND || V->getOpcode() == ISD::TRUNCATE)
8286 return V->getOperand(0);
8287 return V;
8288 };
8289
8290 SDValue N0Resized = peekThroughResize(N0);
8291 if (N0Resized.getOpcode() == ISD::AND) {
8292 SDValue N1Resized = peekThroughResize(N1);
8293 SDValue N00 = N0Resized.getOperand(0);
8294 SDValue N01 = N0Resized.getOperand(1);
8295
8296 // fold or (and x, y), x --> x
8297 if (N00 == N1Resized || N01 == N1Resized)
8298 return N1;
8299
8300 // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
8301 // TODO: Set AllowUndefs = true.
8302 if (SDValue NotOperand = getBitwiseNotOperand(N01, N00,
8303 /* AllowUndefs */ false)) {
8304 if (peekThroughResize(NotOperand) == N1Resized)
8305 return DAG.getNode(ISD::OR, DL, VT, DAG.getZExtOrTrunc(N00, DL, VT),
8306 N1);
8307 }
8308
8309 // fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
8310 if (SDValue NotOperand = getBitwiseNotOperand(N00, N01,
8311 /* AllowUndefs */ false)) {
8312 if (peekThroughResize(NotOperand) == N1Resized)
8313 return DAG.getNode(ISD::OR, DL, VT, DAG.getZExtOrTrunc(N01, DL, VT),
8314 N1);
8315 }
8316 }
8317
8318 SDValue X, Y;
8319
8320 // fold or (xor X, N1), N1 --> or X, N1
8321 if (sd_match(N0, m_Xor(m_Value(X), m_Specific(N1))))
8322 return DAG.getNode(ISD::OR, DL, VT, X, N1);
8323
8324 // fold or (xor x, y), (x and/or y) --> or x, y
8325 if (sd_match(N0, m_Xor(m_Value(X), m_Value(Y))) &&
8326 (sd_match(N1, m_And(m_Specific(X), m_Specific(Y))) ||
8328 return DAG.getNode(ISD::OR, DL, VT, X, Y);
8329
8330 if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
8331 return R;
8332
8333 auto peekThroughZext = [](SDValue V) {
8334 if (V->getOpcode() == ISD::ZERO_EXTEND)
8335 return V->getOperand(0);
8336 return V;
8337 };
8338
8339 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y
8340 if (N0.getOpcode() == ISD::FSHL && N1.getOpcode() == ISD::SHL &&
8341 N0.getOperand(0) == N1.getOperand(0) &&
8342 peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1)))
8343 return N0;
8344
8345 // (fshr ?, X, Y) | (srl X, Y) --> fshr ?, X, Y
8346 if (N0.getOpcode() == ISD::FSHR && N1.getOpcode() == ISD::SRL &&
8347 N0.getOperand(1) == N1.getOperand(0) &&
8348 peekThroughZext(N0.getOperand(2)) == peekThroughZext(N1.getOperand(1)))
8349 return N0;
8350
8351 // Attempt to match a legalized build_pair-esque pattern:
8352 // or(shl(aext(Hi),BW/2),zext(Lo))
8353 SDValue Lo, Hi;
8354 if (sd_match(N0,
8356 sd_match(N1, m_ZExt(m_Value(Lo))) &&
8357 Lo.getScalarValueSizeInBits() == (BW / 2) &&
8358 Lo.getValueType() == Hi.getValueType()) {
8359 // Fold build_pair(not(Lo),not(Hi)) -> not(build_pair(Lo,Hi)).
8360 SDValue NotLo, NotHi;
8361 if (sd_match(Lo, m_OneUse(m_Not(m_Value(NotLo)))) &&
8362 sd_match(Hi, m_OneUse(m_Not(m_Value(NotHi))))) {
8363 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotLo);
8364 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NotHi);
8365 Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
8366 DAG.getShiftAmountConstant(BW / 2, VT, DL));
8367 return DAG.getNOT(DL, DAG.getNode(ISD::OR, DL, VT, Lo, Hi), VT);
8368 }
8369 }
8370
8371 return SDValue();
8372}
8373
8374SDValue DAGCombiner::visitOR(SDNode *N) {
8375 SDValue N0 = N->getOperand(0);
8376 SDValue N1 = N->getOperand(1);
8377 EVT VT = N1.getValueType();
8378 SDLoc DL(N);
8379
8380 // x | x --> x
8381 if (N0 == N1)
8382 return N0;
8383
8384 // fold (or c1, c2) -> c1|c2
8385 if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, DL, VT, {N0, N1}))
8386 return C;
8387
8388 // canonicalize constant to RHS
8391 return DAG.getNode(ISD::OR, DL, VT, N1, N0);
8392
8393 // fold vector ops
8394 if (VT.isVector()) {
8395 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
8396 return FoldedVOp;
8397
8398 // fold (or x, 0) -> x, vector edition
8400 return N0;
8401
8402 // fold (or x, -1) -> -1, vector edition
8404 // do not return N1, because undef node may exist in N1
8405 return DAG.getAllOnesConstant(DL, N1.getValueType());
8406
8407 // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
8408 // Do this only if the resulting type / shuffle is legal.
8409 auto *SV0 = dyn_cast<ShuffleVectorSDNode>(N0);
8410 auto *SV1 = dyn_cast<ShuffleVectorSDNode>(N1);
8411 if (SV0 && SV1 && TLI.isTypeLegal(VT)) {
8412 bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
8413 bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
8414 bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
8415 bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
8416 // Ensure both shuffles have a zero input.
8417 if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
8418 assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
8419 assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
8420 bool CanFold = true;
8421 int NumElts = VT.getVectorNumElements();
8422 SmallVector<int, 4> Mask(NumElts, -1);
8423
8424 for (int i = 0; i != NumElts; ++i) {
8425 int M0 = SV0->getMaskElt(i);
8426 int M1 = SV1->getMaskElt(i);
8427
8428 // Determine if either index is pointing to a zero vector.
8429 bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
8430 bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
8431
8432 // If one element is zero and the otherside is undef, keep undef.
8433 // This also handles the case that both are undef.
8434 if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0))
8435 continue;
8436
8437 // Make sure only one of the elements is zero.
8438 if (M0Zero == M1Zero) {
8439 CanFold = false;
8440 break;
8441 }
8442
8443 assert((M0 >= 0 || M1 >= 0) && "Undef index!");
8444
8445 // We have a zero and non-zero element. If the non-zero came from
8446 // SV0 make the index a LHS index. If it came from SV1, make it
8447 // a RHS index. We need to mod by NumElts because we don't care
8448 // which operand it came from in the original shuffles.
8449 Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
8450 }
8451
8452 if (CanFold) {
8453 SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
8454 SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
8455 SDValue LegalShuffle =
8456 TLI.buildLegalVectorShuffle(VT, DL, NewLHS, NewRHS, Mask, DAG);
8457 if (LegalShuffle)
8458 return LegalShuffle;
8459 }
8460 }
8461 }
8462 }
8463
8464 // fold (or x, 0) -> x
8465 if (isNullConstant(N1))
8466 return N0;
8467
8468 // fold (or x, -1) -> -1
8469 if (isAllOnesConstant(N1))
8470 return N1;
8471
8472 if (SDValue NewSel = foldBinOpIntoSelect(N))
8473 return NewSel;
8474
8475 // fold (or x, c) -> c iff (x & ~c) == 0
8476 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
8477 if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
8478 return N1;
8479
8480 if (SDValue R = foldAndOrOfSETCC(N, DAG))
8481 return R;
8482
8483 if (SDValue Combined = visitORLike(N0, N1, DL))
8484 return Combined;
8485
8486 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
8487 return Combined;
8488
8489 // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
8490 if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
8491 return BSwap;
8492 if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
8493 return BSwap;
8494
8495 // reassociate or
8496 if (SDValue ROR = reassociateOps(ISD::OR, DL, N0, N1, N->getFlags()))
8497 return ROR;
8498
8499 // Fold or(vecreduce(x), vecreduce(y)) -> vecreduce(or(x, y))
8500 if (SDValue SD =
8501 reassociateReduction(ISD::VECREDUCE_OR, ISD::OR, DL, VT, N0, N1))
8502 return SD;
8503
8504 // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
8505 // iff (c1 & c2) != 0 or c1/c2 are undef.
8506 auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
8507 return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
8508 };
8509 if (N0.getOpcode() == ISD::AND && N0->hasOneUse() &&
8510 ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
8511 if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
8512 {N1, N0.getOperand(1)})) {
8513 SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
8514 AddToWorklist(IOR.getNode());
8515 return DAG.getNode(ISD::AND, DL, VT, COR, IOR);
8516 }
8517 }
8518
8519 if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
8520 return Combined;
8521 if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
8522 return Combined;
8523
8524 // Simplify: (or (op x...), (op y...)) -> (op (or x, y))
8525 if (N0.getOpcode() == N1.getOpcode())
8526 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
8527 return V;
8528
8529 // See if this is some rotate idiom.
8530 if (SDValue Rot = MatchRotate(N0, N1, DL, /*FromAdd=*/false))
8531 return Rot;
8532
8533 if (SDValue Load = MatchLoadCombine(N))
8534 return Load;
8535
8536 // Simplify the operands using demanded-bits information.
8538 return SDValue(N, 0);
8539
8540 // If OR can be rewritten into ADD, try combines based on ADD.
8541 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
8542 DAG.isADDLike(SDValue(N, 0)))
8543 if (SDValue Combined = visitADDLike(N))
8544 return Combined;
8545
8546 // Postpone until legalization completed to avoid interference with bswap
8547 // folding
8548 if (LegalOperations || VT.isVector())
8549 if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
8550 return R;
8551
8552 if (VT.isScalarInteger() && VT != MVT::i1)
8553 if (SDValue R = foldMaskedMerge(N, DAG, TLI, DL))
8554 return R;
8555
8556 return SDValue();
8557}
8558
8560 SDValue &Mask) {
8561 if (Op.getOpcode() == ISD::AND &&
8562 DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
8563 Mask = Op.getOperand(1);
8564 return Op.getOperand(0);
8565 }
8566 return Op;
8567}
8568
8569/// Match "(X shl/srl V1) & V2" where V2 may not be present.
8570static bool matchRotateHalf(const SelectionDAG &DAG, SDValue Op, SDValue &Shift,
8571 SDValue &Mask) {
8572 Op = stripConstantMask(DAG, Op, Mask);
8573 if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
8574 Shift = Op;
8575 return true;
8576 }
8577 return false;
8578}
8579
8580/// Helper function for visitOR to extract the needed side of a rotate idiom
8581/// from a shl/srl/mul/udiv. This is meant to handle cases where
8582/// InstCombine merged some outside op with one of the shifts from
8583/// the rotate pattern.
8584/// \returns An empty \c SDValue if the needed shift couldn't be extracted.
8585/// Otherwise, returns an expansion of \p ExtractFrom based on the following
8586/// patterns:
8587///
8588/// (or (add v v) (shrl v bitwidth-1)):
8589/// expands (add v v) -> (shl v 1)
8590///
8591/// (or (mul v c0) (shrl (mul v c1) c2)):
8592/// expands (mul v c0) -> (shl (mul v c1) c3)
8593///
8594/// (or (udiv v c0) (shl (udiv v c1) c2)):
8595/// expands (udiv v c0) -> (shrl (udiv v c1) c3)
8596///
8597/// (or (shl v c0) (shrl (shl v c1) c2)):
8598/// expands (shl v c0) -> (shl (shl v c1) c3)
8599///
8600/// (or (shrl v c0) (shl (shrl v c1) c2)):
8601/// expands (shrl v c0) -> (shrl (shrl v c1) c3)
8602///
8603/// Such that in all cases, c3+c2==bitwidth(op v c1).
8605 SDValue ExtractFrom, SDValue &Mask,
8606 const SDLoc &DL) {
8607 assert(OppShift && ExtractFrom && "Empty SDValue");
8608 if (OppShift.getOpcode() != ISD::SHL && OppShift.getOpcode() != ISD::SRL)
8609 return SDValue();
8610
8611 ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
8612
8613 // Value and Type of the shift.
8614 SDValue OppShiftLHS = OppShift.getOperand(0);
8615 EVT ShiftedVT = OppShiftLHS.getValueType();
8616
8617 // Amount of the existing shift.
8618 ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
8619
8620 // (add v v) -> (shl v 1)
8621 // TODO: Should this be a general DAG canonicalization?
8622 if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
8623 ExtractFrom.getOpcode() == ISD::ADD &&
8624 ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
8625 ExtractFrom.getOperand(0) == OppShiftLHS &&
8626 OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
8627 return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
8628 DAG.getShiftAmountConstant(1, ShiftedVT, DL));
8629
8630 // Preconditions:
8631 // (or (op0 v c0) (shiftl/r (op0 v c1) c2))
8632 //
8633 // Find opcode of the needed shift to be extracted from (op0 v c0).
8634 unsigned Opcode = ISD::DELETED_NODE;
8635 bool IsMulOrDiv = false;
8636 // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
8637 // opcode or its arithmetic (mul or udiv) variant.
8638 auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
8639 IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
8640 if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
8641 return false;
8642 Opcode = NeededShift;
8643 return true;
8644 };
8645 // op0 must be either the needed shift opcode or the mul/udiv equivalent
8646 // that the needed shift can be extracted from.
8647 if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
8648 (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
8649 return SDValue();
8650
8651 // op0 must be the same opcode on both sides, have the same LHS argument,
8652 // and produce the same value type.
8653 if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
8654 OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
8655 ShiftedVT != ExtractFrom.getValueType())
8656 return SDValue();
8657
8658 // Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
8659 ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
8660 // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
8661 ConstantSDNode *ExtractFromCst =
8662 isConstOrConstSplat(ExtractFrom.getOperand(1));
8663 // TODO: We should be able to handle non-uniform constant vectors for these values
8664 // Check that we have constant values.
8665 if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
8666 !OppLHSCst || !OppLHSCst->getAPIntValue() ||
8667 !ExtractFromCst || !ExtractFromCst->getAPIntValue())
8668 return SDValue();
8669
8670 // Compute the shift amount we need to extract to complete the rotate.
8671 const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
8672 if (OppShiftCst->getAPIntValue().ugt(VTWidth))
8673 return SDValue();
8674 APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
8675 // Normalize the bitwidth of the two mul/udiv/shift constant operands.
8676 APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
8677 APInt OppLHSAmt = OppLHSCst->getAPIntValue();
8678 zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
8679
8680 // Now try extract the needed shift from the ExtractFrom op and see if the
8681 // result matches up with the existing shift's LHS op.
8682 if (IsMulOrDiv) {
8683 // Op to extract from is a mul or udiv by a constant.
8684 // Check:
8685 // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
8686 // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
8687 const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
8688 NeededShiftAmt.getZExtValue());
8689 APInt ResultAmt;
8690 APInt Rem;
8691 APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
8692 if (Rem != 0 || ResultAmt != OppLHSAmt)
8693 return SDValue();
8694 } else {
8695 // Op to extract from is a shift by a constant.
8696 // Check:
8697 // c2 - (bitwidth(op0 v c0) - c1) == c0
8698 if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
8699 ExtractFromAmt.getBitWidth()))
8700 return SDValue();
8701 }
8702
8703 // Return the expanded shift op that should allow a rotate to be formed.
8704 EVT ShiftVT = OppShift.getOperand(1).getValueType();
8705 EVT ResVT = ExtractFrom.getValueType();
8706 SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
8707 return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
8708}
8709
8710// Return true if we can prove that, whenever Neg and Pos are both in the
8711// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
8712// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
8713//
8714// (or (shift1 X, Neg), (shift2 X, Pos))
8715//
8716// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
8717// in direction shift1 by Neg. The range [0, EltSize) means that we only need
8718// to consider shift amounts with defined behavior.
8719//
8720// The IsRotate flag should be set when the LHS of both shifts is the same.
8721// Otherwise if matching a general funnel shift, it should be clear.
8722static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
8723 SelectionDAG &DAG, bool IsRotate, bool FromAdd) {
8724 const auto &TLI = DAG.getTargetLoweringInfo();
8725 // If EltSize is a power of 2 then:
8726 //
8727 // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
8728 // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
8729 //
8730 // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
8731 // for the stronger condition:
8732 //
8733 // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
8734 //
8735 // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
8736 // we can just replace Neg with Neg' for the rest of the function.
8737 //
8738 // In other cases we check for the even stronger condition:
8739 //
8740 // Neg == EltSize - Pos [B]
8741 //
8742 // for all Neg and Pos. Note that the (or ...) then invokes undefined
8743 // behavior if Pos == 0 (and consequently Neg == EltSize).
8744 //
8745 // We could actually use [A] whenever EltSize is a power of 2, but the
8746 // only extra cases that it would match are those uninteresting ones
8747 // where Neg and Pos are never in range at the same time. E.g. for
8748 // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
8749 // as well as (sub 32, Pos), but:
8750 //
8751 // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
8752 //
8753 // always invokes undefined behavior for 32-bit X.
8754 //
8755 // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
8756 // This allows us to peek through any operations that only affect Mask's
8757 // un-demanded bits.
8758 //
8759 // NOTE: We can only do this when matching operations which won't modify the
8760 // least Log2(EltSize) significant bits and not a general funnel shift.
8761 unsigned MaskLoBits = 0;
8762 if (IsRotate && !FromAdd && isPowerOf2_64(EltSize)) {
8763 unsigned Bits = Log2_64(EltSize);
8764 unsigned NegBits = Neg.getScalarValueSizeInBits();
8765 if (NegBits >= Bits) {
8766 APInt DemandedBits = APInt::getLowBitsSet(NegBits, Bits);
8767 if (SDValue Inner =
8769 Neg = Inner;
8770 MaskLoBits = Bits;
8771 }
8772 }
8773 }
8774
8775 // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
8776 if (Neg.getOpcode() != ISD::SUB)
8777 return false;
8779 if (!NegC)
8780 return false;
8781 SDValue NegOp1 = Neg.getOperand(1);
8782
8783 // On the RHS of [A], if Pos is the result of operation on Pos' that won't
8784 // affect Mask's demanded bits, just replace Pos with Pos'. These operations
8785 // are redundant for the purpose of the equality.
8786 if (MaskLoBits) {
8787 unsigned PosBits = Pos.getScalarValueSizeInBits();
8788 if (PosBits >= MaskLoBits) {
8789 APInt DemandedBits = APInt::getLowBitsSet(PosBits, MaskLoBits);
8790 if (SDValue Inner =
8792 Pos = Inner;
8793 }
8794 }
8795 }
8796
8797 // The condition we need is now:
8798 //
8799 // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
8800 //
8801 // If NegOp1 == Pos then we need:
8802 //
8803 // EltSize & Mask == NegC & Mask
8804 //
8805 // (because "x & Mask" is a truncation and distributes through subtraction).
8806 //
8807 // We also need to account for a potential truncation of NegOp1 if the amount
8808 // has already been legalized to a shift amount type.
8809 APInt Width;
8810 if ((Pos == NegOp1) ||
8811 (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0)))
8812 Width = NegC->getAPIntValue();
8813
8814 // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
8815 // Then the condition we want to prove becomes:
8816 //
8817 // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
8818 //
8819 // which, again because "x & Mask" is a truncation, becomes:
8820 //
8821 // NegC & Mask == (EltSize - PosC) & Mask
8822 // EltSize & Mask == (NegC + PosC) & Mask
8823 else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
8824 if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
8825 Width = PosC->getAPIntValue() + NegC->getAPIntValue();
8826 else
8827 return false;
8828 } else
8829 return false;
8830
8831 // Now we just need to check that EltSize & Mask == Width & Mask.
8832 if (MaskLoBits)
8833 // EltSize & Mask is 0 since Mask is EltSize - 1.
8834 return Width.getLoBits(MaskLoBits) == 0;
8835 return Width == EltSize;
8836}
8837
8838// A subroutine of MatchRotate used once we have found an OR of two opposite
8839// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
8840// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
8841// former being preferred if supported. InnerPos and InnerNeg are Pos and
8842// Neg with outer conversions stripped away.
8843SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
8844 SDValue Neg, SDValue InnerPos,
8845 SDValue InnerNeg, bool FromAdd,
8846 bool HasPos, unsigned PosOpcode,
8847 unsigned NegOpcode, const SDLoc &DL) {
8848 // fold (or/add (shl x, (*ext y)),
8849 // (srl x, (*ext (sub 32, y)))) ->
8850 // (rotl x, y) or (rotr x, (sub 32, y))
8851 //
8852 // fold (or/add (shl x, (*ext (sub 32, y))),
8853 // (srl x, (*ext y))) ->
8854 // (rotr x, y) or (rotl x, (sub 32, y))
8855 EVT VT = Shifted.getValueType();
8856 if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG,
8857 /*IsRotate*/ true, FromAdd))
8858 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
8859 HasPos ? Pos : Neg);
8860
8861 return SDValue();
8862}
8863
8864// A subroutine of MatchRotate used once we have found an OR of two opposite
8865// shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces
8866// to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
8867// former being preferred if supported. InnerPos and InnerNeg are Pos and
8868// Neg with outer conversions stripped away.
8869// TODO: Merge with MatchRotatePosNeg.
8870SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos,
8871 SDValue Neg, SDValue InnerPos,
8872 SDValue InnerNeg, bool FromAdd,
8873 bool HasPos, unsigned PosOpcode,
8874 unsigned NegOpcode, const SDLoc &DL) {
8875 EVT VT = N0.getValueType();
8876 unsigned EltBits = VT.getScalarSizeInBits();
8877
8878 // fold (or/add (shl x0, (*ext y)),
8879 // (srl x1, (*ext (sub 32, y)))) ->
8880 // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
8881 //
8882 // fold (or/add (shl x0, (*ext (sub 32, y))),
8883 // (srl x1, (*ext y))) ->
8884 // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
8885 if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1,
8886 FromAdd))
8887 return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1,
8888 HasPos ? Pos : Neg);
8889
8890 // Matching the shift+xor cases, we can't easily use the xor'd shift amount
8891 // so for now just use the PosOpcode case if its legal.
8892 // TODO: When can we use the NegOpcode case?
8893 if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) {
8894 SDValue X;
8895 // fold (or/add (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
8896 // -> (fshl x0, x1, y)
8897 if (sd_match(N1, m_Srl(m_Value(X), m_One())) &&
8898 sd_match(InnerNeg,
8899 m_Xor(m_Specific(InnerPos), m_SpecificInt(EltBits - 1))) &&
8901 return DAG.getNode(ISD::FSHL, DL, VT, N0, X, Pos);
8902 }
8903
8904 // fold (or/add (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
8905 // -> (fshr x0, x1, y)
8906 if (sd_match(N0, m_Shl(m_Value(X), m_One())) &&
8907 sd_match(InnerPos,
8908 m_Xor(m_Specific(InnerNeg), m_SpecificInt(EltBits - 1))) &&
8910 return DAG.getNode(ISD::FSHR, DL, VT, X, N1, Neg);
8911 }
8912
8913 // fold (or/add (shl (add x0, x0), (xor y, 31)), (srl x1, y))
8914 // -> (fshr x0, x1, y)
8915 // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
8916 if (sd_match(N0, m_Add(m_Value(X), m_Deferred(X))) &&
8917 sd_match(InnerPos,
8918 m_Xor(m_Specific(InnerNeg), m_SpecificInt(EltBits - 1))) &&
8920 return DAG.getNode(ISD::FSHR, DL, VT, X, N1, Neg);
8921 }
8922 }
8923
8924 return SDValue();
8925}
8926
8927// MatchRotate - Handle an 'or' or 'add' of two operands. If this is one of the
8928// many idioms for rotate, and if the target supports rotation instructions,
8929// generate a rot[lr]. This also matches funnel shift patterns, similar to
8930// rotation but with different shifted sources.
8931SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL,
8932 bool FromAdd) {
8933 EVT VT = LHS.getValueType();
8934
8935 // The target must have at least one rotate/funnel flavor.
8936 // We still try to match rotate by constant pre-legalization.
8937 // TODO: Support pre-legalization funnel-shift by constant.
8938 bool HasROTL = hasOperation(ISD::ROTL, VT);
8939 bool HasROTR = hasOperation(ISD::ROTR, VT);
8940 bool HasFSHL = hasOperation(ISD::FSHL, VT);
8941 bool HasFSHR = hasOperation(ISD::FSHR, VT);
8942
8943 // If the type is going to be promoted and the target has enabled custom
8944 // lowering for rotate, allow matching rotate by non-constants. Only allow
8945 // this for scalar types.
8946 if (VT.isScalarInteger() && TLI.getTypeAction(*DAG.getContext(), VT) ==
8950 }
8951
8952 if (LegalOperations && !HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
8953 return SDValue();
8954
8955 // Check for truncated rotate.
8956 if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
8957 LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
8958 assert(LHS.getValueType() == RHS.getValueType());
8959 if (SDValue Rot =
8960 MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL, FromAdd))
8961 return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot);
8962 }
8963
8964 // Match "(X shl/srl V1) & V2" where V2 may not be present.
8965 SDValue LHSShift; // The shift.
8966 SDValue LHSMask; // AND value if any.
8967 matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
8968
8969 SDValue RHSShift; // The shift.
8970 SDValue RHSMask; // AND value if any.
8971 matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
8972
8973 // If neither side matched a rotate half, bail
8974 if (!LHSShift && !RHSShift)
8975 return SDValue();
8976
8977 // InstCombine may have combined a constant shl, srl, mul, or udiv with one
8978 // side of the rotate, so try to handle that here. In all cases we need to
8979 // pass the matched shift from the opposite side to compute the opcode and
8980 // needed shift amount to extract. We still want to do this if both sides
8981 // matched a rotate half because one half may be a potential overshift that
8982 // can be broken down (ie if InstCombine merged two shl or srl ops into a
8983 // single one).
8984
8985 // Have LHS side of the rotate, try to extract the needed shift from the RHS.
8986 if (LHSShift)
8987 if (SDValue NewRHSShift =
8988 extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
8989 RHSShift = NewRHSShift;
8990 // Have RHS side of the rotate, try to extract the needed shift from the LHS.
8991 if (RHSShift)
8992 if (SDValue NewLHSShift =
8993 extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
8994 LHSShift = NewLHSShift;
8995
8996 // If a side is still missing, nothing else we can do.
8997 if (!RHSShift || !LHSShift)
8998 return SDValue();
8999
9000 // At this point we've matched or extracted a shift op on each side.
9001
9002 if (LHSShift.getOpcode() == RHSShift.getOpcode())
9003 return SDValue(); // Shifts must disagree.
9004
9005 // Canonicalize shl to left side in a shl/srl pair.
9006 if (RHSShift.getOpcode() == ISD::SHL) {
9007 std::swap(LHS, RHS);
9008 std::swap(LHSShift, RHSShift);
9009 std::swap(LHSMask, RHSMask);
9010 }
9011
9012 // Something has gone wrong - we've lost the shl/srl pair - bail.
9013 if (LHSShift.getOpcode() != ISD::SHL || RHSShift.getOpcode() != ISD::SRL)
9014 return SDValue();
9015
9016 unsigned EltSizeInBits = VT.getScalarSizeInBits();
9017 SDValue LHSShiftArg = LHSShift.getOperand(0);
9018 SDValue LHSShiftAmt = LHSShift.getOperand(1);
9019 SDValue RHSShiftArg = RHSShift.getOperand(0);
9020 SDValue RHSShiftAmt = RHSShift.getOperand(1);
9021
9022 auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
9023 ConstantSDNode *RHS) {
9024 return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
9025 };
9026
9027 auto ApplyMasks = [&](SDValue Res) {
9028 // If there is an AND of either shifted operand, apply it to the result.
9029 if (LHSMask.getNode() || RHSMask.getNode()) {
9032
9033 if (LHSMask.getNode()) {
9034 SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
9035 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
9036 DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
9037 }
9038 if (RHSMask.getNode()) {
9039 SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
9040 Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
9041 DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
9042 }
9043
9044 Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask);
9045 }
9046
9047 return Res;
9048 };
9049
9050 // TODO: Support pre-legalization funnel-shift by constant.
9051 bool IsRotate = LHSShiftArg == RHSShiftArg;
9052 if (!IsRotate && !(HasFSHL || HasFSHR)) {
9053 if (TLI.isTypeLegal(VT) && LHS.hasOneUse() && RHS.hasOneUse() &&
9054 ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
9055 // Look for a disguised rotate by constant.
9056 // The common shifted operand X may be hidden inside another 'or'.
9057 SDValue X, Y;
9058 auto matchOr = [&X, &Y](SDValue Or, SDValue CommonOp) {
9059 if (!Or.hasOneUse() || Or.getOpcode() != ISD::OR)
9060 return false;
9061 if (CommonOp == Or.getOperand(0)) {
9062 X = CommonOp;
9063 Y = Or.getOperand(1);
9064 return true;
9065 }
9066 if (CommonOp == Or.getOperand(1)) {
9067 X = CommonOp;
9068 Y = Or.getOperand(0);
9069 return true;
9070 }
9071 return false;
9072 };
9073
9074 SDValue Res;
9075 if (matchOr(LHSShiftArg, RHSShiftArg)) {
9076 // (shl (X | Y), C1) | (srl X, C2) --> (rotl X, C1) | (shl Y, C1)
9077 SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt);
9078 SDValue ShlY = DAG.getNode(ISD::SHL, DL, VT, Y, LHSShiftAmt);
9079 Res = DAG.getNode(ISD::OR, DL, VT, RotX, ShlY);
9080 } else if (matchOr(RHSShiftArg, LHSShiftArg)) {
9081 // (shl X, C1) | (srl (X | Y), C2) --> (rotl X, C1) | (srl Y, C2)
9082 SDValue RotX = DAG.getNode(ISD::ROTL, DL, VT, X, LHSShiftAmt);
9083 SDValue SrlY = DAG.getNode(ISD::SRL, DL, VT, Y, RHSShiftAmt);
9084 Res = DAG.getNode(ISD::OR, DL, VT, RotX, SrlY);
9085 } else {
9086 return SDValue();
9087 }
9088
9089 return ApplyMasks(Res);
9090 }
9091
9092 return SDValue(); // Requires funnel shift support.
9093 }
9094
9095 // fold (or/add (shl x, C1), (srl x, C2)) -> (rotl x, C1)
9096 // fold (or/add (shl x, C1), (srl x, C2)) -> (rotr x, C2)
9097 // fold (or/add (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
9098 // fold (or/add (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
9099 // iff C1+C2 == EltSizeInBits
9100 if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
9101 SDValue Res;
9102 if (IsRotate && (HasROTL || HasROTR || !(HasFSHL || HasFSHR))) {
9103 bool UseROTL = !LegalOperations || HasROTL;
9104 Res = DAG.getNode(UseROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
9105 UseROTL ? LHSShiftAmt : RHSShiftAmt);
9106 } else {
9107 bool UseFSHL = !LegalOperations || HasFSHL;
9108 Res = DAG.getNode(UseFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg,
9109 RHSShiftArg, UseFSHL ? LHSShiftAmt : RHSShiftAmt);
9110 }
9111
9112 return ApplyMasks(Res);
9113 }
9114
9115 // Even pre-legalization, we can't easily rotate/funnel-shift by a variable
9116 // shift.
9117 if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
9118 return SDValue();
9119
9120 // If there is a mask here, and we have a variable shift, we can't be sure
9121 // that we're masking out the right stuff.
9122 if (LHSMask.getNode() || RHSMask.getNode())
9123 return SDValue();
9124
9125 // If the shift amount is sign/zext/any-extended just peel it off.
9126 SDValue LExtOp0 = LHSShiftAmt;
9127 SDValue RExtOp0 = RHSShiftAmt;
9128 if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
9129 LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
9130 LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
9131 LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
9132 (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
9133 RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
9134 RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
9135 RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
9136 LExtOp0 = LHSShiftAmt.getOperand(0);
9137 RExtOp0 = RHSShiftAmt.getOperand(0);
9138 }
9139
9140 if (IsRotate && (HasROTL || HasROTR)) {
9141 if (SDValue TryL = MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt,
9142 LExtOp0, RExtOp0, FromAdd, HasROTL,
9144 return TryL;
9145
9146 if (SDValue TryR = MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
9147 RExtOp0, LExtOp0, FromAdd, HasROTR,
9149 return TryR;
9150 }
9151
9152 if (SDValue TryL = MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt,
9153 RHSShiftAmt, LExtOp0, RExtOp0, FromAdd,
9154 HasFSHL, ISD::FSHL, ISD::FSHR, DL))
9155 return TryL;
9156
9157 if (SDValue TryR = MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt,
9158 LHSShiftAmt, RExtOp0, LExtOp0, FromAdd,
9159 HasFSHR, ISD::FSHR, ISD::FSHL, DL))
9160 return TryR;
9161
9162 return SDValue();
9163}
9164
9165/// Recursively traverses the expression calculating the origin of the requested
9166/// byte of the given value. Returns std::nullopt if the provider can't be
9167/// calculated.
9168///
9169/// For all the values except the root of the expression, we verify that the
9170/// value has exactly one use and if not then return std::nullopt. This way if
9171/// the origin of the byte is returned it's guaranteed that the values which
9172/// contribute to the byte are not used outside of this expression.
9173
9174/// However, there is a special case when dealing with vector loads -- we allow
9175/// more than one use if the load is a vector type. Since the values that
9176/// contribute to the byte ultimately come from the ExtractVectorElements of the
9177/// Load, we don't care if the Load has uses other than ExtractVectorElements,
9178/// because those operations are independent from the pattern to be combined.
9179/// For vector loads, we simply care that the ByteProviders are adjacent
9180/// positions of the same vector, and their index matches the byte that is being
9181/// provided. This is captured by the \p VectorIndex algorithm. \p VectorIndex
9182/// is the index used in an ExtractVectorElement, and \p StartingIndex is the
9183/// byte position we are trying to provide for the LoadCombine. If these do
9184/// not match, then we can not combine the vector loads. \p Index uses the
9185/// byte position we are trying to provide for and is matched against the
9186/// shl and load size. The \p Index algorithm ensures the requested byte is
9187/// provided for by the pattern, and the pattern does not over provide bytes.
9188///
9189///
9190/// The supported LoadCombine pattern for vector loads is as follows
9191/// or
9192/// / \
9193/// or shl
9194/// / \ |
9195/// or shl zext
9196/// / \ | |
9197/// shl zext zext EVE*
9198/// | | | |
9199/// zext EVE* EVE* LOAD
9200/// | | |
9201/// EVE* LOAD LOAD
9202/// |
9203/// LOAD
9204///
9205/// *ExtractVectorElement
9207
9208static std::optional<SDByteProvider>
9209calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
9210 std::optional<uint64_t> VectorIndex,
9211 unsigned StartingIndex = 0) {
9212
9213 // Typical i64 by i8 pattern requires recursion up to 8 calls depth
9214 if (Depth == 10)
9215 return std::nullopt;
9216
9217 // Only allow multiple uses if the instruction is a vector load (in which
9218 // case we will use the load for every ExtractVectorElement)
9219 if (Depth && !Op.hasOneUse() &&
9220 (Op.getOpcode() != ISD::LOAD || !Op.getValueType().isVector()))
9221 return std::nullopt;
9222
9223 // Fail to combine if we have encountered anything but a LOAD after handling
9224 // an ExtractVectorElement.
9225 if (Op.getOpcode() != ISD::LOAD && VectorIndex.has_value())
9226 return std::nullopt;
9227
9228 unsigned BitWidth = Op.getScalarValueSizeInBits();
9229 if (BitWidth % 8 != 0)
9230 return std::nullopt;
9231 unsigned ByteWidth = BitWidth / 8;
9232 assert(Index < ByteWidth && "invalid index requested");
9233 (void) ByteWidth;
9234
9235 switch (Op.getOpcode()) {
9236 case ISD::OR: {
9237 auto LHS =
9238 calculateByteProvider(Op->getOperand(0), Index, Depth + 1, VectorIndex);
9239 if (!LHS)
9240 return std::nullopt;
9241 auto RHS =
9242 calculateByteProvider(Op->getOperand(1), Index, Depth + 1, VectorIndex);
9243 if (!RHS)
9244 return std::nullopt;
9245
9246 if (LHS->isConstantZero())
9247 return RHS;
9248 if (RHS->isConstantZero())
9249 return LHS;
9250 return std::nullopt;
9251 }
9252 case ISD::SHL: {
9253 auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
9254 if (!ShiftOp)
9255 return std::nullopt;
9256
9257 uint64_t BitShift = ShiftOp->getZExtValue();
9258
9259 if (BitShift % 8 != 0)
9260 return std::nullopt;
9261 uint64_t ByteShift = BitShift / 8;
9262
9263 // If we are shifting by an amount greater than the index we are trying to
9264 // provide, then do not provide anything. Otherwise, subtract the index by
9265 // the amount we shifted by.
9266 return Index < ByteShift
9268 : calculateByteProvider(Op->getOperand(0), Index - ByteShift,
9269 Depth + 1, VectorIndex, Index);
9270 }
9271 case ISD::ANY_EXTEND:
9272 case ISD::SIGN_EXTEND:
9273 case ISD::ZERO_EXTEND: {
9274 SDValue NarrowOp = Op->getOperand(0);
9275 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
9276 if (NarrowBitWidth % 8 != 0)
9277 return std::nullopt;
9278 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
9279
9280 if (Index >= NarrowByteWidth)
9281 return Op.getOpcode() == ISD::ZERO_EXTEND
9282 ? std::optional<SDByteProvider>(
9284 : std::nullopt;
9285 return calculateByteProvider(NarrowOp, Index, Depth + 1, VectorIndex,
9286 StartingIndex);
9287 }
9288 case ISD::BSWAP:
9289 return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
9290 Depth + 1, VectorIndex, StartingIndex);
9292 auto OffsetOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
9293 if (!OffsetOp)
9294 return std::nullopt;
9295
9296 VectorIndex = OffsetOp->getZExtValue();
9297
9298 SDValue NarrowOp = Op->getOperand(0);
9299 unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
9300 if (NarrowBitWidth % 8 != 0)
9301 return std::nullopt;
9302 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
9303 // EXTRACT_VECTOR_ELT can extend the element type to the width of the return
9304 // type, leaving the high bits undefined.
9305 if (Index >= NarrowByteWidth)
9306 return std::nullopt;
9307
9308 // Check to see if the position of the element in the vector corresponds
9309 // with the byte we are trying to provide for. In the case of a vector of
9310 // i8, this simply means the VectorIndex == StartingIndex. For non i8 cases,
9311 // the element will provide a range of bytes. For example, if we have a
9312 // vector of i16s, each element provides two bytes (V[1] provides byte 2 and
9313 // 3).
9314 if (*VectorIndex * NarrowByteWidth > StartingIndex)
9315 return std::nullopt;
9316 if ((*VectorIndex + 1) * NarrowByteWidth <= StartingIndex)
9317 return std::nullopt;
9318
9319 return calculateByteProvider(Op->getOperand(0), Index, Depth + 1,
9320 VectorIndex, StartingIndex);
9321 }
9322 case ISD::LOAD: {
9323 auto L = cast<LoadSDNode>(Op.getNode());
9324 if (!L->isSimple() || L->isIndexed())
9325 return std::nullopt;
9326
9327 unsigned NarrowBitWidth = L->getMemoryVT().getScalarSizeInBits();
9328 if (NarrowBitWidth % 8 != 0)
9329 return std::nullopt;
9330 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
9331
9332 // If the width of the load does not reach byte we are trying to provide for
9333 // and it is not a ZEXTLOAD, then the load does not provide for the byte in
9334 // question
9335 if (Index >= NarrowByteWidth)
9336 return L->getExtensionType() == ISD::ZEXTLOAD
9337 ? std::optional<SDByteProvider>(
9339 : std::nullopt;
9340
9341 unsigned BPVectorIndex = VectorIndex.value_or(0U);
9342 return SDByteProvider::getSrc(L, Index, BPVectorIndex);
9343 }
9344 }
9345
9346 return std::nullopt;
9347}
9348
9349static unsigned littleEndianByteAt(unsigned BW, unsigned i) {
9350 return i;
9351}
9352
9353static unsigned bigEndianByteAt(unsigned BW, unsigned i) {
9354 return BW - i - 1;
9355}
9356
9357// Check if the bytes offsets we are looking at match with either big or
9358// little endian value loaded. Return true for big endian, false for little
9359// endian, and std::nullopt if match failed.
9360static std::optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets,
9361 int64_t FirstOffset) {
9362 // The endian can be decided only when it is 2 bytes at least.
9363 unsigned Width = ByteOffsets.size();
9364 if (Width < 2)
9365 return std::nullopt;
9366
9367 bool BigEndian = true, LittleEndian = true;
9368 for (unsigned i = 0; i < Width; i++) {
9369 int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
9370 LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i);
9371 BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i);
9372 if (!BigEndian && !LittleEndian)
9373 return std::nullopt;
9374 }
9375
9376 assert((BigEndian != LittleEndian) && "It should be either big endian or"
9377 "little endian");
9378 return BigEndian;
9379}
9380
9381// Look through one layer of truncate or extend.
9383 switch (Value.getOpcode()) {
9384 case ISD::TRUNCATE:
9385 case ISD::ZERO_EXTEND:
9386 case ISD::SIGN_EXTEND:
9387 case ISD::ANY_EXTEND:
9388 return Value.getOperand(0);
9389 }
9390 return SDValue();
9391}
9392
9393/// Match a pattern where a wide type scalar value is stored by several narrow
9394/// stores. Fold it into a single store or a BSWAP and a store if the targets
9395/// supports it.
9396///
9397/// Assuming little endian target:
9398/// i8 *p = ...
9399/// i32 val = ...
9400/// p[0] = (val >> 0) & 0xFF;
9401/// p[1] = (val >> 8) & 0xFF;
9402/// p[2] = (val >> 16) & 0xFF;
9403/// p[3] = (val >> 24) & 0xFF;
9404/// =>
9405/// *((i32)p) = val;
9406///
9407/// i8 *p = ...
9408/// i32 val = ...
9409/// p[0] = (val >> 24) & 0xFF;
9410/// p[1] = (val >> 16) & 0xFF;
9411/// p[2] = (val >> 8) & 0xFF;
9412/// p[3] = (val >> 0) & 0xFF;
9413/// =>
9414/// *((i32)p) = BSWAP(val);
9415SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) {
9416 // The matching looks for "store (trunc x)" patterns that appear early but are
9417 // likely to be replaced by truncating store nodes during combining.
9418 // TODO: If there is evidence that running this later would help, this
9419 // limitation could be removed. Legality checks may need to be added
9420 // for the created store and optional bswap/rotate.
9421 if (LegalOperations || OptLevel == CodeGenOptLevel::None)
9422 return SDValue();
9423
9424 // We only handle merging simple stores of 1-4 bytes.
9425 // TODO: Allow unordered atomics when wider type is legal (see D66309)
9426 EVT MemVT = N->getMemoryVT();
9427 if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) ||
9428 !N->isSimple() || N->isIndexed())
9429 return SDValue();
9430
9431 // Collect all of the stores in the chain, upto the maximum store width (i64).
9432 SDValue Chain = N->getChain();
9434 unsigned NarrowNumBits = MemVT.getScalarSizeInBits();
9435 unsigned MaxWideNumBits = 64;
9436 unsigned MaxStores = MaxWideNumBits / NarrowNumBits;
9437 while (auto *Store = dyn_cast<StoreSDNode>(Chain)) {
9438 // All stores must be the same size to ensure that we are writing all of the
9439 // bytes in the wide value.
9440 // This store should have exactly one use as a chain operand for another
9441 // store in the merging set. If there are other chain uses, then the
9442 // transform may not be safe because order of loads/stores outside of this
9443 // set may not be preserved.
9444 // TODO: We could allow multiple sizes by tracking each stored byte.
9445 if (Store->getMemoryVT() != MemVT || !Store->isSimple() ||
9446 Store->isIndexed() || !Store->hasOneUse())
9447 return SDValue();
9448 Stores.push_back(Store);
9449 Chain = Store->getChain();
9450 if (MaxStores < Stores.size())
9451 return SDValue();
9452 }
9453 // There is no reason to continue if we do not have at least a pair of stores.
9454 if (Stores.size() < 2)
9455 return SDValue();
9456
9457 // Handle simple types only.
9458 LLVMContext &Context = *DAG.getContext();
9459 unsigned NumStores = Stores.size();
9460 unsigned WideNumBits = NumStores * NarrowNumBits;
9461 if (WideNumBits != 16 && WideNumBits != 32 && WideNumBits != 64)
9462 return SDValue();
9463
9464 // Check if all bytes of the source value that we are looking at are stored
9465 // to the same base address. Collect offsets from Base address into OffsetMap.
9466 SDValue SourceValue;
9467 SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX);
9468 int64_t FirstOffset = INT64_MAX;
9469 StoreSDNode *FirstStore = nullptr;
9470 std::optional<BaseIndexOffset> Base;
9471 for (auto *Store : Stores) {
9472 // All the stores store different parts of the CombinedValue. A truncate is
9473 // required to get the partial value.
9474 SDValue Trunc = Store->getValue();
9475 if (Trunc.getOpcode() != ISD::TRUNCATE)
9476 return SDValue();
9477 // Other than the first/last part, a shift operation is required to get the
9478 // offset.
9479 int64_t Offset = 0;
9480 SDValue WideVal = Trunc.getOperand(0);
9481 if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) &&
9482 isa<ConstantSDNode>(WideVal.getOperand(1))) {
9483 // The shift amount must be a constant multiple of the narrow type.
9484 // It is translated to the offset address in the wide source value "y".
9485 //
9486 // x = srl y, ShiftAmtC
9487 // i8 z = trunc x
9488 // store z, ...
9489 uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1);
9490 if (ShiftAmtC % NarrowNumBits != 0)
9491 return SDValue();
9492
9493 // Make sure we aren't reading bits that are shifted in.
9494 if (ShiftAmtC > WideVal.getScalarValueSizeInBits() - NarrowNumBits)
9495 return SDValue();
9496
9497 Offset = ShiftAmtC / NarrowNumBits;
9498 WideVal = WideVal.getOperand(0);
9499 }
9500
9501 // Stores must share the same source value with different offsets.
9502 if (!SourceValue)
9503 SourceValue = WideVal;
9504 else if (SourceValue != WideVal) {
9505 // Truncate and extends can be stripped to see if the values are related.
9506 if (stripTruncAndExt(SourceValue) != WideVal &&
9507 stripTruncAndExt(WideVal) != SourceValue)
9508 return SDValue();
9509
9510 if (WideVal.getScalarValueSizeInBits() >
9511 SourceValue.getScalarValueSizeInBits())
9512 SourceValue = WideVal;
9513
9514 // Give up if the source value type is smaller than the store size.
9515 if (SourceValue.getScalarValueSizeInBits() < WideNumBits)
9516 return SDValue();
9517 }
9518
9519 // Stores must share the same base address.
9520 BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
9521 int64_t ByteOffsetFromBase = 0;
9522 if (!Base)
9523 Base = Ptr;
9524 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
9525 return SDValue();
9526
9527 // Remember the first store.
9528 if (ByteOffsetFromBase < FirstOffset) {
9529 FirstStore = Store;
9530 FirstOffset = ByteOffsetFromBase;
9531 }
9532 // Map the offset in the store and the offset in the combined value, and
9533 // early return if it has been set before.
9534 if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX)
9535 return SDValue();
9536 OffsetMap[Offset] = ByteOffsetFromBase;
9537 }
9538
9539 EVT WideVT = EVT::getIntegerVT(Context, WideNumBits);
9540
9541 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
9542 assert(FirstStore && "First store must be set");
9543
9544 // Check that a store of the wide type is both allowed and fast on the target
9545 const DataLayout &Layout = DAG.getDataLayout();
9546 unsigned Fast = 0;
9547 bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT,
9548 *FirstStore->getMemOperand(), &Fast);
9549 if (!Allowed || !Fast)
9550 return SDValue();
9551
9552 // Check if the pieces of the value are going to the expected places in memory
9553 // to merge the stores.
9554 auto checkOffsets = [&](bool MatchLittleEndian) {
9555 if (MatchLittleEndian) {
9556 for (unsigned i = 0; i != NumStores; ++i)
9557 if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset)
9558 return false;
9559 } else { // MatchBigEndian by reversing loop counter.
9560 for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j)
9561 if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset)
9562 return false;
9563 }
9564 return true;
9565 };
9566
9567 // Check if the offsets line up for the native data layout of this target.
9568 bool NeedBswap = false;
9569 bool NeedRotate = false;
9570 if (!checkOffsets(Layout.isLittleEndian())) {
9571 // Special-case: check if byte offsets line up for the opposite endian.
9572 if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian()))
9573 NeedBswap = true;
9574 else if (NumStores == 2 && checkOffsets(Layout.isBigEndian()))
9575 NeedRotate = true;
9576 else
9577 return SDValue();
9578 }
9579
9580 SDLoc DL(N);
9581 if (WideVT != SourceValue.getValueType()) {
9582 assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits &&
9583 "Unexpected store value to merge");
9584 SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue);
9585 }
9586
9587 // Before legalize we can introduce illegal bswaps/rotates which will be later
9588 // converted to an explicit bswap sequence. This way we end up with a single
9589 // store and byte shuffling instead of several stores and byte shuffling.
9590 if (NeedBswap) {
9591 SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue);
9592 } else if (NeedRotate) {
9593 assert(WideNumBits % 2 == 0 && "Unexpected type for rotate");
9594 SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT);
9595 SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt);
9596 }
9597
9598 SDValue NewStore =
9599 DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(),
9600 FirstStore->getPointerInfo(), FirstStore->getAlign());
9601
9602 // Rely on other DAG combine rules to remove the other individual stores.
9603 DAG.ReplaceAllUsesWith(N, NewStore.getNode());
9604 return NewStore;
9605}
9606
9607/// Match a pattern where a wide type scalar value is loaded by several narrow
9608/// loads and combined by shifts and ors. Fold it into a single load or a load
9609/// and a BSWAP if the targets supports it.
9610///
9611/// Assuming little endian target:
9612/// i8 *a = ...
9613/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
9614/// =>
9615/// i32 val = *((i32)a)
9616///
9617/// i8 *a = ...
9618/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
9619/// =>
9620/// i32 val = BSWAP(*((i32)a))
9621///
9622/// TODO: This rule matches complex patterns with OR node roots and doesn't
9623/// interact well with the worklist mechanism. When a part of the pattern is
9624/// updated (e.g. one of the loads) its direct users are put into the worklist,
9625/// but the root node of the pattern which triggers the load combine is not
9626/// necessarily a direct user of the changed node. For example, once the address
9627/// of t28 load is reassociated load combine won't be triggered:
9628/// t25: i32 = add t4, Constant:i32<2>
9629/// t26: i64 = sign_extend t25
9630/// t27: i64 = add t2, t26
9631/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
9632/// t29: i32 = zero_extend t28
9633/// t32: i32 = shl t29, Constant:i8<8>
9634/// t33: i32 = or t23, t32
9635/// As a possible fix visitLoad can check if the load can be a part of a load
9636/// combine pattern and add corresponding OR roots to the worklist.
9637SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
9638 assert(N->getOpcode() == ISD::OR &&
9639 "Can only match load combining against OR nodes");
9640
9641 // Handles simple types only
9642 EVT VT = N->getValueType(0);
9643 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
9644 return SDValue();
9645 unsigned ByteWidth = VT.getSizeInBits() / 8;
9646
9647 bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
9648 auto MemoryByteOffset = [&](SDByteProvider P) {
9649 assert(P.hasSrc() && "Must be a memory byte provider");
9650 auto *Load = cast<LoadSDNode>(P.Src.value());
9651
9652 unsigned LoadBitWidth = Load->getMemoryVT().getScalarSizeInBits();
9653
9654 assert(LoadBitWidth % 8 == 0 &&
9655 "can only analyze providers for individual bytes not bit");
9656 unsigned LoadByteWidth = LoadBitWidth / 8;
9657 return IsBigEndianTarget ? bigEndianByteAt(LoadByteWidth, P.DestOffset)
9658 : littleEndianByteAt(LoadByteWidth, P.DestOffset);
9659 };
9660
9661 std::optional<BaseIndexOffset> Base;
9662 SDValue Chain;
9663
9664 SmallPtrSet<LoadSDNode *, 8> Loads;
9665 std::optional<SDByteProvider> FirstByteProvider;
9666 int64_t FirstOffset = INT64_MAX;
9667
9668 // Check if all the bytes of the OR we are looking at are loaded from the same
9669 // base address. Collect bytes offsets from Base address in ByteOffsets.
9670 SmallVector<int64_t, 8> ByteOffsets(ByteWidth);
9671 unsigned ZeroExtendedBytes = 0;
9672 for (int i = ByteWidth - 1; i >= 0; --i) {
9673 auto P =
9674 calculateByteProvider(SDValue(N, 0), i, 0, /*VectorIndex*/ std::nullopt,
9675 /*StartingIndex*/ i);
9676 if (!P)
9677 return SDValue();
9678
9679 if (P->isConstantZero()) {
9680 // It's OK for the N most significant bytes to be 0, we can just
9681 // zero-extend the load.
9682 if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i)))
9683 return SDValue();
9684 continue;
9685 }
9686 assert(P->hasSrc() && "provenance should either be memory or zero");
9687 auto *L = cast<LoadSDNode>(P->Src.value());
9688
9689 // All loads must share the same chain
9690 SDValue LChain = L->getChain();
9691 if (!Chain)
9692 Chain = LChain;
9693 else if (Chain != LChain)
9694 return SDValue();
9695
9696 // Loads must share the same base address
9697 BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
9698 int64_t ByteOffsetFromBase = 0;
9699
9700 // For vector loads, the expected load combine pattern will have an
9701 // ExtractElement for each index in the vector. While each of these
9702 // ExtractElements will be accessing the same base address as determined
9703 // by the load instruction, the actual bytes they interact with will differ
9704 // due to different ExtractElement indices. To accurately determine the
9705 // byte position of an ExtractElement, we offset the base load ptr with
9706 // the index multiplied by the byte size of each element in the vector.
9707 if (L->getMemoryVT().isVector()) {
9708 unsigned LoadWidthInBit = L->getMemoryVT().getScalarSizeInBits();
9709 if (LoadWidthInBit % 8 != 0)
9710 return SDValue();
9711 unsigned ByteOffsetFromVector = P->SrcOffset * LoadWidthInBit / 8;
9712 Ptr.addToOffset(ByteOffsetFromVector);
9713 }
9714
9715 if (!Base)
9716 Base = Ptr;
9717
9718 else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
9719 return SDValue();
9720
9721 // Calculate the offset of the current byte from the base address
9722 ByteOffsetFromBase += MemoryByteOffset(*P);
9723 ByteOffsets[i] = ByteOffsetFromBase;
9724
9725 // Remember the first byte load
9726 if (ByteOffsetFromBase < FirstOffset) {
9727 FirstByteProvider = P;
9728 FirstOffset = ByteOffsetFromBase;
9729 }
9730
9731 Loads.insert(L);
9732 }
9733
9734 assert(!Loads.empty() && "All the bytes of the value must be loaded from "
9735 "memory, so there must be at least one load which produces the value");
9736 assert(Base && "Base address of the accessed memory location must be set");
9737 assert(FirstOffset != INT64_MAX && "First byte offset must be set");
9738
9739 bool NeedsZext = ZeroExtendedBytes > 0;
9740
9741 EVT MemVT =
9742 EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8);
9743
9744 if (!MemVT.isSimple())
9745 return SDValue();
9746
9747 // Before legalize we can introduce too wide illegal loads which will be later
9748 // split into legal sized loads. This enables us to combine i64 load by i8
9749 // patterns to a couple of i32 loads on 32 bit targets.
9750 if (LegalOperations &&
9751 !TLI.isLoadExtLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, VT,
9752 MemVT))
9753 return SDValue();
9754
9755 // Check if the bytes of the OR we are looking at match with either big or
9756 // little endian value load
9757 std::optional<bool> IsBigEndian = isBigEndian(
9758 ArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset);
9759 if (!IsBigEndian)
9760 return SDValue();
9761
9762 assert(FirstByteProvider && "must be set");
9763
9764 // Ensure that the first byte is loaded from zero offset of the first load.
9765 // So the combined value can be loaded from the first load address.
9766 if (MemoryByteOffset(*FirstByteProvider) != 0)
9767 return SDValue();
9768 auto *FirstLoad = cast<LoadSDNode>(FirstByteProvider->Src.value());
9769
9770 // The node we are looking at matches with the pattern, check if we can
9771 // replace it with a single (possibly zero-extended) load and bswap + shift if
9772 // needed.
9773
9774 // If the load needs byte swap check if the target supports it
9775 bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
9776
9777 // Before legalize we can introduce illegal bswaps which will be later
9778 // converted to an explicit bswap sequence. This way we end up with a single
9779 // load and byte shuffling instead of several loads and byte shuffling.
9780 // We do not introduce illegal bswaps when zero-extending as this tends to
9781 // introduce too many arithmetic instructions.
9782 if (NeedsBswap && (LegalOperations || NeedsZext) &&
9783 !TLI.isOperationLegal(ISD::BSWAP, VT))
9784 return SDValue();
9785
9786 // If we need to bswap and zero extend, we have to insert a shift. Check that
9787 // it is legal.
9788 if (NeedsBswap && NeedsZext && LegalOperations &&
9789 !TLI.isOperationLegal(ISD::SHL, VT))
9790 return SDValue();
9791
9792 // Check that a load of the wide type is both allowed and fast on the target
9793 unsigned Fast = 0;
9794 bool Allowed =
9795 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
9796 *FirstLoad->getMemOperand(), &Fast);
9797 if (!Allowed || !Fast)
9798 return SDValue();
9799
9800 SDValue NewLoad =
9801 DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT,
9802 Chain, FirstLoad->getBasePtr(),
9803 FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign());
9804
9805 // Transfer chain users from old loads to the new load.
9806 for (LoadSDNode *L : Loads)
9807 DAG.makeEquivalentMemoryOrdering(L, NewLoad);
9808
9809 if (!NeedsBswap)
9810 return NewLoad;
9811
9812 SDValue ShiftedLoad =
9813 NeedsZext ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad,
9814 DAG.getShiftAmountConstant(ZeroExtendedBytes * 8,
9815 VT, SDLoc(N)))
9816 : NewLoad;
9817 return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad);
9818}
9819
9820// If the target has andn, bsl, or a similar bit-select instruction,
9821// we want to unfold masked merge, with canonical pattern of:
9822// | A | |B|
9823// ((x ^ y) & m) ^ y
9824// | D |
9825// Into:
9826// (x & m) | (y & ~m)
9827// If y is a constant, m is not a 'not', and the 'andn' does not work with
9828// immediates, we unfold into a different pattern:
9829// ~(~x & m) & (m | y)
9830// If x is a constant, m is a 'not', and the 'andn' does not work with
9831// immediates, we unfold into a different pattern:
9832// (x | ~m) & ~(~m & ~y)
9833// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
9834// the very least that breaks andnpd / andnps patterns, and because those
9835// patterns are simplified in IR and shouldn't be created in the DAG
9836SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
9837 assert(N->getOpcode() == ISD::XOR);
9838
9839 // Don't touch 'not' (i.e. where y = -1).
9840 if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
9841 return SDValue();
9842
9843 EVT VT = N->getValueType(0);
9844
9845 // There are 3 commutable operators in the pattern,
9846 // so we have to deal with 8 possible variants of the basic pattern.
9847 SDValue X, Y, M;
9848 auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
9849 if (And.getOpcode() != ISD::AND || !And.hasOneUse())
9850 return false;
9851 SDValue Xor = And.getOperand(XorIdx);
9852 if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
9853 return false;
9854 SDValue Xor0 = Xor.getOperand(0);
9855 SDValue Xor1 = Xor.getOperand(1);
9856 // Don't touch 'not' (i.e. where y = -1).
9857 if (isAllOnesOrAllOnesSplat(Xor1))
9858 return false;
9859 if (Other == Xor0)
9860 std::swap(Xor0, Xor1);
9861 if (Other != Xor1)
9862 return false;
9863 X = Xor0;
9864 Y = Xor1;
9865 M = And.getOperand(XorIdx ? 0 : 1);
9866 return true;
9867 };
9868
9869 SDValue N0 = N->getOperand(0);
9870 SDValue N1 = N->getOperand(1);
9871 if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
9872 !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
9873 return SDValue();
9874
9875 // Don't do anything if the mask is constant. This should not be reachable.
9876 // InstCombine should have already unfolded this pattern, and DAGCombiner
9877 // probably shouldn't produce it, too.
9878 if (isa<ConstantSDNode>(M.getNode()))
9879 return SDValue();
9880
9881 // We can transform if the target has AndNot
9882 if (!TLI.hasAndNot(M))
9883 return SDValue();
9884
9885 SDLoc DL(N);
9886
9887 // If Y is a constant, check that 'andn' works with immediates. Unless M is
9888 // a bitwise not that would already allow ANDN to be used.
9889 if (!TLI.hasAndNot(Y) && !isBitwiseNot(M)) {
9890 assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
9891 // If not, we need to do a bit more work to make sure andn is still used.
9892 SDValue NotX = DAG.getNOT(DL, X, VT);
9893 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
9894 SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
9895 SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
9896 return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
9897 }
9898
9899 // If X is a constant and M is a bitwise not, check that 'andn' works with
9900 // immediates.
9901 if (!TLI.hasAndNot(X) && isBitwiseNot(M)) {
9902 assert(TLI.hasAndNot(Y) && "Only mask is a variable? Unreachable.");
9903 // If not, we need to do a bit more work to make sure andn is still used.
9904 SDValue NotM = M.getOperand(0);
9905 SDValue LHS = DAG.getNode(ISD::OR, DL, VT, X, NotM);
9906 SDValue NotY = DAG.getNOT(DL, Y, VT);
9907 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, NotM, NotY);
9908 SDValue NotRHS = DAG.getNOT(DL, RHS, VT);
9909 return DAG.getNode(ISD::AND, DL, VT, LHS, NotRHS);
9910 }
9911
9912 SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
9913 SDValue NotM = DAG.getNOT(DL, M, VT);
9914 SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
9915
9916 return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
9917}
9918
9919SDValue DAGCombiner::visitXOR(SDNode *N) {
9920 SDValue N0 = N->getOperand(0);
9921 SDValue N1 = N->getOperand(1);
9922 EVT VT = N0.getValueType();
9923 SDLoc DL(N);
9924
9925 // fold (xor undef, undef) -> 0. This is a common idiom (misuse).
9926 if (N0.isUndef() && N1.isUndef())
9927 return DAG.getConstant(0, DL, VT);
9928
9929 // fold (xor x, undef) -> undef
9930 if (N0.isUndef())
9931 return N0;
9932 if (N1.isUndef())
9933 return N1;
9934
9935 // fold (xor c1, c2) -> c1^c2
9936 if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1}))
9937 return C;
9938
9939 // canonicalize constant to RHS
9942 return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
9943
9944 // fold vector ops
9945 if (VT.isVector()) {
9946 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
9947 return FoldedVOp;
9948
9949 // fold (xor x, 0) -> x, vector edition
9951 return N0;
9952 }
9953
9954 // fold (xor x, 0) -> x
9955 if (isNullConstant(N1))
9956 return N0;
9957
9958 if (SDValue NewSel = foldBinOpIntoSelect(N))
9959 return NewSel;
9960
9961 // reassociate xor
9962 if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
9963 return RXOR;
9964
9965 // Fold xor(vecreduce(x), vecreduce(y)) -> vecreduce(xor(x, y))
9966 if (SDValue SD =
9967 reassociateReduction(ISD::VECREDUCE_XOR, ISD::XOR, DL, VT, N0, N1))
9968 return SD;
9969
9970 // fold (a^b) -> (a|b) iff a and b share no bits.
9971 if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
9972 DAG.haveNoCommonBitsSet(N0, N1))
9973 return DAG.getNode(ISD::OR, DL, VT, N0, N1, SDNodeFlags::Disjoint);
9974
9975 // look for 'add-like' folds:
9976 // XOR(N0,MIN_SIGNED_VALUE) == ADD(N0,MIN_SIGNED_VALUE)
9977 if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
9979 if (SDValue Combined = visitADDLike(N))
9980 return Combined;
9981
9982 // fold not (setcc x, y, cc) -> setcc x y !cc
9983 // Avoid breaking: and (not(setcc x, y, cc), z) -> andn for vec
9984 unsigned N0Opcode = N0.getOpcode();
9985 SDValue LHS, RHS, CC;
9986 if (TLI.isConstTrueVal(N1) &&
9987 isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/ true) &&
9988 !(VT.isVector() && TLI.hasAndNot(SDValue(N, 0)) && N->hasOneUse() &&
9989 N->use_begin()->getUser()->getOpcode() == ISD::AND)) {
9991 LHS.getValueType());
9992 if (!LegalOperations ||
9993 TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
9994 switch (N0Opcode) {
9995 default:
9996 llvm_unreachable("Unhandled SetCC Equivalent!");
9997 case ISD::SETCC:
9998 return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
9999 case ISD::SELECT_CC:
10000 return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
10001 N0.getOperand(3), NotCC);
10002 case ISD::STRICT_FSETCC:
10003 case ISD::STRICT_FSETCCS: {
10004 if (N0.hasOneUse()) {
10005 // FIXME Can we handle multiple uses? Could we token factor the chain
10006 // results from the new/old setcc?
10007 SDValue SetCC =
10008 DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC,
10009 N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS);
10010 CombineTo(N, SetCC);
10011 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1));
10012 recursivelyDeleteUnusedNodes(N0.getNode());
10013 return SDValue(N, 0); // Return N so it doesn't get rechecked!
10014 }
10015 break;
10016 }
10017 }
10018 }
10019 }
10020
10021 // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
10022 if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
10023 isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
10024 SDValue V = N0.getOperand(0);
10025 SDLoc DL0(N0);
10026 V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
10027 DAG.getConstant(1, DL0, V.getValueType()));
10028 AddToWorklist(V.getNode());
10029 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
10030 }
10031
10032 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
10033 // fold (not (and x, y)) -> (or (not x), (not y)) iff x or y are setcc
10034 if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
10035 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
10036 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
10037 if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
10038 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
10039 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
10040 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
10041 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
10042 return DAG.getNode(NewOpcode, DL, VT, N00, N01);
10043 }
10044 }
10045 // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
10046 // fold (not (and x, y)) -> (or (not x), (not y)) iff x or y are constants
10047 if (isAllOnesConstant(N1) && N0.hasOneUse() &&
10048 (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
10049 SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
10050 if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
10051 unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
10052 N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
10053 N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
10054 AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
10055 return DAG.getNode(NewOpcode, DL, VT, N00, N01);
10056 }
10057 }
10058
10059 // fold (not (sub Y, X)) -> (add X, ~Y) if Y is a constant
10060 if (N0.getOpcode() == ISD::SUB && isAllOnesConstant(N1)) {
10061 SDValue Y = N0.getOperand(0);
10062 SDValue X = N0.getOperand(1);
10063
10064 if (auto *YConst = dyn_cast<ConstantSDNode>(Y)) {
10065 APInt NotYValue = ~YConst->getAPIntValue();
10066 SDValue NotY = DAG.getConstant(NotYValue, DL, VT);
10067 return DAG.getNode(ISD::ADD, DL, VT, X, NotY, N->getFlags());
10068 }
10069 }
10070
10071 // fold (not (add X, -1)) -> (neg X)
10072 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && isAllOnesConstant(N1) &&
10074 return DAG.getNegative(N0.getOperand(0), DL, VT);
10075 }
10076
10077 // fold (xor (and x, y), y) -> (and (not x), y)
10078 if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
10079 SDValue X = N0.getOperand(0);
10080 SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
10081 AddToWorklist(NotX.getNode());
10082 return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
10083 }
10084
10085 // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
10086 if (!LegalOperations || hasOperation(ISD::ABS, VT)) {
10087 SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
10088 SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
10089 if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
10090 SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
10091 SDValue S0 = S.getOperand(0);
10092 if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0))
10093 if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
10094 if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
10095 return DAG.getNode(ISD::ABS, DL, VT, S0);
10096 }
10097 }
10098
10099 // fold (xor x, x) -> 0
10100 if (N0 == N1)
10101 return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
10102
10103 // fold (xor (shl 1, x), -1) -> (rotl ~1, x)
10104 // Here is a concrete example of this equivalence:
10105 // i16 x == 14
10106 // i16 shl == 1 << 14 == 16384 == 0b0100000000000000
10107 // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
10108 //
10109 // =>
10110 //
10111 // i16 ~1 == 0b1111111111111110
10112 // i16 rol(~1, 14) == 0b1011111111111111
10113 //
10114 // Some additional tips to help conceptualize this transform:
10115 // - Try to see the operation as placing a single zero in a value of all ones.
10116 // - There exists no value for x which would allow the result to contain zero.
10117 // - Values of x larger than the bitwidth are undefined and do not require a
10118 // consistent result.
10119 // - Pushing the zero left requires shifting one bits in from the right.
10120 // A rotate left of ~1 is a nice way of achieving the desired result.
10121 if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
10123 return DAG.getNode(ISD::ROTL, DL, VT, DAG.getSignedConstant(~1, DL, VT),
10124 N0.getOperand(1));
10125 }
10126
10127 // Simplify: xor (op x...), (op y...) -> (op (xor x, y))
10128 if (N0Opcode == N1.getOpcode())
10129 if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
10130 return V;
10131
10132 if (SDValue R = foldLogicOfShifts(N, N0, N1, DAG))
10133 return R;
10134 if (SDValue R = foldLogicOfShifts(N, N1, N0, DAG))
10135 return R;
10136 if (SDValue R = foldLogicTreeOfShifts(N, N0, N1, DAG))
10137 return R;
10138
10139 // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
10140 if (SDValue MM = unfoldMaskedMerge(N))
10141 return MM;
10142
10143 // Simplify the expression using non-local knowledge.
10145 return SDValue(N, 0);
10146
10147 if (SDValue Combined = combineCarryDiamond(DAG, TLI, N0, N1, N))
10148 return Combined;
10149
10150 // fold (xor (smin(x, C), C)) -> select (x < C), xor(x, C), 0
10151 // fold (xor (smax(x, C), C)) -> select (x > C), xor(x, C), 0
10152 // fold (xor (umin(x, C), C)) -> select (x < C), xor(x, C), 0
10153 // fold (xor (umax(x, C), C)) -> select (x > C), xor(x, C), 0
10154 SDValue Op0;
10155 if (sd_match(N0, m_OneUse(m_AnyOf(m_SMin(m_Value(Op0), m_Specific(N1)),
10156 m_SMax(m_Value(Op0), m_Specific(N1)),
10157 m_UMin(m_Value(Op0), m_Specific(N1)),
10158 m_UMax(m_Value(Op0), m_Specific(N1)))))) {
10159
10160 if (isa<ConstantSDNode>(N1) ||
10162 // For vectors, only optimize when the constant is zero or all-ones to
10163 // avoid generating more instructions
10164 if (VT.isVector()) {
10165 ConstantSDNode *N1C = isConstOrConstSplat(N1);
10166 if (!N1C || (!N1C->isZero() && !N1C->isAllOnes()))
10167 return SDValue();
10168 }
10169
10170 // Avoid the fold if the minmax operation is legal and select is expensive
10171 if (TLI.isOperationLegal(N0.getOpcode(), VT) &&
10173 return SDValue();
10174
10175 EVT CCVT = getSetCCResultType(VT);
10176 ISD::CondCode CC;
10177 switch (N0.getOpcode()) {
10178 case ISD::SMIN:
10179 CC = ISD::SETLT;
10180 break;
10181 case ISD::SMAX:
10182 CC = ISD::SETGT;
10183 break;
10184 case ISD::UMIN:
10185 CC = ISD::SETULT;
10186 break;
10187 case ISD::UMAX:
10188 CC = ISD::SETUGT;
10189 break;
10190 }
10191 SDValue FN1 = DAG.getFreeze(N1);
10192 SDValue Cmp = DAG.getSetCC(DL, CCVT, Op0, FN1, CC);
10193 SDValue XorXC = DAG.getNode(ISD::XOR, DL, VT, Op0, FN1);
10194 SDValue Zero = DAG.getConstant(0, DL, VT);
10195 return DAG.getSelect(DL, VT, Cmp, XorXC, Zero);
10196 }
10197 }
10198
10199 return SDValue();
10200}
10201
10202/// If we have a shift-by-constant of a bitwise logic op that itself has a
10203/// shift-by-constant operand with identical opcode, we may be able to convert
10204/// that into 2 independent shifts followed by the logic op. This is a
10205/// throughput improvement.
10207 // Match a one-use bitwise logic op.
10208 SDValue LogicOp = Shift->getOperand(0);
10209 if (!LogicOp.hasOneUse())
10210 return SDValue();
10211
10212 unsigned LogicOpcode = LogicOp.getOpcode();
10213 if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
10214 LogicOpcode != ISD::XOR)
10215 return SDValue();
10216
10217 // Find a matching one-use shift by constant.
10218 unsigned ShiftOpcode = Shift->getOpcode();
10219 SDValue C1 = Shift->getOperand(1);
10220 ConstantSDNode *C1Node = isConstOrConstSplat(C1);
10221 assert(C1Node && "Expected a shift with constant operand");
10222 const APInt &C1Val = C1Node->getAPIntValue();
10223 auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
10224 const APInt *&ShiftAmtVal) {
10225 if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
10226 return false;
10227
10228 ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
10229 if (!ShiftCNode)
10230 return false;
10231
10232 // Capture the shifted operand and shift amount value.
10233 ShiftOp = V.getOperand(0);
10234 ShiftAmtVal = &ShiftCNode->getAPIntValue();
10235
10236 // Shift amount types do not have to match their operand type, so check that
10237 // the constants are the same width.
10238 if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
10239 return false;
10240
10241 // The fold is not valid if the sum of the shift values doesn't fit in the
10242 // given shift amount type.
10243 bool Overflow = false;
10244 APInt NewShiftAmt = C1Val.uadd_ov(*ShiftAmtVal, Overflow);
10245 if (Overflow)
10246 return false;
10247
10248 // The fold is not valid if the sum of the shift values exceeds bitwidth.
10249 if (NewShiftAmt.uge(V.getScalarValueSizeInBits()))
10250 return false;
10251
10252 return true;
10253 };
10254
10255 // Logic ops are commutative, so check each operand for a match.
10256 SDValue X, Y;
10257 const APInt *C0Val;
10258 if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
10259 Y = LogicOp.getOperand(1);
10260 else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
10261 Y = LogicOp.getOperand(0);
10262 else
10263 return SDValue();
10264
10265 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
10266 SDLoc DL(Shift);
10267 EVT VT = Shift->getValueType(0);
10268 EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
10269 SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
10270 SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
10271 SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
10272 return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2,
10273 LogicOp->getFlags());
10274}
10275
10276/// Handle transforms common to the three shifts, when the shift amount is a
10277/// constant.
10278/// We are looking for: (shift being one of shl/sra/srl)
10279/// shift (binop X, C0), C1
10280/// And want to transform into:
10281/// binop (shift X, C1), (shift C0, C1)
10282SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
10283 assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand");
10284
10285 // Do not turn a 'not' into a regular xor.
10286 if (isBitwiseNot(N->getOperand(0)))
10287 return SDValue();
10288
10289 // The inner binop must be one-use, since we want to replace it.
10290 SDValue LHS = N->getOperand(0);
10291 if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
10292 return SDValue();
10293
10294 // Fold shift(bitop(shift(x,c1),y), c2) -> bitop(shift(x,c1+c2),shift(y,c2)).
10295 if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
10296 return R;
10297
10298 // We want to pull some binops through shifts, so that we have (and (shift))
10299 // instead of (shift (and)), likewise for add, or, xor, etc. This sort of
10300 // thing happens with address calculations, so it's important to canonicalize
10301 // it.
10302 switch (LHS.getOpcode()) {
10303 default:
10304 return SDValue();
10305 case ISD::OR:
10306 case ISD::XOR:
10307 case ISD::AND:
10308 break;
10309 case ISD::ADD:
10310 if (N->getOpcode() != ISD::SHL)
10311 return SDValue(); // only shl(add) not sr[al](add).
10312 break;
10313 }
10314
10315 // FIXME: disable this unless the input to the binop is a shift by a constant
10316 // or is copy/select. Enable this in other cases when figure out it's exactly
10317 // profitable.
10318 SDValue BinOpLHSVal = LHS.getOperand(0);
10319 bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
10320 BinOpLHSVal.getOpcode() == ISD::SRA ||
10321 BinOpLHSVal.getOpcode() == ISD::SRL) &&
10322 isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
10323 bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
10324 BinOpLHSVal.getOpcode() == ISD::SELECT;
10325
10326 if (!IsShiftByConstant && !IsCopyOrSelect)
10327 return SDValue();
10328
10329 if (IsCopyOrSelect && N->hasOneUse())
10330 return SDValue();
10331
10332 // Attempt to fold the constants, shifting the binop RHS by the shift amount.
10333 SDLoc DL(N);
10334 EVT VT = N->getValueType(0);
10335 if (SDValue NewRHS = DAG.FoldConstantArithmetic(
10336 N->getOpcode(), DL, VT, {LHS.getOperand(1), N->getOperand(1)})) {
10337 SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
10338 N->getOperand(1));
10339 return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
10340 }
10341
10342 return SDValue();
10343}
10344
10345SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
10346 assert(N->getOpcode() == ISD::TRUNCATE);
10347 assert(N->getOperand(0).getOpcode() == ISD::AND);
10348
10349 // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
10350 EVT TruncVT = N->getValueType(0);
10351 if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
10352 TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
10353 SDValue N01 = N->getOperand(0).getOperand(1);
10354 if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
10355 SDLoc DL(N);
10356 SDValue N00 = N->getOperand(0).getOperand(0);
10357 SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
10358 SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
10359 AddToWorklist(Trunc00.getNode());
10360 AddToWorklist(Trunc01.getNode());
10361 return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
10362 }
10363 }
10364
10365 return SDValue();
10366}
10367
10368SDValue DAGCombiner::visitRotate(SDNode *N) {
10369 SDLoc dl(N);
10370 SDValue N0 = N->getOperand(0);
10371 SDValue N1 = N->getOperand(1);
10372 EVT VT = N->getValueType(0);
10373 unsigned Bitsize = VT.getScalarSizeInBits();
10374
10375 // fold (rot x, 0) -> x
10376 if (isNullOrNullSplat(N1))
10377 return N0;
10378
10379 // fold (rot x, c) -> x iff (c % BitSize) == 0
10380 if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
10381 APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
10382 if (DAG.MaskedValueIsZero(N1, ModuloMask))
10383 return N0;
10384 }
10385
10386 // fold (rot x, c) -> (rot x, c % BitSize)
10387 bool OutOfRange = false;
10388 auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) {
10389 OutOfRange |= C->getAPIntValue().uge(Bitsize);
10390 return true;
10391 };
10392 if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) {
10393 EVT AmtVT = N1.getValueType();
10394 SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT);
10395 if (SDValue Amt =
10396 DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits}))
10397 return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt);
10398 }
10399
10400 // rot i16 X, 8 --> bswap X
10401 auto *RotAmtC = isConstOrConstSplat(N1);
10402 if (RotAmtC && RotAmtC->getAPIntValue() == 8 &&
10403 VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT))
10404 return DAG.getNode(ISD::BSWAP, dl, VT, N0);
10405
10406 // Simplify the operands using demanded-bits information.
10408 return SDValue(N, 0);
10409
10410 // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
10411 if (N1.getOpcode() == ISD::TRUNCATE &&
10412 N1.getOperand(0).getOpcode() == ISD::AND) {
10413 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
10414 return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
10415 }
10416
10417 unsigned NextOp = N0.getOpcode();
10418
10419 // fold (rot* (rot* x, c2), c1)
10420 // -> (rot* x, ((c1 % bitsize) +- (c2 % bitsize) + bitsize) % bitsize)
10421 if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
10422 bool C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
10424 if (C1 && C2 && N1.getValueType() == N0.getOperand(1).getValueType()) {
10425 EVT ShiftVT = N1.getValueType();
10426 bool SameSide = (N->getOpcode() == NextOp);
10427 unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
10428 SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
10429 SDValue Norm1 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT,
10430 {N1, BitsizeC});
10431 SDValue Norm2 = DAG.FoldConstantArithmetic(ISD::UREM, dl, ShiftVT,
10432 {N0.getOperand(1), BitsizeC});
10433 if (Norm1 && Norm2)
10434 if (SDValue CombinedShift = DAG.FoldConstantArithmetic(
10435 CombineOp, dl, ShiftVT, {Norm1, Norm2})) {
10436 CombinedShift = DAG.FoldConstantArithmetic(ISD::ADD, dl, ShiftVT,
10437 {CombinedShift, BitsizeC});
10438 SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
10439 ISD::UREM, dl, ShiftVT, {CombinedShift, BitsizeC});
10440 return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
10441 CombinedShiftNorm);
10442 }
10443 }
10444 }
10445 return SDValue();
10446}
10447
10448SDValue DAGCombiner::visitSHL(SDNode *N) {
10449 SDValue N0 = N->getOperand(0);
10450 SDValue N1 = N->getOperand(1);
10451 if (SDValue V = DAG.simplifyShift(N0, N1))
10452 return V;
10453
10454 SDLoc DL(N);
10455 EVT VT = N0.getValueType();
10456 EVT ShiftVT = N1.getValueType();
10457 unsigned OpSizeInBits = VT.getScalarSizeInBits();
10458
10459 // fold (shl c1, c2) -> c1<<c2
10460 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N0, N1}))
10461 return C;
10462
10463 // fold vector ops
10464 if (VT.isVector()) {
10465 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
10466 return FoldedVOp;
10467
10468 BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
10469 // If setcc produces all-one true value then:
10470 // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
10471 if (N1CV && N1CV->isConstant()) {
10472 if (N0.getOpcode() == ISD::AND) {
10473 SDValue N00 = N0->getOperand(0);
10474 SDValue N01 = N0->getOperand(1);
10475 BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
10476
10477 if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
10480 if (SDValue C =
10481 DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {N01, N1}))
10482 return DAG.getNode(ISD::AND, DL, VT, N00, C);
10483 }
10484 }
10485 }
10486 }
10487
10488 if (SDValue NewSel = foldBinOpIntoSelect(N))
10489 return NewSel;
10490
10491 // if (shl x, c) is known to be zero, return 0
10492 if (DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits)))
10493 return DAG.getConstant(0, DL, VT);
10494
10495 // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
10496 if (N1.getOpcode() == ISD::TRUNCATE &&
10497 N1.getOperand(0).getOpcode() == ISD::AND) {
10498 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
10499 return DAG.getNode(ISD::SHL, DL, VT, N0, NewOp1);
10500 }
10501
10502 // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
10503 if (N0.getOpcode() == ISD::SHL) {
10504 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
10505 ConstantSDNode *RHS) {
10506 APInt c1 = LHS->getAPIntValue();
10507 APInt c2 = RHS->getAPIntValue();
10508 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
10509 return (c1 + c2).uge(OpSizeInBits);
10510 };
10511 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
10512 return DAG.getConstant(0, DL, VT);
10513
10514 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
10515 ConstantSDNode *RHS) {
10516 APInt c1 = LHS->getAPIntValue();
10517 APInt c2 = RHS->getAPIntValue();
10518 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
10519 return (c1 + c2).ult(OpSizeInBits);
10520 };
10521 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
10522 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
10523 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
10524 }
10525 }
10526
10527 // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
10528 // For this to be valid, the second form must not preserve any of the bits
10529 // that are shifted out by the inner shift in the first form. This means
10530 // the outer shift size must be >= the number of bits added by the ext.
10531 // As a corollary, we don't care what kind of ext it is.
10532 if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
10533 N0.getOpcode() == ISD::ANY_EXTEND ||
10534 N0.getOpcode() == ISD::SIGN_EXTEND) &&
10535 N0.getOperand(0).getOpcode() == ISD::SHL) {
10536 SDValue N0Op0 = N0.getOperand(0);
10537 SDValue InnerShiftAmt = N0Op0.getOperand(1);
10538 EVT InnerVT = N0Op0.getValueType();
10539 uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
10540
10541 auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
10542 ConstantSDNode *RHS) {
10543 APInt c1 = LHS->getAPIntValue();
10544 APInt c2 = RHS->getAPIntValue();
10545 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
10546 return c2.uge(OpSizeInBits - InnerBitwidth) &&
10547 (c1 + c2).uge(OpSizeInBits);
10548 };
10549 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
10550 /*AllowUndefs*/ false,
10551 /*AllowTypeMismatch*/ true))
10552 return DAG.getConstant(0, DL, VT);
10553
10554 auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
10555 ConstantSDNode *RHS) {
10556 APInt c1 = LHS->getAPIntValue();
10557 APInt c2 = RHS->getAPIntValue();
10558 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
10559 return c2.uge(OpSizeInBits - InnerBitwidth) &&
10560 (c1 + c2).ult(OpSizeInBits);
10561 };
10562 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
10563 /*AllowUndefs*/ false,
10564 /*AllowTypeMismatch*/ true)) {
10565 SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
10566 SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
10567 Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
10568 return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
10569 }
10570 }
10571
10572 // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
10573 // Only fold this if the inner zext has no other uses to avoid increasing
10574 // the total number of instructions.
10575 if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
10576 N0.getOperand(0).getOpcode() == ISD::SRL) {
10577 SDValue N0Op0 = N0.getOperand(0);
10578 SDValue InnerShiftAmt = N0Op0.getOperand(1);
10579
10580 auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
10581 APInt c1 = LHS->getAPIntValue();
10582 APInt c2 = RHS->getAPIntValue();
10583 zeroExtendToMatch(c1, c2);
10584 return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
10585 };
10586 if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
10587 /*AllowUndefs*/ false,
10588 /*AllowTypeMismatch*/ true)) {
10589 EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
10590 SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
10591 NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
10592 AddToWorklist(NewSHL.getNode());
10593 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
10594 }
10595 }
10596
10597 if (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) {
10598 auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS,
10599 ConstantSDNode *RHS) {
10600 const APInt &LHSC = LHS->getAPIntValue();
10601 const APInt &RHSC = RHS->getAPIntValue();
10602 return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) &&
10603 LHSC.getZExtValue() <= RHSC.getZExtValue();
10604 };
10605
10606 // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
10607 // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 >= C2
10608 if (N0->getFlags().hasExact()) {
10609 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
10610 /*AllowUndefs*/ false,
10611 /*AllowTypeMismatch*/ true)) {
10612 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
10613 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
10614 return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
10615 }
10616 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
10617 /*AllowUndefs*/ false,
10618 /*AllowTypeMismatch*/ true)) {
10619 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
10620 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
10621 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Diff);
10622 }
10623 }
10624
10625 // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
10626 // (and (srl x, (sub c1, c2), MASK)
10627 // Only fold this if the inner shift has no other uses -- if it does,
10628 // folding this will increase the total number of instructions.
10629 if (N0.getOpcode() == ISD::SRL &&
10630 (N0.getOperand(1) == N1 || N0.hasOneUse()) &&
10632 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
10633 /*AllowUndefs*/ false,
10634 /*AllowTypeMismatch*/ true)) {
10635 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
10636 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
10637 SDValue Mask = DAG.getAllOnesConstant(DL, VT);
10638 Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N01);
10639 Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, Diff);
10640 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff);
10641 return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
10642 }
10643 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
10644 /*AllowUndefs*/ false,
10645 /*AllowTypeMismatch*/ true)) {
10646 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
10647 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
10648 SDValue Mask = DAG.getAllOnesConstant(DL, VT);
10649 Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, N1);
10650 SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
10651 return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
10652 }
10653 }
10654 }
10655
10656 // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
10657 if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
10658 isConstantOrConstantVector(N1, /* No Opaques */ true)) {
10659 SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
10660 SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
10661 return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
10662 }
10663
10664 // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10665 // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
10666 // Variant of version done on multiply, except mul by a power of 2 is turned
10667 // into a shift.
10668 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
10669 TLI.isDesirableToCommuteWithShift(N, Level)) {
10670 SDValue N01 = N0.getOperand(1);
10671 if (SDValue Shl1 =
10672 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, {N01, N1})) {
10673 SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
10674 AddToWorklist(Shl0.getNode());
10675 SDNodeFlags Flags;
10676 // Preserve the disjoint flag for Or.
10677 if (N0.getOpcode() == ISD::OR && N0->getFlags().hasDisjoint())
10679 return DAG.getNode(N0.getOpcode(), DL, VT, Shl0, Shl1, Flags);
10680 }
10681 }
10682
10683 // fold (shl (sext (add_nsw x, c1)), c2) -> (add (shl (sext x), c2), c1 << c2)
10684 // TODO: Add zext/add_nuw variant with suitable test coverage
10685 // TODO: Should we limit this with isLegalAddImmediate?
10686 if (N0.getOpcode() == ISD::SIGN_EXTEND &&
10687 N0.getOperand(0).getOpcode() == ISD::ADD &&
10688 N0.getOperand(0)->getFlags().hasNoSignedWrap() &&
10689 TLI.isDesirableToCommuteWithShift(N, Level)) {
10690 SDValue Add = N0.getOperand(0);
10691 SDLoc DL(N0);
10692 if (SDValue ExtC = DAG.FoldConstantArithmetic(N0.getOpcode(), DL, VT,
10693 {Add.getOperand(1)})) {
10694 if (SDValue ShlC =
10695 DAG.FoldConstantArithmetic(ISD::SHL, DL, VT, {ExtC, N1})) {
10696 SDValue ExtX = DAG.getNode(N0.getOpcode(), DL, VT, Add.getOperand(0));
10697 SDValue ShlX = DAG.getNode(ISD::SHL, DL, VT, ExtX, N1);
10698 return DAG.getNode(ISD::ADD, DL, VT, ShlX, ShlC);
10699 }
10700 }
10701 }
10702
10703 // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
10704 if (N0.getOpcode() == ISD::MUL && N0->hasOneUse()) {
10705 SDValue N01 = N0.getOperand(1);
10706 if (SDValue Shl =
10707 DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N1), VT, {N01, N1}))
10708 return DAG.getNode(ISD::MUL, DL, VT, N0.getOperand(0), Shl);
10709 }
10710
10711 ConstantSDNode *N1C = isConstOrConstSplat(N1);
10712 if (N1C && !N1C->isOpaque())
10713 if (SDValue NewSHL = visitShiftByConstant(N))
10714 return NewSHL;
10715
10716 // fold (shl X, cttz(Y)) -> (mul (Y & -Y), X) if cttz is unsupported on the
10717 // target.
10718 if (((N1.getOpcode() == ISD::CTTZ &&
10719 VT.getScalarSizeInBits() <= ShiftVT.getScalarSizeInBits()) ||
10721 N1.hasOneUse() && !TLI.isOperationLegalOrCustom(ISD::CTTZ, ShiftVT) &&
10723 SDValue Y = N1.getOperand(0);
10724 SDLoc DL(N);
10725 SDValue NegY = DAG.getNegative(Y, DL, ShiftVT);
10726 SDValue And =
10727 DAG.getZExtOrTrunc(DAG.getNode(ISD::AND, DL, ShiftVT, Y, NegY), DL, VT);
10728 return DAG.getNode(ISD::MUL, DL, VT, And, N0);
10729 }
10730
10732 return SDValue(N, 0);
10733
10734 // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
10735 if (N0.getOpcode() == ISD::VSCALE && N1C) {
10736 const APInt &C0 = N0.getConstantOperandAPInt(0);
10737 const APInt &C1 = N1C->getAPIntValue();
10738 return DAG.getVScale(DL, VT, C0 << C1);
10739 }
10740
10741 SDValue X;
10742 APInt VS0;
10743
10744 // fold (shl (X * vscale(VS0)), C1) -> (X * vscale(VS0 << C1))
10745 if (N1C && sd_match(N0, m_Mul(m_Value(X), m_VScale(m_ConstInt(VS0))))) {
10746 SDNodeFlags Flags;
10747 Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
10748 N0->getFlags().hasNoUnsignedWrap());
10749
10750 SDValue VScale = DAG.getVScale(DL, VT, VS0 << N1C->getAPIntValue());
10751 return DAG.getNode(ISD::MUL, DL, VT, X, VScale, Flags);
10752 }
10753
10754 // Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)).
10755 APInt ShlVal;
10756 if (N0.getOpcode() == ISD::STEP_VECTOR &&
10757 ISD::isConstantSplatVector(N1.getNode(), ShlVal)) {
10758 const APInt &C0 = N0.getConstantOperandAPInt(0);
10759 if (ShlVal.ult(C0.getBitWidth())) {
10760 APInt NewStep = C0 << ShlVal;
10761 return DAG.getStepVector(DL, VT, NewStep);
10762 }
10763 }
10764
10765 return SDValue();
10766}
10767
10768// Transform a right shift of a multiply into a multiply-high.
10769// Examples:
10770// (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
10771// (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
10773 const TargetLowering &TLI) {
10774 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
10775 "SRL or SRA node is required here!");
10776
10777 // Check the shift amount. Proceed with the transformation if the shift
10778 // amount is constant.
10779 ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1));
10780 if (!ShiftAmtSrc)
10781 return SDValue();
10782
10783 // The operation feeding into the shift must be a multiply.
10784 SDValue ShiftOperand = N->getOperand(0);
10785 if (ShiftOperand.getOpcode() != ISD::MUL)
10786 return SDValue();
10787
10788 // Both operands must be equivalent extend nodes.
10789 SDValue LeftOp = ShiftOperand.getOperand(0);
10790 SDValue RightOp = ShiftOperand.getOperand(1);
10791
10792 bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND;
10793 bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND;
10794
10795 if (!IsSignExt && !IsZeroExt)
10796 return SDValue();
10797
10798 EVT NarrowVT = LeftOp.getOperand(0).getValueType();
10799 unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits();
10800
10801 // return true if U may use the lower bits of its operands
10802 auto UserOfLowerBits = [NarrowVTSize](SDNode *U) {
10803 if (U->getOpcode() != ISD::SRL && U->getOpcode() != ISD::SRA) {
10804 return true;
10805 }
10806 ConstantSDNode *UShiftAmtSrc = isConstOrConstSplat(U->getOperand(1));
10807 if (!UShiftAmtSrc) {
10808 return true;
10809 }
10810 unsigned UShiftAmt = UShiftAmtSrc->getZExtValue();
10811 return UShiftAmt < NarrowVTSize;
10812 };
10813
10814 // If the lower part of the MUL is also used and MUL_LOHI is supported
10815 // do not introduce the MULH in favor of MUL_LOHI
10816 unsigned MulLoHiOp = IsSignExt ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
10817 if (!ShiftOperand.hasOneUse() &&
10818 TLI.isOperationLegalOrCustom(MulLoHiOp, NarrowVT) &&
10819 llvm::any_of(ShiftOperand->users(), UserOfLowerBits)) {
10820 return SDValue();
10821 }
10822
10823 SDValue MulhRightOp;
10825 unsigned ActiveBits = IsSignExt
10826 ? Constant->getAPIntValue().getSignificantBits()
10827 : Constant->getAPIntValue().getActiveBits();
10828 if (ActiveBits > NarrowVTSize)
10829 return SDValue();
10830 MulhRightOp = DAG.getConstant(
10831 Constant->getAPIntValue().trunc(NarrowVT.getScalarSizeInBits()), DL,
10832 NarrowVT);
10833 } else {
10834 if (LeftOp.getOpcode() != RightOp.getOpcode())
10835 return SDValue();
10836 // Check that the two extend nodes are the same type.
10837 if (NarrowVT != RightOp.getOperand(0).getValueType())
10838 return SDValue();
10839 MulhRightOp = RightOp.getOperand(0);
10840 }
10841
10842 EVT WideVT = LeftOp.getValueType();
10843 // Proceed with the transformation if the wide types match.
10844 assert((WideVT == RightOp.getValueType()) &&
10845 "Cannot have a multiply node with two different operand types.");
10846
10847 // Proceed with the transformation if the wide type is twice as large
10848 // as the narrow type.
10849 if (WideVT.getScalarSizeInBits() != 2 * NarrowVTSize)
10850 return SDValue();
10851
10852 // Check the shift amount with the narrow type size.
10853 // Proceed with the transformation if the shift amount is the width
10854 // of the narrow type.
10855 unsigned ShiftAmt = ShiftAmtSrc->getZExtValue();
10856 if (ShiftAmt != NarrowVTSize)
10857 return SDValue();
10858
10859 // If the operation feeding into the MUL is a sign extend (sext),
10860 // we use mulhs. Othewise, zero extends (zext) use mulhu.
10861 unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU;
10862
10863 // Combine to mulh if mulh is legal/custom for the narrow type on the target
10864 // or if it is a vector type then we could transform to an acceptable type and
10865 // rely on legalization to split/combine the result.
10866 if (NarrowVT.isVector()) {
10867 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), NarrowVT);
10868 if (TransformVT.getVectorElementType() != NarrowVT.getVectorElementType() ||
10869 !TLI.isOperationLegalOrCustom(MulhOpcode, TransformVT))
10870 return SDValue();
10871 } else {
10872 if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT))
10873 return SDValue();
10874 }
10875
10876 SDValue Result =
10877 DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), MulhRightOp);
10878 bool IsSigned = N->getOpcode() == ISD::SRA;
10879 return DAG.getExtOrTrunc(IsSigned, Result, DL, WideVT);
10880}
10881
10882// fold (bswap (logic_op(bswap(x),y))) -> logic_op(x,bswap(y))
10883// This helper function accept SDNode with opcode ISD::BSWAP and ISD::BITREVERSE
10885 unsigned Opcode = N->getOpcode();
10886 if (Opcode != ISD::BSWAP && Opcode != ISD::BITREVERSE)
10887 return SDValue();
10888
10889 SDValue N0 = N->getOperand(0);
10890 EVT VT = N->getValueType(0);
10891 SDLoc DL(N);
10892 SDValue X, Y;
10893
10894 // If both operands are bswap/bitreverse, ignore the multiuse
10896 m_UnaryOp(Opcode, m_Value(Y))))))
10897 return DAG.getNode(N0.getOpcode(), DL, VT, X, Y);
10898
10899 // Otherwise need to ensure logic_op and bswap/bitreverse(x) have one use.
10901 m_OneUse(m_UnaryOp(Opcode, m_Value(X))), m_Value(Y))))) {
10902 SDValue NewBitReorder = DAG.getNode(Opcode, DL, VT, Y);
10903 return DAG.getNode(N0.getOpcode(), DL, VT, X, NewBitReorder);
10904 }
10905
10906 return SDValue();
10907}
10908
10909SDValue DAGCombiner::visitSRA(SDNode *N) {
10910 SDValue N0 = N->getOperand(0);
10911 SDValue N1 = N->getOperand(1);
10912 if (SDValue V = DAG.simplifyShift(N0, N1))
10913 return V;
10914
10915 SDLoc DL(N);
10916 EVT VT = N0.getValueType();
10917 unsigned OpSizeInBits = VT.getScalarSizeInBits();
10918
10919 // fold (sra c1, c2) -> (sra c1, c2)
10920 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, DL, VT, {N0, N1}))
10921 return C;
10922
10923 // Arithmetic shifting an all-sign-bit value is a no-op.
10924 // fold (sra 0, x) -> 0
10925 // fold (sra -1, x) -> -1
10926 if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
10927 return N0;
10928
10929 // fold vector ops
10930 if (VT.isVector())
10931 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
10932 return FoldedVOp;
10933
10934 if (SDValue NewSel = foldBinOpIntoSelect(N))
10935 return NewSel;
10936
10937 ConstantSDNode *N1C = isConstOrConstSplat(N1);
10938
10939 // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
10940 // clamp (add c1, c2) to max shift.
10941 if (N0.getOpcode() == ISD::SRA) {
10942 EVT ShiftVT = N1.getValueType();
10943 EVT ShiftSVT = ShiftVT.getScalarType();
10944 SmallVector<SDValue, 16> ShiftValues;
10945
10946 auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
10947 APInt c1 = LHS->getAPIntValue();
10948 APInt c2 = RHS->getAPIntValue();
10949 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
10950 APInt Sum = c1 + c2;
10951 unsigned ShiftSum =
10952 Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
10953 ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
10954 return true;
10955 };
10956 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
10957 SDValue ShiftValue;
10958 if (N1.getOpcode() == ISD::BUILD_VECTOR)
10959 ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
10960 else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
10961 assert(ShiftValues.size() == 1 &&
10962 "Expected matchBinaryPredicate to return one element for "
10963 "SPLAT_VECTORs");
10964 ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]);
10965 } else
10966 ShiftValue = ShiftValues[0];
10967 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
10968 }
10969 }
10970
10971 // fold (sra (shl X, m), (sub result_size, n))
10972 // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
10973 // result_size - n != m.
10974 // If truncate is free for the target sext(shl) is likely to result in better
10975 // code.
10976 if (N0.getOpcode() == ISD::SHL && N1C) {
10977 // Get the two constants of the shifts, CN0 = m, CN = n.
10978 const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
10979 if (N01C) {
10980 LLVMContext &Ctx = *DAG.getContext();
10981 // Determine what the truncate's result bitsize and type would be.
10982 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
10983
10984 if (VT.isVector())
10985 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
10986
10987 // Determine the residual right-shift amount.
10988 int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
10989
10990 // If the shift is not a no-op (in which case this should be just a sign
10991 // extend already), the truncated to type is legal, sign_extend is legal
10992 // on that type, and the truncate to that type is both legal and free,
10993 // perform the transform.
10994 if ((ShiftAmt > 0) &&
10997 TLI.isTruncateFree(VT, TruncVT)) {
10998 SDValue Amt = DAG.getShiftAmountConstant(ShiftAmt, VT, DL);
10999 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
11000 N0.getOperand(0), Amt);
11001 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
11002 Shift);
11003 return DAG.getNode(ISD::SIGN_EXTEND, DL,
11004 N->getValueType(0), Trunc);
11005 }
11006 }
11007 }
11008
11009 // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
11010 // sra (add (shl X, N1C), AddC), N1C -->
11011 // sext (add (trunc X to (width - N1C)), AddC')
11012 // sra (sub AddC, (shl X, N1C)), N1C -->
11013 // sext (sub AddC1',(trunc X to (width - N1C)))
11014 if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB) && N1C &&
11015 N0.hasOneUse()) {
11016 bool IsAdd = N0.getOpcode() == ISD::ADD;
11017 SDValue Shl = N0.getOperand(IsAdd ? 0 : 1);
11018 if (Shl.getOpcode() == ISD::SHL && Shl.getOperand(1) == N1 &&
11019 Shl.hasOneUse()) {
11020 // TODO: AddC does not need to be a splat.
11021 if (ConstantSDNode *AddC =
11022 isConstOrConstSplat(N0.getOperand(IsAdd ? 1 : 0))) {
11023 // Determine what the truncate's type would be and ask the target if
11024 // that is a free operation.
11025 LLVMContext &Ctx = *DAG.getContext();
11026 unsigned ShiftAmt = N1C->getZExtValue();
11027 EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
11028 if (VT.isVector())
11029 TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
11030
11031 // TODO: The simple type check probably belongs in the default hook
11032 // implementation and/or target-specific overrides (because
11033 // non-simple types likely require masking when legalized), but
11034 // that restriction may conflict with other transforms.
11035 if (TruncVT.isSimple() && isTypeLegal(TruncVT) &&
11036 TLI.isTruncateFree(VT, TruncVT)) {
11037 SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
11038 SDValue ShiftC =
11039 DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).trunc(
11040 TruncVT.getScalarSizeInBits()),
11041 DL, TruncVT);
11042 SDValue Add;
11043 if (IsAdd)
11044 Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
11045 else
11046 Add = DAG.getNode(ISD::SUB, DL, TruncVT, ShiftC, Trunc);
11047 return DAG.getSExtOrTrunc(Add, DL, VT);
11048 }
11049 }
11050 }
11051 }
11052
11053 // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
11054 if (N1.getOpcode() == ISD::TRUNCATE &&
11055 N1.getOperand(0).getOpcode() == ISD::AND) {
11056 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
11057 return DAG.getNode(ISD::SRA, DL, VT, N0, NewOp1);
11058 }
11059
11060 // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
11061 // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
11062 // if c1 is equal to the number of bits the trunc removes
11063 // TODO - support non-uniform vector shift amounts.
11064 if (N0.getOpcode() == ISD::TRUNCATE &&
11065 (N0.getOperand(0).getOpcode() == ISD::SRL ||
11066 N0.getOperand(0).getOpcode() == ISD::SRA) &&
11067 N0.getOperand(0).hasOneUse() &&
11068 N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
11069 SDValue N0Op0 = N0.getOperand(0);
11070 if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
11071 EVT LargeVT = N0Op0.getValueType();
11072 unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
11073 if (LargeShift->getAPIntValue() == TruncBits) {
11074 EVT LargeShiftVT = getShiftAmountTy(LargeVT);
11075 SDValue Amt = DAG.getZExtOrTrunc(N1, DL, LargeShiftVT);
11076 Amt = DAG.getNode(ISD::ADD, DL, LargeShiftVT, Amt,
11077 DAG.getConstant(TruncBits, DL, LargeShiftVT));
11078 SDValue SRA =
11079 DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
11080 return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
11081 }
11082 }
11083 }
11084
11085 // Simplify, based on bits shifted out of the LHS.
11087 return SDValue(N, 0);
11088
11089 // If the sign bit is known to be zero, switch this to a SRL.
11090 if (DAG.SignBitIsZero(N0))
11091 return DAG.getNode(ISD::SRL, DL, VT, N0, N1);
11092
11093 if (N1C && !N1C->isOpaque())
11094 if (SDValue NewSRA = visitShiftByConstant(N))
11095 return NewSRA;
11096
11097 // Try to transform this shift into a multiply-high if
11098 // it matches the appropriate pattern detected in combineShiftToMULH.
11099 if (SDValue MULH = combineShiftToMULH(N, DL, DAG, TLI))
11100 return MULH;
11101
11102 // Attempt to convert a sra of a load into a narrower sign-extending load.
11103 if (SDValue NarrowLoad = reduceLoadWidth(N))
11104 return NarrowLoad;
11105
11106 if (SDValue AVG = foldShiftToAvg(N, DL))
11107 return AVG;
11108
11109 return SDValue();
11110}
11111
11112SDValue DAGCombiner::visitSRL(SDNode *N) {
11113 SDValue N0 = N->getOperand(0);
11114 SDValue N1 = N->getOperand(1);
11115 if (SDValue V = DAG.simplifyShift(N0, N1))
11116 return V;
11117
11118 SDLoc DL(N);
11119 EVT VT = N0.getValueType();
11120 EVT ShiftVT = N1.getValueType();
11121 unsigned OpSizeInBits = VT.getScalarSizeInBits();
11122
11123 // fold (srl c1, c2) -> c1 >>u c2
11124 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, DL, VT, {N0, N1}))
11125 return C;
11126
11127 // fold vector ops
11128 if (VT.isVector())
11129 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
11130 return FoldedVOp;
11131
11132 if (SDValue NewSel = foldBinOpIntoSelect(N))
11133 return NewSel;
11134
11135 // if (srl x, c) is known to be zero, return 0
11136 ConstantSDNode *N1C = isConstOrConstSplat(N1);
11137 if (N1C &&
11138 DAG.MaskedValueIsZero(SDValue(N, 0), APInt::getAllOnes(OpSizeInBits)))
11139 return DAG.getConstant(0, DL, VT);
11140
11141 // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
11142 if (N0.getOpcode() == ISD::SRL) {
11143 auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
11144 ConstantSDNode *RHS) {
11145 APInt c1 = LHS->getAPIntValue();
11146 APInt c2 = RHS->getAPIntValue();
11147 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
11148 return (c1 + c2).uge(OpSizeInBits);
11149 };
11150 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
11151 return DAG.getConstant(0, DL, VT);
11152
11153 auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
11154 ConstantSDNode *RHS) {
11155 APInt c1 = LHS->getAPIntValue();
11156 APInt c2 = RHS->getAPIntValue();
11157 zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
11158 return (c1 + c2).ult(OpSizeInBits);
11159 };
11160 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
11161 SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
11162 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
11163 }
11164 }
11165
11166 if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
11167 N0.getOperand(0).getOpcode() == ISD::SRL) {
11168 SDValue InnerShift = N0.getOperand(0);
11169 // TODO - support non-uniform vector shift amounts.
11170 if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) {
11171 uint64_t c1 = N001C->getZExtValue();
11172 uint64_t c2 = N1C->getZExtValue();
11173 EVT InnerShiftVT = InnerShift.getValueType();
11174 EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType();
11175 uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
11176 // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
11177 // This is only valid if the OpSizeInBits + c1 = size of inner shift.
11178 if (c1 + OpSizeInBits == InnerShiftSize) {
11179 if (c1 + c2 >= InnerShiftSize)
11180 return DAG.getConstant(0, DL, VT);
11181 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
11182 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
11183 InnerShift.getOperand(0), NewShiftAmt);
11184 return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift);
11185 }
11186 // In the more general case, we can clear the high bits after the shift:
11187 // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
11188 if (N0.hasOneUse() && InnerShift.hasOneUse() &&
11189 c1 + c2 < InnerShiftSize) {
11190 SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
11191 SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
11192 InnerShift.getOperand(0), NewShiftAmt);
11193 SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize,
11194 OpSizeInBits - c2),
11195 DL, InnerShiftVT);
11196 SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask);
11197 return DAG.getNode(ISD::TRUNCATE, DL, VT, And);
11198 }
11199 }
11200 }
11201
11202 if (N0.getOpcode() == ISD::SHL) {
11203 // fold (srl (shl nuw x, c), c) -> x
11204 if (N0.getOperand(1) == N1 && N0->getFlags().hasNoUnsignedWrap())
11205 return N0.getOperand(0);
11206
11207 // fold (srl (shl x, c1), c2) -> (and (shl x, (sub c1, c2), MASK) or
11208 // (and (srl x, (sub c2, c1), MASK)
11209 if ((N0.getOperand(1) == N1 || N0->hasOneUse()) &&
11211 auto MatchShiftAmount = [OpSizeInBits](ConstantSDNode *LHS,
11212 ConstantSDNode *RHS) {
11213 const APInt &LHSC = LHS->getAPIntValue();
11214 const APInt &RHSC = RHS->getAPIntValue();
11215 return LHSC.ult(OpSizeInBits) && RHSC.ult(OpSizeInBits) &&
11216 LHSC.getZExtValue() <= RHSC.getZExtValue();
11217 };
11218 if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchShiftAmount,
11219 /*AllowUndefs*/ false,
11220 /*AllowTypeMismatch*/ true)) {
11221 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
11222 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N01, N1);
11223 SDValue Mask = DAG.getAllOnesConstant(DL, VT);
11224 Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N01);
11225 Mask = DAG.getNode(ISD::SHL, DL, VT, Mask, Diff);
11226 SDValue Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Diff);
11227 return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
11228 }
11229 if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchShiftAmount,
11230 /*AllowUndefs*/ false,
11231 /*AllowTypeMismatch*/ true)) {
11232 SDValue N01 = DAG.getZExtOrTrunc(N0.getOperand(1), DL, ShiftVT);
11233 SDValue Diff = DAG.getNode(ISD::SUB, DL, ShiftVT, N1, N01);
11234 SDValue Mask = DAG.getAllOnesConstant(DL, VT);
11235 Mask = DAG.getNode(ISD::SRL, DL, VT, Mask, N1);
11236 SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Diff);
11237 return DAG.getNode(ISD::AND, DL, VT, Shift, Mask);
11238 }
11239 }
11240 }
11241
11242 // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
11243 // TODO - support non-uniform vector shift amounts.
11244 if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
11245 // Shifting in all undef bits?
11246 EVT SmallVT = N0.getOperand(0).getValueType();
11247 unsigned BitSize = SmallVT.getScalarSizeInBits();
11248 if (N1C->getAPIntValue().uge(BitSize))
11249 return DAG.getUNDEF(VT);
11250
11251 if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
11252 uint64_t ShiftAmt = N1C->getZExtValue();
11253 SDLoc DL0(N0);
11254 SDValue SmallShift =
11255 DAG.getNode(ISD::SRL, DL0, SmallVT, N0.getOperand(0),
11256 DAG.getShiftAmountConstant(ShiftAmt, SmallVT, DL0));
11257 AddToWorklist(SmallShift.getNode());
11258 APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
11259 return DAG.getNode(ISD::AND, DL, VT,
11260 DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
11261 DAG.getConstant(Mask, DL, VT));
11262 }
11263 }
11264
11265 // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
11266 // bit, which is unmodified by sra.
11267 if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
11268 if (N0.getOpcode() == ISD::SRA)
11269 return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), N1);
11270 }
11271
11272 // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit), and x has a power
11273 // of two bitwidth. The "5" represents (log2 (bitwidth x)).
11274 if (N1C && N0.getOpcode() == ISD::CTLZ &&
11275 isPowerOf2_32(OpSizeInBits) &&
11276 N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
11277 KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
11278
11279 // If any of the input bits are KnownOne, then the input couldn't be all
11280 // zeros, thus the result of the srl will always be zero.
11281 if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
11282
11283 // If all of the bits input the to ctlz node are known to be zero, then
11284 // the result of the ctlz is "32" and the result of the shift is one.
11285 APInt UnknownBits = ~Known.Zero;
11286 if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
11287
11288 // Otherwise, check to see if there is exactly one bit input to the ctlz.
11289 if (UnknownBits.isPowerOf2()) {
11290 // Okay, we know that only that the single bit specified by UnknownBits
11291 // could be set on input to the CTLZ node. If this bit is set, the SRL
11292 // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
11293 // to an SRL/XOR pair, which is likely to simplify more.
11294 unsigned ShAmt = UnknownBits.countr_zero();
11295 SDValue Op = N0.getOperand(0);
11296
11297 if (ShAmt) {
11298 SDLoc DL(N0);
11299 Op = DAG.getNode(ISD::SRL, DL, VT, Op,
11300 DAG.getShiftAmountConstant(ShAmt, VT, DL));
11301 AddToWorklist(Op.getNode());
11302 }
11303 return DAG.getNode(ISD::XOR, DL, VT, Op, DAG.getConstant(1, DL, VT));
11304 }
11305 }
11306
11307 // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
11308 if (N1.getOpcode() == ISD::TRUNCATE &&
11309 N1.getOperand(0).getOpcode() == ISD::AND) {
11310 if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
11311 return DAG.getNode(ISD::SRL, DL, VT, N0, NewOp1);
11312 }
11313
11314 // fold (srl (logic_op x, (shl (zext y), c1)), c1)
11315 // -> (logic_op (srl x, c1), (zext y))
11316 // c1 <= leadingzeros(zext(y))
11317 SDValue X, ZExtY;
11318 if (N1C && sd_match(N0, m_OneUse(m_BitwiseLogic(
11319 m_Value(X),
11322 m_Specific(N1))))))) {
11323 unsigned NumLeadingZeros = ZExtY.getScalarValueSizeInBits() -
11325 if (N1C->getZExtValue() <= NumLeadingZeros)
11326 return DAG.getNode(N0.getOpcode(), SDLoc(N0), VT,
11327 DAG.getNode(ISD::SRL, SDLoc(N0), VT, X, N1), ZExtY);
11328 }
11329
11330 // fold operands of srl based on knowledge that the low bits are not
11331 // demanded.
11333 return SDValue(N, 0);
11334
11335 if (N1C && !N1C->isOpaque())
11336 if (SDValue NewSRL = visitShiftByConstant(N))
11337 return NewSRL;
11338
11339 // Attempt to convert a srl of a load into a narrower zero-extending load.
11340 if (SDValue NarrowLoad = reduceLoadWidth(N))
11341 return NarrowLoad;
11342
11343 // Here is a common situation. We want to optimize:
11344 //
11345 // %a = ...
11346 // %b = and i32 %a, 2
11347 // %c = srl i32 %b, 1
11348 // brcond i32 %c ...
11349 //
11350 // into
11351 //
11352 // %a = ...
11353 // %b = and %a, 2
11354 // %c = setcc eq %b, 0
11355 // brcond %c ...
11356 //
11357 // However when after the source operand of SRL is optimized into AND, the SRL
11358 // itself may not be optimized further. Look for it and add the BRCOND into
11359 // the worklist.
11360 //
11361 // The also tends to happen for binary operations when SimplifyDemandedBits
11362 // is involved.
11363 //
11364 // FIXME: This is unecessary if we process the DAG in topological order,
11365 // which we plan to do. This workaround can be removed once the DAG is
11366 // processed in topological order.
11367 if (N->hasOneUse()) {
11368 SDNode *User = *N->user_begin();
11369
11370 // Look pass the truncate.
11371 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse())
11372 User = *User->user_begin();
11373
11374 if (User->getOpcode() == ISD::BRCOND || User->getOpcode() == ISD::AND ||
11375 User->getOpcode() == ISD::OR || User->getOpcode() == ISD::XOR)
11376 AddToWorklist(User);
11377 }
11378
11379 // Try to transform this shift into a multiply-high if
11380 // it matches the appropriate pattern detected in combineShiftToMULH.
11381 if (SDValue MULH = combineShiftToMULH(N, DL, DAG, TLI))
11382 return MULH;
11383
11384 if (SDValue AVG = foldShiftToAvg(N, DL))
11385 return AVG;
11386
11387 return SDValue();
11388}
11389
11390SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
11391 EVT VT = N->getValueType(0);
11392 SDValue N0 = N->getOperand(0);
11393 SDValue N1 = N->getOperand(1);
11394 SDValue N2 = N->getOperand(2);
11395 bool IsFSHL = N->getOpcode() == ISD::FSHL;
11396 unsigned BitWidth = VT.getScalarSizeInBits();
11397 SDLoc DL(N);
11398
11399 // fold (fshl/fshr C0, C1, C2) -> C3
11400 if (SDValue C =
11401 DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1, N2}))
11402 return C;
11403
11404 // fold (fshl N0, N1, 0) -> N0
11405 // fold (fshr N0, N1, 0) -> N1
11407 if (DAG.MaskedValueIsZero(
11408 N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
11409 return IsFSHL ? N0 : N1;
11410
11411 auto IsUndefOrZero = [](SDValue V) {
11412 return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
11413 };
11414
11415 // TODO - support non-uniform vector shift amounts.
11416 if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
11417 EVT ShAmtTy = N2.getValueType();
11418
11419 // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
11420 if (Cst->getAPIntValue().uge(BitWidth)) {
11421 uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
11422 return DAG.getNode(N->getOpcode(), DL, VT, N0, N1,
11423 DAG.getConstant(RotAmt, DL, ShAmtTy));
11424 }
11425
11426 unsigned ShAmt = Cst->getZExtValue();
11427 if (ShAmt == 0)
11428 return IsFSHL ? N0 : N1;
11429
11430 // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
11431 // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
11432 // fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
11433 // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
11434 if (IsUndefOrZero(N0))
11435 return DAG.getNode(
11436 ISD::SRL, DL, VT, N1,
11437 DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, DL, ShAmtTy));
11438 if (IsUndefOrZero(N1))
11439 return DAG.getNode(
11440 ISD::SHL, DL, VT, N0,
11441 DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, DL, ShAmtTy));
11442
11443 // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
11444 // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
11445 // TODO - bigendian support once we have test coverage.
11446 // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
11447 // TODO - permit LHS EXTLOAD if extensions are shifted out.
11448 if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() &&
11449 !DAG.getDataLayout().isBigEndian()) {
11450 auto *LHS = dyn_cast<LoadSDNode>(N0);
11451 auto *RHS = dyn_cast<LoadSDNode>(N1);
11452 if (LHS && RHS && LHS->isSimple() && RHS->isSimple() &&
11453 LHS->getAddressSpace() == RHS->getAddressSpace() &&
11454 (LHS->hasNUsesOfValue(1, 0) || RHS->hasNUsesOfValue(1, 0)) &&
11456 if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) {
11457 SDLoc DL(RHS);
11458 uint64_t PtrOff =
11459 IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8);
11460 Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff);
11461 unsigned Fast = 0;
11462 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
11463 RHS->getAddressSpace(), NewAlign,
11464 RHS->getMemOperand()->getFlags(), &Fast) &&
11465 Fast) {
11466 SDValue NewPtr = DAG.getMemBasePlusOffset(
11467 RHS->getBasePtr(), TypeSize::getFixed(PtrOff), DL);
11468 AddToWorklist(NewPtr.getNode());
11469 SDValue Load = DAG.getLoad(
11470 VT, DL, RHS->getChain(), NewPtr,
11471 RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign,
11472 RHS->getMemOperand()->getFlags(), RHS->getAAInfo());
11473 DAG.makeEquivalentMemoryOrdering(LHS, Load.getValue(1));
11474 DAG.makeEquivalentMemoryOrdering(RHS, Load.getValue(1));
11475 return Load;
11476 }
11477 }
11478 }
11479 }
11480 }
11481
11482 // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
11483 // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
11484 // iff We know the shift amount is in range.
11485 // TODO: when is it worth doing SUB(BW, N2) as well?
11486 if (isPowerOf2_32(BitWidth)) {
11487 APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
11488 if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
11489 return DAG.getNode(ISD::SRL, DL, VT, N1, N2);
11490 if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
11491 return DAG.getNode(ISD::SHL, DL, VT, N0, N2);
11492 }
11493
11494 // fold (fshl N0, N0, N2) -> (rotl N0, N2)
11495 // fold (fshr N0, N0, N2) -> (rotr N0, N2)
11496 // TODO: Investigate flipping this rotate if only one is legal.
11497 // If funnel shift is legal as well we might be better off avoiding
11498 // non-constant (BW - N2).
11499 unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
11500 if (N0 == N1 && hasOperation(RotOpc, VT))
11501 return DAG.getNode(RotOpc, DL, VT, N0, N2);
11502
11503 // Simplify, based on bits shifted out of N0/N1.
11505 return SDValue(N, 0);
11506
11507 return SDValue();
11508}
11509
11510SDValue DAGCombiner::visitSHLSAT(SDNode *N) {
11511 SDValue N0 = N->getOperand(0);
11512 SDValue N1 = N->getOperand(1);
11513 if (SDValue V = DAG.simplifyShift(N0, N1))
11514 return V;
11515
11516 SDLoc DL(N);
11517 EVT VT = N0.getValueType();
11518
11519 // fold (*shlsat c1, c2) -> c1<<c2
11520 if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1}))
11521 return C;
11522
11523 ConstantSDNode *N1C = isConstOrConstSplat(N1);
11524
11525 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::SHL, VT)) {
11526 // fold (sshlsat x, c) -> (shl x, c)
11527 if (N->getOpcode() == ISD::SSHLSAT && N1C &&
11528 N1C->getAPIntValue().ult(DAG.ComputeNumSignBits(N0)))
11529 return DAG.getNode(ISD::SHL, DL, VT, N0, N1);
11530
11531 // fold (ushlsat x, c) -> (shl x, c)
11532 if (N->getOpcode() == ISD::USHLSAT && N1C &&
11533 N1C->getAPIntValue().ule(
11535 return DAG.getNode(ISD::SHL, DL, VT, N0, N1);
11536 }
11537
11538 return SDValue();
11539}
11540
11541// Given a ABS node, detect the following patterns:
11542// (ABS (SUB (EXTEND a), (EXTEND b))).
11543// (TRUNC (ABS (SUB (EXTEND a), (EXTEND b)))).
11544// Generates UABD/SABD instruction.
11545SDValue DAGCombiner::foldABSToABD(SDNode *N, const SDLoc &DL) {
11546 EVT SrcVT = N->getValueType(0);
11547
11548 if (N->getOpcode() == ISD::TRUNCATE)
11549 N = N->getOperand(0).getNode();
11550
11551 EVT VT = N->getValueType(0);
11552 SDValue Op0, Op1;
11553
11554 if (!sd_match(N, m_Abs(m_Sub(m_Value(Op0), m_Value(Op1)))))
11555 return SDValue();
11556
11557 SDValue AbsOp0 = N->getOperand(0);
11558 unsigned Opc0 = Op0.getOpcode();
11559
11560 // Check if the operands of the sub are (zero|sign)-extended, otherwise
11561 // fallback to ValueTracking.
11562 if (Opc0 != Op1.getOpcode() ||
11563 (Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND &&
11564 Opc0 != ISD::SIGN_EXTEND_INREG)) {
11565 // fold (abs (sub nsw x, y)) -> abds(x, y)
11566 // Don't fold this for unsupported types as we lose the NSW handling.
11567 if (hasOperation(ISD::ABDS, VT) && TLI.preferABDSToABSWithNSW(VT) &&
11568 (AbsOp0->getFlags().hasNoSignedWrap() ||
11569 DAG.willNotOverflowSub(/*IsSigned=*/true, Op0, Op1))) {
11570 SDValue ABD = DAG.getNode(ISD::ABDS, DL, VT, Op0, Op1);
11571 return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
11572 }
11573 // fold (abs (sub x, y)) -> abdu(x, y)
11574 if (hasOperation(ISD::ABDU, VT) && DAG.SignBitIsZero(Op0) &&
11575 DAG.SignBitIsZero(Op1)) {
11576 SDValue ABD = DAG.getNode(ISD::ABDU, DL, VT, Op0, Op1);
11577 return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
11578 }
11579 return SDValue();
11580 }
11581
11582 EVT VT0, VT1;
11583 if (Opc0 == ISD::SIGN_EXTEND_INREG) {
11584 VT0 = cast<VTSDNode>(Op0.getOperand(1))->getVT();
11585 VT1 = cast<VTSDNode>(Op1.getOperand(1))->getVT();
11586 } else {
11587 VT0 = Op0.getOperand(0).getValueType();
11588 VT1 = Op1.getOperand(0).getValueType();
11589 }
11590 unsigned ABDOpcode = (Opc0 == ISD::ZERO_EXTEND) ? ISD::ABDU : ISD::ABDS;
11591
11592 // fold abs(sext(x) - sext(y)) -> zext(abds(x, y))
11593 // fold abs(zext(x) - zext(y)) -> zext(abdu(x, y))
11594 EVT MaxVT = VT0.bitsGT(VT1) ? VT0 : VT1;
11595 if ((VT0 == MaxVT || Op0->hasOneUse()) &&
11596 (VT1 == MaxVT || Op1->hasOneUse()) &&
11597 (!LegalTypes || hasOperation(ABDOpcode, MaxVT))) {
11598 SDValue ABD = DAG.getNode(ABDOpcode, DL, MaxVT,
11599 DAG.getNode(ISD::TRUNCATE, DL, MaxVT, Op0),
11600 DAG.getNode(ISD::TRUNCATE, DL, MaxVT, Op1));
11601 ABD = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, ABD);
11602 return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
11603 }
11604
11605 // fold abs(sext(x) - sext(y)) -> abds(sext(x), sext(y))
11606 // fold abs(zext(x) - zext(y)) -> abdu(zext(x), zext(y))
11607 if (!LegalOperations || hasOperation(ABDOpcode, VT)) {
11608 SDValue ABD = DAG.getNode(ABDOpcode, DL, VT, Op0, Op1);
11609 return DAG.getZExtOrTrunc(ABD, DL, SrcVT);
11610 }
11611
11612 return SDValue();
11613}
11614
11615SDValue DAGCombiner::visitABS(SDNode *N) {
11616 SDValue N0 = N->getOperand(0);
11617 EVT VT = N->getValueType(0);
11618 SDLoc DL(N);
11619
11620 // fold (abs c1) -> c2
11621 if (SDValue C = DAG.FoldConstantArithmetic(ISD::ABS, DL, VT, {N0}))
11622 return C;
11623 // fold (abs (abs x)) -> (abs x)
11624 if (N0.getOpcode() == ISD::ABS)
11625 return N0;
11626 // fold (abs x) -> x iff not-negative
11627 if (DAG.SignBitIsZero(N0))
11628 return N0;
11629
11630 if (SDValue ABD = foldABSToABD(N, DL))
11631 return ABD;
11632
11633 // fold (abs (sign_extend_inreg x)) -> (zero_extend (abs (truncate x)))
11634 // iff zero_extend/truncate are free.
11635 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) {
11636 EVT ExtVT = cast<VTSDNode>(N0.getOperand(1))->getVT();
11637 if (TLI.isTruncateFree(VT, ExtVT) && TLI.isZExtFree(ExtVT, VT) &&
11638 TLI.isTypeDesirableForOp(ISD::ABS, ExtVT) &&
11639 hasOperation(ISD::ABS, ExtVT)) {
11640 return DAG.getNode(
11641 ISD::ZERO_EXTEND, DL, VT,
11642 DAG.getNode(ISD::ABS, DL, ExtVT,
11643 DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N0.getOperand(0))));
11644 }
11645 }
11646
11647 return SDValue();
11648}
11649
11650SDValue DAGCombiner::visitBSWAP(SDNode *N) {
11651 SDValue N0 = N->getOperand(0);
11652 EVT VT = N->getValueType(0);
11653 SDLoc DL(N);
11654
11655 // fold (bswap c1) -> c2
11656 if (SDValue C = DAG.FoldConstantArithmetic(ISD::BSWAP, DL, VT, {N0}))
11657 return C;
11658 // fold (bswap (bswap x)) -> x
11659 if (N0.getOpcode() == ISD::BSWAP)
11660 return N0.getOperand(0);
11661
11662 // Canonicalize bswap(bitreverse(x)) -> bitreverse(bswap(x)). If bitreverse
11663 // isn't supported, it will be expanded to bswap followed by a manual reversal
11664 // of bits in each byte. By placing bswaps before bitreverse, we can remove
11665 // the two bswaps if the bitreverse gets expanded.
11666 if (N0.getOpcode() == ISD::BITREVERSE && N0.hasOneUse()) {
11667 SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0));
11668 return DAG.getNode(ISD::BITREVERSE, DL, VT, BSwap);
11669 }
11670
11671 // fold (bswap shl(x,c)) -> (zext(bswap(trunc(shl(x,sub(c,bw/2))))))
11672 // iff x >= bw/2 (i.e. lower half is known zero)
11673 unsigned BW = VT.getScalarSizeInBits();
11674 if (BW >= 32 && N0.getOpcode() == ISD::SHL && N0.hasOneUse()) {
11675 auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11676 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), BW / 2);
11677 if (ShAmt && ShAmt->getAPIntValue().ult(BW) &&
11678 ShAmt->getZExtValue() >= (BW / 2) &&
11679 (ShAmt->getZExtValue() % 16) == 0 && TLI.isTypeLegal(HalfVT) &&
11680 TLI.isTruncateFree(VT, HalfVT) &&
11681 (!LegalOperations || hasOperation(ISD::BSWAP, HalfVT))) {
11682 SDValue Res = N0.getOperand(0);
11683 if (uint64_t NewShAmt = (ShAmt->getZExtValue() - (BW / 2)))
11684 Res = DAG.getNode(ISD::SHL, DL, VT, Res,
11685 DAG.getShiftAmountConstant(NewShAmt, VT, DL));
11686 Res = DAG.getZExtOrTrunc(Res, DL, HalfVT);
11687 Res = DAG.getNode(ISD::BSWAP, DL, HalfVT, Res);
11688 return DAG.getZExtOrTrunc(Res, DL, VT);
11689 }
11690 }
11691
11692 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
11693 // inverse-shift-of-bswap:
11694 // bswap (X u<< C) --> (bswap X) u>> C
11695 // bswap (X u>> C) --> (bswap X) u<< C
11696 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
11697 N0.hasOneUse()) {
11698 auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11699 if (ShAmt && ShAmt->getAPIntValue().ult(BW) &&
11700 ShAmt->getZExtValue() % 8 == 0) {
11701 SDValue NewSwap = DAG.getNode(ISD::BSWAP, DL, VT, N0.getOperand(0));
11702 unsigned InverseShift = N0.getOpcode() == ISD::SHL ? ISD::SRL : ISD::SHL;
11703 return DAG.getNode(InverseShift, DL, VT, NewSwap, N0.getOperand(1));
11704 }
11705 }
11706
11707 if (SDValue V = foldBitOrderCrossLogicOp(N, DAG))
11708 return V;
11709
11710 return SDValue();
11711}
11712
11713SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
11714 SDValue N0 = N->getOperand(0);
11715 EVT VT = N->getValueType(0);
11716 SDLoc DL(N);
11717
11718 // fold (bitreverse c1) -> c2
11719 if (SDValue C = DAG.FoldConstantArithmetic(ISD::BITREVERSE, DL, VT, {N0}))
11720 return C;
11721
11722 // fold (bitreverse (bitreverse x)) -> x
11723 if (N0.getOpcode() == ISD::BITREVERSE)
11724 return N0.getOperand(0);
11725
11726 SDValue X, Y;
11727
11728 // fold (bitreverse (lshr (bitreverse x), y)) -> (shl x, y)
11729 if ((!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
11731 return DAG.getNode(ISD::SHL, DL, VT, X, Y);
11732
11733 // fold (bitreverse (shl (bitreverse x), y)) -> (lshr x, y)
11734 if ((!LegalOperations || TLI.isOperationLegal(ISD::SRL, VT)) &&
11736 return DAG.getNode(ISD::SRL, DL, VT, X, Y);
11737
11738 return SDValue();
11739}
11740
11741SDValue DAGCombiner::visitCTLZ(SDNode *N) {
11742 SDValue N0 = N->getOperand(0);
11743 EVT VT = N->getValueType(0);
11744 SDLoc DL(N);
11745
11746 // fold (ctlz c1) -> c2
11747 if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTLZ, DL, VT, {N0}))
11748 return C;
11749
11750 // If the value is known never to be zero, switch to the undef version.
11751 if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT))
11752 if (DAG.isKnownNeverZero(N0))
11753 return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, DL, VT, N0);
11754
11755 return SDValue();
11756}
11757
11758SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
11759 SDValue N0 = N->getOperand(0);
11760 EVT VT = N->getValueType(0);
11761 SDLoc DL(N);
11762
11763 // fold (ctlz_zero_undef c1) -> c2
11764 if (SDValue C =
11766 return C;
11767 return SDValue();
11768}
11769
11770SDValue DAGCombiner::visitCTTZ(SDNode *N) {
11771 SDValue N0 = N->getOperand(0);
11772 EVT VT = N->getValueType(0);
11773 SDLoc DL(N);
11774
11775 // fold (cttz c1) -> c2
11776 if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTTZ, DL, VT, {N0}))
11777 return C;
11778
11779 // If the value is known never to be zero, switch to the undef version.
11780 if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT))
11781 if (DAG.isKnownNeverZero(N0))
11782 return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, DL, VT, N0);
11783
11784 return SDValue();
11785}
11786
11787SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
11788 SDValue N0 = N->getOperand(0);
11789 EVT VT = N->getValueType(0);
11790 SDLoc DL(N);
11791
11792 // fold (cttz_zero_undef c1) -> c2
11793 if (SDValue C =
11795 return C;
11796 return SDValue();
11797}
11798
11799SDValue DAGCombiner::visitCTPOP(SDNode *N) {
11800 SDValue N0 = N->getOperand(0);
11801 EVT VT = N->getValueType(0);
11802 unsigned NumBits = VT.getScalarSizeInBits();
11803 SDLoc DL(N);
11804
11805 // fold (ctpop c1) -> c2
11806 if (SDValue C = DAG.FoldConstantArithmetic(ISD::CTPOP, DL, VT, {N0}))
11807 return C;
11808
11809 // If the source is being shifted, but doesn't affect any active bits,
11810 // then we can call CTPOP on the shift source directly.
11811 if (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SHL) {
11812 if (ConstantSDNode *AmtC = isConstOrConstSplat(N0.getOperand(1))) {
11813 const APInt &Amt = AmtC->getAPIntValue();
11814 if (Amt.ult(NumBits)) {
11815 KnownBits KnownSrc = DAG.computeKnownBits(N0.getOperand(0));
11816 if ((N0.getOpcode() == ISD::SRL &&
11817 Amt.ule(KnownSrc.countMinTrailingZeros())) ||
11818 (N0.getOpcode() == ISD::SHL &&
11819 Amt.ule(KnownSrc.countMinLeadingZeros()))) {
11820 return DAG.getNode(ISD::CTPOP, DL, VT, N0.getOperand(0));
11821 }
11822 }
11823 }
11824 }
11825
11826 // If the upper bits are known to be zero, then see if its profitable to
11827 // only count the lower bits.
11828 if (VT.isScalarInteger() && NumBits > 8 && (NumBits & 1) == 0) {
11829 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), NumBits / 2);
11830 if (hasOperation(ISD::CTPOP, HalfVT) &&
11831 TLI.isTypeDesirableForOp(ISD::CTPOP, HalfVT) &&
11832 TLI.isTruncateFree(N0, HalfVT) && TLI.isZExtFree(HalfVT, VT)) {
11833 APInt UpperBits = APInt::getHighBitsSet(NumBits, NumBits / 2);
11834 if (DAG.MaskedValueIsZero(N0, UpperBits)) {
11835 SDValue PopCnt = DAG.getNode(ISD::CTPOP, DL, HalfVT,
11836 DAG.getZExtOrTrunc(N0, DL, HalfVT));
11837 return DAG.getZExtOrTrunc(PopCnt, DL, VT);
11838 }
11839 }
11840 }
11841
11842 return SDValue();
11843}
11844
11846 SDValue RHS, const SDNodeFlags Flags,
11847 const TargetLowering &TLI) {
11848 EVT VT = LHS.getValueType();
11849 if (!VT.isFloatingPoint())
11850 return false;
11851
11852 return Flags.hasNoSignedZeros() &&
11854 (Flags.hasNoNaNs() ||
11855 (DAG.isKnownNeverNaN(RHS) && DAG.isKnownNeverNaN(LHS)));
11856}
11857
11859 SDValue RHS, SDValue True, SDValue False,
11860 ISD::CondCode CC,
11861 const TargetLowering &TLI,
11862 SelectionDAG &DAG) {
11863 EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
11864 switch (CC) {
11865 case ISD::SETOLT:
11866 case ISD::SETOLE:
11867 case ISD::SETLT:
11868 case ISD::SETLE:
11869 case ISD::SETULT:
11870 case ISD::SETULE: {
11871 // Since it's known never nan to get here already, either fminnum or
11872 // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
11873 // expanded in terms of it.
11874 unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
11875 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
11876 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
11877
11878 unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
11879 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
11880 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
11881 return SDValue();
11882 }
11883 case ISD::SETOGT:
11884 case ISD::SETOGE:
11885 case ISD::SETGT:
11886 case ISD::SETGE:
11887 case ISD::SETUGT:
11888 case ISD::SETUGE: {
11889 unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
11890 if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
11891 return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
11892
11893 unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
11894 if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
11895 return DAG.getNode(Opcode, DL, VT, LHS, RHS);
11896 return SDValue();
11897 }
11898 default:
11899 return SDValue();
11900 }
11901}
11902
11903// Convert (sr[al] (add n[su]w x, y)) -> (avgfloor[su] x, y)
11904SDValue DAGCombiner::foldShiftToAvg(SDNode *N, const SDLoc &DL) {
11905 const unsigned Opcode = N->getOpcode();
11906 if (Opcode != ISD::SRA && Opcode != ISD::SRL)
11907 return SDValue();
11908
11909 EVT VT = N->getValueType(0);
11910 bool IsUnsigned = Opcode == ISD::SRL;
11911
11912 // Captured values.
11913 SDValue A, B, Add;
11914
11915 // Match floor average as it is common to both floor/ceil avgs.
11916 if (sd_match(N, m_BinOp(Opcode,
11918 m_One()))) {
11919 // Decide whether signed or unsigned.
11920 unsigned FloorISD = IsUnsigned ? ISD::AVGFLOORU : ISD::AVGFLOORS;
11921 if (!hasOperation(FloorISD, VT))
11922 return SDValue();
11923
11924 // Can't optimize adds that may wrap.
11925 if ((IsUnsigned && !Add->getFlags().hasNoUnsignedWrap()) ||
11926 (!IsUnsigned && !Add->getFlags().hasNoSignedWrap()))
11927 return SDValue();
11928
11929 return DAG.getNode(FloorISD, DL, N->getValueType(0), {A, B});
11930 }
11931
11932 return SDValue();
11933}
11934
11935SDValue DAGCombiner::foldBitwiseOpWithNeg(SDNode *N, const SDLoc &DL, EVT VT) {
11936 unsigned Opc = N->getOpcode();
11937 SDValue X, Y, Z;
11938 if (sd_match(
11940 return DAG.getNode(Opc, DL, VT, X,
11941 DAG.getNOT(DL, DAG.getNode(ISD::SUB, DL, VT, Y, Z), VT));
11942
11944 m_Value(Z)))))
11945 return DAG.getNode(Opc, DL, VT, X,
11946 DAG.getNOT(DL, DAG.getNode(ISD::ADD, DL, VT, Y, Z), VT));
11947
11948 return SDValue();
11949}
11950
11951/// Generate Min/Max node
11952SDValue DAGCombiner::combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
11953 SDValue RHS, SDValue True,
11954 SDValue False, ISD::CondCode CC) {
11955 if ((LHS == True && RHS == False) || (LHS == False && RHS == True))
11956 return combineMinNumMaxNumImpl(DL, VT, LHS, RHS, True, False, CC, TLI, DAG);
11957
11958 // If we can't directly match this, try to see if we can pull an fneg out of
11959 // the select.
11961 True, DAG, LegalOperations, ForCodeSize);
11962 if (!NegTrue)
11963 return SDValue();
11964
11965 HandleSDNode NegTrueHandle(NegTrue);
11966
11967 // Try to unfold an fneg from the select if we are comparing the negated
11968 // constant.
11969 //
11970 // select (setcc x, K) (fneg x), -K -> fneg(minnum(x, K))
11971 //
11972 // TODO: Handle fabs
11973 if (LHS == NegTrue) {
11974 // If we can't directly match this, try to see if we can pull an fneg out of
11975 // the select.
11977 RHS, DAG, LegalOperations, ForCodeSize);
11978 if (NegRHS) {
11979 HandleSDNode NegRHSHandle(NegRHS);
11980 if (NegRHS == False) {
11981 SDValue Combined = combineMinNumMaxNumImpl(DL, VT, LHS, RHS, NegTrue,
11982 False, CC, TLI, DAG);
11983 if (Combined)
11984 return DAG.getNode(ISD::FNEG, DL, VT, Combined);
11985 }
11986 }
11987 }
11988
11989 return SDValue();
11990}
11991
11992/// If a (v)select has a condition value that is a sign-bit test, try to smear
11993/// the condition operand sign-bit across the value width and use it as a mask.
11995 SelectionDAG &DAG) {
11996 SDValue Cond = N->getOperand(0);
11997 SDValue C1 = N->getOperand(1);
11998 SDValue C2 = N->getOperand(2);
12000 return SDValue();
12001
12002 EVT VT = N->getValueType(0);
12003 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() ||
12004 VT != Cond.getOperand(0).getValueType())
12005 return SDValue();
12006
12007 // The inverted-condition + commuted-select variants of these patterns are
12008 // canonicalized to these forms in IR.
12009 SDValue X = Cond.getOperand(0);
12010 SDValue CondC = Cond.getOperand(1);
12011 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12012 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) &&
12014 // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
12015 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
12016 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
12017 return DAG.getNode(ISD::OR, DL, VT, Sra, C1);
12018 }
12019 if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) {
12020 // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
12021 SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
12022 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
12023 return DAG.getNode(ISD::AND, DL, VT, Sra, C1);
12024 }
12025 return SDValue();
12026}
12027
12029 const TargetLowering &TLI) {
12030 if (!TLI.convertSelectOfConstantsToMath(VT))
12031 return false;
12032
12033 if (Cond.getOpcode() != ISD::SETCC || !Cond->hasOneUse())
12034 return true;
12036 return true;
12037
12038 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12039 if (CC == ISD::SETLT && isNullOrNullSplat(Cond.getOperand(1)))
12040 return true;
12041 if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond.getOperand(1)))
12042 return true;
12043
12044 return false;
12045}
12046
12047SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
12048 SDValue Cond = N->getOperand(0);
12049 SDValue N1 = N->getOperand(1);
12050 SDValue N2 = N->getOperand(2);
12051 EVT VT = N->getValueType(0);
12052 EVT CondVT = Cond.getValueType();
12053 SDLoc DL(N);
12054
12055 if (!VT.isInteger())
12056 return SDValue();
12057
12058 auto *C1 = dyn_cast<ConstantSDNode>(N1);
12059 auto *C2 = dyn_cast<ConstantSDNode>(N2);
12060 if (!C1 || !C2)
12061 return SDValue();
12062
12063 if (CondVT != MVT::i1 || LegalOperations) {
12064 // fold (select Cond, 0, 1) -> (xor Cond, 1)
12065 // We can't do this reliably if integer based booleans have different contents
12066 // to floating point based booleans. This is because we can't tell whether we
12067 // have an integer-based boolean or a floating-point-based boolean unless we
12068 // can find the SETCC that produced it and inspect its operands. This is
12069 // fairly easy if C is the SETCC node, but it can potentially be
12070 // undiscoverable (or not reasonably discoverable). For example, it could be
12071 // in another basic block or it could require searching a complicated
12072 // expression.
12073 if (CondVT.isInteger() &&
12074 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
12076 TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
12078 C1->isZero() && C2->isOne()) {
12079 SDValue NotCond =
12080 DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
12081 if (VT.bitsEq(CondVT))
12082 return NotCond;
12083 return DAG.getZExtOrTrunc(NotCond, DL, VT);
12084 }
12085
12086 return SDValue();
12087 }
12088
12089 // Only do this before legalization to avoid conflicting with target-specific
12090 // transforms in the other direction (create a select from a zext/sext). There
12091 // is also a target-independent combine here in DAGCombiner in the other
12092 // direction for (select Cond, -1, 0) when the condition is not i1.
12093 assert(CondVT == MVT::i1 && !LegalOperations);
12094
12095 // select Cond, 1, 0 --> zext (Cond)
12096 if (C1->isOne() && C2->isZero())
12097 return DAG.getZExtOrTrunc(Cond, DL, VT);
12098
12099 // select Cond, -1, 0 --> sext (Cond)
12100 if (C1->isAllOnes() && C2->isZero())
12101 return DAG.getSExtOrTrunc(Cond, DL, VT);
12102
12103 // select Cond, 0, 1 --> zext (!Cond)
12104 if (C1->isZero() && C2->isOne()) {
12105 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
12106 NotCond = DAG.getZExtOrTrunc(NotCond, DL, VT);
12107 return NotCond;
12108 }
12109
12110 // select Cond, 0, -1 --> sext (!Cond)
12111 if (C1->isZero() && C2->isAllOnes()) {
12112 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
12113 NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT);
12114 return NotCond;
12115 }
12116
12117 // Use a target hook because some targets may prefer to transform in the
12118 // other direction.
12120 return SDValue();
12121
12122 // For any constants that differ by 1, we can transform the select into
12123 // an extend and add.
12124 const APInt &C1Val = C1->getAPIntValue();
12125 const APInt &C2Val = C2->getAPIntValue();
12126
12127 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
12128 if (C1Val - 1 == C2Val) {
12129 Cond = DAG.getZExtOrTrunc(Cond, DL, VT);
12130 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
12131 }
12132
12133 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
12134 if (C1Val + 1 == C2Val) {
12135 Cond = DAG.getSExtOrTrunc(Cond, DL, VT);
12136 return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
12137 }
12138
12139 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
12140 if (C1Val.isPowerOf2() && C2Val.isZero()) {
12141 Cond = DAG.getZExtOrTrunc(Cond, DL, VT);
12142 SDValue ShAmtC =
12143 DAG.getShiftAmountConstant(C1Val.exactLogBase2(), VT, DL);
12144 return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC);
12145 }
12146
12147 // select Cond, -1, C --> or (sext Cond), C
12148 if (C1->isAllOnes()) {
12149 Cond = DAG.getSExtOrTrunc(Cond, DL, VT);
12150 return DAG.getNode(ISD::OR, DL, VT, Cond, N2);
12151 }
12152
12153 // select Cond, C, -1 --> or (sext (not Cond)), C
12154 if (C2->isAllOnes()) {
12155 SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
12156 NotCond = DAG.getSExtOrTrunc(NotCond, DL, VT);
12157 return DAG.getNode(ISD::OR, DL, VT, NotCond, N1);
12158 }
12159
12161 return V;
12162
12163 return SDValue();
12164}
12165
12166template <class MatchContextClass>
12168 SelectionDAG &DAG) {
12169 assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT ||
12170 N->getOpcode() == ISD::VP_SELECT) &&
12171 "Expected a (v)(vp.)select");
12172 SDValue Cond = N->getOperand(0);
12173 SDValue T = N->getOperand(1), F = N->getOperand(2);
12174 EVT VT = N->getValueType(0);
12175 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12176 MatchContextClass matcher(DAG, TLI, N);
12177
12178 if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1)
12179 return SDValue();
12180
12181 // select Cond, Cond, F --> or Cond, freeze(F)
12182 // select Cond, 1, F --> or Cond, freeze(F)
12183 if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true))
12184 return matcher.getNode(ISD::OR, DL, VT, Cond, DAG.getFreeze(F));
12185
12186 // select Cond, T, Cond --> and Cond, freeze(T)
12187 // select Cond, T, 0 --> and Cond, freeze(T)
12188 if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true))
12189 return matcher.getNode(ISD::AND, DL, VT, Cond, DAG.getFreeze(T));
12190
12191 // select Cond, T, 1 --> or (not Cond), freeze(T)
12192 if (isOneOrOneSplat(F, /* AllowUndefs */ true)) {
12193 SDValue NotCond =
12194 matcher.getNode(ISD::XOR, DL, VT, Cond, DAG.getAllOnesConstant(DL, VT));
12195 return matcher.getNode(ISD::OR, DL, VT, NotCond, DAG.getFreeze(T));
12196 }
12197
12198 // select Cond, 0, F --> and (not Cond), freeze(F)
12199 if (isNullOrNullSplat(T, /* AllowUndefs */ true)) {
12200 SDValue NotCond =
12201 matcher.getNode(ISD::XOR, DL, VT, Cond, DAG.getAllOnesConstant(DL, VT));
12202 return matcher.getNode(ISD::AND, DL, VT, NotCond, DAG.getFreeze(F));
12203 }
12204
12205 return SDValue();
12206}
12207
12209 SDValue N0 = N->getOperand(0);
12210 SDValue N1 = N->getOperand(1);
12211 SDValue N2 = N->getOperand(2);
12212 EVT VT = N->getValueType(0);
12213 unsigned EltSizeInBits = VT.getScalarSizeInBits();
12214
12215 SDValue Cond0, Cond1;
12216 ISD::CondCode CC;
12217 if (!sd_match(N0, m_OneUse(m_SetCC(m_Value(Cond0), m_Value(Cond1),
12218 m_CondCode(CC)))) ||
12219 VT != Cond0.getValueType())
12220 return SDValue();
12221
12222 // Match a signbit check of Cond0 as "Cond0 s<0". Swap select operands if the
12223 // compare is inverted from that pattern ("Cond0 s> -1").
12224 if (CC == ISD::SETLT && isNullOrNullSplat(Cond1))
12225 ; // This is the pattern we are looking for.
12226 else if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(Cond1))
12227 std::swap(N1, N2);
12228 else
12229 return SDValue();
12230
12231 // (Cond0 s< 0) ? N1 : 0 --> (Cond0 s>> BW-1) & freeze(N1)
12232 if (isNullOrNullSplat(N2)) {
12233 SDLoc DL(N);
12234 SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL);
12235 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
12236 return DAG.getNode(ISD::AND, DL, VT, Sra, DAG.getFreeze(N1));
12237 }
12238
12239 // (Cond0 s< 0) ? -1 : N2 --> (Cond0 s>> BW-1) | freeze(N2)
12240 if (isAllOnesOrAllOnesSplat(N1)) {
12241 SDLoc DL(N);
12242 SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL);
12243 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
12244 return DAG.getNode(ISD::OR, DL, VT, Sra, DAG.getFreeze(N2));
12245 }
12246
12247 // If we have to invert the sign bit mask, only do that transform if the
12248 // target has a bitwise 'and not' instruction (the invert is free).
12249 // (Cond0 s< -0) ? 0 : N2 --> ~(Cond0 s>> BW-1) & freeze(N2)
12250 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12251 if (isNullOrNullSplat(N1) && TLI.hasAndNot(N1)) {
12252 SDLoc DL(N);
12253 SDValue ShiftAmt = DAG.getShiftAmountConstant(EltSizeInBits - 1, VT, DL);
12254 SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Cond0, ShiftAmt);
12255 SDValue Not = DAG.getNOT(DL, Sra, VT);
12256 return DAG.getNode(ISD::AND, DL, VT, Not, DAG.getFreeze(N2));
12257 }
12258
12259 // TODO: There's another pattern in this family, but it may require
12260 // implementing hasOrNot() to check for profitability:
12261 // (Cond0 s> -1) ? -1 : N2 --> ~(Cond0 s>> BW-1) | freeze(N2)
12262
12263 return SDValue();
12264}
12265
12266// Match SELECTs with absolute difference patterns.
12267// (select (setcc a, b, set?gt), (sub a, b), (sub b, a)) --> (abd? a, b)
12268// (select (setcc a, b, set?ge), (sub a, b), (sub b, a)) --> (abd? a, b)
12269// (select (setcc a, b, set?lt), (sub b, a), (sub a, b)) --> (abd? a, b)
12270// (select (setcc a, b, set?le), (sub b, a), (sub a, b)) --> (abd? a, b)
12271SDValue DAGCombiner::foldSelectToABD(SDValue LHS, SDValue RHS, SDValue True,
12272 SDValue False, ISD::CondCode CC,
12273 const SDLoc &DL) {
12274 bool IsSigned = isSignedIntSetCC(CC);
12275 unsigned ABDOpc = IsSigned ? ISD::ABDS : ISD::ABDU;
12276 EVT VT = LHS.getValueType();
12277
12278 if (LegalOperations && !hasOperation(ABDOpc, VT))
12279 return SDValue();
12280
12281 switch (CC) {
12282 case ISD::SETGT:
12283 case ISD::SETGE:
12284 case ISD::SETUGT:
12285 case ISD::SETUGE:
12286 if (sd_match(True, m_Sub(m_Specific(LHS), m_Specific(RHS))) &&
12288 return DAG.getNode(ABDOpc, DL, VT, LHS, RHS);
12289 if (sd_match(True, m_Sub(m_Specific(RHS), m_Specific(LHS))) &&
12290 sd_match(False, m_Sub(m_Specific(LHS), m_Specific(RHS))) &&
12291 hasOperation(ABDOpc, VT))
12292 return DAG.getNegative(DAG.getNode(ABDOpc, DL, VT, LHS, RHS), DL, VT);
12293 break;
12294 case ISD::SETLT:
12295 case ISD::SETLE:
12296 case ISD::SETULT:
12297 case ISD::SETULE:
12298 if (sd_match(True, m_Sub(m_Specific(RHS), m_Specific(LHS))) &&
12300 return DAG.getNode(ABDOpc, DL, VT, LHS, RHS);
12301 if (sd_match(True, m_Sub(m_Specific(LHS), m_Specific(RHS))) &&
12302 sd_match(False, m_Sub(m_Specific(RHS), m_Specific(LHS))) &&
12303 hasOperation(ABDOpc, VT))
12304 return DAG.getNegative(DAG.getNode(ABDOpc, DL, VT, LHS, RHS), DL, VT);
12305 break;
12306 default:
12307 break;
12308 }
12309
12310 return SDValue();
12311}
12312
12313// ([v]select (ugt x, C), (add x, ~C), x) -> (umin (add x, ~C), x)
12314// ([v]select (ult x, C), x, (add x, -C)) -> (umin x, (add x, -C))
12315SDValue DAGCombiner::foldSelectToUMin(SDValue LHS, SDValue RHS, SDValue True,
12316 SDValue False, ISD::CondCode CC,
12317 const SDLoc &DL) {
12318 APInt C;
12319 EVT VT = True.getValueType();
12320 if (sd_match(RHS, m_ConstInt(C)) && hasUMin(VT)) {
12321 if (CC == ISD::SETUGT && LHS == False &&
12322 sd_match(True, m_Add(m_Specific(False), m_SpecificInt(~C)))) {
12323 SDValue AddC = DAG.getConstant(~C, DL, VT);
12324 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, False, AddC);
12325 return DAG.getNode(ISD::UMIN, DL, VT, Add, False);
12326 }
12327 if (CC == ISD::SETULT && LHS == True &&
12328 sd_match(False, m_Add(m_Specific(True), m_SpecificInt(-C)))) {
12329 SDValue AddC = DAG.getConstant(-C, DL, VT);
12330 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, True, AddC);
12331 return DAG.getNode(ISD::UMIN, DL, VT, True, Add);
12332 }
12333 }
12334 return SDValue();
12335}
12336
12337SDValue DAGCombiner::visitSELECT(SDNode *N) {
12338 SDValue N0 = N->getOperand(0);
12339 SDValue N1 = N->getOperand(1);
12340 SDValue N2 = N->getOperand(2);
12341 EVT VT = N->getValueType(0);
12342 EVT VT0 = N0.getValueType();
12343 SDLoc DL(N);
12344 SDNodeFlags Flags = N->getFlags();
12345
12346 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
12347 return V;
12348
12350 return V;
12351
12352 // select (not Cond), N1, N2 -> select Cond, N2, N1
12353 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
12354 return DAG.getSelect(DL, VT, F, N2, N1, Flags);
12355
12356 if (SDValue V = foldSelectOfConstants(N))
12357 return V;
12358
12359 // If we can fold this based on the true/false value, do so.
12360 if (SimplifySelectOps(N, N1, N2))
12361 return SDValue(N, 0); // Don't revisit N.
12362
12363 if (VT0 == MVT::i1) {
12364 // The code in this block deals with the following 2 equivalences:
12365 // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
12366 // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
12367 // The target can specify its preferred form with the
12368 // shouldNormalizeToSelectSequence() callback. However we always transform
12369 // to the right anyway if we find the inner select exists in the DAG anyway
12370 // and we always transform to the left side if we know that we can further
12371 // optimize the combination of the conditions.
12372 bool normalizeToSequence =
12374 // select (and Cond0, Cond1), X, Y
12375 // -> select Cond0, (select Cond1, X, Y), Y
12376 if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
12377 SDValue Cond0 = N0->getOperand(0);
12378 SDValue Cond1 = N0->getOperand(1);
12379 SDValue InnerSelect =
12380 DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
12381 if (normalizeToSequence || !InnerSelect.use_empty())
12382 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
12383 InnerSelect, N2, Flags);
12384 // Cleanup on failure.
12385 if (InnerSelect.use_empty())
12386 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
12387 }
12388 // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
12389 if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
12390 SDValue Cond0 = N0->getOperand(0);
12391 SDValue Cond1 = N0->getOperand(1);
12392 SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
12393 Cond1, N1, N2, Flags);
12394 if (normalizeToSequence || !InnerSelect.use_empty())
12395 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
12396 InnerSelect, Flags);
12397 // Cleanup on failure.
12398 if (InnerSelect.use_empty())
12399 recursivelyDeleteUnusedNodes(InnerSelect.getNode());
12400 }
12401
12402 // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
12403 if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
12404 SDValue N1_0 = N1->getOperand(0);
12405 SDValue N1_1 = N1->getOperand(1);
12406 SDValue N1_2 = N1->getOperand(2);
12407 if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
12408 // Create the actual and node if we can generate good code for it.
12409 if (!normalizeToSequence) {
12410 SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
12411 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
12412 N2, Flags);
12413 }
12414 // Otherwise see if we can optimize the "and" to a better pattern.
12415 if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
12416 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
12417 N2, Flags);
12418 }
12419 }
12420 }
12421 // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
12422 if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
12423 SDValue N2_0 = N2->getOperand(0);
12424 SDValue N2_1 = N2->getOperand(1);
12425 SDValue N2_2 = N2->getOperand(2);
12426 if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
12427 // Create the actual or node if we can generate good code for it.
12428 if (!normalizeToSequence) {
12429 SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
12430 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
12431 N2_2, Flags);
12432 }
12433 // Otherwise see if we can optimize to a better pattern.
12434 if (SDValue Combined = visitORLike(N0, N2_0, DL))
12435 return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
12436 N2_2, Flags);
12437 }
12438 }
12439
12440 // select usubo(x, y).overflow, (sub y, x), (usubo x, y) -> abdu(x, y)
12441 if (N0.getOpcode() == ISD::USUBO && N0.getResNo() == 1 &&
12442 N2.getNode() == N0.getNode() && N2.getResNo() == 0 &&
12443 N1.getOpcode() == ISD::SUB && N2.getOperand(0) == N1.getOperand(1) &&
12444 N2.getOperand(1) == N1.getOperand(0) &&
12445 (!LegalOperations || TLI.isOperationLegal(ISD::ABDU, VT)))
12446 return DAG.getNode(ISD::ABDU, DL, VT, N0.getOperand(0), N0.getOperand(1));
12447
12448 // select usubo(x, y).overflow, (usubo x, y), (sub y, x) -> neg (abdu x, y)
12449 if (N0.getOpcode() == ISD::USUBO && N0.getResNo() == 1 &&
12450 N1.getNode() == N0.getNode() && N1.getResNo() == 0 &&
12451 N2.getOpcode() == ISD::SUB && N2.getOperand(0) == N1.getOperand(1) &&
12452 N2.getOperand(1) == N1.getOperand(0) &&
12453 (!LegalOperations || TLI.isOperationLegal(ISD::ABDU, VT)))
12454 return DAG.getNegative(
12455 DAG.getNode(ISD::ABDU, DL, VT, N0.getOperand(0), N0.getOperand(1)),
12456 DL, VT);
12457 }
12458
12459 // Fold selects based on a setcc into other things, such as min/max/abs.
12460 if (N0.getOpcode() == ISD::SETCC) {
12461 SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
12463
12464 // select (fcmp lt x, y), x, y -> fminnum x, y
12465 // select (fcmp gt x, y), x, y -> fmaxnum x, y
12466 //
12467 // This is OK if we don't care what happens if either operand is a NaN.
12468 if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, Flags, TLI))
12469 if (SDValue FMinMax =
12470 combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, CC))
12471 return FMinMax;
12472
12473 // Use 'unsigned add with overflow' to optimize an unsigned saturating add.
12474 // This is conservatively limited to pre-legal-operations to give targets
12475 // a chance to reverse the transform if they want to do that. Also, it is
12476 // unlikely that the pattern would be formed late, so it's probably not
12477 // worth going through the other checks.
12478 if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
12479 CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
12480 N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
12481 auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
12482 auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
12483 if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
12484 // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
12485 // uaddo Cond0, C; select uaddo.1, -1, uaddo.0
12486 //
12487 // The IR equivalent of this transform would have this form:
12488 // %a = add %x, C
12489 // %c = icmp ugt %x, ~C
12490 // %r = select %c, -1, %a
12491 // =>
12492 // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
12493 // %u0 = extractvalue %u, 0
12494 // %u1 = extractvalue %u, 1
12495 // %r = select %u1, -1, %u0
12496 SDVTList VTs = DAG.getVTList(VT, VT0);
12497 SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
12498 return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
12499 }
12500 }
12501
12502 if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
12503 (!LegalOperations &&
12505 // Any flags available in a select/setcc fold will be on the setcc as they
12506 // migrated from fcmp
12507 return DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, N2,
12508 N0.getOperand(2), N0->getFlags());
12509 }
12510
12511 if (SDValue ABD = foldSelectToABD(Cond0, Cond1, N1, N2, CC, DL))
12512 return ABD;
12513
12514 if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2))
12515 return NewSel;
12516
12517 // (select (ugt x, C), (add x, ~C), x) -> (umin (add x, ~C), x)
12518 // (select (ult x, C), x, (add x, -C)) -> (umin x, (add x, -C))
12519 if (SDValue UMin = foldSelectToUMin(Cond0, Cond1, N1, N2, CC, DL))
12520 return UMin;
12521 }
12522
12523 if (!VT.isVector())
12524 if (SDValue BinOp = foldSelectOfBinops(N))
12525 return BinOp;
12526
12527 if (SDValue R = combineSelectAsExtAnd(N0, N1, N2, DL, DAG))
12528 return R;
12529
12530 return SDValue();
12531}
12532
12533// This function assumes all the vselect's arguments are CONCAT_VECTOR
12534// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
12536 SDLoc DL(N);
12537 SDValue Cond = N->getOperand(0);
12538 SDValue LHS = N->getOperand(1);
12539 SDValue RHS = N->getOperand(2);
12540 EVT VT = N->getValueType(0);
12541 int NumElems = VT.getVectorNumElements();
12542 assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
12543 RHS.getOpcode() == ISD::CONCAT_VECTORS &&
12544 Cond.getOpcode() == ISD::BUILD_VECTOR);
12545
12546 // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
12547 // binary ones here.
12548 if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
12549 return SDValue();
12550
12551 // We're sure we have an even number of elements due to the
12552 // concat_vectors we have as arguments to vselect.
12553 // Skip BV elements until we find one that's not an UNDEF
12554 // After we find an UNDEF element, keep looping until we get to half the
12555 // length of the BV and see if all the non-undef nodes are the same.
12556 ConstantSDNode *BottomHalf = nullptr;
12557 for (int i = 0; i < NumElems / 2; ++i) {
12558 if (Cond->getOperand(i)->isUndef())
12559 continue;
12560
12561 if (BottomHalf == nullptr)
12562 BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
12563 else if (Cond->getOperand(i).getNode() != BottomHalf)
12564 return SDValue();
12565 }
12566
12567 // Do the same for the second half of the BuildVector
12568 ConstantSDNode *TopHalf = nullptr;
12569 for (int i = NumElems / 2; i < NumElems; ++i) {
12570 if (Cond->getOperand(i)->isUndef())
12571 continue;
12572
12573 if (TopHalf == nullptr)
12574 TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
12575 else if (Cond->getOperand(i).getNode() != TopHalf)
12576 return SDValue();
12577 }
12578
12579 assert(TopHalf && BottomHalf &&
12580 "One half of the selector was all UNDEFs and the other was all the "
12581 "same value. This should have been addressed before this function.");
12582 return DAG.getNode(
12584 BottomHalf->isZero() ? RHS->getOperand(0) : LHS->getOperand(0),
12585 TopHalf->isZero() ? RHS->getOperand(1) : LHS->getOperand(1));
12586}
12587
12588bool refineUniformBase(SDValue &BasePtr, SDValue &Index, bool IndexIsScaled,
12589 SelectionDAG &DAG, const SDLoc &DL) {
12590
12591 // Only perform the transformation when existing operands can be reused.
12592 if (IndexIsScaled)
12593 return false;
12594
12595 if (!isNullConstant(BasePtr) && !Index.hasOneUse())
12596 return false;
12597
12598 EVT VT = BasePtr.getValueType();
12599
12600 if (SDValue SplatVal = DAG.getSplatValue(Index);
12601 SplatVal && !isNullConstant(SplatVal) &&
12602 SplatVal.getValueType() == VT) {
12603 BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
12604 Index = DAG.getSplat(Index.getValueType(), DL, DAG.getConstant(0, DL, VT));
12605 return true;
12606 }
12607
12608 if (Index.getOpcode() != ISD::ADD)
12609 return false;
12610
12611 if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(0));
12612 SplatVal && SplatVal.getValueType() == VT) {
12613 BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
12614 Index = Index.getOperand(1);
12615 return true;
12616 }
12617 if (SDValue SplatVal = DAG.getSplatValue(Index.getOperand(1));
12618 SplatVal && SplatVal.getValueType() == VT) {
12619 BasePtr = DAG.getNode(ISD::ADD, DL, VT, BasePtr, SplatVal);
12620 Index = Index.getOperand(0);
12621 return true;
12622 }
12623 return false;
12624}
12625
12626// Fold sext/zext of index into index type.
12627bool refineIndexType(SDValue &Index, ISD::MemIndexType &IndexType, EVT DataVT,
12628 SelectionDAG &DAG) {
12629 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12630
12631 // It's always safe to look through zero extends.
12632 if (Index.getOpcode() == ISD::ZERO_EXTEND) {
12633 if (TLI.shouldRemoveExtendFromGSIndex(Index, DataVT)) {
12634 IndexType = ISD::UNSIGNED_SCALED;
12635 Index = Index.getOperand(0);
12636 return true;
12637 }
12638 if (ISD::isIndexTypeSigned(IndexType)) {
12639 IndexType = ISD::UNSIGNED_SCALED;
12640 return true;
12641 }
12642 }
12643
12644 // It's only safe to look through sign extends when Index is signed.
12645 if (Index.getOpcode() == ISD::SIGN_EXTEND &&
12646 ISD::isIndexTypeSigned(IndexType) &&
12647 TLI.shouldRemoveExtendFromGSIndex(Index, DataVT)) {
12648 Index = Index.getOperand(0);
12649 return true;
12650 }
12651
12652 return false;
12653}
12654
12655SDValue DAGCombiner::visitVPSCATTER(SDNode *N) {
12656 VPScatterSDNode *MSC = cast<VPScatterSDNode>(N);
12657 SDValue Mask = MSC->getMask();
12658 SDValue Chain = MSC->getChain();
12659 SDValue Index = MSC->getIndex();
12660 SDValue Scale = MSC->getScale();
12661 SDValue StoreVal = MSC->getValue();
12662 SDValue BasePtr = MSC->getBasePtr();
12663 SDValue VL = MSC->getVectorLength();
12664 ISD::MemIndexType IndexType = MSC->getIndexType();
12665 SDLoc DL(N);
12666
12667 // Zap scatters with a zero mask.
12669 return Chain;
12670
12671 if (refineUniformBase(BasePtr, Index, MSC->isIndexScaled(), DAG, DL)) {
12672 SDValue Ops[] = {Chain, StoreVal, BasePtr, Index, Scale, Mask, VL};
12673 return DAG.getScatterVP(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
12674 DL, Ops, MSC->getMemOperand(), IndexType);
12675 }
12676
12677 if (refineIndexType(Index, IndexType, StoreVal.getValueType(), DAG)) {
12678 SDValue Ops[] = {Chain, StoreVal, BasePtr, Index, Scale, Mask, VL};
12679 return DAG.getScatterVP(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
12680 DL, Ops, MSC->getMemOperand(), IndexType);
12681 }
12682
12683 return SDValue();
12684}
12685
12686SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
12687 MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
12688 SDValue Mask = MSC->getMask();
12689 SDValue Chain = MSC->getChain();
12690 SDValue Index = MSC->getIndex();
12691 SDValue Scale = MSC->getScale();
12692 SDValue StoreVal = MSC->getValue();
12693 SDValue BasePtr = MSC->getBasePtr();
12694 ISD::MemIndexType IndexType = MSC->getIndexType();
12695 SDLoc DL(N);
12696
12697 // Zap scatters with a zero mask.
12699 return Chain;
12700
12701 if (refineUniformBase(BasePtr, Index, MSC->isIndexScaled(), DAG, DL)) {
12702 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
12703 return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
12704 DL, Ops, MSC->getMemOperand(), IndexType,
12705 MSC->isTruncatingStore());
12706 }
12707
12708 if (refineIndexType(Index, IndexType, StoreVal.getValueType(), DAG)) {
12709 SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
12710 return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(),
12711 DL, Ops, MSC->getMemOperand(), IndexType,
12712 MSC->isTruncatingStore());
12713 }
12714
12715 return SDValue();
12716}
12717
12718SDValue DAGCombiner::visitMSTORE(SDNode *N) {
12719 MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
12720 SDValue Mask = MST->getMask();
12721 SDValue Chain = MST->getChain();
12722 SDValue Value = MST->getValue();
12723 SDValue Ptr = MST->getBasePtr();
12724
12725 // Zap masked stores with a zero mask.
12727 return Chain;
12728
12729 // Remove a masked store if base pointers and masks are equal.
12730 if (MaskedStoreSDNode *MST1 = dyn_cast<MaskedStoreSDNode>(Chain)) {
12731 if (MST->isUnindexed() && MST->isSimple() && MST1->isUnindexed() &&
12732 MST1->isSimple() && MST1->getBasePtr() == Ptr &&
12733 !MST->getBasePtr().isUndef() &&
12734 ((Mask == MST1->getMask() && MST->getMemoryVT().getStoreSize() ==
12735 MST1->getMemoryVT().getStoreSize()) ||
12737 TypeSize::isKnownLE(MST1->getMemoryVT().getStoreSize(),
12738 MST->getMemoryVT().getStoreSize())) {
12739 CombineTo(MST1, MST1->getChain());
12740 if (N->getOpcode() != ISD::DELETED_NODE)
12741 AddToWorklist(N);
12742 return SDValue(N, 0);
12743 }
12744 }
12745
12746 // If this is a masked load with an all ones mask, we can use a unmasked load.
12747 // FIXME: Can we do this for indexed, compressing, or truncating stores?
12748 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MST->isUnindexed() &&
12749 !MST->isCompressingStore() && !MST->isTruncatingStore())
12750 return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(),
12751 MST->getBasePtr(), MST->getPointerInfo(),
12752 MST->getBaseAlign(), MST->getMemOperand()->getFlags(),
12753 MST->getAAInfo());
12754
12755 // Try transforming N to an indexed store.
12756 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
12757 return SDValue(N, 0);
12758
12759 if (MST->isTruncatingStore() && MST->isUnindexed() &&
12760 Value.getValueType().isInteger() &&
12762 !cast<ConstantSDNode>(Value)->isOpaque())) {
12763 APInt TruncDemandedBits =
12764 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
12766
12767 // See if we can simplify the operation with
12768 // SimplifyDemandedBits, which only works if the value has a single use.
12769 if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
12770 // Re-visit the store if anything changed and the store hasn't been merged
12771 // with another node (N is deleted) SimplifyDemandedBits will add Value's
12772 // node back to the worklist if necessary, but we also need to re-visit
12773 // the Store node itself.
12774 if (N->getOpcode() != ISD::DELETED_NODE)
12775 AddToWorklist(N);
12776 return SDValue(N, 0);
12777 }
12778 }
12779
12780 // If this is a TRUNC followed by a masked store, fold this into a masked
12781 // truncating store. We can do this even if this is already a masked
12782 // truncstore.
12783 // TODO: Try combine to masked compress store if possiable.
12784 if ((Value.getOpcode() == ISD::TRUNCATE) && Value->hasOneUse() &&
12785 MST->isUnindexed() && !MST->isCompressingStore() &&
12786 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(),
12787 MST->getMemoryVT(), LegalOperations)) {
12788 auto Mask = TLI.promoteTargetBoolean(DAG, MST->getMask(),
12789 Value.getOperand(0).getValueType());
12790 return DAG.getMaskedStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
12791 MST->getOffset(), Mask, MST->getMemoryVT(),
12792 MST->getMemOperand(), MST->getAddressingMode(),
12793 /*IsTruncating=*/true);
12794 }
12795
12796 return SDValue();
12797}
12798
12799SDValue DAGCombiner::visitVP_STRIDED_STORE(SDNode *N) {
12800 auto *SST = cast<VPStridedStoreSDNode>(N);
12801 EVT EltVT = SST->getValue().getValueType().getVectorElementType();
12802 // Combine strided stores with unit-stride to a regular VP store.
12803 if (auto *CStride = dyn_cast<ConstantSDNode>(SST->getStride());
12804 CStride && CStride->getZExtValue() == EltVT.getStoreSize()) {
12805 return DAG.getStoreVP(SST->getChain(), SDLoc(N), SST->getValue(),
12806 SST->getBasePtr(), SST->getOffset(), SST->getMask(),
12807 SST->getVectorLength(), SST->getMemoryVT(),
12808 SST->getMemOperand(), SST->getAddressingMode(),
12809 SST->isTruncatingStore(), SST->isCompressingStore());
12810 }
12811 return SDValue();
12812}
12813
12814SDValue DAGCombiner::visitVECTOR_COMPRESS(SDNode *N) {
12815 SDLoc DL(N);
12816 SDValue Vec = N->getOperand(0);
12817 SDValue Mask = N->getOperand(1);
12818 SDValue Passthru = N->getOperand(2);
12819 EVT VecVT = Vec.getValueType();
12820
12821 bool HasPassthru = !Passthru.isUndef();
12822
12823 APInt SplatVal;
12824 if (ISD::isConstantSplatVector(Mask.getNode(), SplatVal))
12825 return TLI.isConstTrueVal(Mask) ? Vec : Passthru;
12826
12827 if (Vec.isUndef() || Mask.isUndef())
12828 return Passthru;
12829
12830 // No need for potentially expensive compress if the mask is constant.
12833 EVT ScalarVT = VecVT.getVectorElementType();
12834 unsigned NumSelected = 0;
12835 unsigned NumElmts = VecVT.getVectorNumElements();
12836 for (unsigned I = 0; I < NumElmts; ++I) {
12837 SDValue MaskI = Mask.getOperand(I);
12838 // We treat undef mask entries as "false".
12839 if (MaskI.isUndef())
12840 continue;
12841
12842 if (TLI.isConstTrueVal(MaskI)) {
12843 SDValue VecI = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Vec,
12844 DAG.getVectorIdxConstant(I, DL));
12845 Ops.push_back(VecI);
12846 NumSelected++;
12847 }
12848 }
12849 for (unsigned Rest = NumSelected; Rest < NumElmts; ++Rest) {
12850 SDValue Val =
12851 HasPassthru
12852 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, Passthru,
12853 DAG.getVectorIdxConstant(Rest, DL))
12854 : DAG.getUNDEF(ScalarVT);
12855 Ops.push_back(Val);
12856 }
12857 return DAG.getBuildVector(VecVT, DL, Ops);
12858 }
12859
12860 return SDValue();
12861}
12862
12863SDValue DAGCombiner::visitVPGATHER(SDNode *N) {
12864 VPGatherSDNode *MGT = cast<VPGatherSDNode>(N);
12865 SDValue Mask = MGT->getMask();
12866 SDValue Chain = MGT->getChain();
12867 SDValue Index = MGT->getIndex();
12868 SDValue Scale = MGT->getScale();
12869 SDValue BasePtr = MGT->getBasePtr();
12870 SDValue VL = MGT->getVectorLength();
12871 ISD::MemIndexType IndexType = MGT->getIndexType();
12872 SDLoc DL(N);
12873
12874 if (refineUniformBase(BasePtr, Index, MGT->isIndexScaled(), DAG, DL)) {
12875 SDValue Ops[] = {Chain, BasePtr, Index, Scale, Mask, VL};
12876 return DAG.getGatherVP(
12877 DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
12878 Ops, MGT->getMemOperand(), IndexType);
12879 }
12880
12881 if (refineIndexType(Index, IndexType, N->getValueType(0), DAG)) {
12882 SDValue Ops[] = {Chain, BasePtr, Index, Scale, Mask, VL};
12883 return DAG.getGatherVP(
12884 DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
12885 Ops, MGT->getMemOperand(), IndexType);
12886 }
12887
12888 return SDValue();
12889}
12890
12891SDValue DAGCombiner::visitMGATHER(SDNode *N) {
12892 MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
12893 SDValue Mask = MGT->getMask();
12894 SDValue Chain = MGT->getChain();
12895 SDValue Index = MGT->getIndex();
12896 SDValue Scale = MGT->getScale();
12897 SDValue PassThru = MGT->getPassThru();
12898 SDValue BasePtr = MGT->getBasePtr();
12899 ISD::MemIndexType IndexType = MGT->getIndexType();
12900 SDLoc DL(N);
12901
12902 // Zap gathers with a zero mask.
12904 return CombineTo(N, PassThru, MGT->getChain());
12905
12906 if (refineUniformBase(BasePtr, Index, MGT->isIndexScaled(), DAG, DL)) {
12907 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
12908 return DAG.getMaskedGather(
12909 DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
12910 Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType());
12911 }
12912
12913 if (refineIndexType(Index, IndexType, N->getValueType(0), DAG)) {
12914 SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
12915 return DAG.getMaskedGather(
12916 DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL,
12917 Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType());
12918 }
12919
12920 return SDValue();
12921}
12922
12923SDValue DAGCombiner::visitMLOAD(SDNode *N) {
12924 MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
12925 SDValue Mask = MLD->getMask();
12926
12927 // Zap masked loads with a zero mask.
12929 return CombineTo(N, MLD->getPassThru(), MLD->getChain());
12930
12931 // If this is a masked load with an all ones mask, we can use a unmasked load.
12932 // FIXME: Can we do this for indexed, expanding, or extending loads?
12933 if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) && MLD->isUnindexed() &&
12934 !MLD->isExpandingLoad() && MLD->getExtensionType() == ISD::NON_EXTLOAD) {
12935 SDValue NewLd = DAG.getLoad(
12936 N->getValueType(0), SDLoc(N), MLD->getChain(), MLD->getBasePtr(),
12937 MLD->getPointerInfo(), MLD->getBaseAlign(),
12938 MLD->getMemOperand()->getFlags(), MLD->getAAInfo(), MLD->getRanges());
12939 return CombineTo(N, NewLd, NewLd.getValue(1));
12940 }
12941
12942 // Try transforming N to an indexed load.
12943 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
12944 return SDValue(N, 0);
12945
12946 return SDValue();
12947}
12948
12949SDValue DAGCombiner::visitMHISTOGRAM(SDNode *N) {
12950 MaskedHistogramSDNode *HG = cast<MaskedHistogramSDNode>(N);
12951 SDValue Chain = HG->getChain();
12952 SDValue Inc = HG->getInc();
12953 SDValue Mask = HG->getMask();
12954 SDValue BasePtr = HG->getBasePtr();
12955 SDValue Index = HG->getIndex();
12956 SDLoc DL(HG);
12957
12958 EVT MemVT = HG->getMemoryVT();
12959 EVT DataVT = Index.getValueType();
12960 MachineMemOperand *MMO = HG->getMemOperand();
12961 ISD::MemIndexType IndexType = HG->getIndexType();
12962
12964 return Chain;
12965
12966 if (refineUniformBase(BasePtr, Index, HG->isIndexScaled(), DAG, DL) ||
12967 refineIndexType(Index, IndexType, DataVT, DAG)) {
12968 SDValue Ops[] = {Chain, Inc, Mask, BasePtr, Index,
12969 HG->getScale(), HG->getIntID()};
12970 return DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), MemVT, DL, Ops,
12971 MMO, IndexType);
12972 }
12973
12974 return SDValue();
12975}
12976
12977SDValue DAGCombiner::visitPARTIAL_REDUCE_MLA(SDNode *N) {
12978 if (SDValue Res = foldPartialReduceMLAMulOp(N))
12979 return Res;
12980 if (SDValue Res = foldPartialReduceAdd(N))
12981 return Res;
12982 return SDValue();
12983}
12984
12985// partial_reduce_*mla(acc, mul(ext(a), ext(b)), splat(1))
12986// -> partial_reduce_*mla(acc, a, b)
12987//
12988// partial_reduce_*mla(acc, mul(ext(x), splat(C)), splat(1))
12989// -> partial_reduce_*mla(acc, x, C)
12990SDValue DAGCombiner::foldPartialReduceMLAMulOp(SDNode *N) {
12991 SDLoc DL(N);
12992 auto *Context = DAG.getContext();
12993 SDValue Acc = N->getOperand(0);
12994 SDValue Op1 = N->getOperand(1);
12995 SDValue Op2 = N->getOperand(2);
12996
12997 APInt C;
12998 if (Op1->getOpcode() != ISD::MUL ||
12999 !ISD::isConstantSplatVector(Op2.getNode(), C) || !C.isOne())
13000 return SDValue();
13001
13002 SDValue LHS = Op1->getOperand(0);
13003 SDValue RHS = Op1->getOperand(1);
13004 unsigned LHSOpcode = LHS->getOpcode();
13005 if (!ISD::isExtOpcode(LHSOpcode))
13006 return SDValue();
13007
13008 SDValue LHSExtOp = LHS->getOperand(0);
13009 EVT LHSExtOpVT = LHSExtOp.getValueType();
13010
13011 // partial_reduce_*mla(acc, mul(ext(x), splat(C)), splat(1))
13012 // -> partial_reduce_*mla(acc, x, C)
13013 if (ISD::isConstantSplatVector(RHS.getNode(), C)) {
13014 // TODO: Make use of partial_reduce_sumla here
13015 APInt CTrunc = C.trunc(LHSExtOpVT.getScalarSizeInBits());
13016 unsigned LHSBits = LHS.getValueType().getScalarSizeInBits();
13017 if ((LHSOpcode != ISD::ZERO_EXTEND || CTrunc.zext(LHSBits) != C) &&
13018 (LHSOpcode != ISD::SIGN_EXTEND || CTrunc.sext(LHSBits) != C))
13019 return SDValue();
13020
13021 unsigned NewOpcode = LHSOpcode == ISD::SIGN_EXTEND
13022 ? ISD::PARTIAL_REDUCE_SMLA
13023 : ISD::PARTIAL_REDUCE_UMLA;
13024
13025 // Only perform these combines if the target supports folding
13026 // the extends into the operation.
13028 NewOpcode, TLI.getTypeToTransformTo(*Context, N->getValueType(0)),
13029 TLI.getTypeToTransformTo(*Context, LHSExtOpVT)))
13030 return SDValue();
13031
13032 return DAG.getNode(NewOpcode, DL, N->getValueType(0), Acc, LHSExtOp,
13033 DAG.getConstant(CTrunc, DL, LHSExtOpVT));
13034 }
13035
13036 unsigned RHSOpcode = RHS->getOpcode();
13037 if (!ISD::isExtOpcode(RHSOpcode))
13038 return SDValue();
13039
13040 SDValue RHSExtOp = RHS->getOperand(0);
13041 if (LHSExtOpVT != RHSExtOp.getValueType())
13042 return SDValue();
13043
13044 unsigned NewOpc;
13045 if (LHSOpcode == ISD::SIGN_EXTEND && RHSOpcode == ISD::SIGN_EXTEND)
13046 NewOpc = ISD::PARTIAL_REDUCE_SMLA;
13047 else if (LHSOpcode == ISD::ZERO_EXTEND && RHSOpcode == ISD::ZERO_EXTEND)
13048 NewOpc = ISD::PARTIAL_REDUCE_UMLA;
13049 else if (LHSOpcode == ISD::SIGN_EXTEND && RHSOpcode == ISD::ZERO_EXTEND)
13050 NewOpc = ISD::PARTIAL_REDUCE_SUMLA;
13051 else if (LHSOpcode == ISD::ZERO_EXTEND && RHSOpcode == ISD::SIGN_EXTEND) {
13052 NewOpc = ISD::PARTIAL_REDUCE_SUMLA;
13053 std::swap(LHSExtOp, RHSExtOp);
13054 } else
13055 return SDValue();
13056 // For a 2-stage extend the signedness of both of the extends must match
13057 // If the mul has the same type, there is no outer extend, and thus we
13058 // can simply use the inner extends to pick the result node.
13059 // TODO: extend to handle nonneg zext as sext
13060 EVT AccElemVT = Acc.getValueType().getVectorElementType();
13061 if (Op1.getValueType().getVectorElementType() != AccElemVT &&
13062 NewOpc != N->getOpcode())
13063 return SDValue();
13064
13065 // Only perform these combines if the target supports folding
13066 // the extends into the operation.
13068 NewOpc, TLI.getTypeToTransformTo(*Context, N->getValueType(0)),
13069 TLI.getTypeToTransformTo(*Context, LHSExtOpVT)))
13070 return SDValue();
13071
13072 return DAG.getNode(NewOpc, DL, N->getValueType(0), Acc, LHSExtOp, RHSExtOp);
13073}
13074
13075// partial.reduce.umla(acc, zext(op), splat(1))
13076// -> partial.reduce.umla(acc, op, splat(trunc(1)))
13077// partial.reduce.smla(acc, sext(op), splat(1))
13078// -> partial.reduce.smla(acc, op, splat(trunc(1)))
13079// partial.reduce.sumla(acc, sext(op), splat(1))
13080// -> partial.reduce.smla(acc, op, splat(trunc(1)))
13081SDValue DAGCombiner::foldPartialReduceAdd(SDNode *N) {
13082 SDLoc DL(N);
13083 SDValue Acc = N->getOperand(0);
13084 SDValue Op1 = N->getOperand(1);
13085 SDValue Op2 = N->getOperand(2);
13086
13087 APInt ConstantOne;
13088 if (!ISD::isConstantSplatVector(Op2.getNode(), ConstantOne) ||
13089 !ConstantOne.isOne())
13090 return SDValue();
13091
13092 unsigned Op1Opcode = Op1.getOpcode();
13093 if (!ISD::isExtOpcode(Op1Opcode))
13094 return SDValue();
13095
13096 bool Op1IsSigned = Op1Opcode == ISD::SIGN_EXTEND;
13097 bool NodeIsSigned = N->getOpcode() != ISD::PARTIAL_REDUCE_UMLA;
13098 EVT AccElemVT = Acc.getValueType().getVectorElementType();
13099 if (Op1IsSigned != NodeIsSigned &&
13100 Op1.getValueType().getVectorElementType() != AccElemVT)
13101 return SDValue();
13102
13103 unsigned NewOpcode =
13104 Op1IsSigned ? ISD::PARTIAL_REDUCE_SMLA : ISD::PARTIAL_REDUCE_UMLA;
13105
13106 SDValue UnextOp1 = Op1.getOperand(0);
13107 EVT UnextOp1VT = UnextOp1.getValueType();
13108 auto *Context = DAG.getContext();
13110 NewOpcode, TLI.getTypeToTransformTo(*Context, N->getValueType(0)),
13111 TLI.getTypeToTransformTo(*Context, UnextOp1VT)))
13112 return SDValue();
13113
13114 return DAG.getNode(NewOpcode, DL, N->getValueType(0), Acc, UnextOp1,
13115 DAG.getConstant(1, DL, UnextOp1VT));
13116}
13117
13118SDValue DAGCombiner::visitVP_STRIDED_LOAD(SDNode *N) {
13119 auto *SLD = cast<VPStridedLoadSDNode>(N);
13120 EVT EltVT = SLD->getValueType(0).getVectorElementType();
13121 // Combine strided loads with unit-stride to a regular VP load.
13122 if (auto *CStride = dyn_cast<ConstantSDNode>(SLD->getStride());
13123 CStride && CStride->getZExtValue() == EltVT.getStoreSize()) {
13124 SDValue NewLd = DAG.getLoadVP(
13125 SLD->getAddressingMode(), SLD->getExtensionType(), SLD->getValueType(0),
13126 SDLoc(N), SLD->getChain(), SLD->getBasePtr(), SLD->getOffset(),
13127 SLD->getMask(), SLD->getVectorLength(), SLD->getMemoryVT(),
13128 SLD->getMemOperand(), SLD->isExpandingLoad());
13129 return CombineTo(N, NewLd, NewLd.getValue(1));
13130 }
13131 return SDValue();
13132}
13133
13134/// A vector select of 2 constant vectors can be simplified to math/logic to
13135/// avoid a variable select instruction and possibly avoid constant loads.
13136SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
13137 SDValue Cond = N->getOperand(0);
13138 SDValue N1 = N->getOperand(1);
13139 SDValue N2 = N->getOperand(2);
13140 EVT VT = N->getValueType(0);
13141 if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
13145 return SDValue();
13146
13147 // Check if we can use the condition value to increment/decrement a single
13148 // constant value. This simplifies a select to an add and removes a constant
13149 // load/materialization from the general case.
13150 bool AllAddOne = true;
13151 bool AllSubOne = true;
13152 unsigned Elts = VT.getVectorNumElements();
13153 for (unsigned i = 0; i != Elts; ++i) {
13154 SDValue N1Elt = N1.getOperand(i);
13155 SDValue N2Elt = N2.getOperand(i);
13156 if (N1Elt.isUndef())
13157 continue;
13158 // N2 should not contain undef values since it will be reused in the fold.
13159 if (N2Elt.isUndef() || N1Elt.getValueType() != N2Elt.getValueType()) {
13160 AllAddOne = false;
13161 AllSubOne = false;
13162 break;
13163 }
13164
13165 const APInt &C1 = N1Elt->getAsAPIntVal();
13166 const APInt &C2 = N2Elt->getAsAPIntVal();
13167 if (C1 != C2 + 1)
13168 AllAddOne = false;
13169 if (C1 != C2 - 1)
13170 AllSubOne = false;
13171 }
13172
13173 // Further simplifications for the extra-special cases where the constants are
13174 // all 0 or all -1 should be implemented as folds of these patterns.
13175 SDLoc DL(N);
13176 if (AllAddOne || AllSubOne) {
13177 // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
13178 // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
13179 auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
13180 SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
13181 return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
13182 }
13183
13184 // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
13185 APInt Pow2C;
13186 if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() &&
13187 isNullOrNullSplat(N2)) {
13188 SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT);
13189 SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT);
13190 return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC);
13191 }
13192
13194 return V;
13195
13196 // The general case for select-of-constants:
13197 // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
13198 // ...but that only makes sense if a vselect is slower than 2 logic ops, so
13199 // leave that to a machine-specific pass.
13200 return SDValue();
13201}
13202
13203SDValue DAGCombiner::visitVP_SELECT(SDNode *N) {
13204 SDValue N0 = N->getOperand(0);
13205 SDValue N1 = N->getOperand(1);
13206 SDValue N2 = N->getOperand(2);
13207 SDLoc DL(N);
13208
13209 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
13210 return V;
13211
13213 return V;
13214
13215 return SDValue();
13216}
13217
13219 SDValue FVal,
13220 const TargetLowering &TLI,
13221 SelectionDAG &DAG,
13222 const SDLoc &DL) {
13223 EVT VT = TVal.getValueType();
13224 if (!TLI.isTypeLegal(VT))
13225 return SDValue();
13226
13227 EVT CondVT = Cond.getValueType();
13228 assert(CondVT.isVector() && "Vector select expects a vector selector!");
13229
13230 bool IsTAllZero = ISD::isConstantSplatVectorAllZeros(TVal.getNode());
13231 bool IsTAllOne = ISD::isConstantSplatVectorAllOnes(TVal.getNode());
13232 bool IsFAllZero = ISD::isConstantSplatVectorAllZeros(FVal.getNode());
13233 bool IsFAllOne = ISD::isConstantSplatVectorAllOnes(FVal.getNode());
13234
13235 // no vselect(cond, 0/-1, X) or vselect(cond, X, 0/-1), return
13236 if (!IsTAllZero && !IsTAllOne && !IsFAllZero && !IsFAllOne)
13237 return SDValue();
13238
13239 // select Cond, 0, 0 → 0
13240 if (IsTAllZero && IsFAllZero) {
13241 return VT.isFloatingPoint() ? DAG.getConstantFP(0.0, DL, VT)
13242 : DAG.getConstant(0, DL, VT);
13243 }
13244
13245 // check select(setgt lhs, -1), 1, -1 --> or (sra lhs, bitwidth - 1), 1
13246 APInt TValAPInt;
13247 if (Cond.getOpcode() == ISD::SETCC &&
13248 Cond.getOperand(2) == DAG.getCondCode(ISD::SETGT) &&
13249 Cond.getOperand(0).getValueType() == VT && VT.isSimple() &&
13250 ISD::isConstantSplatVector(TVal.getNode(), TValAPInt) &&
13251 TValAPInt.isOne() &&
13252 ISD::isConstantSplatVectorAllOnes(Cond.getOperand(1).getNode()) &&
13254 return SDValue();
13255 }
13256
13257 // To use the condition operand as a bitwise mask, it must have elements that
13258 // are the same size as the select elements. i.e, the condition operand must
13259 // have already been promoted from the IR select condition type <N x i1>.
13260 // Don't check if the types themselves are equal because that excludes
13261 // vector floating-point selects.
13262 if (CondVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
13263 return SDValue();
13264
13265 // Cond value must be 'sign splat' to be converted to a logical op.
13266 if (DAG.ComputeNumSignBits(Cond) != CondVT.getScalarSizeInBits())
13267 return SDValue();
13268
13269 // Try inverting Cond and swapping T/F if it gives all-ones/all-zeros form
13270 if (!IsTAllOne && !IsFAllZero && Cond.hasOneUse() &&
13271 Cond.getOpcode() == ISD::SETCC &&
13272 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) ==
13273 CondVT) {
13274 if (IsTAllZero || IsFAllOne) {
13275 SDValue CC = Cond.getOperand(2);
13277 cast<CondCodeSDNode>(CC)->get(), Cond.getOperand(0).getValueType());
13278 Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1),
13279 InverseCC);
13280 std::swap(TVal, FVal);
13281 std::swap(IsTAllOne, IsFAllOne);
13282 std::swap(IsTAllZero, IsFAllZero);
13283 }
13284 }
13285
13287 "Select condition no longer all-sign bits");
13288
13289 // select Cond, -1, 0 → bitcast Cond
13290 if (IsTAllOne && IsFAllZero)
13291 return DAG.getBitcast(VT, Cond);
13292
13293 // select Cond, -1, x → or Cond, x
13294 if (IsTAllOne) {
13295 SDValue X = DAG.getBitcast(CondVT, DAG.getFreeze(FVal));
13296 SDValue Or = DAG.getNode(ISD::OR, DL, CondVT, Cond, X);
13297 return DAG.getBitcast(VT, Or);
13298 }
13299
13300 // select Cond, x, 0 → and Cond, x
13301 if (IsFAllZero) {
13302 SDValue X = DAG.getBitcast(CondVT, DAG.getFreeze(TVal));
13303 SDValue And = DAG.getNode(ISD::AND, DL, CondVT, Cond, X);
13304 return DAG.getBitcast(VT, And);
13305 }
13306
13307 // select Cond, 0, x -> and not(Cond), x
13308 if (IsTAllZero &&
13310 SDValue X = DAG.getBitcast(CondVT, DAG.getFreeze(FVal));
13311 SDValue And =
13312 DAG.getNode(ISD::AND, DL, CondVT, DAG.getNOT(DL, Cond, CondVT), X);
13313 return DAG.getBitcast(VT, And);
13314 }
13315
13316 return SDValue();
13317}
13318
13319SDValue DAGCombiner::visitVSELECT(SDNode *N) {
13320 SDValue N0 = N->getOperand(0);
13321 SDValue N1 = N->getOperand(1);
13322 SDValue N2 = N->getOperand(2);
13323 EVT VT = N->getValueType(0);
13324 SDLoc DL(N);
13325
13326 if (SDValue V = DAG.simplifySelect(N0, N1, N2))
13327 return V;
13328
13330 return V;
13331
13332 // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
13333 if (!TLI.isTargetCanonicalSelect(N))
13334 if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
13335 return DAG.getSelect(DL, VT, F, N2, N1);
13336
13337 // select (sext m), (add X, C), X --> (add X, (and C, (sext m))))
13338 if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N2 && N1->hasOneUse() &&
13341 TLI.getBooleanContents(N0.getValueType()) ==
13343 return DAG.getNode(
13344 ISD::ADD, DL, N1.getValueType(), N2,
13345 DAG.getNode(ISD::AND, DL, N0.getValueType(), N1.getOperand(1), N0));
13346 }
13347
13348 // Canonicalize integer abs.
13349 // vselect (setg[te] X, 0), X, -X ->
13350 // vselect (setgt X, -1), X, -X ->
13351 // vselect (setl[te] X, 0), -X, X ->
13352 // Y = sra (X, size(X)-1); xor (add (X, Y), Y)
13353 if (N0.getOpcode() == ISD::SETCC) {
13354 SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
13356 bool isAbs = false;
13357 bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
13358
13359 if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
13360 (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
13361 N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
13363 else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
13364 N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
13366
13367 if (isAbs) {
13369 return DAG.getNode(ISD::ABS, DL, VT, LHS);
13370
13371 SDValue Shift = DAG.getNode(
13372 ISD::SRA, DL, VT, LHS,
13373 DAG.getShiftAmountConstant(VT.getScalarSizeInBits() - 1, VT, DL));
13374 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
13375 AddToWorklist(Shift.getNode());
13376 AddToWorklist(Add.getNode());
13377 return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
13378 }
13379
13380 // vselect x, y (fcmp lt x, y) -> fminnum x, y
13381 // vselect x, y (fcmp gt x, y) -> fmaxnum x, y
13382 //
13383 // This is OK if we don't care about what happens if either operand is a
13384 // NaN.
13385 //
13386 if (N0.hasOneUse() &&
13387 isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, N->getFlags(), TLI)) {
13388 if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC))
13389 return FMinMax;
13390 }
13391
13392 if (SDValue S = PerformMinMaxFpToSatCombine(LHS, RHS, N1, N2, CC, DAG))
13393 return S;
13394 if (SDValue S = PerformUMinFpToSatCombine(LHS, RHS, N1, N2, CC, DAG))
13395 return S;
13396
13397 // If this select has a condition (setcc) with narrower operands than the
13398 // select, try to widen the compare to match the select width.
13399 // TODO: This should be extended to handle any constant.
13400 // TODO: This could be extended to handle non-loading patterns, but that
13401 // requires thorough testing to avoid regressions.
13402 if (isNullOrNullSplat(RHS)) {
13403 EVT NarrowVT = LHS.getValueType();
13405 EVT SetCCVT = getSetCCResultType(LHS.getValueType());
13406 unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
13407 unsigned WideWidth = WideVT.getScalarSizeInBits();
13408 bool IsSigned = isSignedIntSetCC(CC);
13409 auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
13410 if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
13411 SetCCWidth != 1 && SetCCWidth < WideWidth &&
13412 TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
13413 TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
13414 // Both compare operands can be widened for free. The LHS can use an
13415 // extended load, and the RHS is a constant:
13416 // vselect (ext (setcc load(X), C)), N1, N2 -->
13417 // vselect (setcc extload(X), C'), N1, N2
13418 auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
13419 SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
13420 SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
13421 EVT WideSetCCVT = getSetCCResultType(WideVT);
13422 SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
13423 return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
13424 }
13425 }
13426
13427 if (SDValue ABD = foldSelectToABD(LHS, RHS, N1, N2, CC, DL))
13428 return ABD;
13429
13430 // Match VSELECTs into add with unsigned saturation.
13431 if (hasOperation(ISD::UADDSAT, VT)) {
13432 // Check if one of the arms of the VSELECT is vector with all bits set.
13433 // If it's on the left side invert the predicate to simplify logic below.
13434 SDValue Other;
13435 ISD::CondCode SatCC = CC;
13437 Other = N2;
13438 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
13439 } else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) {
13440 Other = N1;
13441 }
13442
13443 if (Other && Other.getOpcode() == ISD::ADD) {
13444 SDValue CondLHS = LHS, CondRHS = RHS;
13445 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
13446
13447 // Canonicalize condition operands.
13448 if (SatCC == ISD::SETUGE) {
13449 std::swap(CondLHS, CondRHS);
13450 SatCC = ISD::SETULE;
13451 }
13452
13453 // We can test against either of the addition operands.
13454 // x <= x+y ? x+y : ~0 --> uaddsat x, y
13455 // x+y >= x ? x+y : ~0 --> uaddsat x, y
13456 if (SatCC == ISD::SETULE && Other == CondRHS &&
13457 (OpLHS == CondLHS || OpRHS == CondLHS))
13458 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
13459
13460 if (OpRHS.getOpcode() == CondRHS.getOpcode() &&
13461 (OpRHS.getOpcode() == ISD::BUILD_VECTOR ||
13462 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) &&
13463 CondLHS == OpLHS) {
13464 // If the RHS is a constant we have to reverse the const
13465 // canonicalization.
13466 // x >= ~C ? x+C : ~0 --> uaddsat x, C
13467 auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
13468 return Cond->getAPIntValue() == ~Op->getAPIntValue();
13469 };
13470 if (SatCC == ISD::SETULE &&
13471 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT))
13472 return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
13473 }
13474 }
13475 }
13476
13477 // Match VSELECTs into sub with unsigned saturation.
13478 if (hasOperation(ISD::USUBSAT, VT)) {
13479 // Check if one of the arms of the VSELECT is a zero vector. If it's on
13480 // the left side invert the predicate to simplify logic below.
13481 SDValue Other;
13482 ISD::CondCode SatCC = CC;
13484 Other = N2;
13485 SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
13487 Other = N1;
13488 }
13489
13490 // zext(x) >= y ? trunc(zext(x) - y) : 0
13491 // --> usubsat(trunc(zext(x)),trunc(umin(y,SatLimit)))
13492 // zext(x) > y ? trunc(zext(x) - y) : 0
13493 // --> usubsat(trunc(zext(x)),trunc(umin(y,SatLimit)))
13494 if (Other && Other.getOpcode() == ISD::TRUNCATE &&
13495 Other.getOperand(0).getOpcode() == ISD::SUB &&
13496 (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT)) {
13497 SDValue OpLHS = Other.getOperand(0).getOperand(0);
13498 SDValue OpRHS = Other.getOperand(0).getOperand(1);
13499 if (LHS == OpLHS && RHS == OpRHS && LHS.getOpcode() == ISD::ZERO_EXTEND)
13500 if (SDValue R = getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS,
13501 DAG, DL))
13502 return R;
13503 }
13504
13505 if (Other && Other.getNumOperands() == 2) {
13506 SDValue CondRHS = RHS;
13507 SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
13508
13509 if (OpLHS == LHS) {
13510 // Look for a general sub with unsigned saturation first.
13511 // x >= y ? x-y : 0 --> usubsat x, y
13512 // x > y ? x-y : 0 --> usubsat x, y
13513 if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) &&
13514 Other.getOpcode() == ISD::SUB && OpRHS == CondRHS)
13515 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
13516
13517 if (OpRHS.getOpcode() == ISD::BUILD_VECTOR ||
13518 OpRHS.getOpcode() == ISD::SPLAT_VECTOR) {
13519 if (CondRHS.getOpcode() == ISD::BUILD_VECTOR ||
13520 CondRHS.getOpcode() == ISD::SPLAT_VECTOR) {
13521 // If the RHS is a constant we have to reverse the const
13522 // canonicalization.
13523 // x > C-1 ? x+-C : 0 --> usubsat x, C
13524 auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
13525 return (!Op && !Cond) ||
13526 (Op && Cond &&
13527 Cond->getAPIntValue() == (-Op->getAPIntValue() - 1));
13528 };
13529 if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD &&
13530 ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT,
13531 /*AllowUndefs*/ true)) {
13532 OpRHS = DAG.getNegative(OpRHS, DL, VT);
13533 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
13534 }
13535
13536 // Another special case: If C was a sign bit, the sub has been
13537 // canonicalized into a xor.
13538 // FIXME: Would it be better to use computeKnownBits to
13539 // determine whether it's safe to decanonicalize the xor?
13540 // x s< 0 ? x^C : 0 --> usubsat x, C
13541 APInt SplatValue;
13542 if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR &&
13543 ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) &&
13545 SplatValue.isSignMask()) {
13546 // Note that we have to rebuild the RHS constant here to
13547 // ensure we don't rely on particular values of undef lanes.
13548 OpRHS = DAG.getConstant(SplatValue, DL, VT);
13549 return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
13550 }
13551 }
13552 }
13553 }
13554 }
13555 }
13556
13557 // (vselect (ugt x, C), (add x, ~C), x) -> (umin (add x, ~C), x)
13558 // (vselect (ult x, C), x, (add x, -C)) -> (umin x, (add x, -C))
13559 if (SDValue UMin = foldSelectToUMin(LHS, RHS, N1, N2, CC, DL))
13560 return UMin;
13561 }
13562
13563 if (SimplifySelectOps(N, N1, N2))
13564 return SDValue(N, 0); // Don't revisit N.
13565
13566 // Fold (vselect all_ones, N1, N2) -> N1
13568 return N1;
13569 // Fold (vselect all_zeros, N1, N2) -> N2
13571 return N2;
13572
13573 // The ConvertSelectToConcatVector function is assuming both the above
13574 // checks for (vselect (build_vector all{ones,zeros) ...) have been made
13575 // and addressed.
13576 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
13579 if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
13580 return CV;
13581 }
13582
13583 if (SDValue V = foldVSelectOfConstants(N))
13584 return V;
13585
13586 if (hasOperation(ISD::SRA, VT))
13588 return V;
13589
13591 return SDValue(N, 0);
13592
13593 if (SDValue V = combineVSelectWithAllOnesOrZeros(N0, N1, N2, TLI, DAG, DL))
13594 return V;
13595
13596 return SDValue();
13597}
13598
13599SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
13600 SDValue N0 = N->getOperand(0);
13601 SDValue N1 = N->getOperand(1);
13602 SDValue N2 = N->getOperand(2);
13603 SDValue N3 = N->getOperand(3);
13604 SDValue N4 = N->getOperand(4);
13605 ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
13606 SDLoc DL(N);
13607
13608 // fold select_cc lhs, rhs, x, x, cc -> x
13609 if (N2 == N3)
13610 return N2;
13611
13612 // select_cc bool, 0, x, y, seteq -> select bool, y, x
13613 if (CC == ISD::SETEQ && !LegalTypes && N0.getValueType() == MVT::i1 &&
13614 isNullConstant(N1))
13615 return DAG.getSelect(DL, N2.getValueType(), N0, N3, N2);
13616
13617 // Determine if the condition we're dealing with is constant
13618 if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
13619 CC, DL, false)) {
13620 AddToWorklist(SCC.getNode());
13621
13622 // cond always true -> true val
13623 // cond always false -> false val
13624 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode()))
13625 return SCCC->isZero() ? N3 : N2;
13626
13627 // When the condition is UNDEF, just return the first operand. This is
13628 // coherent the DAG creation, no setcc node is created in this case
13629 if (SCC->isUndef())
13630 return N2;
13631
13632 // Fold to a simpler select_cc
13633 if (SCC.getOpcode() == ISD::SETCC) {
13634 return DAG.getNode(ISD::SELECT_CC, DL, N2.getValueType(),
13635 SCC.getOperand(0), SCC.getOperand(1), N2, N3,
13636 SCC.getOperand(2), SCC->getFlags());
13637 }
13638 }
13639
13640 // If we can fold this based on the true/false value, do so.
13641 if (SimplifySelectOps(N, N2, N3))
13642 return SDValue(N, 0); // Don't revisit N.
13643
13644 // fold select_cc into other things, such as min/max/abs
13645 return SimplifySelectCC(DL, N0, N1, N2, N3, CC);
13646}
13647
13648SDValue DAGCombiner::visitSETCC(SDNode *N) {
13649 // setcc is very commonly used as an argument to brcond. This pattern
13650 // also lend itself to numerous combines and, as a result, it is desired
13651 // we keep the argument to a brcond as a setcc as much as possible.
13652 bool PreferSetCC =
13653 N->hasOneUse() && N->user_begin()->getOpcode() == ISD::BRCOND;
13654
13655 ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
13656 EVT VT = N->getValueType(0);
13657 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
13658 SDLoc DL(N);
13659
13660 if (SDValue Combined = SimplifySetCC(VT, N0, N1, Cond, DL, !PreferSetCC)) {
13661 // If we prefer to have a setcc, and we don't, we'll try our best to
13662 // recreate one using rebuildSetCC.
13663 if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
13664 SDValue NewSetCC = rebuildSetCC(Combined);
13665
13666 // We don't have anything interesting to combine to.
13667 if (NewSetCC.getNode() == N)
13668 return SDValue();
13669
13670 if (NewSetCC)
13671 return NewSetCC;
13672 }
13673 return Combined;
13674 }
13675
13676 // Optimize
13677 // 1) (icmp eq/ne (and X, C0), (shift X, C1))
13678 // or
13679 // 2) (icmp eq/ne X, (rotate X, C1))
13680 // If C0 is a mask or shifted mask and the shift amt (C1) isolates the
13681 // remaining bits (i.e something like `(x64 & UINT32_MAX) == (x64 >> 32)`)
13682 // Then:
13683 // If C1 is a power of 2, then the rotate and shift+and versions are
13684 // equivilent, so we can interchange them depending on target preference.
13685 // Otherwise, if we have the shift+and version we can interchange srl/shl
13686 // which inturn affects the constant C0. We can use this to get better
13687 // constants again determined by target preference.
13688 if (Cond == ISD::SETNE || Cond == ISD::SETEQ) {
13689 auto IsAndWithShift = [](SDValue A, SDValue B) {
13690 return A.getOpcode() == ISD::AND &&
13691 (B.getOpcode() == ISD::SRL || B.getOpcode() == ISD::SHL) &&
13692 A.getOperand(0) == B.getOperand(0);
13693 };
13694 auto IsRotateWithOp = [](SDValue A, SDValue B) {
13695 return (B.getOpcode() == ISD::ROTL || B.getOpcode() == ISD::ROTR) &&
13696 B.getOperand(0) == A;
13697 };
13698 SDValue AndOrOp = SDValue(), ShiftOrRotate = SDValue();
13699 bool IsRotate = false;
13700
13701 // Find either shift+and or rotate pattern.
13702 if (IsAndWithShift(N0, N1)) {
13703 AndOrOp = N0;
13704 ShiftOrRotate = N1;
13705 } else if (IsAndWithShift(N1, N0)) {
13706 AndOrOp = N1;
13707 ShiftOrRotate = N0;
13708 } else if (IsRotateWithOp(N0, N1)) {
13709 IsRotate = true;
13710 AndOrOp = N0;
13711 ShiftOrRotate = N1;
13712 } else if (IsRotateWithOp(N1, N0)) {
13713 IsRotate = true;
13714 AndOrOp = N1;
13715 ShiftOrRotate = N0;
13716 }
13717
13718 if (AndOrOp && ShiftOrRotate && ShiftOrRotate.hasOneUse() &&
13719 (IsRotate || AndOrOp.hasOneUse())) {
13720 EVT OpVT = N0.getValueType();
13721 // Get constant shift/rotate amount and possibly mask (if its shift+and
13722 // variant).
13723 auto GetAPIntValue = [](SDValue Op) -> std::optional<APInt> {
13724 ConstantSDNode *CNode = isConstOrConstSplat(Op, /*AllowUndefs*/ false,
13725 /*AllowTrunc*/ false);
13726 if (CNode == nullptr)
13727 return std::nullopt;
13728 return CNode->getAPIntValue();
13729 };
13730 std::optional<APInt> AndCMask =
13731 IsRotate ? std::nullopt : GetAPIntValue(AndOrOp.getOperand(1));
13732 std::optional<APInt> ShiftCAmt =
13733 GetAPIntValue(ShiftOrRotate.getOperand(1));
13734 unsigned NumBits = OpVT.getScalarSizeInBits();
13735
13736 // We found constants.
13737 if (ShiftCAmt && (IsRotate || AndCMask) && ShiftCAmt->ult(NumBits)) {
13738 unsigned ShiftOpc = ShiftOrRotate.getOpcode();
13739 // Check that the constants meet the constraints.
13740 bool CanTransform = IsRotate;
13741 if (!CanTransform) {
13742 // Check that mask and shift compliment eachother
13743 CanTransform = *ShiftCAmt == (~*AndCMask).popcount();
13744 // Check that we are comparing all bits
13745 CanTransform &= (*ShiftCAmt + AndCMask->popcount()) == NumBits;
13746 // Check that the and mask is correct for the shift
13747 CanTransform &=
13748 ShiftOpc == ISD::SHL ? (~*AndCMask).isMask() : AndCMask->isMask();
13749 }
13750
13751 // See if target prefers another shift/rotate opcode.
13752 unsigned NewShiftOpc = TLI.preferedOpcodeForCmpEqPiecesOfOperand(
13753 OpVT, ShiftOpc, ShiftCAmt->isPowerOf2(), *ShiftCAmt, AndCMask);
13754 // Transform is valid and we have a new preference.
13755 if (CanTransform && NewShiftOpc != ShiftOpc) {
13756 SDValue NewShiftOrRotate =
13757 DAG.getNode(NewShiftOpc, DL, OpVT, ShiftOrRotate.getOperand(0),
13758 ShiftOrRotate.getOperand(1));
13759 SDValue NewAndOrOp = SDValue();
13760
13761 if (NewShiftOpc == ISD::SHL || NewShiftOpc == ISD::SRL) {
13762 APInt NewMask =
13763 NewShiftOpc == ISD::SHL
13764 ? APInt::getHighBitsSet(NumBits,
13765 NumBits - ShiftCAmt->getZExtValue())
13766 : APInt::getLowBitsSet(NumBits,
13767 NumBits - ShiftCAmt->getZExtValue());
13768 NewAndOrOp =
13769 DAG.getNode(ISD::AND, DL, OpVT, ShiftOrRotate.getOperand(0),
13770 DAG.getConstant(NewMask, DL, OpVT));
13771 } else {
13772 NewAndOrOp = ShiftOrRotate.getOperand(0);
13773 }
13774
13775 return DAG.getSetCC(DL, VT, NewAndOrOp, NewShiftOrRotate, Cond);
13776 }
13777 }
13778 }
13779 }
13780 return SDValue();
13781}
13782
13783SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
13784 SDValue LHS = N->getOperand(0);
13785 SDValue RHS = N->getOperand(1);
13786 SDValue Carry = N->getOperand(2);
13787 SDValue Cond = N->getOperand(3);
13788
13789 // If Carry is false, fold to a regular SETCC.
13790 if (isNullConstant(Carry))
13791 return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
13792
13793 return SDValue();
13794}
13795
13796/// Check if N satisfies:
13797/// N is used once.
13798/// N is a Load.
13799/// The load is compatible with ExtOpcode. It means
13800/// If load has explicit zero/sign extension, ExpOpcode must have the same
13801/// extension.
13802/// Otherwise returns true.
13803static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) {
13804 if (!N.hasOneUse())
13805 return false;
13806
13807 if (!isa<LoadSDNode>(N))
13808 return false;
13809
13810 LoadSDNode *Load = cast<LoadSDNode>(N);
13811 ISD::LoadExtType LoadExt = Load->getExtensionType();
13812 if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD)
13813 return true;
13814
13815 // Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same
13816 // extension.
13817 if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) ||
13818 (LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND))
13819 return false;
13820
13821 return true;
13822}
13823
13824/// Fold
13825/// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y)
13826/// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y)
13827/// (aext (select c, load x, load y)) -> (select c, extload x, extload y)
13828/// This function is called by the DAGCombiner when visiting sext/zext/aext
13829/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
13831 SelectionDAG &DAG, const SDLoc &DL,
13832 CombineLevel Level) {
13833 unsigned Opcode = N->getOpcode();
13834 SDValue N0 = N->getOperand(0);
13835 EVT VT = N->getValueType(0);
13836 assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
13837 Opcode == ISD::ANY_EXTEND) &&
13838 "Expected EXTEND dag node in input!");
13839
13840 if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) ||
13841 !N0.hasOneUse())
13842 return SDValue();
13843
13844 SDValue Op1 = N0->getOperand(1);
13845 SDValue Op2 = N0->getOperand(2);
13846 if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode))
13847 return SDValue();
13848
13849 auto ExtLoadOpcode = ISD::EXTLOAD;
13850 if (Opcode == ISD::SIGN_EXTEND)
13851 ExtLoadOpcode = ISD::SEXTLOAD;
13852 else if (Opcode == ISD::ZERO_EXTEND)
13853 ExtLoadOpcode = ISD::ZEXTLOAD;
13854
13855 // Illegal VSELECT may ISel fail if happen after legalization (DAG
13856 // Combine2), so we should conservatively check the OperationAction.
13857 LoadSDNode *Load1 = cast<LoadSDNode>(Op1);
13858 LoadSDNode *Load2 = cast<LoadSDNode>(Op2);
13859 if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) ||
13860 !TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT()) ||
13861 (N0->getOpcode() == ISD::VSELECT && Level >= AfterLegalizeTypes &&
13863 return SDValue();
13864
13865 SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1);
13866 SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2);
13867 return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2);
13868}
13869
13870/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
13871/// a build_vector of constants.
13872/// This function is called by the DAGCombiner when visiting sext/zext/aext
13873/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
13874/// Vector extends are not folded if operations are legal; this is to
13875/// avoid introducing illegal build_vector dag nodes.
13877 const TargetLowering &TLI,
13878 SelectionDAG &DAG, bool LegalTypes) {
13879 unsigned Opcode = N->getOpcode();
13880 SDValue N0 = N->getOperand(0);
13881 EVT VT = N->getValueType(0);
13882
13883 assert((ISD::isExtOpcode(Opcode) || ISD::isExtVecInRegOpcode(Opcode)) &&
13884 "Expected EXTEND dag node in input!");
13885
13886 // fold (sext c1) -> c1
13887 // fold (zext c1) -> c1
13888 // fold (aext c1) -> c1
13889 if (isa<ConstantSDNode>(N0))
13890 return DAG.getNode(Opcode, DL, VT, N0);
13891
13892 // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
13893 // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
13894 // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
13895 if (N0->getOpcode() == ISD::SELECT) {
13896 SDValue Op1 = N0->getOperand(1);
13897 SDValue Op2 = N0->getOperand(2);
13898 if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
13899 (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
13900 // For any_extend, choose sign extension of the constants to allow a
13901 // possible further transform to sign_extend_inreg.i.e.
13902 //
13903 // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
13904 // t2: i64 = any_extend t1
13905 // -->
13906 // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
13907 // -->
13908 // t4: i64 = sign_extend_inreg t3
13909 unsigned FoldOpc = Opcode;
13910 if (FoldOpc == ISD::ANY_EXTEND)
13911 FoldOpc = ISD::SIGN_EXTEND;
13912 return DAG.getSelect(DL, VT, N0->getOperand(0),
13913 DAG.getNode(FoldOpc, DL, VT, Op1),
13914 DAG.getNode(FoldOpc, DL, VT, Op2));
13915 }
13916 }
13917
13918 // fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
13919 // fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
13920 // fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
13921 EVT SVT = VT.getScalarType();
13922 if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
13924 return SDValue();
13925
13926 // We can fold this node into a build_vector.
13927 unsigned VTBits = SVT.getSizeInBits();
13928 unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
13930 unsigned NumElts = VT.getVectorNumElements();
13931
13932 for (unsigned i = 0; i != NumElts; ++i) {
13933 SDValue Op = N0.getOperand(i);
13934 if (Op.isUndef()) {
13935 if (Opcode == ISD::ANY_EXTEND || Opcode == ISD::ANY_EXTEND_VECTOR_INREG)
13936 Elts.push_back(DAG.getUNDEF(SVT));
13937 else
13938 Elts.push_back(DAG.getConstant(0, DL, SVT));
13939 continue;
13940 }
13941
13942 SDLoc DL(Op);
13943 // Get the constant value and if needed trunc it to the size of the type.
13944 // Nodes like build_vector might have constants wider than the scalar type.
13945 APInt C = Op->getAsAPIntVal().zextOrTrunc(EVTBits);
13946 if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
13947 Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
13948 else
13949 Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
13950 }
13951
13952 return DAG.getBuildVector(VT, DL, Elts);
13953}
13954
13955// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
13956// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
13957// transformation. Returns true if extension are possible and the above
13958// mentioned transformation is profitable.
13960 unsigned ExtOpc,
13961 SmallVectorImpl<SDNode *> &ExtendNodes,
13962 const TargetLowering &TLI) {
13963 bool HasCopyToRegUses = false;
13964 bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
13965 for (SDUse &Use : N0->uses()) {
13966 SDNode *User = Use.getUser();
13967 if (User == N)
13968 continue;
13969 if (Use.getResNo() != N0.getResNo())
13970 continue;
13971 // FIXME: Only extend SETCC N, N and SETCC N, c for now.
13972 if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
13974 if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
13975 // Sign bits will be lost after a zext.
13976 return false;
13977 bool Add = false;
13978 for (unsigned i = 0; i != 2; ++i) {
13979 SDValue UseOp = User->getOperand(i);
13980 if (UseOp == N0)
13981 continue;
13982 if (!isa<ConstantSDNode>(UseOp))
13983 return false;
13984 Add = true;
13985 }
13986 if (Add)
13987 ExtendNodes.push_back(User);
13988 continue;
13989 }
13990 // If truncates aren't free and there are users we can't
13991 // extend, it isn't worthwhile.
13992 if (!isTruncFree)
13993 return false;
13994 // Remember if this value is live-out.
13995 if (User->getOpcode() == ISD::CopyToReg)
13996 HasCopyToRegUses = true;
13997 }
13998
13999 if (HasCopyToRegUses) {
14000 bool BothLiveOut = false;
14001 for (SDUse &Use : N->uses()) {
14002 if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
14003 BothLiveOut = true;
14004 break;
14005 }
14006 }
14007 if (BothLiveOut)
14008 // Both unextended and extended values are live out. There had better be
14009 // a good reason for the transformation.
14010 return !ExtendNodes.empty();
14011 }
14012 return true;
14013}
14014
14015void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
14016 SDValue OrigLoad, SDValue ExtLoad,
14017 ISD::NodeType ExtType) {
14018 // Extend SetCC uses if necessary.
14019 SDLoc DL(ExtLoad);
14020 for (SDNode *SetCC : SetCCs) {
14022
14023 for (unsigned j = 0; j != 2; ++j) {
14024 SDValue SOp = SetCC->getOperand(j);
14025 if (SOp == OrigLoad)
14026 Ops.push_back(ExtLoad);
14027 else
14028 Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
14029 }
14030
14031 Ops.push_back(SetCC->getOperand(2));
14032 CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
14033 }
14034}
14035
14036// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
14037SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
14038 SDValue N0 = N->getOperand(0);
14039 EVT DstVT = N->getValueType(0);
14040 EVT SrcVT = N0.getValueType();
14041
14042 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
14043 N->getOpcode() == ISD::ZERO_EXTEND) &&
14044 "Unexpected node type (not an extend)!");
14045
14046 // fold (sext (load x)) to multiple smaller sextloads; same for zext.
14047 // For example, on a target with legal v4i32, but illegal v8i32, turn:
14048 // (v8i32 (sext (v8i16 (load x))))
14049 // into:
14050 // (v8i32 (concat_vectors (v4i32 (sextload x)),
14051 // (v4i32 (sextload (x + 16)))))
14052 // Where uses of the original load, i.e.:
14053 // (v8i16 (load x))
14054 // are replaced with:
14055 // (v8i16 (truncate
14056 // (v8i32 (concat_vectors (v4i32 (sextload x)),
14057 // (v4i32 (sextload (x + 16)))))))
14058 //
14059 // This combine is only applicable to illegal, but splittable, vectors.
14060 // All legal types, and illegal non-vector types, are handled elsewhere.
14061 // This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
14062 //
14063 if (N0->getOpcode() != ISD::LOAD)
14064 return SDValue();
14065
14066 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
14067
14068 if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
14069 !N0.hasOneUse() || !LN0->isSimple() ||
14070 !DstVT.isVector() || !DstVT.isPow2VectorType() ||
14072 return SDValue();
14073
14075 if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
14076 return SDValue();
14077
14078 ISD::LoadExtType ExtType =
14079 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
14080
14081 // Try to split the vector types to get down to legal types.
14082 EVT SplitSrcVT = SrcVT;
14083 EVT SplitDstVT = DstVT;
14084 while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
14085 SplitSrcVT.getVectorNumElements() > 1) {
14086 SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
14087 SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
14088 }
14089
14090 if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
14091 return SDValue();
14092
14093 assert(!DstVT.isScalableVector() && "Unexpected scalable vector type");
14094
14095 SDLoc DL(N);
14096 const unsigned NumSplits =
14097 DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
14098 const unsigned Stride = SplitSrcVT.getStoreSize();
14101
14102 SDValue BasePtr = LN0->getBasePtr();
14103 for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
14104 const unsigned Offset = Idx * Stride;
14105
14107 DAG.getExtLoad(ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(),
14108 BasePtr, LN0->getPointerInfo().getWithOffset(Offset),
14109 SplitSrcVT, LN0->getBaseAlign(),
14110 LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
14111
14112 BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::getFixed(Stride), DL);
14113
14114 Loads.push_back(SplitLoad.getValue(0));
14115 Chains.push_back(SplitLoad.getValue(1));
14116 }
14117
14118 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
14119 SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
14120
14121 // Simplify TF.
14122 AddToWorklist(NewChain.getNode());
14123
14124 CombineTo(N, NewValue);
14125
14126 // Replace uses of the original load (before extension)
14127 // with a truncate of the concatenated sextloaded vectors.
14128 SDValue Trunc =
14129 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
14130 ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
14131 CombineTo(N0.getNode(), Trunc, NewChain);
14132 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14133}
14134
14135// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
14136// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
14137SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
14138 assert(N->getOpcode() == ISD::ZERO_EXTEND);
14139 EVT VT = N->getValueType(0);
14140 EVT OrigVT = N->getOperand(0).getValueType();
14141 if (TLI.isZExtFree(OrigVT, VT))
14142 return SDValue();
14143
14144 // and/or/xor
14145 SDValue N0 = N->getOperand(0);
14146 if (!ISD::isBitwiseLogicOp(N0.getOpcode()) ||
14147 N0.getOperand(1).getOpcode() != ISD::Constant ||
14148 (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
14149 return SDValue();
14150
14151 // shl/shr
14152 SDValue N1 = N0->getOperand(0);
14153 if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
14154 N1.getOperand(1).getOpcode() != ISD::Constant ||
14155 (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
14156 return SDValue();
14157
14158 // load
14159 if (!isa<LoadSDNode>(N1.getOperand(0)))
14160 return SDValue();
14161 LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
14162 EVT MemVT = Load->getMemoryVT();
14163 if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
14164 Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
14165 return SDValue();
14166
14167
14168 // If the shift op is SHL, the logic op must be AND, otherwise the result
14169 // will be wrong.
14170 if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
14171 return SDValue();
14172
14173 if (!N0.hasOneUse() || !N1.hasOneUse())
14174 return SDValue();
14175
14177 if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
14178 ISD::ZERO_EXTEND, SetCCs, TLI))
14179 return SDValue();
14180
14181 // Actually do the transformation.
14182 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
14183 Load->getChain(), Load->getBasePtr(),
14184 Load->getMemoryVT(), Load->getMemOperand());
14185
14186 SDLoc DL1(N1);
14187 SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
14188 N1.getOperand(1));
14189
14190 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
14191 SDLoc DL0(N0);
14192 SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
14193 DAG.getConstant(Mask, DL0, VT));
14194
14195 ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
14196 CombineTo(N, And);
14197 if (SDValue(Load, 0).hasOneUse()) {
14198 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
14199 } else {
14200 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
14201 Load->getValueType(0), ExtLoad);
14202 CombineTo(Load, Trunc, ExtLoad.getValue(1));
14203 }
14204
14205 // N0 is dead at this point.
14206 recursivelyDeleteUnusedNodes(N0.getNode());
14207
14208 return SDValue(N,0); // Return N so it doesn't get rechecked!
14209}
14210
14211/// If we're narrowing or widening the result of a vector select and the final
14212/// size is the same size as a setcc (compare) feeding the select, then try to
14213/// apply the cast operation to the select's operands because matching vector
14214/// sizes for a select condition and other operands should be more efficient.
14215SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
14216 unsigned CastOpcode = Cast->getOpcode();
14217 assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
14218 CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
14219 CastOpcode == ISD::FP_ROUND) &&
14220 "Unexpected opcode for vector select narrowing/widening");
14221
14222 // We only do this transform before legal ops because the pattern may be
14223 // obfuscated by target-specific operations after legalization. Do not create
14224 // an illegal select op, however, because that may be difficult to lower.
14225 EVT VT = Cast->getValueType(0);
14226 if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
14227 return SDValue();
14228
14229 SDValue VSel = Cast->getOperand(0);
14230 if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
14231 VSel.getOperand(0).getOpcode() != ISD::SETCC)
14232 return SDValue();
14233
14234 // Does the setcc have the same vector size as the casted select?
14235 SDValue SetCC = VSel.getOperand(0);
14236 EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
14237 if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
14238 return SDValue();
14239
14240 // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
14241 SDValue A = VSel.getOperand(1);
14242 SDValue B = VSel.getOperand(2);
14243 SDValue CastA, CastB;
14244 SDLoc DL(Cast);
14245 if (CastOpcode == ISD::FP_ROUND) {
14246 // FP_ROUND (fptrunc) has an extra flag operand to pass along.
14247 CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
14248 CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
14249 } else {
14250 CastA = DAG.getNode(CastOpcode, DL, VT, A);
14251 CastB = DAG.getNode(CastOpcode, DL, VT, B);
14252 }
14253 return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
14254}
14255
14256// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
14257// fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
14259 const TargetLowering &TLI, EVT VT,
14260 bool LegalOperations, SDNode *N,
14261 SDValue N0, ISD::LoadExtType ExtLoadType) {
14262 SDNode *N0Node = N0.getNode();
14263 bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
14264 : ISD::isZEXTLoad(N0Node);
14265 if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
14266 !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
14267 return SDValue();
14268
14269 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
14270 EVT MemVT = LN0->getMemoryVT();
14271 if ((LegalOperations || !LN0->isSimple() ||
14272 VT.isVector()) &&
14273 !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
14274 return SDValue();
14275
14276 SDValue ExtLoad =
14277 DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
14278 LN0->getBasePtr(), MemVT, LN0->getMemOperand());
14279 Combiner.CombineTo(N, ExtLoad);
14280 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
14281 if (LN0->use_empty())
14282 Combiner.recursivelyDeleteUnusedNodes(LN0);
14283 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14284}
14285
14286// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
14287// Only generate vector extloads when 1) they're legal, and 2) they are
14288// deemed desirable by the target. NonNegZExt can be set to true if a zero
14289// extend has the nonneg flag to allow use of sextload if profitable.
14291 const TargetLowering &TLI, EVT VT,
14292 bool LegalOperations, SDNode *N, SDValue N0,
14293 ISD::LoadExtType ExtLoadType,
14294 ISD::NodeType ExtOpc,
14295 bool NonNegZExt = false) {
14297 return {};
14298
14299 // If this is zext nneg, see if it would make sense to treat it as a sext.
14300 if (NonNegZExt) {
14301 assert(ExtLoadType == ISD::ZEXTLOAD && ExtOpc == ISD::ZERO_EXTEND &&
14302 "Unexpected load type or opcode");
14303 for (SDNode *User : N0->users()) {
14304 if (User->getOpcode() == ISD::SETCC) {
14306 if (ISD::isSignedIntSetCC(CC)) {
14307 ExtLoadType = ISD::SEXTLOAD;
14308 ExtOpc = ISD::SIGN_EXTEND;
14309 break;
14310 }
14311 }
14312 }
14313 }
14314
14315 // TODO: isFixedLengthVector() should be removed and any negative effects on
14316 // code generation being the result of that target's implementation of
14317 // isVectorLoadExtDesirable().
14318 if ((LegalOperations || VT.isFixedLengthVector() ||
14319 !cast<LoadSDNode>(N0)->isSimple()) &&
14320 !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))
14321 return {};
14322
14323 bool DoXform = true;
14325 if (!N0.hasOneUse())
14326 DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
14327 if (VT.isVector())
14328 DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
14329 if (!DoXform)
14330 return {};
14331
14332 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
14333 SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
14334 LN0->getBasePtr(), N0.getValueType(),
14335 LN0->getMemOperand());
14336 Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
14337 // If the load value is used only by N, replace it via CombineTo N.
14338 bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
14339 Combiner.CombineTo(N, ExtLoad);
14340 if (NoReplaceTrunc) {
14341 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
14342 Combiner.recursivelyDeleteUnusedNodes(LN0);
14343 } else {
14344 SDValue Trunc =
14345 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
14346 Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
14347 }
14348 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14349}
14350
14351static SDValue
14353 bool LegalOperations, SDNode *N, SDValue N0,
14354 ISD::LoadExtType ExtLoadType, ISD::NodeType ExtOpc) {
14355 if (!N0.hasOneUse())
14356 return SDValue();
14357
14359 if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD)
14360 return SDValue();
14361
14362 if ((LegalOperations || !cast<MaskedLoadSDNode>(N0)->isSimple()) &&
14363 !TLI.isLoadExtLegalOrCustom(ExtLoadType, VT, Ld->getValueType(0)))
14364 return SDValue();
14365
14366 if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
14367 return SDValue();
14368
14369 SDLoc dl(Ld);
14370 SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru());
14371 SDValue NewLoad = DAG.getMaskedLoad(
14372 VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(),
14373 PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(),
14374 ExtLoadType, Ld->isExpandingLoad());
14375 DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1));
14376 return NewLoad;
14377}
14378
14379// fold ([s|z]ext (atomic_load)) -> ([s|z]ext (truncate ([s|z]ext atomic_load)))
14381 const TargetLowering &TLI, EVT VT,
14382 SDValue N0,
14383 ISD::LoadExtType ExtLoadType) {
14384 auto *ALoad = dyn_cast<AtomicSDNode>(N0);
14385 if (!ALoad || ALoad->getOpcode() != ISD::ATOMIC_LOAD)
14386 return {};
14387 EVT MemoryVT = ALoad->getMemoryVT();
14388 if (!TLI.isAtomicLoadExtLegal(ExtLoadType, VT, MemoryVT))
14389 return {};
14390 // Can't fold into ALoad if it is already extending differently.
14391 ISD::LoadExtType ALoadExtTy = ALoad->getExtensionType();
14392 if ((ALoadExtTy == ISD::ZEXTLOAD && ExtLoadType == ISD::SEXTLOAD) ||
14393 (ALoadExtTy == ISD::SEXTLOAD && ExtLoadType == ISD::ZEXTLOAD))
14394 return {};
14395
14396 EVT OrigVT = ALoad->getValueType(0);
14397 assert(OrigVT.getSizeInBits() < VT.getSizeInBits() && "VT should be wider.");
14398 auto *NewALoad = cast<AtomicSDNode>(DAG.getAtomicLoad(
14399 ExtLoadType, SDLoc(ALoad), MemoryVT, VT, ALoad->getChain(),
14400 ALoad->getBasePtr(), ALoad->getMemOperand()));
14402 SDValue(ALoad, 0),
14403 DAG.getNode(ISD::TRUNCATE, SDLoc(ALoad), OrigVT, SDValue(NewALoad, 0)));
14404 // Update the chain uses.
14405 DAG.ReplaceAllUsesOfValueWith(SDValue(ALoad, 1), SDValue(NewALoad, 1));
14406 return SDValue(NewALoad, 0);
14407}
14408
14410 bool LegalOperations) {
14411 assert((N->getOpcode() == ISD::SIGN_EXTEND ||
14412 N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
14413
14414 SDValue SetCC = N->getOperand(0);
14415 if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
14416 !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
14417 return SDValue();
14418
14419 SDValue X = SetCC.getOperand(0);
14420 SDValue Ones = SetCC.getOperand(1);
14421 ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
14422 EVT VT = N->getValueType(0);
14423 EVT XVT = X.getValueType();
14424 // setge X, C is canonicalized to setgt, so we do not need to match that
14425 // pattern. The setlt sibling is folded in SimplifySelectCC() because it does
14426 // not require the 'not' op.
14427 if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
14428 // Invert and smear/shift the sign bit:
14429 // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
14430 // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
14431 SDLoc DL(N);
14432 unsigned ShCt = VT.getSizeInBits() - 1;
14433 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14434 if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
14435 SDValue NotX = DAG.getNOT(DL, X, VT);
14436 SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT);
14437 auto ShiftOpcode =
14438 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
14439 return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
14440 }
14441 }
14442 return SDValue();
14443}
14444
14445SDValue DAGCombiner::foldSextSetcc(SDNode *N) {
14446 SDValue N0 = N->getOperand(0);
14447 if (N0.getOpcode() != ISD::SETCC)
14448 return SDValue();
14449
14450 SDValue N00 = N0.getOperand(0);
14451 SDValue N01 = N0.getOperand(1);
14453 EVT VT = N->getValueType(0);
14454 EVT N00VT = N00.getValueType();
14455 SDLoc DL(N);
14456
14457 // Propagate fast-math-flags.
14458 SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags());
14459
14460 // On some architectures (such as SSE/NEON/etc) the SETCC result type is
14461 // the same size as the compared operands. Try to optimize sext(setcc())
14462 // if this is the case.
14463 if (VT.isVector() && !LegalOperations &&
14464 TLI.getBooleanContents(N00VT) ==
14466 EVT SVT = getSetCCResultType(N00VT);
14467
14468 // If we already have the desired type, don't change it.
14469 if (SVT != N0.getValueType()) {
14470 // We know that the # elements of the results is the same as the
14471 // # elements of the compare (and the # elements of the compare result
14472 // for that matter). Check to see that they are the same size. If so,
14473 // we know that the element size of the sext'd result matches the
14474 // element size of the compare operands.
14475 if (VT.getSizeInBits() == SVT.getSizeInBits())
14476 return DAG.getSetCC(DL, VT, N00, N01, CC);
14477
14478 // If the desired elements are smaller or larger than the source
14479 // elements, we can use a matching integer vector type and then
14480 // truncate/sign extend.
14481 EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
14482 if (SVT == MatchingVecType) {
14483 SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
14484 return DAG.getSExtOrTrunc(VsetCC, DL, VT);
14485 }
14486 }
14487
14488 // Try to eliminate the sext of a setcc by zexting the compare operands.
14489 if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) &&
14491 bool IsSignedCmp = ISD::isSignedIntSetCC(CC);
14492 unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
14493 unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
14494
14495 // We have an unsupported narrow vector compare op that would be legal
14496 // if extended to the destination type. See if the compare operands
14497 // can be freely extended to the destination type.
14498 auto IsFreeToExtend = [&](SDValue V) {
14499 if (isConstantOrConstantVector(V, /*NoOpaques*/ true))
14500 return true;
14501 // Match a simple, non-extended load that can be converted to a
14502 // legal {z/s}ext-load.
14503 // TODO: Allow widening of an existing {z/s}ext-load?
14504 if (!(ISD::isNON_EXTLoad(V.getNode()) &&
14505 ISD::isUNINDEXEDLoad(V.getNode()) &&
14506 cast<LoadSDNode>(V)->isSimple() &&
14507 TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType())))
14508 return false;
14509
14510 // Non-chain users of this value must either be the setcc in this
14511 // sequence or extends that can be folded into the new {z/s}ext-load.
14512 for (SDUse &Use : V->uses()) {
14513 // Skip uses of the chain and the setcc.
14514 SDNode *User = Use.getUser();
14515 if (Use.getResNo() != 0 || User == N0.getNode())
14516 continue;
14517 // Extra users must have exactly the same cast we are about to create.
14518 // TODO: This restriction could be eased if ExtendUsesToFormExtLoad()
14519 // is enhanced similarly.
14520 if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT)
14521 return false;
14522 }
14523 return true;
14524 };
14525
14526 if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) {
14527 SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00);
14528 SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01);
14529 return DAG.getSetCC(DL, VT, Ext0, Ext1, CC);
14530 }
14531 }
14532 }
14533
14534 // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
14535 // Here, T can be 1 or -1, depending on the type of the setcc and
14536 // getBooleanContents().
14537 unsigned SetCCWidth = N0.getScalarValueSizeInBits();
14538
14539 // To determine the "true" side of the select, we need to know the high bit
14540 // of the value returned by the setcc if it evaluates to true.
14541 // If the type of the setcc is i1, then the true case of the select is just
14542 // sext(i1 1), that is, -1.
14543 // If the type of the setcc is larger (say, i8) then the value of the high
14544 // bit depends on getBooleanContents(), so ask TLI for a real "true" value
14545 // of the appropriate width.
14546 SDValue ExtTrueVal = (SetCCWidth == 1)
14547 ? DAG.getAllOnesConstant(DL, VT)
14548 : DAG.getBoolConstant(true, DL, VT, N00VT);
14549 SDValue Zero = DAG.getConstant(0, DL, VT);
14550 if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
14551 return SCC;
14552
14553 if (!VT.isVector() && !shouldConvertSelectOfConstantsToMath(N0, VT, TLI)) {
14554 EVT SetCCVT = getSetCCResultType(N00VT);
14555 // Don't do this transform for i1 because there's a select transform
14556 // that would reverse it.
14557 // TODO: We should not do this transform at all without a target hook
14558 // because a sext is likely cheaper than a select?
14559 if (SetCCVT.getScalarSizeInBits() != 1 &&
14560 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
14561 SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
14562 return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
14563 }
14564 }
14565
14566 return SDValue();
14567}
14568
14569SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
14570 SDValue N0 = N->getOperand(0);
14571 EVT VT = N->getValueType(0);
14572 SDLoc DL(N);
14573
14574 if (VT.isVector())
14575 if (SDValue FoldedVOp = SimplifyVCastOp(N, DL))
14576 return FoldedVOp;
14577
14578 // sext(undef) = 0 because the top bit will all be the same.
14579 if (N0.isUndef())
14580 return DAG.getConstant(0, DL, VT);
14581
14582 if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes))
14583 return Res;
14584
14585 // fold (sext (sext x)) -> (sext x)
14586 // fold (sext (aext x)) -> (sext x)
14587 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
14588 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
14589
14590 // fold (sext (aext_extend_vector_inreg x)) -> (sext_extend_vector_inreg x)
14591 // fold (sext (sext_extend_vector_inreg x)) -> (sext_extend_vector_inreg x)
14594 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT,
14595 N0.getOperand(0));
14596
14597 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG) {
14598 SDValue N00 = N0.getOperand(0);
14599 EVT ExtVT = cast<VTSDNode>(N0->getOperand(1))->getVT();
14600 if (N00.getOpcode() == ISD::TRUNCATE || TLI.isTruncateFree(N00, ExtVT)) {
14601 // fold (sext (sext_inreg x)) -> (sext (trunc x))
14602 if ((!LegalTypes || TLI.isTypeLegal(ExtVT))) {
14603 SDValue T = DAG.getNode(ISD::TRUNCATE, DL, ExtVT, N00);
14604 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, T);
14605 }
14606
14607 // If the trunc wasn't legal, try to fold to (sext_inreg (anyext x))
14608 if (!LegalTypes || TLI.isTypeLegal(VT)) {
14609 SDValue ExtSrc = DAG.getAnyExtOrTrunc(N00, DL, VT);
14610 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, ExtSrc,
14611 N0->getOperand(1));
14612 }
14613 }
14614 }
14615
14616 if (N0.getOpcode() == ISD::TRUNCATE) {
14617 // fold (sext (truncate (load x))) -> (sext (smaller load x))
14618 // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
14619 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) {
14620 SDNode *oye = N0.getOperand(0).getNode();
14621 if (NarrowLoad.getNode() != N0.getNode()) {
14622 CombineTo(N0.getNode(), NarrowLoad);
14623 // CombineTo deleted the truncate, if needed, but not what's under it.
14624 AddToWorklist(oye);
14625 }
14626 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14627 }
14628
14629 // See if the value being truncated is already sign extended. If so, just
14630 // eliminate the trunc/sext pair.
14631 SDValue Op = N0.getOperand(0);
14632 unsigned OpBits = Op.getScalarValueSizeInBits();
14633 unsigned MidBits = N0.getScalarValueSizeInBits();
14634 unsigned DestBits = VT.getScalarSizeInBits();
14635
14636 if (N0->getFlags().hasNoSignedWrap() ||
14637 DAG.ComputeNumSignBits(Op) > OpBits - MidBits) {
14638 if (OpBits == DestBits) {
14639 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
14640 // bits, it is already ready.
14641 return Op;
14642 }
14643
14644 if (OpBits < DestBits) {
14645 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
14646 // bits, just sext from i32.
14647 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
14648 }
14649
14650 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
14651 // bits, just truncate to i32.
14652 SDNodeFlags Flags;
14653 Flags.setNoSignedWrap(true);
14654 Flags.setNoUnsignedWrap(N0->getFlags().hasNoUnsignedWrap());
14655 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op, Flags);
14656 }
14657
14658 // fold (sext (truncate x)) -> (sextinreg x).
14659 if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
14660 N0.getValueType())) {
14661 if (OpBits < DestBits)
14662 Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
14663 else if (OpBits > DestBits)
14664 Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
14665 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
14666 DAG.getValueType(N0.getValueType()));
14667 }
14668 }
14669
14670 // Try to simplify (sext (load x)).
14671 if (SDValue foldedExt =
14672 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
14674 return foldedExt;
14675
14676 if (SDValue foldedExt =
14677 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, LegalOperations, N, N0,
14679 return foldedExt;
14680
14681 // fold (sext (load x)) to multiple smaller sextloads.
14682 // Only on illegal but splittable vectors.
14683 if (SDValue ExtLoad = CombineExtLoad(N))
14684 return ExtLoad;
14685
14686 // Try to simplify (sext (sextload x)).
14687 if (SDValue foldedExt = tryToFoldExtOfExtload(
14688 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
14689 return foldedExt;
14690
14691 // Try to simplify (sext (atomic_load x)).
14692 if (SDValue foldedExt =
14693 tryToFoldExtOfAtomicLoad(DAG, TLI, VT, N0, ISD::SEXTLOAD))
14694 return foldedExt;
14695
14696 // fold (sext (and/or/xor (load x), cst)) ->
14697 // (and/or/xor (sextload x), (sext cst))
14698 if (ISD::isBitwiseLogicOp(N0.getOpcode()) &&
14699 isa<LoadSDNode>(N0.getOperand(0)) &&
14700 N0.getOperand(1).getOpcode() == ISD::Constant &&
14701 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
14702 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
14703 EVT MemVT = LN00->getMemoryVT();
14704 if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
14705 LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
14707 bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
14708 ISD::SIGN_EXTEND, SetCCs, TLI);
14709 if (DoXform) {
14710 SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
14711 LN00->getChain(), LN00->getBasePtr(),
14712 LN00->getMemoryVT(),
14713 LN00->getMemOperand());
14714 APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits());
14715 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
14716 ExtLoad, DAG.getConstant(Mask, DL, VT));
14717 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
14718 bool NoReplaceTruncAnd = !N0.hasOneUse();
14719 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
14720 CombineTo(N, And);
14721 // If N0 has multiple uses, change other uses as well.
14722 if (NoReplaceTruncAnd) {
14723 SDValue TruncAnd =
14725 CombineTo(N0.getNode(), TruncAnd);
14726 }
14727 if (NoReplaceTrunc) {
14728 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
14729 } else {
14730 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
14731 LN00->getValueType(0), ExtLoad);
14732 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
14733 }
14734 return SDValue(N,0); // Return N so it doesn't get rechecked!
14735 }
14736 }
14737 }
14738
14739 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
14740 return V;
14741
14742 if (SDValue V = foldSextSetcc(N))
14743 return V;
14744
14745 // fold (sext x) -> (zext x) if the sign bit is known zero.
14746 if (!TLI.isSExtCheaperThanZExt(N0.getValueType(), VT) &&
14747 (!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
14748 DAG.SignBitIsZero(N0))
14749 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0, SDNodeFlags::NonNeg);
14750
14751 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
14752 return NewVSel;
14753
14754 // Eliminate this sign extend by doing a negation in the destination type:
14755 // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
14756 if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
14760 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
14761 return DAG.getNegative(Zext, DL, VT);
14762 }
14763 // Eliminate this sign extend by doing a decrement in the destination type:
14764 // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
14765 if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
14769 SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
14770 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
14771 }
14772
14773 // fold sext (not i1 X) -> add (zext i1 X), -1
14774 // TODO: This could be extended to handle bool vectors.
14775 if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() &&
14776 (!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) &&
14777 TLI.isOperationLegal(ISD::ADD, VT)))) {
14778 // If we can eliminate the 'not', the sext form should be better
14779 if (SDValue NewXor = visitXOR(N0.getNode())) {
14780 // Returning N0 is a form of in-visit replacement that may have
14781 // invalidated N0.
14782 if (NewXor.getNode() == N0.getNode()) {
14783 // Return SDValue here as the xor should have already been replaced in
14784 // this sext.
14785 return SDValue();
14786 }
14787
14788 // Return a new sext with the new xor.
14789 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor);
14790 }
14791
14792 SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
14793 return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
14794 }
14795
14796 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG, DL, Level))
14797 return Res;
14798
14799 return SDValue();
14800}
14801
14802/// Given an extending node with a pop-count operand, if the target does not
14803/// support a pop-count in the narrow source type but does support it in the
14804/// destination type, widen the pop-count to the destination type.
14805static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG, const SDLoc &DL) {
14806 assert((Extend->getOpcode() == ISD::ZERO_EXTEND ||
14807 Extend->getOpcode() == ISD::ANY_EXTEND) &&
14808 "Expected extend op");
14809
14810 SDValue CtPop = Extend->getOperand(0);
14811 if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse())
14812 return SDValue();
14813
14814 EVT VT = Extend->getValueType(0);
14815 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14818 return SDValue();
14819
14820 // zext (ctpop X) --> ctpop (zext X)
14821 SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT);
14822 return DAG.getNode(ISD::CTPOP, DL, VT, NewZext);
14823}
14824
14825// If we have (zext (abs X)) where X is a type that will be promoted by type
14826// legalization, convert to (abs (sext X)). But don't extend past a legal type.
14827static SDValue widenAbs(SDNode *Extend, SelectionDAG &DAG) {
14828 assert(Extend->getOpcode() == ISD::ZERO_EXTEND && "Expected zero extend.");
14829
14830 EVT VT = Extend->getValueType(0);
14831 if (VT.isVector())
14832 return SDValue();
14833
14834 SDValue Abs = Extend->getOperand(0);
14835 if (Abs.getOpcode() != ISD::ABS || !Abs.hasOneUse())
14836 return SDValue();
14837
14838 EVT AbsVT = Abs.getValueType();
14839 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14840 if (TLI.getTypeAction(*DAG.getContext(), AbsVT) !=
14842 return SDValue();
14843
14844 EVT LegalVT = TLI.getTypeToTransformTo(*DAG.getContext(), AbsVT);
14845
14846 SDValue SExt =
14847 DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Abs), LegalVT, Abs.getOperand(0));
14848 SDValue NewAbs = DAG.getNode(ISD::ABS, SDLoc(Abs), LegalVT, SExt);
14849 return DAG.getZExtOrTrunc(NewAbs, SDLoc(Extend), VT);
14850}
14851
14852SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
14853 SDValue N0 = N->getOperand(0);
14854 EVT VT = N->getValueType(0);
14855 SDLoc DL(N);
14856
14857 if (VT.isVector())
14858 if (SDValue FoldedVOp = SimplifyVCastOp(N, DL))
14859 return FoldedVOp;
14860
14861 // zext(undef) = 0
14862 if (N0.isUndef())
14863 return DAG.getConstant(0, DL, VT);
14864
14865 if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes))
14866 return Res;
14867
14868 // fold (zext (zext x)) -> (zext x)
14869 // fold (zext (aext x)) -> (zext x)
14870 if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
14871 SDNodeFlags Flags;
14872 if (N0.getOpcode() == ISD::ZERO_EXTEND)
14873 Flags.setNonNeg(N0->getFlags().hasNonNeg());
14874 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0), Flags);
14875 }
14876
14877 // fold (zext (aext_extend_vector_inreg x)) -> (zext_extend_vector_inreg x)
14878 // fold (zext (zext_extend_vector_inreg x)) -> (zext_extend_vector_inreg x)
14881 return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, DL, VT, N0.getOperand(0));
14882
14883 // fold (zext (truncate x)) -> (zext x) or
14884 // (zext (truncate x)) -> (truncate x)
14885 // This is valid when the truncated bits of x are already zero.
14886 SDValue Op;
14887 KnownBits Known;
14888 if (isTruncateOf(DAG, N0, Op, Known)) {
14889 APInt TruncatedBits =
14890 (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
14891 APInt(Op.getScalarValueSizeInBits(), 0) :
14892 APInt::getBitsSet(Op.getScalarValueSizeInBits(),
14893 N0.getScalarValueSizeInBits(),
14894 std::min(Op.getScalarValueSizeInBits(),
14895 VT.getScalarSizeInBits()));
14896 if (TruncatedBits.isSubsetOf(Known.Zero)) {
14897 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, DL, VT);
14898 DAG.salvageDebugInfo(*N0.getNode());
14899
14900 return ZExtOrTrunc;
14901 }
14902 }
14903
14904 // fold (zext (truncate x)) -> (and x, mask)
14905 if (N0.getOpcode() == ISD::TRUNCATE) {
14906 // fold (zext (truncate (load x))) -> (zext (smaller load x))
14907 // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
14908 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) {
14909 SDNode *oye = N0.getOperand(0).getNode();
14910 if (NarrowLoad.getNode() != N0.getNode()) {
14911 CombineTo(N0.getNode(), NarrowLoad);
14912 // CombineTo deleted the truncate, if needed, but not what's under it.
14913 AddToWorklist(oye);
14914 }
14915 return SDValue(N, 0); // Return N so it doesn't get rechecked!
14916 }
14917
14918 EVT SrcVT = N0.getOperand(0).getValueType();
14919 EVT MinVT = N0.getValueType();
14920
14921 if (N->getFlags().hasNonNeg()) {
14922 SDValue Op = N0.getOperand(0);
14923 unsigned OpBits = SrcVT.getScalarSizeInBits();
14924 unsigned MidBits = MinVT.getScalarSizeInBits();
14925 unsigned DestBits = VT.getScalarSizeInBits();
14926
14927 if (N0->getFlags().hasNoSignedWrap() ||
14928 DAG.ComputeNumSignBits(Op) > OpBits - MidBits) {
14929 if (OpBits == DestBits) {
14930 // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
14931 // bits, it is already ready.
14932 return Op;
14933 }
14934
14935 if (OpBits < DestBits) {
14936 // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
14937 // bits, just sext from i32.
14938 // FIXME: This can probably be ZERO_EXTEND nneg?
14939 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
14940 }
14941
14942 // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
14943 // bits, just truncate to i32.
14944 SDNodeFlags Flags;
14945 Flags.setNoSignedWrap(true);
14946 Flags.setNoUnsignedWrap(true);
14947 return DAG.getNode(ISD::TRUNCATE, DL, VT, Op, Flags);
14948 }
14949 }
14950
14951 // Try to mask before the extension to avoid having to generate a larger mask,
14952 // possibly over several sub-vectors.
14953 if (SrcVT.bitsLT(VT) && VT.isVector()) {
14954 if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
14956 SDValue Op = N0.getOperand(0);
14957 Op = DAG.getZeroExtendInReg(Op, DL, MinVT);
14958 AddToWorklist(Op.getNode());
14959 SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, DL, VT);
14960 // Transfer the debug info; the new node is equivalent to N0.
14961 DAG.transferDbgValues(N0, ZExtOrTrunc);
14962 return ZExtOrTrunc;
14963 }
14964 }
14965
14966 if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
14967 SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), DL, VT);
14968 AddToWorklist(Op.getNode());
14969 SDValue And = DAG.getZeroExtendInReg(Op, DL, MinVT);
14970 // We may safely transfer the debug info describing the truncate node over
14971 // to the equivalent and operation.
14972 DAG.transferDbgValues(N0, And);
14973 return And;
14974 }
14975 }
14976
14977 // Fold (zext (and (trunc x), cst)) -> (and x, cst),
14978 // if either of the casts is not free.
14979 if (N0.getOpcode() == ISD::AND &&
14980 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
14981 N0.getOperand(1).getOpcode() == ISD::Constant &&
14982 (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0), N0.getValueType()) ||
14983 !TLI.isZExtFree(N0.getValueType(), VT))) {
14984 SDValue X = N0.getOperand(0).getOperand(0);
14985 X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
14986 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
14987 return DAG.getNode(ISD::AND, DL, VT,
14988 X, DAG.getConstant(Mask, DL, VT));
14989 }
14990
14991 // Try to simplify (zext (load x)).
14992 if (SDValue foldedExt = tryToFoldExtOfLoad(
14993 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD,
14994 ISD::ZERO_EXTEND, N->getFlags().hasNonNeg()))
14995 return foldedExt;
14996
14997 if (SDValue foldedExt =
14998 tryToFoldExtOfMaskedLoad(DAG, TLI, VT, LegalOperations, N, N0,
15000 return foldedExt;
15001
15002 // fold (zext (load x)) to multiple smaller zextloads.
15003 // Only on illegal but splittable vectors.
15004 if (SDValue ExtLoad = CombineExtLoad(N))
15005 return ExtLoad;
15006
15007 // Try to simplify (zext (atomic_load x)).
15008 if (SDValue foldedExt =
15009 tryToFoldExtOfAtomicLoad(DAG, TLI, VT, N0, ISD::ZEXTLOAD))
15010 return foldedExt;
15011
15012 // fold (zext (and/or/xor (load x), cst)) ->
15013 // (and/or/xor (zextload x), (zext cst))
15014 // Unless (and (load x) cst) will match as a zextload already and has
15015 // additional users, or the zext is already free.
15016 if (ISD::isBitwiseLogicOp(N0.getOpcode()) && !TLI.isZExtFree(N0, VT) &&
15017 isa<LoadSDNode>(N0.getOperand(0)) &&
15018 N0.getOperand(1).getOpcode() == ISD::Constant &&
15019 (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
15020 LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
15021 EVT MemVT = LN00->getMemoryVT();
15022 if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
15023 LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
15024 bool DoXform = true;
15026 if (!N0.hasOneUse()) {
15027 if (N0.getOpcode() == ISD::AND) {
15028 auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
15029 EVT LoadResultTy = AndC->getValueType(0);
15030 EVT ExtVT;
15031 if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
15032 DoXform = false;
15033 }
15034 }
15035 if (DoXform)
15036 DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
15037 ISD::ZERO_EXTEND, SetCCs, TLI);
15038 if (DoXform) {
15039 SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
15040 LN00->getChain(), LN00->getBasePtr(),
15041 LN00->getMemoryVT(),
15042 LN00->getMemOperand());
15043 APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
15044 SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
15045 ExtLoad, DAG.getConstant(Mask, DL, VT));
15046 ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
15047 bool NoReplaceTruncAnd = !N0.hasOneUse();
15048 bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
15049 CombineTo(N, And);
15050 // If N0 has multiple uses, change other uses as well.
15051 if (NoReplaceTruncAnd) {
15052 SDValue TruncAnd =
15054 CombineTo(N0.getNode(), TruncAnd);
15055 }
15056 if (NoReplaceTrunc) {
15057 DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
15058 } else {
15059 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
15060 LN00->getValueType(0), ExtLoad);
15061 CombineTo(LN00, Trunc, ExtLoad.getValue(1));
15062 }
15063 return SDValue(N,0); // Return N so it doesn't get rechecked!
15064 }
15065 }
15066 }
15067
15068 // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
15069 // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
15070 if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
15071 return ZExtLoad;
15072
15073 // Try to simplify (zext (zextload x)).
15074 if (SDValue foldedExt = tryToFoldExtOfExtload(
15075 DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
15076 return foldedExt;
15077
15078 if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
15079 return V;
15080
15081 if (N0.getOpcode() == ISD::SETCC) {
15082 // Propagate fast-math-flags.
15083 SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags());
15084
15085 // Only do this before legalize for now.
15086 if (!LegalOperations && VT.isVector() &&
15087 N0.getValueType().getVectorElementType() == MVT::i1) {
15088 EVT N00VT = N0.getOperand(0).getValueType();
15089 if (getSetCCResultType(N00VT) == N0.getValueType())
15090 return SDValue();
15091
15092 // We know that the # elements of the results is the same as the #
15093 // elements of the compare (and the # elements of the compare result for
15094 // that matter). Check to see that they are the same size. If so, we know
15095 // that the element size of the sext'd result matches the element size of
15096 // the compare operands.
15097 if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
15098 // zext(setcc) -> zext_in_reg(vsetcc) for vectors.
15099 SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
15100 N0.getOperand(1), N0.getOperand(2));
15101 return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType());
15102 }
15103
15104 // If the desired elements are smaller or larger than the source
15105 // elements we can use a matching integer vector type and then
15106 // truncate/any extend followed by zext_in_reg.
15107 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
15108 SDValue VsetCC =
15109 DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
15110 N0.getOperand(1), N0.getOperand(2));
15111 return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL,
15112 N0.getValueType());
15113 }
15114
15115 // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc)
15116 EVT N0VT = N0.getValueType();
15117 EVT N00VT = N0.getOperand(0).getValueType();
15118 if (SDValue SCC = SimplifySelectCC(
15119 DL, N0.getOperand(0), N0.getOperand(1),
15120 DAG.getBoolConstant(true, DL, N0VT, N00VT),
15121 DAG.getBoolConstant(false, DL, N0VT, N00VT),
15122 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
15123 return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC);
15124 }
15125
15126 // (zext (shl (zext x), cst)) -> (shl (zext x), cst)
15127 if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
15128 !TLI.isZExtFree(N0, VT)) {
15129 SDValue ShVal = N0.getOperand(0);
15130 SDValue ShAmt = N0.getOperand(1);
15131 if (auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt)) {
15132 if (ShVal.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse()) {
15133 if (N0.getOpcode() == ISD::SHL) {
15134 // If the original shl may be shifting out bits, do not perform this
15135 // transformation.
15136 unsigned KnownZeroBits = ShVal.getValueSizeInBits() -
15137 ShVal.getOperand(0).getValueSizeInBits();
15138 if (ShAmtC->getAPIntValue().ugt(KnownZeroBits)) {
15139 // If the shift is too large, then see if we can deduce that the
15140 // shift is safe anyway.
15141
15142 // Check if the bits being shifted out are known to be zero.
15143 KnownBits KnownShVal = DAG.computeKnownBits(ShVal);
15144 if (ShAmtC->getAPIntValue().ugt(KnownShVal.countMinLeadingZeros()))
15145 return SDValue();
15146 }
15147 }
15148
15149 // Ensure that the shift amount is wide enough for the shifted value.
15150 if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits())
15151 ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
15152
15153 return DAG.getNode(N0.getOpcode(), DL, VT,
15154 DAG.getNode(ISD::ZERO_EXTEND, DL, VT, ShVal), ShAmt);
15155 }
15156 }
15157 }
15158
15159 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
15160 return NewVSel;
15161
15162 if (SDValue NewCtPop = widenCtPop(N, DAG, DL))
15163 return NewCtPop;
15164
15165 if (SDValue V = widenAbs(N, DAG))
15166 return V;
15167
15168 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG, DL, Level))
15169 return Res;
15170
15171 // CSE zext nneg with sext if the zext is not free.
15172 if (N->getFlags().hasNonNeg() && !TLI.isZExtFree(N0.getValueType(), VT)) {
15173 SDNode *CSENode = DAG.getNodeIfExists(ISD::SIGN_EXTEND, N->getVTList(), N0);
15174 if (CSENode)
15175 return SDValue(CSENode, 0);
15176 }
15177
15178 return SDValue();
15179}
15180
15181SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
15182 SDValue N0 = N->getOperand(0);
15183 EVT VT = N->getValueType(0);
15184 SDLoc DL(N);
15185
15186 // aext(undef) = undef
15187 if (N0.isUndef())
15188 return DAG.getUNDEF(VT);
15189
15190 if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes))
15191 return Res;
15192
15193 // fold (aext (aext x)) -> (aext x)
15194 // fold (aext (zext x)) -> (zext x)
15195 // fold (aext (sext x)) -> (sext x)
15196 if (N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::ZERO_EXTEND ||
15197 N0.getOpcode() == ISD::SIGN_EXTEND) {
15198 SDNodeFlags Flags;
15199 if (N0.getOpcode() == ISD::ZERO_EXTEND)
15200 Flags.setNonNeg(N0->getFlags().hasNonNeg());
15201 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Flags);
15202 }
15203
15204 // fold (aext (aext_extend_vector_inreg x)) -> (aext_extend_vector_inreg x)
15205 // fold (aext (zext_extend_vector_inreg x)) -> (zext_extend_vector_inreg x)
15206 // fold (aext (sext_extend_vector_inreg x)) -> (sext_extend_vector_inreg x)
15210 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0));
15211
15212 // fold (aext (truncate (load x))) -> (aext (smaller load x))
15213 // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
15214 if (N0.getOpcode() == ISD::TRUNCATE) {
15215 if (SDValue NarrowLoad = reduceLoadWidth(N0.getNode())) {
15216 SDNode *oye = N0.getOperand(0).getNode();
15217 if (NarrowLoad.getNode() != N0.getNode()) {
15218 CombineTo(N0.getNode(), NarrowLoad);
15219 // CombineTo deleted the truncate, if needed, but not what's under it.
15220 AddToWorklist(oye);
15221 }
15222 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15223 }
15224 }
15225
15226 // fold (aext (truncate x))
15227 if (N0.getOpcode() == ISD::TRUNCATE)
15228 return DAG.getAnyExtOrTrunc(N0.getOperand(0), DL, VT);
15229
15230 // Fold (aext (and (trunc x), cst)) -> (and x, cst)
15231 // if the trunc is not free.
15232 if (N0.getOpcode() == ISD::AND &&
15233 N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
15234 N0.getOperand(1).getOpcode() == ISD::Constant &&
15235 !TLI.isTruncateFree(N0.getOperand(0).getOperand(0), N0.getValueType())) {
15236 SDValue X = DAG.getAnyExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
15237 SDValue Y = DAG.getNode(ISD::ANY_EXTEND, DL, VT, N0.getOperand(1));
15238 assert(isa<ConstantSDNode>(Y) && "Expected constant to be folded!");
15239 return DAG.getNode(ISD::AND, DL, VT, X, Y);
15240 }
15241
15242 // fold (aext (load x)) -> (aext (truncate (extload x)))
15243 // None of the supported targets knows how to perform load and any_ext
15244 // on vectors in one instruction, so attempt to fold to zext instead.
15245 if (VT.isVector()) {
15246 // Try to simplify (zext (load x)).
15247 if (SDValue foldedExt =
15248 tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
15250 return foldedExt;
15251 } else if (ISD::isNON_EXTLoad(N0.getNode()) &&
15254 bool DoXform = true;
15256 if (!N0.hasOneUse())
15257 DoXform =
15258 ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
15259 if (DoXform) {
15260 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
15261 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, DL, VT, LN0->getChain(),
15262 LN0->getBasePtr(), N0.getValueType(),
15263 LN0->getMemOperand());
15264 ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
15265 // If the load value is used only by N, replace it via CombineTo N.
15266 bool NoReplaceTrunc = N0.hasOneUse();
15267 CombineTo(N, ExtLoad);
15268 if (NoReplaceTrunc) {
15269 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
15270 recursivelyDeleteUnusedNodes(LN0);
15271 } else {
15272 SDValue Trunc =
15273 DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
15274 CombineTo(LN0, Trunc, ExtLoad.getValue(1));
15275 }
15276 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15277 }
15278 }
15279
15280 // fold (aext (zextload x)) -> (aext (truncate (zextload x)))
15281 // fold (aext (sextload x)) -> (aext (truncate (sextload x)))
15282 // fold (aext ( extload x)) -> (aext (truncate (extload x)))
15283 if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
15284 ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
15285 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
15286 ISD::LoadExtType ExtType = LN0->getExtensionType();
15287 EVT MemVT = LN0->getMemoryVT();
15288 if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
15289 SDValue ExtLoad =
15290 DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), LN0->getBasePtr(),
15291 MemVT, LN0->getMemOperand());
15292 CombineTo(N, ExtLoad);
15293 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
15294 recursivelyDeleteUnusedNodes(LN0);
15295 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15296 }
15297 }
15298
15299 if (N0.getOpcode() == ISD::SETCC) {
15300 // Propagate fast-math-flags.
15301 SelectionDAG::FlagInserter FlagsInserter(DAG, N0->getFlags());
15302
15303 // For vectors:
15304 // aext(setcc) -> vsetcc
15305 // aext(setcc) -> truncate(vsetcc)
15306 // aext(setcc) -> aext(vsetcc)
15307 // Only do this before legalize for now.
15308 if (VT.isVector() && !LegalOperations) {
15309 EVT N00VT = N0.getOperand(0).getValueType();
15310 if (getSetCCResultType(N00VT) == N0.getValueType())
15311 return SDValue();
15312
15313 // We know that the # elements of the results is the same as the
15314 // # elements of the compare (and the # elements of the compare result
15315 // for that matter). Check to see that they are the same size. If so,
15316 // we know that the element size of the sext'd result matches the
15317 // element size of the compare operands.
15318 if (VT.getSizeInBits() == N00VT.getSizeInBits())
15319 return DAG.getSetCC(DL, VT, N0.getOperand(0), N0.getOperand(1),
15320 cast<CondCodeSDNode>(N0.getOperand(2))->get());
15321
15322 // If the desired elements are smaller or larger than the source
15323 // elements we can use a matching integer vector type and then
15324 // truncate/any extend
15325 EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
15326 SDValue VsetCC = DAG.getSetCC(
15327 DL, MatchingVectorType, N0.getOperand(0), N0.getOperand(1),
15328 cast<CondCodeSDNode>(N0.getOperand(2))->get());
15329 return DAG.getAnyExtOrTrunc(VsetCC, DL, VT);
15330 }
15331
15332 // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
15333 if (SDValue SCC = SimplifySelectCC(
15334 DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
15335 DAG.getConstant(0, DL, VT),
15336 cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
15337 return SCC;
15338 }
15339
15340 if (SDValue NewCtPop = widenCtPop(N, DAG, DL))
15341 return NewCtPop;
15342
15343 if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG, DL, Level))
15344 return Res;
15345
15346 return SDValue();
15347}
15348
15349SDValue DAGCombiner::visitAssertExt(SDNode *N) {
15350 unsigned Opcode = N->getOpcode();
15351 SDValue N0 = N->getOperand(0);
15352 SDValue N1 = N->getOperand(1);
15353 EVT AssertVT = cast<VTSDNode>(N1)->getVT();
15354
15355 // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
15356 if (N0.getOpcode() == Opcode &&
15357 AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
15358 return N0;
15359
15360 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
15361 N0.getOperand(0).getOpcode() == Opcode) {
15362 // We have an assert, truncate, assert sandwich. Make one stronger assert
15363 // by asserting on the smallest asserted type to the larger source type.
15364 // This eliminates the later assert:
15365 // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
15366 // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
15367 SDLoc DL(N);
15368 SDValue BigA = N0.getOperand(0);
15369 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
15370 EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
15371 SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
15372 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
15373 BigA.getOperand(0), MinAssertVTVal);
15374 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
15375 }
15376
15377 // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
15378 // than X. Just move the AssertZext in front of the truncate and drop the
15379 // AssertSExt.
15380 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
15382 Opcode == ISD::AssertZext) {
15383 SDValue BigA = N0.getOperand(0);
15384 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
15385 if (AssertVT.bitsLT(BigA_AssertVT)) {
15386 SDLoc DL(N);
15387 SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
15388 BigA.getOperand(0), N1);
15389 return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
15390 }
15391 }
15392
15393 if (Opcode == ISD::AssertZext && N0.getOpcode() == ISD::AND &&
15395 const APInt &Mask = N0.getConstantOperandAPInt(1);
15396
15397 // If we have (AssertZext (and (AssertSext X, iX), M), iY) and Y is smaller
15398 // than X, and the And doesn't change the lower iX bits, we can move the
15399 // AssertZext in front of the And and drop the AssertSext.
15400 if (N0.getOperand(0).getOpcode() == ISD::AssertSext && N0.hasOneUse()) {
15401 SDValue BigA = N0.getOperand(0);
15402 EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
15403 if (AssertVT.bitsLT(BigA_AssertVT) &&
15404 Mask.countr_one() >= BigA_AssertVT.getScalarSizeInBits()) {
15405 SDLoc DL(N);
15406 SDValue NewAssert =
15407 DAG.getNode(Opcode, DL, N->getValueType(0), BigA.getOperand(0), N1);
15408 return DAG.getNode(ISD::AND, DL, N->getValueType(0), NewAssert,
15409 N0.getOperand(1));
15410 }
15411 }
15412
15413 // Remove AssertZext entirely if the mask guarantees the assertion cannot
15414 // fail.
15415 // TODO: Use KB countMinLeadingZeros to handle non-constant masks?
15416 if (Mask.isIntN(AssertVT.getScalarSizeInBits()))
15417 return N0;
15418 }
15419
15420 return SDValue();
15421}
15422
15423SDValue DAGCombiner::visitAssertAlign(SDNode *N) {
15424 SDLoc DL(N);
15425
15426 Align AL = cast<AssertAlignSDNode>(N)->getAlign();
15427 SDValue N0 = N->getOperand(0);
15428
15429 // Fold (assertalign (assertalign x, AL0), AL1) ->
15430 // (assertalign x, max(AL0, AL1))
15431 if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0))
15432 return DAG.getAssertAlign(DL, N0.getOperand(0),
15433 std::max(AL, AAN->getAlign()));
15434
15435 // In rare cases, there are trivial arithmetic ops in source operands. Sink
15436 // this assert down to source operands so that those arithmetic ops could be
15437 // exposed to the DAG combining.
15438 switch (N0.getOpcode()) {
15439 default:
15440 break;
15441 case ISD::ADD:
15442 case ISD::PTRADD:
15443 case ISD::SUB: {
15444 unsigned AlignShift = Log2(AL);
15445 SDValue LHS = N0.getOperand(0);
15446 SDValue RHS = N0.getOperand(1);
15447 unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros();
15448 unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros();
15449 if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) {
15450 if (LHSAlignShift < AlignShift)
15451 LHS = DAG.getAssertAlign(DL, LHS, AL);
15452 if (RHSAlignShift < AlignShift)
15453 RHS = DAG.getAssertAlign(DL, RHS, AL);
15454 return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS);
15455 }
15456 break;
15457 }
15458 }
15459
15460 return SDValue();
15461}
15462
15463/// If the result of a load is shifted/masked/truncated to an effectively
15464/// narrower type, try to transform the load to a narrower type and/or
15465/// use an extending load.
15466SDValue DAGCombiner::reduceLoadWidth(SDNode *N) {
15467 unsigned Opc = N->getOpcode();
15468
15470 SDValue N0 = N->getOperand(0);
15471 EVT VT = N->getValueType(0);
15472 EVT ExtVT = VT;
15473
15474 // This transformation isn't valid for vector loads.
15475 if (VT.isVector())
15476 return SDValue();
15477
15478 // The ShAmt variable is used to indicate that we've consumed a right
15479 // shift. I.e. we want to narrow the width of the load by skipping to load the
15480 // ShAmt least significant bits.
15481 unsigned ShAmt = 0;
15482 // A special case is when the least significant bits from the load are masked
15483 // away, but using an AND rather than a right shift. HasShiftedOffset is used
15484 // to indicate that the narrowed load should be left-shifted ShAmt bits to get
15485 // the result.
15486 unsigned ShiftedOffset = 0;
15487 // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
15488 // extended to VT.
15489 if (Opc == ISD::SIGN_EXTEND_INREG) {
15490 ExtType = ISD::SEXTLOAD;
15491 ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
15492 } else if (Opc == ISD::SRL || Opc == ISD::SRA) {
15493 // Another special-case: SRL/SRA is basically zero/sign-extending a narrower
15494 // value, or it may be shifting a higher subword, half or byte into the
15495 // lowest bits.
15496
15497 // Only handle shift with constant shift amount, and the shiftee must be a
15498 // load.
15499 auto *LN = dyn_cast<LoadSDNode>(N0);
15500 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15501 if (!N1C || !LN)
15502 return SDValue();
15503 // If the shift amount is larger than the memory type then we're not
15504 // accessing any of the loaded bytes.
15505 ShAmt = N1C->getZExtValue();
15506 uint64_t MemoryWidth = LN->getMemoryVT().getScalarSizeInBits();
15507 if (MemoryWidth <= ShAmt)
15508 return SDValue();
15509 // Attempt to fold away the SRL by using ZEXTLOAD and SRA by using SEXTLOAD.
15510 ExtType = Opc == ISD::SRL ? ISD::ZEXTLOAD : ISD::SEXTLOAD;
15511 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt);
15512 // If original load is a SEXTLOAD then we can't simply replace it by a
15513 // ZEXTLOAD (we could potentially replace it by a more narrow SEXTLOAD
15514 // followed by a ZEXT, but that is not handled at the moment). Similarly if
15515 // the original load is a ZEXTLOAD and we want to use a SEXTLOAD.
15516 if ((LN->getExtensionType() == ISD::SEXTLOAD ||
15517 LN->getExtensionType() == ISD::ZEXTLOAD) &&
15518 LN->getExtensionType() != ExtType)
15519 return SDValue();
15520 } else if (Opc == ISD::AND) {
15521 // An AND with a constant mask is the same as a truncate + zero-extend.
15522 auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
15523 if (!AndC)
15524 return SDValue();
15525
15526 const APInt &Mask = AndC->getAPIntValue();
15527 unsigned ActiveBits = 0;
15528 if (Mask.isMask()) {
15529 ActiveBits = Mask.countr_one();
15530 } else if (Mask.isShiftedMask(ShAmt, ActiveBits)) {
15531 ShiftedOffset = ShAmt;
15532 } else {
15533 return SDValue();
15534 }
15535
15536 ExtType = ISD::ZEXTLOAD;
15537 ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
15538 }
15539
15540 // In case Opc==SRL we've already prepared ExtVT/ExtType/ShAmt based on doing
15541 // a right shift. Here we redo some of those checks, to possibly adjust the
15542 // ExtVT even further based on "a masking AND". We could also end up here for
15543 // other reasons (e.g. based on Opc==TRUNCATE) and that is why some checks
15544 // need to be done here as well.
15545 if (Opc == ISD::SRL || N0.getOpcode() == ISD::SRL) {
15546 SDValue SRL = Opc == ISD::SRL ? SDValue(N, 0) : N0;
15547 // Bail out when the SRL has more than one use. This is done for historical
15548 // (undocumented) reasons. Maybe intent was to guard the AND-masking below
15549 // check below? And maybe it could be non-profitable to do the transform in
15550 // case the SRL has multiple uses and we get here with Opc!=ISD::SRL?
15551 // FIXME: Can't we just skip this check for the Opc==ISD::SRL case.
15552 if (!SRL.hasOneUse())
15553 return SDValue();
15554
15555 // Only handle shift with constant shift amount, and the shiftee must be a
15556 // load.
15557 auto *LN = dyn_cast<LoadSDNode>(SRL.getOperand(0));
15558 auto *SRL1C = dyn_cast<ConstantSDNode>(SRL.getOperand(1));
15559 if (!SRL1C || !LN)
15560 return SDValue();
15561
15562 // If the shift amount is larger than the input type then we're not
15563 // accessing any of the loaded bytes. If the load was a zextload/extload
15564 // then the result of the shift+trunc is zero/undef (handled elsewhere).
15565 ShAmt = SRL1C->getZExtValue();
15566 uint64_t MemoryWidth = LN->getMemoryVT().getSizeInBits();
15567 if (ShAmt >= MemoryWidth)
15568 return SDValue();
15569
15570 // Because a SRL must be assumed to *need* to zero-extend the high bits
15571 // (as opposed to anyext the high bits), we can't combine the zextload
15572 // lowering of SRL and an sextload.
15573 if (LN->getExtensionType() == ISD::SEXTLOAD)
15574 return SDValue();
15575
15576 // Avoid reading outside the memory accessed by the original load (could
15577 // happened if we only adjust the load base pointer by ShAmt). Instead we
15578 // try to narrow the load even further. The typical scenario here is:
15579 // (i64 (truncate (i96 (srl (load x), 64)))) ->
15580 // (i64 (truncate (i96 (zextload (load i32 + offset) from i32))))
15581 if (ExtVT.getScalarSizeInBits() > MemoryWidth - ShAmt) {
15582 // Don't replace sextload by zextload.
15583 if (ExtType == ISD::SEXTLOAD)
15584 return SDValue();
15585 // Narrow the load.
15586 ExtType = ISD::ZEXTLOAD;
15587 ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShAmt);
15588 }
15589
15590 // If the SRL is only used by a masking AND, we may be able to adjust
15591 // the ExtVT to make the AND redundant.
15592 SDNode *Mask = *(SRL->user_begin());
15593 if (SRL.hasOneUse() && Mask->getOpcode() == ISD::AND &&
15594 isa<ConstantSDNode>(Mask->getOperand(1))) {
15595 unsigned Offset, ActiveBits;
15596 const APInt& ShiftMask = Mask->getConstantOperandAPInt(1);
15597 if (ShiftMask.isMask()) {
15598 EVT MaskedVT =
15599 EVT::getIntegerVT(*DAG.getContext(), ShiftMask.countr_one());
15600 // If the mask is smaller, recompute the type.
15601 if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) &&
15602 TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT))
15603 ExtVT = MaskedVT;
15604 } else if (ExtType == ISD::ZEXTLOAD &&
15605 ShiftMask.isShiftedMask(Offset, ActiveBits) &&
15606 (Offset + ShAmt) < VT.getScalarSizeInBits()) {
15607 EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
15608 // If the mask is shifted we can use a narrower load and a shl to insert
15609 // the trailing zeros.
15610 if (((Offset + ActiveBits) <= ExtVT.getScalarSizeInBits()) &&
15611 TLI.isLoadExtLegal(ExtType, SRL.getValueType(), MaskedVT)) {
15612 ExtVT = MaskedVT;
15613 ShAmt = Offset + ShAmt;
15614 ShiftedOffset = Offset;
15615 }
15616 }
15617 }
15618
15619 N0 = SRL.getOperand(0);
15620 }
15621
15622 // If the load is shifted left (and the result isn't shifted back right), we
15623 // can fold a truncate through the shift. The typical scenario is that N
15624 // points at a TRUNCATE here so the attempted fold is:
15625 // (truncate (shl (load x), c))) -> (shl (narrow load x), c)
15626 // ShLeftAmt will indicate how much a narrowed load should be shifted left.
15627 unsigned ShLeftAmt = 0;
15628 if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
15629 ExtVT == VT && TLI.isNarrowingProfitable(N, N0.getValueType(), VT)) {
15630 if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
15631 ShLeftAmt = N01->getZExtValue();
15632 N0 = N0.getOperand(0);
15633 }
15634 }
15635
15636 // If we haven't found a load, we can't narrow it.
15637 if (!isa<LoadSDNode>(N0))
15638 return SDValue();
15639
15640 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
15641 // Reducing the width of a volatile load is illegal. For atomics, we may be
15642 // able to reduce the width provided we never widen again. (see D66309)
15643 if (!LN0->isSimple() ||
15644 !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
15645 return SDValue();
15646
15647 auto AdjustBigEndianShift = [&](unsigned ShAmt) {
15648 unsigned LVTStoreBits =
15650 unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedValue();
15651 return LVTStoreBits - EVTStoreBits - ShAmt;
15652 };
15653
15654 // We need to adjust the pointer to the load by ShAmt bits in order to load
15655 // the correct bytes.
15656 unsigned PtrAdjustmentInBits =
15657 DAG.getDataLayout().isBigEndian() ? AdjustBigEndianShift(ShAmt) : ShAmt;
15658
15659 uint64_t PtrOff = PtrAdjustmentInBits / 8;
15660 SDLoc DL(LN0);
15661 // The original load itself didn't wrap, so an offset within it doesn't.
15662 SDValue NewPtr =
15665 AddToWorklist(NewPtr.getNode());
15666
15667 SDValue Load;
15668 if (ExtType == ISD::NON_EXTLOAD) {
15669 const MDNode *OldRanges = LN0->getRanges();
15670 const MDNode *NewRanges = nullptr;
15671 // If LSBs are loaded and the truncated ConstantRange for the OldRanges
15672 // metadata is not the full-set for the new width then create a NewRanges
15673 // metadata for the truncated load
15674 if (ShAmt == 0 && OldRanges) {
15675 ConstantRange CR = getConstantRangeFromMetadata(*OldRanges);
15676 unsigned BitSize = VT.getScalarSizeInBits();
15677
15678 // It is possible for an 8-bit extending load with 8-bit range
15679 // metadata to be narrowed to an 8-bit load. This guard is necessary to
15680 // ensure that truncation is strictly smaller.
15681 if (CR.getBitWidth() > BitSize) {
15682 ConstantRange TruncatedCR = CR.truncate(BitSize);
15683 if (!TruncatedCR.isFullSet()) {
15684 Metadata *Bounds[2] = {
15686 ConstantInt::get(*DAG.getContext(), TruncatedCR.getLower())),
15688 ConstantInt::get(*DAG.getContext(), TruncatedCR.getUpper()))};
15689 NewRanges = MDNode::get(*DAG.getContext(), Bounds);
15690 }
15691 } else if (CR.getBitWidth() == BitSize)
15692 NewRanges = OldRanges;
15693 }
15694 Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr,
15695 LN0->getPointerInfo().getWithOffset(PtrOff),
15696 LN0->getBaseAlign(), LN0->getMemOperand()->getFlags(),
15697 LN0->getAAInfo(), NewRanges);
15698 } else
15699 Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr,
15700 LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
15701 LN0->getBaseAlign(), LN0->getMemOperand()->getFlags(),
15702 LN0->getAAInfo());
15703
15704 // Replace the old load's chain with the new load's chain.
15705 WorklistRemover DeadNodes(*this);
15706 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
15707
15708 // Shift the result left, if we've swallowed a left shift.
15710 if (ShLeftAmt != 0) {
15711 // If the shift amount is as large as the result size (but, presumably,
15712 // no larger than the source) then the useful bits of the result are
15713 // zero; we can't simply return the shortened shift, because the result
15714 // of that operation is undefined.
15715 if (ShLeftAmt >= VT.getScalarSizeInBits())
15716 Result = DAG.getConstant(0, DL, VT);
15717 else
15718 Result = DAG.getNode(ISD::SHL, DL, VT, Result,
15719 DAG.getShiftAmountConstant(ShLeftAmt, VT, DL));
15720 }
15721
15722 if (ShiftedOffset != 0) {
15723 // We're using a shifted mask, so the load now has an offset. This means
15724 // that data has been loaded into the lower bytes than it would have been
15725 // before, so we need to shl the loaded data into the correct position in the
15726 // register.
15727 SDValue ShiftC = DAG.getConstant(ShiftedOffset, DL, VT);
15728 Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
15729 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
15730 }
15731
15732 // Return the new loaded value.
15733 return Result;
15734}
15735
15736SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
15737 SDValue N0 = N->getOperand(0);
15738 SDValue N1 = N->getOperand(1);
15739 EVT VT = N->getValueType(0);
15740 EVT ExtVT = cast<VTSDNode>(N1)->getVT();
15741 unsigned VTBits = VT.getScalarSizeInBits();
15742 unsigned ExtVTBits = ExtVT.getScalarSizeInBits();
15743 SDLoc DL(N);
15744
15745 // sext_vector_inreg(undef) = 0 because the top bit will all be the same.
15746 if (N0.isUndef())
15747 return DAG.getConstant(0, DL, VT);
15748
15749 // fold (sext_in_reg c1) -> c1
15750 if (SDValue C =
15752 return C;
15753
15754 // If the input is already sign extended, just drop the extension.
15755 if (ExtVTBits >= DAG.ComputeMaxSignificantBits(N0))
15756 return N0;
15757
15758 // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
15759 if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
15760 ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
15761 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N0.getOperand(0), N1);
15762
15763 // fold (sext_in_reg (sext x)) -> (sext x)
15764 // fold (sext_in_reg (aext x)) -> (sext x)
15765 // if x is small enough or if we know that x has more than 1 sign bit and the
15766 // sign_extend_inreg is extending from one of them.
15767 if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
15768 SDValue N00 = N0.getOperand(0);
15769 unsigned N00Bits = N00.getScalarValueSizeInBits();
15770 if ((N00Bits <= ExtVTBits ||
15771 DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits) &&
15772 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
15773 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N00);
15774 }
15775
15776 // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
15777 // if x is small enough or if we know that x has more than 1 sign bit and the
15778 // sign_extend_inreg is extending from one of them.
15780 SDValue N00 = N0.getOperand(0);
15781 unsigned N00Bits = N00.getScalarValueSizeInBits();
15782 bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
15783 if ((N00Bits == ExtVTBits ||
15784 (!IsZext && (N00Bits < ExtVTBits ||
15785 DAG.ComputeMaxSignificantBits(N00) <= ExtVTBits))) &&
15786 (!LegalOperations ||
15788 return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, DL, VT, N00);
15789 }
15790
15791 // fold (sext_in_reg (zext x)) -> (sext x)
15792 // iff we are extending the source sign bit.
15793 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
15794 SDValue N00 = N0.getOperand(0);
15795 if (N00.getScalarValueSizeInBits() == ExtVTBits &&
15796 (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
15797 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N00);
15798 }
15799
15800 // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
15801 if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1)))
15802 return DAG.getZeroExtendInReg(N0, DL, ExtVT);
15803
15804 // fold operands of sext_in_reg based on knowledge that the top bits are not
15805 // demanded.
15807 return SDValue(N, 0);
15808
15809 // fold (sext_in_reg (load x)) -> (smaller sextload x)
15810 // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
15811 if (SDValue NarrowLoad = reduceLoadWidth(N))
15812 return NarrowLoad;
15813
15814 // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
15815 // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
15816 // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
15817 if (N0.getOpcode() == ISD::SRL) {
15818 if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
15819 if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) {
15820 // We can turn this into an SRA iff the input to the SRL is already sign
15821 // extended enough.
15822 unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
15823 if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits)
15824 return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0),
15825 N0.getOperand(1));
15826 }
15827 }
15828
15829 // fold (sext_inreg (extload x)) -> (sextload x)
15830 // If sextload is not supported by target, we can only do the combine when
15831 // load has one use. Doing otherwise can block folding the extload with other
15832 // extends that the target does support.
15834 ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
15835 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() &&
15836 N0.hasOneUse()) ||
15837 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
15838 auto *LN0 = cast<LoadSDNode>(N0);
15839 SDValue ExtLoad =
15840 DAG.getExtLoad(ISD::SEXTLOAD, DL, VT, LN0->getChain(),
15841 LN0->getBasePtr(), ExtVT, LN0->getMemOperand());
15842 CombineTo(N, ExtLoad);
15843 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
15844 AddToWorklist(ExtLoad.getNode());
15845 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15846 }
15847
15848 // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
15850 N0.hasOneUse() && ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
15851 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) &&
15852 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
15853 auto *LN0 = cast<LoadSDNode>(N0);
15854 SDValue ExtLoad =
15855 DAG.getExtLoad(ISD::SEXTLOAD, DL, VT, LN0->getChain(),
15856 LN0->getBasePtr(), ExtVT, LN0->getMemOperand());
15857 CombineTo(N, ExtLoad);
15858 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
15859 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15860 }
15861
15862 // fold (sext_inreg (masked_load x)) -> (sext_masked_load x)
15863 // ignore it if the masked load is already sign extended
15864 if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) {
15865 if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() &&
15866 Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD &&
15867 TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) {
15868 SDValue ExtMaskedLoad = DAG.getMaskedLoad(
15869 VT, DL, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(),
15870 Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(),
15871 Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad());
15872 CombineTo(N, ExtMaskedLoad);
15873 CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1));
15874 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15875 }
15876 }
15877
15878 // fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
15879 if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
15880 if (SDValue(GN0, 0).hasOneUse() && ExtVT == GN0->getMemoryVT() &&
15882 SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
15883 GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
15884
15885 SDValue ExtLoad = DAG.getMaskedGather(
15886 DAG.getVTList(VT, MVT::Other), ExtVT, DL, Ops, GN0->getMemOperand(),
15887 GN0->getIndexType(), ISD::SEXTLOAD);
15888
15889 CombineTo(N, ExtLoad);
15890 CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
15891 AddToWorklist(ExtLoad.getNode());
15892 return SDValue(N, 0); // Return N so it doesn't get rechecked!
15893 }
15894 }
15895
15896 // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
15897 if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) {
15898 if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
15899 N0.getOperand(1), false))
15900 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, BSwap, N1);
15901 }
15902
15903 // Fold (iM_signext_inreg
15904 // (extract_subvector (zext|anyext|sext iN_v to _) _)
15905 // from iN)
15906 // -> (extract_subvector (signext iN_v to iM))
15907 if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR && N0.hasOneUse() &&
15909 SDValue InnerExt = N0.getOperand(0);
15910 EVT InnerExtVT = InnerExt->getValueType(0);
15911 SDValue Extendee = InnerExt->getOperand(0);
15912
15913 if (ExtVTBits == Extendee.getValueType().getScalarSizeInBits() &&
15914 (!LegalOperations ||
15915 TLI.isOperationLegal(ISD::SIGN_EXTEND, InnerExtVT))) {
15916 SDValue SignExtExtendee =
15917 DAG.getNode(ISD::SIGN_EXTEND, DL, InnerExtVT, Extendee);
15918 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SignExtExtendee,
15919 N0.getOperand(1));
15920 }
15921 }
15922
15923 return SDValue();
15924}
15925
15927 SDNode *N, const SDLoc &DL, const TargetLowering &TLI, SelectionDAG &DAG,
15928 bool LegalOperations) {
15929 unsigned InregOpcode = N->getOpcode();
15930 unsigned Opcode = DAG.getOpcode_EXTEND(InregOpcode);
15931
15932 SDValue Src = N->getOperand(0);
15933 EVT VT = N->getValueType(0);
15934 EVT SrcVT = EVT::getVectorVT(*DAG.getContext(),
15935 Src.getValueType().getVectorElementType(),
15937
15938 assert(ISD::isExtVecInRegOpcode(InregOpcode) &&
15939 "Expected EXTEND_VECTOR_INREG dag node in input!");
15940
15941 // Profitability check: our operand must be an one-use CONCAT_VECTORS.
15942 // FIXME: one-use check may be overly restrictive
15943 if (!Src.hasOneUse() || Src.getOpcode() != ISD::CONCAT_VECTORS)
15944 return SDValue();
15945
15946 // Profitability check: we must be extending exactly one of it's operands.
15947 // FIXME: this is probably overly restrictive.
15948 Src = Src.getOperand(0);
15949 if (Src.getValueType() != SrcVT)
15950 return SDValue();
15951
15952 if (LegalOperations && !TLI.isOperationLegal(Opcode, VT))
15953 return SDValue();
15954
15955 return DAG.getNode(Opcode, DL, VT, Src);
15956}
15957
15958SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) {
15959 SDValue N0 = N->getOperand(0);
15960 EVT VT = N->getValueType(0);
15961 SDLoc DL(N);
15962
15963 if (N0.isUndef()) {
15964 // aext_vector_inreg(undef) = undef because the top bits are undefined.
15965 // {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same.
15966 return N->getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
15967 ? DAG.getUNDEF(VT)
15968 : DAG.getConstant(0, DL, VT);
15969 }
15970
15971 if (SDValue Res = tryToFoldExtendOfConstant(N, DL, TLI, DAG, LegalTypes))
15972 return Res;
15973
15975 return SDValue(N, 0);
15976
15978 LegalOperations))
15979 return R;
15980
15981 return SDValue();
15982}
15983
15984SDValue DAGCombiner::visitTRUNCATE_USAT_U(SDNode *N) {
15985 EVT VT = N->getValueType(0);
15986 SDValue N0 = N->getOperand(0);
15987
15988 SDValue FPVal;
15989 if (sd_match(N0, m_FPToUI(m_Value(FPVal))) &&
15991 ISD::FP_TO_UINT_SAT, FPVal.getValueType(), VT))
15992 return DAG.getNode(ISD::FP_TO_UINT_SAT, SDLoc(N0), VT, FPVal,
15993 DAG.getValueType(VT.getScalarType()));
15994
15995 return SDValue();
15996}
15997
15998/// Detect patterns of truncation with unsigned saturation:
15999///
16000/// (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type).
16001/// Return the source value x to be truncated or SDValue() if the pattern was
16002/// not matched.
16003///
16005 unsigned NumDstBits = VT.getScalarSizeInBits();
16006 unsigned NumSrcBits = In.getScalarValueSizeInBits();
16007 // Saturation with truncation. We truncate from InVT to VT.
16008 assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation");
16009
16010 SDValue Min;
16011 APInt UnsignedMax = APInt::getMaxValue(NumDstBits).zext(NumSrcBits);
16012 if (sd_match(In, m_UMin(m_Value(Min), m_SpecificInt(UnsignedMax))))
16013 return Min;
16014
16015 return SDValue();
16016}
16017
16018/// Detect patterns of truncation with signed saturation:
16019/// (truncate (smin (smax (x, signed_min_of_dest_type),
16020/// signed_max_of_dest_type)) to dest_type)
16021/// or:
16022/// (truncate (smax (smin (x, signed_max_of_dest_type),
16023/// signed_min_of_dest_type)) to dest_type).
16024///
16025/// Return the source value to be truncated or SDValue() if the pattern was not
16026/// matched.
16028 unsigned NumDstBits = VT.getScalarSizeInBits();
16029 unsigned NumSrcBits = In.getScalarValueSizeInBits();
16030 // Saturation with truncation. We truncate from InVT to VT.
16031 assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation");
16032
16033 SDValue Val;
16034 APInt SignedMax = APInt::getSignedMaxValue(NumDstBits).sext(NumSrcBits);
16035 APInt SignedMin = APInt::getSignedMinValue(NumDstBits).sext(NumSrcBits);
16036
16037 if (sd_match(In, m_SMin(m_SMax(m_Value(Val), m_SpecificInt(SignedMin)),
16038 m_SpecificInt(SignedMax))))
16039 return Val;
16040
16041 if (sd_match(In, m_SMax(m_SMin(m_Value(Val), m_SpecificInt(SignedMax)),
16042 m_SpecificInt(SignedMin))))
16043 return Val;
16044
16045 return SDValue();
16046}
16047
16048/// Detect patterns of truncation with unsigned saturation:
16050 const SDLoc &DL) {
16051 unsigned NumDstBits = VT.getScalarSizeInBits();
16052 unsigned NumSrcBits = In.getScalarValueSizeInBits();
16053 // Saturation with truncation. We truncate from InVT to VT.
16054 assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation");
16055
16056 SDValue Val;
16057 APInt UnsignedMax = APInt::getMaxValue(NumDstBits).zext(NumSrcBits);
16058 // Min == 0, Max is unsigned max of destination type.
16059 if (sd_match(In, m_SMax(m_SMin(m_Value(Val), m_SpecificInt(UnsignedMax)),
16060 m_Zero())))
16061 return Val;
16062
16063 if (sd_match(In, m_SMin(m_SMax(m_Value(Val), m_Zero()),
16064 m_SpecificInt(UnsignedMax))))
16065 return Val;
16066
16067 if (sd_match(In, m_UMin(m_SMax(m_Value(Val), m_Zero()),
16068 m_SpecificInt(UnsignedMax))))
16069 return Val;
16070
16071 return SDValue();
16072}
16073
16074static SDValue foldToSaturated(SDNode *N, EVT &VT, SDValue &Src, EVT &SrcVT,
16075 SDLoc &DL, const TargetLowering &TLI,
16076 SelectionDAG &DAG) {
16077 auto AllowedTruncateSat = [&](unsigned Opc, EVT SrcVT, EVT VT) -> bool {
16078 return (TLI.isOperationLegalOrCustom(Opc, SrcVT) &&
16079 TLI.isTypeDesirableForOp(Opc, VT));
16080 };
16081
16082 if (Src.getOpcode() == ISD::SMIN || Src.getOpcode() == ISD::SMAX) {
16083 if (AllowedTruncateSat(ISD::TRUNCATE_SSAT_S, SrcVT, VT))
16084 if (SDValue SSatVal = detectSSatSPattern(Src, VT))
16085 return DAG.getNode(ISD::TRUNCATE_SSAT_S, DL, VT, SSatVal);
16086 if (AllowedTruncateSat(ISD::TRUNCATE_SSAT_U, SrcVT, VT))
16087 if (SDValue SSatVal = detectSSatUPattern(Src, VT, DAG, DL))
16088 return DAG.getNode(ISD::TRUNCATE_SSAT_U, DL, VT, SSatVal);
16089 } else if (Src.getOpcode() == ISD::UMIN) {
16090 if (AllowedTruncateSat(ISD::TRUNCATE_SSAT_U, SrcVT, VT))
16091 if (SDValue SSatVal = detectSSatUPattern(Src, VT, DAG, DL))
16092 return DAG.getNode(ISD::TRUNCATE_SSAT_U, DL, VT, SSatVal);
16093 if (AllowedTruncateSat(ISD::TRUNCATE_USAT_U, SrcVT, VT))
16094 if (SDValue USatVal = detectUSatUPattern(Src, VT))
16095 return DAG.getNode(ISD::TRUNCATE_USAT_U, DL, VT, USatVal);
16096 }
16097
16098 return SDValue();
16099}
16100
16101SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
16102 SDValue N0 = N->getOperand(0);
16103 EVT VT = N->getValueType(0);
16104 EVT SrcVT = N0.getValueType();
16105 bool isLE = DAG.getDataLayout().isLittleEndian();
16106 SDLoc DL(N);
16107
16108 // trunc(undef) = undef
16109 if (N0.isUndef())
16110 return DAG.getUNDEF(VT);
16111
16112 // fold (truncate (truncate x)) -> (truncate x)
16113 if (N0.getOpcode() == ISD::TRUNCATE)
16114 return DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
16115
16116 // fold saturated truncate
16117 if (SDValue SaturatedTR = foldToSaturated(N, VT, N0, SrcVT, DL, TLI, DAG))
16118 return SaturatedTR;
16119
16120 // fold (truncate c1) -> c1
16121 if (SDValue C = DAG.FoldConstantArithmetic(ISD::TRUNCATE, DL, VT, {N0}))
16122 return C;
16123
16124 // fold (truncate (ext x)) -> (ext x) or (truncate x) or x
16125 if (N0.getOpcode() == ISD::ZERO_EXTEND ||
16126 N0.getOpcode() == ISD::SIGN_EXTEND ||
16127 N0.getOpcode() == ISD::ANY_EXTEND) {
16128 // if the source is smaller than the dest, we still need an extend.
16129 if (N0.getOperand(0).getValueType().bitsLT(VT)) {
16130 SDNodeFlags Flags;
16131 if (N0.getOpcode() == ISD::ZERO_EXTEND)
16132 Flags.setNonNeg(N0->getFlags().hasNonNeg());
16133 return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), Flags);
16134 }
16135 // if the source is larger than the dest, than we just need the truncate.
16136 if (N0.getOperand(0).getValueType().bitsGT(VT))
16137 return DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
16138 // if the source and dest are the same type, we can drop both the extend
16139 // and the truncate.
16140 return N0.getOperand(0);
16141 }
16142
16143 // Try to narrow a truncate-of-sext_in_reg to the destination type:
16144 // trunc (sign_ext_inreg X, iM) to iN --> sign_ext_inreg (trunc X to iN), iM
16145 if (!LegalTypes && N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
16146 N0.hasOneUse()) {
16147 SDValue X = N0.getOperand(0);
16148 SDValue ExtVal = N0.getOperand(1);
16149 EVT ExtVT = cast<VTSDNode>(ExtVal)->getVT();
16150 if (ExtVT.bitsLT(VT) && TLI.preferSextInRegOfTruncate(VT, SrcVT, ExtVT)) {
16151 SDValue TrX = DAG.getNode(ISD::TRUNCATE, DL, VT, X);
16152 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, TrX, ExtVal);
16153 }
16154 }
16155
16156 // If this is anyext(trunc), don't fold it, allow ourselves to be folded.
16157 if (N->hasOneUse() && (N->user_begin()->getOpcode() == ISD::ANY_EXTEND))
16158 return SDValue();
16159
16160 // Fold extract-and-trunc into a narrow extract. For example:
16161 // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
16162 // i32 y = TRUNCATE(i64 x)
16163 // -- becomes --
16164 // v16i8 b = BITCAST (v2i64 val)
16165 // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
16166 //
16167 // Note: We only run this optimization after type legalization (which often
16168 // creates this pattern) and before operation legalization after which
16169 // we need to be more careful about the vector instructions that we generate.
16170 if (LegalTypes && !LegalOperations && VT.isScalarInteger() && VT != MVT::i1 &&
16171 N0->hasOneUse()) {
16172 EVT TrTy = N->getValueType(0);
16173 SDValue Src = N0;
16174
16175 // Check for cases where we shift down an upper element before truncation.
16176 int EltOffset = 0;
16177 if (Src.getOpcode() == ISD::SRL && Src.getOperand(0)->hasOneUse()) {
16178 if (auto ShAmt = DAG.getValidShiftAmount(Src)) {
16179 if ((*ShAmt % TrTy.getSizeInBits()) == 0) {
16180 Src = Src.getOperand(0);
16181 EltOffset = *ShAmt / TrTy.getSizeInBits();
16182 }
16183 }
16184 }
16185
16186 if (Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
16187 EVT VecTy = Src.getOperand(0).getValueType();
16188 EVT ExTy = Src.getValueType();
16189
16190 auto EltCnt = VecTy.getVectorElementCount();
16191 unsigned SizeRatio = ExTy.getSizeInBits() / TrTy.getSizeInBits();
16192 auto NewEltCnt = EltCnt * SizeRatio;
16193
16194 EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt);
16195 assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
16196
16197 SDValue EltNo = Src->getOperand(1);
16198 if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
16199 int Elt = EltNo->getAsZExtVal();
16200 int Index = isLE ? (Elt * SizeRatio + EltOffset)
16201 : (Elt * SizeRatio + (SizeRatio - 1) - EltOffset);
16202 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
16203 DAG.getBitcast(NVT, Src.getOperand(0)),
16204 DAG.getVectorIdxConstant(Index, DL));
16205 }
16206 }
16207 }
16208
16209 // trunc (select c, a, b) -> select c, (trunc a), (trunc b)
16210 if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse() &&
16211 TLI.isTruncateFree(SrcVT, VT)) {
16212 if (!LegalOperations ||
16213 (TLI.isOperationLegal(ISD::SELECT, SrcVT) &&
16214 TLI.isNarrowingProfitable(N0.getNode(), SrcVT, VT))) {
16215 SDLoc SL(N0);
16216 SDValue Cond = N0.getOperand(0);
16217 SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
16218 SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
16219 return DAG.getNode(ISD::SELECT, DL, VT, Cond, TruncOp0, TruncOp1);
16220 }
16221 }
16222
16223 // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
16224 if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
16225 (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
16226 TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
16227 SDValue Amt = N0.getOperand(1);
16228 KnownBits Known = DAG.computeKnownBits(Amt);
16229 unsigned Size = VT.getScalarSizeInBits();
16230 if (Known.countMaxActiveBits() <= Log2_32(Size)) {
16231 EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
16232 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
16233 if (AmtVT != Amt.getValueType()) {
16234 Amt = DAG.getZExtOrTrunc(Amt, DL, AmtVT);
16235 AddToWorklist(Amt.getNode());
16236 }
16237 return DAG.getNode(ISD::SHL, DL, VT, Trunc, Amt);
16238 }
16239 }
16240
16241 if (SDValue V = foldSubToUSubSat(VT, N0.getNode(), DL))
16242 return V;
16243
16244 if (SDValue ABD = foldABSToABD(N, DL))
16245 return ABD;
16246
16247 // Attempt to pre-truncate BUILD_VECTOR sources.
16248 if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
16249 N0.hasOneUse() &&
16250 TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) &&
16251 // Avoid creating illegal types if running after type legalizer.
16252 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) {
16253 EVT SVT = VT.getScalarType();
16254 SmallVector<SDValue, 8> TruncOps;
16255 for (const SDValue &Op : N0->op_values()) {
16256 SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
16257 TruncOps.push_back(TruncOp);
16258 }
16259 return DAG.getBuildVector(VT, DL, TruncOps);
16260 }
16261
16262 // trunc (splat_vector x) -> splat_vector (trunc x)
16263 if (N0.getOpcode() == ISD::SPLAT_VECTOR &&
16264 (!LegalTypes || TLI.isTypeLegal(VT.getScalarType())) &&
16265 (!LegalOperations || TLI.isOperationLegal(ISD::SPLAT_VECTOR, VT))) {
16266 EVT SVT = VT.getScalarType();
16267 return DAG.getSplatVector(
16268 VT, DL, DAG.getNode(ISD::TRUNCATE, DL, SVT, N0->getOperand(0)));
16269 }
16270
16271 // Fold a series of buildvector, bitcast, and truncate if possible.
16272 // For example fold
16273 // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
16274 // (2xi32 (buildvector x, y)).
16275 if (Level == AfterLegalizeVectorOps && VT.isVector() &&
16276 N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
16278 N0.getOperand(0).hasOneUse()) {
16279 SDValue BuildVect = N0.getOperand(0);
16280 EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
16281 EVT TruncVecEltTy = VT.getVectorElementType();
16282
16283 // Check that the element types match.
16284 if (BuildVectEltTy == TruncVecEltTy) {
16285 // Now we only need to compute the offset of the truncated elements.
16286 unsigned BuildVecNumElts = BuildVect.getNumOperands();
16287 unsigned TruncVecNumElts = VT.getVectorNumElements();
16288 unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
16289 unsigned FirstElt = isLE ? 0 : (TruncEltOffset - 1);
16290
16291 assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
16292 "Invalid number of elements");
16293
16295 for (unsigned i = FirstElt, e = BuildVecNumElts; i < e;
16296 i += TruncEltOffset)
16297 Opnds.push_back(BuildVect.getOperand(i));
16298
16299 return DAG.getBuildVector(VT, DL, Opnds);
16300 }
16301 }
16302
16303 // fold (truncate (load x)) -> (smaller load x)
16304 // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
16305 if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
16306 if (SDValue Reduced = reduceLoadWidth(N))
16307 return Reduced;
16308
16309 // Handle the case where the truncated result is at least as wide as the
16310 // loaded type.
16311 if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
16312 auto *LN0 = cast<LoadSDNode>(N0);
16313 if (LN0->isSimple() && LN0->getMemoryVT().bitsLE(VT)) {
16314 SDValue NewLoad = DAG.getExtLoad(
16315 LN0->getExtensionType(), SDLoc(LN0), VT, LN0->getChain(),
16316 LN0->getBasePtr(), LN0->getMemoryVT(), LN0->getMemOperand());
16317 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
16318 return NewLoad;
16319 }
16320 }
16321 }
16322
16323 // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
16324 // where ... are all 'undef'.
16325 if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
16327 SDValue V;
16328 unsigned Idx = 0;
16329 unsigned NumDefs = 0;
16330
16331 for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
16332 SDValue X = N0.getOperand(i);
16333 if (!X.isUndef()) {
16334 V = X;
16335 Idx = i;
16336 NumDefs++;
16337 }
16338 // Stop if more than one members are non-undef.
16339 if (NumDefs > 1)
16340 break;
16341
16344 X.getValueType().getVectorElementCount()));
16345 }
16346
16347 if (NumDefs == 0)
16348 return DAG.getUNDEF(VT);
16349
16350 if (NumDefs == 1) {
16351 assert(V.getNode() && "The single defined operand is empty!");
16353 for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
16354 if (i != Idx) {
16355 Opnds.push_back(DAG.getUNDEF(VTs[i]));
16356 continue;
16357 }
16358 SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
16359 AddToWorklist(NV.getNode());
16360 Opnds.push_back(NV);
16361 }
16362 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds);
16363 }
16364 }
16365
16366 // Fold truncate of a bitcast of a vector to an extract of the low vector
16367 // element.
16368 //
16369 // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
16370 if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
16371 SDValue VecSrc = N0.getOperand(0);
16372 EVT VecSrcVT = VecSrc.getValueType();
16373 if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT &&
16374 (!LegalOperations ||
16375 TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) {
16376 unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1;
16377 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, VecSrc,
16378 DAG.getVectorIdxConstant(Idx, DL));
16379 }
16380 }
16381
16382 // Simplify the operands using demanded-bits information.
16384 return SDValue(N, 0);
16385
16386 // fold (truncate (extract_subvector(ext x))) ->
16387 // (extract_subvector x)
16388 // TODO: This can be generalized to cover cases where the truncate and extract
16389 // do not fully cancel each other out.
16390 if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
16391 SDValue N00 = N0.getOperand(0);
16392 if (N00.getOpcode() == ISD::SIGN_EXTEND ||
16393 N00.getOpcode() == ISD::ZERO_EXTEND ||
16394 N00.getOpcode() == ISD::ANY_EXTEND) {
16395 if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
16397 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
16398 N00.getOperand(0), N0.getOperand(1));
16399 }
16400 }
16401
16402 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
16403 return NewVSel;
16404
16405 // Narrow a suitable binary operation with a non-opaque constant operand by
16406 // moving it ahead of the truncate. This is limited to pre-legalization
16407 // because targets may prefer a wider type during later combines and invert
16408 // this transform.
16409 switch (N0.getOpcode()) {
16410 case ISD::ADD:
16411 case ISD::SUB:
16412 case ISD::MUL:
16413 case ISD::AND:
16414 case ISD::OR:
16415 case ISD::XOR:
16416 if (!LegalOperations && N0.hasOneUse() &&
16417 (isConstantOrConstantVector(N0.getOperand(0), true) ||
16418 isConstantOrConstantVector(N0.getOperand(1), true))) {
16419 // TODO: We already restricted this to pre-legalization, but for vectors
16420 // we are extra cautious to not create an unsupported operation.
16421 // Target-specific changes are likely needed to avoid regressions here.
16422 if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
16423 SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
16424 SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
16425 SDNodeFlags Flags;
16426 // Propagate nuw for sub.
16427 if (N0->getOpcode() == ISD::SUB && N0->getFlags().hasNoUnsignedWrap() &&
16429 N0->getOperand(0),
16431 VT.getScalarSizeInBits())))
16432 Flags.setNoUnsignedWrap(true);
16433 return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR, Flags);
16434 }
16435 }
16436 break;
16437 case ISD::ADDE:
16438 case ISD::UADDO_CARRY:
16439 // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
16440 // (trunc uaddo_carry(X, Y, Carry)) ->
16441 // (uaddo_carry trunc(X), trunc(Y), Carry)
16442 // When the adde's carry is not used.
16443 // We only do for uaddo_carry before legalize operation
16444 if (((!LegalOperations && N0.getOpcode() == ISD::UADDO_CARRY) ||
16445 TLI.isOperationLegal(N0.getOpcode(), VT)) &&
16446 N0.hasOneUse() && !N0->hasAnyUseOfValue(1)) {
16447 SDValue X = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
16448 SDValue Y = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
16449 SDVTList VTs = DAG.getVTList(VT, N0->getValueType(1));
16450 return DAG.getNode(N0.getOpcode(), DL, VTs, X, Y, N0.getOperand(2));
16451 }
16452 break;
16453 case ISD::USUBSAT:
16454 // Truncate the USUBSAT only if LHS is a known zero-extension, its not
16455 // enough to know that the upper bits are zero we must ensure that we don't
16456 // introduce an extra truncate.
16457 if (!LegalOperations && N0.hasOneUse() &&
16460 VT.getScalarSizeInBits() &&
16461 hasOperation(N0.getOpcode(), VT)) {
16462 return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1),
16463 DAG, DL);
16464 }
16465 break;
16466 case ISD::AVGFLOORS:
16467 case ISD::AVGFLOORU:
16468 case ISD::AVGCEILS:
16469 case ISD::AVGCEILU:
16470 case ISD::ABDS:
16471 case ISD::ABDU:
16472 // (trunc (avg a, b)) -> (avg (trunc a), (trunc b))
16473 // (trunc (abdu/abds a, b)) -> (abdu/abds (trunc a), (trunc b))
16474 if (!LegalOperations && N0.hasOneUse() &&
16475 TLI.isOperationLegal(N0.getOpcode(), VT)) {
16476 EVT TruncVT = VT;
16477 unsigned SrcBits = SrcVT.getScalarSizeInBits();
16478 unsigned TruncBits = TruncVT.getScalarSizeInBits();
16479
16480 SDValue A = N0.getOperand(0);
16481 SDValue B = N0.getOperand(1);
16482 bool CanFold = false;
16483
16484 if (N0.getOpcode() == ISD::AVGFLOORU || N0.getOpcode() == ISD::AVGCEILU ||
16485 N0.getOpcode() == ISD::ABDU) {
16486 APInt UpperBits = APInt::getBitsSetFrom(SrcBits, TruncBits);
16487 CanFold = DAG.MaskedValueIsZero(B, UpperBits) &&
16488 DAG.MaskedValueIsZero(A, UpperBits);
16489 } else {
16490 unsigned NeededBits = SrcBits - TruncBits;
16491 CanFold = DAG.ComputeNumSignBits(B) > NeededBits &&
16492 DAG.ComputeNumSignBits(A) > NeededBits;
16493 }
16494
16495 if (CanFold) {
16496 SDValue NewA = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, A);
16497 SDValue NewB = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, B);
16498 return DAG.getNode(N0.getOpcode(), DL, TruncVT, NewA, NewB);
16499 }
16500 }
16501 break;
16502 }
16503
16504 return SDValue();
16505}
16506
16507static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
16508 SDValue Elt = N->getOperand(i);
16509 if (Elt.getOpcode() != ISD::MERGE_VALUES)
16510 return Elt.getNode();
16511 return Elt.getOperand(Elt.getResNo()).getNode();
16512}
16513
16514/// build_pair (load, load) -> load
16515/// if load locations are consecutive.
16516SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
16517 assert(N->getOpcode() == ISD::BUILD_PAIR);
16518
16519 auto *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
16520 auto *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
16521
16522 // A BUILD_PAIR is always having the least significant part in elt 0 and the
16523 // most significant part in elt 1. So when combining into one large load, we
16524 // need to consider the endianness.
16525 if (DAG.getDataLayout().isBigEndian())
16526 std::swap(LD1, LD2);
16527
16528 if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !ISD::isNON_EXTLoad(LD2) ||
16529 !LD1->hasOneUse() || !LD2->hasOneUse() ||
16530 LD1->getAddressSpace() != LD2->getAddressSpace())
16531 return SDValue();
16532
16533 unsigned LD1Fast = 0;
16534 EVT LD1VT = LD1->getValueType(0);
16535 unsigned LD1Bytes = LD1VT.getStoreSize();
16536 if ((!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
16537 DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1) &&
16538 TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
16539 *LD1->getMemOperand(), &LD1Fast) && LD1Fast)
16540 return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
16541 LD1->getPointerInfo(), LD1->getAlign());
16542
16543 return SDValue();
16544}
16545
16546static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
16547 // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
16548 // and Lo parts; on big-endian machines it doesn't.
16549 return DAG.getDataLayout().isBigEndian() ? 1 : 0;
16550}
16551
16552SDValue DAGCombiner::foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
16553 const TargetLowering &TLI) {
16554 // If this is not a bitcast to an FP type or if the target doesn't have
16555 // IEEE754-compliant FP logic, we're done.
16556 EVT VT = N->getValueType(0);
16557 SDValue N0 = N->getOperand(0);
16558 EVT SourceVT = N0.getValueType();
16559
16560 if (!VT.isFloatingPoint())
16561 return SDValue();
16562
16563 // TODO: Handle cases where the integer constant is a different scalar
16564 // bitwidth to the FP.
16565 if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
16566 return SDValue();
16567
16568 unsigned FPOpcode;
16569 APInt SignMask;
16570 switch (N0.getOpcode()) {
16571 case ISD::AND:
16572 FPOpcode = ISD::FABS;
16573 SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
16574 break;
16575 case ISD::XOR:
16576 FPOpcode = ISD::FNEG;
16577 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
16578 break;
16579 case ISD::OR:
16580 FPOpcode = ISD::FABS;
16581 SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
16582 break;
16583 default:
16584 return SDValue();
16585 }
16586
16587 if (LegalOperations && !TLI.isOperationLegal(FPOpcode, VT))
16588 return SDValue();
16589
16590 // This needs to be the inverse of logic in foldSignChangeInBitcast.
16591 // FIXME: I don't think looking for bitcast intrinsically makes sense, but
16592 // removing this would require more changes.
16593 auto IsBitCastOrFree = [&TLI, FPOpcode](SDValue Op, EVT VT) {
16594 if (sd_match(Op, m_BitCast(m_SpecificVT(VT))))
16595 return true;
16596
16597 return FPOpcode == ISD::FABS ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT);
16598 };
16599
16600 // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
16601 // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
16602 // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
16603 // fneg (fabs X)
16604 SDValue LogicOp0 = N0.getOperand(0);
16605 ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
16606 if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
16607 IsBitCastOrFree(LogicOp0, VT)) {
16608 SDValue CastOp0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VT, LogicOp0);
16609 SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, CastOp0);
16610 NumFPLogicOpsConv++;
16611 if (N0.getOpcode() == ISD::OR)
16612 return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
16613 return FPOp;
16614 }
16615
16616 return SDValue();
16617}
16618
16619SDValue DAGCombiner::visitBITCAST(SDNode *N) {
16620 SDValue N0 = N->getOperand(0);
16621 EVT VT = N->getValueType(0);
16622
16623 if (N0.isUndef())
16624 return DAG.getUNDEF(VT);
16625
16626 // If the input is a BUILD_VECTOR with all constant elements, fold this now.
16627 // Only do this before legalize types, unless both types are integer and the
16628 // scalar type is legal. Only do this before legalize ops, since the target
16629 // maybe depending on the bitcast.
16630 // First check to see if this is all constant.
16631 // TODO: Support FP bitcasts after legalize types.
16632 if (VT.isVector() &&
16633 (!LegalTypes ||
16634 (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
16635 TLI.isTypeLegal(VT.getVectorElementType()))) &&
16636 N0.getOpcode() == ISD::BUILD_VECTOR && N0->hasOneUse() &&
16637 cast<BuildVectorSDNode>(N0)->isConstant())
16638 return DAG.FoldConstantBuildVector(cast<BuildVectorSDNode>(N0), SDLoc(N),
16640
16641 // If the input is a constant, let getNode fold it.
16642 if (isIntOrFPConstant(N0)) {
16643 // If we can't allow illegal operations, we need to check that this is just
16644 // a fp -> int or int -> conversion and that the resulting operation will
16645 // be legal.
16646 if (!LegalOperations ||
16647 (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
16649 (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
16650 TLI.isOperationLegal(ISD::Constant, VT))) {
16651 SDValue C = DAG.getBitcast(VT, N0);
16652 if (C.getNode() != N)
16653 return C;
16654 }
16655 }
16656
16657 // (conv (conv x, t1), t2) -> (conv x, t2)
16658 if (N0.getOpcode() == ISD::BITCAST)
16659 return DAG.getBitcast(VT, N0.getOperand(0));
16660
16661 // fold (conv (logicop (conv x), (c))) -> (logicop x, (conv c))
16662 // iff the current bitwise logicop type isn't legal
16663 if (ISD::isBitwiseLogicOp(N0.getOpcode()) && VT.isInteger() &&
16664 !TLI.isTypeLegal(N0.getOperand(0).getValueType())) {
16665 auto IsFreeBitcast = [VT](SDValue V) {
16666 return (V.getOpcode() == ISD::BITCAST &&
16667 V.getOperand(0).getValueType() == VT) ||
16669 V->hasOneUse());
16670 };
16671 if (IsFreeBitcast(N0.getOperand(0)) && IsFreeBitcast(N0.getOperand(1)))
16672 return DAG.getNode(N0.getOpcode(), SDLoc(N), VT,
16673 DAG.getBitcast(VT, N0.getOperand(0)),
16674 DAG.getBitcast(VT, N0.getOperand(1)));
16675 }
16676
16677 // fold (conv (load x)) -> (load (conv*)x)
16678 // If the resultant load doesn't need a higher alignment than the original!
16679 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
16680 // Do not remove the cast if the types differ in endian layout.
16682 TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
16683 // If the load is volatile, we only want to change the load type if the
16684 // resulting load is legal. Otherwise we might increase the number of
16685 // memory accesses. We don't care if the original type was legal or not
16686 // as we assume software couldn't rely on the number of accesses of an
16687 // illegal type.
16688 ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) ||
16689 TLI.isOperationLegal(ISD::LOAD, VT))) {
16690 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
16691
16692 if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
16693 *LN0->getMemOperand())) {
16694 // If the range metadata type does not match the new memory
16695 // operation type, remove the range metadata.
16696 if (const MDNode *MD = LN0->getRanges()) {
16697 ConstantInt *Lower = mdconst::extract<ConstantInt>(MD->getOperand(0));
16698 if (Lower->getBitWidth() != VT.getScalarSizeInBits() ||
16699 !VT.isInteger()) {
16700 LN0->getMemOperand()->clearRanges();
16701 }
16702 }
16703 SDValue Load =
16704 DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
16705 LN0->getMemOperand());
16706 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
16707 return Load;
16708 }
16709 }
16710
16711 if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
16712 return V;
16713
16714 // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
16715 // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
16716 //
16717 // For ppc_fp128:
16718 // fold (bitcast (fneg x)) ->
16719 // flipbit = signbit
16720 // (xor (bitcast x) (build_pair flipbit, flipbit))
16721 //
16722 // fold (bitcast (fabs x)) ->
16723 // flipbit = (and (extract_element (bitcast x), 0), signbit)
16724 // (xor (bitcast x) (build_pair flipbit, flipbit))
16725 // This often reduces constant pool loads.
16726 if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
16727 (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
16728 N0->hasOneUse() && VT.isInteger() && !VT.isVector() &&
16729 !N0.getValueType().isVector()) {
16730 SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
16731 AddToWorklist(NewConv.getNode());
16732
16733 SDLoc DL(N);
16734 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
16735 assert(VT.getSizeInBits() == 128);
16736 SDValue SignBit = DAG.getConstant(
16737 APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
16738 SDValue FlipBit;
16739 if (N0.getOpcode() == ISD::FNEG) {
16740 FlipBit = SignBit;
16741 AddToWorklist(FlipBit.getNode());
16742 } else {
16743 assert(N0.getOpcode() == ISD::FABS);
16744 SDValue Hi =
16745 DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
16747 SDLoc(NewConv)));
16748 AddToWorklist(Hi.getNode());
16749 FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
16750 AddToWorklist(FlipBit.getNode());
16751 }
16752 SDValue FlipBits =
16753 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
16754 AddToWorklist(FlipBits.getNode());
16755 return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
16756 }
16757 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
16758 if (N0.getOpcode() == ISD::FNEG)
16759 return DAG.getNode(ISD::XOR, DL, VT,
16760 NewConv, DAG.getConstant(SignBit, DL, VT));
16761 assert(N0.getOpcode() == ISD::FABS);
16762 return DAG.getNode(ISD::AND, DL, VT,
16763 NewConv, DAG.getConstant(~SignBit, DL, VT));
16764 }
16765
16766 // fold (bitconvert (fcopysign cst, x)) ->
16767 // (or (and (bitconvert x), sign), (and cst, (not sign)))
16768 // Note that we don't handle (copysign x, cst) because this can always be
16769 // folded to an fneg or fabs.
16770 //
16771 // For ppc_fp128:
16772 // fold (bitcast (fcopysign cst, x)) ->
16773 // flipbit = (and (extract_element
16774 // (xor (bitcast cst), (bitcast x)), 0),
16775 // signbit)
16776 // (xor (bitcast cst) (build_pair flipbit, flipbit))
16777 if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse() &&
16779 !VT.isVector()) {
16780 unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
16781 EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
16782 if (isTypeLegal(IntXVT)) {
16783 SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
16784 AddToWorklist(X.getNode());
16785
16786 // If X has a different width than the result/lhs, sext it or truncate it.
16787 unsigned VTWidth = VT.getSizeInBits();
16788 if (OrigXWidth < VTWidth) {
16789 X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
16790 AddToWorklist(X.getNode());
16791 } else if (OrigXWidth > VTWidth) {
16792 // To get the sign bit in the right place, we have to shift it right
16793 // before truncating.
16794 SDLoc DL(X);
16795 X = DAG.getNode(ISD::SRL, DL,
16796 X.getValueType(), X,
16797 DAG.getConstant(OrigXWidth-VTWidth, DL,
16798 X.getValueType()));
16799 AddToWorklist(X.getNode());
16800 X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
16801 AddToWorklist(X.getNode());
16802 }
16803
16804 if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
16805 APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
16806 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
16807 AddToWorklist(Cst.getNode());
16808 SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
16809 AddToWorklist(X.getNode());
16810 SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
16811 AddToWorklist(XorResult.getNode());
16812 SDValue XorResult64 = DAG.getNode(
16813 ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
16815 SDLoc(XorResult)));
16816 AddToWorklist(XorResult64.getNode());
16817 SDValue FlipBit =
16818 DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
16819 DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
16820 AddToWorklist(FlipBit.getNode());
16821 SDValue FlipBits =
16822 DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
16823 AddToWorklist(FlipBits.getNode());
16824 return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
16825 }
16826 APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
16827 X = DAG.getNode(ISD::AND, SDLoc(X), VT,
16828 X, DAG.getConstant(SignBit, SDLoc(X), VT));
16829 AddToWorklist(X.getNode());
16830
16831 SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
16832 Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
16833 Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
16834 AddToWorklist(Cst.getNode());
16835
16836 return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
16837 }
16838 }
16839
16840 // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
16841 if (N0.getOpcode() == ISD::BUILD_PAIR)
16842 if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
16843 return CombineLD;
16844
16845 // int_vt (bitcast (vec_vt (scalar_to_vector elt_vt:x)))
16846 // => int_vt (any_extend elt_vt:x)
16847 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && VT.isScalarInteger()) {
16848 SDValue SrcScalar = N0.getOperand(0);
16849 if (SrcScalar.getValueType().isScalarInteger())
16850 return DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), VT, SrcScalar);
16851 }
16852
16853 // Remove double bitcasts from shuffles - this is often a legacy of
16854 // XformToShuffleWithZero being used to combine bitmaskings (of
16855 // float vectors bitcast to integer vectors) into shuffles.
16856 // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
16857 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
16858 N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
16861 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
16862
16863 // If operands are a bitcast, peek through if it casts the original VT.
16864 // If operands are a constant, just bitcast back to original VT.
16865 auto PeekThroughBitcast = [&](SDValue Op) {
16866 if (Op.getOpcode() == ISD::BITCAST &&
16867 Op.getOperand(0).getValueType() == VT)
16868 return SDValue(Op.getOperand(0));
16869 if (Op.isUndef() || isAnyConstantBuildVector(Op))
16870 return DAG.getBitcast(VT, Op);
16871 return SDValue();
16872 };
16873
16874 // FIXME: If either input vector is bitcast, try to convert the shuffle to
16875 // the result type of this bitcast. This would eliminate at least one
16876 // bitcast. See the transform in InstCombine.
16877 SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
16878 SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
16879 if (!(SV0 && SV1))
16880 return SDValue();
16881
16882 int MaskScale =
16884 SmallVector<int, 8> NewMask;
16885 for (int M : SVN->getMask())
16886 for (int i = 0; i != MaskScale; ++i)
16887 NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
16888
16889 SDValue LegalShuffle =
16890 TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG);
16891 if (LegalShuffle)
16892 return LegalShuffle;
16893 }
16894
16895 return SDValue();
16896}
16897
16898SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
16899 EVT VT = N->getValueType(0);
16900 return CombineConsecutiveLoads(N, VT);
16901}
16902
16903SDValue DAGCombiner::visitFREEZE(SDNode *N) {
16904 SDValue N0 = N->getOperand(0);
16905
16906 if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false))
16907 return N0;
16908
16909 // If we have frozen and unfrozen users of N0, update so everything uses N.
16910 if (!N0.isUndef() && !N0.hasOneUse()) {
16911 SDValue FrozenN0(N, 0);
16912 // Unfreeze all uses of N to avoid double deleting N from the CSE map.
16913 DAG.ReplaceAllUsesOfValueWith(FrozenN0, N0);
16914 DAG.ReplaceAllUsesOfValueWith(N0, FrozenN0);
16915 // ReplaceAllUsesOfValueWith will have also updated the use in N, thus
16916 // creating a cycle in a DAG. Let's undo that by mutating the freeze.
16917 assert(N->getOperand(0) == FrozenN0 && "Expected cycle in DAG");
16918 DAG.UpdateNodeOperands(N, N0);
16919 return FrozenN0;
16920 }
16921
16922 // We currently avoid folding freeze over SRA/SRL, due to the problems seen
16923 // with (freeze (assert ext)) blocking simplifications of SRA/SRL. See for
16924 // example https://reviews.llvm.org/D136529#4120959.
16925 if (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)
16926 return SDValue();
16927
16928 // Fold freeze(op(x, ...)) -> op(freeze(x), ...).
16929 // Try to push freeze through instructions that propagate but don't produce
16930 // poison as far as possible. If an operand of freeze follows three
16931 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
16932 // guaranteed-non-poison operands (or is a BUILD_VECTOR or similar) then push
16933 // the freeze through to the operands that are not guaranteed non-poison.
16934 // NOTE: we will strip poison-generating flags, so ignore them here.
16935 if (DAG.canCreateUndefOrPoison(N0, /*PoisonOnly*/ false,
16936 /*ConsiderFlags*/ false) ||
16937 N0->getNumValues() != 1 || !N0->hasOneUse())
16938 return SDValue();
16939
16940 // TOOD: we should always allow multiple operands, however this increases the
16941 // likelihood of infinite loops due to the ReplaceAllUsesOfValueWith call
16942 // below causing later nodes that share frozen operands to fold again and no
16943 // longer being able to confirm other operands are not poison due to recursion
16944 // depth limits on isGuaranteedNotToBeUndefOrPoison.
16945 bool AllowMultipleMaybePoisonOperands =
16946 N0.getOpcode() == ISD::SELECT_CC || N0.getOpcode() == ISD::SETCC ||
16947 N0.getOpcode() == ISD::BUILD_VECTOR ||
16949 N0.getOpcode() == ISD::BUILD_PAIR ||
16952
16953 // Avoid turning a BUILD_VECTOR that can be recognized as "all zeros", "all
16954 // ones" or "constant" into something that depends on FrozenUndef. We can
16955 // instead pick undef values to keep those properties, while at the same time
16956 // folding away the freeze.
16957 // If we implement a more general solution for folding away freeze(undef) in
16958 // the future, then this special handling can be removed.
16959 if (N0.getOpcode() == ISD::BUILD_VECTOR) {
16960 SDLoc DL(N0);
16961 EVT VT = N0.getValueType();
16963 return DAG.getAllOnesConstant(DL, VT);
16966 for (const SDValue &Op : N0->op_values())
16967 NewVecC.push_back(
16968 Op.isUndef() ? DAG.getConstant(0, DL, Op.getValueType()) : Op);
16969 return DAG.getBuildVector(VT, DL, NewVecC);
16970 }
16971 }
16972
16973 SmallSet<SDValue, 8> MaybePoisonOperands;
16974 SmallVector<unsigned, 8> MaybePoisonOperandNumbers;
16975 for (auto [OpNo, Op] : enumerate(N0->ops())) {
16976 if (DAG.isGuaranteedNotToBeUndefOrPoison(Op, /*PoisonOnly=*/false))
16977 continue;
16978 bool HadMaybePoisonOperands = !MaybePoisonOperands.empty();
16979 bool IsNewMaybePoisonOperand = MaybePoisonOperands.insert(Op).second;
16980 if (IsNewMaybePoisonOperand)
16981 MaybePoisonOperandNumbers.push_back(OpNo);
16982 if (!HadMaybePoisonOperands)
16983 continue;
16984 if (IsNewMaybePoisonOperand && !AllowMultipleMaybePoisonOperands) {
16985 // Multiple maybe-poison ops when not allowed - bail out.
16986 return SDValue();
16987 }
16988 }
16989 // NOTE: the whole op may be not guaranteed to not be undef or poison because
16990 // it could create undef or poison due to it's poison-generating flags.
16991 // So not finding any maybe-poison operands is fine.
16992
16993 for (unsigned OpNo : MaybePoisonOperandNumbers) {
16994 // N0 can mutate during iteration, so make sure to refetch the maybe poison
16995 // operands via the operand numbers. The typical scenario is that we have
16996 // something like this
16997 // t262: i32 = freeze t181
16998 // t150: i32 = ctlz_zero_undef t262
16999 // t184: i32 = ctlz_zero_undef t181
17000 // t268: i32 = select_cc t181, Constant:i32<0>, t184, t186, setne:ch
17001 // When freezing the t181 operand we get t262 back, and then the
17002 // ReplaceAllUsesOfValueWith call will not only replace t181 by t262, but
17003 // also recursively replace t184 by t150.
17004 SDValue MaybePoisonOperand = N->getOperand(0).getOperand(OpNo);
17005 // Don't replace every single UNDEF everywhere with frozen UNDEF, though.
17006 if (MaybePoisonOperand.isUndef())
17007 continue;
17008 // First, freeze each offending operand.
17009 SDValue FrozenMaybePoisonOperand = DAG.getFreeze(MaybePoisonOperand);
17010 // Then, change all other uses of unfrozen operand to use frozen operand.
17011 DAG.ReplaceAllUsesOfValueWith(MaybePoisonOperand, FrozenMaybePoisonOperand);
17012 if (FrozenMaybePoisonOperand.getOpcode() == ISD::FREEZE &&
17013 FrozenMaybePoisonOperand.getOperand(0) == FrozenMaybePoisonOperand) {
17014 // But, that also updated the use in the freeze we just created, thus
17015 // creating a cycle in a DAG. Let's undo that by mutating the freeze.
17016 DAG.UpdateNodeOperands(FrozenMaybePoisonOperand.getNode(),
17017 MaybePoisonOperand);
17018 }
17019
17020 // This node has been merged with another.
17021 if (N->getOpcode() == ISD::DELETED_NODE)
17022 return SDValue(N, 0);
17023 }
17024
17025 assert(N->getOpcode() != ISD::DELETED_NODE && "Node was deleted!");
17026
17027 // The whole node may have been updated, so the value we were holding
17028 // may no longer be valid. Re-fetch the operand we're `freeze`ing.
17029 N0 = N->getOperand(0);
17030
17031 // Finally, recreate the node, it's operands were updated to use
17032 // frozen operands, so we just need to use it's "original" operands.
17034 // TODO: ISD::UNDEF and ISD::POISON should get separate handling, but best
17035 // leave for a future patch.
17036 for (SDValue &Op : Ops) {
17037 if (Op.isUndef())
17038 Op = DAG.getFreeze(Op);
17039 }
17040
17041 SDLoc DL(N0);
17042
17043 // Special case handling for ShuffleVectorSDNode nodes.
17044 if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(N0))
17045 return DAG.getVectorShuffle(N0.getValueType(), DL, Ops[0], Ops[1],
17046 SVN->getMask());
17047
17048 // NOTE: this strips poison generating flags.
17049 // Folding freeze(op(x, ...)) -> op(freeze(x), ...) does not require nnan,
17050 // ninf, nsz, or fast.
17051 // However, contract, reassoc, afn, and arcp should be preserved,
17052 // as these fast-math flags do not introduce poison values.
17053 SDNodeFlags SrcFlags = N0->getFlags();
17054 SDNodeFlags SafeFlags;
17055 SafeFlags.setAllowContract(SrcFlags.hasAllowContract());
17056 SafeFlags.setAllowReassociation(SrcFlags.hasAllowReassociation());
17057 SafeFlags.setApproximateFuncs(SrcFlags.hasApproximateFuncs());
17058 SafeFlags.setAllowReciprocal(SrcFlags.hasAllowReciprocal());
17059 return DAG.getNode(N0.getOpcode(), DL, N0->getVTList(), Ops, SafeFlags);
17060}
17061
17062// Returns true if floating point contraction is allowed on the FMUL-SDValue
17063// `N`
17065 assert(N.getOpcode() == ISD::FMUL);
17066
17067 return Options.AllowFPOpFusion == FPOpFusion::Fast ||
17068 N->getFlags().hasAllowContract();
17069}
17070
17071// Returns true if `N` can assume no infinities involved in its computation.
17073 return Options.NoInfsFPMath || N->getFlags().hasNoInfs();
17074}
17075
17076/// Try to perform FMA combining on a given FADD node.
17077template <class MatchContextClass>
17078SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
17079 SDValue N0 = N->getOperand(0);
17080 SDValue N1 = N->getOperand(1);
17081 EVT VT = N->getValueType(0);
17082 SDLoc SL(N);
17083 MatchContextClass matcher(DAG, TLI, N);
17084 const TargetOptions &Options = DAG.getTarget().Options;
17085
17086 bool UseVP = std::is_same_v<MatchContextClass, VPMatchContext>;
17087
17088 // Floating-point multiply-add with intermediate rounding.
17089 // FIXME: Make isFMADLegal have specific behavior when using VPMatchContext.
17090 // FIXME: Add VP_FMAD opcode.
17091 bool HasFMAD = !UseVP && (LegalOperations && TLI.isFMADLegal(DAG, N));
17092
17093 // Floating-point multiply-add without intermediate rounding.
17094 bool HasFMA =
17095 (!LegalOperations || matcher.isOperationLegalOrCustom(ISD::FMA, VT)) &&
17097
17098 // No valid opcode, do not combine.
17099 if (!HasFMAD && !HasFMA)
17100 return SDValue();
17101
17102 bool AllowFusionGlobally =
17103 Options.AllowFPOpFusion == FPOpFusion::Fast || HasFMAD;
17104 // If the addition is not contractable, do not combine.
17105 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract())
17106 return SDValue();
17107
17108 // Folding fadd (fmul x, y), (fmul x, y) -> fma x, y, (fmul x, y) is never
17109 // beneficial. It does not reduce latency. It increases register pressure. It
17110 // replaces an fadd with an fma which is a more complex instruction, so is
17111 // likely to have a larger encoding, use more functional units, etc.
17112 if (N0 == N1)
17113 return SDValue();
17114
17115 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
17116 return SDValue();
17117
17118 // Always prefer FMAD to FMA for precision.
17119 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
17121
17122 auto isFusedOp = [&](SDValue N) {
17123 return matcher.match(N, ISD::FMA) || matcher.match(N, ISD::FMAD);
17124 };
17125
17126 // Is the node an FMUL and contractable either due to global flags or
17127 // SDNodeFlags.
17128 auto isContractableFMUL = [AllowFusionGlobally, &matcher](SDValue N) {
17129 if (!matcher.match(N, ISD::FMUL))
17130 return false;
17131 return AllowFusionGlobally || N->getFlags().hasAllowContract();
17132 };
17133 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
17134 // prefer to fold the multiply with fewer uses.
17136 if (N0->use_size() > N1->use_size())
17137 std::swap(N0, N1);
17138 }
17139
17140 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
17141 if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
17142 return matcher.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
17143 N0.getOperand(1), N1);
17144 }
17145
17146 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
17147 // Note: Commutes FADD operands.
17148 if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
17149 return matcher.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0),
17150 N1.getOperand(1), N0);
17151 }
17152
17153 // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
17154 // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E)
17155 // This also works with nested fma instructions:
17156 // fadd (fma A, B, (fma (C, D, (fmul (E, F))))), G -->
17157 // fma A, B, (fma C, D, fma (E, F, G))
17158 // fadd (G, (fma A, B, (fma (C, D, (fmul (E, F)))))) -->
17159 // fma A, B, (fma C, D, fma (E, F, G)).
17160 // This requires reassociation because it changes the order of operations.
17161 bool CanReassociate = N->getFlags().hasAllowReassociation();
17162 if (CanReassociate) {
17163 SDValue FMA, E;
17164 if (isFusedOp(N0) && N0.hasOneUse()) {
17165 FMA = N0;
17166 E = N1;
17167 } else if (isFusedOp(N1) && N1.hasOneUse()) {
17168 FMA = N1;
17169 E = N0;
17170 }
17171
17172 SDValue TmpFMA = FMA;
17173 while (E && isFusedOp(TmpFMA) && TmpFMA.hasOneUse()) {
17174 SDValue FMul = TmpFMA->getOperand(2);
17175 if (matcher.match(FMul, ISD::FMUL) && FMul.hasOneUse()) {
17176 SDValue C = FMul.getOperand(0);
17177 SDValue D = FMul.getOperand(1);
17178 SDValue CDE = matcher.getNode(PreferredFusedOpcode, SL, VT, C, D, E);
17180 // Replacing the inner FMul could cause the outer FMA to be simplified
17181 // away.
17182 return FMA.getOpcode() == ISD::DELETED_NODE ? SDValue(N, 0) : FMA;
17183 }
17184
17185 TmpFMA = TmpFMA->getOperand(2);
17186 }
17187 }
17188
17189 // Look through FP_EXTEND nodes to do more combining.
17190
17191 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
17192 if (matcher.match(N0, ISD::FP_EXTEND)) {
17193 SDValue N00 = N0.getOperand(0);
17194 if (isContractableFMUL(N00) &&
17195 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17196 N00.getValueType())) {
17197 return matcher.getNode(
17198 PreferredFusedOpcode, SL, VT,
17199 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
17200 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), N1);
17201 }
17202 }
17203
17204 // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
17205 // Note: Commutes FADD operands.
17206 if (matcher.match(N1, ISD::FP_EXTEND)) {
17207 SDValue N10 = N1.getOperand(0);
17208 if (isContractableFMUL(N10) &&
17209 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17210 N10.getValueType())) {
17211 return matcher.getNode(
17212 PreferredFusedOpcode, SL, VT,
17213 matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)),
17214 matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0);
17215 }
17216 }
17217
17218 // More folding opportunities when target permits.
17219 if (Aggressive) {
17220 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
17221 // -> (fma x, y, (fma (fpext u), (fpext v), z))
17222 auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
17223 SDValue Z) {
17224 return matcher.getNode(
17225 PreferredFusedOpcode, SL, VT, X, Y,
17226 matcher.getNode(PreferredFusedOpcode, SL, VT,
17227 matcher.getNode(ISD::FP_EXTEND, SL, VT, U),
17228 matcher.getNode(ISD::FP_EXTEND, SL, VT, V), Z));
17229 };
17230 if (isFusedOp(N0)) {
17231 SDValue N02 = N0.getOperand(2);
17232 if (matcher.match(N02, ISD::FP_EXTEND)) {
17233 SDValue N020 = N02.getOperand(0);
17234 if (isContractableFMUL(N020) &&
17235 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17236 N020.getValueType())) {
17237 return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
17238 N020.getOperand(0), N020.getOperand(1),
17239 N1);
17240 }
17241 }
17242 }
17243
17244 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
17245 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
17246 // FIXME: This turns two single-precision and one double-precision
17247 // operation into two double-precision operations, which might not be
17248 // interesting for all targets, especially GPUs.
17249 auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
17250 SDValue Z) {
17251 return matcher.getNode(
17252 PreferredFusedOpcode, SL, VT,
17253 matcher.getNode(ISD::FP_EXTEND, SL, VT, X),
17254 matcher.getNode(ISD::FP_EXTEND, SL, VT, Y),
17255 matcher.getNode(PreferredFusedOpcode, SL, VT,
17256 matcher.getNode(ISD::FP_EXTEND, SL, VT, U),
17257 matcher.getNode(ISD::FP_EXTEND, SL, VT, V), Z));
17258 };
17259 if (N0.getOpcode() == ISD::FP_EXTEND) {
17260 SDValue N00 = N0.getOperand(0);
17261 if (isFusedOp(N00)) {
17262 SDValue N002 = N00.getOperand(2);
17263 if (isContractableFMUL(N002) &&
17264 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17265 N00.getValueType())) {
17266 return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
17267 N002.getOperand(0), N002.getOperand(1),
17268 N1);
17269 }
17270 }
17271 }
17272
17273 // fold (fadd x, (fma y, z, (fpext (fmul u, v)))
17274 // -> (fma y, z, (fma (fpext u), (fpext v), x))
17275 if (isFusedOp(N1)) {
17276 SDValue N12 = N1.getOperand(2);
17277 if (N12.getOpcode() == ISD::FP_EXTEND) {
17278 SDValue N120 = N12.getOperand(0);
17279 if (isContractableFMUL(N120) &&
17280 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17281 N120.getValueType())) {
17282 return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
17283 N120.getOperand(0), N120.getOperand(1),
17284 N0);
17285 }
17286 }
17287 }
17288
17289 // fold (fadd x, (fpext (fma y, z, (fmul u, v)))
17290 // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
17291 // FIXME: This turns two single-precision and one double-precision
17292 // operation into two double-precision operations, which might not be
17293 // interesting for all targets, especially GPUs.
17294 if (N1.getOpcode() == ISD::FP_EXTEND) {
17295 SDValue N10 = N1.getOperand(0);
17296 if (isFusedOp(N10)) {
17297 SDValue N102 = N10.getOperand(2);
17298 if (isContractableFMUL(N102) &&
17299 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17300 N10.getValueType())) {
17301 return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
17302 N102.getOperand(0), N102.getOperand(1),
17303 N0);
17304 }
17305 }
17306 }
17307 }
17308
17309 return SDValue();
17310}
17311
17312/// Try to perform FMA combining on a given FSUB node.
17313template <class MatchContextClass>
17314SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
17315 SDValue N0 = N->getOperand(0);
17316 SDValue N1 = N->getOperand(1);
17317 EVT VT = N->getValueType(0);
17318 SDLoc SL(N);
17319 MatchContextClass matcher(DAG, TLI, N);
17320 const TargetOptions &Options = DAG.getTarget().Options;
17321
17322 bool UseVP = std::is_same_v<MatchContextClass, VPMatchContext>;
17323
17324 // Floating-point multiply-add with intermediate rounding.
17325 // FIXME: Make isFMADLegal have specific behavior when using VPMatchContext.
17326 // FIXME: Add VP_FMAD opcode.
17327 bool HasFMAD = !UseVP && (LegalOperations && TLI.isFMADLegal(DAG, N));
17328
17329 // Floating-point multiply-add without intermediate rounding.
17330 bool HasFMA =
17331 (!LegalOperations || matcher.isOperationLegalOrCustom(ISD::FMA, VT)) &&
17333
17334 // No valid opcode, do not combine.
17335 if (!HasFMAD && !HasFMA)
17336 return SDValue();
17337
17338 const SDNodeFlags Flags = N->getFlags();
17339 bool AllowFusionGlobally =
17340 (Options.AllowFPOpFusion == FPOpFusion::Fast || HasFMAD);
17341
17342 // If the subtraction is not contractable, do not combine.
17343 if (!AllowFusionGlobally && !N->getFlags().hasAllowContract())
17344 return SDValue();
17345
17346 if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
17347 return SDValue();
17348
17349 // Always prefer FMAD to FMA for precision.
17350 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
17352 bool NoSignedZero = Flags.hasNoSignedZeros();
17353
17354 // Is the node an FMUL and contractable either due to global flags or
17355 // SDNodeFlags.
17356 auto isContractableFMUL = [AllowFusionGlobally, &matcher](SDValue N) {
17357 if (!matcher.match(N, ISD::FMUL))
17358 return false;
17359 return AllowFusionGlobally || N->getFlags().hasAllowContract();
17360 };
17361
17362 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
17363 auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) {
17364 if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) {
17365 return matcher.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0),
17366 XY.getOperand(1),
17367 matcher.getNode(ISD::FNEG, SL, VT, Z));
17368 }
17369 return SDValue();
17370 };
17371
17372 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
17373 // Note: Commutes FSUB operands.
17374 auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) {
17375 if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) {
17376 return matcher.getNode(
17377 PreferredFusedOpcode, SL, VT,
17378 matcher.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)),
17379 YZ.getOperand(1), X);
17380 }
17381 return SDValue();
17382 };
17383
17384 // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)),
17385 // prefer to fold the multiply with fewer uses.
17386 if (isContractableFMUL(N0) && isContractableFMUL(N1) &&
17387 (N0->use_size() > N1->use_size())) {
17388 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b))
17389 if (SDValue V = tryToFoldXSubYZ(N0, N1))
17390 return V;
17391 // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d)))
17392 if (SDValue V = tryToFoldXYSubZ(N0, N1))
17393 return V;
17394 } else {
17395 // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
17396 if (SDValue V = tryToFoldXYSubZ(N0, N1))
17397 return V;
17398 // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
17399 if (SDValue V = tryToFoldXSubYZ(N0, N1))
17400 return V;
17401 }
17402
17403 // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
17404 if (matcher.match(N0, ISD::FNEG) && isContractableFMUL(N0.getOperand(0)) &&
17405 (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
17406 SDValue N00 = N0.getOperand(0).getOperand(0);
17407 SDValue N01 = N0.getOperand(0).getOperand(1);
17408 return matcher.getNode(PreferredFusedOpcode, SL, VT,
17409 matcher.getNode(ISD::FNEG, SL, VT, N00), N01,
17410 matcher.getNode(ISD::FNEG, SL, VT, N1));
17411 }
17412
17413 // Look through FP_EXTEND nodes to do more combining.
17414
17415 // fold (fsub (fpext (fmul x, y)), z)
17416 // -> (fma (fpext x), (fpext y), (fneg z))
17417 if (matcher.match(N0, ISD::FP_EXTEND)) {
17418 SDValue N00 = N0.getOperand(0);
17419 if (isContractableFMUL(N00) &&
17420 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17421 N00.getValueType())) {
17422 return matcher.getNode(
17423 PreferredFusedOpcode, SL, VT,
17424 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
17425 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
17426 matcher.getNode(ISD::FNEG, SL, VT, N1));
17427 }
17428 }
17429
17430 // fold (fsub x, (fpext (fmul y, z)))
17431 // -> (fma (fneg (fpext y)), (fpext z), x)
17432 // Note: Commutes FSUB operands.
17433 if (matcher.match(N1, ISD::FP_EXTEND)) {
17434 SDValue N10 = N1.getOperand(0);
17435 if (isContractableFMUL(N10) &&
17436 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17437 N10.getValueType())) {
17438 return matcher.getNode(
17439 PreferredFusedOpcode, SL, VT,
17440 matcher.getNode(
17441 ISD::FNEG, SL, VT,
17442 matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))),
17443 matcher.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0);
17444 }
17445 }
17446
17447 // fold (fsub (fpext (fneg (fmul, x, y))), z)
17448 // -> (fneg (fma (fpext x), (fpext y), z))
17449 // Note: This could be removed with appropriate canonicalization of the
17450 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
17451 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
17452 // from implementing the canonicalization in visitFSUB.
17453 if (matcher.match(N0, ISD::FP_EXTEND)) {
17454 SDValue N00 = N0.getOperand(0);
17455 if (matcher.match(N00, ISD::FNEG)) {
17456 SDValue N000 = N00.getOperand(0);
17457 if (isContractableFMUL(N000) &&
17458 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17459 N00.getValueType())) {
17460 return matcher.getNode(
17461 ISD::FNEG, SL, VT,
17462 matcher.getNode(
17463 PreferredFusedOpcode, SL, VT,
17464 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
17465 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
17466 N1));
17467 }
17468 }
17469 }
17470
17471 // fold (fsub (fneg (fpext (fmul, x, y))), z)
17472 // -> (fneg (fma (fpext x)), (fpext y), z)
17473 // Note: This could be removed with appropriate canonicalization of the
17474 // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
17475 // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
17476 // from implementing the canonicalization in visitFSUB.
17477 if (matcher.match(N0, ISD::FNEG)) {
17478 SDValue N00 = N0.getOperand(0);
17479 if (matcher.match(N00, ISD::FP_EXTEND)) {
17480 SDValue N000 = N00.getOperand(0);
17481 if (isContractableFMUL(N000) &&
17482 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17483 N000.getValueType())) {
17484 return matcher.getNode(
17485 ISD::FNEG, SL, VT,
17486 matcher.getNode(
17487 PreferredFusedOpcode, SL, VT,
17488 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
17489 matcher.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
17490 N1));
17491 }
17492 }
17493 }
17494
17495 auto isContractableAndReassociableFMUL = [&isContractableFMUL](SDValue N) {
17496 return isContractableFMUL(N) && N->getFlags().hasAllowReassociation();
17497 };
17498
17499 auto isFusedOp = [&](SDValue N) {
17500 return matcher.match(N, ISD::FMA) || matcher.match(N, ISD::FMAD);
17501 };
17502
17503 // More folding opportunities when target permits.
17504 if (Aggressive && N->getFlags().hasAllowReassociation()) {
17505 bool CanFuse = N->getFlags().hasAllowContract();
17506 // fold (fsub (fma x, y, (fmul u, v)), z)
17507 // -> (fma x, y (fma u, v, (fneg z)))
17508 if (CanFuse && isFusedOp(N0) &&
17509 isContractableAndReassociableFMUL(N0.getOperand(2)) &&
17510 N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
17511 return matcher.getNode(
17512 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1),
17513 matcher.getNode(PreferredFusedOpcode, SL, VT,
17514 N0.getOperand(2).getOperand(0),
17515 N0.getOperand(2).getOperand(1),
17516 matcher.getNode(ISD::FNEG, SL, VT, N1)));
17517 }
17518
17519 // fold (fsub x, (fma y, z, (fmul u, v)))
17520 // -> (fma (fneg y), z, (fma (fneg u), v, x))
17521 if (CanFuse && isFusedOp(N1) &&
17522 isContractableAndReassociableFMUL(N1.getOperand(2)) &&
17523 N1->hasOneUse() && NoSignedZero) {
17524 SDValue N20 = N1.getOperand(2).getOperand(0);
17525 SDValue N21 = N1.getOperand(2).getOperand(1);
17526 return matcher.getNode(
17527 PreferredFusedOpcode, SL, VT,
17528 matcher.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
17529 N1.getOperand(1),
17530 matcher.getNode(PreferredFusedOpcode, SL, VT,
17531 matcher.getNode(ISD::FNEG, SL, VT, N20), N21, N0));
17532 }
17533
17534 // fold (fsub (fma x, y, (fpext (fmul u, v))), z)
17535 // -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
17536 if (isFusedOp(N0) && N0->hasOneUse()) {
17537 SDValue N02 = N0.getOperand(2);
17538 if (matcher.match(N02, ISD::FP_EXTEND)) {
17539 SDValue N020 = N02.getOperand(0);
17540 if (isContractableAndReassociableFMUL(N020) &&
17541 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17542 N020.getValueType())) {
17543 return matcher.getNode(
17544 PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1),
17545 matcher.getNode(
17546 PreferredFusedOpcode, SL, VT,
17547 matcher.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)),
17548 matcher.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)),
17549 matcher.getNode(ISD::FNEG, SL, VT, N1)));
17550 }
17551 }
17552 }
17553
17554 // fold (fsub (fpext (fma x, y, (fmul u, v))), z)
17555 // -> (fma (fpext x), (fpext y),
17556 // (fma (fpext u), (fpext v), (fneg z)))
17557 // FIXME: This turns two single-precision and one double-precision
17558 // operation into two double-precision operations, which might not be
17559 // interesting for all targets, especially GPUs.
17560 if (matcher.match(N0, ISD::FP_EXTEND)) {
17561 SDValue N00 = N0.getOperand(0);
17562 if (isFusedOp(N00)) {
17563 SDValue N002 = N00.getOperand(2);
17564 if (isContractableAndReassociableFMUL(N002) &&
17565 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17566 N00.getValueType())) {
17567 return matcher.getNode(
17568 PreferredFusedOpcode, SL, VT,
17569 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
17570 matcher.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
17571 matcher.getNode(
17572 PreferredFusedOpcode, SL, VT,
17573 matcher.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)),
17574 matcher.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)),
17575 matcher.getNode(ISD::FNEG, SL, VT, N1)));
17576 }
17577 }
17578 }
17579
17580 // fold (fsub x, (fma y, z, (fpext (fmul u, v))))
17581 // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
17582 if (isFusedOp(N1) && matcher.match(N1.getOperand(2), ISD::FP_EXTEND) &&
17583 N1->hasOneUse()) {
17584 SDValue N120 = N1.getOperand(2).getOperand(0);
17585 if (isContractableAndReassociableFMUL(N120) &&
17586 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17587 N120.getValueType())) {
17588 SDValue N1200 = N120.getOperand(0);
17589 SDValue N1201 = N120.getOperand(1);
17590 return matcher.getNode(
17591 PreferredFusedOpcode, SL, VT,
17592 matcher.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)),
17593 N1.getOperand(1),
17594 matcher.getNode(
17595 PreferredFusedOpcode, SL, VT,
17596 matcher.getNode(ISD::FNEG, SL, VT,
17597 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1200)),
17598 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0));
17599 }
17600 }
17601
17602 // fold (fsub x, (fpext (fma y, z, (fmul u, v))))
17603 // -> (fma (fneg (fpext y)), (fpext z),
17604 // (fma (fneg (fpext u)), (fpext v), x))
17605 // FIXME: This turns two single-precision and one double-precision
17606 // operation into two double-precision operations, which might not be
17607 // interesting for all targets, especially GPUs.
17608 if (matcher.match(N1, ISD::FP_EXTEND) && isFusedOp(N1.getOperand(0))) {
17609 SDValue CvtSrc = N1.getOperand(0);
17610 SDValue N100 = CvtSrc.getOperand(0);
17611 SDValue N101 = CvtSrc.getOperand(1);
17612 SDValue N102 = CvtSrc.getOperand(2);
17613 if (isContractableAndReassociableFMUL(N102) &&
17614 TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
17615 CvtSrc.getValueType())) {
17616 SDValue N1020 = N102.getOperand(0);
17617 SDValue N1021 = N102.getOperand(1);
17618 return matcher.getNode(
17619 PreferredFusedOpcode, SL, VT,
17620 matcher.getNode(ISD::FNEG, SL, VT,
17621 matcher.getNode(ISD::FP_EXTEND, SL, VT, N100)),
17622 matcher.getNode(ISD::FP_EXTEND, SL, VT, N101),
17623 matcher.getNode(
17624 PreferredFusedOpcode, SL, VT,
17625 matcher.getNode(ISD::FNEG, SL, VT,
17626 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1020)),
17627 matcher.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0));
17628 }
17629 }
17630 }
17631
17632 return SDValue();
17633}
17634
17635/// Try to perform FMA combining on a given FMUL node based on the distributive
17636/// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
17637/// subtraction instead of addition).
17638SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
17639 SDValue N0 = N->getOperand(0);
17640 SDValue N1 = N->getOperand(1);
17641 EVT VT = N->getValueType(0);
17642 SDLoc SL(N);
17643
17644 assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
17645
17646 const TargetOptions &Options = DAG.getTarget().Options;
17647
17648 // The transforms below are incorrect when x == 0 and y == inf, because the
17649 // intermediate multiplication produces a nan.
17650 SDValue FAdd = N0.getOpcode() == ISD::FADD ? N0 : N1;
17651 if (!hasNoInfs(Options, FAdd))
17652 return SDValue();
17653
17654 // Floating-point multiply-add without intermediate rounding.
17655 bool HasFMA =
17657 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)) &&
17659
17660 // Floating-point multiply-add with intermediate rounding. This can result
17661 // in a less precise result due to the changed rounding order.
17662 bool HasFMAD = LegalOperations && TLI.isFMADLegal(DAG, N);
17663
17664 // No valid opcode, do not combine.
17665 if (!HasFMAD && !HasFMA)
17666 return SDValue();
17667
17668 // Always prefer FMAD to FMA for precision.
17669 unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
17671
17672 // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
17673 // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
17674 auto FuseFADD = [&](SDValue X, SDValue Y) {
17675 if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
17676 if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
17677 if (C->isExactlyValue(+1.0))
17678 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
17679 Y);
17680 if (C->isExactlyValue(-1.0))
17681 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
17682 DAG.getNode(ISD::FNEG, SL, VT, Y));
17683 }
17684 }
17685 return SDValue();
17686 };
17687
17688 if (SDValue FMA = FuseFADD(N0, N1))
17689 return FMA;
17690 if (SDValue FMA = FuseFADD(N1, N0))
17691 return FMA;
17692
17693 // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
17694 // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
17695 // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
17696 // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
17697 auto FuseFSUB = [&](SDValue X, SDValue Y) {
17698 if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
17699 if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
17700 if (C0->isExactlyValue(+1.0))
17701 return DAG.getNode(PreferredFusedOpcode, SL, VT,
17702 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
17703 Y);
17704 if (C0->isExactlyValue(-1.0))
17705 return DAG.getNode(PreferredFusedOpcode, SL, VT,
17706 DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
17707 DAG.getNode(ISD::FNEG, SL, VT, Y));
17708 }
17709 if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
17710 if (C1->isExactlyValue(+1.0))
17711 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
17712 DAG.getNode(ISD::FNEG, SL, VT, Y));
17713 if (C1->isExactlyValue(-1.0))
17714 return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
17715 Y);
17716 }
17717 }
17718 return SDValue();
17719 };
17720
17721 if (SDValue FMA = FuseFSUB(N0, N1))
17722 return FMA;
17723 if (SDValue FMA = FuseFSUB(N1, N0))
17724 return FMA;
17725
17726 return SDValue();
17727}
17728
17729SDValue DAGCombiner::visitVP_FADD(SDNode *N) {
17730 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
17731
17732 // FADD -> FMA combines:
17733 if (SDValue Fused = visitFADDForFMACombine<VPMatchContext>(N)) {
17734 if (Fused.getOpcode() != ISD::DELETED_NODE)
17735 AddToWorklist(Fused.getNode());
17736 return Fused;
17737 }
17738 return SDValue();
17739}
17740
17741SDValue DAGCombiner::visitFADD(SDNode *N) {
17742 SDValue N0 = N->getOperand(0);
17743 SDValue N1 = N->getOperand(1);
17744 bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0);
17745 bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1);
17746 EVT VT = N->getValueType(0);
17747 SDLoc DL(N);
17748 const TargetOptions &Options = DAG.getTarget().Options;
17749 SDNodeFlags Flags = N->getFlags();
17750 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
17751
17752 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
17753 return R;
17754
17755 // fold (fadd c1, c2) -> c1 + c2
17756 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FADD, DL, VT, {N0, N1}))
17757 return C;
17758
17759 // canonicalize constant to RHS
17760 if (N0CFP && !N1CFP)
17761 return DAG.getNode(ISD::FADD, DL, VT, N1, N0);
17762
17763 // fold vector ops
17764 if (VT.isVector())
17765 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
17766 return FoldedVOp;
17767
17768 // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
17769 ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
17770 if (N1C && N1C->isZero())
17771 if (N1C->isNegative() || Flags.hasNoSignedZeros())
17772 return N0;
17773
17774 if (SDValue NewSel = foldBinOpIntoSelect(N))
17775 return NewSel;
17776
17777 // fold (fadd A, (fneg B)) -> (fsub A, B)
17778 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
17779 if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
17780 N1, DAG, LegalOperations, ForCodeSize))
17781 return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1);
17782
17783 // fold (fadd (fneg A), B) -> (fsub B, A)
17784 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
17785 if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
17786 N0, DAG, LegalOperations, ForCodeSize))
17787 return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0);
17788
17789 auto isFMulNegTwo = [](SDValue FMul) {
17790 if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
17791 return false;
17792 auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
17793 return C && C->isExactlyValue(-2.0);
17794 };
17795
17796 // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
17797 if (isFMulNegTwo(N0)) {
17798 SDValue B = N0.getOperand(0);
17799 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
17800 return DAG.getNode(ISD::FSUB, DL, VT, N1, Add);
17801 }
17802 // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
17803 if (isFMulNegTwo(N1)) {
17804 SDValue B = N1.getOperand(0);
17805 SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
17806 return DAG.getNode(ISD::FSUB, DL, VT, N0, Add);
17807 }
17808
17809 // No FP constant should be created after legalization as Instruction
17810 // Selection pass has a hard time dealing with FP constants.
17811 bool AllowNewConst = (Level < AfterLegalizeDAG);
17812
17813 // If nnan is enabled, fold lots of things.
17814 if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
17815 // If allowed, fold (fadd (fneg x), x) -> 0.0
17816 if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
17817 return DAG.getConstantFP(0.0, DL, VT);
17818
17819 // If allowed, fold (fadd x, (fneg x)) -> 0.0
17820 if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
17821 return DAG.getConstantFP(0.0, DL, VT);
17822 }
17823
17824 // If reassoc and nsz, fold lots of things.
17825 // TODO: break out portions of the transformations below for which Unsafe is
17826 // considered and which do not require both nsz and reassoc
17827 if (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros() &&
17828 AllowNewConst) {
17829 // fadd (fadd x, c1), c2 -> fadd x, c1 + c2
17830 if (N1CFP && N0.getOpcode() == ISD::FADD &&
17832 SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1);
17833 return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC);
17834 }
17835
17836 // We can fold chains of FADD's of the same value into multiplications.
17837 // This transform is not safe in general because we are reducing the number
17838 // of rounding steps.
17839 if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
17840 if (N0.getOpcode() == ISD::FMUL) {
17841 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
17842 bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
17843
17844 // (fadd (fmul x, c), x) -> (fmul x, c+1)
17845 if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
17846 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
17847 DAG.getConstantFP(1.0, DL, VT));
17848 return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP);
17849 }
17850
17851 // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
17852 if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
17853 N1.getOperand(0) == N1.getOperand(1) &&
17854 N0.getOperand(0) == N1.getOperand(0)) {
17855 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
17856 DAG.getConstantFP(2.0, DL, VT));
17857 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP);
17858 }
17859 }
17860
17861 if (N1.getOpcode() == ISD::FMUL) {
17862 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
17863 bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
17864
17865 // (fadd x, (fmul x, c)) -> (fmul x, c+1)
17866 if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
17867 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
17868 DAG.getConstantFP(1.0, DL, VT));
17869 return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP);
17870 }
17871
17872 // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
17873 if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
17874 N0.getOperand(0) == N0.getOperand(1) &&
17875 N1.getOperand(0) == N0.getOperand(0)) {
17876 SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
17877 DAG.getConstantFP(2.0, DL, VT));
17878 return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP);
17879 }
17880 }
17881
17882 if (N0.getOpcode() == ISD::FADD) {
17883 bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
17884 // (fadd (fadd x, x), x) -> (fmul x, 3.0)
17885 if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
17886 (N0.getOperand(0) == N1)) {
17887 return DAG.getNode(ISD::FMUL, DL, VT, N1,
17888 DAG.getConstantFP(3.0, DL, VT));
17889 }
17890 }
17891
17892 if (N1.getOpcode() == ISD::FADD) {
17893 bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
17894 // (fadd x, (fadd x, x)) -> (fmul x, 3.0)
17895 if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
17896 N1.getOperand(0) == N0) {
17897 return DAG.getNode(ISD::FMUL, DL, VT, N0,
17898 DAG.getConstantFP(3.0, DL, VT));
17899 }
17900 }
17901
17902 // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
17903 if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
17904 N0.getOperand(0) == N0.getOperand(1) &&
17905 N1.getOperand(0) == N1.getOperand(1) &&
17906 N0.getOperand(0) == N1.getOperand(0)) {
17907 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
17908 DAG.getConstantFP(4.0, DL, VT));
17909 }
17910 }
17911 } // reassoc && nsz && AllowNewConst
17912
17913 if (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros()) {
17914 // Fold fadd(vecreduce(x), vecreduce(y)) -> vecreduce(fadd(x, y))
17915 if (SDValue SD = reassociateReduction(ISD::VECREDUCE_FADD, ISD::FADD, DL,
17916 VT, N0, N1, Flags))
17917 return SD;
17918 }
17919
17920 // FADD -> FMA combines:
17921 if (SDValue Fused = visitFADDForFMACombine<EmptyMatchContext>(N)) {
17922 if (Fused.getOpcode() != ISD::DELETED_NODE)
17923 AddToWorklist(Fused.getNode());
17924 return Fused;
17925 }
17926 return SDValue();
17927}
17928
17929SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) {
17930 SDValue Chain = N->getOperand(0);
17931 SDValue N0 = N->getOperand(1);
17932 SDValue N1 = N->getOperand(2);
17933 EVT VT = N->getValueType(0);
17934 EVT ChainVT = N->getValueType(1);
17935 SDLoc DL(N);
17936 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
17937
17938 // fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B)
17939 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
17940 if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
17941 N1, DAG, LegalOperations, ForCodeSize)) {
17942 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
17943 {Chain, N0, NegN1});
17944 }
17945
17946 // fold (strict_fadd (fneg A), B) -> (strict_fsub B, A)
17947 if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
17948 if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
17949 N0, DAG, LegalOperations, ForCodeSize)) {
17950 return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
17951 {Chain, N1, NegN0});
17952 }
17953 return SDValue();
17954}
17955
17956SDValue DAGCombiner::visitFSUB(SDNode *N) {
17957 SDValue N0 = N->getOperand(0);
17958 SDValue N1 = N->getOperand(1);
17959 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
17960 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
17961 EVT VT = N->getValueType(0);
17962 SDLoc DL(N);
17963 const TargetOptions &Options = DAG.getTarget().Options;
17964 const SDNodeFlags Flags = N->getFlags();
17965 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
17966
17967 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
17968 return R;
17969
17970 // fold (fsub c1, c2) -> c1-c2
17971 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FSUB, DL, VT, {N0, N1}))
17972 return C;
17973
17974 // fold vector ops
17975 if (VT.isVector())
17976 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
17977 return FoldedVOp;
17978
17979 if (SDValue NewSel = foldBinOpIntoSelect(N))
17980 return NewSel;
17981
17982 // (fsub A, 0) -> A
17983 if (N1CFP && N1CFP->isZero()) {
17984 if (!N1CFP->isNegative() || Flags.hasNoSignedZeros()) {
17985 return N0;
17986 }
17987 }
17988
17989 if (N0 == N1) {
17990 // (fsub x, x) -> 0.0
17991 if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
17992 return DAG.getConstantFP(0.0f, DL, VT);
17993 }
17994
17995 // (fsub -0.0, N1) -> -N1
17996 if (N0CFP && N0CFP->isZero()) {
17997 if (N0CFP->isNegative() || Flags.hasNoSignedZeros()) {
17998 // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are
17999 // flushed to zero, unless all users treat denorms as zero (DAZ).
18000 // FIXME: This transform will change the sign of a NaN and the behavior
18001 // of a signaling NaN. It is only valid when a NoNaN flag is present.
18002 DenormalMode DenormMode = DAG.getDenormalMode(VT);
18003 if (DenormMode == DenormalMode::getIEEE()) {
18004 if (SDValue NegN1 =
18005 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
18006 return NegN1;
18007 if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
18008 return DAG.getNode(ISD::FNEG, DL, VT, N1);
18009 }
18010 }
18011 }
18012
18013 if (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros() &&
18014 N1.getOpcode() == ISD::FADD) {
18015 // X - (X + Y) -> -Y
18016 if (N0 == N1->getOperand(0))
18017 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1));
18018 // X - (Y + X) -> -Y
18019 if (N0 == N1->getOperand(1))
18020 return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0));
18021 }
18022
18023 // fold (fsub A, (fneg B)) -> (fadd A, B)
18024 if (SDValue NegN1 =
18025 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
18026 return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1);
18027
18028 // FSUB -> FMA combines:
18029 if (SDValue Fused = visitFSUBForFMACombine<EmptyMatchContext>(N)) {
18030 AddToWorklist(Fused.getNode());
18031 return Fused;
18032 }
18033
18034 return SDValue();
18035}
18036
18037// Transform IEEE Floats:
18038// (fmul C, (uitofp Pow2))
18039// -> (bitcast_to_FP (add (bitcast_to_INT C), Log2(Pow2) << mantissa))
18040// (fdiv C, (uitofp Pow2))
18041// -> (bitcast_to_FP (sub (bitcast_to_INT C), Log2(Pow2) << mantissa))
18042//
18043// The rationale is fmul/fdiv by a power of 2 is just change the exponent, so
18044// there is no need for more than an add/sub.
18045//
18046// This is valid under the following circumstances:
18047// 1) We are dealing with IEEE floats
18048// 2) C is normal
18049// 3) The fmul/fdiv add/sub will not go outside of min/max exponent bounds.
18050// TODO: Much of this could also be used for generating `ldexp` on targets the
18051// prefer it.
18052SDValue DAGCombiner::combineFMulOrFDivWithIntPow2(SDNode *N) {
18053 EVT VT = N->getValueType(0);
18055 return SDValue();
18056
18057 SDValue ConstOp, Pow2Op;
18058
18059 std::optional<int> Mantissa;
18060 auto GetConstAndPow2Ops = [&](unsigned ConstOpIdx) {
18061 if (ConstOpIdx == 1 && N->getOpcode() == ISD::FDIV)
18062 return false;
18063
18064 ConstOp = peekThroughBitcasts(N->getOperand(ConstOpIdx));
18065 Pow2Op = N->getOperand(1 - ConstOpIdx);
18066 if (Pow2Op.getOpcode() != ISD::UINT_TO_FP &&
18067 (Pow2Op.getOpcode() != ISD::SINT_TO_FP ||
18068 !DAG.computeKnownBits(Pow2Op).isNonNegative()))
18069 return false;
18070
18071 Pow2Op = Pow2Op.getOperand(0);
18072
18073 // `Log2(Pow2Op) < Pow2Op.getScalarSizeInBits()`.
18074 // TODO: We could use knownbits to make this bound more precise.
18075 int MaxExpChange = Pow2Op.getValueType().getScalarSizeInBits();
18076
18077 auto IsFPConstValid = [N, MaxExpChange, &Mantissa](ConstantFPSDNode *CFP) {
18078 if (CFP == nullptr)
18079 return false;
18080
18081 const APFloat &APF = CFP->getValueAPF();
18082
18083 // Make sure we have normal constant.
18084 if (!APF.isNormal())
18085 return false;
18086
18087 // Make sure the floats exponent is within the bounds that this transform
18088 // produces bitwise equals value.
18089 int CurExp = ilogb(APF);
18090 // FMul by pow2 will only increase exponent.
18091 int MinExp =
18092 N->getOpcode() == ISD::FMUL ? CurExp : (CurExp - MaxExpChange);
18093 // FDiv by pow2 will only decrease exponent.
18094 int MaxExp =
18095 N->getOpcode() == ISD::FDIV ? CurExp : (CurExp + MaxExpChange);
18096 if (MinExp <= APFloat::semanticsMinExponent(APF.getSemantics()) ||
18098 return false;
18099
18100 // Finally make sure we actually know the mantissa for the float type.
18101 int ThisMantissa = APFloat::semanticsPrecision(APF.getSemantics()) - 1;
18102 if (!Mantissa)
18103 Mantissa = ThisMantissa;
18104
18105 return *Mantissa == ThisMantissa && ThisMantissa > 0;
18106 };
18107
18108 // TODO: We may be able to include undefs.
18109 return ISD::matchUnaryFpPredicate(ConstOp, IsFPConstValid);
18110 };
18111
18112 if (!GetConstAndPow2Ops(0) && !GetConstAndPow2Ops(1))
18113 return SDValue();
18114
18115 if (!TLI.optimizeFMulOrFDivAsShiftAddBitcast(N, ConstOp, Pow2Op))
18116 return SDValue();
18117
18118 // Get log2 after all other checks have taken place. This is because
18119 // BuildLogBase2 may create a new node.
18120 SDLoc DL(N);
18121 // Get Log2 type with same bitwidth as the float type (VT).
18122 EVT NewIntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits());
18123 if (VT.isVector())
18124 NewIntVT = EVT::getVectorVT(*DAG.getContext(), NewIntVT,
18126
18127 SDValue Log2 = BuildLogBase2(Pow2Op, DL, DAG.isKnownNeverZero(Pow2Op),
18128 /*InexpensiveOnly*/ true, NewIntVT);
18129 if (!Log2)
18130 return SDValue();
18131
18132 // Perform actual transform.
18133 SDValue MantissaShiftCnt =
18134 DAG.getShiftAmountConstant(*Mantissa, NewIntVT, DL);
18135 // TODO: Sometimes Log2 is of form `(X + C)`. `(X + C) << C1` should fold to
18136 // `(X << C1) + (C << C1)`, but that isn't always the case because of the
18137 // cast. We could implement that by handle here to handle the casts.
18138 SDValue Shift = DAG.getNode(ISD::SHL, DL, NewIntVT, Log2, MantissaShiftCnt);
18139 SDValue ResAsInt =
18140 DAG.getNode(N->getOpcode() == ISD::FMUL ? ISD::ADD : ISD::SUB, DL,
18141 NewIntVT, DAG.getBitcast(NewIntVT, ConstOp), Shift);
18142 SDValue ResAsFP = DAG.getBitcast(VT, ResAsInt);
18143 return ResAsFP;
18144}
18145
18146SDValue DAGCombiner::visitFMUL(SDNode *N) {
18147 SDValue N0 = N->getOperand(0);
18148 SDValue N1 = N->getOperand(1);
18149 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
18150 EVT VT = N->getValueType(0);
18151 SDLoc DL(N);
18152 const SDNodeFlags Flags = N->getFlags();
18153 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
18154
18155 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
18156 return R;
18157
18158 // fold (fmul c1, c2) -> c1*c2
18159 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMUL, DL, VT, {N0, N1}))
18160 return C;
18161
18162 // canonicalize constant to RHS
18165 return DAG.getNode(ISD::FMUL, DL, VT, N1, N0);
18166
18167 // fold vector ops
18168 if (VT.isVector())
18169 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
18170 return FoldedVOp;
18171
18172 if (SDValue NewSel = foldBinOpIntoSelect(N))
18173 return NewSel;
18174
18175 if (Flags.hasAllowReassociation()) {
18176 // fmul (fmul X, C1), C2 -> fmul X, C1 * C2
18178 N0.getOpcode() == ISD::FMUL) {
18179 SDValue N00 = N0.getOperand(0);
18180 SDValue N01 = N0.getOperand(1);
18181 // Avoid an infinite loop by making sure that N00 is not a constant
18182 // (the inner multiply has not been constant folded yet).
18185 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1);
18186 return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts);
18187 }
18188 }
18189
18190 // Match a special-case: we convert X * 2.0 into fadd.
18191 // fmul (fadd X, X), C -> fmul X, 2.0 * C
18192 if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
18193 N0.getOperand(0) == N0.getOperand(1)) {
18194 const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
18195 SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1);
18196 return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts);
18197 }
18198
18199 // Fold fmul(vecreduce(x), vecreduce(y)) -> vecreduce(fmul(x, y))
18200 if (SDValue SD = reassociateReduction(ISD::VECREDUCE_FMUL, ISD::FMUL, DL,
18201 VT, N0, N1, Flags))
18202 return SD;
18203 }
18204
18205 // fold (fmul X, 2.0) -> (fadd X, X)
18206 if (N1CFP && N1CFP->isExactlyValue(+2.0))
18207 return DAG.getNode(ISD::FADD, DL, VT, N0, N0);
18208
18209 // fold (fmul X, -1.0) -> (fsub -0.0, X)
18210 if (N1CFP && N1CFP->isExactlyValue(-1.0)) {
18211 if (!LegalOperations || TLI.isOperationLegal(ISD::FSUB, VT)) {
18212 return DAG.getNode(ISD::FSUB, DL, VT,
18213 DAG.getConstantFP(-0.0, DL, VT), N0, Flags);
18214 }
18215 }
18216
18217 // -N0 * -N1 --> N0 * N1
18222 SDValue NegN0 =
18223 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
18224 if (NegN0) {
18225 HandleSDNode NegN0Handle(NegN0);
18226 SDValue NegN1 =
18227 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
18228 if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
18230 return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1);
18231 }
18232
18233 // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
18234 // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
18235 if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
18236 (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
18237 TLI.isOperationLegal(ISD::FABS, VT)) {
18238 SDValue Select = N0, X = N1;
18239 if (Select.getOpcode() != ISD::SELECT)
18240 std::swap(Select, X);
18241
18242 SDValue Cond = Select.getOperand(0);
18243 auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
18244 auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
18245
18246 if (TrueOpnd && FalseOpnd &&
18247 Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
18248 isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
18249 cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
18250 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
18251 switch (CC) {
18252 default: break;
18253 case ISD::SETOLT:
18254 case ISD::SETULT:
18255 case ISD::SETOLE:
18256 case ISD::SETULE:
18257 case ISD::SETLT:
18258 case ISD::SETLE:
18259 std::swap(TrueOpnd, FalseOpnd);
18260 [[fallthrough]];
18261 case ISD::SETOGT:
18262 case ISD::SETUGT:
18263 case ISD::SETOGE:
18264 case ISD::SETUGE:
18265 case ISD::SETGT:
18266 case ISD::SETGE:
18267 if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
18268 TLI.isOperationLegal(ISD::FNEG, VT))
18269 return DAG.getNode(ISD::FNEG, DL, VT,
18270 DAG.getNode(ISD::FABS, DL, VT, X));
18271 if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
18272 return DAG.getNode(ISD::FABS, DL, VT, X);
18273
18274 break;
18275 }
18276 }
18277 }
18278
18279 // FMUL -> FMA combines:
18280 if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
18281 AddToWorklist(Fused.getNode());
18282 return Fused;
18283 }
18284
18285 // Don't do `combineFMulOrFDivWithIntPow2` until after FMUL -> FMA has been
18286 // able to run.
18287 if (SDValue R = combineFMulOrFDivWithIntPow2(N))
18288 return R;
18289
18290 return SDValue();
18291}
18292
18293template <class MatchContextClass> SDValue DAGCombiner::visitFMA(SDNode *N) {
18294 SDValue N0 = N->getOperand(0);
18295 SDValue N1 = N->getOperand(1);
18296 SDValue N2 = N->getOperand(2);
18297 ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
18298 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
18299 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
18300 EVT VT = N->getValueType(0);
18301 SDLoc DL(N);
18302 const TargetOptions &Options = DAG.getTarget().Options;
18303 // FMA nodes have flags that propagate to the created nodes.
18304 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
18305 MatchContextClass matcher(DAG, TLI, N);
18306
18307 // Constant fold FMA.
18308 if (SDValue C =
18309 DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1, N2}))
18310 return C;
18311
18312 // (-N0 * -N1) + N2 --> (N0 * N1) + N2
18317 SDValue NegN0 =
18318 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
18319 if (NegN0) {
18320 HandleSDNode NegN0Handle(NegN0);
18321 SDValue NegN1 =
18322 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
18323 if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
18325 return matcher.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2);
18326 }
18327
18328 if ((Options.NoNaNsFPMath && Options.NoInfsFPMath) ||
18329 (N->getFlags().hasNoNaNs() && N->getFlags().hasNoInfs())) {
18330 if (N->getFlags().hasNoSignedZeros() ||
18331 (N2CFP && !N2CFP->isExactlyValue(-0.0))) {
18332 if (N0CFP && N0CFP->isZero())
18333 return N2;
18334 if (N1CFP && N1CFP->isZero())
18335 return N2;
18336 }
18337 }
18338
18339 // FIXME: Support splat of constant.
18340 if (N0CFP && N0CFP->isExactlyValue(1.0))
18341 return matcher.getNode(ISD::FADD, DL, VT, N1, N2);
18342 if (N1CFP && N1CFP->isExactlyValue(1.0))
18343 return matcher.getNode(ISD::FADD, DL, VT, N0, N2);
18344
18345 // Canonicalize (fma c, x, y) -> (fma x, c, y)
18348 return matcher.getNode(ISD::FMA, DL, VT, N1, N0, N2);
18349
18350 bool CanReassociate = N->getFlags().hasAllowReassociation();
18351 if (CanReassociate) {
18352 // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
18353 if (matcher.match(N2, ISD::FMUL) && N0 == N2.getOperand(0) &&
18356 return matcher.getNode(
18357 ISD::FMUL, DL, VT, N0,
18358 matcher.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1)));
18359 }
18360
18361 // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
18362 if (matcher.match(N0, ISD::FMUL) &&
18365 return matcher.getNode(
18366 ISD::FMA, DL, VT, N0.getOperand(0),
18367 matcher.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), N2);
18368 }
18369 }
18370
18371 // (fma x, -1, y) -> (fadd (fneg x), y)
18372 // FIXME: Support splat of constant.
18373 if (N1CFP) {
18374 if (N1CFP->isExactlyValue(1.0))
18375 return matcher.getNode(ISD::FADD, DL, VT, N0, N2);
18376
18377 if (N1CFP->isExactlyValue(-1.0) &&
18378 (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
18379 SDValue RHSNeg = matcher.getNode(ISD::FNEG, DL, VT, N0);
18380 AddToWorklist(RHSNeg.getNode());
18381 return matcher.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
18382 }
18383
18384 // fma (fneg x), K, y -> fma x -K, y
18385 if (matcher.match(N0, ISD::FNEG) &&
18387 (N1.hasOneUse() &&
18388 !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, ForCodeSize)))) {
18389 return matcher.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
18390 matcher.getNode(ISD::FNEG, DL, VT, N1), N2);
18391 }
18392 }
18393
18394 // FIXME: Support splat of constant.
18395 if (CanReassociate) {
18396 // (fma x, c, x) -> (fmul x, (c+1))
18397 if (N1CFP && N0 == N2) {
18398 return matcher.getNode(ISD::FMUL, DL, VT, N0,
18399 matcher.getNode(ISD::FADD, DL, VT, N1,
18400 DAG.getConstantFP(1.0, DL, VT)));
18401 }
18402
18403 // (fma x, c, (fneg x)) -> (fmul x, (c-1))
18404 if (N1CFP && matcher.match(N2, ISD::FNEG) && N2.getOperand(0) == N0) {
18405 return matcher.getNode(ISD::FMUL, DL, VT, N0,
18406 matcher.getNode(ISD::FADD, DL, VT, N1,
18407 DAG.getConstantFP(-1.0, DL, VT)));
18408 }
18409 }
18410
18411 // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z))
18412 // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z))
18413 if (!TLI.isFNegFree(VT))
18415 SDValue(N, 0), DAG, LegalOperations, ForCodeSize))
18416 return matcher.getNode(ISD::FNEG, DL, VT, Neg);
18417 return SDValue();
18418}
18419
18420SDValue DAGCombiner::visitFMAD(SDNode *N) {
18421 SDValue N0 = N->getOperand(0);
18422 SDValue N1 = N->getOperand(1);
18423 SDValue N2 = N->getOperand(2);
18424 EVT VT = N->getValueType(0);
18425 SDLoc DL(N);
18426
18427 // Constant fold FMAD.
18428 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FMAD, DL, VT, {N0, N1, N2}))
18429 return C;
18430
18431 return SDValue();
18432}
18433
18434// Combine multiple FDIVs with the same divisor into multiple FMULs by the
18435// reciprocal.
18436// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
18437// Notice that this is not always beneficial. One reason is different targets
18438// may have different costs for FDIV and FMUL, so sometimes the cost of two
18439// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
18440// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
18441SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
18442 // TODO: Limit this transform based on optsize/minsize - it always creates at
18443 // least 1 extra instruction. But the perf win may be substantial enough
18444 // that only minsize should restrict this.
18445 const SDNodeFlags Flags = N->getFlags();
18446 if (LegalDAG || !Flags.hasAllowReciprocal())
18447 return SDValue();
18448
18449 // Skip if current node is a reciprocal/fneg-reciprocal.
18450 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
18451 ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
18452 if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
18453 return SDValue();
18454
18455 // Exit early if the target does not want this transform or if there can't
18456 // possibly be enough uses of the divisor to make the transform worthwhile.
18457 unsigned MinUses = TLI.combineRepeatedFPDivisors();
18458
18459 // For splat vectors, scale the number of uses by the splat factor. If we can
18460 // convert the division into a scalar op, that will likely be much faster.
18461 unsigned NumElts = 1;
18462 EVT VT = N->getValueType(0);
18463 if (VT.isVector() && DAG.isSplatValue(N1))
18464 NumElts = VT.getVectorMinNumElements();
18465
18466 if (!MinUses || (N1->use_size() * NumElts) < MinUses)
18467 return SDValue();
18468
18469 // Find all FDIV users of the same divisor.
18470 // Use a set because duplicates may be present in the user list.
18471 SetVector<SDNode *> Users;
18472 for (auto *U : N1->users()) {
18473 if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
18474 // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet.
18475 if (U->getOperand(1).getOpcode() == ISD::FSQRT &&
18476 U->getOperand(0) == U->getOperand(1).getOperand(0) &&
18477 U->getFlags().hasAllowReassociation() &&
18478 U->getFlags().hasNoSignedZeros())
18479 continue;
18480
18481 // This division is eligible for optimization only if global unsafe math
18482 // is enabled or if this division allows reciprocal formation.
18483 if (U->getFlags().hasAllowReciprocal())
18484 Users.insert(U);
18485 }
18486 }
18487
18488 // Now that we have the actual number of divisor uses, make sure it meets
18489 // the minimum threshold specified by the target.
18490 if ((Users.size() * NumElts) < MinUses)
18491 return SDValue();
18492
18493 SDLoc DL(N);
18494 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
18495 SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
18496
18497 // Dividend / Divisor -> Dividend * Reciprocal
18498 for (auto *U : Users) {
18499 SDValue Dividend = U->getOperand(0);
18500 if (Dividend != FPOne) {
18501 SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
18502 Reciprocal, Flags);
18503 CombineTo(U, NewNode);
18504 } else if (U != Reciprocal.getNode()) {
18505 // In the absence of fast-math-flags, this user node is always the
18506 // same node as Reciprocal, but with FMF they may be different nodes.
18507 CombineTo(U, Reciprocal);
18508 }
18509 }
18510 return SDValue(N, 0); // N was replaced.
18511}
18512
18513SDValue DAGCombiner::visitFDIV(SDNode *N) {
18514 SDValue N0 = N->getOperand(0);
18515 SDValue N1 = N->getOperand(1);
18516 EVT VT = N->getValueType(0);
18517 SDLoc DL(N);
18518 const TargetOptions &Options = DAG.getTarget().Options;
18519 SDNodeFlags Flags = N->getFlags();
18520 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
18521
18522 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
18523 return R;
18524
18525 // fold (fdiv c1, c2) -> c1/c2
18526 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FDIV, DL, VT, {N0, N1}))
18527 return C;
18528
18529 // fold vector ops
18530 if (VT.isVector())
18531 if (SDValue FoldedVOp = SimplifyVBinOp(N, DL))
18532 return FoldedVOp;
18533
18534 if (SDValue NewSel = foldBinOpIntoSelect(N))
18535 return NewSel;
18536
18538 return V;
18539
18540 // fold (fdiv X, c2) -> (fmul X, 1/c2) if there is no loss in precision, or
18541 // the loss is acceptable with AllowReciprocal.
18542 if (auto *N1CFP = isConstOrConstSplatFP(N1, true)) {
18543 // Compute the reciprocal 1.0 / c2.
18544 const APFloat &N1APF = N1CFP->getValueAPF();
18545 APFloat Recip = APFloat::getOne(N1APF.getSemantics());
18547 // Only do the transform if the reciprocal is a legal fp immediate that
18548 // isn't too nasty (eg NaN, denormal, ...).
18549 if (((st == APFloat::opOK && !Recip.isDenormal()) ||
18550 (st == APFloat::opInexact && Flags.hasAllowReciprocal())) &&
18551 (!LegalOperations ||
18552 // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
18553 // backend)... we should handle this gracefully after Legalize.
18554 // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
18556 TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
18557 return DAG.getNode(ISD::FMUL, DL, VT, N0,
18558 DAG.getConstantFP(Recip, DL, VT));
18559 }
18560
18561 if (Flags.hasAllowReciprocal()) {
18562 // If this FDIV is part of a reciprocal square root, it may be folded
18563 // into a target-specific square root estimate instruction.
18564 if (N1.getOpcode() == ISD::FSQRT) {
18565 if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
18566 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
18567 } else if (N1.getOpcode() == ISD::FP_EXTEND &&
18568 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
18569 if (SDValue RV =
18570 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
18571 RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
18572 AddToWorklist(RV.getNode());
18573 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
18574 }
18575 } else if (N1.getOpcode() == ISD::FP_ROUND &&
18576 N1.getOperand(0).getOpcode() == ISD::FSQRT) {
18577 if (SDValue RV =
18578 buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
18579 RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
18580 AddToWorklist(RV.getNode());
18581 return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
18582 }
18583 } else if (N1.getOpcode() == ISD::FMUL) {
18584 // Look through an FMUL. Even though this won't remove the FDIV directly,
18585 // it's still worthwhile to get rid of the FSQRT if possible.
18586 SDValue Sqrt, Y;
18587 if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
18588 Sqrt = N1.getOperand(0);
18589 Y = N1.getOperand(1);
18590 } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
18591 Sqrt = N1.getOperand(1);
18592 Y = N1.getOperand(0);
18593 }
18594 if (Sqrt.getNode()) {
18595 // If the other multiply operand is known positive, pull it into the
18596 // sqrt. That will eliminate the division if we convert to an estimate.
18597 if (Flags.hasAllowReassociation() && N1.hasOneUse() &&
18598 N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) {
18599 SDValue A;
18600 if (Y.getOpcode() == ISD::FABS && Y.hasOneUse())
18601 A = Y.getOperand(0);
18602 else if (Y == Sqrt.getOperand(0))
18603 A = Y;
18604 if (A) {
18605 // X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
18606 // X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A)
18607 SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A);
18608 SDValue AAZ =
18609 DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0));
18610 if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags))
18611 return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt);
18612
18613 // Estimate creation failed. Clean up speculatively created nodes.
18614 recursivelyDeleteUnusedNodes(AAZ.getNode());
18615 }
18616 }
18617
18618 // We found a FSQRT, so try to make this fold:
18619 // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y)
18620 if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) {
18621 SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y);
18622 AddToWorklist(Div.getNode());
18623 return DAG.getNode(ISD::FMUL, DL, VT, N0, Div);
18624 }
18625 }
18626 }
18627
18628 // Fold into a reciprocal estimate and multiply instead of a real divide.
18629 if (Options.NoInfsFPMath || Flags.hasNoInfs())
18630 if (SDValue RV = BuildDivEstimate(N0, N1, Flags))
18631 return RV;
18632 }
18633
18634 // Fold X/Sqrt(X) -> Sqrt(X)
18635 if (Flags.hasNoSignedZeros() && Flags.hasAllowReassociation())
18636 if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0))
18637 return N1;
18638
18639 // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
18644 SDValue NegN0 =
18645 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
18646 if (NegN0) {
18647 HandleSDNode NegN0Handle(NegN0);
18648 SDValue NegN1 =
18649 TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
18650 if (NegN1 && (CostN0 == TargetLowering::NegatibleCost::Cheaper ||
18652 return DAG.getNode(ISD::FDIV, DL, VT, NegN0, NegN1);
18653 }
18654
18655 if (SDValue R = combineFMulOrFDivWithIntPow2(N))
18656 return R;
18657
18658 return SDValue();
18659}
18660
18661SDValue DAGCombiner::visitFREM(SDNode *N) {
18662 SDValue N0 = N->getOperand(0);
18663 SDValue N1 = N->getOperand(1);
18664 EVT VT = N->getValueType(0);
18665 SDNodeFlags Flags = N->getFlags();
18666 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
18667 SDLoc DL(N);
18668
18669 if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
18670 return R;
18671
18672 // fold (frem c1, c2) -> fmod(c1,c2)
18673 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FREM, DL, VT, {N0, N1}))
18674 return C;
18675
18676 if (SDValue NewSel = foldBinOpIntoSelect(N))
18677 return NewSel;
18678
18679 // Lower frem N0, N1 => x - trunc(N0 / N1) * N1, providing N1 is an integer
18680 // power of 2.
18681 if (!TLI.isOperationLegal(ISD::FREM, VT) &&
18684 TLI.isOperationLegalOrCustom(ISD::FTRUNC, VT) &&
18685 DAG.isKnownToBeAPowerOfTwoFP(N1)) {
18686 bool NeedsCopySign =
18687 !Flags.hasNoSignedZeros() && !DAG.cannotBeOrderedNegativeFP(N0);
18688 SDValue Div = DAG.getNode(ISD::FDIV, DL, VT, N0, N1);
18689 SDValue Rnd = DAG.getNode(ISD::FTRUNC, DL, VT, Div);
18690 SDValue MLA;
18692 MLA = DAG.getNode(ISD::FMA, DL, VT, DAG.getNode(ISD::FNEG, DL, VT, Rnd),
18693 N1, N0);
18694 } else {
18695 SDValue Mul = DAG.getNode(ISD::FMUL, DL, VT, Rnd, N1);
18696 MLA = DAG.getNode(ISD::FSUB, DL, VT, N0, Mul);
18697 }
18698 return NeedsCopySign ? DAG.getNode(ISD::FCOPYSIGN, DL, VT, MLA, N0) : MLA;
18699 }
18700
18701 return SDValue();
18702}
18703
18704SDValue DAGCombiner::visitFSQRT(SDNode *N) {
18705 SDNodeFlags Flags = N->getFlags();
18706 const TargetOptions &Options = DAG.getTarget().Options;
18707
18708 // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as:
18709 // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN
18710 if (!Flags.hasApproximateFuncs() ||
18711 (!Options.NoInfsFPMath && !Flags.hasNoInfs()))
18712 return SDValue();
18713
18714 SDValue N0 = N->getOperand(0);
18715 if (TLI.isFsqrtCheap(N0, DAG))
18716 return SDValue();
18717
18718 // FSQRT nodes have flags that propagate to the created nodes.
18719 // TODO: If this is N0/sqrt(N0), and we reach this node before trying to
18720 // transform the fdiv, we may produce a sub-optimal estimate sequence
18721 // because the reciprocal calculation may not have to filter out a
18722 // 0.0 input.
18723 return buildSqrtEstimate(N0, Flags);
18724}
18725
18726/// copysign(x, fp_extend(y)) -> copysign(x, y)
18727/// copysign(x, fp_round(y)) -> copysign(x, y)
18728/// Operands to the functions are the type of X and Y respectively.
18729static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(EVT XTy, EVT YTy) {
18730 // Always fold no-op FP casts.
18731 if (XTy == YTy)
18732 return true;
18733
18734 // Do not optimize out type conversion of f128 type yet.
18735 // For some targets like x86_64, configuration is changed to keep one f128
18736 // value in one SSE register, but instruction selection cannot handle
18737 // FCOPYSIGN on SSE registers yet.
18738 if (YTy == MVT::f128)
18739 return false;
18740
18741 // Avoid mismatched vector operand types, for better instruction selection.
18742 return !YTy.isVector();
18743}
18744
18746 SDValue N1 = N->getOperand(1);
18747 if (N1.getOpcode() != ISD::FP_EXTEND &&
18748 N1.getOpcode() != ISD::FP_ROUND)
18749 return false;
18750 EVT N1VT = N1->getValueType(0);
18751 EVT N1Op0VT = N1->getOperand(0).getValueType();
18752 return CanCombineFCOPYSIGN_EXTEND_ROUND(N1VT, N1Op0VT);
18753}
18754
18755SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
18756 SDValue N0 = N->getOperand(0);
18757 SDValue N1 = N->getOperand(1);
18758 EVT VT = N->getValueType(0);
18759 SDLoc DL(N);
18760
18761 // fold (fcopysign c1, c2) -> fcopysign(c1,c2)
18762 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FCOPYSIGN, DL, VT, {N0, N1}))
18763 return C;
18764
18765 // copysign(x, fp_extend(y)) -> copysign(x, y)
18766 // copysign(x, fp_round(y)) -> copysign(x, y)
18768 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, N0, N1.getOperand(0));
18769
18771 return SDValue(N, 0);
18772
18773 return SDValue();
18774}
18775
18776SDValue DAGCombiner::visitFPOW(SDNode *N) {
18777 ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
18778 if (!ExponentC)
18779 return SDValue();
18780 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
18781
18782 // Try to convert x ** (1/3) into cube root.
18783 // TODO: Handle the various flavors of long double.
18784 // TODO: Since we're approximating, we don't need an exact 1/3 exponent.
18785 // Some range near 1/3 should be fine.
18786 EVT VT = N->getValueType(0);
18787 if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
18788 (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
18789 // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
18790 // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
18791 // pow(-val, 1/3) = nan; cbrt(-val) = -num.
18792 // For regular numbers, rounding may cause the results to differ.
18793 // Therefore, we require { nsz ninf nnan afn } for this transform.
18794 // TODO: We could select out the special cases if we don't have nsz/ninf.
18795 SDNodeFlags Flags = N->getFlags();
18796 if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
18797 !Flags.hasApproximateFuncs())
18798 return SDValue();
18799
18800 // Do not create a cbrt() libcall if the target does not have it, and do not
18801 // turn a pow that has lowering support into a cbrt() libcall.
18802 if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
18803 (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
18804 DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
18805 return SDValue();
18806
18807 return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0));
18808 }
18809
18810 // Try to convert x ** (1/4) and x ** (3/4) into square roots.
18811 // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
18812 // TODO: This could be extended (using a target hook) to handle smaller
18813 // power-of-2 fractional exponents.
18814 bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
18815 bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
18816 if (ExponentIs025 || ExponentIs075) {
18817 // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
18818 // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
18819 // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
18820 // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
18821 // For regular numbers, rounding may cause the results to differ.
18822 // Therefore, we require { nsz ninf afn } for this transform.
18823 // TODO: We could select out the special cases if we don't have nsz/ninf.
18824 SDNodeFlags Flags = N->getFlags();
18825
18826 // We only need no signed zeros for the 0.25 case.
18827 if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
18828 !Flags.hasApproximateFuncs())
18829 return SDValue();
18830
18831 // Don't double the number of libcalls. We are trying to inline fast code.
18832 if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
18833 return SDValue();
18834
18835 // Assume that libcalls are the smallest code.
18836 // TODO: This restriction should probably be lifted for vectors.
18837 if (ForCodeSize)
18838 return SDValue();
18839
18840 // pow(X, 0.25) --> sqrt(sqrt(X))
18841 SDLoc DL(N);
18842 SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0));
18843 SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt);
18844 if (ExponentIs025)
18845 return SqrtSqrt;
18846 // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
18847 return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt);
18848 }
18849
18850 return SDValue();
18851}
18852
18854 const TargetLowering &TLI) {
18855 // We only do this if the target has legal ftrunc. Otherwise, we'd likely be
18856 // replacing casts with a libcall. We also must be allowed to ignore -0.0
18857 // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
18858 // conversions would return +0.0.
18859 // FIXME: We should be able to use node-level FMF here.
18860 // TODO: If strict math, should we use FABS (+ range check for signed cast)?
18861 EVT VT = N->getValueType(0);
18862 if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
18864 return SDValue();
18865
18866 // fptosi/fptoui round towards zero, so converting from FP to integer and
18867 // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
18868 SDValue N0 = N->getOperand(0);
18869 if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
18870 N0.getOperand(0).getValueType() == VT)
18871 return DAG.getNode(ISD::FTRUNC, DL, VT, N0.getOperand(0));
18872
18873 if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
18874 N0.getOperand(0).getValueType() == VT)
18875 return DAG.getNode(ISD::FTRUNC, DL, VT, N0.getOperand(0));
18876
18877 return SDValue();
18878}
18879
18880SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
18881 SDValue N0 = N->getOperand(0);
18882 EVT VT = N->getValueType(0);
18883 EVT OpVT = N0.getValueType();
18884 SDLoc DL(N);
18885
18886 // [us]itofp(undef) = 0, because the result value is bounded.
18887 if (N0.isUndef())
18888 return DAG.getConstantFP(0.0, DL, VT);
18889
18890 // fold (sint_to_fp c1) -> c1fp
18891 // ...but only if the target supports immediate floating-point values
18892 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
18893 if (SDValue C = DAG.FoldConstantArithmetic(ISD::SINT_TO_FP, DL, VT, {N0}))
18894 return C;
18895
18896 // If the input is a legal type, and SINT_TO_FP is not legal on this target,
18897 // but UINT_TO_FP is legal on this target, try to convert.
18898 if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
18899 hasOperation(ISD::UINT_TO_FP, OpVT)) {
18900 // If the sign bit is known to be zero, we can change this to UINT_TO_FP.
18901 if (DAG.SignBitIsZero(N0))
18902 return DAG.getNode(ISD::UINT_TO_FP, DL, VT, N0);
18903 }
18904
18905 // The next optimizations are desirable only if SELECT_CC can be lowered.
18906 // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0)
18907 if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
18908 !VT.isVector() &&
18909 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
18910 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT),
18911 DAG.getConstantFP(0.0, DL, VT));
18912
18913 // fold (sint_to_fp (zext (setcc x, y, cc))) ->
18914 // (select (setcc x, y, cc), 1.0, 0.0)
18915 if (N0.getOpcode() == ISD::ZERO_EXTEND &&
18916 N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() &&
18917 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
18918 return DAG.getSelect(DL, VT, N0.getOperand(0),
18919 DAG.getConstantFP(1.0, DL, VT),
18920 DAG.getConstantFP(0.0, DL, VT));
18921
18922 if (SDValue FTrunc = foldFPToIntToFP(N, DL, DAG, TLI))
18923 return FTrunc;
18924
18925 // fold (sint_to_fp (trunc nsw x)) -> (sint_to_fp x)
18926 if (N0.getOpcode() == ISD::TRUNCATE && N0->getFlags().hasNoSignedWrap() &&
18928 N0.getOperand(0).getValueType()))
18929 return DAG.getNode(ISD::SINT_TO_FP, DL, VT, N0.getOperand(0));
18930
18931 return SDValue();
18932}
18933
18934SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
18935 SDValue N0 = N->getOperand(0);
18936 EVT VT = N->getValueType(0);
18937 EVT OpVT = N0.getValueType();
18938 SDLoc DL(N);
18939
18940 // [us]itofp(undef) = 0, because the result value is bounded.
18941 if (N0.isUndef())
18942 return DAG.getConstantFP(0.0, DL, VT);
18943
18944 // fold (uint_to_fp c1) -> c1fp
18945 // ...but only if the target supports immediate floating-point values
18946 if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
18947 if (SDValue C = DAG.FoldConstantArithmetic(ISD::UINT_TO_FP, DL, VT, {N0}))
18948 return C;
18949
18950 // If the input is a legal type, and UINT_TO_FP is not legal on this target,
18951 // but SINT_TO_FP is legal on this target, try to convert.
18952 if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
18953 hasOperation(ISD::SINT_TO_FP, OpVT)) {
18954 // If the sign bit is known to be zero, we can change this to SINT_TO_FP.
18955 if (DAG.SignBitIsZero(N0))
18956 return DAG.getNode(ISD::SINT_TO_FP, DL, VT, N0);
18957 }
18958
18959 // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0)
18960 if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
18961 (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
18962 return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT),
18963 DAG.getConstantFP(0.0, DL, VT));
18964
18965 if (SDValue FTrunc = foldFPToIntToFP(N, DL, DAG, TLI))
18966 return FTrunc;
18967
18968 // fold (uint_to_fp (trunc nuw x)) -> (uint_to_fp x)
18969 if (N0.getOpcode() == ISD::TRUNCATE && N0->getFlags().hasNoUnsignedWrap() &&
18971 N0.getOperand(0).getValueType()))
18972 return DAG.getNode(ISD::UINT_TO_FP, DL, VT, N0.getOperand(0));
18973
18974 return SDValue();
18975}
18976
18977// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
18979 SDValue N0 = N->getOperand(0);
18980 EVT VT = N->getValueType(0);
18981
18982 if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
18983 return SDValue();
18984
18985 SDValue Src = N0.getOperand(0);
18986 EVT SrcVT = Src.getValueType();
18987 bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
18988 bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
18989
18990 // We can safely assume the conversion won't overflow the output range,
18991 // because (for example) (uint8_t)18293.f is undefined behavior.
18992
18993 // Since we can assume the conversion won't overflow, our decision as to
18994 // whether the input will fit in the float should depend on the minimum
18995 // of the input range and output range.
18996
18997 // This means this is also safe for a signed input and unsigned output, since
18998 // a negative input would lead to undefined behavior.
18999 unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
19000 unsigned OutputSize = (int)VT.getScalarSizeInBits();
19001 unsigned ActualSize = std::min(InputSize, OutputSize);
19002 const fltSemantics &Sem = N0.getValueType().getFltSemantics();
19003
19004 // We can only fold away the float conversion if the input range can be
19005 // represented exactly in the float range.
19006 if (APFloat::semanticsPrecision(Sem) >= ActualSize) {
19007 if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
19008 unsigned ExtOp =
19009 IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
19010 return DAG.getNode(ExtOp, DL, VT, Src);
19011 }
19012 if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
19013 return DAG.getNode(ISD::TRUNCATE, DL, VT, Src);
19014 return DAG.getBitcast(VT, Src);
19015 }
19016 return SDValue();
19017}
19018
19019SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
19020 SDValue N0 = N->getOperand(0);
19021 EVT VT = N->getValueType(0);
19022 SDLoc DL(N);
19023
19024 // fold (fp_to_sint undef) -> undef
19025 if (N0.isUndef())
19026 return DAG.getUNDEF(VT);
19027
19028 // fold (fp_to_sint c1fp) -> c1
19029 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_TO_SINT, DL, VT, {N0}))
19030 return C;
19031
19032 return FoldIntToFPToInt(N, DL, DAG);
19033}
19034
19035SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
19036 SDValue N0 = N->getOperand(0);
19037 EVT VT = N->getValueType(0);
19038 SDLoc DL(N);
19039
19040 // fold (fp_to_uint undef) -> undef
19041 if (N0.isUndef())
19042 return DAG.getUNDEF(VT);
19043
19044 // fold (fp_to_uint c1fp) -> c1
19045 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_TO_UINT, DL, VT, {N0}))
19046 return C;
19047
19048 return FoldIntToFPToInt(N, DL, DAG);
19049}
19050
19051SDValue DAGCombiner::visitXROUND(SDNode *N) {
19052 SDValue N0 = N->getOperand(0);
19053 EVT VT = N->getValueType(0);
19054
19055 // fold (lrint|llrint undef) -> undef
19056 // fold (lround|llround undef) -> undef
19057 if (N0.isUndef())
19058 return DAG.getUNDEF(VT);
19059
19060 // fold (lrint|llrint c1fp) -> c1
19061 // fold (lround|llround c1fp) -> c1
19062 if (SDValue C =
19063 DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N), VT, {N0}))
19064 return C;
19065
19066 return SDValue();
19067}
19068
19069SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
19070 SDValue N0 = N->getOperand(0);
19071 SDValue N1 = N->getOperand(1);
19072 EVT VT = N->getValueType(0);
19073 SDLoc DL(N);
19074
19075 // fold (fp_round c1fp) -> c1fp
19076 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_ROUND, DL, VT, {N0, N1}))
19077 return C;
19078
19079 // fold (fp_round (fp_extend x)) -> x
19080 if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
19081 return N0.getOperand(0);
19082
19083 // fold (fp_round (fp_round x)) -> (fp_round x)
19084 if (N0.getOpcode() == ISD::FP_ROUND) {
19085 const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
19086 const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
19087
19088 // Avoid folding legal fp_rounds into non-legal ones.
19089 if (!hasOperation(ISD::FP_ROUND, VT))
19090 return SDValue();
19091
19092 // Skip this folding if it results in an fp_round from f80 to f16.
19093 //
19094 // f80 to f16 always generates an expensive (and as yet, unimplemented)
19095 // libcall to __truncxfhf2 instead of selecting native f16 conversion
19096 // instructions from f32 or f64. Moreover, the first (value-preserving)
19097 // fp_round from f80 to either f32 or f64 may become a NOP in platforms like
19098 // x86.
19099 if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
19100 return SDValue();
19101
19102 // If the first fp_round isn't a value preserving truncation, it might
19103 // introduce a tie in the second fp_round, that wouldn't occur in the
19104 // single-step fp_round we want to fold to.
19105 // In other words, double rounding isn't the same as rounding.
19106 // Also, this is a value preserving truncation iff both fp_round's are.
19107 if ((N->getFlags().hasAllowContract() &&
19108 N0->getFlags().hasAllowContract()) ||
19109 N0IsTrunc)
19110 return DAG.getNode(
19111 ISD::FP_ROUND, DL, VT, N0.getOperand(0),
19112 DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL, /*isTarget=*/true));
19113 }
19114
19115 // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
19116 // Note: From a legality perspective, this is a two step transform. First,
19117 // we duplicate the fp_round to the arguments of the copysign, then we
19118 // eliminate the fp_round on Y. The second step requires an additional
19119 // predicate to match the implementation above.
19120 if (N0.getOpcode() == ISD::FCOPYSIGN && N0->hasOneUse() &&
19122 N0.getValueType())) {
19123 SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
19124 N0.getOperand(0), N1);
19125 AddToWorklist(Tmp.getNode());
19126 return DAG.getNode(ISD::FCOPYSIGN, DL, VT, Tmp, N0.getOperand(1));
19127 }
19128
19129 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
19130 return NewVSel;
19131
19132 return SDValue();
19133}
19134
19135// Eliminate a floating-point widening of a narrowed value if the fast math
19136// flags allow it.
19138 SDValue N0 = N->getOperand(0);
19139 EVT VT = N->getValueType(0);
19140
19141 unsigned NarrowingOp;
19142 switch (N->getOpcode()) {
19143 case ISD::FP16_TO_FP:
19144 NarrowingOp = ISD::FP_TO_FP16;
19145 break;
19146 case ISD::BF16_TO_FP:
19147 NarrowingOp = ISD::FP_TO_BF16;
19148 break;
19149 case ISD::FP_EXTEND:
19150 NarrowingOp = ISD::FP_ROUND;
19151 break;
19152 default:
19153 llvm_unreachable("Expected widening FP cast");
19154 }
19155
19156 if (N0.getOpcode() == NarrowingOp && N0.getOperand(0).getValueType() == VT) {
19157 const SDNodeFlags NarrowFlags = N0->getFlags();
19158 const SDNodeFlags WidenFlags = N->getFlags();
19159 // Narrowing can introduce inf and change the encoding of a nan, so the
19160 // widen must have the nnan and ninf flags to indicate that we don't need to
19161 // care about that. We are also removing a rounding step, and that requires
19162 // both the narrow and widen to allow contraction.
19163 if (WidenFlags.hasNoNaNs() && WidenFlags.hasNoInfs() &&
19164 NarrowFlags.hasAllowContract() && WidenFlags.hasAllowContract()) {
19165 return N0.getOperand(0);
19166 }
19167 }
19168
19169 return SDValue();
19170}
19171
19172SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
19173 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
19174 SDValue N0 = N->getOperand(0);
19175 EVT VT = N->getValueType(0);
19176 SDLoc DL(N);
19177
19178 if (VT.isVector())
19179 if (SDValue FoldedVOp = SimplifyVCastOp(N, DL))
19180 return FoldedVOp;
19181
19182 // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
19183 if (N->hasOneUse() && N->user_begin()->getOpcode() == ISD::FP_ROUND)
19184 return SDValue();
19185
19186 // fold (fp_extend c1fp) -> c1fp
19187 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FP_EXTEND, DL, VT, {N0}))
19188 return C;
19189
19190 // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
19191 if (N0.getOpcode() == ISD::FP16_TO_FP &&
19192 TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
19193 return DAG.getNode(ISD::FP16_TO_FP, DL, VT, N0.getOperand(0));
19194
19195 // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
19196 // value of X.
19197 if (N0.getOpcode() == ISD::FP_ROUND && N0.getConstantOperandVal(1) == 1) {
19198 SDValue In = N0.getOperand(0);
19199 if (In.getValueType() == VT) return In;
19200 if (VT.bitsLT(In.getValueType()))
19201 return DAG.getNode(ISD::FP_ROUND, DL, VT, In, N0.getOperand(1));
19202 return DAG.getNode(ISD::FP_EXTEND, DL, VT, In);
19203 }
19204
19205 // fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
19206 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
19208 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
19209 SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, DL, VT,
19210 LN0->getChain(),
19211 LN0->getBasePtr(), N0.getValueType(),
19212 LN0->getMemOperand());
19213 CombineTo(N, ExtLoad);
19214 CombineTo(
19215 N0.getNode(),
19216 DAG.getNode(ISD::FP_ROUND, SDLoc(N0), N0.getValueType(), ExtLoad,
19217 DAG.getIntPtrConstant(1, SDLoc(N0), /*isTarget=*/true)),
19218 ExtLoad.getValue(1));
19219 return SDValue(N, 0); // Return N so it doesn't get rechecked!
19220 }
19221
19222 if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
19223 return NewVSel;
19224
19225 if (SDValue CastEliminated = eliminateFPCastPair(N))
19226 return CastEliminated;
19227
19228 return SDValue();
19229}
19230
19231SDValue DAGCombiner::visitFCEIL(SDNode *N) {
19232 SDValue N0 = N->getOperand(0);
19233 EVT VT = N->getValueType(0);
19234
19235 // fold (fceil c1) -> fceil(c1)
19236 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FCEIL, SDLoc(N), VT, {N0}))
19237 return C;
19238
19239 return SDValue();
19240}
19241
19242SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
19243 SDValue N0 = N->getOperand(0);
19244 EVT VT = N->getValueType(0);
19245
19246 // fold (ftrunc c1) -> ftrunc(c1)
19247 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FTRUNC, SDLoc(N), VT, {N0}))
19248 return C;
19249
19250 // fold ftrunc (known rounded int x) -> x
19251 // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
19252 // likely to be generated to extract integer from a rounded floating value.
19253 switch (N0.getOpcode()) {
19254 default: break;
19255 case ISD::FRINT:
19256 case ISD::FTRUNC:
19257 case ISD::FNEARBYINT:
19258 case ISD::FROUNDEVEN:
19259 case ISD::FFLOOR:
19260 case ISD::FCEIL:
19261 return N0;
19262 }
19263
19264 return SDValue();
19265}
19266
19267SDValue DAGCombiner::visitFFREXP(SDNode *N) {
19268 SDValue N0 = N->getOperand(0);
19269
19270 // fold (ffrexp c1) -> ffrexp(c1)
19272 return DAG.getNode(ISD::FFREXP, SDLoc(N), N->getVTList(), N0);
19273 return SDValue();
19274}
19275
19276SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
19277 SDValue N0 = N->getOperand(0);
19278 EVT VT = N->getValueType(0);
19279
19280 // fold (ffloor c1) -> ffloor(c1)
19281 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FFLOOR, SDLoc(N), VT, {N0}))
19282 return C;
19283
19284 return SDValue();
19285}
19286
19287SDValue DAGCombiner::visitFNEG(SDNode *N) {
19288 SDValue N0 = N->getOperand(0);
19289 EVT VT = N->getValueType(0);
19290 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
19291
19292 // Constant fold FNEG.
19293 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FNEG, SDLoc(N), VT, {N0}))
19294 return C;
19295
19296 if (SDValue NegN0 =
19297 TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize))
19298 return NegN0;
19299
19300 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
19301 // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't
19302 // know it was called from a context with a nsz flag if the input fsub does
19303 // not.
19304 if (N0.getOpcode() == ISD::FSUB &&
19306 N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) {
19307 return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1),
19308 N0.getOperand(0));
19309 }
19310
19312 return SDValue(N, 0);
19313
19314 if (SDValue Cast = foldSignChangeInBitcast(N))
19315 return Cast;
19316
19317 return SDValue();
19318}
19319
19320SDValue DAGCombiner::visitFMinMax(SDNode *N) {
19321 SDValue N0 = N->getOperand(0);
19322 SDValue N1 = N->getOperand(1);
19323 EVT VT = N->getValueType(0);
19324 const SDNodeFlags Flags = N->getFlags();
19325 unsigned Opc = N->getOpcode();
19326 bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM;
19327 bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM;
19328 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
19329
19330 // Constant fold.
19331 if (SDValue C = DAG.FoldConstantArithmetic(Opc, SDLoc(N), VT, {N0, N1}))
19332 return C;
19333
19334 // Canonicalize to constant on RHS.
19337 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
19338
19339 if (const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1)) {
19340 const APFloat &AF = N1CFP->getValueAPF();
19341
19342 // minnum(X, nan) -> X
19343 // maxnum(X, nan) -> X
19344 // minimum(X, nan) -> nan
19345 // maximum(X, nan) -> nan
19346 if (AF.isNaN())
19347 return PropagatesNaN ? N->getOperand(1) : N->getOperand(0);
19348
19349 // In the following folds, inf can be replaced with the largest finite
19350 // float, if the ninf flag is set.
19351 if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) {
19352 // minnum(X, -inf) -> -inf
19353 // maxnum(X, +inf) -> +inf
19354 // minimum(X, -inf) -> -inf if nnan
19355 // maximum(X, +inf) -> +inf if nnan
19356 if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs()))
19357 return N->getOperand(1);
19358
19359 // minnum(X, +inf) -> X if nnan
19360 // maxnum(X, -inf) -> X if nnan
19361 // minimum(X, +inf) -> X
19362 // maximum(X, -inf) -> X
19363 if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs()))
19364 return N->getOperand(0);
19365 }
19366 }
19367
19368 if (SDValue SD = reassociateReduction(
19369 PropagatesNaN
19370 ? (IsMin ? ISD::VECREDUCE_FMINIMUM : ISD::VECREDUCE_FMAXIMUM)
19371 : (IsMin ? ISD::VECREDUCE_FMIN : ISD::VECREDUCE_FMAX),
19372 Opc, SDLoc(N), VT, N0, N1, Flags))
19373 return SD;
19374
19375 return SDValue();
19376}
19377
19378SDValue DAGCombiner::visitFABS(SDNode *N) {
19379 SDValue N0 = N->getOperand(0);
19380 EVT VT = N->getValueType(0);
19381 SDLoc DL(N);
19382
19383 // fold (fabs c1) -> fabs(c1)
19384 if (SDValue C = DAG.FoldConstantArithmetic(ISD::FABS, DL, VT, {N0}))
19385 return C;
19386
19388 return SDValue(N, 0);
19389
19390 if (SDValue Cast = foldSignChangeInBitcast(N))
19391 return Cast;
19392
19393 return SDValue();
19394}
19395
19396SDValue DAGCombiner::visitBRCOND(SDNode *N) {
19397 SDValue Chain = N->getOperand(0);
19398 SDValue N1 = N->getOperand(1);
19399 SDValue N2 = N->getOperand(2);
19400
19401 // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are
19402 // nondeterministic jumps).
19403 if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) {
19404 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain,
19405 N1->getOperand(0), N2, N->getFlags());
19406 }
19407
19408 // Variant of the previous fold where there is a SETCC in between:
19409 // BRCOND(SETCC(FREEZE(X), CONST, Cond))
19410 // =>
19411 // BRCOND(FREEZE(SETCC(X, CONST, Cond)))
19412 // =>
19413 // BRCOND(SETCC(X, CONST, Cond))
19414 // This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond)
19415 // isn't equivalent to true or false.
19416 // For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to
19417 // FREEZE(SETCC(X, -128, SETULT)) because X can be poison.
19418 if (N1->getOpcode() == ISD::SETCC && N1.hasOneUse()) {
19419 SDValue S0 = N1->getOperand(0), S1 = N1->getOperand(1);
19421 ConstantSDNode *S0C = dyn_cast<ConstantSDNode>(S0);
19422 ConstantSDNode *S1C = dyn_cast<ConstantSDNode>(S1);
19423 bool Updated = false;
19424
19425 // Is 'X Cond C' always true or false?
19426 auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) {
19427 bool False = (Cond == ISD::SETULT && C->isZero()) ||
19428 (Cond == ISD::SETLT && C->isMinSignedValue()) ||
19429 (Cond == ISD::SETUGT && C->isAllOnes()) ||
19430 (Cond == ISD::SETGT && C->isMaxSignedValue());
19431 bool True = (Cond == ISD::SETULE && C->isAllOnes()) ||
19432 (Cond == ISD::SETLE && C->isMaxSignedValue()) ||
19433 (Cond == ISD::SETUGE && C->isZero()) ||
19434 (Cond == ISD::SETGE && C->isMinSignedValue());
19435 return True || False;
19436 };
19437
19438 if (S0->getOpcode() == ISD::FREEZE && S0.hasOneUse() && S1C) {
19439 if (!IsAlwaysTrueOrFalse(Cond, S1C)) {
19440 S0 = S0->getOperand(0);
19441 Updated = true;
19442 }
19443 }
19444 if (S1->getOpcode() == ISD::FREEZE && S1.hasOneUse() && S0C) {
19445 if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond), S0C)) {
19446 S1 = S1->getOperand(0);
19447 Updated = true;
19448 }
19449 }
19450
19451 if (Updated)
19452 return DAG.getNode(
19453 ISD::BRCOND, SDLoc(N), MVT::Other, Chain,
19454 DAG.getSetCC(SDLoc(N1), N1->getValueType(0), S0, S1, Cond), N2,
19455 N->getFlags());
19456 }
19457
19458 // If N is a constant we could fold this into a fallthrough or unconditional
19459 // branch. However that doesn't happen very often in normal code, because
19460 // Instcombine/SimplifyCFG should have handled the available opportunities.
19461 // If we did this folding here, it would be necessary to update the
19462 // MachineBasicBlock CFG, which is awkward.
19463
19464 // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
19465 // on the target, also copy fast math flags.
19466 if (N1.getOpcode() == ISD::SETCC &&
19467 TLI.isOperationLegalOrCustom(ISD::BR_CC,
19468 N1.getOperand(0).getValueType())) {
19469 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, Chain,
19470 N1.getOperand(2), N1.getOperand(0), N1.getOperand(1), N2,
19471 N1->getFlags());
19472 }
19473
19474 if (N1.hasOneUse()) {
19475 // rebuildSetCC calls visitXor which may change the Chain when there is a
19476 // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes.
19477 HandleSDNode ChainHandle(Chain);
19478 if (SDValue NewN1 = rebuildSetCC(N1))
19479 return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other,
19480 ChainHandle.getValue(), NewN1, N2, N->getFlags());
19481 }
19482
19483 return SDValue();
19484}
19485
19486SDValue DAGCombiner::rebuildSetCC(SDValue N) {
19487 if (N.getOpcode() == ISD::SRL ||
19488 (N.getOpcode() == ISD::TRUNCATE &&
19489 (N.getOperand(0).hasOneUse() &&
19490 N.getOperand(0).getOpcode() == ISD::SRL))) {
19491 // Look pass the truncate.
19492 if (N.getOpcode() == ISD::TRUNCATE)
19493 N = N.getOperand(0);
19494
19495 // Match this pattern so that we can generate simpler code:
19496 //
19497 // %a = ...
19498 // %b = and i32 %a, 2
19499 // %c = srl i32 %b, 1
19500 // brcond i32 %c ...
19501 //
19502 // into
19503 //
19504 // %a = ...
19505 // %b = and i32 %a, 2
19506 // %c = setcc eq %b, 0
19507 // brcond %c ...
19508 //
19509 // This applies only when the AND constant value has one bit set and the
19510 // SRL constant is equal to the log2 of the AND constant. The back-end is
19511 // smart enough to convert the result into a TEST/JMP sequence.
19512 SDValue Op0 = N.getOperand(0);
19513 SDValue Op1 = N.getOperand(1);
19514
19515 if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
19516 SDValue AndOp1 = Op0.getOperand(1);
19517
19518 if (AndOp1.getOpcode() == ISD::Constant) {
19519 const APInt &AndConst = AndOp1->getAsAPIntVal();
19520
19521 if (AndConst.isPowerOf2() &&
19522 Op1->getAsAPIntVal() == AndConst.logBase2()) {
19523 SDLoc DL(N);
19524 return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
19525 Op0, DAG.getConstant(0, DL, Op0.getValueType()),
19526 ISD::SETNE);
19527 }
19528 }
19529 }
19530 }
19531
19532 // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne))
19533 // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq))
19534 if (N.getOpcode() == ISD::XOR) {
19535 // Because we may call this on a speculatively constructed
19536 // SimplifiedSetCC Node, we need to simplify this node first.
19537 // Ideally this should be folded into SimplifySetCC and not
19538 // here. For now, grab a handle to N so we don't lose it from
19539 // replacements interal to the visit.
19540 HandleSDNode XORHandle(N);
19541 while (N.getOpcode() == ISD::XOR) {
19542 SDValue Tmp = visitXOR(N.getNode());
19543 // No simplification done.
19544 if (!Tmp.getNode())
19545 break;
19546 // Returning N is form in-visit replacement that may invalidated
19547 // N. Grab value from Handle.
19548 if (Tmp.getNode() == N.getNode())
19549 N = XORHandle.getValue();
19550 else // Node simplified. Try simplifying again.
19551 N = Tmp;
19552 }
19553
19554 if (N.getOpcode() != ISD::XOR)
19555 return N;
19556
19557 SDValue Op0 = N->getOperand(0);
19558 SDValue Op1 = N->getOperand(1);
19559
19560 if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
19561 bool Equal = false;
19562 // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq))
19563 if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR &&
19564 Op0.getValueType() == MVT::i1) {
19565 N = Op0;
19566 Op0 = N->getOperand(0);
19567 Op1 = N->getOperand(1);
19568 Equal = true;
19569 }
19570
19571 EVT SetCCVT = N.getValueType();
19572 if (LegalTypes)
19573 SetCCVT = getSetCCResultType(SetCCVT);
19574 // Replace the uses of XOR with SETCC. Note, avoid this transformation if
19575 // it would introduce illegal operations post-legalization as this can
19576 // result in infinite looping between converting xor->setcc here, and
19577 // expanding setcc->xor in LegalizeSetCCCondCode if requested.
19579 if (!LegalOperations || TLI.isCondCodeLegal(CC, Op0.getSimpleValueType()))
19580 return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, CC);
19581 }
19582 }
19583
19584 return SDValue();
19585}
19586
19587// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
19588//
19589SDValue DAGCombiner::visitBR_CC(SDNode *N) {
19590 CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
19591 SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
19592
19593 // If N is a constant we could fold this into a fallthrough or unconditional
19594 // branch. However that doesn't happen very often in normal code, because
19595 // Instcombine/SimplifyCFG should have handled the available opportunities.
19596 // If we did this folding here, it would be necessary to update the
19597 // MachineBasicBlock CFG, which is awkward.
19598
19599 // Use SimplifySetCC to simplify SETCC's.
19601 CondLHS, CondRHS, CC->get(), SDLoc(N),
19602 false);
19603 if (Simp.getNode()) AddToWorklist(Simp.getNode());
19604
19605 // fold to a simpler setcc
19606 if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
19607 return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
19608 N->getOperand(0), Simp.getOperand(2),
19609 Simp.getOperand(0), Simp.getOperand(1),
19610 N->getOperand(4));
19611
19612 return SDValue();
19613}
19614
19615static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec,
19616 bool &IsLoad, bool &IsMasked, SDValue &Ptr,
19617 const TargetLowering &TLI) {
19618 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19619 if (LD->isIndexed())
19620 return false;
19621 EVT VT = LD->getMemoryVT();
19622 if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT))
19623 return false;
19624 Ptr = LD->getBasePtr();
19625 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19626 if (ST->isIndexed())
19627 return false;
19628 EVT VT = ST->getMemoryVT();
19629 if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT))
19630 return false;
19631 Ptr = ST->getBasePtr();
19632 IsLoad = false;
19633 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19634 if (LD->isIndexed())
19635 return false;
19636 EVT VT = LD->getMemoryVT();
19637 if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) &&
19638 !TLI.isIndexedMaskedLoadLegal(Dec, VT))
19639 return false;
19640 Ptr = LD->getBasePtr();
19641 IsMasked = true;
19643 if (ST->isIndexed())
19644 return false;
19645 EVT VT = ST->getMemoryVT();
19646 if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) &&
19647 !TLI.isIndexedMaskedStoreLegal(Dec, VT))
19648 return false;
19649 Ptr = ST->getBasePtr();
19650 IsLoad = false;
19651 IsMasked = true;
19652 } else {
19653 return false;
19654 }
19655 return true;
19656}
19657
19658/// Try turning a load/store into a pre-indexed load/store when the base
19659/// pointer is an add or subtract and it has other uses besides the load/store.
19660/// After the transformation, the new indexed load/store has effectively folded
19661/// the add/subtract in and all of its other uses are redirected to the
19662/// new load/store.
19663bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
19664 if (Level < AfterLegalizeDAG)
19665 return false;
19666
19667 bool IsLoad = true;
19668 bool IsMasked = false;
19669 SDValue Ptr;
19670 if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked,
19671 Ptr, TLI))
19672 return false;
19673
19674 // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
19675 // out. There is no reason to make this a preinc/predec.
19676 if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
19677 Ptr->hasOneUse())
19678 return false;
19679
19680 // Ask the target to do addressing mode selection.
19684 if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
19685 return false;
19686
19687 // Backends without true r+i pre-indexed forms may need to pass a
19688 // constant base with a variable offset so that constant coercion
19689 // will work with the patterns in canonical form.
19690 bool Swapped = false;
19691 if (isa<ConstantSDNode>(BasePtr)) {
19692 std::swap(BasePtr, Offset);
19693 Swapped = true;
19694 }
19695
19696 // Don't create a indexed load / store with zero offset.
19698 return false;
19699
19700 // Try turning it into a pre-indexed load / store except when:
19701 // 1) The new base ptr is a frame index.
19702 // 2) If N is a store and the new base ptr is either the same as or is a
19703 // predecessor of the value being stored.
19704 // 3) Another use of old base ptr is a predecessor of N. If ptr is folded
19705 // that would create a cycle.
19706 // 4) All uses are load / store ops that use it as old base ptr.
19707
19708 // Check #1. Preinc'ing a frame index would require copying the stack pointer
19709 // (plus the implicit offset) to a register to preinc anyway.
19710 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
19711 return false;
19712
19713 // Check #2.
19714 if (!IsLoad) {
19715 SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue()
19716 : cast<StoreSDNode>(N)->getValue();
19717
19718 // Would require a copy.
19719 if (Val == BasePtr)
19720 return false;
19721
19722 // Would create a cycle.
19723 if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
19724 return false;
19725 }
19726
19727 // Caches for hasPredecessorHelper.
19728 SmallPtrSet<const SDNode *, 32> Visited;
19730 Worklist.push_back(N);
19731
19732 // If the offset is a constant, there may be other adds of constants that
19733 // can be folded with this one. We should do this to avoid having to keep
19734 // a copy of the original base pointer.
19735 SmallVector<SDNode *, 16> OtherUses;
19738 for (SDUse &Use : BasePtr->uses()) {
19739 // Skip the use that is Ptr and uses of other results from BasePtr's
19740 // node (important for nodes that return multiple results).
19741 if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
19742 continue;
19743
19744 if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist,
19745 MaxSteps))
19746 continue;
19747
19748 if (Use.getUser()->getOpcode() != ISD::ADD &&
19749 Use.getUser()->getOpcode() != ISD::SUB) {
19750 OtherUses.clear();
19751 break;
19752 }
19753
19754 SDValue Op1 = Use.getUser()->getOperand((Use.getOperandNo() + 1) & 1);
19755 if (!isa<ConstantSDNode>(Op1)) {
19756 OtherUses.clear();
19757 break;
19758 }
19759
19760 // FIXME: In some cases, we can be smarter about this.
19761 if (Op1.getValueType() != Offset.getValueType()) {
19762 OtherUses.clear();
19763 break;
19764 }
19765
19766 OtherUses.push_back(Use.getUser());
19767 }
19768
19769 if (Swapped)
19770 std::swap(BasePtr, Offset);
19771
19772 // Now check for #3 and #4.
19773 bool RealUse = false;
19774
19775 for (SDNode *User : Ptr->users()) {
19776 if (User == N)
19777 continue;
19778 if (SDNode::hasPredecessorHelper(User, Visited, Worklist, MaxSteps))
19779 return false;
19780
19781 // If Ptr may be folded in addressing mode of other use, then it's
19782 // not profitable to do this transformation.
19783 if (!canFoldInAddressingMode(Ptr.getNode(), User, DAG, TLI))
19784 RealUse = true;
19785 }
19786
19787 if (!RealUse)
19788 return false;
19789
19791 if (!IsMasked) {
19792 if (IsLoad)
19793 Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
19794 else
19795 Result =
19796 DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
19797 } else {
19798 if (IsLoad)
19799 Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
19800 Offset, AM);
19801 else
19802 Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr,
19803 Offset, AM);
19804 }
19805 ++PreIndexedNodes;
19806 ++NodesCombined;
19807 LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
19808 Result.dump(&DAG); dbgs() << '\n');
19809 WorklistRemover DeadNodes(*this);
19810 if (IsLoad) {
19811 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
19812 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
19813 } else {
19814 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
19815 }
19816
19817 // Finally, since the node is now dead, remove it from the graph.
19818 deleteAndRecombine(N);
19819
19820 if (Swapped)
19821 std::swap(BasePtr, Offset);
19822
19823 // Replace other uses of BasePtr that can be updated to use Ptr
19824 for (SDNode *OtherUse : OtherUses) {
19825 unsigned OffsetIdx = 1;
19826 if (OtherUse->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
19827 OffsetIdx = 0;
19828 assert(OtherUse->getOperand(!OffsetIdx).getNode() == BasePtr.getNode() &&
19829 "Expected BasePtr operand");
19830
19831 // We need to replace ptr0 in the following expression:
19832 // x0 * offset0 + y0 * ptr0 = t0
19833 // knowing that
19834 // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
19835 //
19836 // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
19837 // indexed load/store and the expression that needs to be re-written.
19838 //
19839 // Therefore, we have:
19840 // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
19841
19842 auto *CN = cast<ConstantSDNode>(OtherUse->getOperand(OffsetIdx));
19843 const APInt &Offset0 = CN->getAPIntValue();
19844 const APInt &Offset1 = Offset->getAsAPIntVal();
19845 int X0 = (OtherUse->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
19846 int Y0 = (OtherUse->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
19847 int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
19848 int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
19849
19850 unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
19851
19852 APInt CNV = Offset0;
19853 if (X0 < 0) CNV = -CNV;
19854 if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
19855 else CNV = CNV - Offset1;
19856
19857 SDLoc DL(OtherUse);
19858
19859 // We can now generate the new expression.
19860 SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
19861 SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0);
19862
19863 SDValue NewUse =
19864 DAG.getNode(Opcode, DL, OtherUse->getValueType(0), NewOp1, NewOp2);
19865 DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUse, 0), NewUse);
19866 deleteAndRecombine(OtherUse);
19867 }
19868
19869 // Replace the uses of Ptr with uses of the updated base value.
19870 DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0));
19871 deleteAndRecombine(Ptr.getNode());
19872 AddToWorklist(Result.getNode());
19873
19874 return true;
19875}
19876
19878 SDValue &BasePtr, SDValue &Offset,
19880 SelectionDAG &DAG,
19881 const TargetLowering &TLI) {
19882 if (PtrUse == N ||
19883 (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB))
19884 return false;
19885
19886 if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG))
19887 return false;
19888
19889 // Don't create a indexed load / store with zero offset.
19891 return false;
19892
19893 if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
19894 return false;
19895
19898 for (SDNode *User : BasePtr->users()) {
19899 if (User == Ptr.getNode())
19900 continue;
19901
19902 // No if there's a later user which could perform the index instead.
19903 if (isa<MemSDNode>(User)) {
19904 bool IsLoad = true;
19905 bool IsMasked = false;
19906 SDValue OtherPtr;
19908 IsMasked, OtherPtr, TLI)) {
19910 Worklist.push_back(User);
19911 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, MaxSteps))
19912 return false;
19913 }
19914 }
19915
19916 // If all the uses are load / store addresses, then don't do the
19917 // transformation.
19918 if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SUB) {
19919 for (SDNode *UserUser : User->users())
19920 if (canFoldInAddressingMode(User, UserUser, DAG, TLI))
19921 return false;
19922 }
19923 }
19924 return true;
19925}
19926
19928 bool &IsMasked, SDValue &Ptr,
19929 SDValue &BasePtr, SDValue &Offset,
19931 SelectionDAG &DAG,
19932 const TargetLowering &TLI) {
19934 IsMasked, Ptr, TLI) ||
19935 Ptr->hasOneUse())
19936 return nullptr;
19937
19938 // Try turning it into a post-indexed load / store except when
19939 // 1) All uses are load / store ops that use it as base ptr (and
19940 // it may be folded as addressing mmode).
19941 // 2) Op must be independent of N, i.e. Op is neither a predecessor
19942 // nor a successor of N. Otherwise, if Op is folded that would
19943 // create a cycle.
19945 for (SDNode *Op : Ptr->users()) {
19946 // Check for #1.
19947 if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI))
19948 continue;
19949
19950 // Check for #2.
19953 // Ptr is predecessor to both N and Op.
19954 Visited.insert(Ptr.getNode());
19955 Worklist.push_back(N);
19956 Worklist.push_back(Op);
19957 if (!SDNode::hasPredecessorHelper(N, Visited, Worklist, MaxSteps) &&
19958 !SDNode::hasPredecessorHelper(Op, Visited, Worklist, MaxSteps))
19959 return Op;
19960 }
19961 return nullptr;
19962}
19963
19964/// Try to combine a load/store with a add/sub of the base pointer node into a
19965/// post-indexed load/store. The transformation folded the add/subtract into the
19966/// new indexed load/store effectively and all of its uses are redirected to the
19967/// new load/store.
19968bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
19969 if (Level < AfterLegalizeDAG)
19970 return false;
19971
19972 bool IsLoad = true;
19973 bool IsMasked = false;
19974 SDValue Ptr;
19978 SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr,
19979 Offset, AM, DAG, TLI);
19980 if (!Op)
19981 return false;
19982
19984 if (!IsMasked)
19985 Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
19986 Offset, AM)
19987 : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N),
19988 BasePtr, Offset, AM);
19989 else
19990 Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N),
19991 BasePtr, Offset, AM)
19992 : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N),
19993 BasePtr, Offset, AM);
19994 ++PostIndexedNodes;
19995 ++NodesCombined;
19996 LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); dbgs() << "\nWith: ";
19997 Result.dump(&DAG); dbgs() << '\n');
19998 WorklistRemover DeadNodes(*this);
19999 if (IsLoad) {
20000 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
20001 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
20002 } else {
20003 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
20004 }
20005
20006 // Finally, since the node is now dead, remove it from the graph.
20007 deleteAndRecombine(N);
20008
20009 // Replace the uses of Use with uses of the updated base value.
20011 Result.getValue(IsLoad ? 1 : 0));
20012 deleteAndRecombine(Op);
20013 return true;
20014}
20015
20016/// Return the base-pointer arithmetic from an indexed \p LD.
20017SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
20018 ISD::MemIndexedMode AM = LD->getAddressingMode();
20019 assert(AM != ISD::UNINDEXED);
20020 SDValue BP = LD->getOperand(1);
20021 SDValue Inc = LD->getOperand(2);
20022
20023 // Some backends use TargetConstants for load offsets, but don't expect
20024 // TargetConstants in general ADD nodes. We can convert these constants into
20025 // regular Constants (if the constant is not opaque).
20027 !cast<ConstantSDNode>(Inc)->isOpaque()) &&
20028 "Cannot split out indexing using opaque target constants");
20029 if (Inc.getOpcode() == ISD::TargetConstant) {
20030 ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
20031 Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
20032 ConstInc->getValueType(0));
20033 }
20034
20035 unsigned Opc =
20036 (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
20037 return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
20038}
20039
20041 return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0);
20042}
20043
20044bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
20045 EVT STType = Val.getValueType();
20046 EVT STMemType = ST->getMemoryVT();
20047 if (STType == STMemType)
20048 return true;
20049 if (isTypeLegal(STMemType))
20050 return false; // fail.
20051 if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
20052 TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
20053 Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
20054 return true;
20055 }
20056 if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
20057 STType.isInteger() && STMemType.isInteger()) {
20058 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
20059 return true;
20060 }
20061 if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
20062 Val = DAG.getBitcast(STMemType, Val);
20063 return true;
20064 }
20065 return false; // fail.
20066}
20067
20068bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
20069 EVT LDMemType = LD->getMemoryVT();
20070 EVT LDType = LD->getValueType(0);
20071 assert(Val.getValueType() == LDMemType &&
20072 "Attempting to extend value of non-matching type");
20073 if (LDType == LDMemType)
20074 return true;
20075 if (LDMemType.isInteger() && LDType.isInteger()) {
20076 switch (LD->getExtensionType()) {
20077 case ISD::NON_EXTLOAD:
20078 Val = DAG.getBitcast(LDType, Val);
20079 return true;
20080 case ISD::EXTLOAD:
20081 Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
20082 return true;
20083 case ISD::SEXTLOAD:
20084 Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
20085 return true;
20086 case ISD::ZEXTLOAD:
20087 Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
20088 return true;
20089 }
20090 }
20091 return false;
20092}
20093
20094StoreSDNode *DAGCombiner::getUniqueStoreFeeding(LoadSDNode *LD,
20095 int64_t &Offset) {
20096 SDValue Chain = LD->getOperand(0);
20097
20098 // Look through CALLSEQ_START.
20099 if (Chain.getOpcode() == ISD::CALLSEQ_START)
20100 Chain = Chain->getOperand(0);
20101
20102 StoreSDNode *ST = nullptr;
20104 if (Chain.getOpcode() == ISD::TokenFactor) {
20105 // Look for unique store within the TokenFactor.
20106 for (SDValue Op : Chain->ops()) {
20107 StoreSDNode *Store = dyn_cast<StoreSDNode>(Op.getNode());
20108 if (!Store)
20109 continue;
20110 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
20111 BaseIndexOffset BasePtrST = BaseIndexOffset::match(Store, DAG);
20112 if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
20113 continue;
20114 // Make sure the store is not aliased with any nodes in TokenFactor.
20115 GatherAllAliases(Store, Chain, Aliases);
20116 if (Aliases.empty() ||
20117 (Aliases.size() == 1 && Aliases.front().getNode() == Store))
20118 ST = Store;
20119 break;
20120 }
20121 } else {
20122 StoreSDNode *Store = dyn_cast<StoreSDNode>(Chain.getNode());
20123 if (Store) {
20124 BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
20125 BaseIndexOffset BasePtrST = BaseIndexOffset::match(Store, DAG);
20126 if (BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
20127 ST = Store;
20128 }
20129 }
20130
20131 return ST;
20132}
20133
20134SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
20135 if (OptLevel == CodeGenOptLevel::None || !LD->isSimple())
20136 return SDValue();
20137 SDValue Chain = LD->getOperand(0);
20138 int64_t Offset;
20139
20140 StoreSDNode *ST = getUniqueStoreFeeding(LD, Offset);
20141 // TODO: Relax this restriction for unordered atomics (see D66309)
20142 if (!ST || !ST->isSimple() || ST->getAddressSpace() != LD->getAddressSpace())
20143 return SDValue();
20144
20145 EVT LDType = LD->getValueType(0);
20146 EVT LDMemType = LD->getMemoryVT();
20147 EVT STMemType = ST->getMemoryVT();
20148 EVT STType = ST->getValue().getValueType();
20149
20150 // There are two cases to consider here:
20151 // 1. The store is fixed width and the load is scalable. In this case we
20152 // don't know at compile time if the store completely envelops the load
20153 // so we abandon the optimisation.
20154 // 2. The store is scalable and the load is fixed width. We could
20155 // potentially support a limited number of cases here, but there has been
20156 // no cost-benefit analysis to prove it's worth it.
20157 bool LdStScalable = LDMemType.isScalableVT();
20158 if (LdStScalable != STMemType.isScalableVT())
20159 return SDValue();
20160
20161 // If we are dealing with scalable vectors on a big endian platform the
20162 // calculation of offsets below becomes trickier, since we do not know at
20163 // compile time the absolute size of the vector. Until we've done more
20164 // analysis on big-endian platforms it seems better to bail out for now.
20165 if (LdStScalable && DAG.getDataLayout().isBigEndian())
20166 return SDValue();
20167
20168 // Normalize for Endianness. After this Offset=0 will denote that the least
20169 // significant bit in the loaded value maps to the least significant bit in
20170 // the stored value). With Offset=n (for n > 0) the loaded value starts at the
20171 // n:th least significant byte of the stored value.
20172 int64_t OrigOffset = Offset;
20173 if (DAG.getDataLayout().isBigEndian())
20174 Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedValue() -
20175 (int64_t)LDMemType.getStoreSizeInBits().getFixedValue()) /
20176 8 -
20177 Offset;
20178
20179 // Check that the stored value cover all bits that are loaded.
20180 bool STCoversLD;
20181
20182 TypeSize LdMemSize = LDMemType.getSizeInBits();
20183 TypeSize StMemSize = STMemType.getSizeInBits();
20184 if (LdStScalable)
20185 STCoversLD = (Offset == 0) && LdMemSize == StMemSize;
20186 else
20187 STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedValue() <=
20188 StMemSize.getFixedValue());
20189
20190 auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
20191 if (LD->isIndexed()) {
20192 // Cannot handle opaque target constants and we must respect the user's
20193 // request not to split indexes from loads.
20194 if (!canSplitIdx(LD))
20195 return SDValue();
20196 SDValue Idx = SplitIndexingFromLoad(LD);
20197 SDValue Ops[] = {Val, Idx, Chain};
20198 return CombineTo(LD, Ops, 3);
20199 }
20200 return CombineTo(LD, Val, Chain);
20201 };
20202
20203 if (!STCoversLD)
20204 return SDValue();
20205
20206 // Memory as copy space (potentially masked).
20207 if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
20208 // Simple case: Direct non-truncating forwarding
20209 if (LDType.getSizeInBits() == LdMemSize)
20210 return ReplaceLd(LD, ST->getValue(), Chain);
20211 // Can we model the truncate and extension with an and mask?
20212 if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
20213 !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
20214 // Mask to size of LDMemType
20215 auto Mask =
20217 StMemSize.getFixedValue()),
20218 SDLoc(ST), STType);
20219 auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
20220 return ReplaceLd(LD, Val, Chain);
20221 }
20222 }
20223
20224 // Handle some cases for big-endian that would be Offset 0 and handled for
20225 // little-endian.
20226 SDValue Val = ST->getValue();
20227 if (DAG.getDataLayout().isBigEndian() && Offset > 0 && OrigOffset == 0) {
20228 if (STType.isInteger() && !STType.isVector() && LDType.isInteger() &&
20229 !LDType.isVector() && isTypeLegal(STType) &&
20230 TLI.isOperationLegal(ISD::SRL, STType)) {
20231 Val = DAG.getNode(ISD::SRL, SDLoc(LD), STType, Val,
20232 DAG.getConstant(Offset * 8, SDLoc(LD), STType));
20233 Offset = 0;
20234 }
20235 }
20236
20237 // TODO: Deal with nonzero offset.
20238 if (LD->getBasePtr().isUndef() || Offset != 0)
20239 return SDValue();
20240 // Model necessary truncations / extenstions.
20241 // Truncate Value To Stored Memory Size.
20242 do {
20243 if (!getTruncatedStoreValue(ST, Val))
20244 break;
20245 if (!isTypeLegal(LDMemType))
20246 break;
20247 if (STMemType != LDMemType) {
20248 // TODO: Support vectors? This requires extract_subvector/bitcast.
20249 if (!STMemType.isVector() && !LDMemType.isVector() &&
20250 STMemType.isInteger() && LDMemType.isInteger())
20251 Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
20252 else
20253 break;
20254 }
20255 if (!extendLoadedValueToExtension(LD, Val))
20256 break;
20257 return ReplaceLd(LD, Val, Chain);
20258 } while (false);
20259
20260 // On failure, cleanup dead nodes we may have created.
20261 if (Val->use_empty())
20262 deleteAndRecombine(Val.getNode());
20263 return SDValue();
20264}
20265
20266SDValue DAGCombiner::visitLOAD(SDNode *N) {
20267 LoadSDNode *LD = cast<LoadSDNode>(N);
20268 SDValue Chain = LD->getChain();
20269 SDValue Ptr = LD->getBasePtr();
20270
20271 // If load is not volatile and there are no uses of the loaded value (and
20272 // the updated indexed value in case of indexed loads), change uses of the
20273 // chain value into uses of the chain input (i.e. delete the dead load).
20274 // TODO: Allow this for unordered atomics (see D66309)
20275 if (LD->isSimple()) {
20276 if (N->getValueType(1) == MVT::Other) {
20277 // Unindexed loads.
20278 if (!N->hasAnyUseOfValue(0)) {
20279 // It's not safe to use the two value CombineTo variant here. e.g.
20280 // v1, chain2 = load chain1, loc
20281 // v2, chain3 = load chain2, loc
20282 // v3 = add v2, c
20283 // Now we replace use of chain2 with chain1. This makes the second load
20284 // isomorphic to the one we are deleting, and thus makes this load live.
20285 LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
20286 dbgs() << "\nWith chain: "; Chain.dump(&DAG);
20287 dbgs() << "\n");
20288 WorklistRemover DeadNodes(*this);
20289 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
20290 AddUsersToWorklist(Chain.getNode());
20291 if (N->use_empty())
20292 deleteAndRecombine(N);
20293
20294 return SDValue(N, 0); // Return N so it doesn't get rechecked!
20295 }
20296 } else {
20297 // Indexed loads.
20298 assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
20299
20300 // If this load has an opaque TargetConstant offset, then we cannot split
20301 // the indexing into an add/sub directly (that TargetConstant may not be
20302 // valid for a different type of node, and we cannot convert an opaque
20303 // target constant into a regular constant).
20304 bool CanSplitIdx = canSplitIdx(LD);
20305
20306 if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) {
20307 SDValue Undef = DAG.getUNDEF(N->getValueType(0));
20308 SDValue Index;
20309 if (N->hasAnyUseOfValue(1) && CanSplitIdx) {
20310 Index = SplitIndexingFromLoad(LD);
20311 // Try to fold the base pointer arithmetic into subsequent loads and
20312 // stores.
20313 AddUsersToWorklist(N);
20314 } else
20315 Index = DAG.getUNDEF(N->getValueType(1));
20316 LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
20317 dbgs() << "\nWith: "; Undef.dump(&DAG);
20318 dbgs() << " and 2 other values\n");
20319 WorklistRemover DeadNodes(*this);
20320 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
20321 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
20322 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
20323 deleteAndRecombine(N);
20324 return SDValue(N, 0); // Return N so it doesn't get rechecked!
20325 }
20326 }
20327 }
20328
20329 // If this load is directly stored, replace the load value with the stored
20330 // value.
20331 if (auto V = ForwardStoreValueToDirectLoad(LD))
20332 return V;
20333
20334 // Try to infer better alignment information than the load already has.
20335 if (OptLevel != CodeGenOptLevel::None && LD->isUnindexed() &&
20336 !LD->isAtomic()) {
20337 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
20338 if (*Alignment > LD->getAlign() &&
20339 isAligned(*Alignment, LD->getSrcValueOffset())) {
20340 SDValue NewLoad = DAG.getExtLoad(
20341 LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
20342 LD->getPointerInfo(), LD->getMemoryVT(), *Alignment,
20343 LD->getMemOperand()->getFlags(), LD->getAAInfo());
20344 // NewLoad will always be N as we are only refining the alignment
20345 assert(NewLoad.getNode() == N);
20346 (void)NewLoad;
20347 }
20348 }
20349 }
20350
20351 if (LD->isUnindexed()) {
20352 // Walk up chain skipping non-aliasing memory nodes.
20353 SDValue BetterChain = FindBetterChain(LD, Chain);
20354
20355 // If there is a better chain.
20356 if (Chain != BetterChain) {
20357 SDValue ReplLoad;
20358
20359 // Replace the chain to void dependency.
20360 if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
20361 ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
20362 BetterChain, Ptr, LD->getMemOperand());
20363 } else {
20364 ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
20365 LD->getValueType(0),
20366 BetterChain, Ptr, LD->getMemoryVT(),
20367 LD->getMemOperand());
20368 }
20369
20370 // Create token factor to keep old chain connected.
20371 SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
20372 MVT::Other, Chain, ReplLoad.getValue(1));
20373
20374 // Replace uses with load result and token factor
20375 return CombineTo(N, ReplLoad.getValue(0), Token);
20376 }
20377 }
20378
20379 // Try transforming N to an indexed load.
20380 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
20381 return SDValue(N, 0);
20382
20383 // Try to slice up N to more direct loads if the slices are mapped to
20384 // different register banks or pairing can take place.
20385 if (SliceUpLoad(N))
20386 return SDValue(N, 0);
20387
20388 return SDValue();
20389}
20390
20391namespace {
20392
20393/// Helper structure used to slice a load in smaller loads.
20394/// Basically a slice is obtained from the following sequence:
20395/// Origin = load Ty1, Base
20396/// Shift = srl Ty1 Origin, CstTy Amount
20397/// Inst = trunc Shift to Ty2
20398///
20399/// Then, it will be rewritten into:
20400/// Slice = load SliceTy, Base + SliceOffset
20401/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
20402///
20403/// SliceTy is deduced from the number of bits that are actually used to
20404/// build Inst.
20405struct LoadedSlice {
20406 /// Helper structure used to compute the cost of a slice.
20407 struct Cost {
20408 /// Are we optimizing for code size.
20409 bool ForCodeSize = false;
20410
20411 /// Various cost.
20412 unsigned Loads = 0;
20413 unsigned Truncates = 0;
20414 unsigned CrossRegisterBanksCopies = 0;
20415 unsigned ZExts = 0;
20416 unsigned Shift = 0;
20417
20418 explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {}
20419
20420 /// Get the cost of one isolated slice.
20421 Cost(const LoadedSlice &LS, bool ForCodeSize)
20422 : ForCodeSize(ForCodeSize), Loads(1) {
20423 EVT TruncType = LS.Inst->getValueType(0);
20424 EVT LoadedType = LS.getLoadedType();
20425 if (TruncType != LoadedType &&
20426 !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
20427 ZExts = 1;
20428 }
20429
20430 /// Account for slicing gain in the current cost.
20431 /// Slicing provide a few gains like removing a shift or a
20432 /// truncate. This method allows to grow the cost of the original
20433 /// load with the gain from this slice.
20434 void addSliceGain(const LoadedSlice &LS) {
20435 // Each slice saves a truncate.
20436 const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
20437 if (!TLI.isTruncateFree(LS.Inst->getOperand(0), LS.Inst->getValueType(0)))
20438 ++Truncates;
20439 // If there is a shift amount, this slice gets rid of it.
20440 if (LS.Shift)
20441 ++Shift;
20442 // If this slice can merge a cross register bank copy, account for it.
20443 if (LS.canMergeExpensiveCrossRegisterBankCopy())
20444 ++CrossRegisterBanksCopies;
20445 }
20446
20447 Cost &operator+=(const Cost &RHS) {
20448 Loads += RHS.Loads;
20449 Truncates += RHS.Truncates;
20450 CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
20451 ZExts += RHS.ZExts;
20452 Shift += RHS.Shift;
20453 return *this;
20454 }
20455
20456 bool operator==(const Cost &RHS) const {
20457 return Loads == RHS.Loads && Truncates == RHS.Truncates &&
20458 CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
20459 ZExts == RHS.ZExts && Shift == RHS.Shift;
20460 }
20461
20462 bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
20463
20464 bool operator<(const Cost &RHS) const {
20465 // Assume cross register banks copies are as expensive as loads.
20466 // FIXME: Do we want some more target hooks?
20467 unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
20468 unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
20469 // Unless we are optimizing for code size, consider the
20470 // expensive operation first.
20471 if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
20472 return ExpensiveOpsLHS < ExpensiveOpsRHS;
20473 return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
20474 (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
20475 }
20476
20477 bool operator>(const Cost &RHS) const { return RHS < *this; }
20478
20479 bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
20480
20481 bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
20482 };
20483
20484 // The last instruction that represent the slice. This should be a
20485 // truncate instruction.
20486 SDNode *Inst;
20487
20488 // The original load instruction.
20489 LoadSDNode *Origin;
20490
20491 // The right shift amount in bits from the original load.
20492 unsigned Shift;
20493
20494 // The DAG from which Origin came from.
20495 // This is used to get some contextual information about legal types, etc.
20496 SelectionDAG *DAG;
20497
20498 LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
20499 unsigned Shift = 0, SelectionDAG *DAG = nullptr)
20500 : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
20501
20502 /// Get the bits used in a chunk of bits \p BitWidth large.
20503 /// \return Result is \p BitWidth and has used bits set to 1 and
20504 /// not used bits set to 0.
20505 APInt getUsedBits() const {
20506 // Reproduce the trunc(lshr) sequence:
20507 // - Start from the truncated value.
20508 // - Zero extend to the desired bit width.
20509 // - Shift left.
20510 assert(Origin && "No original load to compare against.");
20511 unsigned BitWidth = Origin->getValueSizeInBits(0);
20512 assert(Inst && "This slice is not bound to an instruction");
20513 assert(Inst->getValueSizeInBits(0) <= BitWidth &&
20514 "Extracted slice is bigger than the whole type!");
20515 APInt UsedBits(Inst->getValueSizeInBits(0), 0);
20516 UsedBits.setAllBits();
20517 UsedBits = UsedBits.zext(BitWidth);
20518 UsedBits <<= Shift;
20519 return UsedBits;
20520 }
20521
20522 /// Get the size of the slice to be loaded in bytes.
20523 unsigned getLoadedSize() const {
20524 unsigned SliceSize = getUsedBits().popcount();
20525 assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
20526 return SliceSize / 8;
20527 }
20528
20529 /// Get the type that will be loaded for this slice.
20530 /// Note: This may not be the final type for the slice.
20531 EVT getLoadedType() const {
20532 assert(DAG && "Missing context");
20533 LLVMContext &Ctxt = *DAG->getContext();
20534 return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
20535 }
20536
20537 /// Get the alignment of the load used for this slice.
20538 Align getAlign() const {
20539 Align Alignment = Origin->getAlign();
20540 uint64_t Offset = getOffsetFromBase();
20541 if (Offset != 0)
20542 Alignment = commonAlignment(Alignment, Alignment.value() + Offset);
20543 return Alignment;
20544 }
20545
20546 /// Check if this slice can be rewritten with legal operations.
20547 bool isLegal() const {
20548 // An invalid slice is not legal.
20549 if (!Origin || !Inst || !DAG)
20550 return false;
20551
20552 // Offsets are for indexed load only, we do not handle that.
20553 if (!Origin->getOffset().isUndef())
20554 return false;
20555
20556 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
20557
20558 // Check that the type is legal.
20559 EVT SliceType = getLoadedType();
20560 if (!TLI.isTypeLegal(SliceType))
20561 return false;
20562
20563 // Check that the load is legal for this type.
20564 if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
20565 return false;
20566
20567 // Check that the offset can be computed.
20568 // 1. Check its type.
20569 EVT PtrType = Origin->getBasePtr().getValueType();
20570 if (PtrType == MVT::Untyped || PtrType.isExtended())
20571 return false;
20572
20573 // 2. Check that it fits in the immediate.
20574 if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
20575 return false;
20576
20577 // 3. Check that the computation is legal.
20578 if (!TLI.isOperationLegal(ISD::ADD, PtrType))
20579 return false;
20580
20581 // Check that the zext is legal if it needs one.
20582 EVT TruncateType = Inst->getValueType(0);
20583 if (TruncateType != SliceType &&
20584 !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
20585 return false;
20586
20587 return true;
20588 }
20589
20590 /// Get the offset in bytes of this slice in the original chunk of
20591 /// bits.
20592 /// \pre DAG != nullptr.
20593 uint64_t getOffsetFromBase() const {
20594 assert(DAG && "Missing context.");
20595 bool IsBigEndian = DAG->getDataLayout().isBigEndian();
20596 assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
20597 uint64_t Offset = Shift / 8;
20598 unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
20599 assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
20600 "The size of the original loaded type is not a multiple of a"
20601 " byte.");
20602 // If Offset is bigger than TySizeInBytes, it means we are loading all
20603 // zeros. This should have been optimized before in the process.
20604 assert(TySizeInBytes > Offset &&
20605 "Invalid shift amount for given loaded size");
20606 if (IsBigEndian)
20607 Offset = TySizeInBytes - Offset - getLoadedSize();
20608 return Offset;
20609 }
20610
20611 /// Generate the sequence of instructions to load the slice
20612 /// represented by this object and redirect the uses of this slice to
20613 /// this new sequence of instructions.
20614 /// \pre this->Inst && this->Origin are valid Instructions and this
20615 /// object passed the legal check: LoadedSlice::isLegal returned true.
20616 /// \return The last instruction of the sequence used to load the slice.
20617 SDValue loadSlice() const {
20618 assert(Inst && Origin && "Unable to replace a non-existing slice.");
20619 const SDValue &OldBaseAddr = Origin->getBasePtr();
20620 SDValue BaseAddr = OldBaseAddr;
20621 // Get the offset in that chunk of bytes w.r.t. the endianness.
20622 int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
20623 assert(Offset >= 0 && "Offset too big to fit in int64_t!");
20624 if (Offset) {
20625 // BaseAddr = BaseAddr + Offset.
20626 EVT ArithType = BaseAddr.getValueType();
20627 SDLoc DL(Origin);
20628 BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
20629 DAG->getConstant(Offset, DL, ArithType));
20630 }
20631
20632 // Create the type of the loaded slice according to its size.
20633 EVT SliceType = getLoadedType();
20634
20635 // Create the load for the slice.
20636 SDValue LastInst =
20637 DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
20639 Origin->getMemOperand()->getFlags());
20640 // If the final type is not the same as the loaded type, this means that
20641 // we have to pad with zero. Create a zero extend for that.
20642 EVT FinalType = Inst->getValueType(0);
20643 if (SliceType != FinalType)
20644 LastInst =
20645 DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
20646 return LastInst;
20647 }
20648
20649 /// Check if this slice can be merged with an expensive cross register
20650 /// bank copy. E.g.,
20651 /// i = load i32
20652 /// f = bitcast i32 i to float
20653 bool canMergeExpensiveCrossRegisterBankCopy() const {
20654 if (!Inst || !Inst->hasOneUse())
20655 return false;
20656 SDNode *User = *Inst->user_begin();
20657 if (User->getOpcode() != ISD::BITCAST)
20658 return false;
20659 assert(DAG && "Missing context");
20660 const TargetLowering &TLI = DAG->getTargetLoweringInfo();
20661 EVT ResVT = User->getValueType(0);
20662 const TargetRegisterClass *ResRC =
20663 TLI.getRegClassFor(ResVT.getSimpleVT(), User->isDivergent());
20664 const TargetRegisterClass *ArgRC =
20665 TLI.getRegClassFor(User->getOperand(0).getValueType().getSimpleVT(),
20666 User->getOperand(0)->isDivergent());
20667 if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
20668 return false;
20669
20670 // At this point, we know that we perform a cross-register-bank copy.
20671 // Check if it is expensive.
20672 const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
20673 // Assume bitcasts are cheap, unless both register classes do not
20674 // explicitly share a common sub class.
20675 if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
20676 return false;
20677
20678 // Check if it will be merged with the load.
20679 // 1. Check the alignment / fast memory access constraint.
20680 unsigned IsFast = 0;
20681 if (!TLI.allowsMemoryAccess(*DAG->getContext(), DAG->getDataLayout(), ResVT,
20682 Origin->getAddressSpace(), getAlign(),
20683 Origin->getMemOperand()->getFlags(), &IsFast) ||
20684 !IsFast)
20685 return false;
20686
20687 // 2. Check that the load is a legal operation for that type.
20688 if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
20689 return false;
20690
20691 // 3. Check that we do not have a zext in the way.
20692 if (Inst->getValueType(0) != getLoadedType())
20693 return false;
20694
20695 return true;
20696 }
20697};
20698
20699} // end anonymous namespace
20700
20701/// Check that all bits set in \p UsedBits form a dense region, i.e.,
20702/// \p UsedBits looks like 0..0 1..1 0..0.
20703static bool areUsedBitsDense(const APInt &UsedBits) {
20704 // If all the bits are one, this is dense!
20705 if (UsedBits.isAllOnes())
20706 return true;
20707
20708 // Get rid of the unused bits on the right.
20709 APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countr_zero());
20710 // Get rid of the unused bits on the left.
20711 if (NarrowedUsedBits.countl_zero())
20712 NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
20713 // Check that the chunk of bits is completely used.
20714 return NarrowedUsedBits.isAllOnes();
20715}
20716
20717/// Check whether or not \p First and \p Second are next to each other
20718/// in memory. This means that there is no hole between the bits loaded
20719/// by \p First and the bits loaded by \p Second.
20720static bool areSlicesNextToEachOther(const LoadedSlice &First,
20721 const LoadedSlice &Second) {
20722 assert(First.Origin == Second.Origin && First.Origin &&
20723 "Unable to match different memory origins.");
20724 APInt UsedBits = First.getUsedBits();
20725 assert((UsedBits & Second.getUsedBits()) == 0 &&
20726 "Slices are not supposed to overlap.");
20727 UsedBits |= Second.getUsedBits();
20728 return areUsedBitsDense(UsedBits);
20729}
20730
20731/// Adjust the \p GlobalLSCost according to the target
20732/// paring capabilities and the layout of the slices.
20733/// \pre \p GlobalLSCost should account for at least as many loads as
20734/// there is in the slices in \p LoadedSlices.
20736 LoadedSlice::Cost &GlobalLSCost) {
20737 unsigned NumberOfSlices = LoadedSlices.size();
20738 // If there is less than 2 elements, no pairing is possible.
20739 if (NumberOfSlices < 2)
20740 return;
20741
20742 // Sort the slices so that elements that are likely to be next to each
20743 // other in memory are next to each other in the list.
20744 llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
20745 assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
20746 return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
20747 });
20748 const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
20749 // First (resp. Second) is the first (resp. Second) potentially candidate
20750 // to be placed in a paired load.
20751 const LoadedSlice *First = nullptr;
20752 const LoadedSlice *Second = nullptr;
20753 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
20754 // Set the beginning of the pair.
20755 First = Second) {
20756 Second = &LoadedSlices[CurrSlice];
20757
20758 // If First is NULL, it means we start a new pair.
20759 // Get to the next slice.
20760 if (!First)
20761 continue;
20762
20763 EVT LoadedType = First->getLoadedType();
20764
20765 // If the types of the slices are different, we cannot pair them.
20766 if (LoadedType != Second->getLoadedType())
20767 continue;
20768
20769 // Check if the target supplies paired loads for this type.
20770 Align RequiredAlignment;
20771 if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
20772 // move to the next pair, this type is hopeless.
20773 Second = nullptr;
20774 continue;
20775 }
20776 // Check if we meet the alignment requirement.
20777 if (First->getAlign() < RequiredAlignment)
20778 continue;
20779
20780 // Check that both loads are next to each other in memory.
20781 if (!areSlicesNextToEachOther(*First, *Second))
20782 continue;
20783
20784 assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
20785 --GlobalLSCost.Loads;
20786 // Move to the next pair.
20787 Second = nullptr;
20788 }
20789}
20790
20791/// Check the profitability of all involved LoadedSlice.
20792/// Currently, it is considered profitable if there is exactly two
20793/// involved slices (1) which are (2) next to each other in memory, and
20794/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
20795///
20796/// Note: The order of the elements in \p LoadedSlices may be modified, but not
20797/// the elements themselves.
20798///
20799/// FIXME: When the cost model will be mature enough, we can relax
20800/// constraints (1) and (2).
20802 const APInt &UsedBits, bool ForCodeSize) {
20803 unsigned NumberOfSlices = LoadedSlices.size();
20805 return NumberOfSlices > 1;
20806
20807 // Check (1).
20808 if (NumberOfSlices != 2)
20809 return false;
20810
20811 // Check (2).
20812 if (!areUsedBitsDense(UsedBits))
20813 return false;
20814
20815 // Check (3).
20816 LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
20817 // The original code has one big load.
20818 OrigCost.Loads = 1;
20819 for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
20820 const LoadedSlice &LS = LoadedSlices[CurrSlice];
20821 // Accumulate the cost of all the slices.
20822 LoadedSlice::Cost SliceCost(LS, ForCodeSize);
20823 GlobalSlicingCost += SliceCost;
20824
20825 // Account as cost in the original configuration the gain obtained
20826 // with the current slices.
20827 OrigCost.addSliceGain(LS);
20828 }
20829
20830 // If the target supports paired load, adjust the cost accordingly.
20831 adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
20832 return OrigCost > GlobalSlicingCost;
20833}
20834
20835/// If the given load, \p LI, is used only by trunc or trunc(lshr)
20836/// operations, split it in the various pieces being extracted.
20837///
20838/// This sort of thing is introduced by SROA.
20839/// This slicing takes care not to insert overlapping loads.
20840/// \pre LI is a simple load (i.e., not an atomic or volatile load).
20841bool DAGCombiner::SliceUpLoad(SDNode *N) {
20842 if (Level < AfterLegalizeDAG)
20843 return false;
20844
20845 LoadSDNode *LD = cast<LoadSDNode>(N);
20846 if (!LD->isSimple() || !ISD::isNormalLoad(LD) ||
20847 !LD->getValueType(0).isInteger())
20848 return false;
20849
20850 // The algorithm to split up a load of a scalable vector into individual
20851 // elements currently requires knowing the length of the loaded type,
20852 // so will need adjusting to work on scalable vectors.
20853 if (LD->getValueType(0).isScalableVector())
20854 return false;
20855
20856 // Keep track of already used bits to detect overlapping values.
20857 // In that case, we will just abort the transformation.
20858 APInt UsedBits(LD->getValueSizeInBits(0), 0);
20859
20860 SmallVector<LoadedSlice, 4> LoadedSlices;
20861
20862 // Check if this load is used as several smaller chunks of bits.
20863 // Basically, look for uses in trunc or trunc(lshr) and record a new chain
20864 // of computation for each trunc.
20865 for (SDUse &U : LD->uses()) {
20866 // Skip the uses of the chain.
20867 if (U.getResNo() != 0)
20868 continue;
20869
20870 SDNode *User = U.getUser();
20871 unsigned Shift = 0;
20872
20873 // Check if this is a trunc(lshr).
20874 if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
20875 isa<ConstantSDNode>(User->getOperand(1))) {
20876 Shift = User->getConstantOperandVal(1);
20877 User = *User->user_begin();
20878 }
20879
20880 // At this point, User is a Truncate, iff we encountered, trunc or
20881 // trunc(lshr).
20882 if (User->getOpcode() != ISD::TRUNCATE)
20883 return false;
20884
20885 // The width of the type must be a power of 2 and greater than 8-bits.
20886 // Otherwise the load cannot be represented in LLVM IR.
20887 // Moreover, if we shifted with a non-8-bits multiple, the slice
20888 // will be across several bytes. We do not support that.
20889 unsigned Width = User->getValueSizeInBits(0);
20890 if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
20891 return false;
20892
20893 // Build the slice for this chain of computations.
20894 LoadedSlice LS(User, LD, Shift, &DAG);
20895 APInt CurrentUsedBits = LS.getUsedBits();
20896
20897 // Check if this slice overlaps with another.
20898 if ((CurrentUsedBits & UsedBits) != 0)
20899 return false;
20900 // Update the bits used globally.
20901 UsedBits |= CurrentUsedBits;
20902
20903 // Check if the new slice would be legal.
20904 if (!LS.isLegal())
20905 return false;
20906
20907 // Record the slice.
20908 LoadedSlices.push_back(LS);
20909 }
20910
20911 // Abort slicing if it does not seem to be profitable.
20912 if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
20913 return false;
20914
20915 ++SlicedLoads;
20916
20917 // Rewrite each chain to use an independent load.
20918 // By construction, each chain can be represented by a unique load.
20919
20920 // Prepare the argument for the new token factor for all the slices.
20921 SmallVector<SDValue, 8> ArgChains;
20922 for (const LoadedSlice &LS : LoadedSlices) {
20923 SDValue SliceInst = LS.loadSlice();
20924 CombineTo(LS.Inst, SliceInst, true);
20925 if (SliceInst.getOpcode() != ISD::LOAD)
20926 SliceInst = SliceInst.getOperand(0);
20927 assert(SliceInst->getOpcode() == ISD::LOAD &&
20928 "It takes more than a zext to get to the loaded slice!!");
20929 ArgChains.push_back(SliceInst.getValue(1));
20930 }
20931
20932 SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
20933 ArgChains);
20934 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
20935 AddToWorklist(Chain.getNode());
20936 return true;
20937}
20938
20939/// Check to see if V is (and load (ptr), imm), where the load is having
20940/// specific bytes cleared out. If so, return the byte size being masked out
20941/// and the shift amount.
20942static std::pair<unsigned, unsigned>
20944 std::pair<unsigned, unsigned> Result(0, 0);
20945
20946 // Check for the structure we're looking for.
20947 if (V->getOpcode() != ISD::AND ||
20948 !isa<ConstantSDNode>(V->getOperand(1)) ||
20949 !ISD::isNormalLoad(V->getOperand(0).getNode()))
20950 return Result;
20951
20952 // Check the chain and pointer.
20953 LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
20954 if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
20955
20956 // This only handles simple types.
20957 if (V.getValueType() != MVT::i16 &&
20958 V.getValueType() != MVT::i32 &&
20959 V.getValueType() != MVT::i64)
20960 return Result;
20961
20962 // Check the constant mask. Invert it so that the bits being masked out are
20963 // 0 and the bits being kept are 1. Use getSExtValue so that leading bits
20964 // follow the sign bit for uniformity.
20965 uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
20966 unsigned NotMaskLZ = llvm::countl_zero(NotMask);
20967 if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
20968 unsigned NotMaskTZ = llvm::countr_zero(NotMask);
20969 if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
20970 if (NotMaskLZ == 64) return Result; // All zero mask.
20971
20972 // See if we have a continuous run of bits. If so, we have 0*1+0*
20973 if (llvm::countr_one(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
20974 return Result;
20975
20976 // Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
20977 if (V.getValueType() != MVT::i64 && NotMaskLZ)
20978 NotMaskLZ -= 64-V.getValueSizeInBits();
20979
20980 unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
20981 switch (MaskedBytes) {
20982 case 1:
20983 case 2:
20984 case 4: break;
20985 default: return Result; // All one mask, or 5-byte mask.
20986 }
20987
20988 // Verify that the first bit starts at a multiple of mask so that the access
20989 // is aligned the same as the access width.
20990 if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
20991
20992 // For narrowing to be valid, it must be the case that the load the
20993 // immediately preceding memory operation before the store.
20994 if (LD == Chain.getNode())
20995 ; // ok.
20996 else if (Chain->getOpcode() == ISD::TokenFactor &&
20997 SDValue(LD, 1).hasOneUse()) {
20998 // LD has only 1 chain use so they are no indirect dependencies.
20999 if (!LD->isOperandOf(Chain.getNode()))
21000 return Result;
21001 } else
21002 return Result; // Fail.
21003
21004 Result.first = MaskedBytes;
21005 Result.second = NotMaskTZ/8;
21006 return Result;
21007}
21008
21009/// Check to see if IVal is something that provides a value as specified by
21010/// MaskInfo. If so, replace the specified store with a narrower store of
21011/// truncated IVal.
21012static SDValue
21013ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
21014 SDValue IVal, StoreSDNode *St,
21015 DAGCombiner *DC) {
21016 unsigned NumBytes = MaskInfo.first;
21017 unsigned ByteShift = MaskInfo.second;
21018 SelectionDAG &DAG = DC->getDAG();
21019
21020 // Check to see if IVal is all zeros in the part being masked in by the 'or'
21021 // that uses this. If not, this is not a replacement.
21022 APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
21023 ByteShift*8, (ByteShift+NumBytes)*8);
21024 if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();
21025
21026 // Check that it is legal on the target to do this. It is legal if the new
21027 // VT we're shrinking to (i8/i16/i32) is legal or we're still before type
21028 // legalization. If the source type is legal, but the store type isn't, see
21029 // if we can use a truncating store.
21030 MVT VT = MVT::getIntegerVT(NumBytes * 8);
21031 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
21032 bool UseTruncStore;
21033 if (DC->isTypeLegal(VT))
21034 UseTruncStore = false;
21035 else if (TLI.isTypeLegal(IVal.getValueType()) &&
21036 TLI.isTruncStoreLegal(IVal.getValueType(), VT))
21037 UseTruncStore = true;
21038 else
21039 return SDValue();
21040
21041 // Can't do this for indexed stores.
21042 if (St->isIndexed())
21043 return SDValue();
21044
21045 // Check that the target doesn't think this is a bad idea.
21046 if (St->getMemOperand() &&
21047 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
21048 *St->getMemOperand()))
21049 return SDValue();
21050
21051 // Okay, we can do this! Replace the 'St' store with a store of IVal that is
21052 // shifted by ByteShift and truncated down to NumBytes.
21053 if (ByteShift) {
21054 SDLoc DL(IVal);
21055 IVal = DAG.getNode(
21056 ISD::SRL, DL, IVal.getValueType(), IVal,
21057 DAG.getShiftAmountConstant(ByteShift * 8, IVal.getValueType(), DL));
21058 }
21059
21060 // Figure out the offset for the store and the alignment of the access.
21061 unsigned StOffset;
21062 if (DAG.getDataLayout().isLittleEndian())
21063 StOffset = ByteShift;
21064 else
21065 StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
21066
21067 SDValue Ptr = St->getBasePtr();
21068 if (StOffset) {
21069 SDLoc DL(IVal);
21071 }
21072
21073 ++OpsNarrowed;
21074 if (UseTruncStore)
21075 return DAG.getTruncStore(St->getChain(), SDLoc(St), IVal, Ptr,
21076 St->getPointerInfo().getWithOffset(StOffset), VT,
21077 St->getBaseAlign());
21078
21079 // Truncate down to the new size.
21080 IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
21081
21082 return DAG.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
21083 St->getPointerInfo().getWithOffset(StOffset),
21084 St->getBaseAlign());
21085}
21086
21087/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
21088/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
21089/// narrowing the load and store if it would end up being a win for performance
21090/// or code size.
21091SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
21092 StoreSDNode *ST = cast<StoreSDNode>(N);
21093 if (!ST->isSimple())
21094 return SDValue();
21095
21096 SDValue Chain = ST->getChain();
21097 SDValue Value = ST->getValue();
21098 SDValue Ptr = ST->getBasePtr();
21099 EVT VT = Value.getValueType();
21100
21101 if (ST->isTruncatingStore() || VT.isVector())
21102 return SDValue();
21103
21104 unsigned Opc = Value.getOpcode();
21105
21106 if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
21107 !Value.hasOneUse())
21108 return SDValue();
21109
21110 // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
21111 // is a byte mask indicating a consecutive number of bytes, check to see if
21112 // Y is known to provide just those bytes. If so, we try to replace the
21113 // load + replace + store sequence with a single (narrower) store, which makes
21114 // the load dead.
21116 std::pair<unsigned, unsigned> MaskedLoad;
21117 MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
21118 if (MaskedLoad.first)
21119 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
21120 Value.getOperand(1), ST,this))
21121 return NewST;
21122
21123 // Or is commutative, so try swapping X and Y.
21124 MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
21125 if (MaskedLoad.first)
21126 if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
21127 Value.getOperand(0), ST,this))
21128 return NewST;
21129 }
21130
21132 return SDValue();
21133
21134 if (Value.getOperand(1).getOpcode() != ISD::Constant)
21135 return SDValue();
21136
21137 SDValue N0 = Value.getOperand(0);
21138 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
21139 Chain == SDValue(N0.getNode(), 1)) {
21140 LoadSDNode *LD = cast<LoadSDNode>(N0);
21141 if (LD->getBasePtr() != Ptr ||
21142 LD->getPointerInfo().getAddrSpace() !=
21143 ST->getPointerInfo().getAddrSpace())
21144 return SDValue();
21145
21146 // Find the type NewVT to narrow the load / op / store to.
21147 SDValue N1 = Value.getOperand(1);
21148 unsigned BitWidth = N1.getValueSizeInBits();
21149 APInt Imm = N1->getAsAPIntVal();
21150 if (Opc == ISD::AND)
21151 Imm.flipAllBits();
21152 if (Imm == 0 || Imm.isAllOnes())
21153 return SDValue();
21154 // Find least/most significant bit that need to be part of the narrowed
21155 // operation. We assume target will need to address/access full bytes, so
21156 // we make sure to align LSB and MSB at byte boundaries.
21157 unsigned BitsPerByteMask = 7u;
21158 unsigned LSB = Imm.countr_zero() & ~BitsPerByteMask;
21159 unsigned MSB = (Imm.getActiveBits() - 1) | BitsPerByteMask;
21160 unsigned NewBW = NextPowerOf2(MSB - LSB);
21161 EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
21162 // The narrowing should be profitable, the load/store operation should be
21163 // legal (or custom) and the store size should be equal to the NewVT width.
21164 while (NewBW < BitWidth &&
21165 (NewVT.getStoreSizeInBits() != NewBW ||
21166 !TLI.isOperationLegalOrCustom(Opc, NewVT) ||
21168 !TLI.isNarrowingProfitable(N, VT, NewVT)))) {
21169 NewBW = NextPowerOf2(NewBW);
21170 NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
21171 }
21172 if (NewBW >= BitWidth)
21173 return SDValue();
21174
21175 // If we come this far NewVT/NewBW reflect a power-of-2 sized type that is
21176 // large enough to cover all bits that should be modified. This type might
21177 // however be larger than really needed (such as i32 while we actually only
21178 // need to modify one byte). Now we need to find our how to align the memory
21179 // accesses to satisfy preferred alignments as well as avoiding to access
21180 // memory outside the store size of the orignal access.
21181
21182 unsigned VTStoreSize = VT.getStoreSizeInBits().getFixedValue();
21183
21184 // Let ShAmt denote amount of bits to skip, counted from the least
21185 // significant bits of Imm. And let PtrOff how much the pointer needs to be
21186 // offsetted (in bytes) for the new access.
21187 unsigned ShAmt = 0;
21188 uint64_t PtrOff = 0;
21189 for (; ShAmt + NewBW <= VTStoreSize; ShAmt += 8) {
21190 // Make sure the range [ShAmt, ShAmt+NewBW) cover both LSB and MSB.
21191 if (ShAmt > LSB)
21192 return SDValue();
21193 if (ShAmt + NewBW < MSB)
21194 continue;
21195
21196 // Calculate PtrOff.
21197 unsigned PtrAdjustmentInBits = DAG.getDataLayout().isBigEndian()
21198 ? VTStoreSize - NewBW - ShAmt
21199 : ShAmt;
21200 PtrOff = PtrAdjustmentInBits / 8;
21201
21202 // Now check if narrow access is allowed and fast, considering alignments.
21203 unsigned IsFast = 0;
21204 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff);
21205 if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), NewVT,
21206 LD->getAddressSpace(), NewAlign,
21207 LD->getMemOperand()->getFlags(), &IsFast) &&
21208 IsFast)
21209 break;
21210 }
21211 // If loop above did not find any accepted ShAmt we need to exit here.
21212 if (ShAmt + NewBW > VTStoreSize)
21213 return SDValue();
21214
21215 APInt NewImm = Imm.lshr(ShAmt).trunc(NewBW);
21216 if (Opc == ISD::AND)
21217 NewImm.flipAllBits();
21218 Align NewAlign = commonAlignment(LD->getAlign(), PtrOff);
21219 SDValue NewPtr =
21220 DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(PtrOff), SDLoc(LD));
21221 SDValue NewLD =
21222 DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
21223 LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
21224 LD->getMemOperand()->getFlags(), LD->getAAInfo());
21225 SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
21226 DAG.getConstant(NewImm, SDLoc(Value), NewVT));
21227 SDValue NewST =
21228 DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
21229 ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
21230
21231 AddToWorklist(NewPtr.getNode());
21232 AddToWorklist(NewLD.getNode());
21233 AddToWorklist(NewVal.getNode());
21234 WorklistRemover DeadNodes(*this);
21235 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
21236 ++OpsNarrowed;
21237 return NewST;
21238 }
21239
21240 return SDValue();
21241}
21242
21243/// For a given floating point load / store pair, if the load value isn't used
21244/// by any other operations, then consider transforming the pair to integer
21245/// load / store operations if the target deems the transformation profitable.
21246SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
21247 StoreSDNode *ST = cast<StoreSDNode>(N);
21248 SDValue Value = ST->getValue();
21249 if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
21250 Value.hasOneUse()) {
21251 LoadSDNode *LD = cast<LoadSDNode>(Value);
21252 EVT VT = LD->getMemoryVT();
21253 if (!VT.isSimple() || !VT.isFloatingPoint() || VT != ST->getMemoryVT() ||
21254 LD->isNonTemporal() || ST->isNonTemporal() ||
21255 LD->getPointerInfo().getAddrSpace() != 0 ||
21256 ST->getPointerInfo().getAddrSpace() != 0)
21257 return SDValue();
21258
21259 TypeSize VTSize = VT.getSizeInBits();
21260
21261 // We don't know the size of scalable types at compile time so we cannot
21262 // create an integer of the equivalent size.
21263 if (VTSize.isScalable())
21264 return SDValue();
21265
21266 unsigned FastLD = 0, FastST = 0;
21267 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedValue());
21268 if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
21269 !TLI.isOperationLegal(ISD::STORE, IntVT) ||
21270 !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
21271 !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT) ||
21272 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT,
21273 *LD->getMemOperand(), &FastLD) ||
21274 !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), IntVT,
21275 *ST->getMemOperand(), &FastST) ||
21276 !FastLD || !FastST)
21277 return SDValue();
21278
21279 SDValue NewLD = DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(),
21280 LD->getBasePtr(), LD->getMemOperand());
21281
21282 SDValue NewST = DAG.getStore(ST->getChain(), SDLoc(N), NewLD,
21283 ST->getBasePtr(), ST->getMemOperand());
21284
21285 AddToWorklist(NewLD.getNode());
21286 AddToWorklist(NewST.getNode());
21287 WorklistRemover DeadNodes(*this);
21288 DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
21289 ++LdStFP2Int;
21290 return NewST;
21291 }
21292
21293 return SDValue();
21294}
21295
21296// This is a helper function for visitMUL to check the profitability
21297// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
21298// MulNode is the original multiply, AddNode is (add x, c1),
21299// and ConstNode is c2.
21300//
21301// If the (add x, c1) has multiple uses, we could increase
21302// the number of adds if we make this transformation.
21303// It would only be worth doing this if we can remove a
21304// multiply in the process. Check for that here.
21305// To illustrate:
21306// (A + c1) * c3
21307// (A + c2) * c3
21308// We're checking for cases where we have common "c3 * A" expressions.
21309bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, SDValue AddNode,
21310 SDValue ConstNode) {
21311 // If the add only has one use, and the target thinks the folding is
21312 // profitable or does not lead to worse code, this would be OK to do.
21313 if (AddNode->hasOneUse() &&
21314 TLI.isMulAddWithConstProfitable(AddNode, ConstNode))
21315 return true;
21316
21317 // Walk all the users of the constant with which we're multiplying.
21318 for (SDNode *User : ConstNode->users()) {
21319 if (User == MulNode) // This use is the one we're on right now. Skip it.
21320 continue;
21321
21322 if (User->getOpcode() == ISD::MUL) { // We have another multiply use.
21323 SDNode *OtherOp;
21324 SDNode *MulVar = AddNode.getOperand(0).getNode();
21325
21326 // OtherOp is what we're multiplying against the constant.
21327 if (User->getOperand(0) == ConstNode)
21328 OtherOp = User->getOperand(1).getNode();
21329 else
21330 OtherOp = User->getOperand(0).getNode();
21331
21332 // Check to see if multiply is with the same operand of our "add".
21333 //
21334 // ConstNode = CONST
21335 // User = ConstNode * A <-- visiting User. OtherOp is A.
21336 // ...
21337 // AddNode = (A + c1) <-- MulVar is A.
21338 // = AddNode * ConstNode <-- current visiting instruction.
21339 //
21340 // If we make this transformation, we will have a common
21341 // multiply (ConstNode * A) that we can save.
21342 if (OtherOp == MulVar)
21343 return true;
21344
21345 // Now check to see if a future expansion will give us a common
21346 // multiply.
21347 //
21348 // ConstNode = CONST
21349 // AddNode = (A + c1)
21350 // ... = AddNode * ConstNode <-- current visiting instruction.
21351 // ...
21352 // OtherOp = (A + c2)
21353 // User = OtherOp * ConstNode <-- visiting User.
21354 //
21355 // If we make this transformation, we will have a common
21356 // multiply (CONST * A) after we also do the same transformation
21357 // to the "t2" instruction.
21358 if (OtherOp->getOpcode() == ISD::ADD &&
21360 OtherOp->getOperand(0).getNode() == MulVar)
21361 return true;
21362 }
21363 }
21364
21365 // Didn't find a case where this would be profitable.
21366 return false;
21367}
21368
21369SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
21370 unsigned NumStores) {
21372 SmallPtrSet<const SDNode *, 8> Visited;
21373 SDLoc StoreDL(StoreNodes[0].MemNode);
21374
21375 for (unsigned i = 0; i < NumStores; ++i) {
21376 Visited.insert(StoreNodes[i].MemNode);
21377 }
21378
21379 // don't include nodes that are children or repeated nodes.
21380 for (unsigned i = 0; i < NumStores; ++i) {
21381 if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
21382 Chains.push_back(StoreNodes[i].MemNode->getChain());
21383 }
21384
21385 assert(!Chains.empty() && "Chain should have generated a chain");
21386 return DAG.getTokenFactor(StoreDL, Chains);
21387}
21388
21389bool DAGCombiner::hasSameUnderlyingObj(ArrayRef<MemOpLink> StoreNodes) {
21390 const Value *UnderlyingObj = nullptr;
21391 for (const auto &MemOp : StoreNodes) {
21392 const MachineMemOperand *MMO = MemOp.MemNode->getMemOperand();
21393 // Pseudo value like stack frame has its own frame index and size, should
21394 // not use the first store's frame index for other frames.
21395 if (MMO->getPseudoValue())
21396 return false;
21397
21398 if (!MMO->getValue())
21399 return false;
21400
21401 const Value *Obj = getUnderlyingObject(MMO->getValue());
21402
21403 if (UnderlyingObj && UnderlyingObj != Obj)
21404 return false;
21405
21406 if (!UnderlyingObj)
21407 UnderlyingObj = Obj;
21408 }
21409
21410 return true;
21411}
21412
21413bool DAGCombiner::mergeStoresOfConstantsOrVecElts(
21414 SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
21415 bool IsConstantSrc, bool UseVector, bool UseTrunc) {
21416 // Make sure we have something to merge.
21417 if (NumStores < 2)
21418 return false;
21419
21420 assert((!UseTrunc || !UseVector) &&
21421 "This optimization cannot emit a vector truncating store");
21422
21423 // The latest Node in the DAG.
21424 SDLoc DL(StoreNodes[0].MemNode);
21425
21426 TypeSize ElementSizeBits = MemVT.getStoreSizeInBits();
21427 unsigned SizeInBits = NumStores * ElementSizeBits;
21428 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
21429
21430 std::optional<MachineMemOperand::Flags> Flags;
21431 AAMDNodes AAInfo;
21432 for (unsigned I = 0; I != NumStores; ++I) {
21433 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
21434 if (!Flags) {
21435 Flags = St->getMemOperand()->getFlags();
21436 AAInfo = St->getAAInfo();
21437 continue;
21438 }
21439 // Skip merging if there's an inconsistent flag.
21440 if (Flags != St->getMemOperand()->getFlags())
21441 return false;
21442 // Concatenate AA metadata.
21443 AAInfo = AAInfo.concat(St->getAAInfo());
21444 }
21445
21446 EVT StoreTy;
21447 if (UseVector) {
21448 unsigned Elts = NumStores * NumMemElts;
21449 // Get the type for the merged vector store.
21450 StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
21451 } else
21452 StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
21453
21454 SDValue StoredVal;
21455 if (UseVector) {
21456 if (IsConstantSrc) {
21457 SmallVector<SDValue, 8> BuildVector;
21458 for (unsigned I = 0; I != NumStores; ++I) {
21459 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
21460 SDValue Val = St->getValue();
21461 // If constant is of the wrong type, convert it now. This comes up
21462 // when one of our stores was truncating.
21463 if (MemVT != Val.getValueType()) {
21464 Val = peekThroughBitcasts(Val);
21465 // Deal with constants of wrong size.
21466 if (ElementSizeBits != Val.getValueSizeInBits()) {
21467 auto *C = dyn_cast<ConstantSDNode>(Val);
21468 if (!C)
21469 // Not clear how to truncate FP values.
21470 // TODO: Handle truncation of build_vector constants
21471 return false;
21472
21473 EVT IntMemVT =
21475 Val = DAG.getConstant(C->getAPIntValue()
21476 .zextOrTrunc(Val.getValueSizeInBits())
21477 .zextOrTrunc(ElementSizeBits),
21478 SDLoc(C), IntMemVT);
21479 }
21480 // Make sure correctly size type is the correct type.
21481 Val = DAG.getBitcast(MemVT, Val);
21482 }
21483 BuildVector.push_back(Val);
21484 }
21485 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
21487 DL, StoreTy, BuildVector);
21488 } else {
21490 for (unsigned i = 0; i < NumStores; ++i) {
21491 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
21493 // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
21494 // type MemVT. If the underlying value is not the correct
21495 // type, but it is an extraction of an appropriate vector we
21496 // can recast Val to be of the correct type. This may require
21497 // converting between EXTRACT_VECTOR_ELT and
21498 // EXTRACT_SUBVECTOR.
21499 if ((MemVT != Val.getValueType()) &&
21502 EVT MemVTScalarTy = MemVT.getScalarType();
21503 // We may need to add a bitcast here to get types to line up.
21504 if (MemVTScalarTy != Val.getValueType().getScalarType()) {
21505 Val = DAG.getBitcast(MemVT, Val);
21506 } else if (MemVT.isVector() &&
21508 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, MemVT, Val);
21509 } else {
21510 unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
21512 SDValue Vec = Val.getOperand(0);
21513 SDValue Idx = Val.getOperand(1);
21514 Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
21515 }
21516 }
21517 Ops.push_back(Val);
21518 }
21519
21520 // Build the extracted vector elements back into a vector.
21521 StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
21523 DL, StoreTy, Ops);
21524 }
21525 } else {
21526 // We should always use a vector store when merging extracted vector
21527 // elements, so this path implies a store of constants.
21528 assert(IsConstantSrc && "Merged vector elements should use vector store");
21529
21530 APInt StoreInt(SizeInBits, 0);
21531
21532 // Construct a single integer constant which is made of the smaller
21533 // constant inputs.
21534 bool IsLE = DAG.getDataLayout().isLittleEndian();
21535 for (unsigned i = 0; i < NumStores; ++i) {
21536 unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
21537 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
21538
21539 SDValue Val = St->getValue();
21540 Val = peekThroughBitcasts(Val);
21541 StoreInt <<= ElementSizeBits;
21542 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
21543 StoreInt |= C->getAPIntValue()
21544 .zextOrTrunc(ElementSizeBits)
21545 .zextOrTrunc(SizeInBits);
21546 } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
21547 StoreInt |= C->getValueAPF()
21548 .bitcastToAPInt()
21549 .zextOrTrunc(ElementSizeBits)
21550 .zextOrTrunc(SizeInBits);
21551 // If fp truncation is necessary give up for now.
21552 if (MemVT.getSizeInBits() != ElementSizeBits)
21553 return false;
21554 } else if (ISD::isBuildVectorOfConstantSDNodes(Val.getNode()) ||
21556 // Not yet handled
21557 return false;
21558 } else {
21559 llvm_unreachable("Invalid constant element type");
21560 }
21561 }
21562
21563 // Create the new Load and Store operations.
21564 StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
21565 }
21566
21567 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
21568 SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
21569 bool CanReusePtrInfo = hasSameUnderlyingObj(StoreNodes);
21570
21571 // make sure we use trunc store if it's necessary to be legal.
21572 // When generate the new widen store, if the first store's pointer info can
21573 // not be reused, discard the pointer info except the address space because
21574 // now the widen store can not be represented by the original pointer info
21575 // which is for the narrow memory object.
21576 SDValue NewStore;
21577 if (!UseTrunc) {
21578 NewStore = DAG.getStore(
21579 NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
21580 CanReusePtrInfo
21581 ? FirstInChain->getPointerInfo()
21582 : MachinePointerInfo(FirstInChain->getPointerInfo().getAddrSpace()),
21583 FirstInChain->getAlign(), *Flags, AAInfo);
21584 } else { // Must be realized as a trunc store
21585 EVT LegalizedStoredValTy =
21586 TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
21587 unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
21588 ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
21589 SDValue ExtendedStoreVal =
21590 DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
21591 LegalizedStoredValTy);
21592 NewStore = DAG.getTruncStore(
21593 NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
21594 CanReusePtrInfo
21595 ? FirstInChain->getPointerInfo()
21596 : MachinePointerInfo(FirstInChain->getPointerInfo().getAddrSpace()),
21597 StoredVal.getValueType() /*TVT*/, FirstInChain->getAlign(), *Flags,
21598 AAInfo);
21599 }
21600
21601 // Replace all merged stores with the new store.
21602 for (unsigned i = 0; i < NumStores; ++i)
21603 CombineTo(StoreNodes[i].MemNode, NewStore);
21604
21605 AddToWorklist(NewChain.getNode());
21606 return true;
21607}
21608
21609SDNode *
21610DAGCombiner::getStoreMergeCandidates(StoreSDNode *St,
21611 SmallVectorImpl<MemOpLink> &StoreNodes) {
21612 // This holds the base pointer, index, and the offset in bytes from the base
21613 // pointer. We must have a base and an offset. Do not handle stores to undef
21614 // base pointers.
21615 BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
21616 if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef())
21617 return nullptr;
21618
21620 StoreSource StoreSrc = getStoreSource(Val);
21621 assert(StoreSrc != StoreSource::Unknown && "Expected known source for store");
21622
21623 // Match on loadbaseptr if relevant.
21624 EVT MemVT = St->getMemoryVT();
21625 BaseIndexOffset LBasePtr;
21626 EVT LoadVT;
21627 if (StoreSrc == StoreSource::Load) {
21628 auto *Ld = cast<LoadSDNode>(Val);
21629 LBasePtr = BaseIndexOffset::match(Ld, DAG);
21630 LoadVT = Ld->getMemoryVT();
21631 // Load and store should be the same type.
21632 if (MemVT != LoadVT)
21633 return nullptr;
21634 // Loads must only have one use.
21635 if (!Ld->hasNUsesOfValue(1, 0))
21636 return nullptr;
21637 // The memory operands must not be volatile/indexed/atomic.
21638 // TODO: May be able to relax for unordered atomics (see D66309)
21639 if (!Ld->isSimple() || Ld->isIndexed())
21640 return nullptr;
21641 }
21642 auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
21643 int64_t &Offset) -> bool {
21644 // The memory operands must not be volatile/indexed/atomic.
21645 // TODO: May be able to relax for unordered atomics (see D66309)
21646 if (!Other->isSimple() || Other->isIndexed())
21647 return false;
21648 // Don't mix temporal stores with non-temporal stores.
21649 if (St->isNonTemporal() != Other->isNonTemporal())
21650 return false;
21652 return false;
21653 SDValue OtherBC = peekThroughBitcasts(Other->getValue());
21654 // Allow merging constants of different types as integers.
21655 bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
21656 : Other->getMemoryVT() != MemVT;
21657 switch (StoreSrc) {
21658 case StoreSource::Load: {
21659 if (NoTypeMatch)
21660 return false;
21661 // The Load's Base Ptr must also match.
21662 auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC);
21663 if (!OtherLd)
21664 return false;
21665 BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
21666 if (LoadVT != OtherLd->getMemoryVT())
21667 return false;
21668 // Loads must only have one use.
21669 if (!OtherLd->hasNUsesOfValue(1, 0))
21670 return false;
21671 // The memory operands must not be volatile/indexed/atomic.
21672 // TODO: May be able to relax for unordered atomics (see D66309)
21673 if (!OtherLd->isSimple() || OtherLd->isIndexed())
21674 return false;
21675 // Don't mix temporal loads with non-temporal loads.
21676 if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
21677 return false;
21679 *OtherLd))
21680 return false;
21681 if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
21682 return false;
21683 break;
21684 }
21685 case StoreSource::Constant:
21686 if (NoTypeMatch)
21687 return false;
21688 if (getStoreSource(OtherBC) != StoreSource::Constant)
21689 return false;
21690 break;
21691 case StoreSource::Extract:
21692 // Do not merge truncated stores here.
21693 if (Other->isTruncatingStore())
21694 return false;
21695 if (!MemVT.bitsEq(OtherBC.getValueType()))
21696 return false;
21697 if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
21698 OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
21699 return false;
21700 break;
21701 default:
21702 llvm_unreachable("Unhandled store source for merging");
21703 }
21705 return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
21706 };
21707
21708 // We are looking for a root node which is an ancestor to all mergable
21709 // stores. We search up through a load, to our root and then down
21710 // through all children. For instance we will find Store{1,2,3} if
21711 // St is Store1, Store2. or Store3 where the root is not a load
21712 // which always true for nonvolatile ops. TODO: Expand
21713 // the search to find all valid candidates through multiple layers of loads.
21714 //
21715 // Root
21716 // |-------|-------|
21717 // Load Load Store3
21718 // | |
21719 // Store1 Store2
21720 //
21721 // FIXME: We should be able to climb and
21722 // descend TokenFactors to find candidates as well.
21723
21724 SDNode *RootNode = St->getChain().getNode();
21725 // Bail out if we already analyzed this root node and found nothing.
21726 if (ChainsWithoutMergeableStores.contains(RootNode))
21727 return nullptr;
21728
21729 // Check if the pair of StoreNode and the RootNode already bail out many
21730 // times which is over the limit in dependence check.
21731 auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
21732 SDNode *RootNode) -> bool {
21733 auto RootCount = StoreRootCountMap.find(StoreNode);
21734 return RootCount != StoreRootCountMap.end() &&
21735 RootCount->second.first == RootNode &&
21736 RootCount->second.second > StoreMergeDependenceLimit;
21737 };
21738
21739 auto TryToAddCandidate = [&](SDUse &Use) {
21740 // This must be a chain use.
21741 if (Use.getOperandNo() != 0)
21742 return;
21743 if (auto *OtherStore = dyn_cast<StoreSDNode>(Use.getUser())) {
21744 BaseIndexOffset Ptr;
21745 int64_t PtrDiff;
21746 if (CandidateMatch(OtherStore, Ptr, PtrDiff) &&
21747 !OverLimitInDependenceCheck(OtherStore, RootNode))
21748 StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff));
21749 }
21750 };
21751
21752 unsigned NumNodesExplored = 0;
21753 const unsigned MaxSearchNodes = 1024;
21754 if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
21755 RootNode = Ldn->getChain().getNode();
21756 // Bail out if we already analyzed this root node and found nothing.
21757 if (ChainsWithoutMergeableStores.contains(RootNode))
21758 return nullptr;
21759 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
21760 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) {
21761 SDNode *User = I->getUser();
21762 if (I->getOperandNo() == 0 && isa<LoadSDNode>(User)) { // walk down chain
21763 for (SDUse &U2 : User->uses())
21764 TryToAddCandidate(U2);
21765 }
21766 // Check stores that depend on the root (e.g. Store 3 in the chart above).
21767 if (I->getOperandNo() == 0 && isa<StoreSDNode>(User)) {
21768 TryToAddCandidate(*I);
21769 }
21770 }
21771 } else {
21772 for (auto I = RootNode->use_begin(), E = RootNode->use_end();
21773 I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored)
21774 TryToAddCandidate(*I);
21775 }
21776
21777 return RootNode;
21778}
21779
21780// We need to check that merging these stores does not cause a loop in the
21781// DAG. Any store candidate may depend on another candidate indirectly through
21782// its operands. Check in parallel by searching up from operands of candidates.
21783bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
21784 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
21785 SDNode *RootNode) {
21786 // FIXME: We should be able to truncate a full search of
21787 // predecessors by doing a BFS and keeping tabs the originating
21788 // stores from which worklist nodes come from in a similar way to
21789 // TokenFactor simplfication.
21790
21791 SmallPtrSet<const SDNode *, 32> Visited;
21793
21794 // RootNode is a predecessor to all candidates so we need not search
21795 // past it. Add RootNode (peeking through TokenFactors). Do not count
21796 // these towards size check.
21797
21798 Worklist.push_back(RootNode);
21799 while (!Worklist.empty()) {
21800 auto N = Worklist.pop_back_val();
21801 if (!Visited.insert(N).second)
21802 continue; // Already present in Visited.
21803 if (N->getOpcode() == ISD::TokenFactor) {
21804 for (SDValue Op : N->ops())
21805 Worklist.push_back(Op.getNode());
21806 }
21807 }
21808
21809 // Don't count pruning nodes towards max.
21810 unsigned int Max = 1024 + Visited.size();
21811 // Search Ops of store candidates.
21812 for (unsigned i = 0; i < NumStores; ++i) {
21813 SDNode *N = StoreNodes[i].MemNode;
21814 // Of the 4 Store Operands:
21815 // * Chain (Op 0) -> We have already considered these
21816 // in candidate selection, but only by following the
21817 // chain dependencies. We could still have a chain
21818 // dependency to a load, that has a non-chain dep to
21819 // another load, that depends on a store, etc. So it is
21820 // possible to have dependencies that consist of a mix
21821 // of chain and non-chain deps, and we need to include
21822 // chain operands in the analysis here..
21823 // * Value (Op 1) -> Cycles may happen (e.g. through load chains)
21824 // * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
21825 // but aren't necessarily fromt the same base node, so
21826 // cycles possible (e.g. via indexed store).
21827 // * (Op 3) -> Represents the pre or post-indexing offset (or undef for
21828 // non-indexed stores). Not constant on all targets (e.g. ARM)
21829 // and so can participate in a cycle.
21830 for (const SDValue &Op : N->op_values())
21831 Worklist.push_back(Op.getNode());
21832 }
21833 // Search through DAG. We can stop early if we find a store node.
21834 for (unsigned i = 0; i < NumStores; ++i)
21835 if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
21836 Max)) {
21837 // If the searching bail out, record the StoreNode and RootNode in the
21838 // StoreRootCountMap. If we have seen the pair many times over a limit,
21839 // we won't add the StoreNode into StoreNodes set again.
21840 if (Visited.size() >= Max) {
21841 auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
21842 if (RootCount.first == RootNode)
21843 RootCount.second++;
21844 else
21845 RootCount = {RootNode, 1};
21846 }
21847 return false;
21848 }
21849 return true;
21850}
21851
21852bool DAGCombiner::hasCallInLdStChain(StoreSDNode *St, LoadSDNode *Ld) {
21853 SmallPtrSet<const SDNode *, 32> Visited;
21855 Worklist.emplace_back(St->getChain().getNode(), false);
21856
21857 while (!Worklist.empty()) {
21858 auto [Node, FoundCall] = Worklist.pop_back_val();
21859 if (!Visited.insert(Node).second || Node->getNumOperands() == 0)
21860 continue;
21861
21862 switch (Node->getOpcode()) {
21863 case ISD::CALLSEQ_END:
21864 Worklist.emplace_back(Node->getOperand(0).getNode(), true);
21865 break;
21866 case ISD::TokenFactor:
21867 for (SDValue Op : Node->ops())
21868 Worklist.emplace_back(Op.getNode(), FoundCall);
21869 break;
21870 case ISD::LOAD:
21871 if (Node == Ld)
21872 return FoundCall;
21873 [[fallthrough]];
21874 default:
21875 assert(Node->getOperand(0).getValueType() == MVT::Other &&
21876 "Invalid chain type");
21877 Worklist.emplace_back(Node->getOperand(0).getNode(), FoundCall);
21878 break;
21879 }
21880 }
21881 return false;
21882}
21883
21884unsigned
21885DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
21886 int64_t ElementSizeBytes) const {
21887 while (true) {
21888 // Find a store past the width of the first store.
21889 size_t StartIdx = 0;
21890 while ((StartIdx + 1 < StoreNodes.size()) &&
21891 StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
21892 StoreNodes[StartIdx + 1].OffsetFromBase)
21893 ++StartIdx;
21894
21895 // Bail if we don't have enough candidates to merge.
21896 if (StartIdx + 1 >= StoreNodes.size())
21897 return 0;
21898
21899 // Trim stores that overlapped with the first store.
21900 if (StartIdx)
21901 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
21902
21903 // Scan the memory operations on the chain and find the first
21904 // non-consecutive store memory address.
21905 unsigned NumConsecutiveStores = 1;
21906 int64_t StartAddress = StoreNodes[0].OffsetFromBase;
21907 // Check that the addresses are consecutive starting from the second
21908 // element in the list of stores.
21909 for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
21910 int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
21911 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
21912 break;
21913 NumConsecutiveStores = i + 1;
21914 }
21915 if (NumConsecutiveStores > 1)
21916 return NumConsecutiveStores;
21917
21918 // There are no consecutive stores at the start of the list.
21919 // Remove the first store and try again.
21920 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1);
21921 }
21922}
21923
21924bool DAGCombiner::tryStoreMergeOfConstants(
21925 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
21926 EVT MemVT, SDNode *RootNode, bool AllowVectors) {
21927 LLVMContext &Context = *DAG.getContext();
21928 const DataLayout &DL = DAG.getDataLayout();
21929 int64_t ElementSizeBytes = MemVT.getStoreSize();
21930 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
21931 bool MadeChange = false;
21932
21933 // Store the constants into memory as one consecutive store.
21934 while (NumConsecutiveStores >= 2) {
21935 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
21936 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
21937 Align FirstStoreAlign = FirstInChain->getAlign();
21938 unsigned LastLegalType = 1;
21939 unsigned LastLegalVectorType = 1;
21940 bool LastIntegerTrunc = false;
21941 bool NonZero = false;
21942 unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
21943 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
21944 StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
21945 SDValue StoredVal = ST->getValue();
21946 bool IsElementZero = false;
21947 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
21948 IsElementZero = C->isZero();
21949 else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
21950 IsElementZero = C->getConstantFPValue()->isNullValue();
21951 else if (ISD::isBuildVectorAllZeros(StoredVal.getNode()))
21952 IsElementZero = true;
21953 if (IsElementZero) {
21954 if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
21955 FirstZeroAfterNonZero = i;
21956 }
21957 NonZero |= !IsElementZero;
21958
21959 // Find a legal type for the constant store.
21960 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
21961 EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
21962 unsigned IsFast = 0;
21963
21964 // Break early when size is too large to be legal.
21965 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
21966 break;
21967
21968 if (TLI.isTypeLegal(StoreTy) &&
21969 TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
21970 DAG.getMachineFunction()) &&
21971 TLI.allowsMemoryAccess(Context, DL, StoreTy,
21972 *FirstInChain->getMemOperand(), &IsFast) &&
21973 IsFast) {
21974 LastIntegerTrunc = false;
21975 LastLegalType = i + 1;
21976 // Or check whether a truncstore is legal.
21977 } else if (TLI.getTypeAction(Context, StoreTy) ==
21979 EVT LegalizedStoredValTy =
21980 TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
21981 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
21982 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy,
21983 DAG.getMachineFunction()) &&
21984 TLI.allowsMemoryAccess(Context, DL, StoreTy,
21985 *FirstInChain->getMemOperand(), &IsFast) &&
21986 IsFast) {
21987 LastIntegerTrunc = true;
21988 LastLegalType = i + 1;
21989 }
21990 }
21991
21992 // We only use vectors if the target allows it and the function is not
21993 // marked with the noimplicitfloat attribute.
21994 if (TLI.storeOfVectorConstantIsCheap(!NonZero, MemVT, i + 1, FirstStoreAS) &&
21995 AllowVectors) {
21996 // Find a legal type for the vector store.
21997 unsigned Elts = (i + 1) * NumMemElts;
21998 EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
21999 if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
22000 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) &&
22001 TLI.allowsMemoryAccess(Context, DL, Ty,
22002 *FirstInChain->getMemOperand(), &IsFast) &&
22003 IsFast)
22004 LastLegalVectorType = i + 1;
22005 }
22006 }
22007
22008 bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors;
22009 unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
22010 bool UseTrunc = LastIntegerTrunc && !UseVector;
22011
22012 // Check if we found a legal integer type that creates a meaningful
22013 // merge.
22014 if (NumElem < 2) {
22015 // We know that candidate stores are in order and of correct
22016 // shape. While there is no mergeable sequence from the
22017 // beginning one may start later in the sequence. The only
22018 // reason a merge of size N could have failed where another of
22019 // the same size would not have, is if the alignment has
22020 // improved or we've dropped a non-zero value. Drop as many
22021 // candidates as we can here.
22022 unsigned NumSkip = 1;
22023 while ((NumSkip < NumConsecutiveStores) &&
22024 (NumSkip < FirstZeroAfterNonZero) &&
22025 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
22026 NumSkip++;
22027
22028 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
22029 NumConsecutiveStores -= NumSkip;
22030 continue;
22031 }
22032
22033 // Check that we can merge these candidates without causing a cycle.
22034 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
22035 RootNode)) {
22036 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
22037 NumConsecutiveStores -= NumElem;
22038 continue;
22039 }
22040
22041 MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
22042 /*IsConstantSrc*/ true,
22043 UseVector, UseTrunc);
22044
22045 // Remove merged stores for next iteration.
22046 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
22047 NumConsecutiveStores -= NumElem;
22048 }
22049 return MadeChange;
22050}
22051
22052bool DAGCombiner::tryStoreMergeOfExtracts(
22053 SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
22054 EVT MemVT, SDNode *RootNode) {
22055 LLVMContext &Context = *DAG.getContext();
22056 const DataLayout &DL = DAG.getDataLayout();
22057 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
22058 bool MadeChange = false;
22059
22060 // Loop on Consecutive Stores on success.
22061 while (NumConsecutiveStores >= 2) {
22062 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
22063 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
22064 Align FirstStoreAlign = FirstInChain->getAlign();
22065 unsigned NumStoresToMerge = 1;
22066 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
22067 // Find a legal type for the vector store.
22068 unsigned Elts = (i + 1) * NumMemElts;
22069 EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
22070 unsigned IsFast = 0;
22071
22072 // Break early when size is too large to be legal.
22073 if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
22074 break;
22075
22076 if (TLI.isTypeLegal(Ty) &&
22077 TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG.getMachineFunction()) &&
22078 TLI.allowsMemoryAccess(Context, DL, Ty,
22079 *FirstInChain->getMemOperand(), &IsFast) &&
22080 IsFast)
22081 NumStoresToMerge = i + 1;
22082 }
22083
22084 // Check if we found a legal integer type creating a meaningful
22085 // merge.
22086 if (NumStoresToMerge < 2) {
22087 // We know that candidate stores are in order and of correct
22088 // shape. While there is no mergeable sequence from the
22089 // beginning one may start later in the sequence. The only
22090 // reason a merge of size N could have failed where another of
22091 // the same size would not have, is if the alignment has
22092 // improved. Drop as many candidates as we can here.
22093 unsigned NumSkip = 1;
22094 while ((NumSkip < NumConsecutiveStores) &&
22095 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
22096 NumSkip++;
22097
22098 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
22099 NumConsecutiveStores -= NumSkip;
22100 continue;
22101 }
22102
22103 // Check that we can merge these candidates without causing a cycle.
22104 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge,
22105 RootNode)) {
22106 StoreNodes.erase(StoreNodes.begin(),
22107 StoreNodes.begin() + NumStoresToMerge);
22108 NumConsecutiveStores -= NumStoresToMerge;
22109 continue;
22110 }
22111
22112 MadeChange |= mergeStoresOfConstantsOrVecElts(
22113 StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false,
22114 /*UseVector*/ true, /*UseTrunc*/ false);
22115
22116 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge);
22117 NumConsecutiveStores -= NumStoresToMerge;
22118 }
22119 return MadeChange;
22120}
22121
22122bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
22123 unsigned NumConsecutiveStores, EVT MemVT,
22124 SDNode *RootNode, bool AllowVectors,
22125 bool IsNonTemporalStore,
22126 bool IsNonTemporalLoad) {
22127 LLVMContext &Context = *DAG.getContext();
22128 const DataLayout &DL = DAG.getDataLayout();
22129 int64_t ElementSizeBytes = MemVT.getStoreSize();
22130 unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
22131 bool MadeChange = false;
22132
22133 // Look for load nodes which are used by the stored values.
22134 SmallVector<MemOpLink, 8> LoadNodes;
22135
22136 // Find acceptable loads. Loads need to have the same chain (token factor),
22137 // must not be zext, volatile, indexed, and they must be consecutive.
22138 BaseIndexOffset LdBasePtr;
22139
22140 for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
22141 StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
22143 LoadSDNode *Ld = cast<LoadSDNode>(Val);
22144
22145 BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
22146 // If this is not the first ptr that we check.
22147 int64_t LdOffset = 0;
22148 if (LdBasePtr.getBase().getNode()) {
22149 // The base ptr must be the same.
22150 if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
22151 break;
22152 } else {
22153 // Check that all other base pointers are the same as this one.
22154 LdBasePtr = LdPtr;
22155 }
22156
22157 // We found a potential memory operand to merge.
22158 LoadNodes.push_back(MemOpLink(Ld, LdOffset));
22159 }
22160
22161 while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
22162 Align RequiredAlignment;
22163 bool NeedRotate = false;
22164 if (LoadNodes.size() == 2) {
22165 // If we have load/store pair instructions and we only have two values,
22166 // don't bother merging.
22167 if (TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
22168 StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) {
22169 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
22170 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
22171 break;
22172 }
22173 // If the loads are reversed, see if we can rotate the halves into place.
22174 int64_t Offset0 = LoadNodes[0].OffsetFromBase;
22175 int64_t Offset1 = LoadNodes[1].OffsetFromBase;
22176 EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2);
22177 if (Offset0 - Offset1 == ElementSizeBytes &&
22178 (hasOperation(ISD::ROTL, PairVT) ||
22179 hasOperation(ISD::ROTR, PairVT))) {
22180 std::swap(LoadNodes[0], LoadNodes[1]);
22181 NeedRotate = true;
22182 }
22183 }
22184 LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
22185 unsigned FirstStoreAS = FirstInChain->getAddressSpace();
22186 Align FirstStoreAlign = FirstInChain->getAlign();
22187 LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
22188
22189 // Scan the memory operations on the chain and find the first
22190 // non-consecutive load memory address. These variables hold the index in
22191 // the store node array.
22192
22193 unsigned LastConsecutiveLoad = 1;
22194
22195 // This variable refers to the size and not index in the array.
22196 unsigned LastLegalVectorType = 1;
22197 unsigned LastLegalIntegerType = 1;
22198 bool isDereferenceable = true;
22199 bool DoIntegerTruncate = false;
22200 int64_t StartAddress = LoadNodes[0].OffsetFromBase;
22201 SDValue LoadChain = FirstLoad->getChain();
22202 for (unsigned i = 1; i < LoadNodes.size(); ++i) {
22203 // All loads must share the same chain.
22204 if (LoadNodes[i].MemNode->getChain() != LoadChain)
22205 break;
22206
22207 int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
22208 if (CurrAddress - StartAddress != (ElementSizeBytes * i))
22209 break;
22210 LastConsecutiveLoad = i;
22211
22212 if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
22213 isDereferenceable = false;
22214
22215 // Find a legal type for the vector store.
22216 unsigned Elts = (i + 1) * NumMemElts;
22217 EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
22218
22219 // Break early when size is too large to be legal.
22220 if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
22221 break;
22222
22223 unsigned IsFastSt = 0;
22224 unsigned IsFastLd = 0;
22225 // Don't try vector types if we need a rotate. We may still fail the
22226 // legality checks for the integer type, but we can't handle the rotate
22227 // case with vectors.
22228 // FIXME: We could use a shuffle in place of the rotate.
22229 if (!NeedRotate && TLI.isTypeLegal(StoreTy) &&
22230 TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
22231 DAG.getMachineFunction()) &&
22232 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22233 *FirstInChain->getMemOperand(), &IsFastSt) &&
22234 IsFastSt &&
22235 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22236 *FirstLoad->getMemOperand(), &IsFastLd) &&
22237 IsFastLd) {
22238 LastLegalVectorType = i + 1;
22239 }
22240
22241 // Find a legal type for the integer store.
22242 unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
22243 StoreTy = EVT::getIntegerVT(Context, SizeInBits);
22244 if (TLI.isTypeLegal(StoreTy) &&
22245 TLI.canMergeStoresTo(FirstStoreAS, StoreTy,
22246 DAG.getMachineFunction()) &&
22247 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22248 *FirstInChain->getMemOperand(), &IsFastSt) &&
22249 IsFastSt &&
22250 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22251 *FirstLoad->getMemOperand(), &IsFastLd) &&
22252 IsFastLd) {
22253 LastLegalIntegerType = i + 1;
22254 DoIntegerTruncate = false;
22255 // Or check whether a truncstore and extload is legal.
22256 } else if (TLI.getTypeAction(Context, StoreTy) ==
22258 EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
22259 if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
22260 TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy,
22261 DAG.getMachineFunction()) &&
22262 TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) &&
22263 TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) &&
22264 TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
22265 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22266 *FirstInChain->getMemOperand(), &IsFastSt) &&
22267 IsFastSt &&
22268 TLI.allowsMemoryAccess(Context, DL, StoreTy,
22269 *FirstLoad->getMemOperand(), &IsFastLd) &&
22270 IsFastLd) {
22271 LastLegalIntegerType = i + 1;
22272 DoIntegerTruncate = true;
22273 }
22274 }
22275 }
22276
22277 // Only use vector types if the vector type is larger than the integer
22278 // type. If they are the same, use integers.
22279 bool UseVectorTy =
22280 LastLegalVectorType > LastLegalIntegerType && AllowVectors;
22281 unsigned LastLegalType =
22282 std::max(LastLegalVectorType, LastLegalIntegerType);
22283
22284 // We add +1 here because the LastXXX variables refer to location while
22285 // the NumElem refers to array/index size.
22286 unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
22287 NumElem = std::min(LastLegalType, NumElem);
22288 Align FirstLoadAlign = FirstLoad->getAlign();
22289
22290 if (NumElem < 2) {
22291 // We know that candidate stores are in order and of correct
22292 // shape. While there is no mergeable sequence from the
22293 // beginning one may start later in the sequence. The only
22294 // reason a merge of size N could have failed where another of
22295 // the same size would not have is if the alignment or either
22296 // the load or store has improved. Drop as many candidates as we
22297 // can here.
22298 unsigned NumSkip = 1;
22299 while ((NumSkip < LoadNodes.size()) &&
22300 (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) &&
22301 (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
22302 NumSkip++;
22303 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
22304 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
22305 NumConsecutiveStores -= NumSkip;
22306 continue;
22307 }
22308
22309 // Check that we can merge these candidates without causing a cycle.
22310 if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
22311 RootNode)) {
22312 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
22313 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
22314 NumConsecutiveStores -= NumElem;
22315 continue;
22316 }
22317
22318 // Find if it is better to use vectors or integers to load and store
22319 // to memory.
22320 EVT JointMemOpVT;
22321 if (UseVectorTy) {
22322 // Find a legal type for the vector store.
22323 unsigned Elts = NumElem * NumMemElts;
22324 JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
22325 } else {
22326 unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
22327 JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
22328 }
22329
22330 // Check if there is a call in the load/store chain.
22331 if (!TLI.shouldMergeStoreOfLoadsOverCall(MemVT, JointMemOpVT) &&
22332 hasCallInLdStChain(cast<StoreSDNode>(StoreNodes[0].MemNode),
22333 cast<LoadSDNode>(LoadNodes[0].MemNode))) {
22334 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
22335 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
22336 NumConsecutiveStores -= NumElem;
22337 continue;
22338 }
22339
22340 SDLoc LoadDL(LoadNodes[0].MemNode);
22341 SDLoc StoreDL(StoreNodes[0].MemNode);
22342
22343 // The merged loads are required to have the same incoming chain, so
22344 // using the first's chain is acceptable.
22345
22346 SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
22347 bool CanReusePtrInfo = hasSameUnderlyingObj(StoreNodes);
22348 AddToWorklist(NewStoreChain.getNode());
22349
22350 MachineMemOperand::Flags LdMMOFlags =
22351 isDereferenceable ? MachineMemOperand::MODereferenceable
22353 if (IsNonTemporalLoad)
22355
22356 LdMMOFlags |= TLI.getTargetMMOFlags(*FirstLoad);
22357
22358 MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore
22361
22362 StMMOFlags |= TLI.getTargetMMOFlags(*StoreNodes[0].MemNode);
22363
22364 SDValue NewLoad, NewStore;
22365 if (UseVectorTy || !DoIntegerTruncate) {
22366 NewLoad = DAG.getLoad(
22367 JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
22368 FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags);
22369 SDValue StoreOp = NewLoad;
22370 if (NeedRotate) {
22371 unsigned LoadWidth = ElementSizeBytes * 8 * 2;
22372 assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) &&
22373 "Unexpected type for rotate-able load pair");
22374 SDValue RotAmt =
22375 DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL);
22376 // Target can convert to the identical ROTR if it does not have ROTL.
22377 StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt);
22378 }
22379 NewStore = DAG.getStore(
22380 NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(),
22381 CanReusePtrInfo ? FirstInChain->getPointerInfo()
22382 : MachinePointerInfo(FirstStoreAS),
22383 FirstStoreAlign, StMMOFlags);
22384 } else { // This must be the truncstore/extload case
22385 EVT ExtendedTy =
22386 TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
22387 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
22388 FirstLoad->getChain(), FirstLoad->getBasePtr(),
22389 FirstLoad->getPointerInfo(), JointMemOpVT,
22390 FirstLoadAlign, LdMMOFlags);
22391 NewStore = DAG.getTruncStore(
22392 NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
22393 CanReusePtrInfo ? FirstInChain->getPointerInfo()
22394 : MachinePointerInfo(FirstStoreAS),
22395 JointMemOpVT, FirstInChain->getAlign(),
22396 FirstInChain->getMemOperand()->getFlags());
22397 }
22398
22399 // Transfer chain users from old loads to the new load.
22400 for (unsigned i = 0; i < NumElem; ++i) {
22401 LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
22403 SDValue(NewLoad.getNode(), 1));
22404 }
22405
22406 // Replace all stores with the new store. Recursively remove corresponding
22407 // values if they are no longer used.
22408 for (unsigned i = 0; i < NumElem; ++i) {
22409 SDValue Val = StoreNodes[i].MemNode->getOperand(1);
22410 CombineTo(StoreNodes[i].MemNode, NewStore);
22411 if (Val->use_empty())
22412 recursivelyDeleteUnusedNodes(Val.getNode());
22413 }
22414
22415 MadeChange = true;
22416 StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
22417 LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
22418 NumConsecutiveStores -= NumElem;
22419 }
22420 return MadeChange;
22421}
22422
22423bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) {
22424 if (OptLevel == CodeGenOptLevel::None || !EnableStoreMerging)
22425 return false;
22426
22427 // TODO: Extend this function to merge stores of scalable vectors.
22428 // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8>
22429 // store since we know <vscale x 16 x i8> is exactly twice as large as
22430 // <vscale x 8 x i8>). Until then, bail out for scalable vectors.
22431 EVT MemVT = St->getMemoryVT();
22432 if (MemVT.isScalableVT())
22433 return false;
22434 if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
22435 return false;
22436
22437 // This function cannot currently deal with non-byte-sized memory sizes.
22438 int64_t ElementSizeBytes = MemVT.getStoreSize();
22439 if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits())
22440 return false;
22441
22442 // Do not bother looking at stored values that are not constants, loads, or
22443 // extracted vector elements.
22444 SDValue StoredVal = peekThroughBitcasts(St->getValue());
22445 const StoreSource StoreSrc = getStoreSource(StoredVal);
22446 if (StoreSrc == StoreSource::Unknown)
22447 return false;
22448
22449 SmallVector<MemOpLink, 8> StoreNodes;
22450 // Find potential store merge candidates by searching through chain sub-DAG
22451 SDNode *RootNode = getStoreMergeCandidates(St, StoreNodes);
22452
22453 // Check if there is anything to merge.
22454 if (StoreNodes.size() < 2)
22455 return false;
22456
22457 // Sort the memory operands according to their distance from the
22458 // base pointer.
22459 llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
22460 return LHS.OffsetFromBase < RHS.OffsetFromBase;
22461 });
22462
22463 bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute(
22464 Attribute::NoImplicitFloat);
22465 bool IsNonTemporalStore = St->isNonTemporal();
22466 bool IsNonTemporalLoad = StoreSrc == StoreSource::Load &&
22467 cast<LoadSDNode>(StoredVal)->isNonTemporal();
22468
22469 // Store Merge attempts to merge the lowest stores. This generally
22470 // works out as if successful, as the remaining stores are checked
22471 // after the first collection of stores is merged. However, in the
22472 // case that a non-mergeable store is found first, e.g., {p[-2],
22473 // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
22474 // mergeable cases. To prevent this, we prune such stores from the
22475 // front of StoreNodes here.
22476 bool MadeChange = false;
22477 while (StoreNodes.size() > 1) {
22478 unsigned NumConsecutiveStores =
22479 getConsecutiveStores(StoreNodes, ElementSizeBytes);
22480 // There are no more stores in the list to examine.
22481 if (NumConsecutiveStores == 0)
22482 return MadeChange;
22483
22484 // We have at least 2 consecutive stores. Try to merge them.
22485 assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores");
22486 switch (StoreSrc) {
22487 case StoreSource::Constant:
22488 MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores,
22489 MemVT, RootNode, AllowVectors);
22490 break;
22491
22492 case StoreSource::Extract:
22493 MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores,
22494 MemVT, RootNode);
22495 break;
22496
22497 case StoreSource::Load:
22498 MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores,
22499 MemVT, RootNode, AllowVectors,
22500 IsNonTemporalStore, IsNonTemporalLoad);
22501 break;
22502
22503 default:
22504 llvm_unreachable("Unhandled store source type");
22505 }
22506 }
22507
22508 // Remember if we failed to optimize, to save compile time.
22509 if (!MadeChange)
22510 ChainsWithoutMergeableStores.insert(RootNode);
22511
22512 return MadeChange;
22513}
22514
22515SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
22516 SDLoc SL(ST);
22517 SDValue ReplStore;
22518
22519 // Replace the chain to avoid dependency.
22520 if (ST->isTruncatingStore()) {
22521 ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
22522 ST->getBasePtr(), ST->getMemoryVT(),
22523 ST->getMemOperand());
22524 } else {
22525 ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
22526 ST->getMemOperand());
22527 }
22528
22529 // Create token to keep both nodes around.
22530 SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
22531 MVT::Other, ST->getChain(), ReplStore);
22532
22533 // Make sure the new and old chains are cleaned up.
22534 AddToWorklist(Token.getNode());
22535
22536 // Don't add users to work list.
22537 return CombineTo(ST, Token, false);
22538}
22539
22540SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
22541 SDValue Value = ST->getValue();
22542 if (Value.getOpcode() == ISD::TargetConstantFP)
22543 return SDValue();
22544
22545 if (!ISD::isNormalStore(ST))
22546 return SDValue();
22547
22548 SDLoc DL(ST);
22549
22550 SDValue Chain = ST->getChain();
22551 SDValue Ptr = ST->getBasePtr();
22552
22553 const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
22554
22555 // NOTE: If the original store is volatile, this transform must not increase
22556 // the number of stores. For example, on x86-32 an f64 can be stored in one
22557 // processor operation but an i64 (which is not legal) requires two. So the
22558 // transform should not be done in this case.
22559
22560 SDValue Tmp;
22561 switch (CFP->getSimpleValueType(0).SimpleTy) {
22562 default:
22563 llvm_unreachable("Unknown FP type");
22564 case MVT::f16: // We don't do this for these yet.
22565 case MVT::bf16:
22566 case MVT::f80:
22567 case MVT::f128:
22568 case MVT::ppcf128:
22569 return SDValue();
22570 case MVT::f32:
22571 if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) ||
22572 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
22573 Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
22574 bitcastToAPInt().getZExtValue(), SDLoc(CFP),
22575 MVT::i32);
22576 return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
22577 }
22578
22579 return SDValue();
22580 case MVT::f64:
22581 if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
22582 ST->isSimple()) ||
22583 TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
22584 Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
22585 getZExtValue(), SDLoc(CFP), MVT::i64);
22586 return DAG.getStore(Chain, DL, Tmp,
22587 Ptr, ST->getMemOperand());
22588 }
22589
22590 if (ST->isSimple() && TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32) &&
22591 !TLI.isFPImmLegal(CFP->getValueAPF(), MVT::f64)) {
22592 // Many FP stores are not made apparent until after legalize, e.g. for
22593 // argument passing. Since this is so common, custom legalize the
22594 // 64-bit integer store into two 32-bit stores.
22595 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
22596 SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
22597 SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
22598 if (DAG.getDataLayout().isBigEndian())
22599 std::swap(Lo, Hi);
22600
22601 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
22602 AAMDNodes AAInfo = ST->getAAInfo();
22603
22604 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
22605 ST->getBaseAlign(), MMOFlags, AAInfo);
22607 SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
22608 ST->getPointerInfo().getWithOffset(4),
22609 ST->getBaseAlign(), MMOFlags, AAInfo);
22610 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
22611 St0, St1);
22612 }
22613
22614 return SDValue();
22615 }
22616}
22617
22618// (store (insert_vector_elt (load p), x, i), p) -> (store x, p+offset)
22619//
22620// If a store of a load with an element inserted into it has no other
22621// uses in between the chain, then we can consider the vector store
22622// dead and replace it with just the single scalar element store.
22623SDValue DAGCombiner::replaceStoreOfInsertLoad(StoreSDNode *ST) {
22624 SDLoc DL(ST);
22625 SDValue Value = ST->getValue();
22626 SDValue Ptr = ST->getBasePtr();
22627 SDValue Chain = ST->getChain();
22628 if (Value.getOpcode() != ISD::INSERT_VECTOR_ELT || !Value.hasOneUse())
22629 return SDValue();
22630
22631 SDValue Elt = Value.getOperand(1);
22632 SDValue Idx = Value.getOperand(2);
22633
22634 // If the element isn't byte sized or is implicitly truncated then we can't
22635 // compute an offset.
22636 EVT EltVT = Elt.getValueType();
22637 if (!EltVT.isByteSized() ||
22638 EltVT != Value.getOperand(0).getValueType().getVectorElementType())
22639 return SDValue();
22640
22641 auto *Ld = dyn_cast<LoadSDNode>(Value.getOperand(0));
22642 if (!Ld || Ld->getBasePtr() != Ptr ||
22643 ST->getMemoryVT() != Ld->getMemoryVT() || !ST->isSimple() ||
22644 !ISD::isNormalStore(ST) ||
22645 Ld->getAddressSpace() != ST->getAddressSpace() ||
22647 return SDValue();
22648
22649 unsigned IsFast;
22650 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
22651 Elt.getValueType(), ST->getAddressSpace(),
22652 ST->getAlign(), ST->getMemOperand()->getFlags(),
22653 &IsFast) ||
22654 !IsFast)
22655 return SDValue();
22656
22657 MachinePointerInfo PointerInfo(ST->getAddressSpace());
22658
22659 // If the offset is a known constant then try to recover the pointer
22660 // info
22661 SDValue NewPtr;
22662 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
22663 unsigned COffset = CIdx->getSExtValue() * EltVT.getSizeInBits() / 8;
22664 NewPtr = DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(COffset), DL);
22665 PointerInfo = ST->getPointerInfo().getWithOffset(COffset);
22666 } else {
22667 NewPtr = TLI.getVectorElementPointer(DAG, Ptr, Value.getValueType(), Idx);
22668 }
22669
22670 return DAG.getStore(Chain, DL, Elt, NewPtr, PointerInfo, ST->getAlign(),
22671 ST->getMemOperand()->getFlags());
22672}
22673
22674SDValue DAGCombiner::visitATOMIC_STORE(SDNode *N) {
22675 AtomicSDNode *ST = cast<AtomicSDNode>(N);
22676 SDValue Val = ST->getVal();
22677 EVT VT = Val.getValueType();
22678 EVT MemVT = ST->getMemoryVT();
22679
22680 if (MemVT.bitsLT(VT)) { // Is truncating store
22681 APInt TruncDemandedBits = APInt::getLowBitsSet(VT.getScalarSizeInBits(),
22682 MemVT.getScalarSizeInBits());
22683 // See if we can simplify the operation with SimplifyDemandedBits, which
22684 // only works if the value has a single use.
22685 if (SimplifyDemandedBits(Val, TruncDemandedBits))
22686 return SDValue(N, 0);
22687 }
22688
22689 return SDValue();
22690}
22691
22693 const SDLoc &Dl) {
22694 if (!Store->isSimple() || !ISD::isNormalStore(Store))
22695 return SDValue();
22696
22697 SDValue StoredVal = Store->getValue();
22698 SDValue StorePtr = Store->getBasePtr();
22699 SDValue StoreOffset = Store->getOffset();
22700 EVT VT = Store->getMemoryVT();
22701
22702 // Skip this combine for non-vector types and for <1 x ty> vectors, as they
22703 // will be scalarized later.
22704 if (!VT.isVector() || VT.isScalableVector() || VT.getVectorNumElements() == 1)
22705 return SDValue();
22706
22707 unsigned AddrSpace = Store->getAddressSpace();
22708 Align Alignment = Store->getAlign();
22709 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
22710
22711 if (!TLI.isOperationLegalOrCustom(ISD::MSTORE, VT) ||
22712 !TLI.allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment))
22713 return SDValue();
22714
22715 SDValue Mask, OtherVec, LoadCh;
22716 unsigned LoadPos;
22717 if (sd_match(StoredVal,
22718 m_VSelect(m_Value(Mask), m_Value(OtherVec),
22719 m_Load(m_Value(LoadCh), m_Specific(StorePtr),
22720 m_Specific(StoreOffset))))) {
22721 LoadPos = 2;
22722 } else if (sd_match(StoredVal,
22723 m_VSelect(m_Value(Mask),
22724 m_Load(m_Value(LoadCh), m_Specific(StorePtr),
22725 m_Specific(StoreOffset)),
22726 m_Value(OtherVec)))) {
22727 LoadPos = 1;
22728 } else {
22729 return SDValue();
22730 }
22731
22732 auto *Load = cast<LoadSDNode>(StoredVal.getOperand(LoadPos));
22733 if (!Load->isSimple() || !ISD::isNormalLoad(Load) ||
22734 Load->getAddressSpace() != AddrSpace)
22735 return SDValue();
22736
22737 if (!Store->getChain().reachesChainWithoutSideEffects(LoadCh))
22738 return SDValue();
22739
22740 if (LoadPos == 1)
22741 Mask = DAG.getNOT(Dl, Mask, Mask.getValueType());
22742
22743 return DAG.getMaskedStore(Store->getChain(), Dl, OtherVec, StorePtr,
22744 StoreOffset, Mask, VT, Store->getMemOperand(),
22745 Store->getAddressingMode());
22746}
22747
22748SDValue DAGCombiner::visitSTORE(SDNode *N) {
22749 StoreSDNode *ST = cast<StoreSDNode>(N);
22750 SDValue Chain = ST->getChain();
22751 SDValue Value = ST->getValue();
22752 SDValue Ptr = ST->getBasePtr();
22753
22754 // If this is a store of a bit convert, store the input value if the
22755 // resultant store does not need a higher alignment than the original.
22756 if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
22757 ST->isUnindexed()) {
22758 EVT SVT = Value.getOperand(0).getValueType();
22759 // If the store is volatile, we only want to change the store type if the
22760 // resulting store is legal. Otherwise we might increase the number of
22761 // memory accesses. We don't care if the original type was legal or not
22762 // as we assume software couldn't rely on the number of accesses of an
22763 // illegal type.
22764 // TODO: May be able to relax for unordered atomics (see D66309)
22765 if (((!LegalOperations && ST->isSimple()) ||
22766 TLI.isOperationLegal(ISD::STORE, SVT)) &&
22767 TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
22768 DAG, *ST->getMemOperand())) {
22769 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
22770 ST->getMemOperand());
22771 }
22772 }
22773
22774 // Turn 'store undef, Ptr' -> nothing.
22775 if (Value.isUndef() && ST->isUnindexed() && !ST->isVolatile())
22776 return Chain;
22777
22778 // Try to infer better alignment information than the store already has.
22779 if (OptLevel != CodeGenOptLevel::None && ST->isUnindexed() &&
22780 !ST->isAtomic()) {
22781 if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
22782 if (*Alignment > ST->getAlign() &&
22783 isAligned(*Alignment, ST->getSrcValueOffset())) {
22784 SDValue NewStore =
22785 DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
22786 ST->getMemoryVT(), *Alignment,
22787 ST->getMemOperand()->getFlags(), ST->getAAInfo());
22788 // NewStore will always be N as we are only refining the alignment
22789 assert(NewStore.getNode() == N);
22790 (void)NewStore;
22791 }
22792 }
22793 }
22794
22795 // Try transforming a pair floating point load / store ops to integer
22796 // load / store ops.
22797 if (SDValue NewST = TransformFPLoadStorePair(N))
22798 return NewST;
22799
22800 // Try transforming several stores into STORE (BSWAP).
22801 if (SDValue Store = mergeTruncStores(ST))
22802 return Store;
22803
22804 if (ST->isUnindexed()) {
22805 // Walk up chain skipping non-aliasing memory nodes, on this store and any
22806 // adjacent stores.
22807 if (findBetterNeighborChains(ST)) {
22808 // replaceStoreChain uses CombineTo, which handled all of the worklist
22809 // manipulation. Return the original node to not do anything else.
22810 return SDValue(ST, 0);
22811 }
22812 Chain = ST->getChain();
22813 }
22814
22815 // FIXME: is there such a thing as a truncating indexed store?
22816 if (ST->isTruncatingStore() && ST->isUnindexed() &&
22817 Value.getValueType().isInteger() &&
22819 !cast<ConstantSDNode>(Value)->isOpaque())) {
22820 // Convert a truncating store of a extension into a standard store.
22821 if ((Value.getOpcode() == ISD::ZERO_EXTEND ||
22822 Value.getOpcode() == ISD::SIGN_EXTEND ||
22823 Value.getOpcode() == ISD::ANY_EXTEND) &&
22824 Value.getOperand(0).getValueType() == ST->getMemoryVT() &&
22825 TLI.isOperationLegalOrCustom(ISD::STORE, ST->getMemoryVT()))
22826 return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
22827 ST->getMemOperand());
22828
22829 APInt TruncDemandedBits =
22830 APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
22831 ST->getMemoryVT().getScalarSizeInBits());
22832
22833 // See if we can simplify the operation with SimplifyDemandedBits, which
22834 // only works if the value has a single use.
22835 AddToWorklist(Value.getNode());
22836 if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
22837 // Re-visit the store if anything changed and the store hasn't been merged
22838 // with another node (N is deleted) SimplifyDemandedBits will add Value's
22839 // node back to the worklist if necessary, but we also need to re-visit
22840 // the Store node itself.
22841 if (N->getOpcode() != ISD::DELETED_NODE)
22842 AddToWorklist(N);
22843 return SDValue(N, 0);
22844 }
22845
22846 // Otherwise, see if we can simplify the input to this truncstore with
22847 // knowledge that only the low bits are being used. For example:
22848 // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
22849 if (SDValue Shorter =
22850 TLI.SimplifyMultipleUseDemandedBits(Value, TruncDemandedBits, DAG))
22851 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
22852 ST->getMemOperand());
22853
22854 // If we're storing a truncated constant, see if we can simplify it.
22855 // TODO: Move this to targetShrinkDemandedConstant?
22856 if (auto *Cst = dyn_cast<ConstantSDNode>(Value))
22857 if (!Cst->isOpaque()) {
22858 const APInt &CValue = Cst->getAPIntValue();
22859 APInt NewVal = CValue & TruncDemandedBits;
22860 if (NewVal != CValue) {
22861 SDValue Shorter =
22862 DAG.getConstant(NewVal, SDLoc(N), Value.getValueType());
22863 return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr,
22864 ST->getMemoryVT(), ST->getMemOperand());
22865 }
22866 }
22867 }
22868
22869 // If this is a load followed by a store to the same location, then the store
22870 // is dead/noop. Peek through any truncates if canCombineTruncStore failed.
22871 // TODO: Add big-endian truncate support with test coverage.
22872 // TODO: Can relax for unordered atomics (see D66309)
22873 SDValue TruncVal = DAG.getDataLayout().isLittleEndian()
22875 : Value;
22876 if (auto *Ld = dyn_cast<LoadSDNode>(TruncVal)) {
22877 if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
22878 ST->isUnindexed() && ST->isSimple() &&
22879 Ld->getAddressSpace() == ST->getAddressSpace() &&
22880 // There can't be any side effects between the load and store, such as
22881 // a call or store.
22883 // The store is dead, remove it.
22884 return Chain;
22885 }
22886 }
22887
22888 // Try scalarizing vector stores of loads where we only change one element
22889 if (SDValue NewST = replaceStoreOfInsertLoad(ST))
22890 return NewST;
22891
22892 // TODO: Can relax for unordered atomics (see D66309)
22893 if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
22894 if (ST->isUnindexed() && ST->isSimple() &&
22895 ST1->isUnindexed() && ST1->isSimple()) {
22896 if (OptLevel != CodeGenOptLevel::None && ST1->getBasePtr() == Ptr &&
22897 ST1->getValue() == Value && ST->getMemoryVT() == ST1->getMemoryVT() &&
22898 ST->getAddressSpace() == ST1->getAddressSpace()) {
22899 // If this is a store followed by a store with the same value to the
22900 // same location, then the store is dead/noop.
22901 return Chain;
22902 }
22903
22904 if (OptLevel != CodeGenOptLevel::None && ST1->hasOneUse() &&
22905 !ST1->getBasePtr().isUndef() &&
22906 ST->getAddressSpace() == ST1->getAddressSpace()) {
22907 // If we consider two stores and one smaller in size is a scalable
22908 // vector type and another one a bigger size store with a fixed type,
22909 // then we could not allow the scalable store removal because we don't
22910 // know its final size in the end.
22911 if (ST->getMemoryVT().isScalableVector() ||
22912 ST1->getMemoryVT().isScalableVector()) {
22913 if (ST1->getBasePtr() == Ptr &&
22914 TypeSize::isKnownLE(ST1->getMemoryVT().getStoreSize(),
22915 ST->getMemoryVT().getStoreSize())) {
22916 CombineTo(ST1, ST1->getChain());
22917 return SDValue(N, 0);
22918 }
22919 } else {
22920 const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
22921 const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
22922 // If this is a store who's preceding store to a subset of the current
22923 // location and no one other node is chained to that store we can
22924 // effectively drop the store. Do not remove stores to undef as they
22925 // may be used as data sinks.
22926 if (STBase.contains(DAG, ST->getMemoryVT().getFixedSizeInBits(),
22927 ChainBase,
22928 ST1->getMemoryVT().getFixedSizeInBits())) {
22929 CombineTo(ST1, ST1->getChain());
22930 return SDValue(N, 0);
22931 }
22932 }
22933 }
22934 }
22935 }
22936
22937 // If this is an FP_ROUND or TRUNC followed by a store, fold this into a
22938 // truncating store. We can do this even if this is already a truncstore.
22939 if ((Value.getOpcode() == ISD::FP_ROUND ||
22940 Value.getOpcode() == ISD::TRUNCATE) &&
22941 Value->hasOneUse() && ST->isUnindexed() &&
22942 TLI.canCombineTruncStore(Value.getOperand(0).getValueType(),
22943 ST->getMemoryVT(), LegalOperations)) {
22944 return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
22945 Ptr, ST->getMemoryVT(), ST->getMemOperand());
22946 }
22947
22948 // Always perform this optimization before types are legal. If the target
22949 // prefers, also try this after legalization to catch stores that were created
22950 // by intrinsics or other nodes.
22951 if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
22952 while (true) {
22953 // There can be multiple store sequences on the same chain.
22954 // Keep trying to merge store sequences until we are unable to do so
22955 // or until we merge the last store on the chain.
22956 bool Changed = mergeConsecutiveStores(ST);
22957 if (!Changed) break;
22958 // Return N as merge only uses CombineTo and no worklist clean
22959 // up is necessary.
22960 if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
22961 return SDValue(N, 0);
22962 }
22963 }
22964
22965 // Try transforming N to an indexed store.
22966 if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
22967 return SDValue(N, 0);
22968
22969 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
22970 //
22971 // Make sure to do this only after attempting to merge stores in order to
22972 // avoid changing the types of some subset of stores due to visit order,
22973 // preventing their merging.
22974 if (isa<ConstantFPSDNode>(ST->getValue())) {
22975 if (SDValue NewSt = replaceStoreOfFPConstant(ST))
22976 return NewSt;
22977 }
22978
22979 if (SDValue NewSt = splitMergedValStore(ST))
22980 return NewSt;
22981
22982 if (SDValue MaskedStore = foldToMaskedStore(ST, DAG, SDLoc(N)))
22983 return MaskedStore;
22984
22985 return ReduceLoadOpStoreWidth(N);
22986}
22987
22988SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
22989 const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
22990 const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), 0, false);
22991
22992 // We walk up the chains to find stores.
22993 SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
22994 while (!Chains.empty()) {
22995 SDValue Chain = Chains.pop_back_val();
22996 if (!Chain.hasOneUse())
22997 continue;
22998 switch (Chain.getOpcode()) {
22999 case ISD::TokenFactor:
23000 for (unsigned Nops = Chain.getNumOperands(); Nops;)
23001 Chains.push_back(Chain.getOperand(--Nops));
23002 break;
23003 case ISD::LIFETIME_START:
23004 case ISD::LIFETIME_END:
23005 // We can forward past any lifetime start/end that can be proven not to
23006 // alias the node.
23007 if (!mayAlias(Chain.getNode(), N))
23008 Chains.push_back(Chain.getOperand(0));
23009 break;
23010 case ISD::STORE: {
23011 StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
23012 // TODO: Can relax for unordered atomics (see D66309)
23013 if (!ST->isSimple() || ST->isIndexed())
23014 continue;
23015 const TypeSize StoreSize = ST->getMemoryVT().getStoreSize();
23016 // The bounds of a scalable store are not known until runtime, so this
23017 // store cannot be elided.
23018 if (StoreSize.isScalable())
23019 continue;
23020 const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
23021 // If we store purely within object bounds just before its lifetime ends,
23022 // we can remove the store.
23023 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
23024 if (LifetimeEndBase.contains(
23025 DAG, MFI.getObjectSize(LifetimeEnd->getFrameIndex()) * 8,
23026 StoreBase, StoreSize.getFixedValue() * 8)) {
23027 LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
23028 dbgs() << "\nwithin LIFETIME_END of : ";
23029 LifetimeEndBase.dump(); dbgs() << "\n");
23030 CombineTo(ST, ST->getChain());
23031 return SDValue(N, 0);
23032 }
23033 }
23034 }
23035 }
23036 return SDValue();
23037}
23038
23039/// For the instruction sequence of store below, F and I values
23040/// are bundled together as an i64 value before being stored into memory.
23041/// Sometimes it is more efficent to generate separate stores for F and I,
23042/// which can remove the bitwise instructions or sink them to colder places.
23043///
23044/// (store (or (zext (bitcast F to i32) to i64),
23045/// (shl (zext I to i64), 32)), addr) -->
23046/// (store F, addr) and (store I, addr+4)
23047///
23048/// Similarly, splitting for other merged store can also be beneficial, like:
23049/// For pair of {i32, i32}, i64 store --> two i32 stores.
23050/// For pair of {i32, i16}, i64 store --> two i32 stores.
23051/// For pair of {i16, i16}, i32 store --> two i16 stores.
23052/// For pair of {i16, i8}, i32 store --> two i16 stores.
23053/// For pair of {i8, i8}, i16 store --> two i8 stores.
23054///
23055/// We allow each target to determine specifically which kind of splitting is
23056/// supported.
23057///
23058/// The store patterns are commonly seen from the simple code snippet below
23059/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
23060/// void goo(const std::pair<int, float> &);
23061/// hoo() {
23062/// ...
23063/// goo(std::make_pair(tmp, ftmp));
23064/// ...
23065/// }
23066///
23067SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
23068 if (OptLevel == CodeGenOptLevel::None)
23069 return SDValue();
23070
23071 // Can't change the number of memory accesses for a volatile store or break
23072 // atomicity for an atomic one.
23073 if (!ST->isSimple())
23074 return SDValue();
23075
23076 SDValue Val = ST->getValue();
23077 SDLoc DL(ST);
23078
23079 // Match OR operand.
23080 if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
23081 return SDValue();
23082
23083 // Match SHL operand and get Lower and Higher parts of Val.
23084 SDValue Op1 = Val.getOperand(0);
23085 SDValue Op2 = Val.getOperand(1);
23086 SDValue Lo, Hi;
23087 if (Op1.getOpcode() != ISD::SHL) {
23088 std::swap(Op1, Op2);
23089 if (Op1.getOpcode() != ISD::SHL)
23090 return SDValue();
23091 }
23092 Lo = Op2;
23093 Hi = Op1.getOperand(0);
23094 if (!Op1.hasOneUse())
23095 return SDValue();
23096
23097 // Match shift amount to HalfValBitSize.
23098 unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
23099 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
23100 if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
23101 return SDValue();
23102
23103 // Lo and Hi are zero-extended from int with size less equal than 32
23104 // to i64.
23105 if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
23106 !Lo.getOperand(0).getValueType().isScalarInteger() ||
23107 Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
23108 Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
23109 !Hi.getOperand(0).getValueType().isScalarInteger() ||
23110 Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
23111 return SDValue();
23112
23113 // Use the EVT of low and high parts before bitcast as the input
23114 // of target query.
23115 EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
23116 ? Lo.getOperand(0).getValueType()
23117 : Lo.getValueType();
23118 EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
23119 ? Hi.getOperand(0).getValueType()
23120 : Hi.getValueType();
23121 if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
23122 return SDValue();
23123
23124 // Start to split store.
23125 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
23126 AAMDNodes AAInfo = ST->getAAInfo();
23127
23128 // Change the sizes of Lo and Hi's value types to HalfValBitSize.
23129 EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
23130 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
23131 Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
23132
23133 SDValue Chain = ST->getChain();
23134 SDValue Ptr = ST->getBasePtr();
23135 // Lower value store.
23136 SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
23137 ST->getBaseAlign(), MMOFlags, AAInfo);
23138 Ptr =
23139 DAG.getMemBasePlusOffset(Ptr, TypeSize::getFixed(HalfValBitSize / 8), DL);
23140 // Higher value store.
23141 SDValue St1 = DAG.getStore(
23142 St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
23143 ST->getBaseAlign(), MMOFlags, AAInfo);
23144 return St1;
23145}
23146
23147// Merge an insertion into an existing shuffle:
23148// (insert_vector_elt (vector_shuffle X, Y, Mask),
23149// .(extract_vector_elt X, N), InsIndex)
23150// --> (vector_shuffle X, Y, NewMask)
23151// and variations where shuffle operands may be CONCAT_VECTORS.
23153 SmallVectorImpl<int> &NewMask, SDValue Elt,
23154 unsigned InsIndex) {
23155 if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
23157 return false;
23158
23159 // Vec's operand 0 is using indices from 0 to N-1 and
23160 // operand 1 from N to 2N - 1, where N is the number of
23161 // elements in the vectors.
23162 SDValue InsertVal0 = Elt.getOperand(0);
23163 int ElementOffset = -1;
23164
23165 // We explore the inputs of the shuffle in order to see if we find the
23166 // source of the extract_vector_elt. If so, we can use it to modify the
23167 // shuffle rather than perform an insert_vector_elt.
23169 ArgWorkList.emplace_back(Mask.size(), Y);
23170 ArgWorkList.emplace_back(0, X);
23171
23172 while (!ArgWorkList.empty()) {
23173 int ArgOffset;
23174 SDValue ArgVal;
23175 std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val();
23176
23177 if (ArgVal == InsertVal0) {
23178 ElementOffset = ArgOffset;
23179 break;
23180 }
23181
23182 // Peek through concat_vector.
23183 if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) {
23184 int CurrentArgOffset =
23185 ArgOffset + ArgVal.getValueType().getVectorNumElements();
23186 int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements();
23187 for (SDValue Op : reverse(ArgVal->ops())) {
23188 CurrentArgOffset -= Step;
23189 ArgWorkList.emplace_back(CurrentArgOffset, Op);
23190 }
23191
23192 // Make sure we went through all the elements and did not screw up index
23193 // computation.
23194 assert(CurrentArgOffset == ArgOffset);
23195 }
23196 }
23197
23198 // If we failed to find a match, see if we can replace an UNDEF shuffle
23199 // operand.
23200 if (ElementOffset == -1) {
23201 if (!Y.isUndef() || InsertVal0.getValueType() != Y.getValueType())
23202 return false;
23203 ElementOffset = Mask.size();
23204 Y = InsertVal0;
23205 }
23206
23207 NewMask.assign(Mask.begin(), Mask.end());
23208 NewMask[InsIndex] = ElementOffset + Elt.getConstantOperandVal(1);
23209 assert(NewMask[InsIndex] < (int)(2 * Mask.size()) && NewMask[InsIndex] >= 0 &&
23210 "NewMask[InsIndex] is out of bound");
23211 return true;
23212}
23213
23214// Merge an insertion into an existing shuffle:
23215// (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N),
23216// InsIndex)
23217// --> (vector_shuffle X, Y) and variations where shuffle operands may be
23218// CONCAT_VECTORS.
23219SDValue DAGCombiner::mergeInsertEltWithShuffle(SDNode *N, unsigned InsIndex) {
23220 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT &&
23221 "Expected extract_vector_elt");
23222 SDValue InsertVal = N->getOperand(1);
23223 SDValue Vec = N->getOperand(0);
23224
23225 auto *SVN = dyn_cast<ShuffleVectorSDNode>(Vec);
23226 if (!SVN || !Vec.hasOneUse())
23227 return SDValue();
23228
23229 ArrayRef<int> Mask = SVN->getMask();
23230 SDValue X = Vec.getOperand(0);
23231 SDValue Y = Vec.getOperand(1);
23232
23233 SmallVector<int, 16> NewMask(Mask);
23234 if (mergeEltWithShuffle(X, Y, Mask, NewMask, InsertVal, InsIndex)) {
23235 SDValue LegalShuffle = TLI.buildLegalVectorShuffle(
23236 Vec.getValueType(), SDLoc(N), X, Y, NewMask, DAG);
23237 if (LegalShuffle)
23238 return LegalShuffle;
23239 }
23240
23241 return SDValue();
23242}
23243
23244// Convert a disguised subvector insertion into a shuffle:
23245// insert_vector_elt V, (bitcast X from vector type), IdxC -->
23246// bitcast(shuffle (bitcast V), (extended X), Mask)
23247// Note: We do not use an insert_subvector node because that requires a
23248// legal subvector type.
23249SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
23250 assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT &&
23251 "Expected extract_vector_elt");
23252 SDValue InsertVal = N->getOperand(1);
23253
23254 if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
23255 !InsertVal.getOperand(0).getValueType().isVector())
23256 return SDValue();
23257
23258 SDValue SubVec = InsertVal.getOperand(0);
23259 SDValue DestVec = N->getOperand(0);
23260 EVT SubVecVT = SubVec.getValueType();
23261 EVT VT = DestVec.getValueType();
23262 unsigned NumSrcElts = SubVecVT.getVectorNumElements();
23263 // If the source only has a single vector element, the cost of creating adding
23264 // it to a vector is likely to exceed the cost of a insert_vector_elt.
23265 if (NumSrcElts == 1)
23266 return SDValue();
23267 unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
23268 unsigned NumMaskVals = ExtendRatio * NumSrcElts;
23269
23270 // Step 1: Create a shuffle mask that implements this insert operation. The
23271 // vector that we are inserting into will be operand 0 of the shuffle, so
23272 // those elements are just 'i'. The inserted subvector is in the first
23273 // positions of operand 1 of the shuffle. Example:
23274 // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
23275 SmallVector<int, 16> Mask(NumMaskVals);
23276 for (unsigned i = 0; i != NumMaskVals; ++i) {
23277 if (i / NumSrcElts == InsIndex)
23278 Mask[i] = (i % NumSrcElts) + NumMaskVals;
23279 else
23280 Mask[i] = i;
23281 }
23282
23283 // Bail out if the target can not handle the shuffle we want to create.
23284 EVT SubVecEltVT = SubVecVT.getVectorElementType();
23285 EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
23286 if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
23287 return SDValue();
23288
23289 // Step 2: Create a wide vector from the inserted source vector by appending
23290 // undefined elements. This is the same size as our destination vector.
23291 SDLoc DL(N);
23292 SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
23293 ConcatOps[0] = SubVec;
23294 SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
23295
23296 // Step 3: Shuffle in the padded subvector.
23297 SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
23298 SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
23299 AddToWorklist(PaddedSubV.getNode());
23300 AddToWorklist(DestVecBC.getNode());
23301 AddToWorklist(Shuf.getNode());
23302 return DAG.getBitcast(VT, Shuf);
23303}
23304
23305// Combine insert(shuffle(load, <u,0,1,2>), load, 0) into a single load if
23306// possible and the new load will be quick. We use more loads but less shuffles
23307// and inserts.
23308SDValue DAGCombiner::combineInsertEltToLoad(SDNode *N, unsigned InsIndex) {
23309 EVT VT = N->getValueType(0);
23310
23311 // InsIndex is expected to be the first of last lane.
23312 if (!VT.isFixedLengthVector() ||
23313 (InsIndex != 0 && InsIndex != VT.getVectorNumElements() - 1))
23314 return SDValue();
23315
23316 // Look for a shuffle with the mask u,0,1,2,3,4,5,6 or 1,2,3,4,5,6,7,u
23317 // depending on the InsIndex.
23318 auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0));
23319 SDValue Scalar = N->getOperand(1);
23320 if (!Shuffle || !all_of(enumerate(Shuffle->getMask()), [&](auto P) {
23321 return InsIndex == P.index() || P.value() < 0 ||
23322 (InsIndex == 0 && P.value() == (int)P.index() - 1) ||
23323 (InsIndex == VT.getVectorNumElements() - 1 &&
23324 P.value() == (int)P.index() + 1);
23325 }))
23326 return SDValue();
23327
23328 // We optionally skip over an extend so long as both loads are extended in the
23329 // same way from the same type.
23330 unsigned Extend = 0;
23331 if (Scalar.getOpcode() == ISD::ZERO_EXTEND ||
23332 Scalar.getOpcode() == ISD::SIGN_EXTEND ||
23333 Scalar.getOpcode() == ISD::ANY_EXTEND) {
23334 Extend = Scalar.getOpcode();
23335 Scalar = Scalar.getOperand(0);
23336 }
23337
23338 auto *ScalarLoad = dyn_cast<LoadSDNode>(Scalar);
23339 if (!ScalarLoad)
23340 return SDValue();
23341
23342 SDValue Vec = Shuffle->getOperand(0);
23343 if (Extend) {
23344 if (Vec.getOpcode() != Extend)
23345 return SDValue();
23346 Vec = Vec.getOperand(0);
23347 }
23348 auto *VecLoad = dyn_cast<LoadSDNode>(Vec);
23349 if (!VecLoad || Vec.getValueType().getScalarType() != Scalar.getValueType())
23350 return SDValue();
23351
23352 int EltSize = ScalarLoad->getValueType(0).getScalarSizeInBits();
23353 if (EltSize == 0 || EltSize % 8 != 0 || !ScalarLoad->isSimple() ||
23354 !VecLoad->isSimple() || VecLoad->getExtensionType() != ISD::NON_EXTLOAD ||
23355 ScalarLoad->getExtensionType() != ISD::NON_EXTLOAD ||
23356 ScalarLoad->getAddressSpace() != VecLoad->getAddressSpace())
23357 return SDValue();
23358
23359 // Check that the offset between the pointers to produce a single continuous
23360 // load.
23361 if (InsIndex == 0) {
23362 if (!DAG.areNonVolatileConsecutiveLoads(ScalarLoad, VecLoad, EltSize / 8,
23363 -1))
23364 return SDValue();
23365 } else {
23367 VecLoad, ScalarLoad, VT.getVectorNumElements() * EltSize / 8, -1))
23368 return SDValue();
23369 }
23370
23371 // And that the new unaligned load will be fast.
23372 unsigned IsFast = 0;
23373 Align NewAlign = commonAlignment(VecLoad->getAlign(), EltSize / 8);
23374 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
23375 Vec.getValueType(), VecLoad->getAddressSpace(),
23376 NewAlign, VecLoad->getMemOperand()->getFlags(),
23377 &IsFast) ||
23378 !IsFast)
23379 return SDValue();
23380
23381 // Calculate the new Ptr and create the new load.
23382 SDLoc DL(N);
23383 SDValue Ptr = ScalarLoad->getBasePtr();
23384 if (InsIndex != 0)
23385 Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), VecLoad->getBasePtr(),
23386 DAG.getConstant(EltSize / 8, DL, Ptr.getValueType()));
23387 MachinePointerInfo PtrInfo =
23388 InsIndex == 0 ? ScalarLoad->getPointerInfo()
23389 : VecLoad->getPointerInfo().getWithOffset(EltSize / 8);
23390
23391 SDValue Load = DAG.getLoad(VecLoad->getValueType(0), DL,
23392 ScalarLoad->getChain(), Ptr, PtrInfo, NewAlign);
23393 DAG.makeEquivalentMemoryOrdering(ScalarLoad, Load.getValue(1));
23394 DAG.makeEquivalentMemoryOrdering(VecLoad, Load.getValue(1));
23395 return Extend ? DAG.getNode(Extend, DL, VT, Load) : Load;
23396}
23397
23398SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
23399 SDValue InVec = N->getOperand(0);
23400 SDValue InVal = N->getOperand(1);
23401 SDValue EltNo = N->getOperand(2);
23402 SDLoc DL(N);
23403
23404 EVT VT = InVec.getValueType();
23405 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
23406
23407 // Insert into out-of-bounds element is undefined.
23408 if (IndexC && VT.isFixedLengthVector() &&
23409 IndexC->getZExtValue() >= VT.getVectorNumElements())
23410 return DAG.getUNDEF(VT);
23411
23412 // Remove redundant insertions:
23413 // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
23414 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
23415 InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
23416 return InVec;
23417
23418 // Remove insert of UNDEF/POISON elements.
23419 if (InVal.isUndef()) {
23420 if (InVal.getOpcode() == ISD::POISON || InVec.getOpcode() == ISD::UNDEF)
23421 return InVec;
23422 return DAG.getFreeze(InVec);
23423 }
23424
23425 if (!IndexC) {
23426 // If this is variable insert to undef vector, it might be better to splat:
23427 // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
23428 if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT))
23429 return DAG.getSplat(VT, DL, InVal);
23430 return SDValue();
23431 }
23432
23433 if (VT.isScalableVector())
23434 return SDValue();
23435
23436 unsigned NumElts = VT.getVectorNumElements();
23437
23438 // We must know which element is being inserted for folds below here.
23439 unsigned Elt = IndexC->getZExtValue();
23440
23441 // Handle <1 x ???> vector insertion special cases.
23442 if (NumElts == 1) {
23443 // insert_vector_elt(x, extract_vector_elt(y, 0), 0) -> y
23444 if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
23445 InVal.getOperand(0).getValueType() == VT &&
23446 isNullConstant(InVal.getOperand(1)))
23447 return InVal.getOperand(0);
23448 }
23449
23450 // Canonicalize insert_vector_elt dag nodes.
23451 // Example:
23452 // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
23453 // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
23454 //
23455 // Do this only if the child insert_vector node has one use; also
23456 // do this only if indices are both constants and Idx1 < Idx0.
23457 if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
23458 && isa<ConstantSDNode>(InVec.getOperand(2))) {
23459 unsigned OtherElt = InVec.getConstantOperandVal(2);
23460 if (Elt < OtherElt) {
23461 // Swap nodes.
23462 SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
23463 InVec.getOperand(0), InVal, EltNo);
23464 AddToWorklist(NewOp.getNode());
23465 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
23466 VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
23467 }
23468 }
23469
23470 if (SDValue Shuf = mergeInsertEltWithShuffle(N, Elt))
23471 return Shuf;
23472
23473 if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
23474 return Shuf;
23475
23476 if (SDValue Shuf = combineInsertEltToLoad(N, Elt))
23477 return Shuf;
23478
23479 // Attempt to convert an insert_vector_elt chain into a legal build_vector.
23480 if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) {
23481 // vXi1 vector - we don't need to recurse.
23482 if (NumElts == 1)
23483 return DAG.getBuildVector(VT, DL, {InVal});
23484
23485 // If we haven't already collected the element, insert into the op list.
23486 EVT MaxEltVT = InVal.getValueType();
23487 auto AddBuildVectorOp = [&](SmallVectorImpl<SDValue> &Ops, SDValue Elt,
23488 unsigned Idx) {
23489 if (!Ops[Idx]) {
23490 Ops[Idx] = Elt;
23491 if (VT.isInteger()) {
23492 EVT EltVT = Elt.getValueType();
23493 MaxEltVT = MaxEltVT.bitsGE(EltVT) ? MaxEltVT : EltVT;
23494 }
23495 }
23496 };
23497
23498 // Ensure all the operands are the same value type, fill any missing
23499 // operands with UNDEF and create the BUILD_VECTOR.
23500 auto CanonicalizeBuildVector = [&](SmallVectorImpl<SDValue> &Ops,
23501 bool FreezeUndef = false) {
23502 assert(Ops.size() == NumElts && "Unexpected vector size");
23503 SDValue UndefOp = FreezeUndef ? DAG.getFreeze(DAG.getUNDEF(MaxEltVT))
23504 : DAG.getUNDEF(MaxEltVT);
23505 for (SDValue &Op : Ops) {
23506 if (Op)
23507 Op = VT.isInteger() ? DAG.getAnyExtOrTrunc(Op, DL, MaxEltVT) : Op;
23508 else
23509 Op = UndefOp;
23510 }
23511 return DAG.getBuildVector(VT, DL, Ops);
23512 };
23513
23515 Ops[Elt] = InVal;
23516
23517 // Recurse up a INSERT_VECTOR_ELT chain to build a BUILD_VECTOR.
23518 for (SDValue CurVec = InVec; CurVec;) {
23519 // UNDEF - build new BUILD_VECTOR from already inserted operands.
23520 if (CurVec.isUndef())
23521 return CanonicalizeBuildVector(Ops);
23522
23523 // FREEZE(UNDEF) - build new BUILD_VECTOR from already inserted operands.
23524 if (ISD::isFreezeUndef(CurVec.getNode()) && CurVec.hasOneUse())
23525 return CanonicalizeBuildVector(Ops, /*FreezeUndef=*/true);
23526
23527 // BUILD_VECTOR - insert unused operands and build new BUILD_VECTOR.
23528 if (CurVec.getOpcode() == ISD::BUILD_VECTOR && CurVec.hasOneUse()) {
23529 for (unsigned I = 0; I != NumElts; ++I)
23530 AddBuildVectorOp(Ops, CurVec.getOperand(I), I);
23531 return CanonicalizeBuildVector(Ops);
23532 }
23533
23534 // SCALAR_TO_VECTOR - insert unused scalar and build new BUILD_VECTOR.
23535 if (CurVec.getOpcode() == ISD::SCALAR_TO_VECTOR && CurVec.hasOneUse()) {
23536 AddBuildVectorOp(Ops, CurVec.getOperand(0), 0);
23537 return CanonicalizeBuildVector(Ops);
23538 }
23539
23540 // INSERT_VECTOR_ELT - insert operand and continue up the chain.
23541 if (CurVec.getOpcode() == ISD::INSERT_VECTOR_ELT && CurVec.hasOneUse())
23542 if (auto *CurIdx = dyn_cast<ConstantSDNode>(CurVec.getOperand(2)))
23543 if (CurIdx->getAPIntValue().ult(NumElts)) {
23544 unsigned Idx = CurIdx->getZExtValue();
23545 AddBuildVectorOp(Ops, CurVec.getOperand(1), Idx);
23546
23547 // Found entire BUILD_VECTOR.
23548 if (all_of(Ops, [](SDValue Op) { return !!Op; }))
23549 return CanonicalizeBuildVector(Ops);
23550
23551 CurVec = CurVec->getOperand(0);
23552 continue;
23553 }
23554
23555 // VECTOR_SHUFFLE - if all the operands match the shuffle's sources,
23556 // update the shuffle mask (and second operand if we started with unary
23557 // shuffle) and create a new legal shuffle.
23558 if (CurVec.getOpcode() == ISD::VECTOR_SHUFFLE && CurVec.hasOneUse()) {
23559 auto *SVN = cast<ShuffleVectorSDNode>(CurVec);
23560 SDValue LHS = SVN->getOperand(0);
23561 SDValue RHS = SVN->getOperand(1);
23562 SmallVector<int, 16> Mask(SVN->getMask());
23563 bool Merged = true;
23564 for (auto I : enumerate(Ops)) {
23565 SDValue &Op = I.value();
23566 if (Op) {
23567 SmallVector<int, 16> NewMask;
23568 if (!mergeEltWithShuffle(LHS, RHS, Mask, NewMask, Op, I.index())) {
23569 Merged = false;
23570 break;
23571 }
23572 Mask = std::move(NewMask);
23573 }
23574 }
23575 if (Merged)
23576 if (SDValue NewShuffle =
23577 TLI.buildLegalVectorShuffle(VT, DL, LHS, RHS, Mask, DAG))
23578 return NewShuffle;
23579 }
23580
23581 if (!LegalOperations) {
23582 bool IsNull = llvm::isNullConstant(InVal);
23583 // We can convert to AND/OR mask if all insertions are zero or -1
23584 // respectively.
23585 if ((IsNull || llvm::isAllOnesConstant(InVal)) &&
23586 all_of(Ops, [InVal](SDValue Op) { return !Op || Op == InVal; }) &&
23587 count_if(Ops, [InVal](SDValue Op) { return Op == InVal; }) >= 2) {
23588 SDValue Zero = DAG.getConstant(0, DL, MaxEltVT);
23589 SDValue AllOnes = DAG.getAllOnesConstant(DL, MaxEltVT);
23591
23592 // Build the mask and return the corresponding DAG node.
23593 auto BuildMaskAndNode = [&](SDValue TrueVal, SDValue FalseVal,
23594 unsigned MaskOpcode) {
23595 for (unsigned I = 0; I != NumElts; ++I)
23596 Mask[I] = Ops[I] ? TrueVal : FalseVal;
23597 return DAG.getNode(MaskOpcode, DL, VT, CurVec,
23598 DAG.getBuildVector(VT, DL, Mask));
23599 };
23600
23601 // If all elements are zero, we can use AND with all ones.
23602 if (IsNull)
23603 return BuildMaskAndNode(Zero, AllOnes, ISD::AND);
23604
23605 // If all elements are -1, we can use OR with zero.
23606 return BuildMaskAndNode(AllOnes, Zero, ISD::OR);
23607 }
23608 }
23609
23610 // Failed to find a match in the chain - bail.
23611 break;
23612 }
23613
23614 // See if we can fill in the missing constant elements as zeros.
23615 // TODO: Should we do this for any constant?
23616 APInt DemandedZeroElts = APInt::getZero(NumElts);
23617 for (unsigned I = 0; I != NumElts; ++I)
23618 if (!Ops[I])
23619 DemandedZeroElts.setBit(I);
23620
23621 if (DAG.MaskedVectorIsZero(InVec, DemandedZeroElts)) {
23622 SDValue Zero = VT.isInteger() ? DAG.getConstant(0, DL, MaxEltVT)
23623 : DAG.getConstantFP(0, DL, MaxEltVT);
23624 for (unsigned I = 0; I != NumElts; ++I)
23625 if (!Ops[I])
23626 Ops[I] = Zero;
23627
23628 return CanonicalizeBuildVector(Ops);
23629 }
23630 }
23631
23632 return SDValue();
23633}
23634
23635/// Transform a vector binary operation into a scalar binary operation by moving
23636/// the math/logic after an extract element of a vector.
23638 const SDLoc &DL, bool LegalTypes) {
23639 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
23640 SDValue Vec = ExtElt->getOperand(0);
23641 SDValue Index = ExtElt->getOperand(1);
23642 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
23643 unsigned Opc = Vec.getOpcode();
23644 if (!IndexC || !Vec.hasOneUse() || (!TLI.isBinOp(Opc) && Opc != ISD::SETCC) ||
23645 Vec->getNumValues() != 1)
23646 return SDValue();
23647
23648 // Targets may want to avoid this to prevent an expensive register transfer.
23649 if (!TLI.shouldScalarizeBinop(Vec))
23650 return SDValue();
23651
23652 EVT ResVT = ExtElt->getValueType(0);
23653 if (Opc == ISD::SETCC &&
23654 (ResVT != Vec.getValueType().getVectorElementType() || LegalTypes))
23655 return SDValue();
23656
23657 // Extracting an element of a vector constant is constant-folded, so this
23658 // transform is just replacing a vector op with a scalar op while moving the
23659 // extract.
23660 SDValue Op0 = Vec.getOperand(0);
23661 SDValue Op1 = Vec.getOperand(1);
23662 APInt SplatVal;
23663 if (!isAnyConstantBuildVector(Op0, true) &&
23664 !ISD::isConstantSplatVector(Op0.getNode(), SplatVal) &&
23665 !isAnyConstantBuildVector(Op1, true) &&
23666 !ISD::isConstantSplatVector(Op1.getNode(), SplatVal))
23667 return SDValue();
23668
23669 // extractelt (op X, C), IndexC --> op (extractelt X, IndexC), C'
23670 // extractelt (op C, X), IndexC --> op C', (extractelt X, IndexC)
23671 if (Opc == ISD::SETCC) {
23672 EVT OpVT = Op0.getValueType().getVectorElementType();
23673 Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpVT, Op0, Index);
23674 Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpVT, Op1, Index);
23675 SDValue NewVal = DAG.getSetCC(
23676 DL, ResVT, Op0, Op1, cast<CondCodeSDNode>(Vec->getOperand(2))->get());
23677 // We may need to sign- or zero-extend the result to match the same
23678 // behaviour as the vector version of SETCC.
23679 unsigned VecBoolContents = TLI.getBooleanContents(Vec.getValueType());
23680 if (ResVT != MVT::i1 &&
23681 VecBoolContents != TargetLowering::UndefinedBooleanContent &&
23682 VecBoolContents != TLI.getBooleanContents(ResVT)) {
23684 NewVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ResVT, NewVal,
23685 DAG.getValueType(MVT::i1));
23686 else
23687 NewVal = DAG.getZeroExtendInReg(NewVal, DL, MVT::i1);
23688 }
23689 return NewVal;
23690 }
23691 Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op0, Index);
23692 Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op1, Index);
23693 return DAG.getNode(Opc, DL, ResVT, Op0, Op1);
23694}
23695
23696// Given a ISD::EXTRACT_VECTOR_ELT, which is a glorified bit sequence extract,
23697// recursively analyse all of it's users. and try to model themselves as
23698// bit sequence extractions. If all of them agree on the new, narrower element
23699// type, and all of them can be modelled as ISD::EXTRACT_VECTOR_ELT's of that
23700// new element type, do so now.
23701// This is mainly useful to recover from legalization that scalarized
23702// the vector as wide elements, but tries to rebuild it with narrower elements.
23703//
23704// Some more nodes could be modelled if that helps cover interesting patterns.
23705bool DAGCombiner::refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(
23706 SDNode *N) {
23707 // We perform this optimization post type-legalization because
23708 // the type-legalizer often scalarizes integer-promoted vectors.
23709 // Performing this optimization before may cause legalizaton cycles.
23710 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
23711 return false;
23712
23713 // TODO: Add support for big-endian.
23714 if (DAG.getDataLayout().isBigEndian())
23715 return false;
23716
23717 SDValue VecOp = N->getOperand(0);
23718 EVT VecVT = VecOp.getValueType();
23719 assert(!VecVT.isScalableVector() && "Only for fixed vectors.");
23720
23721 // We must start with a constant extraction index.
23722 auto *IndexC = dyn_cast<ConstantSDNode>(N->getOperand(1));
23723 if (!IndexC)
23724 return false;
23725
23726 assert(IndexC->getZExtValue() < VecVT.getVectorNumElements() &&
23727 "Original ISD::EXTRACT_VECTOR_ELT is undefinend?");
23728
23729 // TODO: deal with the case of implicit anyext of the extraction.
23730 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
23731 EVT ScalarVT = N->getValueType(0);
23732 if (VecVT.getScalarType() != ScalarVT)
23733 return false;
23734
23735 // TODO: deal with the cases other than everything being integer-typed.
23736 if (!ScalarVT.isScalarInteger())
23737 return false;
23738
23739 struct Entry {
23740 SDNode *Producer;
23741
23742 // Which bits of VecOp does it contain?
23743 unsigned BitPos;
23744 int NumBits;
23745 // NOTE: the actual width of \p Producer may be wider than NumBits!
23746
23747 Entry(Entry &&) = default;
23748 Entry(SDNode *Producer_, unsigned BitPos_, int NumBits_)
23749 : Producer(Producer_), BitPos(BitPos_), NumBits(NumBits_) {}
23750
23751 Entry() = delete;
23752 Entry(const Entry &) = delete;
23753 Entry &operator=(const Entry &) = delete;
23754 Entry &operator=(Entry &&) = delete;
23755 };
23756 SmallVector<Entry, 32> Worklist;
23758
23759 // We start at the "root" ISD::EXTRACT_VECTOR_ELT.
23760 Worklist.emplace_back(N, /*BitPos=*/VecEltBitWidth * IndexC->getZExtValue(),
23761 /*NumBits=*/VecEltBitWidth);
23762
23763 while (!Worklist.empty()) {
23764 Entry E = Worklist.pop_back_val();
23765 // Does the node not even use any of the VecOp bits?
23766 if (!(E.NumBits > 0 && E.BitPos < VecVT.getSizeInBits() &&
23767 E.BitPos + E.NumBits <= VecVT.getSizeInBits()))
23768 return false; // Let's allow the other combines clean this up first.
23769 // Did we fail to model any of the users of the Producer?
23770 bool ProducerIsLeaf = false;
23771 // Look at each user of this Producer.
23772 for (SDNode *User : E.Producer->users()) {
23773 switch (User->getOpcode()) {
23774 // TODO: support ISD::BITCAST
23775 // TODO: support ISD::ANY_EXTEND
23776 // TODO: support ISD::ZERO_EXTEND
23777 // TODO: support ISD::SIGN_EXTEND
23778 case ISD::TRUNCATE:
23779 // Truncation simply means we keep position, but extract less bits.
23780 Worklist.emplace_back(User, E.BitPos,
23781 /*NumBits=*/User->getValueSizeInBits(0));
23782 break;
23783 // TODO: support ISD::SRA
23784 // TODO: support ISD::SHL
23785 case ISD::SRL:
23786 // We should be shifting the Producer by a constant amount.
23787 if (auto *ShAmtC = dyn_cast<ConstantSDNode>(User->getOperand(1));
23788 User->getOperand(0).getNode() == E.Producer && ShAmtC) {
23789 // Logical right-shift means that we start extraction later,
23790 // but stop it at the same position we did previously.
23791 unsigned ShAmt = ShAmtC->getZExtValue();
23792 Worklist.emplace_back(User, E.BitPos + ShAmt, E.NumBits - ShAmt);
23793 break;
23794 }
23795 [[fallthrough]];
23796 default:
23797 // We can not model this user of the Producer.
23798 // Which means the current Producer will be a ISD::EXTRACT_VECTOR_ELT.
23799 ProducerIsLeaf = true;
23800 // Profitability check: all users that we can not model
23801 // must be ISD::BUILD_VECTOR's.
23802 if (User->getOpcode() != ISD::BUILD_VECTOR)
23803 return false;
23804 break;
23805 }
23806 }
23807 if (ProducerIsLeaf)
23808 Leafs.emplace_back(std::move(E));
23809 }
23810
23811 unsigned NewVecEltBitWidth = Leafs.front().NumBits;
23812
23813 // If we are still at the same element granularity, give up,
23814 if (NewVecEltBitWidth == VecEltBitWidth)
23815 return false;
23816
23817 // The vector width must be a multiple of the new element width.
23818 if (VecVT.getSizeInBits() % NewVecEltBitWidth != 0)
23819 return false;
23820
23821 // All leafs must agree on the new element width.
23822 // All leafs must not expect any "padding" bits ontop of that width.
23823 // All leafs must start extraction from multiple of that width.
23824 if (!all_of(Leafs, [NewVecEltBitWidth](const Entry &E) {
23825 return (unsigned)E.NumBits == NewVecEltBitWidth &&
23826 E.Producer->getValueSizeInBits(0) == NewVecEltBitWidth &&
23827 E.BitPos % NewVecEltBitWidth == 0;
23828 }))
23829 return false;
23830
23831 EVT NewScalarVT = EVT::getIntegerVT(*DAG.getContext(), NewVecEltBitWidth);
23832 EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewScalarVT,
23833 VecVT.getSizeInBits() / NewVecEltBitWidth);
23834
23835 if (LegalTypes &&
23836 !(TLI.isTypeLegal(NewScalarVT) && TLI.isTypeLegal(NewVecVT)))
23837 return false;
23838
23839 if (LegalOperations &&
23840 !(TLI.isOperationLegalOrCustom(ISD::BITCAST, NewVecVT) &&
23842 return false;
23843
23844 SDValue NewVecOp = DAG.getBitcast(NewVecVT, VecOp);
23845 for (const Entry &E : Leafs) {
23846 SDLoc DL(E.Producer);
23847 unsigned NewIndex = E.BitPos / NewVecEltBitWidth;
23848 assert(NewIndex < NewVecVT.getVectorNumElements() &&
23849 "Creating out-of-bounds ISD::EXTRACT_VECTOR_ELT?");
23850 SDValue V = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, NewScalarVT, NewVecOp,
23851 DAG.getVectorIdxConstant(NewIndex, DL));
23852 CombineTo(E.Producer, V);
23853 }
23854
23855 return true;
23856}
23857
23858SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
23859 SDValue VecOp = N->getOperand(0);
23860 SDValue Index = N->getOperand(1);
23861 EVT ScalarVT = N->getValueType(0);
23862 EVT VecVT = VecOp.getValueType();
23863 if (VecOp.isUndef())
23864 return DAG.getUNDEF(ScalarVT);
23865
23866 // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
23867 //
23868 // This only really matters if the index is non-constant since other combines
23869 // on the constant elements already work.
23870 SDLoc DL(N);
23871 if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
23872 Index == VecOp.getOperand(2)) {
23873 SDValue Elt = VecOp.getOperand(1);
23874 AddUsersToWorklist(VecOp.getNode());
23875 return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
23876 }
23877
23878 // (vextract (scalar_to_vector val, 0) -> val
23879 if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
23880 // Only 0'th element of SCALAR_TO_VECTOR is defined.
23881 if (DAG.isKnownNeverZero(Index))
23882 return DAG.getUNDEF(ScalarVT);
23883
23884 // Check if the result type doesn't match the inserted element type.
23885 // The inserted element and extracted element may have mismatched bitwidth.
23886 // As a result, EXTRACT_VECTOR_ELT may extend or truncate the extracted vector.
23887 SDValue InOp = VecOp.getOperand(0);
23888 if (InOp.getValueType() != ScalarVT) {
23889 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
23890 if (InOp.getValueType().bitsGT(ScalarVT))
23891 return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, InOp);
23892 return DAG.getNode(ISD::ANY_EXTEND, DL, ScalarVT, InOp);
23893 }
23894 return InOp;
23895 }
23896
23897 // extract_vector_elt of out-of-bounds element -> UNDEF
23898 auto *IndexC = dyn_cast<ConstantSDNode>(Index);
23899 if (IndexC && VecVT.isFixedLengthVector() &&
23900 IndexC->getAPIntValue().uge(VecVT.getVectorNumElements()))
23901 return DAG.getUNDEF(ScalarVT);
23902
23903 // extract_vector_elt (build_vector x, y), 1 -> y
23904 if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) ||
23905 VecOp.getOpcode() == ISD::SPLAT_VECTOR) &&
23906 TLI.isTypeLegal(VecVT)) {
23907 assert((VecOp.getOpcode() != ISD::BUILD_VECTOR ||
23908 VecVT.isFixedLengthVector()) &&
23909 "BUILD_VECTOR used for scalable vectors");
23910 unsigned IndexVal =
23911 VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0;
23912 SDValue Elt = VecOp.getOperand(IndexVal);
23913 EVT InEltVT = Elt.getValueType();
23914
23915 if (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT) ||
23916 isNullConstant(Elt)) {
23917 // Sometimes build_vector's scalar input types do not match result type.
23918 if (ScalarVT == InEltVT)
23919 return Elt;
23920
23921 // TODO: It may be useful to truncate if free if the build_vector
23922 // implicitly converts.
23923 }
23924 }
23925
23926 if (SDValue BO = scalarizeExtractedBinOp(N, DAG, DL, LegalTypes))
23927 return BO;
23928
23929 if (VecVT.isScalableVector())
23930 return SDValue();
23931
23932 // All the code from this point onwards assumes fixed width vectors, but it's
23933 // possible that some of the combinations could be made to work for scalable
23934 // vectors too.
23935 unsigned NumElts = VecVT.getVectorNumElements();
23936 unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
23937
23938 // See if the extracted element is constant, in which case fold it if its
23939 // a legal fp immediate.
23940 if (IndexC && ScalarVT.isFloatingPoint()) {
23941 APInt EltMask = APInt::getOneBitSet(NumElts, IndexC->getZExtValue());
23942 KnownBits KnownElt = DAG.computeKnownBits(VecOp, EltMask);
23943 if (KnownElt.isConstant()) {
23944 APFloat CstFP =
23945 APFloat(ScalarVT.getFltSemantics(), KnownElt.getConstant());
23946 if (TLI.isFPImmLegal(CstFP, ScalarVT))
23947 return DAG.getConstantFP(CstFP, DL, ScalarVT);
23948 }
23949 }
23950
23951 // TODO: These transforms should not require the 'hasOneUse' restriction, but
23952 // there are regressions on multiple targets without it. We can end up with a
23953 // mess of scalar and vector code if we reduce only part of the DAG to scalar.
23954 if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
23955 VecOp.hasOneUse()) {
23956 // The vector index of the LSBs of the source depend on the endian-ness.
23957 bool IsLE = DAG.getDataLayout().isLittleEndian();
23958 unsigned ExtractIndex = IndexC->getZExtValue();
23959 // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
23960 unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
23961 SDValue BCSrc = VecOp.getOperand(0);
23962 if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
23963 return DAG.getAnyExtOrTrunc(BCSrc, DL, ScalarVT);
23964
23965 // TODO: Add support for SCALAR_TO_VECTOR implicit truncation.
23966 if (LegalTypes && BCSrc.getValueType().isInteger() &&
23967 BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR &&
23968 BCSrc.getScalarValueSizeInBits() ==
23970 // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
23971 // trunc i64 X to i32
23972 SDValue X = BCSrc.getOperand(0);
23973 EVT XVT = X.getValueType();
23974 assert(XVT.isScalarInteger() && ScalarVT.isScalarInteger() &&
23975 "Extract element and scalar to vector can't change element type "
23976 "from FP to integer.");
23977 unsigned XBitWidth = X.getValueSizeInBits();
23978 unsigned Scale = XBitWidth / VecEltBitWidth;
23979 BCTruncElt = IsLE ? 0 : Scale - 1;
23980
23981 // An extract element return value type can be wider than its vector
23982 // operand element type. In that case, the high bits are undefined, so
23983 // it's possible that we may need to extend rather than truncate.
23984 if (ExtractIndex < Scale && XBitWidth > VecEltBitWidth) {
23985 assert(XBitWidth % VecEltBitWidth == 0 &&
23986 "Scalar bitwidth must be a multiple of vector element bitwidth");
23987
23988 if (ExtractIndex != BCTruncElt) {
23989 unsigned ShiftIndex =
23990 IsLE ? ExtractIndex : (Scale - 1) - ExtractIndex;
23991 X = DAG.getNode(
23992 ISD::SRL, DL, XVT, X,
23993 DAG.getShiftAmountConstant(ShiftIndex * VecEltBitWidth, XVT, DL));
23994 }
23995
23996 return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
23997 }
23998 }
23999 }
24000
24001 // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
24002 // We only perform this optimization before the op legalization phase because
24003 // we may introduce new vector instructions which are not backed by TD
24004 // patterns. For example on AVX, extracting elements from a wide vector
24005 // without using extract_subvector. However, if we can find an underlying
24006 // scalar value, then we can always use that.
24007 if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
24008 auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
24009 // Find the new index to extract from.
24010 int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
24011
24012 // Extracting an undef index is undef.
24013 if (OrigElt == -1)
24014 return DAG.getUNDEF(ScalarVT);
24015
24016 // Select the right vector half to extract from.
24017 SDValue SVInVec;
24018 if (OrigElt < (int)NumElts) {
24019 SVInVec = VecOp.getOperand(0);
24020 } else {
24021 SVInVec = VecOp.getOperand(1);
24022 OrigElt -= NumElts;
24023 }
24024
24025 if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
24026 // TODO: Check if shuffle mask is legal?
24027 if (LegalOperations && TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VecVT) &&
24028 !VecOp.hasOneUse())
24029 return SDValue();
24030
24031 SDValue InOp = SVInVec.getOperand(OrigElt);
24032 if (InOp.getValueType() != ScalarVT) {
24033 assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
24034 InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
24035 }
24036
24037 return InOp;
24038 }
24039
24040 // FIXME: We should handle recursing on other vector shuffles and
24041 // scalar_to_vector here as well.
24042
24043 if (!LegalOperations ||
24044 // FIXME: Should really be just isOperationLegalOrCustom.
24047 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
24048 DAG.getVectorIdxConstant(OrigElt, DL));
24049 }
24050 }
24051
24052 // If only EXTRACT_VECTOR_ELT nodes use the source vector we can
24053 // simplify it based on the (valid) extraction indices.
24054 if (llvm::all_of(VecOp->users(), [&](SDNode *Use) {
24055 return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
24056 Use->getOperand(0) == VecOp &&
24057 isa<ConstantSDNode>(Use->getOperand(1));
24058 })) {
24059 APInt DemandedElts = APInt::getZero(NumElts);
24060 for (SDNode *User : VecOp->users()) {
24061 auto *CstElt = cast<ConstantSDNode>(User->getOperand(1));
24062 if (CstElt->getAPIntValue().ult(NumElts))
24063 DemandedElts.setBit(CstElt->getZExtValue());
24064 }
24065 if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
24066 // We simplified the vector operand of this extract element. If this
24067 // extract is not dead, visit it again so it is folded properly.
24068 if (N->getOpcode() != ISD::DELETED_NODE)
24069 AddToWorklist(N);
24070 return SDValue(N, 0);
24071 }
24072 APInt DemandedBits = APInt::getAllOnes(VecEltBitWidth);
24073 if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) {
24074 // We simplified the vector operand of this extract element. If this
24075 // extract is not dead, visit it again so it is folded properly.
24076 if (N->getOpcode() != ISD::DELETED_NODE)
24077 AddToWorklist(N);
24078 return SDValue(N, 0);
24079 }
24080 }
24081
24082 if (refineExtractVectorEltIntoMultipleNarrowExtractVectorElts(N))
24083 return SDValue(N, 0);
24084
24085 // Everything under here is trying to match an extract of a loaded value.
24086 // If the result of load has to be truncated, then it's not necessarily
24087 // profitable.
24088 bool BCNumEltsChanged = false;
24089 EVT ExtVT = VecVT.getVectorElementType();
24090 EVT LVT = ExtVT;
24091 if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
24092 return SDValue();
24093
24094 if (VecOp.getOpcode() == ISD::BITCAST) {
24095 // Don't duplicate a load with other uses.
24096 if (!VecOp.hasOneUse())
24097 return SDValue();
24098
24099 EVT BCVT = VecOp.getOperand(0).getValueType();
24100 if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
24101 return SDValue();
24102 if (NumElts != BCVT.getVectorNumElements())
24103 BCNumEltsChanged = true;
24104 VecOp = VecOp.getOperand(0);
24105 ExtVT = BCVT.getVectorElementType();
24106 }
24107
24108 // extract (vector load $addr), i --> load $addr + i * size
24109 if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
24110 ISD::isNormalLoad(VecOp.getNode()) &&
24111 !Index->hasPredecessor(VecOp.getNode())) {
24112 auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
24113 if (VecLoad && VecLoad->isSimple()) {
24114 if (SDValue Scalarized = TLI.scalarizeExtractedVectorLoad(
24115 ScalarVT, SDLoc(N), VecVT, Index, VecLoad, DAG)) {
24116 ++OpsNarrowed;
24117 return Scalarized;
24118 }
24119 }
24120 }
24121
24122 // Perform only after legalization to ensure build_vector / vector_shuffle
24123 // optimizations have already been done.
24124 if (!LegalOperations || !IndexC)
24125 return SDValue();
24126
24127 // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
24128 // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
24129 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
24130 int Elt = IndexC->getZExtValue();
24131 LoadSDNode *LN0 = nullptr;
24132 if (ISD::isNormalLoad(VecOp.getNode())) {
24133 LN0 = cast<LoadSDNode>(VecOp);
24134 } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
24135 VecOp.getOperand(0).getValueType() == ExtVT &&
24136 ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
24137 // Don't duplicate a load with other uses.
24138 if (!VecOp.hasOneUse())
24139 return SDValue();
24140
24141 LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
24142 }
24143 if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
24144 // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
24145 // =>
24146 // (load $addr+1*size)
24147
24148 // Don't duplicate a load with other uses.
24149 if (!VecOp.hasOneUse())
24150 return SDValue();
24151
24152 // If the bit convert changed the number of elements, it is unsafe
24153 // to examine the mask.
24154 if (BCNumEltsChanged)
24155 return SDValue();
24156
24157 // Select the input vector, guarding against out of range extract vector.
24158 int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
24159 VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
24160
24161 if (VecOp.getOpcode() == ISD::BITCAST) {
24162 // Don't duplicate a load with other uses.
24163 if (!VecOp.hasOneUse())
24164 return SDValue();
24165
24166 VecOp = VecOp.getOperand(0);
24167 }
24168 if (ISD::isNormalLoad(VecOp.getNode())) {
24169 LN0 = cast<LoadSDNode>(VecOp);
24170 Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
24171 Index = DAG.getConstant(Elt, DL, Index.getValueType());
24172 }
24173 } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged &&
24174 VecVT.getVectorElementType() == ScalarVT &&
24175 (!LegalTypes ||
24176 TLI.isTypeLegal(
24178 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0
24179 // -> extract_vector_elt a, 0
24180 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1
24181 // -> extract_vector_elt a, 1
24182 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2
24183 // -> extract_vector_elt b, 0
24184 // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3
24185 // -> extract_vector_elt b, 1
24186 EVT ConcatVT = VecOp.getOperand(0).getValueType();
24187 unsigned ConcatNumElts = ConcatVT.getVectorNumElements();
24188 SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, DL,
24189 Index.getValueType());
24190
24191 SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts);
24193 ConcatVT.getVectorElementType(),
24194 ConcatOp, NewIdx);
24195 return DAG.getNode(ISD::BITCAST, DL, ScalarVT, Elt);
24196 }
24197
24198 // Make sure we found a non-volatile load and the extractelement is
24199 // the only use.
24200 if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple())
24201 return SDValue();
24202
24203 // If Idx was -1 above, Elt is going to be -1, so just return undef.
24204 if (Elt == -1)
24205 return DAG.getUNDEF(LVT);
24206
24207 if (SDValue Scalarized =
24208 TLI.scalarizeExtractedVectorLoad(LVT, DL, VecVT, Index, LN0, DAG)) {
24209 ++OpsNarrowed;
24210 return Scalarized;
24211 }
24212
24213 return SDValue();
24214}
24215
24216// Simplify (build_vec (ext )) to (bitcast (build_vec ))
24217SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
24218 // We perform this optimization post type-legalization because
24219 // the type-legalizer often scalarizes integer-promoted vectors.
24220 // Performing this optimization before may create bit-casts which
24221 // will be type-legalized to complex code sequences.
24222 // We perform this optimization only before the operation legalizer because we
24223 // may introduce illegal operations.
24224 if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
24225 return SDValue();
24226
24227 unsigned NumInScalars = N->getNumOperands();
24228 SDLoc DL(N);
24229 EVT VT = N->getValueType(0);
24230
24231 // Check to see if this is a BUILD_VECTOR of a bunch of values
24232 // which come from any_extend or zero_extend nodes. If so, we can create
24233 // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
24234 // optimizations. We do not handle sign-extend because we can't fill the sign
24235 // using shuffles.
24236 EVT SourceType = MVT::Other;
24237 bool AllAnyExt = true;
24238
24239 for (unsigned i = 0; i != NumInScalars; ++i) {
24240 SDValue In = N->getOperand(i);
24241 // Ignore undef inputs.
24242 if (In.isUndef()) continue;
24243
24244 bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
24245 bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
24246
24247 // Abort if the element is not an extension.
24248 if (!ZeroExt && !AnyExt) {
24249 SourceType = MVT::Other;
24250 break;
24251 }
24252
24253 // The input is a ZeroExt or AnyExt. Check the original type.
24254 EVT InTy = In.getOperand(0).getValueType();
24255
24256 // Check that all of the widened source types are the same.
24257 if (SourceType == MVT::Other)
24258 // First time.
24259 SourceType = InTy;
24260 else if (InTy != SourceType) {
24261 // Multiple income types. Abort.
24262 SourceType = MVT::Other;
24263 break;
24264 }
24265
24266 // Check if all of the extends are ANY_EXTENDs.
24267 AllAnyExt &= AnyExt;
24268 }
24269
24270 // In order to have valid types, all of the inputs must be extended from the
24271 // same source type and all of the inputs must be any or zero extend.
24272 // Scalar sizes must be a power of two.
24273 EVT OutScalarTy = VT.getScalarType();
24274 bool ValidTypes =
24275 SourceType != MVT::Other &&
24278
24279 // Create a new simpler BUILD_VECTOR sequence which other optimizations can
24280 // turn into a single shuffle instruction.
24281 if (!ValidTypes)
24282 return SDValue();
24283
24284 // If we already have a splat buildvector, then don't fold it if it means
24285 // introducing zeros.
24286 if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true))
24287 return SDValue();
24288
24289 bool isLE = DAG.getDataLayout().isLittleEndian();
24290 unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
24291 assert(ElemRatio > 1 && "Invalid element size ratio");
24292 SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
24293 DAG.getConstant(0, DL, SourceType);
24294
24295 unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
24296 SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
24297
24298 // Populate the new build_vector
24299 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
24300 SDValue Cast = N->getOperand(i);
24301 assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
24302 Cast.getOpcode() == ISD::ZERO_EXTEND ||
24303 Cast.isUndef()) && "Invalid cast opcode");
24304 SDValue In;
24305 if (Cast.isUndef())
24306 In = DAG.getUNDEF(SourceType);
24307 else
24308 In = Cast->getOperand(0);
24309 unsigned Index = isLE ? (i * ElemRatio) :
24310 (i * ElemRatio + (ElemRatio - 1));
24311
24312 assert(Index < Ops.size() && "Invalid index");
24313 Ops[Index] = In;
24314 }
24315
24316 // The type of the new BUILD_VECTOR node.
24317 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
24318 assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
24319 "Invalid vector size");
24320 // Check if the new vector type is legal.
24321 if (!isTypeLegal(VecVT) ||
24322 (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
24324 return SDValue();
24325
24326 // Make the new BUILD_VECTOR.
24327 SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
24328
24329 // The new BUILD_VECTOR node has the potential to be further optimized.
24330 AddToWorklist(BV.getNode());
24331 // Bitcast to the desired type.
24332 return DAG.getBitcast(VT, BV);
24333}
24334
24335// Simplify (build_vec (trunc $1)
24336// (trunc (srl $1 half-width))
24337// (trunc (srl $1 (2 * half-width))))
24338// to (bitcast $1)
24339SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) {
24340 assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
24341
24342 EVT VT = N->getValueType(0);
24343
24344 // Don't run this before LegalizeTypes if VT is legal.
24345 // Targets may have other preferences.
24346 if (Level < AfterLegalizeTypes && TLI.isTypeLegal(VT))
24347 return SDValue();
24348
24349 // Only for little endian
24350 if (!DAG.getDataLayout().isLittleEndian())
24351 return SDValue();
24352
24353 EVT OutScalarTy = VT.getScalarType();
24354 uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits();
24355
24356 // Only for power of two types to be sure that bitcast works well
24357 if (!isPowerOf2_64(ScalarTypeBitsize))
24358 return SDValue();
24359
24360 unsigned NumInScalars = N->getNumOperands();
24361
24362 // Look through bitcasts
24363 auto PeekThroughBitcast = [](SDValue Op) {
24364 if (Op.getOpcode() == ISD::BITCAST)
24365 return Op.getOperand(0);
24366 return Op;
24367 };
24368
24369 // The source value where all the parts are extracted.
24370 SDValue Src;
24371 for (unsigned i = 0; i != NumInScalars; ++i) {
24372 SDValue In = PeekThroughBitcast(N->getOperand(i));
24373 // Ignore undef inputs.
24374 if (In.isUndef()) continue;
24375
24376 if (In.getOpcode() != ISD::TRUNCATE)
24377 return SDValue();
24378
24379 In = PeekThroughBitcast(In.getOperand(0));
24380
24381 if (In.getOpcode() != ISD::SRL) {
24382 // For now only build_vec without shuffling, handle shifts here in the
24383 // future.
24384 if (i != 0)
24385 return SDValue();
24386
24387 Src = In;
24388 } else {
24389 // In is SRL
24390 SDValue part = PeekThroughBitcast(In.getOperand(0));
24391
24392 if (!Src) {
24393 Src = part;
24394 } else if (Src != part) {
24395 // Vector parts do not stem from the same variable
24396 return SDValue();
24397 }
24398
24399 SDValue ShiftAmtVal = In.getOperand(1);
24400 if (!isa<ConstantSDNode>(ShiftAmtVal))
24401 return SDValue();
24402
24403 uint64_t ShiftAmt = In.getConstantOperandVal(1);
24404
24405 // The extracted value is not extracted at the right position
24406 if (ShiftAmt != i * ScalarTypeBitsize)
24407 return SDValue();
24408 }
24409 }
24410
24411 // Only cast if the size is the same
24412 if (!Src || Src.getValueType().getSizeInBits() != VT.getSizeInBits())
24413 return SDValue();
24414
24415 return DAG.getBitcast(VT, Src);
24416}
24417
24418SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
24419 ArrayRef<int> VectorMask,
24420 SDValue VecIn1, SDValue VecIn2,
24421 unsigned LeftIdx, bool DidSplitVec) {
24422 EVT VT = N->getValueType(0);
24423 EVT InVT1 = VecIn1.getValueType();
24424 EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
24425
24426 unsigned NumElems = VT.getVectorNumElements();
24427 unsigned ShuffleNumElems = NumElems;
24428
24429 // If we artificially split a vector in two already, then the offsets in the
24430 // operands will all be based off of VecIn1, even those in VecIn2.
24431 unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();
24432
24433 uint64_t VTSize = VT.getFixedSizeInBits();
24434 uint64_t InVT1Size = InVT1.getFixedSizeInBits();
24435 uint64_t InVT2Size = InVT2.getFixedSizeInBits();
24436
24437 assert(InVT2Size <= InVT1Size &&
24438 "Inputs must be sorted to be in non-increasing vector size order.");
24439
24440 // We can't generate a shuffle node with mismatched input and output types.
24441 // Try to make the types match the type of the output.
24442 if (InVT1 != VT || InVT2 != VT) {
24443 if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) {
24444 // If the output vector length is a multiple of both input lengths,
24445 // we can concatenate them and pad the rest with undefs.
24446 unsigned NumConcats = VTSize / InVT1Size;
24447 assert(NumConcats >= 2 && "Concat needs at least two inputs!");
24448 SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
24449 ConcatOps[0] = VecIn1;
24450 ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
24451 VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
24452 VecIn2 = SDValue();
24453 } else if (InVT1Size == VTSize * 2) {
24454 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
24455 return SDValue();
24456
24457 if (!VecIn2.getNode()) {
24458 // If we only have one input vector, and it's twice the size of the
24459 // output, split it in two.
24460 VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
24461 DAG.getVectorIdxConstant(NumElems, DL));
24462 VecIn1 = DAG.getExtractSubvector(DL, VT, VecIn1, 0);
24463 // Since we now have shorter input vectors, adjust the offset of the
24464 // second vector's start.
24465 Vec2Offset = NumElems;
24466 } else {
24467 assert(InVT2Size <= InVT1Size &&
24468 "Second input is not going to be larger than the first one.");
24469
24470 // VecIn1 is wider than the output, and we have another, possibly
24471 // smaller input. Pad the smaller input with undefs, shuffle at the
24472 // input vector width, and extract the output.
24473 // The shuffle type is different than VT, so check legality again.
24474 if (LegalOperations &&
24476 return SDValue();
24477
24478 // Legalizing INSERT_SUBVECTOR is tricky - you basically have to
24479 // lower it back into a BUILD_VECTOR. So if the inserted type is
24480 // illegal, don't even try.
24481 if (InVT1 != InVT2) {
24482 if (!TLI.isTypeLegal(InVT2))
24483 return SDValue();
24484 VecIn2 = DAG.getInsertSubvector(DL, DAG.getUNDEF(InVT1), VecIn2, 0);
24485 }
24486 ShuffleNumElems = NumElems * 2;
24487 }
24488 } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) {
24489 SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
24490 ConcatOps[0] = VecIn2;
24491 VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
24492 } else if (InVT1Size / VTSize > 1 && InVT1Size % VTSize == 0) {
24493 if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems) ||
24494 !TLI.isTypeLegal(InVT1) || !TLI.isTypeLegal(InVT2))
24495 return SDValue();
24496 // If dest vector has less than two elements, then use shuffle and extract
24497 // from larger regs will cost even more.
24498 if (VT.getVectorNumElements() <= 2 || !VecIn2.getNode())
24499 return SDValue();
24500 assert(InVT2Size <= InVT1Size &&
24501 "Second input is not going to be larger than the first one.");
24502
24503 // VecIn1 is wider than the output, and we have another, possibly
24504 // smaller input. Pad the smaller input with undefs, shuffle at the
24505 // input vector width, and extract the output.
24506 // The shuffle type is different than VT, so check legality again.
24507 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
24508 return SDValue();
24509
24510 if (InVT1 != InVT2) {
24511 VecIn2 = DAG.getInsertSubvector(DL, DAG.getUNDEF(InVT1), VecIn2, 0);
24512 }
24513 ShuffleNumElems = InVT1Size / VTSize * NumElems;
24514 } else {
24515 // TODO: Support cases where the length mismatch isn't exactly by a
24516 // factor of 2.
24517 // TODO: Move this check upwards, so that if we have bad type
24518 // mismatches, we don't create any DAG nodes.
24519 return SDValue();
24520 }
24521 }
24522
24523 // Initialize mask to undef.
24524 SmallVector<int, 8> Mask(ShuffleNumElems, -1);
24525
24526 // Only need to run up to the number of elements actually used, not the
24527 // total number of elements in the shuffle - if we are shuffling a wider
24528 // vector, the high lanes should be set to undef.
24529 for (unsigned i = 0; i != NumElems; ++i) {
24530 if (VectorMask[i] <= 0)
24531 continue;
24532
24533 unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
24534 if (VectorMask[i] == (int)LeftIdx) {
24535 Mask[i] = ExtIndex;
24536 } else if (VectorMask[i] == (int)LeftIdx + 1) {
24537 Mask[i] = Vec2Offset + ExtIndex;
24538 }
24539 }
24540
24541 // The type the input vectors may have changed above.
24542 InVT1 = VecIn1.getValueType();
24543
24544 // If we already have a VecIn2, it should have the same type as VecIn1.
24545 // If we don't, get an undef/zero vector of the appropriate type.
24546 VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
24547 assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
24548
24549 SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
24550 if (ShuffleNumElems > NumElems)
24551 Shuffle = DAG.getExtractSubvector(DL, VT, Shuffle, 0);
24552
24553 return Shuffle;
24554}
24555
24557 assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
24558
24559 // First, determine where the build vector is not undef.
24560 // TODO: We could extend this to handle zero elements as well as undefs.
24561 int NumBVOps = BV->getNumOperands();
24562 int ZextElt = -1;
24563 for (int i = 0; i != NumBVOps; ++i) {
24564 SDValue Op = BV->getOperand(i);
24565 if (Op.isUndef())
24566 continue;
24567 if (ZextElt == -1)
24568 ZextElt = i;
24569 else
24570 return SDValue();
24571 }
24572 // Bail out if there's no non-undef element.
24573 if (ZextElt == -1)
24574 return SDValue();
24575
24576 // The build vector contains some number of undef elements and exactly
24577 // one other element. That other element must be a zero-extended scalar
24578 // extracted from a vector at a constant index to turn this into a shuffle.
24579 // Also, require that the build vector does not implicitly truncate/extend
24580 // its elements.
24581 // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
24582 EVT VT = BV->getValueType(0);
24583 SDValue Zext = BV->getOperand(ZextElt);
24584 if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
24588 return SDValue();
24589
24590 // The zero-extend must be a multiple of the source size, and we must be
24591 // building a vector of the same size as the source of the extract element.
24592 SDValue Extract = Zext.getOperand(0);
24593 unsigned DestSize = Zext.getValueSizeInBits();
24594 unsigned SrcSize = Extract.getValueSizeInBits();
24595 if (DestSize % SrcSize != 0 ||
24596 Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
24597 return SDValue();
24598
24599 // Create a shuffle mask that will combine the extracted element with zeros
24600 // and undefs.
24601 int ZextRatio = DestSize / SrcSize;
24602 int NumMaskElts = NumBVOps * ZextRatio;
24603 SmallVector<int, 32> ShufMask(NumMaskElts, -1);
24604 for (int i = 0; i != NumMaskElts; ++i) {
24605 if (i / ZextRatio == ZextElt) {
24606 // The low bits of the (potentially translated) extracted element map to
24607 // the source vector. The high bits map to zero. We will use a zero vector
24608 // as the 2nd source operand of the shuffle, so use the 1st element of
24609 // that vector (mask value is number-of-elements) for the high bits.
24610 int Low = DAG.getDataLayout().isBigEndian() ? (ZextRatio - 1) : 0;
24611 ShufMask[i] = (i % ZextRatio == Low) ? Extract.getConstantOperandVal(1)
24612 : NumMaskElts;
24613 }
24614
24615 // Undef elements of the build vector remain undef because we initialize
24616 // the shuffle mask with -1.
24617 }
24618
24619 // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
24620 // bitcast (shuffle V, ZeroVec, VectorMask)
24621 SDLoc DL(BV);
24622 EVT VecVT = Extract.getOperand(0).getValueType();
24623 SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
24624 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
24625 SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0),
24626 ZeroVec, ShufMask, DAG);
24627 if (!Shuf)
24628 return SDValue();
24629 return DAG.getBitcast(VT, Shuf);
24630}
24631
24632// FIXME: promote to STLExtras.
24633template <typename R, typename T>
24634static auto getFirstIndexOf(R &&Range, const T &Val) {
24635 auto I = find(Range, Val);
24636 if (I == Range.end())
24637 return static_cast<decltype(std::distance(Range.begin(), I))>(-1);
24638 return std::distance(Range.begin(), I);
24639}
24640
24641// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
24642// operations. If the types of the vectors we're extracting from allow it,
24643// turn this into a vector_shuffle node.
24644SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
24645 SDLoc DL(N);
24646 EVT VT = N->getValueType(0);
24647
24648 // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
24649 if (!isTypeLegal(VT))
24650 return SDValue();
24651
24653 return V;
24654
24655 // May only combine to shuffle after legalize if shuffle is legal.
24656 if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
24657 return SDValue();
24658
24659 bool UsesZeroVector = false;
24660 unsigned NumElems = N->getNumOperands();
24661
24662 // Record, for each element of the newly built vector, which input vector
24663 // that element comes from. -1 stands for undef, 0 for the zero vector,
24664 // and positive values for the input vectors.
24665 // VectorMask maps each element to its vector number, and VecIn maps vector
24666 // numbers to their initial SDValues.
24667
24668 SmallVector<int, 8> VectorMask(NumElems, -1);
24670 VecIn.push_back(SDValue());
24671
24672 // If we have a single extract_element with a constant index, track the index
24673 // value.
24674 unsigned OneConstExtractIndex = ~0u;
24675
24676 // Count the number of extract_vector_elt sources (i.e. non-constant or undef)
24677 unsigned NumExtracts = 0;
24678
24679 for (unsigned i = 0; i != NumElems; ++i) {
24680 SDValue Op = N->getOperand(i);
24681
24682 if (Op.isUndef())
24683 continue;
24684
24685 // See if we can use a blend with a zero vector.
24686 // TODO: Should we generalize this to a blend with an arbitrary constant
24687 // vector?
24689 UsesZeroVector = true;
24690 VectorMask[i] = 0;
24691 continue;
24692 }
24693
24694 // Not an undef or zero. If the input is something other than an
24695 // EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
24696 if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
24697 return SDValue();
24698
24699 SDValue ExtractedFromVec = Op.getOperand(0);
24700 if (ExtractedFromVec.getValueType().isScalableVector())
24701 return SDValue();
24702 auto *ExtractIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
24703 if (!ExtractIdx)
24704 return SDValue();
24705
24706 if (ExtractIdx->getAsAPIntVal().uge(
24707 ExtractedFromVec.getValueType().getVectorNumElements()))
24708 return SDValue();
24709
24710 // All inputs must have the same element type as the output.
24711 if (VT.getVectorElementType() !=
24712 ExtractedFromVec.getValueType().getVectorElementType())
24713 return SDValue();
24714
24715 OneConstExtractIndex = ExtractIdx->getZExtValue();
24716 ++NumExtracts;
24717
24718 // Have we seen this input vector before?
24719 // The vectors are expected to be tiny (usually 1 or 2 elements), so using
24720 // a map back from SDValues to numbers isn't worth it.
24721 int Idx = getFirstIndexOf(VecIn, ExtractedFromVec);
24722 if (Idx == -1) { // A new source vector?
24723 Idx = VecIn.size();
24724 VecIn.push_back(ExtractedFromVec);
24725 }
24726
24727 VectorMask[i] = Idx;
24728 }
24729
24730 // If we didn't find at least one input vector, bail out.
24731 if (VecIn.size() < 2)
24732 return SDValue();
24733
24734 // If all the Operands of BUILD_VECTOR extract from same
24735 // vector, then split the vector efficiently based on the maximum
24736 // vector access index and adjust the VectorMask and
24737 // VecIn accordingly.
24738 bool DidSplitVec = false;
24739 if (VecIn.size() == 2) {
24740 // If we only found a single constant indexed extract_vector_elt feeding the
24741 // build_vector, do not produce a more complicated shuffle if the extract is
24742 // cheap with other constant/undef elements. Skip broadcast patterns with
24743 // multiple uses in the build_vector.
24744
24745 // TODO: This should be more aggressive about skipping the shuffle
24746 // formation, particularly if VecIn[1].hasOneUse(), and regardless of the
24747 // index.
24748 if (NumExtracts == 1 &&
24751 TLI.isExtractVecEltCheap(VT, OneConstExtractIndex))
24752 return SDValue();
24753
24754 unsigned MaxIndex = 0;
24755 unsigned NearestPow2 = 0;
24756 SDValue Vec = VecIn.back();
24757 EVT InVT = Vec.getValueType();
24758 SmallVector<unsigned, 8> IndexVec(NumElems, 0);
24759
24760 for (unsigned i = 0; i < NumElems; i++) {
24761 if (VectorMask[i] <= 0)
24762 continue;
24763 unsigned Index = N->getOperand(i).getConstantOperandVal(1);
24764 IndexVec[i] = Index;
24765 MaxIndex = std::max(MaxIndex, Index);
24766 }
24767
24768 NearestPow2 = PowerOf2Ceil(MaxIndex);
24769 if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
24770 NumElems * 2 < NearestPow2) {
24771 unsigned SplitSize = NearestPow2 / 2;
24772 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
24773 InVT.getVectorElementType(), SplitSize);
24774 if (TLI.isTypeLegal(SplitVT) &&
24775 SplitSize + SplitVT.getVectorNumElements() <=
24776 InVT.getVectorNumElements()) {
24777 SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
24778 DAG.getVectorIdxConstant(SplitSize, DL));
24779 SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
24780 DAG.getVectorIdxConstant(0, DL));
24781 VecIn.pop_back();
24782 VecIn.push_back(VecIn1);
24783 VecIn.push_back(VecIn2);
24784 DidSplitVec = true;
24785
24786 for (unsigned i = 0; i < NumElems; i++) {
24787 if (VectorMask[i] <= 0)
24788 continue;
24789 VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
24790 }
24791 }
24792 }
24793 }
24794
24795 // Sort input vectors by decreasing vector element count,
24796 // while preserving the relative order of equally-sized vectors.
24797 // Note that we keep the first "implicit zero vector as-is.
24798 SmallVector<SDValue, 8> SortedVecIn(VecIn);
24799 llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(),
24800 [](const SDValue &a, const SDValue &b) {
24801 return a.getValueType().getVectorNumElements() >
24802 b.getValueType().getVectorNumElements();
24803 });
24804
24805 // We now also need to rebuild the VectorMask, because it referenced element
24806 // order in VecIn, and we just sorted them.
24807 for (int &SourceVectorIndex : VectorMask) {
24808 if (SourceVectorIndex <= 0)
24809 continue;
24810 unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]);
24811 assert(Idx > 0 && Idx < SortedVecIn.size() &&
24812 VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure");
24813 SourceVectorIndex = Idx;
24814 }
24815
24816 VecIn = std::move(SortedVecIn);
24817
24818 // TODO: Should this fire if some of the input vectors has illegal type (like
24819 // it does now), or should we let legalization run its course first?
24820
24821 // Shuffle phase:
24822 // Take pairs of vectors, and shuffle them so that the result has elements
24823 // from these vectors in the correct places.
24824 // For example, given:
24825 // t10: i32 = extract_vector_elt t1, Constant:i64<0>
24826 // t11: i32 = extract_vector_elt t2, Constant:i64<0>
24827 // t12: i32 = extract_vector_elt t3, Constant:i64<0>
24828 // t13: i32 = extract_vector_elt t1, Constant:i64<1>
24829 // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
24830 // We will generate:
24831 // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
24832 // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
24833 SmallVector<SDValue, 4> Shuffles;
24834 for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
24835 unsigned LeftIdx = 2 * In + 1;
24836 SDValue VecLeft = VecIn[LeftIdx];
24837 SDValue VecRight =
24838 (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
24839
24840 if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
24841 VecRight, LeftIdx, DidSplitVec))
24842 Shuffles.push_back(Shuffle);
24843 else
24844 return SDValue();
24845 }
24846
24847 // If we need the zero vector as an "ingredient" in the blend tree, add it
24848 // to the list of shuffles.
24849 if (UsesZeroVector)
24850 Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
24851 : DAG.getConstantFP(0.0, DL, VT));
24852
24853 // If we only have one shuffle, we're done.
24854 if (Shuffles.size() == 1)
24855 return Shuffles[0];
24856
24857 // Update the vector mask to point to the post-shuffle vectors.
24858 for (int &Vec : VectorMask)
24859 if (Vec == 0)
24860 Vec = Shuffles.size() - 1;
24861 else
24862 Vec = (Vec - 1) / 2;
24863
24864 // More than one shuffle. Generate a binary tree of blends, e.g. if from
24865 // the previous step we got the set of shuffles t10, t11, t12, t13, we will
24866 // generate:
24867 // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
24868 // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
24869 // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
24870 // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
24871 // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
24872 // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
24873 // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
24874
24875 // Make sure the initial size of the shuffle list is even.
24876 if (Shuffles.size() % 2)
24877 Shuffles.push_back(DAG.getUNDEF(VT));
24878
24879 for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
24880 if (CurSize % 2) {
24881 Shuffles[CurSize] = DAG.getUNDEF(VT);
24882 CurSize++;
24883 }
24884 for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
24885 int Left = 2 * In;
24886 int Right = 2 * In + 1;
24887 SmallVector<int, 8> Mask(NumElems, -1);
24888 SDValue L = Shuffles[Left];
24889 ArrayRef<int> LMask;
24890 bool IsLeftShuffle = L.getOpcode() == ISD::VECTOR_SHUFFLE &&
24891 L.use_empty() && L.getOperand(1).isUndef() &&
24892 L.getOperand(0).getValueType() == L.getValueType();
24893 if (IsLeftShuffle) {
24894 LMask = cast<ShuffleVectorSDNode>(L.getNode())->getMask();
24895 L = L.getOperand(0);
24896 }
24897 SDValue R = Shuffles[Right];
24898 ArrayRef<int> RMask;
24899 bool IsRightShuffle = R.getOpcode() == ISD::VECTOR_SHUFFLE &&
24900 R.use_empty() && R.getOperand(1).isUndef() &&
24901 R.getOperand(0).getValueType() == R.getValueType();
24902 if (IsRightShuffle) {
24903 RMask = cast<ShuffleVectorSDNode>(R.getNode())->getMask();
24904 R = R.getOperand(0);
24905 }
24906 for (unsigned I = 0; I != NumElems; ++I) {
24907 if (VectorMask[I] == Left) {
24908 Mask[I] = I;
24909 if (IsLeftShuffle)
24910 Mask[I] = LMask[I];
24911 VectorMask[I] = In;
24912 } else if (VectorMask[I] == Right) {
24913 Mask[I] = I + NumElems;
24914 if (IsRightShuffle)
24915 Mask[I] = RMask[I] + NumElems;
24916 VectorMask[I] = In;
24917 }
24918 }
24919
24920 Shuffles[In] = DAG.getVectorShuffle(VT, DL, L, R, Mask);
24921 }
24922 }
24923 return Shuffles[0];
24924}
24925
24926// Try to turn a build vector of zero extends of extract vector elts into a
24927// a vector zero extend and possibly an extract subvector.
24928// TODO: Support sign extend?
24929// TODO: Allow undef elements?
24930SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
24931 if (LegalOperations)
24932 return SDValue();
24933
24934 EVT VT = N->getValueType(0);
24935
24936 bool FoundZeroExtend = false;
24937 SDValue Op0 = N->getOperand(0);
24938 auto checkElem = [&](SDValue Op) -> int64_t {
24939 unsigned Opc = Op.getOpcode();
24940 FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
24941 if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
24942 Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
24943 Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
24944 if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
24945 return C->getZExtValue();
24946 return -1;
24947 };
24948
24949 // Make sure the first element matches
24950 // (zext (extract_vector_elt X, C))
24951 // Offset must be a constant multiple of the
24952 // known-minimum vector length of the result type.
24953 int64_t Offset = checkElem(Op0);
24954 if (Offset < 0 || (Offset % VT.getVectorNumElements()) != 0)
24955 return SDValue();
24956
24957 unsigned NumElems = N->getNumOperands();
24958 SDValue In = Op0.getOperand(0).getOperand(0);
24959 EVT InSVT = In.getValueType().getScalarType();
24960 EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
24961
24962 // Don't create an illegal input type after type legalization.
24963 if (LegalTypes && !TLI.isTypeLegal(InVT))
24964 return SDValue();
24965
24966 // Ensure all the elements come from the same vector and are adjacent.
24967 for (unsigned i = 1; i != NumElems; ++i) {
24968 if ((Offset + i) != checkElem(N->getOperand(i)))
24969 return SDValue();
24970 }
24971
24972 SDLoc DL(N);
24973 In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
24974 Op0.getOperand(0).getOperand(1));
24975 return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
24976 VT, In);
24977}
24978
24979// If this is a very simple BUILD_VECTOR with first element being a ZERO_EXTEND,
24980// and all other elements being constant zero's, granularize the BUILD_VECTOR's
24981// element width, absorbing the ZERO_EXTEND, turning it into a constant zero op.
24982// This patten can appear during legalization.
24983//
24984// NOTE: This can be generalized to allow more than a single
24985// non-constant-zero op, UNDEF's, and to be KnownBits-based,
24986SDValue DAGCombiner::convertBuildVecZextToBuildVecWithZeros(SDNode *N) {
24987 // Don't run this after legalization. Targets may have other preferences.
24988 if (Level >= AfterLegalizeDAG)
24989 return SDValue();
24990
24991 // FIXME: support big-endian.
24992 if (DAG.getDataLayout().isBigEndian())
24993 return SDValue();
24994
24995 EVT VT = N->getValueType(0);
24996 EVT OpVT = N->getOperand(0).getValueType();
24997 assert(!VT.isScalableVector() && "Encountered scalable BUILD_VECTOR?");
24998
24999 EVT OpIntVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
25000
25001 if (!TLI.isTypeLegal(OpIntVT) ||
25002 (LegalOperations && !TLI.isOperationLegalOrCustom(ISD::BITCAST, OpIntVT)))
25003 return SDValue();
25004
25005 unsigned EltBitwidth = VT.getScalarSizeInBits();
25006 // NOTE: the actual width of operands may be wider than that!
25007
25008 // Analyze all operands of this BUILD_VECTOR. What is the largest number of
25009 // active bits they all have? We'll want to truncate them all to that width.
25010 unsigned ActiveBits = 0;
25011 APInt KnownZeroOps(VT.getVectorNumElements(), 0);
25012 for (auto I : enumerate(N->ops())) {
25013 SDValue Op = I.value();
25014 // FIXME: support UNDEF elements?
25015 if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) {
25016 unsigned OpActiveBits =
25017 Cst->getAPIntValue().trunc(EltBitwidth).getActiveBits();
25018 if (OpActiveBits == 0) {
25019 KnownZeroOps.setBit(I.index());
25020 continue;
25021 }
25022 // Profitability check: don't allow non-zero constant operands.
25023 return SDValue();
25024 }
25025 // Profitability check: there must only be a single non-zero operand,
25026 // and it must be the first operand of the BUILD_VECTOR.
25027 if (I.index() != 0)
25028 return SDValue();
25029 // The operand must be a zero-extension itself.
25030 // FIXME: this could be generalized to known leading zeros check.
25031 if (Op.getOpcode() != ISD::ZERO_EXTEND)
25032 return SDValue();
25033 unsigned CurrActiveBits =
25034 Op.getOperand(0).getValueSizeInBits().getFixedValue();
25035 assert(!ActiveBits && "Already encountered non-constant-zero operand?");
25036 ActiveBits = CurrActiveBits;
25037 // We want to at least halve the element size.
25038 if (2 * ActiveBits > EltBitwidth)
25039 return SDValue();
25040 }
25041
25042 // This BUILD_VECTOR must have at least one non-constant-zero operand.
25043 if (ActiveBits == 0)
25044 return SDValue();
25045
25046 // We have EltBitwidth bits, the *minimal* chunk size is ActiveBits,
25047 // into how many chunks can we split our element width?
25048 EVT NewScalarIntVT, NewIntVT;
25049 std::optional<unsigned> Factor;
25050 // We can split the element into at least two chunks, but not into more
25051 // than |_ EltBitwidth / ActiveBits _| chunks. Find a largest split factor
25052 // for which the element width is a multiple of it,
25053 // and the resulting types/operations on that chunk width are legal.
25054 assert(2 * ActiveBits <= EltBitwidth &&
25055 "We know that half or less bits of the element are active.");
25056 for (unsigned Scale = EltBitwidth / ActiveBits; Scale >= 2; --Scale) {
25057 if (EltBitwidth % Scale != 0)
25058 continue;
25059 unsigned ChunkBitwidth = EltBitwidth / Scale;
25060 assert(ChunkBitwidth >= ActiveBits && "As per starting point.");
25061 NewScalarIntVT = EVT::getIntegerVT(*DAG.getContext(), ChunkBitwidth);
25062 NewIntVT = EVT::getVectorVT(*DAG.getContext(), NewScalarIntVT,
25063 Scale * N->getNumOperands());
25064 if (!TLI.isTypeLegal(NewScalarIntVT) || !TLI.isTypeLegal(NewIntVT) ||
25065 (LegalOperations &&
25066 !(TLI.isOperationLegalOrCustom(ISD::TRUNCATE, NewScalarIntVT) &&
25068 continue;
25069 Factor = Scale;
25070 break;
25071 }
25072 if (!Factor)
25073 return SDValue();
25074
25075 SDLoc DL(N);
25076 SDValue ZeroOp = DAG.getConstant(0, DL, NewScalarIntVT);
25077
25078 // Recreate the BUILD_VECTOR, with elements now being Factor times smaller.
25080 NewOps.reserve(NewIntVT.getVectorNumElements());
25081 for (auto I : enumerate(N->ops())) {
25082 SDValue Op = I.value();
25083 assert(!Op.isUndef() && "FIXME: after allowing UNDEF's, handle them here.");
25084 unsigned SrcOpIdx = I.index();
25085 if (KnownZeroOps[SrcOpIdx]) {
25086 NewOps.append(*Factor, ZeroOp);
25087 continue;
25088 }
25089 Op = DAG.getBitcast(OpIntVT, Op);
25090 Op = DAG.getNode(ISD::TRUNCATE, DL, NewScalarIntVT, Op);
25091 NewOps.emplace_back(Op);
25092 NewOps.append(*Factor - 1, ZeroOp);
25093 }
25094 assert(NewOps.size() == NewIntVT.getVectorNumElements());
25095 SDValue NewBV = DAG.getBuildVector(NewIntVT, DL, NewOps);
25096 NewBV = DAG.getBitcast(VT, NewBV);
25097 return NewBV;
25098}
25099
25100SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
25101 EVT VT = N->getValueType(0);
25102
25103 // A vector built entirely of undefs is undef.
25105 return DAG.getUNDEF(VT);
25106
25107 // If this is a splat of a bitcast from another vector, change to a
25108 // concat_vector.
25109 // For example:
25110 // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
25111 // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
25112 //
25113 // If X is a build_vector itself, the concat can become a larger build_vector.
25114 // TODO: Maybe this is useful for non-splat too?
25115 if (!LegalOperations) {
25116 SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue();
25117 // Only change build_vector to a concat_vector if the splat value type is
25118 // same as the vector element type.
25119 if (Splat && Splat.getValueType() == VT.getVectorElementType()) {
25121 EVT SrcVT = Splat.getValueType();
25122 if (SrcVT.isVector()) {
25123 unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
25124 EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
25125 SrcVT.getVectorElementType(), NumElts);
25126 if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
25127 SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
25128 SDValue Concat =
25129 DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), NewVT, Ops);
25130 return DAG.getBitcast(VT, Concat);
25131 }
25132 }
25133 }
25134 }
25135
25136 // Check if we can express BUILD VECTOR via subvector extract.
25137 if (!LegalTypes && (N->getNumOperands() > 1)) {
25138 SDValue Op0 = N->getOperand(0);
25139 auto checkElem = [&](SDValue Op) -> uint64_t {
25140 if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
25141 (Op0.getOperand(0) == Op.getOperand(0)))
25142 if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
25143 return CNode->getZExtValue();
25144 return -1;
25145 };
25146
25147 int Offset = checkElem(Op0);
25148 for (unsigned i = 0; i < N->getNumOperands(); ++i) {
25149 if (Offset + i != checkElem(N->getOperand(i))) {
25150 Offset = -1;
25151 break;
25152 }
25153 }
25154
25155 if ((Offset == 0) &&
25156 (Op0.getOperand(0).getValueType() == N->getValueType(0)))
25157 return Op0.getOperand(0);
25158 if ((Offset != -1) &&
25159 ((Offset % N->getValueType(0).getVectorNumElements()) ==
25160 0)) // IDX must be multiple of output size.
25161 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
25162 Op0.getOperand(0), Op0.getOperand(1));
25163 }
25164
25165 if (SDValue V = convertBuildVecZextToZext(N))
25166 return V;
25167
25168 if (SDValue V = convertBuildVecZextToBuildVecWithZeros(N))
25169 return V;
25170
25171 if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
25172 return V;
25173
25174 if (SDValue V = reduceBuildVecTruncToBitCast(N))
25175 return V;
25176
25177 if (SDValue V = reduceBuildVecToShuffle(N))
25178 return V;
25179
25180 // A splat of a single element is a SPLAT_VECTOR if supported on the target.
25181 // Do this late as some of the above may replace the splat.
25184 assert(!V.isUndef() && "Splat of undef should have been handled earlier");
25185 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V);
25186 }
25187
25188 return SDValue();
25189}
25190
25192 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25193 EVT OpVT = N->getOperand(0).getValueType();
25194
25195 // If the operands are legal vectors, leave them alone.
25196 if (TLI.isTypeLegal(OpVT) || OpVT.isScalableVector())
25197 return SDValue();
25198
25199 SDLoc DL(N);
25200 EVT VT = N->getValueType(0);
25202 EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
25203
25204 // Keep track of what we encounter.
25205 EVT AnyFPVT;
25206
25207 for (const SDValue &Op : N->ops()) {
25208 if (ISD::BITCAST == Op.getOpcode() &&
25209 !Op.getOperand(0).getValueType().isVector())
25210 Ops.push_back(Op.getOperand(0));
25211 else if (Op.isUndef())
25212 Ops.push_back(DAG.getNode(ISD::UNDEF, DL, SVT));
25213 else
25214 return SDValue();
25215
25216 // Note whether we encounter an integer or floating point scalar.
25217 // If it's neither, bail out, it could be something weird like x86mmx.
25218 EVT LastOpVT = Ops.back().getValueType();
25219 if (LastOpVT.isFloatingPoint())
25220 AnyFPVT = LastOpVT;
25221 else if (!LastOpVT.isInteger())
25222 return SDValue();
25223 }
25224
25225 // If any of the operands is a floating point scalar bitcast to a vector,
25226 // use floating point types throughout, and bitcast everything.
25227 // Replace UNDEFs by another scalar UNDEF node, of the final desired type.
25228 if (AnyFPVT != EVT()) {
25229 SVT = AnyFPVT;
25230 for (SDValue &Op : Ops) {
25231 if (Op.getValueType() == SVT)
25232 continue;
25233 if (Op.isUndef())
25234 Op = DAG.getNode(ISD::UNDEF, DL, SVT);
25235 else
25236 Op = DAG.getBitcast(SVT, Op);
25237 }
25238 }
25239
25240 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
25241 VT.getSizeInBits() / SVT.getSizeInBits());
25242 return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
25243}
25244
25245// Attempt to merge nested concat_vectors/undefs.
25246// Fold concat_vectors(concat_vectors(x,y,z,w),u,u,concat_vectors(a,b,c,d))
25247// --> concat_vectors(x,y,z,w,u,u,u,u,u,u,u,u,a,b,c,d)
25249 SelectionDAG &DAG) {
25250 EVT VT = N->getValueType(0);
25251
25252 // Ensure we're concatenating UNDEF and CONCAT_VECTORS nodes of similar types.
25253 EVT SubVT;
25254 SDValue FirstConcat;
25255 for (const SDValue &Op : N->ops()) {
25256 if (Op.isUndef())
25257 continue;
25258 if (Op.getOpcode() != ISD::CONCAT_VECTORS)
25259 return SDValue();
25260 if (!FirstConcat) {
25261 SubVT = Op.getOperand(0).getValueType();
25262 if (!DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
25263 return SDValue();
25264 FirstConcat = Op;
25265 continue;
25266 }
25267 if (SubVT != Op.getOperand(0).getValueType())
25268 return SDValue();
25269 }
25270 assert(FirstConcat && "Concat of all-undefs found");
25271
25272 SmallVector<SDValue> ConcatOps;
25273 for (const SDValue &Op : N->ops()) {
25274 if (Op.isUndef()) {
25275 ConcatOps.append(FirstConcat->getNumOperands(), DAG.getUNDEF(SubVT));
25276 continue;
25277 }
25278 ConcatOps.append(Op->op_begin(), Op->op_end());
25279 }
25280 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, ConcatOps);
25281}
25282
25283// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
25284// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
25285// most two distinct vectors the same size as the result, attempt to turn this
25286// into a legal shuffle.
25288 EVT VT = N->getValueType(0);
25289 EVT OpVT = N->getOperand(0).getValueType();
25290
25291 // We currently can't generate an appropriate shuffle for a scalable vector.
25292 if (VT.isScalableVector())
25293 return SDValue();
25294
25295 int NumElts = VT.getVectorNumElements();
25296 int NumOpElts = OpVT.getVectorNumElements();
25297
25298 SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
25300
25301 for (SDValue Op : N->ops()) {
25303
25304 // UNDEF nodes convert to UNDEF shuffle mask values.
25305 if (Op.isUndef()) {
25306 Mask.append((unsigned)NumOpElts, -1);
25307 continue;
25308 }
25309
25310 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
25311 return SDValue();
25312
25313 // What vector are we extracting the subvector from and at what index?
25314 SDValue ExtVec = Op.getOperand(0);
25315 int ExtIdx = Op.getConstantOperandVal(1);
25316
25317 // We want the EVT of the original extraction to correctly scale the
25318 // extraction index.
25319 EVT ExtVT = ExtVec.getValueType();
25320 ExtVec = peekThroughBitcasts(ExtVec);
25321
25322 // UNDEF nodes convert to UNDEF shuffle mask values.
25323 if (ExtVec.isUndef()) {
25324 Mask.append((unsigned)NumOpElts, -1);
25325 continue;
25326 }
25327
25328 // Ensure that we are extracting a subvector from a vector the same
25329 // size as the result.
25330 if (ExtVT.getSizeInBits() != VT.getSizeInBits())
25331 return SDValue();
25332
25333 // Scale the subvector index to account for any bitcast.
25334 int NumExtElts = ExtVT.getVectorNumElements();
25335 if (0 == (NumExtElts % NumElts))
25336 ExtIdx /= (NumExtElts / NumElts);
25337 else if (0 == (NumElts % NumExtElts))
25338 ExtIdx *= (NumElts / NumExtElts);
25339 else
25340 return SDValue();
25341
25342 // At most we can reference 2 inputs in the final shuffle.
25343 if (SV0.isUndef() || SV0 == ExtVec) {
25344 SV0 = ExtVec;
25345 for (int i = 0; i != NumOpElts; ++i)
25346 Mask.push_back(i + ExtIdx);
25347 } else if (SV1.isUndef() || SV1 == ExtVec) {
25348 SV1 = ExtVec;
25349 for (int i = 0; i != NumOpElts; ++i)
25350 Mask.push_back(i + ExtIdx + NumElts);
25351 } else {
25352 return SDValue();
25353 }
25354 }
25355
25356 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25357 return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
25358 DAG.getBitcast(VT, SV1), Mask, DAG);
25359}
25360
25362 unsigned CastOpcode = N->getOperand(0).getOpcode();
25363 switch (CastOpcode) {
25364 case ISD::SINT_TO_FP:
25365 case ISD::UINT_TO_FP:
25366 case ISD::FP_TO_SINT:
25367 case ISD::FP_TO_UINT:
25368 // TODO: Allow more opcodes?
25369 // case ISD::BITCAST:
25370 // case ISD::TRUNCATE:
25371 // case ISD::ZERO_EXTEND:
25372 // case ISD::SIGN_EXTEND:
25373 // case ISD::FP_EXTEND:
25374 break;
25375 default:
25376 return SDValue();
25377 }
25378
25379 EVT SrcVT = N->getOperand(0).getOperand(0).getValueType();
25380 if (!SrcVT.isVector())
25381 return SDValue();
25382
25383 // All operands of the concat must be the same kind of cast from the same
25384 // source type.
25386 for (SDValue Op : N->ops()) {
25387 if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() ||
25388 Op.getOperand(0).getValueType() != SrcVT)
25389 return SDValue();
25390 SrcOps.push_back(Op.getOperand(0));
25391 }
25392
25393 // The wider cast must be supported by the target. This is unusual because
25394 // the operation support type parameter depends on the opcode. In addition,
25395 // check the other type in the cast to make sure this is really legal.
25396 EVT VT = N->getValueType(0);
25397 EVT SrcEltVT = SrcVT.getVectorElementType();
25398 ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands();
25399 EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts);
25400 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25401 switch (CastOpcode) {
25402 case ISD::SINT_TO_FP:
25403 case ISD::UINT_TO_FP:
25404 if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) ||
25405 !TLI.isTypeLegal(VT))
25406 return SDValue();
25407 break;
25408 case ISD::FP_TO_SINT:
25409 case ISD::FP_TO_UINT:
25410 if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) ||
25411 !TLI.isTypeLegal(ConcatSrcVT))
25412 return SDValue();
25413 break;
25414 default:
25415 llvm_unreachable("Unexpected cast opcode");
25416 }
25417
25418 // concat (cast X), (cast Y)... -> cast (concat X, Y...)
25419 SDLoc DL(N);
25420 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps);
25421 return DAG.getNode(CastOpcode, DL, VT, NewConcat);
25422}
25423
25424// See if this is a simple CONCAT_VECTORS with no UNDEF operands, and if one of
25425// the operands is a SHUFFLE_VECTOR, and all other operands are also operands
25426// to that SHUFFLE_VECTOR, create wider SHUFFLE_VECTOR.
25428 SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes,
25429 bool LegalOperations) {
25430 EVT VT = N->getValueType(0);
25431 EVT OpVT = N->getOperand(0).getValueType();
25432 if (VT.isScalableVector())
25433 return SDValue();
25434
25435 // For now, only allow simple 2-operand concatenations.
25436 if (N->getNumOperands() != 2)
25437 return SDValue();
25438
25439 // Don't create illegal types/shuffles when not allowed to.
25440 if ((LegalTypes && !TLI.isTypeLegal(VT)) ||
25441 (LegalOperations &&
25443 return SDValue();
25444
25445 // Analyze all of the operands of the CONCAT_VECTORS. Out of all of them,
25446 // we want to find one that is: (1) a SHUFFLE_VECTOR (2) only used by us,
25447 // and (3) all operands of CONCAT_VECTORS must be either that SHUFFLE_VECTOR,
25448 // or one of the operands of that SHUFFLE_VECTOR (but not UNDEF!).
25449 // (4) and for now, the SHUFFLE_VECTOR must be unary.
25450 ShuffleVectorSDNode *SVN = nullptr;
25451 for (SDValue Op : N->ops()) {
25452 if (auto *CurSVN = dyn_cast<ShuffleVectorSDNode>(Op);
25453 CurSVN && CurSVN->getOperand(1).isUndef() && N->isOnlyUserOf(CurSVN) &&
25454 all_of(N->ops(), [CurSVN](SDValue Op) {
25455 // FIXME: can we allow UNDEF operands?
25456 return !Op.isUndef() &&
25457 (Op.getNode() == CurSVN || is_contained(CurSVN->ops(), Op));
25458 })) {
25459 SVN = CurSVN;
25460 break;
25461 }
25462 }
25463 if (!SVN)
25464 return SDValue();
25465
25466 // We are going to pad the shuffle operands, so any indice, that was picking
25467 // from the second operand, must be adjusted.
25468 SmallVector<int, 16> AdjustedMask(SVN->getMask());
25469 assert(SVN->getOperand(1).isUndef() && "Expected unary shuffle!");
25470
25471 // Identity masks for the operands of the (padded) shuffle.
25472 SmallVector<int, 32> IdentityMask(2 * OpVT.getVectorNumElements());
25473 MutableArrayRef<int> FirstShufOpIdentityMask =
25474 MutableArrayRef<int>(IdentityMask)
25476 MutableArrayRef<int> SecondShufOpIdentityMask =
25478 std::iota(FirstShufOpIdentityMask.begin(), FirstShufOpIdentityMask.end(), 0);
25479 std::iota(SecondShufOpIdentityMask.begin(), SecondShufOpIdentityMask.end(),
25481
25482 // New combined shuffle mask.
25484 Mask.reserve(VT.getVectorNumElements());
25485 for (SDValue Op : N->ops()) {
25486 assert(!Op.isUndef() && "Not expecting to concatenate UNDEF.");
25487 if (Op.getNode() == SVN) {
25488 append_range(Mask, AdjustedMask);
25489 continue;
25490 }
25491 if (Op == SVN->getOperand(0)) {
25492 append_range(Mask, FirstShufOpIdentityMask);
25493 continue;
25494 }
25495 if (Op == SVN->getOperand(1)) {
25496 append_range(Mask, SecondShufOpIdentityMask);
25497 continue;
25498 }
25499 llvm_unreachable("Unexpected operand!");
25500 }
25501
25502 // Don't create illegal shuffle masks.
25503 if (!TLI.isShuffleMaskLegal(Mask, VT))
25504 return SDValue();
25505
25506 // Pad the shuffle operands with UNDEF.
25507 SDLoc dl(N);
25508 std::array<SDValue, 2> ShufOps;
25509 for (auto I : zip(SVN->ops(), ShufOps)) {
25510 SDValue ShufOp = std::get<0>(I);
25511 SDValue &NewShufOp = std::get<1>(I);
25512 if (ShufOp.isUndef())
25513 NewShufOp = DAG.getUNDEF(VT);
25514 else {
25515 SmallVector<SDValue, 2> ShufOpParts(N->getNumOperands(),
25516 DAG.getUNDEF(OpVT));
25517 ShufOpParts[0] = ShufOp;
25518 NewShufOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, ShufOpParts);
25519 }
25520 }
25521 // Finally, create the new wide shuffle.
25522 return DAG.getVectorShuffle(VT, dl, ShufOps[0], ShufOps[1], Mask);
25523}
25524
25526 const TargetLowering &TLI,
25527 bool LegalTypes,
25528 bool LegalOperations) {
25529 EVT VT = N->getValueType(0);
25530
25531 // Post-legalization we can only create wider SPLAT_VECTOR operations if both
25532 // the type and operation is legal. The Hexagon target has custom
25533 // legalization for SPLAT_VECTOR that splits the operation into two parts and
25534 // concatenates them. Therefore, custom lowering must also be rejected in
25535 // order to avoid an infinite loop.
25536 if ((LegalTypes && !TLI.isTypeLegal(VT)) ||
25537 (LegalOperations && !TLI.isOperationLegal(ISD::SPLAT_VECTOR, VT)))
25538 return SDValue();
25539
25540 SDValue Op0 = N->getOperand(0);
25541 if (!llvm::all_equal(N->op_values()) || Op0.getOpcode() != ISD::SPLAT_VECTOR)
25542 return SDValue();
25543
25544 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, Op0.getOperand(0));
25545}
25546
25547SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
25548 // If we only have one input vector, we don't need to do any concatenation.
25549 if (N->getNumOperands() == 1)
25550 return N->getOperand(0);
25551
25552 // Check if all of the operands are undefs.
25553 EVT VT = N->getValueType(0);
25555 return DAG.getUNDEF(VT);
25556
25557 // Optimize concat_vectors where all but the first of the vectors are undef.
25558 if (all_of(drop_begin(N->ops()),
25559 [](const SDValue &Op) { return Op.isUndef(); })) {
25560 SDValue In = N->getOperand(0);
25561 assert(In.getValueType().isVector() && "Must concat vectors");
25562
25563 // If the input is a concat_vectors, just make a larger concat by padding
25564 // with smaller undefs.
25565 //
25566 // Legalizing in AArch64TargetLowering::LowerCONCAT_VECTORS() and combining
25567 // here could cause an infinite loop. That legalizing happens when LegalDAG
25568 // is true and input of AArch64TargetLowering::LowerCONCAT_VECTORS() is
25569 // scalable.
25570 if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse() &&
25571 !(LegalDAG && In.getValueType().isScalableVector())) {
25572 unsigned NumOps = N->getNumOperands() * In.getNumOperands();
25574 Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
25575 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
25576 }
25577
25579
25580 // concat_vectors(scalar_to_vector(scalar), undef) ->
25581 // scalar_to_vector(scalar)
25582 if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
25583 Scalar.hasOneUse()) {
25584 EVT SVT = Scalar.getValueType().getVectorElementType();
25585 if (SVT == Scalar.getOperand(0).getValueType())
25586 Scalar = Scalar.getOperand(0);
25587 }
25588
25589 // concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
25590 if (!Scalar.getValueType().isVector() && In.hasOneUse()) {
25591 // If the bitcast type isn't legal, it might be a trunc of a legal type;
25592 // look through the trunc so we can still do the transform:
25593 // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
25594 if (Scalar->getOpcode() == ISD::TRUNCATE &&
25595 !TLI.isTypeLegal(Scalar.getValueType()) &&
25596 TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
25597 Scalar = Scalar->getOperand(0);
25598
25599 EVT SclTy = Scalar.getValueType();
25600
25601 if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
25602 return SDValue();
25603
25604 // Bail out if the vector size is not a multiple of the scalar size.
25605 if (VT.getSizeInBits() % SclTy.getSizeInBits())
25606 return SDValue();
25607
25608 unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
25609 if (VNTNumElms < 2)
25610 return SDValue();
25611
25612 EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
25613 if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
25614 return SDValue();
25615
25616 SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
25617 return DAG.getBitcast(VT, Res);
25618 }
25619 }
25620
25621 // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
25622 // We have already tested above for an UNDEF only concatenation.
25623 // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
25624 // -> (BUILD_VECTOR A, B, ..., C, D, ...)
25625 auto IsBuildVectorOrUndef = [](const SDValue &Op) {
25626 return Op.isUndef() || ISD::BUILD_VECTOR == Op.getOpcode();
25627 };
25628 if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
25630 EVT SVT = VT.getScalarType();
25631
25632 EVT MinVT = SVT;
25633 if (!SVT.isFloatingPoint()) {
25634 // If BUILD_VECTOR are from built from integer, they may have different
25635 // operand types. Get the smallest type and truncate all operands to it.
25636 bool FoundMinVT = false;
25637 for (const SDValue &Op : N->ops())
25638 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
25639 EVT OpSVT = Op.getOperand(0).getValueType();
25640 MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
25641 FoundMinVT = true;
25642 }
25643 assert(FoundMinVT && "Concat vector type mismatch");
25644 }
25645
25646 for (const SDValue &Op : N->ops()) {
25647 EVT OpVT = Op.getValueType();
25648 unsigned NumElts = OpVT.getVectorNumElements();
25649
25650 if (Op.isUndef())
25651 Opnds.append(NumElts, DAG.getUNDEF(MinVT));
25652
25653 if (ISD::BUILD_VECTOR == Op.getOpcode()) {
25654 if (SVT.isFloatingPoint()) {
25655 assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
25656 Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
25657 } else {
25658 for (unsigned i = 0; i != NumElts; ++i)
25659 Opnds.push_back(
25660 DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
25661 }
25662 }
25663 }
25664
25665 assert(VT.getVectorNumElements() == Opnds.size() &&
25666 "Concat vector type mismatch");
25667 return DAG.getBuildVector(VT, SDLoc(N), Opnds);
25668 }
25669
25670 if (SDValue V =
25671 combineConcatVectorOfSplats(N, DAG, TLI, LegalTypes, LegalOperations))
25672 return V;
25673
25674 // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
25675 // FIXME: Add support for concat_vectors(bitcast(vec0),bitcast(vec1),...).
25677 return V;
25678
25679 if (Level <= AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) {
25680 // Fold CONCAT_VECTORS of CONCAT_VECTORS (or undef) to VECTOR_SHUFFLE.
25682 return V;
25683
25684 // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
25686 return V;
25687 }
25688
25689 if (SDValue V = combineConcatVectorOfCasts(N, DAG))
25690 return V;
25691
25693 N, DAG, TLI, LegalTypes, LegalOperations))
25694 return V;
25695
25696 // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
25697 // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR
25698 // operands and look for a CONCAT operations that place the incoming vectors
25699 // at the exact same location.
25700 //
25701 // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled.
25702 SDValue SingleSource = SDValue();
25703 unsigned PartNumElem =
25704 N->getOperand(0).getValueType().getVectorMinNumElements();
25705
25706 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
25707 SDValue Op = N->getOperand(i);
25708
25709 if (Op.isUndef())
25710 continue;
25711
25712 // Check if this is the identity extract:
25713 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
25714 return SDValue();
25715
25716 // Find the single incoming vector for the extract_subvector.
25717 if (SingleSource.getNode()) {
25718 if (Op.getOperand(0) != SingleSource)
25719 return SDValue();
25720 } else {
25721 SingleSource = Op.getOperand(0);
25722
25723 // Check the source type is the same as the type of the result.
25724 // If not, this concat may extend the vector, so we can not
25725 // optimize it away.
25726 if (SingleSource.getValueType() != N->getValueType(0))
25727 return SDValue();
25728 }
25729
25730 // Check that we are reading from the identity index.
25731 unsigned IdentityIndex = i * PartNumElem;
25732 if (Op.getConstantOperandAPInt(1) != IdentityIndex)
25733 return SDValue();
25734 }
25735
25736 if (SingleSource.getNode())
25737 return SingleSource;
25738
25739 return SDValue();
25740}
25741
25742SDValue DAGCombiner::visitVECTOR_INTERLEAVE(SDNode *N) {
25743 // Check to see if all operands are identical.
25744 if (!llvm::all_equal(N->op_values()))
25745 return SDValue();
25746
25747 // Check to see if the identical operand is a splat.
25748 if (!DAG.isSplatValue(N->getOperand(0)))
25749 return SDValue();
25750
25751 // interleave splat(X), splat(X).... --> splat(X), splat(X)....
25753 Ops.append(N->op_values().begin(), N->op_values().end());
25754 return CombineTo(N, &Ops);
25755}
25756
25757// Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
25758// if the subvector can be sourced for free.
25759static SDValue getSubVectorSrc(SDValue V, unsigned Index, EVT SubVT) {
25760 if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
25761 V.getOperand(1).getValueType() == SubVT &&
25762 V.getConstantOperandAPInt(2) == Index) {
25763 return V.getOperand(1);
25764 }
25765 if (V.getOpcode() == ISD::CONCAT_VECTORS &&
25766 V.getOperand(0).getValueType() == SubVT &&
25767 (Index % SubVT.getVectorMinNumElements()) == 0) {
25768 uint64_t SubIdx = Index / SubVT.getVectorMinNumElements();
25769 return V.getOperand(SubIdx);
25770 }
25771 return SDValue();
25772}
25773
25775 unsigned Index, const SDLoc &DL,
25776 SelectionDAG &DAG,
25777 bool LegalOperations) {
25778 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25779 unsigned BinOpcode = BinOp.getOpcode();
25780 if (!TLI.isBinOp(BinOpcode) || BinOp->getNumValues() != 1)
25781 return SDValue();
25782
25783 EVT VecVT = BinOp.getValueType();
25784 SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
25785 if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
25786 return SDValue();
25787 if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations))
25788 return SDValue();
25789
25790 SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
25791 SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);
25792
25793 // TODO: We could handle the case where only 1 operand is being inserted by
25794 // creating an extract of the other operand, but that requires checking
25795 // number of uses and/or costs.
25796 if (!Sub0 || !Sub1)
25797 return SDValue();
25798
25799 // We are inserting both operands of the wide binop only to extract back
25800 // to the narrow vector size. Eliminate all of the insert/extract:
25801 // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
25802 return DAG.getNode(BinOpcode, DL, SubVT, Sub0, Sub1, BinOp->getFlags());
25803}
25804
25805/// If we are extracting a subvector produced by a wide binary operator try
25806/// to use a narrow binary operator and/or avoid concatenation and extraction.
25807static SDValue narrowExtractedVectorBinOp(EVT VT, SDValue Src, unsigned Index,
25808 const SDLoc &DL, SelectionDAG &DAG,
25809 bool LegalOperations) {
25810 // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
25811 // some of these bailouts with other transforms.
25812
25813 if (SDValue V = narrowInsertExtractVectorBinOp(VT, Src, Index, DL, DAG,
25814 LegalOperations))
25815 return V;
25816
25817 // We are looking for an optionally bitcasted wide vector binary operator
25818 // feeding an extract subvector.
25819 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25820 SDValue BinOp = peekThroughBitcasts(Src);
25821 unsigned BOpcode = BinOp.getOpcode();
25822 if (!TLI.isBinOp(BOpcode) || BinOp->getNumValues() != 1)
25823 return SDValue();
25824
25825 // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be
25826 // reduced to the unary fneg when it is visited, and we probably want to deal
25827 // with fneg in a target-specific way.
25828 if (BOpcode == ISD::FSUB) {
25829 auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true);
25830 if (C && C->getValueAPF().isNegZero())
25831 return SDValue();
25832 }
25833
25834 // The binop must be a vector type, so we can extract some fraction of it.
25835 EVT WideBVT = BinOp.getValueType();
25836 // The optimisations below currently assume we are dealing with fixed length
25837 // vectors. It is possible to add support for scalable vectors, but at the
25838 // moment we've done no analysis to prove whether they are profitable or not.
25839 if (!WideBVT.isFixedLengthVector())
25840 return SDValue();
25841
25842 assert((Index % VT.getVectorNumElements()) == 0 &&
25843 "Extract index is not a multiple of the vector length.");
25844
25845 // Bail out if this is not a proper multiple width extraction.
25846 unsigned WideWidth = WideBVT.getSizeInBits();
25847 unsigned NarrowWidth = VT.getSizeInBits();
25848 if (WideWidth % NarrowWidth != 0)
25849 return SDValue();
25850
25851 // Bail out if we are extracting a fraction of a single operation. This can
25852 // occur because we potentially looked through a bitcast of the binop.
25853 unsigned NarrowingRatio = WideWidth / NarrowWidth;
25854 unsigned WideNumElts = WideBVT.getVectorNumElements();
25855 if (WideNumElts % NarrowingRatio != 0)
25856 return SDValue();
25857
25858 // Bail out if the target does not support a narrower version of the binop.
25859 EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
25860 WideNumElts / NarrowingRatio);
25861 if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT,
25862 LegalOperations))
25863 return SDValue();
25864
25865 // If extraction is cheap, we don't need to look at the binop operands
25866 // for concat ops. The narrow binop alone makes this transform profitable.
25867 // We can't just reuse the original extract index operand because we may have
25868 // bitcasted.
25869 unsigned ConcatOpNum = Index / VT.getVectorNumElements();
25870 unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
25871 if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
25872 BinOp.hasOneUse() && Src->hasOneUse()) {
25873 // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
25874 SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL);
25875 SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
25876 BinOp.getOperand(0), NewExtIndex);
25877 SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
25878 BinOp.getOperand(1), NewExtIndex);
25879 SDValue NarrowBinOp =
25880 DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, BinOp->getFlags());
25881 return DAG.getBitcast(VT, NarrowBinOp);
25882 }
25883
25884 // Only handle the case where we are doubling and then halving. A larger ratio
25885 // may require more than two narrow binops to replace the wide binop.
25886 if (NarrowingRatio != 2)
25887 return SDValue();
25888
25889 // TODO: The motivating case for this transform is an x86 AVX1 target. That
25890 // target has temptingly almost legal versions of bitwise logic ops in 256-bit
25891 // flavors, but no other 256-bit integer support. This could be extended to
25892 // handle any binop, but that may require fixing/adding other folds to avoid
25893 // codegen regressions.
25894 if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
25895 return SDValue();
25896
25897 // We need at least one concatenation operation of a binop operand to make
25898 // this transform worthwhile. The concat must double the input vector sizes.
25899 auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
25900 if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
25901 return V.getOperand(ConcatOpNum);
25902 return SDValue();
25903 };
25904 SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
25905 SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));
25906
25907 if (SubVecL || SubVecR) {
25908 // If a binop operand was not the result of a concat, we must extract a
25909 // half-sized operand for our new narrow binop:
25910 // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
25911 // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
25912 // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
25913 SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL);
25914 SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
25915 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
25916 BinOp.getOperand(0), IndexC);
25917
25918 SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
25919 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
25920 BinOp.getOperand(1), IndexC);
25921
25922 SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
25923 return DAG.getBitcast(VT, NarrowBinOp);
25924 }
25925
25926 return SDValue();
25927}
25928
25929/// If we are extracting a subvector from a wide vector load, convert to a
25930/// narrow load to eliminate the extraction:
25931/// (extract_subvector (load wide vector)) --> (load narrow vector)
25932static SDValue narrowExtractedVectorLoad(EVT VT, SDValue Src, unsigned Index,
25933 const SDLoc &DL, SelectionDAG &DAG) {
25934 // TODO: Add support for big-endian. The offset calculation must be adjusted.
25935 if (DAG.getDataLayout().isBigEndian())
25936 return SDValue();
25937
25938 auto *Ld = dyn_cast<LoadSDNode>(Src);
25939 if (!Ld || !ISD::isNormalLoad(Ld) || !Ld->isSimple())
25940 return SDValue();
25941
25942 // We can only create byte sized loads.
25943 if (!VT.isByteSized())
25944 return SDValue();
25945
25946 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
25947 if (!TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, VT))
25948 return SDValue();
25949
25950 unsigned NumElts = VT.getVectorMinNumElements();
25951 // A fixed length vector being extracted from a scalable vector
25952 // may not be any *smaller* than the scalable one.
25953 if (Index == 0 && NumElts >= Ld->getValueType(0).getVectorMinNumElements())
25954 return SDValue();
25955
25956 // The definition of EXTRACT_SUBVECTOR states that the index must be a
25957 // multiple of the minimum number of elements in the result type.
25958 assert(Index % NumElts == 0 && "The extract subvector index is not a "
25959 "multiple of the result's element count");
25960
25961 // It's fine to use TypeSize here as we know the offset will not be negative.
25962 TypeSize Offset = VT.getStoreSize() * (Index / NumElts);
25963 std::optional<unsigned> ByteOffset;
25964 if (Offset.isFixed())
25965 ByteOffset = Offset.getFixedValue();
25966
25967 if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT, ByteOffset))
25968 return SDValue();
25969
25970 // The narrow load will be offset from the base address of the old load if
25971 // we are extracting from something besides index 0 (little-endian).
25972 // TODO: Use "BaseIndexOffset" to make this more effective.
25973 SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL);
25974
25976 MachineMemOperand *MMO;
25977 if (Offset.isScalable()) {
25978 MachinePointerInfo MPI =
25980 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, VT.getStoreSize());
25981 } else
25982 MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedValue(),
25983 VT.getStoreSize());
25984
25985 SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
25986 DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
25987 return NewLd;
25988}
25989
25990/// Given EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)),
25991/// try to produce VECTOR_SHUFFLE(EXTRACT_SUBVECTOR(Op?, ?),
25992/// EXTRACT_SUBVECTOR(Op?, ?),
25993/// Mask'))
25994/// iff it is legal and profitable to do so. Notably, the trimmed mask
25995/// (containing only the elements that are extracted)
25996/// must reference at most two subvectors.
25998 unsigned Index,
25999 const SDLoc &DL,
26000 SelectionDAG &DAG,
26001 bool LegalOperations) {
26002 // Only deal with non-scalable vectors.
26003 EVT WideVT = Src.getValueType();
26004 if (!NarrowVT.isFixedLengthVector() || !WideVT.isFixedLengthVector())
26005 return SDValue();
26006
26007 // The operand must be a shufflevector.
26008 auto *WideShuffleVector = dyn_cast<ShuffleVectorSDNode>(Src);
26009 if (!WideShuffleVector)
26010 return SDValue();
26011
26012 // The old shuffleneeds to go away.
26013 if (!WideShuffleVector->hasOneUse())
26014 return SDValue();
26015
26016 // And the narrow shufflevector that we'll form must be legal.
26017 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
26018 if (LegalOperations &&
26020 return SDValue();
26021
26022 int NumEltsExtracted = NarrowVT.getVectorNumElements();
26023 assert((Index % NumEltsExtracted) == 0 &&
26024 "Extract index is not a multiple of the output vector length.");
26025
26026 int WideNumElts = WideVT.getVectorNumElements();
26027
26028 SmallVector<int, 16> NewMask;
26029 NewMask.reserve(NumEltsExtracted);
26030 SmallSetVector<std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>, 2>
26031 DemandedSubvectors;
26032
26033 // Try to decode the wide mask into narrow mask from at most two subvectors.
26034 for (int M : WideShuffleVector->getMask().slice(Index, NumEltsExtracted)) {
26035 assert((M >= -1) && (M < (2 * WideNumElts)) &&
26036 "Out-of-bounds shuffle mask?");
26037
26038 if (M < 0) {
26039 // Does not depend on operands, does not require adjustment.
26040 NewMask.emplace_back(M);
26041 continue;
26042 }
26043
26044 // From which operand of the shuffle does this shuffle mask element pick?
26045 int WideShufOpIdx = M / WideNumElts;
26046 // Which element of that operand is picked?
26047 int OpEltIdx = M % WideNumElts;
26048
26049 assert((OpEltIdx + WideShufOpIdx * WideNumElts) == M &&
26050 "Shuffle mask vector decomposition failure.");
26051
26052 // And which NumEltsExtracted-sized subvector of that operand is that?
26053 int OpSubvecIdx = OpEltIdx / NumEltsExtracted;
26054 // And which element within that subvector of that operand is that?
26055 int OpEltIdxInSubvec = OpEltIdx % NumEltsExtracted;
26056
26057 assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted) == OpEltIdx &&
26058 "Shuffle mask subvector decomposition failure.");
26059
26060 assert((OpEltIdxInSubvec + OpSubvecIdx * NumEltsExtracted +
26061 WideShufOpIdx * WideNumElts) == M &&
26062 "Shuffle mask full decomposition failure.");
26063
26064 SDValue Op = WideShuffleVector->getOperand(WideShufOpIdx);
26065
26066 if (Op.isUndef()) {
26067 // Picking from an undef operand. Let's adjust mask instead.
26068 NewMask.emplace_back(-1);
26069 continue;
26070 }
26071
26072 const std::pair<SDValue, int> DemandedSubvector =
26073 std::make_pair(Op, OpSubvecIdx);
26074
26075 if (DemandedSubvectors.insert(DemandedSubvector)) {
26076 if (DemandedSubvectors.size() > 2)
26077 return SDValue(); // We can't handle more than two subvectors.
26078 // How many elements into the WideVT does this subvector start?
26079 int Index = NumEltsExtracted * OpSubvecIdx;
26080 // Bail out if the extraction isn't going to be cheap.
26081 if (!TLI.isExtractSubvectorCheap(NarrowVT, WideVT, Index))
26082 return SDValue();
26083 }
26084
26085 // Ok, but from which operand of the new shuffle will this element pick?
26086 int NewOpIdx =
26087 getFirstIndexOf(DemandedSubvectors.getArrayRef(), DemandedSubvector);
26088 assert((NewOpIdx == 0 || NewOpIdx == 1) && "Unexpected operand index.");
26089
26090 int AdjM = OpEltIdxInSubvec + NewOpIdx * NumEltsExtracted;
26091 NewMask.emplace_back(AdjM);
26092 }
26093 assert(NewMask.size() == (unsigned)NumEltsExtracted && "Produced bad mask.");
26094 assert(DemandedSubvectors.size() <= 2 &&
26095 "Should have ended up demanding at most two subvectors.");
26096
26097 // Did we discover that the shuffle does not actually depend on operands?
26098 if (DemandedSubvectors.empty())
26099 return DAG.getUNDEF(NarrowVT);
26100
26101 // Profitability check: only deal with extractions from the first subvector
26102 // unless the mask becomes an identity mask.
26103 if (!ShuffleVectorInst::isIdentityMask(NewMask, NewMask.size()) ||
26104 any_of(NewMask, [](int M) { return M < 0; }))
26105 for (auto &DemandedSubvector : DemandedSubvectors)
26106 if (DemandedSubvector.second != 0)
26107 return SDValue();
26108
26109 // We still perform the exact same EXTRACT_SUBVECTOR, just on different
26110 // operand[s]/index[es], so there is no point in checking for it's legality.
26111
26112 // Do not turn a legal shuffle into an illegal one.
26113 if (TLI.isShuffleMaskLegal(WideShuffleVector->getMask(), WideVT) &&
26114 !TLI.isShuffleMaskLegal(NewMask, NarrowVT))
26115 return SDValue();
26116
26118 for (const std::pair<SDValue /*Op*/, int /*SubvectorIndex*/>
26119 &DemandedSubvector : DemandedSubvectors) {
26120 // How many elements into the WideVT does this subvector start?
26121 int Index = NumEltsExtracted * DemandedSubvector.second;
26122 SDValue IndexC = DAG.getVectorIdxConstant(Index, DL);
26123 NewOps.emplace_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowVT,
26124 DemandedSubvector.first, IndexC));
26125 }
26126 assert((NewOps.size() == 1 || NewOps.size() == 2) &&
26127 "Should end up with either one or two ops");
26128
26129 // If we ended up with only one operand, pad with an undef.
26130 if (NewOps.size() == 1)
26131 NewOps.emplace_back(DAG.getUNDEF(NarrowVT));
26132
26133 return DAG.getVectorShuffle(NarrowVT, DL, NewOps[0], NewOps[1], NewMask);
26134}
26135
26136SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
26137 EVT NVT = N->getValueType(0);
26138 SDValue V = N->getOperand(0);
26139 uint64_t ExtIdx = N->getConstantOperandVal(1);
26140 SDLoc DL(N);
26141
26142 // Extract from UNDEF is UNDEF.
26143 if (V.isUndef())
26144 return DAG.getUNDEF(NVT);
26145
26146 if (SDValue NarrowLoad = narrowExtractedVectorLoad(NVT, V, ExtIdx, DL, DAG))
26147 return NarrowLoad;
26148
26149 // Combine an extract of an extract into a single extract_subvector.
26150 // ext (ext X, C), 0 --> ext X, C
26151 if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) {
26152 // The index has to be a multiple of the new result type's known minimum
26153 // vector length.
26154 if (V.getConstantOperandVal(1) % NVT.getVectorMinNumElements() == 0 &&
26155 TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
26156 V.getConstantOperandVal(1)) &&
26158 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, V.getOperand(0),
26159 V.getOperand(1));
26160 }
26161 }
26162
26163 // ty1 extract_vector(ty2 splat(V))) -> ty1 splat(V)
26164 if (V.getOpcode() == ISD::SPLAT_VECTOR)
26165 if (DAG.isConstantValueOfAnyType(V.getOperand(0)) || V.hasOneUse())
26166 if (!LegalOperations || TLI.isOperationLegal(ISD::SPLAT_VECTOR, NVT))
26167 return DAG.getSplatVector(NVT, DL, V.getOperand(0));
26168
26169 // extract_subvector(insert_subvector(x,y,c1),c2)
26170 // --> extract_subvector(y,c2-c1)
26171 // iff we're just extracting from the inserted subvector.
26172 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
26173 SDValue InsSub = V.getOperand(1);
26174 EVT InsSubVT = InsSub.getValueType();
26175 unsigned NumInsElts = InsSubVT.getVectorMinNumElements();
26176 unsigned InsIdx = V.getConstantOperandVal(2);
26177 unsigned NumSubElts = NVT.getVectorMinNumElements();
26178 if (InsIdx <= ExtIdx && (ExtIdx + NumSubElts) <= (InsIdx + NumInsElts) &&
26179 TLI.isExtractSubvectorCheap(NVT, InsSubVT, ExtIdx - InsIdx) &&
26180 InsSubVT.isFixedLengthVector() && NVT.isFixedLengthVector() &&
26181 V.getValueType().isFixedLengthVector())
26182 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, InsSub,
26183 DAG.getVectorIdxConstant(ExtIdx - InsIdx, DL));
26184 }
26185
26186 // Try to move vector bitcast after extract_subv by scaling extraction index:
26187 // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
26188 if (V.getOpcode() == ISD::BITCAST &&
26189 V.getOperand(0).getValueType().isVector() &&
26190 (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) {
26191 SDValue SrcOp = V.getOperand(0);
26192 EVT SrcVT = SrcOp.getValueType();
26193 unsigned SrcNumElts = SrcVT.getVectorMinNumElements();
26194 unsigned DestNumElts = V.getValueType().getVectorMinNumElements();
26195 if ((SrcNumElts % DestNumElts) == 0) {
26196 unsigned SrcDestRatio = SrcNumElts / DestNumElts;
26197 ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio;
26198 EVT NewExtVT =
26199 EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), NewExtEC);
26201 SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL);
26202 SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
26203 V.getOperand(0), NewIndex);
26204 return DAG.getBitcast(NVT, NewExtract);
26205 }
26206 }
26207 if ((DestNumElts % SrcNumElts) == 0) {
26208 unsigned DestSrcRatio = DestNumElts / SrcNumElts;
26209 if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) {
26210 ElementCount NewExtEC =
26211 NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio);
26212 EVT ScalarVT = SrcVT.getScalarType();
26213 if ((ExtIdx % DestSrcRatio) == 0) {
26214 unsigned IndexValScaled = ExtIdx / DestSrcRatio;
26215 EVT NewExtVT =
26216 EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC);
26218 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
26219 SDValue NewExtract =
26220 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
26221 V.getOperand(0), NewIndex);
26222 return DAG.getBitcast(NVT, NewExtract);
26223 }
26224 if (NewExtEC.isScalar() &&
26226 SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
26227 SDValue NewExtract =
26228 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT,
26229 V.getOperand(0), NewIndex);
26230 return DAG.getBitcast(NVT, NewExtract);
26231 }
26232 }
26233 }
26234 }
26235 }
26236
26237 if (V.getOpcode() == ISD::CONCAT_VECTORS) {
26238 unsigned ExtNumElts = NVT.getVectorMinNumElements();
26239 EVT ConcatSrcVT = V.getOperand(0).getValueType();
26240 assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() &&
26241 "Concat and extract subvector do not change element type");
26242
26243 unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements();
26244 unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts;
26245
26246 // If the concatenated source types match this extract, it's a direct
26247 // simplification:
26248 // extract_subvec (concat V1, V2, ...), i --> Vi
26249 if (NVT.getVectorElementCount() == ConcatSrcVT.getVectorElementCount())
26250 return V.getOperand(ConcatOpIdx);
26251
26252 // If the concatenated source vectors are a multiple length of this extract,
26253 // then extract a fraction of one of those source vectors directly from a
26254 // concat operand. Example:
26255 // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 -->
26256 // v2i8 extract_subvec v8i8 Y, 6
26257 if (NVT.isFixedLengthVector() && ConcatSrcVT.isFixedLengthVector() &&
26258 ConcatSrcNumElts % ExtNumElts == 0) {
26259 unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts;
26260 assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts &&
26261 "Trying to extract from >1 concat operand?");
26262 assert(NewExtIdx % ExtNumElts == 0 &&
26263 "Extract index is not a multiple of the input vector length.");
26264 SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL);
26265 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT,
26266 V.getOperand(ConcatOpIdx), NewIndexC);
26267 }
26268 }
26269
26271 NVT, V, ExtIdx, DL, DAG, LegalOperations))
26272 return Shuffle;
26273
26274 if (SDValue NarrowBOp =
26275 narrowExtractedVectorBinOp(NVT, V, ExtIdx, DL, DAG, LegalOperations))
26276 return NarrowBOp;
26277
26279
26280 // If the input is a build vector. Try to make a smaller build vector.
26281 if (V.getOpcode() == ISD::BUILD_VECTOR) {
26282 EVT InVT = V.getValueType();
26283 unsigned ExtractSize = NVT.getSizeInBits();
26284 unsigned EltSize = InVT.getScalarSizeInBits();
26285 // Only do this if we won't split any elements.
26286 if (ExtractSize % EltSize == 0) {
26287 unsigned NumElems = ExtractSize / EltSize;
26288 EVT EltVT = InVT.getVectorElementType();
26289 EVT ExtractVT =
26290 NumElems == 1 ? EltVT
26291 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems);
26292 if ((Level < AfterLegalizeDAG ||
26293 (NumElems == 1 ||
26294 TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
26295 (!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
26296 unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize;
26297
26298 if (NumElems == 1) {
26299 SDValue Src = V->getOperand(IdxVal);
26300 if (EltVT != Src.getValueType())
26301 Src = DAG.getNode(ISD::TRUNCATE, DL, EltVT, Src);
26302 return DAG.getBitcast(NVT, Src);
26303 }
26304
26305 // Extract the pieces from the original build_vector.
26306 SDValue BuildVec =
26307 DAG.getBuildVector(ExtractVT, DL, V->ops().slice(IdxVal, NumElems));
26308 return DAG.getBitcast(NVT, BuildVec);
26309 }
26310 }
26311 }
26312
26313 if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
26314 // Handle only simple case where vector being inserted and vector
26315 // being extracted are of same size.
26316 EVT SmallVT = V.getOperand(1).getValueType();
26317 if (NVT.bitsEq(SmallVT)) {
26318 // Combine:
26319 // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
26320 // Into:
26321 // indices are equal or bit offsets are equal => V1
26322 // otherwise => (extract_subvec V1, ExtIdx)
26323 uint64_t InsIdx = V.getConstantOperandVal(2);
26324 if (InsIdx * SmallVT.getScalarSizeInBits() ==
26325 ExtIdx * NVT.getScalarSizeInBits()) {
26326 if (!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))
26327 return DAG.getBitcast(NVT, V.getOperand(1));
26328 } else {
26329 return DAG.getNode(
26331 DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
26332 N->getOperand(1));
26333 }
26334 }
26335 }
26336
26337 // If only EXTRACT_SUBVECTOR nodes use the source vector we can
26338 // simplify it based on the (valid) extractions.
26339 if (!V.getValueType().isScalableVector() &&
26340 llvm::all_of(V->users(), [&](SDNode *Use) {
26341 return Use->getOpcode() == ISD::EXTRACT_SUBVECTOR &&
26342 Use->getOperand(0) == V;
26343 })) {
26344 unsigned NumElts = V.getValueType().getVectorNumElements();
26345 APInt DemandedElts = APInt::getZero(NumElts);
26346 for (SDNode *User : V->users()) {
26347 unsigned ExtIdx = User->getConstantOperandVal(1);
26348 unsigned NumSubElts = User->getValueType(0).getVectorNumElements();
26349 DemandedElts.setBits(ExtIdx, ExtIdx + NumSubElts);
26350 }
26351 if (SimplifyDemandedVectorElts(V, DemandedElts, /*AssumeSingleUse=*/true)) {
26352 // We simplified the vector operand of this extract subvector. If this
26353 // extract is not dead, visit it again so it is folded properly.
26354 if (N->getOpcode() != ISD::DELETED_NODE)
26355 AddToWorklist(N);
26356 return SDValue(N, 0);
26357 }
26358 } else {
26360 return SDValue(N, 0);
26361 }
26362
26363 return SDValue();
26364}
26365
26366/// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
26367/// followed by concatenation. Narrow vector ops may have better performance
26368/// than wide ops, and this can unlock further narrowing of other vector ops.
26369/// Targets can invert this transform later if it is not profitable.
26371 SelectionDAG &DAG) {
26372 SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
26373 if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
26374 N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
26375 !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
26376 return SDValue();
26377
26378 // Split the wide shuffle mask into halves. Any mask element that is accessing
26379 // operand 1 is offset down to account for narrowing of the vectors.
26380 ArrayRef<int> Mask = Shuf->getMask();
26381 EVT VT = Shuf->getValueType(0);
26382 unsigned NumElts = VT.getVectorNumElements();
26383 unsigned HalfNumElts = NumElts / 2;
26384 SmallVector<int, 16> Mask0(HalfNumElts, -1);
26385 SmallVector<int, 16> Mask1(HalfNumElts, -1);
26386 for (unsigned i = 0; i != NumElts; ++i) {
26387 if (Mask[i] == -1)
26388 continue;
26389 // If we reference the upper (undef) subvector then the element is undef.
26390 if ((Mask[i] % NumElts) >= HalfNumElts)
26391 continue;
26392 int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
26393 if (i < HalfNumElts)
26394 Mask0[i] = M;
26395 else
26396 Mask1[i - HalfNumElts] = M;
26397 }
26398
26399 // Ask the target if this is a valid transform.
26400 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
26401 EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
26402 HalfNumElts);
26403 if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
26404 !TLI.isShuffleMaskLegal(Mask1, HalfVT))
26405 return SDValue();
26406
26407 // shuffle (concat X, undef), (concat Y, undef), Mask -->
26408 // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
26409 SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
26410 SDLoc DL(Shuf);
26411 SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
26412 SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
26413 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
26414}
26415
26416// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
26417// or turn a shuffle of a single concat into simpler shuffle then concat.
26419 EVT VT = N->getValueType(0);
26420 unsigned NumElts = VT.getVectorNumElements();
26421
26422 SDValue N0 = N->getOperand(0);
26423 SDValue N1 = N->getOperand(1);
26425 ArrayRef<int> Mask = SVN->getMask();
26426
26428 EVT ConcatVT = N0.getOperand(0).getValueType();
26429 unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
26430 unsigned NumConcats = NumElts / NumElemsPerConcat;
26431
26432 auto IsUndefMaskElt = [](int i) { return i == -1; };
26433
26434 // Special case: shuffle(concat(A,B)) can be more efficiently represented
26435 // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
26436 // half vector elements.
26437 if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
26438 llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
26439 IsUndefMaskElt)) {
26440 N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
26441 N0.getOperand(1),
26442 Mask.slice(0, NumElemsPerConcat));
26443 N1 = DAG.getUNDEF(ConcatVT);
26444 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
26445 }
26446
26447 // Look at every vector that's inserted. We're looking for exact
26448 // subvector-sized copies from a concatenated vector
26449 for (unsigned I = 0; I != NumConcats; ++I) {
26450 unsigned Begin = I * NumElemsPerConcat;
26451 ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);
26452
26453 // Make sure we're dealing with a copy.
26454 if (llvm::all_of(SubMask, IsUndefMaskElt)) {
26455 Ops.push_back(DAG.getUNDEF(ConcatVT));
26456 continue;
26457 }
26458
26459 int OpIdx = -1;
26460 for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
26461 if (IsUndefMaskElt(SubMask[i]))
26462 continue;
26463 if ((SubMask[i] % (int)NumElemsPerConcat) != i)
26464 return SDValue();
26465 int EltOpIdx = SubMask[i] / NumElemsPerConcat;
26466 if (0 <= OpIdx && EltOpIdx != OpIdx)
26467 return SDValue();
26468 OpIdx = EltOpIdx;
26469 }
26470 assert(0 <= OpIdx && "Unknown concat_vectors op");
26471
26472 if (OpIdx < (int)N0.getNumOperands())
26473 Ops.push_back(N0.getOperand(OpIdx));
26474 else
26475 Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
26476 }
26477
26478 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
26479}
26480
26481// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
26482// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
26483//
26484// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
26485// a simplification in some sense, but it isn't appropriate in general: some
26486// BUILD_VECTORs are substantially cheaper than others. The general case
26487// of a BUILD_VECTOR requires inserting each element individually (or
26488// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
26489// all constants is a single constant pool load. A BUILD_VECTOR where each
26490// element is identical is a splat. A BUILD_VECTOR where most of the operands
26491// are undef lowers to a small number of element insertions.
26492//
26493// To deal with this, we currently use a bunch of mostly arbitrary heuristics.
26494// We don't fold shuffles where one side is a non-zero constant, and we don't
26495// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
26496// non-constant operands. This seems to work out reasonably well in practice.
26498 SelectionDAG &DAG,
26499 const TargetLowering &TLI) {
26500 EVT VT = SVN->getValueType(0);
26501 unsigned NumElts = VT.getVectorNumElements();
26502 SDValue N0 = SVN->getOperand(0);
26503 SDValue N1 = SVN->getOperand(1);
26504
26505 if (!N0->hasOneUse())
26506 return SDValue();
26507
26508 // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
26509 // discussed above.
26510 if (!N1.isUndef()) {
26511 if (!N1->hasOneUse())
26512 return SDValue();
26513
26514 bool N0AnyConst = isAnyConstantBuildVector(N0);
26515 bool N1AnyConst = isAnyConstantBuildVector(N1);
26516 if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
26517 return SDValue();
26518 if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
26519 return SDValue();
26520 }
26521
26522 // If both inputs are splats of the same value then we can safely merge this
26523 // to a single BUILD_VECTOR with undef elements based on the shuffle mask.
26524 bool IsSplat = false;
26525 auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
26526 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
26527 if (BV0 && BV1)
26528 if (SDValue Splat0 = BV0->getSplatValue())
26529 IsSplat = (Splat0 == BV1->getSplatValue());
26530
26532 SmallSet<SDValue, 16> DuplicateOps;
26533 for (int M : SVN->getMask()) {
26534 SDValue Op = DAG.getUNDEF(VT.getScalarType());
26535 if (M >= 0) {
26536 int Idx = M < (int)NumElts ? M : M - NumElts;
26537 SDValue &S = (M < (int)NumElts ? N0 : N1);
26538 if (S.getOpcode() == ISD::BUILD_VECTOR) {
26539 Op = S.getOperand(Idx);
26540 } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
26541 SDValue Op0 = S.getOperand(0);
26542 Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
26543 } else {
26544 // Operand can't be combined - bail out.
26545 return SDValue();
26546 }
26547 }
26548
26549 // Don't duplicate a non-constant BUILD_VECTOR operand unless we're
26550 // generating a splat; semantically, this is fine, but it's likely to
26551 // generate low-quality code if the target can't reconstruct an appropriate
26552 // shuffle.
26553 if (!Op.isUndef() && !isIntOrFPConstant(Op))
26554 if (!IsSplat && !DuplicateOps.insert(Op).second)
26555 return SDValue();
26556
26557 Ops.push_back(Op);
26558 }
26559
26560 // BUILD_VECTOR requires all inputs to be of the same type, find the
26561 // maximum type and extend them all.
26562 EVT SVT = VT.getScalarType();
26563 if (SVT.isInteger())
26564 for (SDValue &Op : Ops)
26565 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
26566 if (SVT != VT.getScalarType())
26567 for (SDValue &Op : Ops)
26568 Op = Op.isUndef() ? DAG.getUNDEF(SVT)
26569 : (TLI.isZExtFree(Op.getValueType(), SVT)
26570 ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
26571 : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT));
26572 return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
26573}
26574
26575// Match shuffles that can be converted to *_vector_extend_in_reg.
26576// This is often generated during legalization.
26577// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)),
26578// and returns the EVT to which the extension should be performed.
26579// NOTE: this assumes that the src is the first operand of the shuffle.
26581 unsigned Opcode, EVT VT, std::function<bool(unsigned)> Match,
26582 SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes,
26583 bool LegalOperations) {
26584 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
26585
26586 // TODO Add support for big-endian when we have a test case.
26587 if (!VT.isInteger() || IsBigEndian)
26588 return std::nullopt;
26589
26590 unsigned NumElts = VT.getVectorNumElements();
26591 unsigned EltSizeInBits = VT.getScalarSizeInBits();
26592
26593 // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
26594 // power-of-2 extensions as they are the most likely.
26595 // FIXME: should try Scale == NumElts case too,
26596 for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
26597 // The vector width must be a multiple of Scale.
26598 if (NumElts % Scale != 0)
26599 continue;
26600
26601 EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
26602 EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
26603
26604 if ((LegalTypes && !TLI.isTypeLegal(OutVT)) ||
26605 (LegalOperations && !TLI.isOperationLegalOrCustom(Opcode, OutVT)))
26606 continue;
26607
26608 if (Match(Scale))
26609 return OutVT;
26610 }
26611
26612 return std::nullopt;
26613}
26614
26615// Match shuffles that can be converted to any_vector_extend_in_reg.
26616// This is often generated during legalization.
26617// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
26619 SelectionDAG &DAG,
26620 const TargetLowering &TLI,
26621 bool LegalOperations) {
26622 EVT VT = SVN->getValueType(0);
26623 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
26624
26625 // TODO Add support for big-endian when we have a test case.
26626 if (!VT.isInteger() || IsBigEndian)
26627 return SDValue();
26628
26629 // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
26630 auto isAnyExtend = [NumElts = VT.getVectorNumElements(),
26631 Mask = SVN->getMask()](unsigned Scale) {
26632 for (unsigned i = 0; i != NumElts; ++i) {
26633 if (Mask[i] < 0)
26634 continue;
26635 if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
26636 continue;
26637 return false;
26638 }
26639 return true;
26640 };
26641
26642 unsigned Opcode = ISD::ANY_EXTEND_VECTOR_INREG;
26643 SDValue N0 = SVN->getOperand(0);
26644 // Never create an illegal type. Only create unsupported operations if we
26645 // are pre-legalization.
26646 std::optional<EVT> OutVT = canCombineShuffleToExtendVectorInreg(
26647 Opcode, VT, isAnyExtend, DAG, TLI, /*LegalTypes=*/true, LegalOperations);
26648 if (!OutVT)
26649 return SDValue();
26650 return DAG.getBitcast(VT, DAG.getNode(Opcode, SDLoc(SVN), *OutVT, N0));
26651}
26652
26653// Match shuffles that can be converted to zero_extend_vector_inreg.
26654// This is often generated during legalization.
26655// e.g. v4i32 <0,z,1,u> -> (v2i64 zero_extend_vector_inreg(v4i32 src))
26657 SelectionDAG &DAG,
26658 const TargetLowering &TLI,
26659 bool LegalOperations) {
26660 bool LegalTypes = true;
26661 EVT VT = SVN->getValueType(0);
26662 assert(!VT.isScalableVector() && "Encountered scalable shuffle?");
26663 unsigned NumElts = VT.getVectorNumElements();
26664 unsigned EltSizeInBits = VT.getScalarSizeInBits();
26665
26666 // TODO: add support for big-endian when we have a test case.
26667 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
26668 if (!VT.isInteger() || IsBigEndian)
26669 return SDValue();
26670
26671 SmallVector<int, 16> Mask(SVN->getMask());
26672 auto ForEachDecomposedIndice = [NumElts, &Mask](auto Fn) {
26673 for (int &Indice : Mask) {
26674 if (Indice < 0)
26675 continue;
26676 int OpIdx = (unsigned)Indice < NumElts ? 0 : 1;
26677 int OpEltIdx = (unsigned)Indice < NumElts ? Indice : Indice - NumElts;
26678 Fn(Indice, OpIdx, OpEltIdx);
26679 }
26680 };
26681
26682 // Which elements of which operand does this shuffle demand?
26683 std::array<APInt, 2> OpsDemandedElts;
26684 for (APInt &OpDemandedElts : OpsDemandedElts)
26685 OpDemandedElts = APInt::getZero(NumElts);
26686 ForEachDecomposedIndice(
26687 [&OpsDemandedElts](int &Indice, int OpIdx, int OpEltIdx) {
26688 OpsDemandedElts[OpIdx].setBit(OpEltIdx);
26689 });
26690
26691 // Element-wise(!), which of these demanded elements are know to be zero?
26692 std::array<APInt, 2> OpsKnownZeroElts;
26693 for (auto I : zip(SVN->ops(), OpsDemandedElts, OpsKnownZeroElts))
26694 std::get<2>(I) =
26695 DAG.computeVectorKnownZeroElements(std::get<0>(I), std::get<1>(I));
26696
26697 // Manifest zeroable element knowledge in the shuffle mask.
26698 // NOTE: we don't have 'zeroable' sentinel value in generic DAG,
26699 // this is a local invention, but it won't leak into DAG.
26700 // FIXME: should we not manifest them, but just check when matching?
26701 bool HadZeroableElts = false;
26702 ForEachDecomposedIndice([&OpsKnownZeroElts, &HadZeroableElts](
26703 int &Indice, int OpIdx, int OpEltIdx) {
26704 if (OpsKnownZeroElts[OpIdx][OpEltIdx]) {
26705 Indice = -2; // Zeroable element.
26706 HadZeroableElts = true;
26707 }
26708 });
26709
26710 // Don't proceed unless we've refined at least one zeroable mask indice.
26711 // If we didn't, then we are still trying to match the same shuffle mask
26712 // we previously tried to match as ISD::ANY_EXTEND_VECTOR_INREG,
26713 // and evidently failed. Proceeding will lead to endless combine loops.
26714 if (!HadZeroableElts)
26715 return SDValue();
26716
26717 // The shuffle may be more fine-grained than we want. Widen elements first.
26718 // FIXME: should we do this before manifesting zeroable shuffle mask indices?
26719 SmallVector<int, 16> ScaledMask;
26720 getShuffleMaskWithWidestElts(Mask, ScaledMask);
26721 assert(Mask.size() >= ScaledMask.size() &&
26722 Mask.size() % ScaledMask.size() == 0 && "Unexpected mask widening.");
26723 int Prescale = Mask.size() / ScaledMask.size();
26724
26725 NumElts = ScaledMask.size();
26726 EltSizeInBits *= Prescale;
26727
26728 EVT PrescaledVT = EVT::getVectorVT(
26729 *DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits),
26730 NumElts);
26731
26732 if (LegalTypes && !TLI.isTypeLegal(PrescaledVT) && TLI.isTypeLegal(VT))
26733 return SDValue();
26734
26735 // For example,
26736 // shuffle<0,z,1,-1> == (v2i64 zero_extend_vector_inreg(v4i32))
26737 // But not shuffle<z,z,1,-1> and not shuffle<0,z,z,-1> ! (for same types)
26738 auto isZeroExtend = [NumElts, &ScaledMask](unsigned Scale) {
26739 assert(Scale >= 2 && Scale <= NumElts && NumElts % Scale == 0 &&
26740 "Unexpected mask scaling factor.");
26741 ArrayRef<int> Mask = ScaledMask;
26742 for (unsigned SrcElt = 0, NumSrcElts = NumElts / Scale;
26743 SrcElt != NumSrcElts; ++SrcElt) {
26744 // Analyze the shuffle mask in Scale-sized chunks.
26745 ArrayRef<int> MaskChunk = Mask.take_front(Scale);
26746 assert(MaskChunk.size() == Scale && "Unexpected mask size.");
26747 Mask = Mask.drop_front(MaskChunk.size());
26748 // The first indice in this chunk must be SrcElt, but not zero!
26749 // FIXME: undef should be fine, but that results in more-defined result.
26750 if (int FirstIndice = MaskChunk[0]; (unsigned)FirstIndice != SrcElt)
26751 return false;
26752 // The rest of the indices in this chunk must be zeros.
26753 // FIXME: undef should be fine, but that results in more-defined result.
26754 if (!all_of(MaskChunk.drop_front(1),
26755 [](int Indice) { return Indice == -2; }))
26756 return false;
26757 }
26758 assert(Mask.empty() && "Did not process the whole mask?");
26759 return true;
26760 };
26761
26762 unsigned Opcode = ISD::ZERO_EXTEND_VECTOR_INREG;
26763 for (bool Commuted : {false, true}) {
26764 SDValue Op = SVN->getOperand(!Commuted ? 0 : 1);
26765 if (Commuted)
26767 std::optional<EVT> OutVT = canCombineShuffleToExtendVectorInreg(
26768 Opcode, PrescaledVT, isZeroExtend, DAG, TLI, LegalTypes,
26769 LegalOperations);
26770 if (OutVT)
26771 return DAG.getBitcast(VT, DAG.getNode(Opcode, SDLoc(SVN), *OutVT,
26772 DAG.getBitcast(PrescaledVT, Op)));
26773 }
26774 return SDValue();
26775}
26776
26777// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
26778// each source element of a large type into the lowest elements of a smaller
26779// destination type. This is often generated during legalization.
26780// If the source node itself was a '*_extend_vector_inreg' node then we should
26781// then be able to remove it.
26783 SelectionDAG &DAG) {
26784 EVT VT = SVN->getValueType(0);
26785 bool IsBigEndian = DAG.getDataLayout().isBigEndian();
26786
26787 // TODO Add support for big-endian when we have a test case.
26788 if (!VT.isInteger() || IsBigEndian)
26789 return SDValue();
26790
26792
26793 unsigned Opcode = N0.getOpcode();
26794 if (!ISD::isExtVecInRegOpcode(Opcode))
26795 return SDValue();
26796
26797 SDValue N00 = N0.getOperand(0);
26798 ArrayRef<int> Mask = SVN->getMask();
26799 unsigned NumElts = VT.getVectorNumElements();
26800 unsigned EltSizeInBits = VT.getScalarSizeInBits();
26801 unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
26802 unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
26803
26804 if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
26805 return SDValue();
26806 unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
26807
26808 // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
26809 // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
26810 // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
26811 auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
26812 for (unsigned i = 0; i != NumElts; ++i) {
26813 if (Mask[i] < 0)
26814 continue;
26815 if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
26816 continue;
26817 return false;
26818 }
26819 return true;
26820 };
26821
26822 // At the moment we just handle the case where we've truncated back to the
26823 // same size as before the extension.
26824 // TODO: handle more extension/truncation cases as cases arise.
26825 if (EltSizeInBits != ExtSrcSizeInBits)
26826 return SDValue();
26827
26828 // We can remove *extend_vector_inreg only if the truncation happens at
26829 // the same scale as the extension.
26830 if (isTruncate(ExtScale))
26831 return DAG.getBitcast(VT, N00);
26832
26833 return SDValue();
26834}
26835
26836// Combine shuffles of splat-shuffles of the form:
26837// shuffle (shuffle V, undef, splat-mask), undef, M
26838// If splat-mask contains undef elements, we need to be careful about
26839// introducing undef's in the folded mask which are not the result of composing
26840// the masks of the shuffles.
26842 SelectionDAG &DAG) {
26843 EVT VT = Shuf->getValueType(0);
26844 unsigned NumElts = VT.getVectorNumElements();
26845
26846 if (!Shuf->getOperand(1).isUndef())
26847 return SDValue();
26848
26849 // See if this unary non-splat shuffle actually *is* a splat shuffle,
26850 // in disguise, with all demanded elements being identical.
26851 // FIXME: this can be done per-operand.
26852 if (!Shuf->isSplat()) {
26853 APInt DemandedElts(NumElts, 0);
26854 for (int Idx : Shuf->getMask()) {
26855 if (Idx < 0)
26856 continue; // Ignore sentinel indices.
26857 assert((unsigned)Idx < NumElts && "Out-of-bounds shuffle indice?");
26858 DemandedElts.setBit(Idx);
26859 }
26860 assert(DemandedElts.popcount() > 1 && "Is a splat shuffle already?");
26861 APInt UndefElts;
26862 if (DAG.isSplatValue(Shuf->getOperand(0), DemandedElts, UndefElts)) {
26863 // Even if all demanded elements are splat, some of them could be undef.
26864 // Which lowest demanded element is *not* known-undef?
26865 std::optional<unsigned> MinNonUndefIdx;
26866 for (int Idx : Shuf->getMask()) {
26867 if (Idx < 0 || UndefElts[Idx])
26868 continue; // Ignore sentinel indices, and undef elements.
26869 MinNonUndefIdx = std::min<unsigned>(Idx, MinNonUndefIdx.value_or(~0U));
26870 }
26871 if (!MinNonUndefIdx)
26872 return DAG.getUNDEF(VT); // All undef - result is undef.
26873 assert(*MinNonUndefIdx < NumElts && "Expected valid element index.");
26874 SmallVector<int, 8> SplatMask(Shuf->getMask());
26875 for (int &Idx : SplatMask) {
26876 if (Idx < 0)
26877 continue; // Passthrough sentinel indices.
26878 // Otherwise, just pick the lowest demanded non-undef element.
26879 // Or sentinel undef, if we know we'd pick a known-undef element.
26880 Idx = UndefElts[Idx] ? -1 : *MinNonUndefIdx;
26881 }
26882 assert(SplatMask != Shuf->getMask() && "Expected mask to change!");
26883 return DAG.getVectorShuffle(VT, SDLoc(Shuf), Shuf->getOperand(0),
26884 Shuf->getOperand(1), SplatMask);
26885 }
26886 }
26887
26888 // If the inner operand is a known splat with no undefs, just return that directly.
26889 // TODO: Create DemandedElts mask from Shuf's mask.
26890 // TODO: Allow undef elements and merge with the shuffle code below.
26891 if (DAG.isSplatValue(Shuf->getOperand(0), /*AllowUndefs*/ false))
26892 return Shuf->getOperand(0);
26893
26895 if (!Splat || !Splat->isSplat())
26896 return SDValue();
26897
26898 ArrayRef<int> ShufMask = Shuf->getMask();
26899 ArrayRef<int> SplatMask = Splat->getMask();
26900 assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch");
26901
26902 // Prefer simplifying to the splat-shuffle, if possible. This is legal if
26903 // every undef mask element in the splat-shuffle has a corresponding undef
26904 // element in the user-shuffle's mask or if the composition of mask elements
26905 // would result in undef.
26906 // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
26907 // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
26908 // In this case it is not legal to simplify to the splat-shuffle because we
26909 // may be exposing the users of the shuffle an undef element at index 1
26910 // which was not there before the combine.
26911 // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
26912 // In this case the composition of masks yields SplatMask, so it's ok to
26913 // simplify to the splat-shuffle.
26914 // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
26915 // In this case the composed mask includes all undef elements of SplatMask
26916 // and in addition sets element zero to undef. It is safe to simplify to
26917 // the splat-shuffle.
26918 auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
26919 ArrayRef<int> SplatMask) {
26920 for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
26921 if (UserMask[i] != -1 && SplatMask[i] == -1 &&
26922 SplatMask[UserMask[i]] != -1)
26923 return false;
26924 return true;
26925 };
26926 if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
26927 return Shuf->getOperand(0);
26928
26929 // Create a new shuffle with a mask that is composed of the two shuffles'
26930 // masks.
26931 SmallVector<int, 32> NewMask;
26932 for (int Idx : ShufMask)
26933 NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
26934
26935 return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
26936 Splat->getOperand(0), Splat->getOperand(1),
26937 NewMask);
26938}
26939
26940// Combine shuffles of bitcasts into a shuffle of the bitcast type, providing
26941// the mask can be treated as a larger type.
26943 SelectionDAG &DAG,
26944 const TargetLowering &TLI,
26945 bool LegalOperations) {
26946 SDValue Op0 = SVN->getOperand(0);
26947 SDValue Op1 = SVN->getOperand(1);
26948 EVT VT = SVN->getValueType(0);
26949 if (Op0.getOpcode() != ISD::BITCAST)
26950 return SDValue();
26951 EVT InVT = Op0.getOperand(0).getValueType();
26952 if (!InVT.isVector() ||
26953 (!Op1.isUndef() && (Op1.getOpcode() != ISD::BITCAST ||
26954 Op1.getOperand(0).getValueType() != InVT)))
26955 return SDValue();
26957 (Op1.isUndef() || isAnyConstantBuildVector(Op1.getOperand(0))))
26958 return SDValue();
26959
26960 int VTLanes = VT.getVectorNumElements();
26961 int InLanes = InVT.getVectorNumElements();
26962 if (VTLanes <= InLanes || VTLanes % InLanes != 0 ||
26963 (LegalOperations &&
26965 return SDValue();
26966 int Factor = VTLanes / InLanes;
26967
26968 // Check that each group of lanes in the mask are either undef or make a valid
26969 // mask for the wider lane type.
26970 ArrayRef<int> Mask = SVN->getMask();
26971 SmallVector<int> NewMask;
26972 if (!widenShuffleMaskElts(Factor, Mask, NewMask))
26973 return SDValue();
26974
26975 if (!TLI.isShuffleMaskLegal(NewMask, InVT))
26976 return SDValue();
26977
26978 // Create the new shuffle with the new mask and bitcast it back to the
26979 // original type.
26980 SDLoc DL(SVN);
26981 Op0 = Op0.getOperand(0);
26982 Op1 = Op1.isUndef() ? DAG.getUNDEF(InVT) : Op1.getOperand(0);
26983 SDValue NewShuf = DAG.getVectorShuffle(InVT, DL, Op0, Op1, NewMask);
26984 return DAG.getBitcast(VT, NewShuf);
26985}
26986
26987/// Combine shuffle of shuffle of the form:
26988/// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X
26990 SelectionDAG &DAG) {
26991 if (!OuterShuf->getOperand(1).isUndef())
26992 return SDValue();
26993 auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0));
26994 if (!InnerShuf || !InnerShuf->getOperand(1).isUndef())
26995 return SDValue();
26996
26997 ArrayRef<int> OuterMask = OuterShuf->getMask();
26998 ArrayRef<int> InnerMask = InnerShuf->getMask();
26999 unsigned NumElts = OuterMask.size();
27000 assert(NumElts == InnerMask.size() && "Mask length mismatch");
27001 SmallVector<int, 32> CombinedMask(NumElts, -1);
27002 int SplatIndex = -1;
27003 for (unsigned i = 0; i != NumElts; ++i) {
27004 // Undef lanes remain undef.
27005 int OuterMaskElt = OuterMask[i];
27006 if (OuterMaskElt == -1)
27007 continue;
27008
27009 // Peek through the shuffle masks to get the underlying source element.
27010 int InnerMaskElt = InnerMask[OuterMaskElt];
27011 if (InnerMaskElt == -1)
27012 continue;
27013
27014 // Initialize the splatted element.
27015 if (SplatIndex == -1)
27016 SplatIndex = InnerMaskElt;
27017
27018 // Non-matching index - this is not a splat.
27019 if (SplatIndex != InnerMaskElt)
27020 return SDValue();
27021
27022 CombinedMask[i] = InnerMaskElt;
27023 }
27024 assert((all_of(CombinedMask, [](int M) { return M == -1; }) ||
27025 getSplatIndex(CombinedMask) != -1) &&
27026 "Expected a splat mask");
27027
27028 // TODO: The transform may be a win even if the mask is not legal.
27029 EVT VT = OuterShuf->getValueType(0);
27030 assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types");
27031 if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT))
27032 return SDValue();
27033
27034 return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0),
27035 InnerShuf->getOperand(1), CombinedMask);
27036}
27037
27038/// If the shuffle mask is taking exactly one element from the first vector
27039/// operand and passing through all other elements from the second vector
27040/// operand, return the index of the mask element that is choosing an element
27041/// from the first operand. Otherwise, return -1.
27043 int MaskSize = Mask.size();
27044 int EltFromOp0 = -1;
27045 // TODO: This does not match if there are undef elements in the shuffle mask.
27046 // Should we ignore undefs in the shuffle mask instead? The trade-off is
27047 // removing an instruction (a shuffle), but losing the knowledge that some
27048 // vector lanes are not needed.
27049 for (int i = 0; i != MaskSize; ++i) {
27050 if (Mask[i] >= 0 && Mask[i] < MaskSize) {
27051 // We're looking for a shuffle of exactly one element from operand 0.
27052 if (EltFromOp0 != -1)
27053 return -1;
27054 EltFromOp0 = i;
27055 } else if (Mask[i] != i + MaskSize) {
27056 // Nothing from operand 1 can change lanes.
27057 return -1;
27058 }
27059 }
27060 return EltFromOp0;
27061}
27062
27063/// If a shuffle inserts exactly one element from a source vector operand into
27064/// another vector operand and we can access the specified element as a scalar,
27065/// then we can eliminate the shuffle.
27066SDValue DAGCombiner::replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf) {
27067 // First, check if we are taking one element of a vector and shuffling that
27068 // element into another vector.
27069 ArrayRef<int> Mask = Shuf->getMask();
27070 SmallVector<int, 16> CommutedMask(Mask);
27071 SDValue Op0 = Shuf->getOperand(0);
27072 SDValue Op1 = Shuf->getOperand(1);
27073 int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
27074 if (ShufOp0Index == -1) {
27075 // Commute mask and check again.
27077 ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
27078 if (ShufOp0Index == -1)
27079 return SDValue();
27080 // Commute operands to match the commuted shuffle mask.
27081 std::swap(Op0, Op1);
27082 Mask = CommutedMask;
27083 }
27084
27085 // The shuffle inserts exactly one element from operand 0 into operand 1.
27086 // Now see if we can access that element as a scalar via a real insert element
27087 // instruction.
27088 // TODO: We can try harder to locate the element as a scalar. Examples: it
27089 // could be an operand of BUILD_VECTOR, or a constant.
27090 assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
27091 "Shuffle mask value must be from operand 0");
27092
27093 SDValue Elt;
27094 if (sd_match(Op0, m_InsertElt(m_Value(), m_Value(Elt),
27095 m_SpecificInt(Mask[ShufOp0Index])))) {
27096 // There's an existing insertelement with constant insertion index, so we
27097 // don't need to check the legality/profitability of a replacement operation
27098 // that differs at most in the constant value. The target should be able to
27099 // lower any of those in a similar way. If not, legalization will expand
27100 // this to a scalar-to-vector plus shuffle.
27101 //
27102 // Note that the shuffle may move the scalar from the position that the
27103 // insert element used. Therefore, our new insert element occurs at the
27104 // shuffle's mask index value, not the insert's index value.
27105 //
27106 // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
27107 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf));
27108 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
27109 Op1, Elt, NewInsIndex);
27110 }
27111
27112 if (!hasOperation(ISD::INSERT_VECTOR_ELT, Op0.getValueType()))
27113 return SDValue();
27114
27116 Mask[ShufOp0Index] == 0) {
27117 SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf));
27118 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
27119 Op1, Elt, NewInsIndex);
27120 }
27121
27122 return SDValue();
27123}
27124
27125/// If we have a unary shuffle of a shuffle, see if it can be folded away
27126/// completely. This has the potential to lose undef knowledge because the first
27127/// shuffle may not have an undef mask element where the second one does. So
27128/// only call this after doing simplifications based on demanded elements.
27130 // shuf (shuf0 X, Y, Mask0), undef, Mask
27131 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
27132 if (!Shuf0 || !Shuf->getOperand(1).isUndef())
27133 return SDValue();
27134
27135 ArrayRef<int> Mask = Shuf->getMask();
27136 ArrayRef<int> Mask0 = Shuf0->getMask();
27137 for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
27138 // Ignore undef elements.
27139 if (Mask[i] == -1)
27140 continue;
27141 assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value");
27142
27143 // Is the element of the shuffle operand chosen by this shuffle the same as
27144 // the element chosen by the shuffle operand itself?
27145 if (Mask0[Mask[i]] != Mask0[i])
27146 return SDValue();
27147 }
27148 // Every element of this shuffle is identical to the result of the previous
27149 // shuffle, so we can replace this value.
27150 return Shuf->getOperand(0);
27151}
27152
27153SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
27154 EVT VT = N->getValueType(0);
27155 unsigned NumElts = VT.getVectorNumElements();
27156
27157 SDValue N0 = N->getOperand(0);
27158 SDValue N1 = N->getOperand(1);
27159
27160 assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
27161
27162 // Canonicalize shuffle undef, undef -> undef
27163 if (N0.isUndef() && N1.isUndef())
27164 return DAG.getUNDEF(VT);
27165
27166 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
27167
27168 // Canonicalize shuffle v, v -> v, undef
27169 if (N0 == N1)
27170 return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT),
27171 createUnaryMask(SVN->getMask(), NumElts));
27172
27173 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
27174 if (N0.isUndef())
27175 return DAG.getCommutedVectorShuffle(*SVN);
27176
27177 // Remove references to rhs if it is undef
27178 if (N1.isUndef()) {
27179 bool Changed = false;
27180 SmallVector<int, 8> NewMask;
27181 for (unsigned i = 0; i != NumElts; ++i) {
27182 int Idx = SVN->getMaskElt(i);
27183 if (Idx >= (int)NumElts) {
27184 Idx = -1;
27185 Changed = true;
27186 }
27187 NewMask.push_back(Idx);
27188 }
27189 if (Changed)
27190 return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
27191 }
27192
27193 if (SDValue InsElt = replaceShuffleOfInsert(SVN))
27194 return InsElt;
27195
27196 // A shuffle of a single vector that is a splatted value can always be folded.
27197 if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
27198 return V;
27199
27200 if (SDValue V = formSplatFromShuffles(SVN, DAG))
27201 return V;
27202
27203 // If it is a splat, check if the argument vector is another splat or a
27204 // build_vector.
27205 if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
27206 int SplatIndex = SVN->getSplatIndex();
27207 if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) &&
27208 TLI.isBinOp(N0.getOpcode()) && N0->getNumValues() == 1) {
27209 // splat (vector_bo L, R), Index -->
27210 // splat (scalar_bo (extelt L, Index), (extelt R, Index))
27211 SDValue L = N0.getOperand(0), R = N0.getOperand(1);
27212 SDLoc DL(N);
27213 EVT EltVT = VT.getScalarType();
27214 SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL);
27215 SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
27216 SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
27217 SDValue NewBO =
27218 DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, N0->getFlags());
27219 SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
27220 SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
27221 return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
27222 }
27223
27224 // splat(scalar_to_vector(x), 0) -> build_vector(x,...,x)
27225 // splat(insert_vector_elt(v, x, c), c) -> build_vector(x,...,x)
27226 if ((!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) &&
27227 N0.hasOneUse()) {
27228 if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && SplatIndex == 0)
27229 return DAG.getSplatBuildVector(VT, SDLoc(N), N0.getOperand(0));
27230
27232 if (auto *Idx = dyn_cast<ConstantSDNode>(N0.getOperand(2)))
27233 if (Idx->getAPIntValue() == SplatIndex)
27234 return DAG.getSplatBuildVector(VT, SDLoc(N), N0.getOperand(1));
27235
27236 // Look through a bitcast if LE and splatting lane 0, through to a
27237 // scalar_to_vector or a build_vector.
27238 if (N0.getOpcode() == ISD::BITCAST && N0.getOperand(0).hasOneUse() &&
27239 SplatIndex == 0 && DAG.getDataLayout().isLittleEndian() &&
27242 EVT N00VT = N0.getOperand(0).getValueType();
27243 if (VT.getScalarSizeInBits() <= N00VT.getScalarSizeInBits() &&
27244 VT.isInteger() && N00VT.isInteger()) {
27245 EVT InVT =
27248 SDLoc(N), InVT);
27249 return DAG.getSplatBuildVector(VT, SDLoc(N), Op);
27250 }
27251 }
27252 }
27253
27254 // If this is a bit convert that changes the element type of the vector but
27255 // not the number of vector elements, look through it. Be careful not to
27256 // look though conversions that change things like v4f32 to v2f64.
27257 SDNode *V = N0.getNode();
27258 if (V->getOpcode() == ISD::BITCAST) {
27259 SDValue ConvInput = V->getOperand(0);
27260 if (ConvInput.getValueType().isVector() &&
27261 ConvInput.getValueType().getVectorNumElements() == NumElts)
27262 V = ConvInput.getNode();
27263 }
27264
27265 if (V->getOpcode() == ISD::BUILD_VECTOR) {
27266 assert(V->getNumOperands() == NumElts &&
27267 "BUILD_VECTOR has wrong number of operands");
27268 SDValue Base;
27269 bool AllSame = true;
27270 for (unsigned i = 0; i != NumElts; ++i) {
27271 if (!V->getOperand(i).isUndef()) {
27272 Base = V->getOperand(i);
27273 break;
27274 }
27275 }
27276 // Splat of <u, u, u, u>, return <u, u, u, u>
27277 if (!Base.getNode())
27278 return N0;
27279 for (unsigned i = 0; i != NumElts; ++i) {
27280 if (V->getOperand(i) != Base) {
27281 AllSame = false;
27282 break;
27283 }
27284 }
27285 // Splat of <x, x, x, x>, return <x, x, x, x>
27286 if (AllSame)
27287 return N0;
27288
27289 // Canonicalize any other splat as a build_vector, but avoid defining any
27290 // undefined elements in the mask.
27291 SDValue Splatted = V->getOperand(SplatIndex);
27292 SmallVector<SDValue, 8> Ops(NumElts, Splatted);
27293 EVT EltVT = Splatted.getValueType();
27294
27295 for (unsigned i = 0; i != NumElts; ++i) {
27296 if (SVN->getMaskElt(i) < 0)
27297 Ops[i] = DAG.getUNDEF(EltVT);
27298 }
27299
27300 SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
27301
27302 // We may have jumped through bitcasts, so the type of the
27303 // BUILD_VECTOR may not match the type of the shuffle.
27304 if (V->getValueType(0) != VT)
27305 NewBV = DAG.getBitcast(VT, NewBV);
27306 return NewBV;
27307 }
27308 }
27309
27310 // Simplify source operands based on shuffle mask.
27312 return SDValue(N, 0);
27313
27314 // This is intentionally placed after demanded elements simplification because
27315 // it could eliminate knowledge of undef elements created by this shuffle.
27316 if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
27317 return ShufOp;
27318
27319 // Match shuffles that can be converted to any_vector_extend_in_reg.
27320 if (SDValue V =
27321 combineShuffleToAnyExtendVectorInreg(SVN, DAG, TLI, LegalOperations))
27322 return V;
27323
27324 // Combine "truncate_vector_in_reg" style shuffles.
27325 if (SDValue V = combineTruncationShuffle(SVN, DAG))
27326 return V;
27327
27328 if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
27329 Level < AfterLegalizeVectorOps &&
27330 (N1.isUndef() ||
27331 (N1.getOpcode() == ISD::CONCAT_VECTORS &&
27332 N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
27333 if (SDValue V = partitionShuffleOfConcats(N, DAG))
27334 return V;
27335 }
27336
27337 // A shuffle of a concat of the same narrow vector can be reduced to use
27338 // only low-half elements of a concat with undef:
27339 // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask'
27340 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() &&
27341 N0.getNumOperands() == 2 &&
27342 N0.getOperand(0) == N0.getOperand(1)) {
27343 int HalfNumElts = (int)NumElts / 2;
27344 SmallVector<int, 8> NewMask;
27345 for (unsigned i = 0; i != NumElts; ++i) {
27346 int Idx = SVN->getMaskElt(i);
27347 if (Idx >= HalfNumElts) {
27348 assert(Idx < (int)NumElts && "Shuffle mask chooses undef op");
27349 Idx -= HalfNumElts;
27350 }
27351 NewMask.push_back(Idx);
27352 }
27353 if (TLI.isShuffleMaskLegal(NewMask, VT)) {
27354 SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType());
27355 SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
27356 N0.getOperand(0), UndefVec);
27357 return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask);
27358 }
27359 }
27360
27361 // See if we can replace a shuffle with an insert_subvector.
27362 // e.g. v2i32 into v8i32:
27363 // shuffle(lhs,concat(rhs0,rhs1,rhs2,rhs3),0,1,2,3,10,11,6,7).
27364 // --> insert_subvector(lhs,rhs1,4).
27365 if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT) &&
27367 auto ShuffleToInsert = [&](SDValue LHS, SDValue RHS, ArrayRef<int> Mask) {
27368 // Ensure RHS subvectors are legal.
27369 assert(RHS.getOpcode() == ISD::CONCAT_VECTORS && "Can't find subvectors");
27370 EVT SubVT = RHS.getOperand(0).getValueType();
27371 int NumSubVecs = RHS.getNumOperands();
27372 int NumSubElts = SubVT.getVectorNumElements();
27373 assert((NumElts % NumSubElts) == 0 && "Subvector mismatch");
27374 if (!TLI.isTypeLegal(SubVT))
27375 return SDValue();
27376
27377 // Don't bother if we have an unary shuffle (matches undef + LHS elts).
27378 if (all_of(Mask, [NumElts](int M) { return M < (int)NumElts; }))
27379 return SDValue();
27380
27381 // Search [NumSubElts] spans for RHS sequence.
27382 // TODO: Can we avoid nested loops to increase performance?
27383 SmallVector<int> InsertionMask(NumElts);
27384 for (int SubVec = 0; SubVec != NumSubVecs; ++SubVec) {
27385 for (int SubIdx = 0; SubIdx != (int)NumElts; SubIdx += NumSubElts) {
27386 // Reset mask to identity.
27387 std::iota(InsertionMask.begin(), InsertionMask.end(), 0);
27388
27389 // Add subvector insertion.
27390 std::iota(InsertionMask.begin() + SubIdx,
27391 InsertionMask.begin() + SubIdx + NumSubElts,
27392 NumElts + (SubVec * NumSubElts));
27393
27394 // See if the shuffle mask matches the reference insertion mask.
27395 bool MatchingShuffle = true;
27396 for (int i = 0; i != (int)NumElts; ++i) {
27397 int ExpectIdx = InsertionMask[i];
27398 int ActualIdx = Mask[i];
27399 if (0 <= ActualIdx && ExpectIdx != ActualIdx) {
27400 MatchingShuffle = false;
27401 break;
27402 }
27403 }
27404
27405 if (MatchingShuffle)
27406 return DAG.getInsertSubvector(SDLoc(N), LHS, RHS.getOperand(SubVec),
27407 SubIdx);
27408 }
27409 }
27410 return SDValue();
27411 };
27412 ArrayRef<int> Mask = SVN->getMask();
27413 if (N1.getOpcode() == ISD::CONCAT_VECTORS)
27414 if (SDValue InsertN1 = ShuffleToInsert(N0, N1, Mask))
27415 return InsertN1;
27416 if (N0.getOpcode() == ISD::CONCAT_VECTORS) {
27417 SmallVector<int> CommuteMask(Mask);
27419 if (SDValue InsertN0 = ShuffleToInsert(N1, N0, CommuteMask))
27420 return InsertN0;
27421 }
27422 }
27423
27424 // If we're not performing a select/blend shuffle, see if we can convert the
27425 // shuffle into a AND node, with all the out-of-lane elements are known zero.
27426 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
27427 bool IsInLaneMask = true;
27428 ArrayRef<int> Mask = SVN->getMask();
27429 SmallVector<int, 16> ClearMask(NumElts, -1);
27430 APInt DemandedLHS = APInt::getZero(NumElts);
27431 APInt DemandedRHS = APInt::getZero(NumElts);
27432 for (int I = 0; I != (int)NumElts; ++I) {
27433 int M = Mask[I];
27434 if (M < 0)
27435 continue;
27436 ClearMask[I] = M == I ? I : (I + NumElts);
27437 IsInLaneMask &= (M == I) || (M == (int)(I + NumElts));
27438 if (M != I) {
27439 APInt &Demanded = M < (int)NumElts ? DemandedLHS : DemandedRHS;
27440 Demanded.setBit(M % NumElts);
27441 }
27442 }
27443 // TODO: Should we try to mask with N1 as well?
27444 if (!IsInLaneMask && (!DemandedLHS.isZero() || !DemandedRHS.isZero()) &&
27445 (DemandedLHS.isZero() || DAG.MaskedVectorIsZero(N0, DemandedLHS)) &&
27446 (DemandedRHS.isZero() || DAG.MaskedVectorIsZero(N1, DemandedRHS))) {
27447 SDLoc DL(N);
27448 EVT IntVT = VT.changeVectorElementTypeToInteger();
27449 EVT IntSVT = VT.getVectorElementType().changeTypeToInteger();
27450 // Transform the type to a legal type so that the buildvector constant
27451 // elements are not illegal. Make sure that the result is larger than the
27452 // original type, incase the value is split into two (eg i64->i32).
27453 if (!TLI.isTypeLegal(IntSVT) && LegalTypes)
27454 IntSVT = TLI.getTypeToTransformTo(*DAG.getContext(), IntSVT);
27455 if (IntSVT.getSizeInBits() >= IntVT.getScalarSizeInBits()) {
27456 SDValue ZeroElt = DAG.getConstant(0, DL, IntSVT);
27457 SDValue AllOnesElt = DAG.getAllOnesConstant(DL, IntSVT);
27458 SmallVector<SDValue, 16> AndMask(NumElts, DAG.getUNDEF(IntSVT));
27459 for (int I = 0; I != (int)NumElts; ++I)
27460 if (0 <= Mask[I])
27461 AndMask[I] = Mask[I] == I ? AllOnesElt : ZeroElt;
27462
27463 // See if a clear mask is legal instead of going via
27464 // XformToShuffleWithZero which loses UNDEF mask elements.
27465 if (TLI.isVectorClearMaskLegal(ClearMask, IntVT))
27466 return DAG.getBitcast(
27467 VT, DAG.getVectorShuffle(IntVT, DL, DAG.getBitcast(IntVT, N0),
27468 DAG.getConstant(0, DL, IntVT), ClearMask));
27469
27470 if (TLI.isOperationLegalOrCustom(ISD::AND, IntVT))
27471 return DAG.getBitcast(
27472 VT, DAG.getNode(ISD::AND, DL, IntVT, DAG.getBitcast(IntVT, N0),
27473 DAG.getBuildVector(IntVT, DL, AndMask)));
27474 }
27475 }
27476 }
27477
27478 // Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
27479 // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
27480 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
27481 if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
27482 return Res;
27483
27484 // If this shuffle only has a single input that is a bitcasted shuffle,
27485 // attempt to merge the 2 shuffles and suitably bitcast the inputs/output
27486 // back to their original types.
27487 if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
27488 N1.isUndef() && Level < AfterLegalizeVectorOps &&
27489 TLI.isTypeLegal(VT)) {
27490
27492 if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
27493 EVT SVT = VT.getScalarType();
27494 EVT InnerVT = BC0->getValueType(0);
27495 EVT InnerSVT = InnerVT.getScalarType();
27496
27497 // Determine which shuffle works with the smaller scalar type.
27498 EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
27499 EVT ScaleSVT = ScaleVT.getScalarType();
27500
27501 if (TLI.isTypeLegal(ScaleVT) &&
27502 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
27503 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
27504 int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
27505 int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
27506
27507 // Scale the shuffle masks to the smaller scalar type.
27508 ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
27509 SmallVector<int, 8> InnerMask;
27510 SmallVector<int, 8> OuterMask;
27511 narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask);
27512 narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask);
27513
27514 // Merge the shuffle masks.
27515 SmallVector<int, 8> NewMask;
27516 for (int M : OuterMask)
27517 NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
27518
27519 // Test for shuffle mask legality over both commutations.
27520 SDValue SV0 = BC0->getOperand(0);
27521 SDValue SV1 = BC0->getOperand(1);
27522 bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
27523 if (!LegalMask) {
27524 std::swap(SV0, SV1);
27526 LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
27527 }
27528
27529 if (LegalMask) {
27530 SV0 = DAG.getBitcast(ScaleVT, SV0);
27531 SV1 = DAG.getBitcast(ScaleVT, SV1);
27532 return DAG.getBitcast(
27533 VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
27534 }
27535 }
27536 }
27537 }
27538
27539 // Match shuffles of bitcasts, so long as the mask can be treated as the
27540 // larger type.
27541 if (SDValue V = combineShuffleOfBitcast(SVN, DAG, TLI, LegalOperations))
27542 return V;
27543
27544 // Compute the combined shuffle mask for a shuffle with SV0 as the first
27545 // operand, and SV1 as the second operand.
27546 // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false
27547 // Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true
27548 auto MergeInnerShuffle =
27549 [NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN,
27550 ShuffleVectorSDNode *OtherSVN, SDValue N1,
27551 const TargetLowering &TLI, SDValue &SV0, SDValue &SV1,
27552 SmallVectorImpl<int> &Mask) -> bool {
27553 // Don't try to fold splats; they're likely to simplify somehow, or they
27554 // might be free.
27555 if (OtherSVN->isSplat())
27556 return false;
27557
27558 SV0 = SV1 = SDValue();
27559 Mask.clear();
27560
27561 for (unsigned i = 0; i != NumElts; ++i) {
27562 int Idx = SVN->getMaskElt(i);
27563 if (Idx < 0) {
27564 // Propagate Undef.
27565 Mask.push_back(Idx);
27566 continue;
27567 }
27568
27569 if (Commute)
27570 Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts);
27571
27572 SDValue CurrentVec;
27573 if (Idx < (int)NumElts) {
27574 // This shuffle index refers to the inner shuffle N0. Lookup the inner
27575 // shuffle mask to identify which vector is actually referenced.
27576 Idx = OtherSVN->getMaskElt(Idx);
27577 if (Idx < 0) {
27578 // Propagate Undef.
27579 Mask.push_back(Idx);
27580 continue;
27581 }
27582 CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0)
27583 : OtherSVN->getOperand(1);
27584 } else {
27585 // This shuffle index references an element within N1.
27586 CurrentVec = N1;
27587 }
27588
27589 // Simple case where 'CurrentVec' is UNDEF.
27590 if (CurrentVec.isUndef()) {
27591 Mask.push_back(-1);
27592 continue;
27593 }
27594
27595 // Canonicalize the shuffle index. We don't know yet if CurrentVec
27596 // will be the first or second operand of the combined shuffle.
27597 Idx = Idx % NumElts;
27598 if (!SV0.getNode() || SV0 == CurrentVec) {
27599 // Ok. CurrentVec is the left hand side.
27600 // Update the mask accordingly.
27601 SV0 = CurrentVec;
27602 Mask.push_back(Idx);
27603 continue;
27604 }
27605 if (!SV1.getNode() || SV1 == CurrentVec) {
27606 // Ok. CurrentVec is the right hand side.
27607 // Update the mask accordingly.
27608 SV1 = CurrentVec;
27609 Mask.push_back(Idx + NumElts);
27610 continue;
27611 }
27612
27613 // Last chance - see if the vector is another shuffle and if it
27614 // uses one of the existing candidate shuffle ops.
27615 if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) {
27616 int InnerIdx = CurrentSVN->getMaskElt(Idx);
27617 if (InnerIdx < 0) {
27618 Mask.push_back(-1);
27619 continue;
27620 }
27621 SDValue InnerVec = (InnerIdx < (int)NumElts)
27622 ? CurrentSVN->getOperand(0)
27623 : CurrentSVN->getOperand(1);
27624 if (InnerVec.isUndef()) {
27625 Mask.push_back(-1);
27626 continue;
27627 }
27628 InnerIdx %= NumElts;
27629 if (InnerVec == SV0) {
27630 Mask.push_back(InnerIdx);
27631 continue;
27632 }
27633 if (InnerVec == SV1) {
27634 Mask.push_back(InnerIdx + NumElts);
27635 continue;
27636 }
27637 }
27638
27639 // Bail out if we cannot convert the shuffle pair into a single shuffle.
27640 return false;
27641 }
27642
27643 if (llvm::all_of(Mask, [](int M) { return M < 0; }))
27644 return true;
27645
27646 // Avoid introducing shuffles with illegal mask.
27647 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
27648 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
27649 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
27650 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
27651 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
27652 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
27653 if (TLI.isShuffleMaskLegal(Mask, VT))
27654 return true;
27655
27656 std::swap(SV0, SV1);
27658 return TLI.isShuffleMaskLegal(Mask, VT);
27659 };
27660
27661 if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
27662 // Canonicalize shuffles according to rules:
27663 // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
27664 // shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
27665 // shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
27666 if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
27668 // The incoming shuffle must be of the same type as the result of the
27669 // current shuffle.
27670 assert(N1->getOperand(0).getValueType() == VT &&
27671 "Shuffle types don't match");
27672
27673 SDValue SV0 = N1->getOperand(0);
27674 SDValue SV1 = N1->getOperand(1);
27675 bool HasSameOp0 = N0 == SV0;
27676 bool IsSV1Undef = SV1.isUndef();
27677 if (HasSameOp0 || IsSV1Undef || N0 == SV1)
27678 // Commute the operands of this shuffle so merging below will trigger.
27679 return DAG.getCommutedVectorShuffle(*SVN);
27680 }
27681
27682 // Canonicalize splat shuffles to the RHS to improve merging below.
27683 // shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u))
27684 if (N0.getOpcode() == ISD::VECTOR_SHUFFLE &&
27685 N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
27686 cast<ShuffleVectorSDNode>(N0)->isSplat() &&
27687 !cast<ShuffleVectorSDNode>(N1)->isSplat()) {
27688 return DAG.getCommutedVectorShuffle(*SVN);
27689 }
27690
27691 // Try to fold according to rules:
27692 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
27693 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
27694 // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
27695 // Don't try to fold shuffles with illegal type.
27696 // Only fold if this shuffle is the only user of the other shuffle.
27697 // Try matching shuffle(C,shuffle(A,B)) commutted patterns as well.
27698 for (int i = 0; i != 2; ++i) {
27699 if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE &&
27700 N->isOnlyUserOf(N->getOperand(i).getNode())) {
27701 // The incoming shuffle must be of the same type as the result of the
27702 // current shuffle.
27703 auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i));
27704 assert(OtherSV->getOperand(0).getValueType() == VT &&
27705 "Shuffle types don't match");
27706
27707 SDValue SV0, SV1;
27708 SmallVector<int, 4> Mask;
27709 if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI,
27710 SV0, SV1, Mask)) {
27711 // Check if all indices in Mask are Undef. In case, propagate Undef.
27712 if (llvm::all_of(Mask, [](int M) { return M < 0; }))
27713 return DAG.getUNDEF(VT);
27714
27715 return DAG.getVectorShuffle(VT, SDLoc(N),
27716 SV0 ? SV0 : DAG.getUNDEF(VT),
27717 SV1 ? SV1 : DAG.getUNDEF(VT), Mask);
27718 }
27719 }
27720 }
27721
27722 // Merge shuffles through binops if we are able to merge it with at least
27723 // one other shuffles.
27724 // shuffle(bop(shuffle(x,y),shuffle(z,w)),undef)
27725 // shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d)))
27726 unsigned SrcOpcode = N0.getOpcode();
27727 if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) &&
27728 (N1.isUndef() ||
27729 (SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) {
27730 // Get binop source ops, or just pass on the undef.
27731 SDValue Op00 = N0.getOperand(0);
27732 SDValue Op01 = N0.getOperand(1);
27733 SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0);
27734 SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1);
27735 // TODO: We might be able to relax the VT check but we don't currently
27736 // have any isBinOp() that has different result/ops VTs so play safe until
27737 // we have test coverage.
27738 if (Op00.getValueType() == VT && Op10.getValueType() == VT &&
27739 Op01.getValueType() == VT && Op11.getValueType() == VT &&
27740 (Op00.getOpcode() == ISD::VECTOR_SHUFFLE ||
27741 Op10.getOpcode() == ISD::VECTOR_SHUFFLE ||
27742 Op01.getOpcode() == ISD::VECTOR_SHUFFLE ||
27743 Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) {
27744 auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1,
27745 SmallVectorImpl<int> &Mask, bool LeftOp,
27746 bool Commute) {
27747 SDValue InnerN = Commute ? N1 : N0;
27748 SDValue Op0 = LeftOp ? Op00 : Op01;
27749 SDValue Op1 = LeftOp ? Op10 : Op11;
27750 if (Commute)
27751 std::swap(Op0, Op1);
27752 // Only accept the merged shuffle if we don't introduce undef elements,
27753 // or the inner shuffle already contained undef elements.
27754 auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0);
27755 return SVN0 && InnerN->isOnlyUserOf(SVN0) &&
27756 MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1,
27757 Mask) &&
27758 (llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) ||
27759 llvm::none_of(Mask, [](int M) { return M < 0; }));
27760 };
27761
27762 // Ensure we don't increase the number of shuffles - we must merge a
27763 // shuffle from at least one of the LHS and RHS ops.
27764 bool MergedLeft = false;
27765 SDValue LeftSV0, LeftSV1;
27766 SmallVector<int, 4> LeftMask;
27767 if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) ||
27768 CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) {
27769 MergedLeft = true;
27770 } else {
27771 LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end());
27772 LeftSV0 = Op00, LeftSV1 = Op10;
27773 }
27774
27775 bool MergedRight = false;
27776 SDValue RightSV0, RightSV1;
27777 SmallVector<int, 4> RightMask;
27778 if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) ||
27779 CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) {
27780 MergedRight = true;
27781 } else {
27782 RightMask.assign(SVN->getMask().begin(), SVN->getMask().end());
27783 RightSV0 = Op01, RightSV1 = Op11;
27784 }
27785
27786 if (MergedLeft || MergedRight) {
27787 SDLoc DL(N);
27789 VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT),
27790 LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask);
27792 VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT),
27793 RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask);
27794 return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS);
27795 }
27796 }
27797 }
27798 }
27799
27800 if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
27801 return V;
27802
27803 // Match shuffles that can be converted to ISD::ZERO_EXTEND_VECTOR_INREG.
27804 // Perform this really late, because it could eliminate knowledge
27805 // of undef elements created by this shuffle.
27806 if (Level < AfterLegalizeTypes)
27807 if (SDValue V = combineShuffleToZeroExtendVectorInReg(SVN, DAG, TLI,
27808 LegalOperations))
27809 return V;
27810
27811 return SDValue();
27812}
27813
27814SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
27815 EVT VT = N->getValueType(0);
27816 if (!VT.isFixedLengthVector())
27817 return SDValue();
27818
27819 // Try to convert a scalar binop with an extracted vector element to a vector
27820 // binop. This is intended to reduce potentially expensive register moves.
27821 // TODO: Check if both operands are extracted.
27822 // TODO: How to prefer scalar/vector ops with multiple uses of the extact?
27823 // TODO: Generalize this, so it can be called from visitINSERT_VECTOR_ELT().
27824 SDValue Scalar = N->getOperand(0);
27825 unsigned Opcode = Scalar.getOpcode();
27826 EVT VecEltVT = VT.getScalarType();
27827 if (Scalar.hasOneUse() && Scalar->getNumValues() == 1 &&
27828 TLI.isBinOp(Opcode) && Scalar.getValueType() == VecEltVT &&
27829 Scalar.getOperand(0).getValueType() == VecEltVT &&
27830 Scalar.getOperand(1).getValueType() == VecEltVT &&
27831 Scalar->isOnlyUserOf(Scalar.getOperand(0).getNode()) &&
27832 Scalar->isOnlyUserOf(Scalar.getOperand(1).getNode()) &&
27833 DAG.isSafeToSpeculativelyExecute(Opcode) && hasOperation(Opcode, VT)) {
27834 // Match an extract element and get a shuffle mask equivalent.
27835 SmallVector<int, 8> ShufMask(VT.getVectorNumElements(), -1);
27836
27837 for (int i : {0, 1}) {
27838 // s2v (bo (extelt V, Idx), C) --> shuffle (bo V, C'), {Idx, -1, -1...}
27839 // s2v (bo C, (extelt V, Idx)) --> shuffle (bo C', V), {Idx, -1, -1...}
27840 SDValue EE = Scalar.getOperand(i);
27841 auto *C = dyn_cast<ConstantSDNode>(Scalar.getOperand(i ? 0 : 1));
27842 if (C && EE.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
27843 EE.getOperand(0).getValueType() == VT &&
27845 // Mask = {ExtractIndex, undef, undef....}
27846 ShufMask[0] = EE.getConstantOperandVal(1);
27847 // Make sure the shuffle is legal if we are crossing lanes.
27848 if (TLI.isShuffleMaskLegal(ShufMask, VT)) {
27849 SDLoc DL(N);
27850 SDValue V[] = {EE.getOperand(0),
27851 DAG.getConstant(C->getAPIntValue(), DL, VT)};
27852 SDValue VecBO = DAG.getNode(Opcode, DL, VT, V[i], V[1 - i]);
27853 return DAG.getVectorShuffle(VT, DL, VecBO, DAG.getUNDEF(VT),
27854 ShufMask);
27855 }
27856 }
27857 }
27858 }
27859
27860 // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
27861 // with a VECTOR_SHUFFLE and possible truncate.
27862 if (Opcode != ISD::EXTRACT_VECTOR_ELT ||
27863 !Scalar.getOperand(0).getValueType().isFixedLengthVector())
27864 return SDValue();
27865
27866 // If we have an implicit truncate, truncate here if it is legal.
27867 if (VecEltVT != Scalar.getValueType() &&
27868 Scalar.getValueType().isScalarInteger() && isTypeLegal(VecEltVT)) {
27869 SDValue Val = DAG.getNode(ISD::TRUNCATE, SDLoc(Scalar), VecEltVT, Scalar);
27870 return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
27871 }
27872
27873 auto *ExtIndexC = dyn_cast<ConstantSDNode>(Scalar.getOperand(1));
27874 if (!ExtIndexC)
27875 return SDValue();
27876
27877 SDValue SrcVec = Scalar.getOperand(0);
27878 EVT SrcVT = SrcVec.getValueType();
27879 unsigned SrcNumElts = SrcVT.getVectorNumElements();
27880 unsigned VTNumElts = VT.getVectorNumElements();
27881 if (VecEltVT == SrcVT.getScalarType() && VTNumElts <= SrcNumElts) {
27882 // Create a shuffle equivalent for scalar-to-vector: {ExtIndex, -1, -1, ...}
27883 SmallVector<int, 8> Mask(SrcNumElts, -1);
27884 Mask[0] = ExtIndexC->getZExtValue();
27885 SDValue LegalShuffle = TLI.buildLegalVectorShuffle(
27886 SrcVT, SDLoc(N), SrcVec, DAG.getUNDEF(SrcVT), Mask, DAG);
27887 if (!LegalShuffle)
27888 return SDValue();
27889
27890 // If the initial vector is the same size, the shuffle is the result.
27891 if (VT == SrcVT)
27892 return LegalShuffle;
27893
27894 // If not, shorten the shuffled vector.
27895 if (VTNumElts != SrcNumElts) {
27896 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N));
27897 EVT SubVT = EVT::getVectorVT(*DAG.getContext(),
27898 SrcVT.getVectorElementType(), VTNumElts);
27899 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, LegalShuffle,
27900 ZeroIdx);
27901 }
27902 }
27903
27904 return SDValue();
27905}
27906
27907SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
27908 EVT VT = N->getValueType(0);
27909 SDValue N0 = N->getOperand(0);
27910 SDValue N1 = N->getOperand(1);
27911 SDValue N2 = N->getOperand(2);
27912 uint64_t InsIdx = N->getConstantOperandVal(2);
27913
27914 // Remove insert of UNDEF/POISON.
27915 if (N1.isUndef()) {
27916 if (N1.getOpcode() == ISD::POISON || N0.getOpcode() == ISD::UNDEF)
27917 return N0;
27918 return DAG.getFreeze(N0);
27919 }
27920
27921 // If this is an insert of an extracted vector into an undef/poison vector, we
27922 // can just use the input to the extract if the types match, and can simplify
27923 // in some cases even if they don't.
27924 if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
27925 N1.getOperand(1) == N2) {
27926 EVT N1VT = N1.getValueType();
27927 EVT SrcVT = N1.getOperand(0).getValueType();
27928 if (SrcVT == VT) {
27929 // Need to ensure that result isn't more poisonous if skipping both the
27930 // extract+insert.
27931 if (N0.getOpcode() == ISD::POISON)
27932 return N1.getOperand(0);
27933 if (VT.isFixedLengthVector() && N1VT.isFixedLengthVector()) {
27934 unsigned SubVecNumElts = N1VT.getVectorNumElements();
27935 APInt EltMask = APInt::getBitsSet(VT.getVectorNumElements(), InsIdx,
27936 InsIdx + SubVecNumElts);
27937 if (DAG.isGuaranteedNotToBePoison(N1.getOperand(0), ~EltMask))
27938 return N1.getOperand(0);
27939 } else if (DAG.isGuaranteedNotToBePoison(N1.getOperand(0)))
27940 return N1.getOperand(0);
27941 }
27942 // TODO: To remove the zero check, need to adjust the offset to
27943 // a multiple of the new src type.
27944 if (isNullConstant(N2)) {
27945 if (VT.knownBitsGE(SrcVT) &&
27946 !(VT.isFixedLengthVector() && SrcVT.isScalableVector()))
27947 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
27948 VT, N0, N1.getOperand(0), N2);
27949 else if (VT.knownBitsLE(SrcVT) &&
27950 !(VT.isScalableVector() && SrcVT.isFixedLengthVector()))
27951 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
27952 VT, N1.getOperand(0), N2);
27953 }
27954 }
27955
27956 // Handle case where we've ended up inserting back into the source vector
27957 // we extracted the subvector from.
27958 // insert_subvector(N0, extract_subvector(N0, N2), N2) --> N0
27959 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && N1.getOperand(0) == N0 &&
27960 N1.getOperand(1) == N2)
27961 return N0;
27962
27963 // Simplify scalar inserts into an undef vector:
27964 // insert_subvector undef, (splat X), N2 -> splat X
27965 if (N0.isUndef() && N1.getOpcode() == ISD::SPLAT_VECTOR)
27966 if (DAG.isConstantValueOfAnyType(N1.getOperand(0)) || N1.hasOneUse())
27967 return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, N1.getOperand(0));
27968
27969 // insert_subvector (splat X), (splat X), N2 -> splat X
27970 if (N0.getOpcode() == ISD::SPLAT_VECTOR && N0.getOpcode() == N1.getOpcode() &&
27971 N0.getOperand(0) == N1.getOperand(0))
27972 return N0;
27973
27974 // If we are inserting a bitcast value into an undef, with the same
27975 // number of elements, just use the bitcast input of the extract.
27976 // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
27977 // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
27978 if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
27980 N1.getOperand(0).getOperand(1) == N2 &&
27982 VT.getVectorElementCount() &&
27984 VT.getSizeInBits()) {
27985 return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
27986 }
27987
27988 // If both N1 and N2 are bitcast values on which insert_subvector
27989 // would makes sense, pull the bitcast through.
27990 // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
27991 // BITCAST (INSERT_SUBVECTOR N0 N1 N2)
27992 if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
27993 SDValue CN0 = N0.getOperand(0);
27994 SDValue CN1 = N1.getOperand(0);
27995 EVT CN0VT = CN0.getValueType();
27996 EVT CN1VT = CN1.getValueType();
27997 if (CN0VT.isVector() && CN1VT.isVector() &&
27998 CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
28000 SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
28001 CN0.getValueType(), CN0, CN1, N2);
28002 return DAG.getBitcast(VT, NewINSERT);
28003 }
28004 }
28005
28006 // Combine INSERT_SUBVECTORs where we are inserting to the same index.
28007 // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
28008 // --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
28009 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
28010 N0.getOperand(1).getValueType() == N1.getValueType() &&
28011 N0.getOperand(2) == N2)
28012 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
28013 N1, N2);
28014
28015 // Eliminate an intermediate insert into an undef vector:
28016 // insert_subvector undef, (insert_subvector undef, X, 0), 0 -->
28017 // insert_subvector undef, X, 0
28018 if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
28019 N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)) &&
28020 isNullConstant(N2))
28021 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
28022 N1.getOperand(1), N2);
28023
28024 // Push subvector bitcasts to the output, adjusting the index as we go.
28025 // insert_subvector(bitcast(v), bitcast(s), c1)
28026 // -> bitcast(insert_subvector(v, s, c2))
28027 if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
28028 N1.getOpcode() == ISD::BITCAST) {
28029 SDValue N0Src = peekThroughBitcasts(N0);
28030 SDValue N1Src = peekThroughBitcasts(N1);
28031 EVT N0SrcSVT = N0Src.getValueType().getScalarType();
28032 EVT N1SrcSVT = N1Src.getValueType().getScalarType();
28033 if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
28034 N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
28035 EVT NewVT;
28036 SDLoc DL(N);
28037 SDValue NewIdx;
28038 LLVMContext &Ctx = *DAG.getContext();
28039 ElementCount NumElts = VT.getVectorElementCount();
28040 unsigned EltSizeInBits = VT.getScalarSizeInBits();
28041 if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
28042 unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
28043 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
28044 NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL);
28045 } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
28046 unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
28047 if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) {
28048 NewVT = EVT::getVectorVT(Ctx, N1SrcSVT,
28049 NumElts.divideCoefficientBy(Scale));
28050 NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL);
28051 }
28052 }
28053 if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
28054 SDValue Res = DAG.getBitcast(NewVT, N0Src);
28055 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
28056 return DAG.getBitcast(VT, Res);
28057 }
28058 }
28059 }
28060
28061 // Canonicalize insert_subvector dag nodes.
28062 // Example:
28063 // (insert_subvector (insert_subvector A, Idx0), Idx1)
28064 // -> (insert_subvector (insert_subvector A, Idx1), Idx0)
28065 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
28066 N1.getValueType() == N0.getOperand(1).getValueType()) {
28067 unsigned OtherIdx = N0.getConstantOperandVal(2);
28068 if (InsIdx < OtherIdx) {
28069 // Swap nodes.
28070 SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
28071 N0.getOperand(0), N1, N2);
28072 AddToWorklist(NewOp.getNode());
28073 return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
28074 VT, NewOp, N0.getOperand(1), N0.getOperand(2));
28075 }
28076 }
28077
28078 // If the input vector is a concatenation, and the insert replaces
28079 // one of the pieces, we can optimize into a single concat_vectors.
28080 if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
28081 N0.getOperand(0).getValueType() == N1.getValueType() &&
28084 unsigned Factor = N1.getValueType().getVectorMinNumElements();
28086 Ops[InsIdx / Factor] = N1;
28087 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
28088 }
28089
28090 // Simplify source operands based on insertion.
28092 return SDValue(N, 0);
28093
28094 return SDValue();
28095}
28096
28097SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
28098 SDValue N0 = N->getOperand(0);
28099
28100 // fold (fp_to_fp16 (fp16_to_fp op)) -> op
28101 if (N0->getOpcode() == ISD::FP16_TO_FP)
28102 return N0->getOperand(0);
28103
28104 return SDValue();
28105}
28106
28107SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
28108 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
28109 auto Op = N->getOpcode();
28110 assert((Op == ISD::FP16_TO_FP || Op == ISD::BF16_TO_FP) &&
28111 "opcode should be FP16_TO_FP or BF16_TO_FP.");
28112 SDValue N0 = N->getOperand(0);
28113
28114 // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) or
28115 // fold bf16_to_fp(op & 0xffff) -> bf16_to_fp(op)
28116 if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) {
28117 ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
28118 if (AndConst && AndConst->getAPIntValue() == 0xffff) {
28119 return DAG.getNode(Op, SDLoc(N), N->getValueType(0), N0.getOperand(0));
28120 }
28121 }
28122
28123 if (SDValue CastEliminated = eliminateFPCastPair(N))
28124 return CastEliminated;
28125
28126 // Sometimes constants manage to survive very late in the pipeline, e.g.,
28127 // because they are wrapped inside the <1 x f16> type. Try one last time to
28128 // get rid of them.
28129 SDValue Folded = DAG.FoldConstantArithmetic(N->getOpcode(), SDLoc(N),
28130 N->getValueType(0), {N0});
28131 return Folded;
28132}
28133
28134SDValue DAGCombiner::visitFP_TO_BF16(SDNode *N) {
28135 SDValue N0 = N->getOperand(0);
28136
28137 // fold (fp_to_bf16 (bf16_to_fp op)) -> op
28138 if (N0->getOpcode() == ISD::BF16_TO_FP)
28139 return N0->getOperand(0);
28140
28141 return SDValue();
28142}
28143
28144SDValue DAGCombiner::visitBF16_TO_FP(SDNode *N) {
28145 // fold bf16_to_fp(op & 0xffff) -> bf16_to_fp(op)
28146 return visitFP16_TO_FP(N);
28147}
28148
28149SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
28150 SDValue N0 = N->getOperand(0);
28151 EVT VT = N0.getValueType();
28152 unsigned Opcode = N->getOpcode();
28153
28154 // VECREDUCE over 1-element vector is just an extract.
28155 if (VT.getVectorElementCount().isScalar()) {
28156 SDLoc dl(N);
28157 SDValue Res =
28159 DAG.getVectorIdxConstant(0, dl));
28160 if (Res.getValueType() != N->getValueType(0))
28161 Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
28162 return Res;
28163 }
28164
28165 // On an boolean vector an and/or reduction is the same as a umin/umax
28166 // reduction. Convert them if the latter is legal while the former isn't.
28167 if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
28168 unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
28169 ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
28170 if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
28171 TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
28173 return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
28174 }
28175
28176 // vecreduce_or(insert_subvector(zero or undef, val)) -> vecreduce_or(val)
28177 // vecreduce_and(insert_subvector(ones or undef, val)) -> vecreduce_and(val)
28178 if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
28179 TLI.isTypeLegal(N0.getOperand(1).getValueType())) {
28180 SDValue Vec = N0.getOperand(0);
28181 SDValue Subvec = N0.getOperand(1);
28182 if ((Opcode == ISD::VECREDUCE_OR &&
28183 (N0.getOperand(0).isUndef() || isNullOrNullSplat(Vec))) ||
28184 (Opcode == ISD::VECREDUCE_AND &&
28185 (N0.getOperand(0).isUndef() || isAllOnesOrAllOnesSplat(Vec))))
28186 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), Subvec);
28187 }
28188
28189 // vecreduce_or(sext(x)) -> sext(vecreduce_or(x))
28190 // Same for zext and anyext, and for and/or/xor reductions.
28191 if ((Opcode == ISD::VECREDUCE_OR || Opcode == ISD::VECREDUCE_AND ||
28192 Opcode == ISD::VECREDUCE_XOR) &&
28193 (N0.getOpcode() == ISD::SIGN_EXTEND ||
28194 N0.getOpcode() == ISD::ZERO_EXTEND ||
28195 N0.getOpcode() == ISD::ANY_EXTEND) &&
28196 TLI.isOperationLegalOrCustom(Opcode, N0.getOperand(0).getValueType())) {
28197 SDValue Red = DAG.getNode(Opcode, SDLoc(N),
28199 N0.getOperand(0));
28200 return DAG.getNode(N0.getOpcode(), SDLoc(N), N->getValueType(0), Red);
28201 }
28202 return SDValue();
28203}
28204
28205SDValue DAGCombiner::visitVP_FSUB(SDNode *N) {
28206 SelectionDAG::FlagInserter FlagsInserter(DAG, N);
28207
28208 // FSUB -> FMA combines:
28209 if (SDValue Fused = visitFSUBForFMACombine<VPMatchContext>(N)) {
28210 AddToWorklist(Fused.getNode());
28211 return Fused;
28212 }
28213 return SDValue();
28214}
28215
28216SDValue DAGCombiner::visitVPOp(SDNode *N) {
28217
28218 if (N->getOpcode() == ISD::VP_GATHER)
28219 if (SDValue SD = visitVPGATHER(N))
28220 return SD;
28221
28222 if (N->getOpcode() == ISD::VP_SCATTER)
28223 if (SDValue SD = visitVPSCATTER(N))
28224 return SD;
28225
28226 if (N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD)
28227 if (SDValue SD = visitVP_STRIDED_LOAD(N))
28228 return SD;
28229
28230 if (N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE)
28231 if (SDValue SD = visitVP_STRIDED_STORE(N))
28232 return SD;
28233
28234 // VP operations in which all vector elements are disabled - either by
28235 // determining that the mask is all false or that the EVL is 0 - can be
28236 // eliminated.
28237 bool AreAllEltsDisabled = false;
28238 if (auto EVLIdx = ISD::getVPExplicitVectorLengthIdx(N->getOpcode()))
28239 AreAllEltsDisabled |= isNullConstant(N->getOperand(*EVLIdx));
28240 if (auto MaskIdx = ISD::getVPMaskIdx(N->getOpcode()))
28241 AreAllEltsDisabled |=
28242 ISD::isConstantSplatVectorAllZeros(N->getOperand(*MaskIdx).getNode());
28243
28244 // This is the only generic VP combine we support for now.
28245 if (!AreAllEltsDisabled) {
28246 switch (N->getOpcode()) {
28247 case ISD::VP_FADD:
28248 return visitVP_FADD(N);
28249 case ISD::VP_FSUB:
28250 return visitVP_FSUB(N);
28251 case ISD::VP_FMA:
28252 return visitFMA<VPMatchContext>(N);
28253 case ISD::VP_SELECT:
28254 return visitVP_SELECT(N);
28255 case ISD::VP_MUL:
28256 return visitMUL<VPMatchContext>(N);
28257 case ISD::VP_SUB:
28258 return foldSubCtlzNot<VPMatchContext>(N, DAG);
28259 default:
28260 break;
28261 }
28262 return SDValue();
28263 }
28264
28265 // Binary operations can be replaced by UNDEF.
28266 if (ISD::isVPBinaryOp(N->getOpcode()))
28267 return DAG.getUNDEF(N->getValueType(0));
28268
28269 // VP Memory operations can be replaced by either the chain (stores) or the
28270 // chain + undef (loads).
28271 if (const auto *MemSD = dyn_cast<MemSDNode>(N)) {
28272 if (MemSD->writeMem())
28273 return MemSD->getChain();
28274 return CombineTo(N, DAG.getUNDEF(N->getValueType(0)), MemSD->getChain());
28275 }
28276
28277 // Reduction operations return the start operand when no elements are active.
28278 if (ISD::isVPReduction(N->getOpcode()))
28279 return N->getOperand(0);
28280
28281 return SDValue();
28282}
28283
28284SDValue DAGCombiner::visitGET_FPENV_MEM(SDNode *N) {
28285 SDValue Chain = N->getOperand(0);
28286 SDValue Ptr = N->getOperand(1);
28287 EVT MemVT = cast<FPStateAccessSDNode>(N)->getMemoryVT();
28288
28289 // Check if the memory, where FP state is written to, is used only in a single
28290 // load operation.
28291 LoadSDNode *LdNode = nullptr;
28292 for (auto *U : Ptr->users()) {
28293 if (U == N)
28294 continue;
28295 if (auto *Ld = dyn_cast<LoadSDNode>(U)) {
28296 if (LdNode && LdNode != Ld)
28297 return SDValue();
28298 LdNode = Ld;
28299 continue;
28300 }
28301 return SDValue();
28302 }
28303 if (!LdNode || !LdNode->isSimple() || LdNode->isIndexed() ||
28304 !LdNode->getOffset().isUndef() || LdNode->getMemoryVT() != MemVT ||
28306 return SDValue();
28307
28308 // Check if the loaded value is used only in a store operation.
28309 StoreSDNode *StNode = nullptr;
28310 for (SDUse &U : LdNode->uses()) {
28311 if (U.getResNo() == 0) {
28312 if (auto *St = dyn_cast<StoreSDNode>(U.getUser())) {
28313 if (StNode)
28314 return SDValue();
28315 StNode = St;
28316 } else {
28317 return SDValue();
28318 }
28319 }
28320 }
28321 if (!StNode || !StNode->isSimple() || StNode->isIndexed() ||
28322 !StNode->getOffset().isUndef() || StNode->getMemoryVT() != MemVT ||
28323 !StNode->getChain().reachesChainWithoutSideEffects(SDValue(LdNode, 1)))
28324 return SDValue();
28325
28326 // Create new node GET_FPENV_MEM, which uses the store address to write FP
28327 // environment.
28328 SDValue Res = DAG.getGetFPEnv(Chain, SDLoc(N), StNode->getBasePtr(), MemVT,
28329 StNode->getMemOperand());
28330 CombineTo(StNode, Res, false);
28331 return Res;
28332}
28333
28334SDValue DAGCombiner::visitSET_FPENV_MEM(SDNode *N) {
28335 SDValue Chain = N->getOperand(0);
28336 SDValue Ptr = N->getOperand(1);
28337 EVT MemVT = cast<FPStateAccessSDNode>(N)->getMemoryVT();
28338
28339 // Check if the address of FP state is used also in a store operation only.
28340 StoreSDNode *StNode = nullptr;
28341 for (auto *U : Ptr->users()) {
28342 if (U == N)
28343 continue;
28344 if (auto *St = dyn_cast<StoreSDNode>(U)) {
28345 if (StNode && StNode != St)
28346 return SDValue();
28347 StNode = St;
28348 continue;
28349 }
28350 return SDValue();
28351 }
28352 if (!StNode || !StNode->isSimple() || StNode->isIndexed() ||
28353 !StNode->getOffset().isUndef() || StNode->getMemoryVT() != MemVT ||
28354 !Chain.reachesChainWithoutSideEffects(SDValue(StNode, 0)))
28355 return SDValue();
28356
28357 // Check if the stored value is loaded from some location and the loaded
28358 // value is used only in the store operation.
28359 SDValue StValue = StNode->getValue();
28360 auto *LdNode = dyn_cast<LoadSDNode>(StValue);
28361 if (!LdNode || !LdNode->isSimple() || LdNode->isIndexed() ||
28362 !LdNode->getOffset().isUndef() || LdNode->getMemoryVT() != MemVT ||
28363 !StNode->getChain().reachesChainWithoutSideEffects(SDValue(LdNode, 1)))
28364 return SDValue();
28365
28366 // Create new node SET_FPENV_MEM, which uses the load address to read FP
28367 // environment.
28368 SDValue Res =
28369 DAG.getSetFPEnv(LdNode->getChain(), SDLoc(N), LdNode->getBasePtr(), MemVT,
28370 LdNode->getMemOperand());
28371 return Res;
28372}
28373
28374/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
28375/// with the destination vector and a zero vector.
28376/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
28377/// vector_shuffle V, Zero, <0, 4, 2, 4>
28378SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
28379 assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
28380
28381 EVT VT = N->getValueType(0);
28382 SDValue LHS = N->getOperand(0);
28383 SDValue RHS = peekThroughBitcasts(N->getOperand(1));
28384 SDLoc DL(N);
28385
28386 // Make sure we're not running after operation legalization where it
28387 // may have custom lowered the vector shuffles.
28388 if (LegalOperations)
28389 return SDValue();
28390
28391 if (RHS.getOpcode() != ISD::BUILD_VECTOR)
28392 return SDValue();
28393
28394 EVT RVT = RHS.getValueType();
28395 unsigned NumElts = RHS.getNumOperands();
28396
28397 // Attempt to create a valid clear mask, splitting the mask into
28398 // sub elements and checking to see if each is
28399 // all zeros or all ones - suitable for shuffle masking.
28400 auto BuildClearMask = [&](int Split) {
28401 int NumSubElts = NumElts * Split;
28402 int NumSubBits = RVT.getScalarSizeInBits() / Split;
28403
28404 SmallVector<int, 8> Indices;
28405 for (int i = 0; i != NumSubElts; ++i) {
28406 int EltIdx = i / Split;
28407 int SubIdx = i % Split;
28408 SDValue Elt = RHS.getOperand(EltIdx);
28409 // X & undef --> 0 (not undef). So this lane must be converted to choose
28410 // from the zero constant vector (same as if the element had all 0-bits).
28411 if (Elt.isUndef()) {
28412 Indices.push_back(i + NumSubElts);
28413 continue;
28414 }
28415
28416 std::optional<APInt> Bits = Elt->bitcastToAPInt();
28417 if (!Bits)
28418 return SDValue();
28419
28420 // Extract the sub element from the constant bit mask.
28421 if (DAG.getDataLayout().isBigEndian())
28422 *Bits =
28423 Bits->extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits);
28424 else
28425 *Bits = Bits->extractBits(NumSubBits, SubIdx * NumSubBits);
28426
28427 if (Bits->isAllOnes())
28428 Indices.push_back(i);
28429 else if (*Bits == 0)
28430 Indices.push_back(i + NumSubElts);
28431 else
28432 return SDValue();
28433 }
28434
28435 // Let's see if the target supports this vector_shuffle.
28436 EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
28437 EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
28438 if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
28439 return SDValue();
28440
28441 SDValue Zero = DAG.getConstant(0, DL, ClearVT);
28442 return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
28443 DAG.getBitcast(ClearVT, LHS),
28444 Zero, Indices));
28445 };
28446
28447 // Determine maximum split level (byte level masking).
28448 int MaxSplit = 1;
28449 if (RVT.getScalarSizeInBits() % 8 == 0)
28450 MaxSplit = RVT.getScalarSizeInBits() / 8;
28451
28452 for (int Split = 1; Split <= MaxSplit; ++Split)
28453 if (RVT.getScalarSizeInBits() % Split == 0)
28454 if (SDValue S = BuildClearMask(Split))
28455 return S;
28456
28457 return SDValue();
28458}
28459
28460/// If a vector binop is performed on splat values, it may be profitable to
28461/// extract, scalarize, and insert/splat.
28463 const SDLoc &DL, bool LegalTypes) {
28464 SDValue N0 = N->getOperand(0);
28465 SDValue N1 = N->getOperand(1);
28466 unsigned Opcode = N->getOpcode();
28467 EVT VT = N->getValueType(0);
28468 EVT EltVT = VT.getVectorElementType();
28469 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
28470
28471 // TODO: Remove/replace the extract cost check? If the elements are available
28472 // as scalars, then there may be no extract cost. Should we ask if
28473 // inserting a scalar back into a vector is cheap instead?
28474 int Index0, Index1;
28475 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
28476 SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
28477 // Extract element from splat_vector should be free.
28478 // TODO: use DAG.isSplatValue instead?
28479 bool IsBothSplatVector = N0.getOpcode() == ISD::SPLAT_VECTOR &&
28481 if (!Src0 || !Src1 || Index0 != Index1 ||
28482 Src0.getValueType().getVectorElementType() != EltVT ||
28483 Src1.getValueType().getVectorElementType() != EltVT ||
28484 !(IsBothSplatVector || TLI.isExtractVecEltCheap(VT, Index0)) ||
28485 // If before type legalization, allow scalar types that will eventually be
28486 // made legal.
28488 Opcode, LegalTypes
28489 ? EltVT
28490 : TLI.getTypeToTransformTo(*DAG.getContext(), EltVT)))
28491 return SDValue();
28492
28493 // FIXME: Type legalization can't handle illegal MULHS/MULHU.
28494 if ((Opcode == ISD::MULHS || Opcode == ISD::MULHU) && !TLI.isTypeLegal(EltVT))
28495 return SDValue();
28496
28497 if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode()) {
28498 // All but one element should have an undef input, which will fold to a
28499 // constant or undef. Avoid splatting which would over-define potentially
28500 // undefined elements.
28501
28502 // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
28503 // build_vec ..undef, (bo X, Y), undef...
28504 SmallVector<SDValue, 16> EltsX, EltsY, EltsResult;
28505 DAG.ExtractVectorElements(Src0, EltsX);
28506 DAG.ExtractVectorElements(Src1, EltsY);
28507
28508 for (auto [X, Y] : zip(EltsX, EltsY))
28509 EltsResult.push_back(DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()));
28510 return DAG.getBuildVector(VT, DL, EltsResult);
28511 }
28512
28513 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL);
28514 SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC);
28515 SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC);
28516 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());
28517
28518 // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
28519 return DAG.getSplat(VT, DL, ScalarBO);
28520}
28521
28522/// Visit a vector cast operation, like FP_EXTEND.
28523SDValue DAGCombiner::SimplifyVCastOp(SDNode *N, const SDLoc &DL) {
28524 EVT VT = N->getValueType(0);
28525 assert(VT.isVector() && "SimplifyVCastOp only works on vectors!");
28526 EVT EltVT = VT.getVectorElementType();
28527 unsigned Opcode = N->getOpcode();
28528
28529 SDValue N0 = N->getOperand(0);
28530 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
28531
28532 // TODO: promote operation might be also good here?
28533 int Index0;
28534 SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
28535 if (Src0 &&
28536 (N0.getOpcode() == ISD::SPLAT_VECTOR ||
28537 TLI.isExtractVecEltCheap(VT, Index0)) &&
28538 TLI.isOperationLegalOrCustom(Opcode, EltVT) &&
28539 TLI.preferScalarizeSplat(N)) {
28540 EVT SrcVT = N0.getValueType();
28541 EVT SrcEltVT = SrcVT.getVectorElementType();
28542 if (!LegalTypes || TLI.isTypeLegal(SrcEltVT)) {
28543 SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL);
28544 SDValue Elt =
28545 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcEltVT, Src0, IndexC);
28546 SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, Elt, N->getFlags());
28547 if (VT.isScalableVector())
28548 return DAG.getSplatVector(VT, DL, ScalarBO);
28550 return DAG.getBuildVector(VT, DL, Ops);
28551 }
28552 }
28553
28554 return SDValue();
28555}
28556
28557/// Visit a binary vector operation, like ADD.
28558SDValue DAGCombiner::SimplifyVBinOp(SDNode *N, const SDLoc &DL) {
28559 EVT VT = N->getValueType(0);
28560 assert(VT.isVector() && "SimplifyVBinOp only works on vectors!");
28561
28562 SDValue LHS = N->getOperand(0);
28563 SDValue RHS = N->getOperand(1);
28564 unsigned Opcode = N->getOpcode();
28565 SDNodeFlags Flags = N->getFlags();
28566
28567 // Move unary shuffles with identical masks after a vector binop:
28568 // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
28569 // --> shuffle (VBinOp A, B), Undef, Mask
28570 // This does not require type legality checks because we are creating the
28571 // same types of operations that are in the original sequence. We do have to
28572 // restrict ops like integer div that have immediate UB (eg, div-by-zero)
28573 // though. This code is adapted from the identical transform in instcombine.
28574 if (DAG.isSafeToSpeculativelyExecute(Opcode)) {
28575 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
28576 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
28577 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
28578 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
28579 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
28580 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
28581 RHS.getOperand(0), Flags);
28582 SDValue UndefV = LHS.getOperand(1);
28583 return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
28584 }
28585
28586 // Try to sink a splat shuffle after a binop with a uniform constant.
28587 // This is limited to cases where neither the shuffle nor the constant have
28588 // undefined elements because that could be poison-unsafe or inhibit
28589 // demanded elements analysis. It is further limited to not change a splat
28590 // of an inserted scalar because that may be optimized better by
28591 // load-folding or other target-specific behaviors.
28592 if (isConstOrConstSplat(RHS) && Shuf0 && all_equal(Shuf0->getMask()) &&
28593 Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() &&
28594 Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
28595 // binop (splat X), (splat C) --> splat (binop X, C)
28596 SDValue X = Shuf0->getOperand(0);
28597 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags);
28598 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
28599 Shuf0->getMask());
28600 }
28601 if (isConstOrConstSplat(LHS) && Shuf1 && all_equal(Shuf1->getMask()) &&
28602 Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() &&
28603 Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
28604 // binop (splat C), (splat X) --> splat (binop C, X)
28605 SDValue X = Shuf1->getOperand(0);
28606 SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags);
28607 return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
28608 Shuf1->getMask());
28609 }
28610 }
28611
28612 // The following pattern is likely to emerge with vector reduction ops. Moving
28613 // the binary operation ahead of insertion may allow using a narrower vector
28614 // instruction that has better performance than the wide version of the op:
28615 // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
28616 if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
28617 RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
28618 LHS.getOperand(2) == RHS.getOperand(2) &&
28619 (LHS.hasOneUse() || RHS.hasOneUse())) {
28620 SDValue X = LHS.getOperand(1);
28621 SDValue Y = RHS.getOperand(1);
28622 SDValue Z = LHS.getOperand(2);
28623 EVT NarrowVT = X.getValueType();
28624 if (NarrowVT == Y.getValueType() &&
28625 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT,
28626 LegalOperations)) {
28627 // (binop undef, undef) may not return undef, so compute that result.
28628 SDValue VecC =
28629 DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
28630 SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
28631 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
28632 }
28633 }
28634
28635 // Make sure all but the first op are undef or constant.
28636 auto ConcatWithConstantOrUndef = [](SDValue Concat) {
28637 return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
28638 all_of(drop_begin(Concat->ops()), [](const SDValue &Op) {
28639 return Op.isUndef() ||
28640 ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
28641 });
28642 };
28643
28644 // The following pattern is likely to emerge with vector reduction ops. Moving
28645 // the binary operation ahead of the concat may allow using a narrower vector
28646 // instruction that has better performance than the wide version of the op:
28647 // VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
28648 // concat (VBinOp X, Y), VecC
28649 if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
28650 (LHS.hasOneUse() || RHS.hasOneUse())) {
28651 EVT NarrowVT = LHS.getOperand(0).getValueType();
28652 if (NarrowVT == RHS.getOperand(0).getValueType() &&
28653 TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
28654 unsigned NumOperands = LHS.getNumOperands();
28655 SmallVector<SDValue, 4> ConcatOps;
28656 for (unsigned i = 0; i != NumOperands; ++i) {
28657 // This constant fold for operands 1 and up.
28658 ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
28659 RHS.getOperand(i)));
28660 }
28661
28662 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
28663 }
28664 }
28665
28666 if (SDValue V = scalarizeBinOpOfSplats(N, DAG, DL, LegalTypes))
28667 return V;
28668
28669 return SDValue();
28670}
28671
28672SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
28673 SDValue N2) {
28674 assert(N0.getOpcode() == ISD::SETCC &&
28675 "First argument must be a SetCC node!");
28676
28677 SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
28678 cast<CondCodeSDNode>(N0.getOperand(2))->get());
28679
28680 // If we got a simplified select_cc node back from SimplifySelectCC, then
28681 // break it down into a new SETCC node, and a new SELECT node, and then return
28682 // the SELECT node, since we were called with a SELECT node.
28683 if (SCC.getNode()) {
28684 // Check to see if we got a select_cc back (to turn into setcc/select).
28685 // Otherwise, just return whatever node we got back, like fabs.
28686 if (SCC.getOpcode() == ISD::SELECT_CC) {
28687 const SDNodeFlags Flags = N0->getFlags();
28688 SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
28689 N0.getValueType(),
28690 SCC.getOperand(0), SCC.getOperand(1),
28691 SCC.getOperand(4), Flags);
28692 AddToWorklist(SETCC.getNode());
28693 return DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
28694 SCC.getOperand(2), SCC.getOperand(3), Flags);
28695 }
28696
28697 return SCC;
28698 }
28699 return SDValue();
28700}
28701
28702/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
28703/// being selected between, see if we can simplify the select. Callers of this
28704/// should assume that TheSelect is deleted if this returns true. As such, they
28705/// should return the appropriate thing (e.g. the node) back to the top-level of
28706/// the DAG combiner loop to avoid it being looked at.
28707bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
28708 SDValue RHS) {
28709 // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
28710 // The select + setcc is redundant, because fsqrt returns NaN for X < 0.
28711 if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
28712 if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
28713 // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
28714 SDValue Sqrt = RHS;
28715 ISD::CondCode CC;
28716 SDValue CmpLHS;
28717 const ConstantFPSDNode *Zero = nullptr;
28718
28719 if (TheSelect->getOpcode() == ISD::SELECT_CC) {
28720 CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
28721 CmpLHS = TheSelect->getOperand(0);
28722 Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
28723 } else {
28724 // SELECT or VSELECT
28725 SDValue Cmp = TheSelect->getOperand(0);
28726 if (Cmp.getOpcode() == ISD::SETCC) {
28727 CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
28728 CmpLHS = Cmp.getOperand(0);
28729 Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
28730 }
28731 }
28732 if (Zero && Zero->isZero() &&
28733 Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
28734 CC == ISD::SETULT || CC == ISD::SETLT)) {
28735 // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
28736 CombineTo(TheSelect, Sqrt);
28737 return true;
28738 }
28739 }
28740 }
28741 // Cannot simplify select with vector condition
28742 if (TheSelect->getOperand(0).getValueType().isVector()) return false;
28743
28744 // If this is a select from two identical things, try to pull the operation
28745 // through the select.
28746 if (LHS.getOpcode() != RHS.getOpcode() ||
28747 !LHS.hasOneUse() || !RHS.hasOneUse())
28748 return false;
28749
28750 // If this is a load and the token chain is identical, replace the select
28751 // of two loads with a load through a select of the address to load from.
28752 // This triggers in things like "select bool X, 10.0, 123.0" after the FP
28753 // constants have been dropped into the constant pool.
28754 if (LHS.getOpcode() == ISD::LOAD) {
28755 LoadSDNode *LLD = cast<LoadSDNode>(LHS);
28756 LoadSDNode *RLD = cast<LoadSDNode>(RHS);
28757
28758 // Token chains must be identical.
28759 if (LHS.getOperand(0) != RHS.getOperand(0) ||
28760 // Do not let this transformation reduce the number of volatile loads.
28761 // Be conservative for atomics for the moment
28762 // TODO: This does appear to be legal for unordered atomics (see D66309)
28763 !LLD->isSimple() || !RLD->isSimple() ||
28764 // FIXME: If either is a pre/post inc/dec load,
28765 // we'd need to split out the address adjustment.
28766 LLD->isIndexed() || RLD->isIndexed() ||
28767 // If this is an EXTLOAD, the VT's must match.
28768 LLD->getMemoryVT() != RLD->getMemoryVT() ||
28769 // If this is an EXTLOAD, the kind of extension must match.
28770 (LLD->getExtensionType() != RLD->getExtensionType() &&
28771 // The only exception is if one of the extensions is anyext.
28772 LLD->getExtensionType() != ISD::EXTLOAD &&
28773 RLD->getExtensionType() != ISD::EXTLOAD) ||
28774 // FIXME: this discards src value information. This is
28775 // over-conservative. It would be beneficial to be able to remember
28776 // both potential memory locations. Since we are discarding
28777 // src value info, don't do the transformation if the memory
28778 // locations are not in the default address space.
28779 LLD->getPointerInfo().getAddrSpace() != 0 ||
28780 RLD->getPointerInfo().getAddrSpace() != 0 ||
28781 // We can't produce a CMOV of a TargetFrameIndex since we won't
28782 // generate the address generation required.
28785 !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
28786 LLD->getBasePtr().getValueType()))
28787 return false;
28788
28789 // The loads must not depend on one another.
28790 if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
28791 return false;
28792
28793 // Check that the select condition doesn't reach either load. If so,
28794 // folding this will induce a cycle into the DAG. If not, this is safe to
28795 // xform, so create a select of the addresses.
28796
28797 SmallPtrSet<const SDNode *, 32> Visited;
28799
28800 // Always fail if LLD and RLD are not independent. TheSelect is a
28801 // predecessor to all Nodes in question so we need not search past it.
28802
28803 Visited.insert(TheSelect);
28804 Worklist.push_back(LLD);
28805 Worklist.push_back(RLD);
28806
28807 if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
28808 SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
28809 return false;
28810
28811 SDValue Addr;
28812 if (TheSelect->getOpcode() == ISD::SELECT) {
28813 // We cannot do this optimization if any pair of {RLD, LLD} is a
28814 // predecessor to {RLD, LLD, CondNode}. As we've already compared the
28815 // Loads, we only need to check if CondNode is a successor to one of the
28816 // loads. We can further avoid this if there's no use of their chain
28817 // value.
28818 SDNode *CondNode = TheSelect->getOperand(0).getNode();
28819 Worklist.push_back(CondNode);
28820
28821 if ((LLD->hasAnyUseOfValue(1) &&
28822 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
28823 (RLD->hasAnyUseOfValue(1) &&
28824 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
28825 return false;
28826
28827 Addr = DAG.getSelect(SDLoc(TheSelect),
28828 LLD->getBasePtr().getValueType(),
28829 TheSelect->getOperand(0), LLD->getBasePtr(),
28830 RLD->getBasePtr());
28831 } else { // Otherwise SELECT_CC
28832 // We cannot do this optimization if any pair of {RLD, LLD} is a
28833 // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
28834 // the Loads, we only need to check if CondLHS/CondRHS is a successor to
28835 // one of the loads. We can further avoid this if there's no use of their
28836 // chain value.
28837
28838 SDNode *CondLHS = TheSelect->getOperand(0).getNode();
28839 SDNode *CondRHS = TheSelect->getOperand(1).getNode();
28840 Worklist.push_back(CondLHS);
28841 Worklist.push_back(CondRHS);
28842
28843 if ((LLD->hasAnyUseOfValue(1) &&
28844 SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
28845 (RLD->hasAnyUseOfValue(1) &&
28846 SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
28847 return false;
28848
28849 Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
28850 LLD->getBasePtr().getValueType(),
28851 TheSelect->getOperand(0),
28852 TheSelect->getOperand(1),
28853 LLD->getBasePtr(), RLD->getBasePtr(),
28854 TheSelect->getOperand(4));
28855 }
28856
28857 SDValue Load;
28858 // It is safe to replace the two loads if they have different alignments,
28859 // but the new load must be the minimum (most restrictive) alignment of the
28860 // inputs.
28861 Align Alignment = std::min(LLD->getAlign(), RLD->getAlign());
28862 MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
28863 if (!RLD->isInvariant())
28864 MMOFlags &= ~MachineMemOperand::MOInvariant;
28865 if (!RLD->isDereferenceable())
28866 MMOFlags &= ~MachineMemOperand::MODereferenceable;
28867 if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
28868 // FIXME: Discards pointer and AA info.
28869 Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
28870 LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
28871 MMOFlags);
28872 } else {
28873 // FIXME: Discards pointer and AA info.
28874 Load = DAG.getExtLoad(
28876 : LLD->getExtensionType(),
28877 SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
28878 MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
28879 }
28880
28881 // Users of the select now use the result of the load.
28882 CombineTo(TheSelect, Load);
28883
28884 // Users of the old loads now use the new load's chain. We know the
28885 // old-load value is dead now.
28886 CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
28887 CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
28888 return true;
28889 }
28890
28891 return false;
28892}
28893
28894/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
28895/// bitwise 'and'.
28896SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
28897 SDValue N1, SDValue N2, SDValue N3,
28898 ISD::CondCode CC) {
28899 // If this is a select where the false operand is zero and the compare is a
28900 // check of the sign bit, see if we can perform the "gzip trick":
28901 // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
28902 // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
28903 EVT XType = N0.getValueType();
28904 EVT AType = N2.getValueType();
28905 if (!isNullConstant(N3) || !XType.bitsGE(AType))
28906 return SDValue();
28907
28908 // If the comparison is testing for a positive value, we have to invert
28909 // the sign bit mask, so only do that transform if the target has a bitwise
28910 // 'and not' instruction (the invert is free).
28911 if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
28912 // (X > -1) ? A : 0
28913 // (X > 0) ? X : 0 <-- This is canonical signed max.
28914 if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
28915 return SDValue();
28916 } else if (CC == ISD::SETLT) {
28917 // (X < 0) ? A : 0
28918 // (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
28919 if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
28920 return SDValue();
28921 } else {
28922 return SDValue();
28923 }
28924
28925 // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
28926 // constant.
28927 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
28928 if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
28929 unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
28930 if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) {
28931 SDValue ShiftAmt = DAG.getShiftAmountConstant(ShCt, XType, DL);
28932 SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
28933 AddToWorklist(Shift.getNode());
28934
28935 if (XType.bitsGT(AType)) {
28936 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
28937 AddToWorklist(Shift.getNode());
28938 }
28939
28940 if (CC == ISD::SETGT)
28941 Shift = DAG.getNOT(DL, Shift, AType);
28942
28943 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
28944 }
28945 }
28946
28947 unsigned ShCt = XType.getSizeInBits() - 1;
28948 if (TLI.shouldAvoidTransformToShift(XType, ShCt))
28949 return SDValue();
28950
28951 SDValue ShiftAmt = DAG.getShiftAmountConstant(ShCt, XType, DL);
28952 SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
28953 AddToWorklist(Shift.getNode());
28954
28955 if (XType.bitsGT(AType)) {
28956 Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
28957 AddToWorklist(Shift.getNode());
28958 }
28959
28960 if (CC == ISD::SETGT)
28961 Shift = DAG.getNOT(DL, Shift, AType);
28962
28963 return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
28964}
28965
28966// Fold select(cc, binop(), binop()) -> binop(select(), select()) etc.
28967SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) {
28968 SDValue N0 = N->getOperand(0);
28969 SDValue N1 = N->getOperand(1);
28970 SDValue N2 = N->getOperand(2);
28971 SDLoc DL(N);
28972
28973 unsigned BinOpc = N1.getOpcode();
28974 if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc) ||
28975 (N1.getResNo() != N2.getResNo()))
28976 return SDValue();
28977
28978 // The use checks are intentionally on SDNode because we may be dealing
28979 // with opcodes that produce more than one SDValue.
28980 // TODO: Do we really need to check N0 (the condition operand of the select)?
28981 // But removing that clause could cause an infinite loop...
28982 if (!N0->hasOneUse() || !N1->hasOneUse() || !N2->hasOneUse())
28983 return SDValue();
28984
28985 // Binops may include opcodes that return multiple values, so all values
28986 // must be created/propagated from the newly created binops below.
28987 SDVTList OpVTs = N1->getVTList();
28988
28989 // Fold select(cond, binop(x, y), binop(z, y))
28990 // --> binop(select(cond, x, z), y)
28991 if (N1.getOperand(1) == N2.getOperand(1)) {
28992 SDValue N10 = N1.getOperand(0);
28993 SDValue N20 = N2.getOperand(0);
28994 SDValue NewSel = DAG.getSelect(DL, N10.getValueType(), N0, N10, N20);
28995 SDNodeFlags Flags = N1->getFlags() & N2->getFlags();
28996 SDValue NewBinOp =
28997 DAG.getNode(BinOpc, DL, OpVTs, {NewSel, N1.getOperand(1)}, Flags);
28998 return SDValue(NewBinOp.getNode(), N1.getResNo());
28999 }
29000
29001 // Fold select(cond, binop(x, y), binop(x, z))
29002 // --> binop(x, select(cond, y, z))
29003 if (N1.getOperand(0) == N2.getOperand(0)) {
29004 SDValue N11 = N1.getOperand(1);
29005 SDValue N21 = N2.getOperand(1);
29006 // Second op VT might be different (e.g. shift amount type)
29007 if (N11.getValueType() == N21.getValueType()) {
29008 SDValue NewSel = DAG.getSelect(DL, N11.getValueType(), N0, N11, N21);
29009 SDNodeFlags Flags = N1->getFlags() & N2->getFlags();
29010 SDValue NewBinOp =
29011 DAG.getNode(BinOpc, DL, OpVTs, {N1.getOperand(0), NewSel}, Flags);
29012 return SDValue(NewBinOp.getNode(), N1.getResNo());
29013 }
29014 }
29015
29016 // TODO: Handle isCommutativeBinOp patterns as well?
29017 return SDValue();
29018}
29019
29020// Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values.
29021SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) {
29022 SDValue N0 = N->getOperand(0);
29023 EVT VT = N->getValueType(0);
29024 bool IsFabs = N->getOpcode() == ISD::FABS;
29025 bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT);
29026
29027 if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse())
29028 return SDValue();
29029
29030 SDValue Int = N0.getOperand(0);
29031 EVT IntVT = Int.getValueType();
29032
29033 // The operand to cast should be integer.
29034 if (!IntVT.isInteger() || IntVT.isVector())
29035 return SDValue();
29036
29037 // (fneg (bitconvert x)) -> (bitconvert (xor x sign))
29038 // (fabs (bitconvert x)) -> (bitconvert (and x ~sign))
29039 APInt SignMask;
29040 if (N0.getValueType().isVector()) {
29041 // For vector, create a sign mask (0x80...) or its inverse (for fabs,
29042 // 0x7f...) per element and splat it.
29044 if (IsFabs)
29045 SignMask = ~SignMask;
29046 SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
29047 } else {
29048 // For scalar, just use the sign mask (0x80... or the inverse, 0x7f...)
29049 SignMask = APInt::getSignMask(IntVT.getSizeInBits());
29050 if (IsFabs)
29051 SignMask = ~SignMask;
29052 }
29053 SDLoc DL(N0);
29054 Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int,
29055 DAG.getConstant(SignMask, DL, IntVT));
29056 AddToWorklist(Int.getNode());
29057 return DAG.getBitcast(VT, Int);
29058}
29059
29060/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
29061/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
29062/// in it. This may be a win when the constant is not otherwise available
29063/// because it replaces two constant pool loads with one.
29064SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
29065 const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
29066 ISD::CondCode CC) {
29068 return SDValue();
29069
29070 // If we are before legalize types, we want the other legalization to happen
29071 // first (for example, to avoid messing with soft float).
29072 auto *TV = dyn_cast<ConstantFPSDNode>(N2);
29073 auto *FV = dyn_cast<ConstantFPSDNode>(N3);
29074 EVT VT = N2.getValueType();
29075 if (!TV || !FV || !TLI.isTypeLegal(VT))
29076 return SDValue();
29077
29078 // If a constant can be materialized without loads, this does not make sense.
29080 TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
29081 TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
29082 return SDValue();
29083
29084 // If both constants have multiple uses, then we won't need to do an extra
29085 // load. The values are likely around in registers for other users.
29086 if (!TV->hasOneUse() && !FV->hasOneUse())
29087 return SDValue();
29088
29089 Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
29090 const_cast<ConstantFP*>(TV->getConstantFPValue()) };
29091 Type *FPTy = Elts[0]->getType();
29092 const DataLayout &TD = DAG.getDataLayout();
29093
29094 // Create a ConstantArray of the two constants.
29095 Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
29096 SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
29097 TD.getPrefTypeAlign(FPTy));
29098 Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
29099
29100 // Get offsets to the 0 and 1 elements of the array, so we can select between
29101 // them.
29102 SDValue Zero = DAG.getIntPtrConstant(0, DL);
29103 unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
29104 SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
29105 SDValue Cond =
29106 DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
29107 AddToWorklist(Cond.getNode());
29108 SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
29109 AddToWorklist(CstOffset.getNode());
29110 CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
29111 AddToWorklist(CPIdx.getNode());
29112 return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
29114 DAG.getMachineFunction()), Alignment);
29115}
29116
29117/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
29118/// where 'cond' is the comparison specified by CC.
29119SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
29120 SDValue N2, SDValue N3, ISD::CondCode CC,
29121 bool NotExtCompare) {
29122 // (x ? y : y) -> y.
29123 if (N2 == N3) return N2;
29124
29125 EVT CmpOpVT = N0.getValueType();
29126 EVT CmpResVT = getSetCCResultType(CmpOpVT);
29127 EVT VT = N2.getValueType();
29128 auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
29129 auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
29130 auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
29131
29132 // Determine if the condition we're dealing with is constant.
29133 if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
29134 AddToWorklist(SCC.getNode());
29135 if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
29136 // fold select_cc true, x, y -> x
29137 // fold select_cc false, x, y -> y
29138 return !(SCCC->isZero()) ? N2 : N3;
29139 }
29140 }
29141
29142 if (SDValue V =
29143 convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
29144 return V;
29145
29146 if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
29147 return V;
29148
29149 // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x)) A)
29150 // where y is has a single bit set.
29151 // A plaintext description would be, we can turn the SELECT_CC into an AND
29152 // when the condition can be materialized as an all-ones register. Any
29153 // single bit-test can be materialized as an all-ones register with
29154 // shift-left and shift-right-arith.
29155 if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
29156 N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
29157 SDValue AndLHS = N0->getOperand(0);
29158 auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
29159 if (ConstAndRHS && ConstAndRHS->getAPIntValue().popcount() == 1) {
29160 // Shift the tested bit over the sign bit.
29161 const APInt &AndMask = ConstAndRHS->getAPIntValue();
29162 if (TLI.shouldFoldSelectWithSingleBitTest(VT, AndMask)) {
29163 unsigned ShCt = AndMask.getBitWidth() - 1;
29164 SDValue ShlAmt = DAG.getShiftAmountConstant(AndMask.countl_zero(), VT,
29165 SDLoc(AndLHS));
29166 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
29167
29168 // Now arithmetic right shift it all the way over, so the result is
29169 // either all-ones, or zero.
29170 SDValue ShrAmt = DAG.getShiftAmountConstant(ShCt, VT, SDLoc(Shl));
29171 SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
29172
29173 return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
29174 }
29175 }
29176 }
29177
29178 // fold select C, 16, 0 -> shl C, 4
29179 bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
29180 bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
29181
29182 if ((Fold || Swap) &&
29183 TLI.getBooleanContents(CmpOpVT) ==
29185 (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT)) &&
29187
29188 if (Swap) {
29189 CC = ISD::getSetCCInverse(CC, CmpOpVT);
29190 std::swap(N2C, N3C);
29191 }
29192
29193 // If the caller doesn't want us to simplify this into a zext of a compare,
29194 // don't do it.
29195 if (NotExtCompare && N2C->isOne())
29196 return SDValue();
29197
29198 SDValue Temp, SCC;
29199 // zext (setcc n0, n1)
29200 if (LegalTypes) {
29201 SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
29202 Temp = DAG.getZExtOrTrunc(SCC, SDLoc(N2), VT);
29203 } else {
29204 SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
29205 Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
29206 }
29207
29208 AddToWorklist(SCC.getNode());
29209 AddToWorklist(Temp.getNode());
29210
29211 if (N2C->isOne())
29212 return Temp;
29213
29214 unsigned ShCt = N2C->getAPIntValue().logBase2();
29215 if (TLI.shouldAvoidTransformToShift(VT, ShCt))
29216 return SDValue();
29217
29218 // shl setcc result by log2 n2c
29219 return DAG.getNode(
29220 ISD::SHL, DL, N2.getValueType(), Temp,
29221 DAG.getShiftAmountConstant(ShCt, N2.getValueType(), SDLoc(Temp)));
29222 }
29223
29224 // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
29225 // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
29226 // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
29227 // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
29228 // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
29229 // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
29230 // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
29231 // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
29232 if (N1C && N1C->isZero() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
29233 SDValue ValueOnZero = N2;
29234 SDValue Count = N3;
29235 // If the condition is NE instead of E, swap the operands.
29236 if (CC == ISD::SETNE)
29237 std::swap(ValueOnZero, Count);
29238 // Check if the value on zero is a constant equal to the bits in the type.
29239 if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
29240 if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
29241 // If the other operand is cttz/cttz_zero_undef of N0, and cttz is
29242 // legal, combine to just cttz.
29243 if ((Count.getOpcode() == ISD::CTTZ ||
29244 Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
29245 N0 == Count.getOperand(0) &&
29246 (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
29247 return DAG.getNode(ISD::CTTZ, DL, VT, N0);
29248 // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
29249 // legal, combine to just ctlz.
29250 if ((Count.getOpcode() == ISD::CTLZ ||
29251 Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
29252 N0 == Count.getOperand(0) &&
29253 (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
29254 return DAG.getNode(ISD::CTLZ, DL, VT, N0);
29255 }
29256 }
29257 }
29258
29259 // Fold select_cc setgt X, -1, C, ~C -> xor (ashr X, BW-1), C
29260 // Fold select_cc setlt X, 0, C, ~C -> xor (ashr X, BW-1), ~C
29261 if (!NotExtCompare && N1C && N2C && N3C &&
29262 N2C->getAPIntValue() == ~N3C->getAPIntValue() &&
29263 ((N1C->isAllOnes() && CC == ISD::SETGT) ||
29264 (N1C->isZero() && CC == ISD::SETLT)) &&
29265 !TLI.shouldAvoidTransformToShift(VT, CmpOpVT.getScalarSizeInBits() - 1)) {
29266 SDValue ASHR =
29267 DAG.getNode(ISD::SRA, DL, CmpOpVT, N0,
29269 CmpOpVT.getScalarSizeInBits() - 1, CmpOpVT, DL));
29270 return DAG.getNode(ISD::XOR, DL, VT, DAG.getSExtOrTrunc(ASHR, DL, VT),
29271 DAG.getSExtOrTrunc(CC == ISD::SETLT ? N3 : N2, DL, VT));
29272 }
29273
29274 // Fold sign pattern select_cc setgt X, -1, 1, -1 -> or (ashr X, BW-1), 1
29275 if (CC == ISD::SETGT && N1C && N2C && N3C && N1C->isAllOnes() &&
29276 N2C->isOne() && N3C->isAllOnes() &&
29277 !TLI.shouldAvoidTransformToShift(CmpOpVT,
29278 CmpOpVT.getScalarSizeInBits() - 1)) {
29279 SDValue ASHR =
29280 DAG.getNode(ISD::SRA, DL, CmpOpVT, N0,
29282 CmpOpVT.getScalarSizeInBits() - 1, CmpOpVT, DL));
29283 return DAG.getNode(ISD::OR, DL, VT, DAG.getSExtOrTrunc(ASHR, DL, VT),
29284 DAG.getConstant(1, DL, VT));
29285 }
29286
29287 if (SDValue S = PerformMinMaxFpToSatCombine(N0, N1, N2, N3, CC, DAG))
29288 return S;
29289 if (SDValue S = PerformUMinFpToSatCombine(N0, N1, N2, N3, CC, DAG))
29290 return S;
29291 if (SDValue ABD = foldSelectToABD(N0, N1, N2, N3, CC, DL))
29292 return ABD;
29293
29294 return SDValue();
29295}
29296
29298 const TargetLowering &TLI) {
29299 // Match a pattern such as:
29300 // (X | (X >> C0) | (X >> C1) | ...) & Mask
29301 // This extracts contiguous parts of X and ORs them together before comparing.
29302 // We can optimize this so that we directly check (X & SomeMask) instead,
29303 // eliminating the shifts.
29304
29305 EVT VT = Root.getValueType();
29306
29307 // TODO: Support vectors?
29308 if (!VT.isScalarInteger() || Root.getOpcode() != ISD::AND)
29309 return SDValue();
29310
29311 SDValue N0 = Root.getOperand(0);
29312 SDValue N1 = Root.getOperand(1);
29313
29314 if (N0.getOpcode() != ISD::OR || !isa<ConstantSDNode>(N1))
29315 return SDValue();
29316
29317 APInt RootMask = cast<ConstantSDNode>(N1)->getAsAPIntVal();
29318
29319 SDValue Src;
29320 const auto IsSrc = [&](SDValue V) {
29321 if (!Src) {
29322 Src = V;
29323 return true;
29324 }
29325
29326 return Src == V;
29327 };
29328
29329 SmallVector<SDValue> Worklist = {N0};
29330 APInt PartsMask(VT.getSizeInBits(), 0);
29331 while (!Worklist.empty()) {
29332 SDValue V = Worklist.pop_back_val();
29333 if (!V.hasOneUse() && (Src && Src != V))
29334 return SDValue();
29335
29336 if (V.getOpcode() == ISD::OR) {
29337 Worklist.push_back(V.getOperand(0));
29338 Worklist.push_back(V.getOperand(1));
29339 continue;
29340 }
29341
29342 if (V.getOpcode() == ISD::SRL) {
29343 SDValue ShiftSrc = V.getOperand(0);
29344 SDValue ShiftAmt = V.getOperand(1);
29345
29346 if (!IsSrc(ShiftSrc) || !isa<ConstantSDNode>(ShiftAmt))
29347 return SDValue();
29348
29349 auto ShiftAmtVal = cast<ConstantSDNode>(ShiftAmt)->getAsZExtVal();
29350 if (ShiftAmtVal > RootMask.getBitWidth())
29351 return SDValue();
29352
29353 PartsMask |= (RootMask << ShiftAmtVal);
29354 continue;
29355 }
29356
29357 if (IsSrc(V)) {
29358 PartsMask |= RootMask;
29359 continue;
29360 }
29361
29362 return SDValue();
29363 }
29364
29365 if (!Src)
29366 return SDValue();
29367
29368 SDLoc DL(Root);
29369 return DAG.getNode(ISD::AND, DL, VT,
29370 {Src, DAG.getConstant(PartsMask, DL, VT)});
29371}
29372
29373/// This is a stub for TargetLowering::SimplifySetCC.
29374SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
29375 ISD::CondCode Cond, const SDLoc &DL,
29376 bool foldBooleans) {
29377 TargetLowering::DAGCombinerInfo
29378 DagCombineInfo(DAG, Level, false, this);
29379 if (SDValue C =
29380 TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL))
29381 return C;
29382
29384 isNullConstant(N1)) {
29385
29386 if (SDValue Res = matchMergedBFX(N0, DAG, TLI))
29387 return DAG.getSetCC(DL, VT, Res, N1, Cond);
29388 }
29389
29390 return SDValue();
29391}
29392
29393/// Given an ISD::SDIV node expressing a divide by constant, return
29394/// a DAG expression to select that will generate the same value by multiplying
29395/// by a magic number.
29396/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
29397SDValue DAGCombiner::BuildSDIV(SDNode *N) {
29398 // when optimising for minimum size, we don't want to expand a div to a mul
29399 // and a shift.
29401 return SDValue();
29402
29404 if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, LegalTypes, Built)) {
29405 for (SDNode *N : Built)
29406 AddToWorklist(N);
29407 return S;
29408 }
29409
29410 return SDValue();
29411}
29412
29413/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
29414/// DAG expression that will generate the same value by right shifting.
29415SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
29416 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
29417 if (!C)
29418 return SDValue();
29419
29420 // Avoid division by zero.
29421 if (C->isZero())
29422 return SDValue();
29423
29425 if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
29426 for (SDNode *N : Built)
29427 AddToWorklist(N);
29428 return S;
29429 }
29430
29431 return SDValue();
29432}
29433
29434/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
29435/// expression that will generate the same value by multiplying by a magic
29436/// number.
29437/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
29438SDValue DAGCombiner::BuildUDIV(SDNode *N) {
29439 // when optimising for minimum size, we don't want to expand a div to a mul
29440 // and a shift.
29442 return SDValue();
29443
29445 if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, LegalTypes, Built)) {
29446 for (SDNode *N : Built)
29447 AddToWorklist(N);
29448 return S;
29449 }
29450
29451 return SDValue();
29452}
29453
29454/// Given an ISD::SREM node expressing a remainder by constant power of 2,
29455/// return a DAG expression that will generate the same value.
29456SDValue DAGCombiner::BuildSREMPow2(SDNode *N) {
29457 ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
29458 if (!C)
29459 return SDValue();
29460
29461 // Avoid division by zero.
29462 if (C->isZero())
29463 return SDValue();
29464
29466 if (SDValue S = TLI.BuildSREMPow2(N, C->getAPIntValue(), DAG, Built)) {
29467 for (SDNode *N : Built)
29468 AddToWorklist(N);
29469 return S;
29470 }
29471
29472 return SDValue();
29473}
29474
29475// This is basically just a port of takeLog2 from InstCombineMulDivRem.cpp
29476//
29477// Returns the node that represents `Log2(Op)`. This may create a new node. If
29478// we are unable to compute `Log2(Op)` its return `SDValue()`.
29479//
29480// All nodes will be created at `DL` and the output will be of type `VT`.
29481//
29482// This will only return `Log2(Op)` if we can prove `Op` is non-zero. Set
29483// `AssumeNonZero` if this function should simply assume (not require proving
29484// `Op` is non-zero).
29486 SDValue Op, unsigned Depth,
29487 bool AssumeNonZero) {
29488 assert(VT.isInteger() && "Only integer types are supported!");
29489
29490 auto PeekThroughCastsAndTrunc = [](SDValue V) {
29491 while (true) {
29492 switch (V.getOpcode()) {
29493 case ISD::TRUNCATE:
29494 case ISD::ZERO_EXTEND:
29495 V = V.getOperand(0);
29496 break;
29497 default:
29498 return V;
29499 }
29500 }
29501 };
29502
29503 if (VT.isScalableVector())
29504 return SDValue();
29505
29506 Op = PeekThroughCastsAndTrunc(Op);
29507
29508 // Helper for determining whether a value is a power-2 constant scalar or a
29509 // vector of such elements.
29510 SmallVector<APInt> Pow2Constants;
29511 auto IsPowerOfTwo = [&Pow2Constants](ConstantSDNode *C) {
29512 if (C->isZero() || C->isOpaque())
29513 return false;
29514 // TODO: We may also be able to support negative powers of 2 here.
29515 if (C->getAPIntValue().isPowerOf2()) {
29516 Pow2Constants.emplace_back(C->getAPIntValue());
29517 return true;
29518 }
29519 return false;
29520 };
29521
29522 if (ISD::matchUnaryPredicate(Op, IsPowerOfTwo)) {
29523 if (!VT.isVector())
29524 return DAG.getConstant(Pow2Constants.back().logBase2(), DL, VT);
29525 // We need to create a build vector
29526 if (Op.getOpcode() == ISD::SPLAT_VECTOR)
29527 return DAG.getSplat(VT, DL,
29528 DAG.getConstant(Pow2Constants.back().logBase2(), DL,
29529 VT.getScalarType()));
29530 SmallVector<SDValue> Log2Ops;
29531 for (const APInt &Pow2 : Pow2Constants)
29532 Log2Ops.emplace_back(
29533 DAG.getConstant(Pow2.logBase2(), DL, VT.getScalarType()));
29534 return DAG.getBuildVector(VT, DL, Log2Ops);
29535 }
29536
29537 if (Depth >= DAG.MaxRecursionDepth)
29538 return SDValue();
29539
29540 auto CastToVT = [&](EVT NewVT, SDValue ToCast) {
29541 // Peek through zero extend. We can't peek through truncates since this
29542 // function is called on a shift amount. We must ensure that all of the bits
29543 // above the original shift amount are zeroed by this function.
29544 while (ToCast.getOpcode() == ISD::ZERO_EXTEND)
29545 ToCast = ToCast.getOperand(0);
29546 EVT CurVT = ToCast.getValueType();
29547 if (NewVT == CurVT)
29548 return ToCast;
29549
29550 if (NewVT.getSizeInBits() == CurVT.getSizeInBits())
29551 return DAG.getBitcast(NewVT, ToCast);
29552
29553 return DAG.getZExtOrTrunc(ToCast, DL, NewVT);
29554 };
29555
29556 // log2(X << Y) -> log2(X) + Y
29557 if (Op.getOpcode() == ISD::SHL) {
29558 // 1 << Y and X nuw/nsw << Y are all non-zero.
29559 if (AssumeNonZero || Op->getFlags().hasNoUnsignedWrap() ||
29560 Op->getFlags().hasNoSignedWrap() || isOneConstant(Op.getOperand(0)))
29561 if (SDValue LogX = takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(0),
29562 Depth + 1, AssumeNonZero))
29563 return DAG.getNode(ISD::ADD, DL, VT, LogX,
29564 CastToVT(VT, Op.getOperand(1)));
29565 }
29566
29567 // c ? X : Y -> c ? Log2(X) : Log2(Y)
29568 if ((Op.getOpcode() == ISD::SELECT || Op.getOpcode() == ISD::VSELECT) &&
29569 Op.hasOneUse()) {
29570 if (SDValue LogX = takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(1),
29571 Depth + 1, AssumeNonZero))
29572 if (SDValue LogY = takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(2),
29573 Depth + 1, AssumeNonZero))
29574 return DAG.getSelect(DL, VT, Op.getOperand(0), LogX, LogY);
29575 }
29576
29577 // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
29578 // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
29579 if ((Op.getOpcode() == ISD::UMIN || Op.getOpcode() == ISD::UMAX) &&
29580 Op.hasOneUse()) {
29581 // Use AssumeNonZero as false here. Otherwise we can hit case where
29582 // log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow).
29583 if (SDValue LogX =
29584 takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(0), Depth + 1,
29585 /*AssumeNonZero*/ false))
29586 if (SDValue LogY =
29587 takeInexpensiveLog2(DAG, DL, VT, Op.getOperand(1), Depth + 1,
29588 /*AssumeNonZero*/ false))
29589 return DAG.getNode(Op.getOpcode(), DL, VT, LogX, LogY);
29590 }
29591
29592 return SDValue();
29593}
29594
29595/// Determines the LogBase2 value for a non-null input value using the
29596/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
29597SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL,
29598 bool KnownNonZero, bool InexpensiveOnly,
29599 std::optional<EVT> OutVT) {
29600 EVT VT = OutVT ? *OutVT : V.getValueType();
29601 SDValue InexpensiveLogBase2 =
29602 takeInexpensiveLog2(DAG, DL, VT, V, /*Depth*/ 0, KnownNonZero);
29603 if (InexpensiveLogBase2 || InexpensiveOnly || !DAG.isKnownToBeAPowerOfTwo(V))
29604 return InexpensiveLogBase2;
29605
29606 SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
29607 SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT);
29608 SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
29609 return LogBase2;
29610}
29611
29612/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
29613/// For the reciprocal, we need to find the zero of the function:
29614/// F(X) = 1/X - A [which has a zero at X = 1/A]
29615/// =>
29616/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
29617/// does not require additional intermediate precision]
29618/// For the last iteration, put numerator N into it to gain more precision:
29619/// Result = N X_i + X_i (N - N A X_i)
29620SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op,
29621 SDNodeFlags Flags) {
29622 if (LegalDAG)
29623 return SDValue();
29624
29625 // TODO: Handle extended types?
29626 EVT VT = Op.getValueType();
29627 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 &&
29628 VT.getScalarType() != MVT::f64)
29629 return SDValue();
29630
29631 // If estimates are explicitly disabled for this function, we're done.
29632 MachineFunction &MF = DAG.getMachineFunction();
29633 int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
29634 if (Enabled == TLI.ReciprocalEstimate::Disabled)
29635 return SDValue();
29636
29637 // Estimates may be explicitly enabled for this type with a custom number of
29638 // refinement steps.
29639 int Iterations = TLI.getDivRefinementSteps(VT, MF);
29640 if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
29641 AddToWorklist(Est.getNode());
29642
29643 SDLoc DL(Op);
29644 if (Iterations) {
29645 SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
29646
29647 // Newton iterations: Est = Est + Est (N - Arg * Est)
29648 // If this is the last iteration, also multiply by the numerator.
29649 for (int i = 0; i < Iterations; ++i) {
29650 SDValue MulEst = Est;
29651
29652 if (i == Iterations - 1) {
29653 MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags);
29654 AddToWorklist(MulEst.getNode());
29655 }
29656
29657 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags);
29658 AddToWorklist(NewEst.getNode());
29659
29660 NewEst = DAG.getNode(ISD::FSUB, DL, VT,
29661 (i == Iterations - 1 ? N : FPOne), NewEst, Flags);
29662 AddToWorklist(NewEst.getNode());
29663
29664 NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
29665 AddToWorklist(NewEst.getNode());
29666
29667 Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags);
29668 AddToWorklist(Est.getNode());
29669 }
29670 } else {
29671 // If no iterations are available, multiply with N.
29672 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags);
29673 AddToWorklist(Est.getNode());
29674 }
29675
29676 return Est;
29677 }
29678
29679 return SDValue();
29680}
29681
29682/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
29683/// For the reciprocal sqrt, we need to find the zero of the function:
29684/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
29685/// =>
29686/// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
29687/// As a result, we precompute A/2 prior to the iteration loop.
29688SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
29689 unsigned Iterations,
29690 SDNodeFlags Flags, bool Reciprocal) {
29691 EVT VT = Arg.getValueType();
29692 SDLoc DL(Arg);
29693 SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
29694
29695 // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
29696 // this entire sequence requires only one FP constant.
29697 SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
29698 HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
29699
29700 // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
29701 for (unsigned i = 0; i < Iterations; ++i) {
29702 SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
29703 NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
29704 NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
29705 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
29706 }
29707
29708 // If non-reciprocal square root is requested, multiply the result by Arg.
29709 if (!Reciprocal)
29710 Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
29711
29712 return Est;
29713}
29714
29715/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
29716/// For the reciprocal sqrt, we need to find the zero of the function:
29717/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
29718/// =>
29719/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
29720SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
29721 unsigned Iterations,
29722 SDNodeFlags Flags, bool Reciprocal) {
29723 EVT VT = Arg.getValueType();
29724 SDLoc DL(Arg);
29725 SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
29726 SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
29727
29728 // This routine must enter the loop below to work correctly
29729 // when (Reciprocal == false).
29730 assert(Iterations > 0);
29731
29732 // Newton iterations for reciprocal square root:
29733 // E = (E * -0.5) * ((A * E) * E + -3.0)
29734 for (unsigned i = 0; i < Iterations; ++i) {
29735 SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
29736 SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
29737 SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
29738
29739 // When calculating a square root at the last iteration build:
29740 // S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
29741 // (notice a common subexpression)
29742 SDValue LHS;
29743 if (Reciprocal || (i + 1) < Iterations) {
29744 // RSQRT: LHS = (E * -0.5)
29745 LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
29746 } else {
29747 // SQRT: LHS = (A * E) * -0.5
29748 LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
29749 }
29750
29751 Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
29752 }
29753
29754 return Est;
29755}
29756
29757/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
29758/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
29759/// Op can be zero.
29760SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
29761 bool Reciprocal) {
29762 if (LegalDAG)
29763 return SDValue();
29764
29765 // TODO: Handle extended types?
29766 EVT VT = Op.getValueType();
29767 if (VT.getScalarType() != MVT::f16 && VT.getScalarType() != MVT::f32 &&
29768 VT.getScalarType() != MVT::f64)
29769 return SDValue();
29770
29771 // If estimates are explicitly disabled for this function, we're done.
29772 MachineFunction &MF = DAG.getMachineFunction();
29773 int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
29774 if (Enabled == TLI.ReciprocalEstimate::Disabled)
29775 return SDValue();
29776
29777 // Estimates may be explicitly enabled for this type with a custom number of
29778 // refinement steps.
29779 int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
29780
29781 bool UseOneConstNR = false;
29782 if (SDValue Est =
29783 TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
29784 Reciprocal)) {
29785 AddToWorklist(Est.getNode());
29786
29787 if (Iterations > 0)
29788 Est = UseOneConstNR
29789 ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
29790 : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
29791 if (!Reciprocal) {
29792 SDLoc DL(Op);
29793 // Try the target specific test first.
29794 SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT));
29795
29796 // The estimate is now completely wrong if the input was exactly 0.0 or
29797 // possibly a denormal. Force the answer to 0.0 or value provided by
29798 // target for those cases.
29799 Est = DAG.getSelect(DL, VT, Test,
29800 TLI.getSqrtResultForDenormInput(Op, DAG), Est);
29801 }
29802 return Est;
29803 }
29804
29805 return SDValue();
29806}
29807
29808SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
29809 return buildSqrtEstimateImpl(Op, Flags, true);
29810}
29811
29812SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
29813 return buildSqrtEstimateImpl(Op, Flags, false);
29814}
29815
29816/// Return true if there is any possibility that the two addresses overlap.
29817bool DAGCombiner::mayAlias(SDNode *Op0, SDNode *Op1) const {
29818
29819 struct MemUseCharacteristics {
29820 bool IsVolatile;
29821 bool IsAtomic;
29823 int64_t Offset;
29824 LocationSize NumBytes;
29825 MachineMemOperand *MMO;
29826 };
29827
29828 auto getCharacteristics = [this](SDNode *N) -> MemUseCharacteristics {
29829 if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
29830 int64_t Offset = 0;
29831 if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
29832 Offset = (LSN->getAddressingMode() == ISD::PRE_INC) ? C->getSExtValue()
29833 : (LSN->getAddressingMode() == ISD::PRE_DEC)
29834 ? -1 * C->getSExtValue()
29835 : 0;
29836 TypeSize Size = LSN->getMemoryVT().getStoreSize();
29837 return {LSN->isVolatile(), LSN->isAtomic(),
29838 LSN->getBasePtr(), Offset /*base offset*/,
29839 LocationSize::precise(Size), LSN->getMemOperand()};
29840 }
29841 if (const auto *LN = cast<LifetimeSDNode>(N)) {
29842 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
29843 return {false /*isVolatile*/,
29844 /*isAtomic*/ false,
29845 LN->getOperand(1),
29846 0,
29847 LocationSize::precise(MFI.getObjectSize(LN->getFrameIndex())),
29848 (MachineMemOperand *)nullptr};
29849 }
29850 // Default.
29851 return {false /*isvolatile*/,
29852 /*isAtomic*/ false,
29853 SDValue(),
29854 (int64_t)0 /*offset*/,
29856 (MachineMemOperand *)nullptr};
29857 };
29858
29859 MemUseCharacteristics MUC0 = getCharacteristics(Op0),
29860 MUC1 = getCharacteristics(Op1);
29861
29862 // If they are to the same address, then they must be aliases.
29863 if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
29864 MUC0.Offset == MUC1.Offset)
29865 return true;
29866
29867 // If they are both volatile then they cannot be reordered.
29868 if (MUC0.IsVolatile && MUC1.IsVolatile)
29869 return true;
29870
29871 // Be conservative about atomics for the moment
29872 // TODO: This is way overconservative for unordered atomics (see D66309)
29873 if (MUC0.IsAtomic && MUC1.IsAtomic)
29874 return true;
29875
29876 if (MUC0.MMO && MUC1.MMO) {
29877 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
29878 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
29879 return false;
29880 }
29881
29882 // If NumBytes is scalable and offset is not 0, conservatively return may
29883 // alias
29884 if ((MUC0.NumBytes.hasValue() && MUC0.NumBytes.isScalable() &&
29885 MUC0.Offset != 0) ||
29886 (MUC1.NumBytes.hasValue() && MUC1.NumBytes.isScalable() &&
29887 MUC1.Offset != 0))
29888 return true;
29889 // Try to prove that there is aliasing, or that there is no aliasing. Either
29890 // way, we can return now. If nothing can be proved, proceed with more tests.
29891 bool IsAlias;
29892 if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
29893 DAG, IsAlias))
29894 return IsAlias;
29895
29896 // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
29897 // either are not known.
29898 if (!MUC0.MMO || !MUC1.MMO)
29899 return true;
29900
29901 // If one operation reads from invariant memory, and the other may store, they
29902 // cannot alias. These should really be checking the equivalent of mayWrite,
29903 // but it only matters for memory nodes other than load /store.
29904 if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
29905 (MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
29906 return false;
29907
29908 // If we know required SrcValue1 and SrcValue2 have relatively large
29909 // alignment compared to the size and offset of the access, we may be able
29910 // to prove they do not alias. This check is conservative for now to catch
29911 // cases created by splitting vector types, it only works when the offsets are
29912 // multiples of the size of the data.
29913 int64_t SrcValOffset0 = MUC0.MMO->getOffset();
29914 int64_t SrcValOffset1 = MUC1.MMO->getOffset();
29915 Align OrigAlignment0 = MUC0.MMO->getBaseAlign();
29916 Align OrigAlignment1 = MUC1.MMO->getBaseAlign();
29917 LocationSize Size0 = MUC0.NumBytes;
29918 LocationSize Size1 = MUC1.NumBytes;
29919
29920 if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
29921 Size0.hasValue() && Size1.hasValue() && !Size0.isScalable() &&
29922 !Size1.isScalable() && Size0 == Size1 &&
29923 OrigAlignment0 > Size0.getValue().getKnownMinValue() &&
29924 SrcValOffset0 % Size0.getValue().getKnownMinValue() == 0 &&
29925 SrcValOffset1 % Size1.getValue().getKnownMinValue() == 0) {
29926 int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value();
29927 int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value();
29928
29929 // There is no overlap between these relatively aligned accesses of
29930 // similar size. Return no alias.
29931 if ((OffAlign0 + static_cast<int64_t>(
29932 Size0.getValue().getKnownMinValue())) <= OffAlign1 ||
29933 (OffAlign1 + static_cast<int64_t>(
29934 Size1.getValue().getKnownMinValue())) <= OffAlign0)
29935 return false;
29936 }
29937
29940 : DAG.getSubtarget().useAA();
29941#ifndef NDEBUG
29942 if (CombinerAAOnlyFunc.getNumOccurrences() &&
29944 UseAA = false;
29945#endif
29946
29947 if (UseAA && BatchAA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
29948 Size0.hasValue() && Size1.hasValue() &&
29949 // Can't represent a scalable size + fixed offset in LocationSize
29950 (!Size0.isScalable() || SrcValOffset0 == 0) &&
29951 (!Size1.isScalable() || SrcValOffset1 == 0)) {
29952 // Use alias analysis information.
29953 int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
29954 int64_t Overlap0 =
29955 Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset;
29956 int64_t Overlap1 =
29957 Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset;
29958 LocationSize Loc0 =
29959 Size0.isScalable() ? Size0 : LocationSize::precise(Overlap0);
29960 LocationSize Loc1 =
29961 Size1.isScalable() ? Size1 : LocationSize::precise(Overlap1);
29962 if (BatchAA->isNoAlias(
29963 MemoryLocation(MUC0.MMO->getValue(), Loc0,
29964 UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
29965 MemoryLocation(MUC1.MMO->getValue(), Loc1,
29966 UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())))
29967 return false;
29968 }
29969
29970 // Otherwise we have to assume they alias.
29971 return true;
29972}
29973
29974/// Walk up chain skipping non-aliasing memory nodes,
29975/// looking for aliasing nodes and adding them to the Aliases vector.
29976void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
29977 SmallVectorImpl<SDValue> &Aliases) {
29978 SmallVector<SDValue, 8> Chains; // List of chains to visit.
29979 SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
29980
29981 // Get alias information for node.
29982 // TODO: relax aliasing for unordered atomics (see D66309)
29983 const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple();
29984
29985 // Starting off.
29986 Chains.push_back(OriginalChain);
29987 unsigned Depth = 0;
29988
29989 // Attempt to improve chain by a single step
29990 auto ImproveChain = [&](SDValue &C) -> bool {
29991 switch (C.getOpcode()) {
29992 case ISD::EntryToken:
29993 // No need to mark EntryToken.
29994 C = SDValue();
29995 return true;
29996 case ISD::LOAD:
29997 case ISD::STORE: {
29998 // Get alias information for C.
29999 // TODO: Relax aliasing for unordered atomics (see D66309)
30000 bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
30001 cast<LSBaseSDNode>(C.getNode())->isSimple();
30002 if ((IsLoad && IsOpLoad) || !mayAlias(N, C.getNode())) {
30003 // Look further up the chain.
30004 C = C.getOperand(0);
30005 return true;
30006 }
30007 // Alias, so stop here.
30008 return false;
30009 }
30010
30011 case ISD::CopyFromReg:
30012 // Always forward past CopyFromReg.
30013 C = C.getOperand(0);
30014 return true;
30015
30016 case ISD::LIFETIME_START:
30017 case ISD::LIFETIME_END: {
30018 // We can forward past any lifetime start/end that can be proven not to
30019 // alias the memory access.
30020 if (!mayAlias(N, C.getNode())) {
30021 // Look further up the chain.
30022 C = C.getOperand(0);
30023 return true;
30024 }
30025 return false;
30026 }
30027 default:
30028 return false;
30029 }
30030 };
30031
30032 // Look at each chain and determine if it is an alias. If so, add it to the
30033 // aliases list. If not, then continue up the chain looking for the next
30034 // candidate.
30035 while (!Chains.empty()) {
30036 SDValue Chain = Chains.pop_back_val();
30037
30038 // Don't bother if we've seen Chain before.
30039 if (!Visited.insert(Chain.getNode()).second)
30040 continue;
30041
30042 // For TokenFactor nodes, look at each operand and only continue up the
30043 // chain until we reach the depth limit.
30044 //
30045 // FIXME: The depth check could be made to return the last non-aliasing
30046 // chain we found before we hit a tokenfactor rather than the original
30047 // chain.
30048 if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
30049 Aliases.clear();
30050 Aliases.push_back(OriginalChain);
30051 return;
30052 }
30053
30054 if (Chain.getOpcode() == ISD::TokenFactor) {
30055 // We have to check each of the operands of the token factor for "small"
30056 // token factors, so we queue them up. Adding the operands to the queue
30057 // (stack) in reverse order maintains the original order and increases the
30058 // likelihood that getNode will find a matching token factor (CSE.)
30059 if (Chain.getNumOperands() > 16) {
30060 Aliases.push_back(Chain);
30061 continue;
30062 }
30063 for (unsigned n = Chain.getNumOperands(); n;)
30064 Chains.push_back(Chain.getOperand(--n));
30065 ++Depth;
30066 continue;
30067 }
30068 // Everything else
30069 if (ImproveChain(Chain)) {
30070 // Updated Chain Found, Consider new chain if one exists.
30071 if (Chain.getNode())
30072 Chains.push_back(Chain);
30073 ++Depth;
30074 continue;
30075 }
30076 // No Improved Chain Possible, treat as Alias.
30077 Aliases.push_back(Chain);
30078 }
30079}
30080
30081/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
30082/// (aliasing node.)
30083SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
30084 if (OptLevel == CodeGenOptLevel::None)
30085 return OldChain;
30086
30087 // Ops for replacing token factor.
30089
30090 // Accumulate all the aliases to this node.
30091 GatherAllAliases(N, OldChain, Aliases);
30092
30093 // If no operands then chain to entry token.
30094 if (Aliases.empty())
30095 return DAG.getEntryNode();
30096
30097 // If a single operand then chain to it. We don't need to revisit it.
30098 if (Aliases.size() == 1)
30099 return Aliases[0];
30100
30101 // Construct a custom tailored token factor.
30102 return DAG.getTokenFactor(SDLoc(N), Aliases);
30103}
30104
30105// This function tries to collect a bunch of potentially interesting
30106// nodes to improve the chains of, all at once. This might seem
30107// redundant, as this function gets called when visiting every store
30108// node, so why not let the work be done on each store as it's visited?
30109//
30110// I believe this is mainly important because mergeConsecutiveStores
30111// is unable to deal with merging stores of different sizes, so unless
30112// we improve the chains of all the potential candidates up-front
30113// before running mergeConsecutiveStores, it might only see some of
30114// the nodes that will eventually be candidates, and then not be able
30115// to go from a partially-merged state to the desired final
30116// fully-merged state.
30117
30118bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
30119 SmallVector<StoreSDNode *, 8> ChainedStores;
30120 StoreSDNode *STChain = St;
30121 // Intervals records which offsets from BaseIndex have been covered. In
30122 // the common case, every store writes to the immediately previous address
30123 // space and thus merged with the previous interval at insertion time.
30124
30125 using IMap = llvm::IntervalMap<int64_t, std::monostate, 8,
30126 IntervalMapHalfOpenInfo<int64_t>>;
30127 IMap::Allocator A;
30128 IMap Intervals(A);
30129
30130 // This holds the base pointer, index, and the offset in bytes from the base
30131 // pointer.
30132 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
30133
30134 // We must have a base and an offset.
30135 if (!BasePtr.getBase().getNode())
30136 return false;
30137
30138 // Do not handle stores to undef base pointers.
30139 if (BasePtr.getBase().isUndef())
30140 return false;
30141
30142 // Do not handle stores to opaque types
30143 if (St->getMemoryVT().isZeroSized())
30144 return false;
30145
30146 // BaseIndexOffset assumes that offsets are fixed-size, which
30147 // is not valid for scalable vectors where the offsets are
30148 // scaled by `vscale`, so bail out early.
30149 if (St->getMemoryVT().isScalableVT())
30150 return false;
30151
30152 // Add ST's interval.
30153 Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8,
30154 std::monostate{});
30155
30156 while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
30157 if (Chain->getMemoryVT().isScalableVector())
30158 return false;
30159
30160 // If the chain has more than one use, then we can't reorder the mem ops.
30161 if (!SDValue(Chain, 0)->hasOneUse())
30162 break;
30163 // TODO: Relax for unordered atomics (see D66309)
30164 if (!Chain->isSimple() || Chain->isIndexed())
30165 break;
30166
30167 // Find the base pointer and offset for this memory node.
30168 const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
30169 // Check that the base pointer is the same as the original one.
30170 int64_t Offset;
30171 if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
30172 break;
30173 int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
30174 // Make sure we don't overlap with other intervals by checking the ones to
30175 // the left or right before inserting.
30176 auto I = Intervals.find(Offset);
30177 // If there's a next interval, we should end before it.
30178 if (I != Intervals.end() && I.start() < (Offset + Length))
30179 break;
30180 // If there's a previous interval, we should start after it.
30181 if (I != Intervals.begin() && (--I).stop() <= Offset)
30182 break;
30183 Intervals.insert(Offset, Offset + Length, std::monostate{});
30184
30185 ChainedStores.push_back(Chain);
30186 STChain = Chain;
30187 }
30188
30189 // If we didn't find a chained store, exit.
30190 if (ChainedStores.empty())
30191 return false;
30192
30193 // Improve all chained stores (St and ChainedStores members) starting from
30194 // where the store chain ended and return single TokenFactor.
30195 SDValue NewChain = STChain->getChain();
30197 for (unsigned I = ChainedStores.size(); I;) {
30198 StoreSDNode *S = ChainedStores[--I];
30199 SDValue BetterChain = FindBetterChain(S, NewChain);
30201 S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
30202 TFOps.push_back(SDValue(S, 0));
30203 ChainedStores[I] = S;
30204 }
30205
30206 // Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
30207 SDValue BetterChain = FindBetterChain(St, NewChain);
30208 SDValue NewST;
30209 if (St->isTruncatingStore())
30210 NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
30211 St->getBasePtr(), St->getMemoryVT(),
30212 St->getMemOperand());
30213 else
30214 NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
30215 St->getBasePtr(), St->getMemOperand());
30216
30217 TFOps.push_back(NewST);
30218
30219 // If we improved every element of TFOps, then we've lost the dependence on
30220 // NewChain to successors of St and we need to add it back to TFOps. Do so at
30221 // the beginning to keep relative order consistent with FindBetterChains.
30222 auto hasImprovedChain = [&](SDValue ST) -> bool {
30223 return ST->getOperand(0) != NewChain;
30224 };
30225 bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
30226 if (AddNewChain)
30227 TFOps.insert(TFOps.begin(), NewChain);
30228
30229 SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
30230 CombineTo(St, TF);
30231
30232 // Add TF and its operands to the worklist.
30233 AddToWorklist(TF.getNode());
30234 for (const SDValue &Op : TF->ops())
30235 AddToWorklist(Op.getNode());
30236 AddToWorklist(STChain);
30237 return true;
30238}
30239
30240bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
30241 if (OptLevel == CodeGenOptLevel::None)
30242 return false;
30243
30244 const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
30245
30246 // We must have a base and an offset.
30247 if (!BasePtr.getBase().getNode())
30248 return false;
30249
30250 // Do not handle stores to undef base pointers.
30251 if (BasePtr.getBase().isUndef())
30252 return false;
30253
30254 // Directly improve a chain of disjoint stores starting at St.
30255 if (parallelizeChainedStores(St))
30256 return true;
30257
30258 // Improve St's Chain..
30259 SDValue BetterChain = FindBetterChain(St, St->getChain());
30260 if (St->getChain() != BetterChain) {
30261 replaceStoreChain(St, BetterChain);
30262 return true;
30263 }
30264 return false;
30265}
30266
30267/// This is the entry point for the file.
30269 CodeGenOptLevel OptLevel) {
30270 /// This is the main entry point to this class.
30271 DAGCombiner(*this, BatchAA, OptLevel).Run(Level);
30272}
return SDValue()
static bool mayAlias(MachineInstr &MIa, SmallVectorImpl< MachineInstr * > &MemInsns, AliasAnalysis *AA)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static cl::opt< bool > UseAA("aarch64-use-aa", cl::init(true), cl::desc("Enable the use of AA during codegen."))
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
constexpr LLT S1
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, const TargetLowering &TLI)
For the instruction sequence of store below, F and I values are bundled together as an i64 value befo...
static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I)
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
static bool canFoldInAddressingMode(GLoadStore *MI, const TargetLowering &TLI, MachineRegisterInfo &MRI)
Return true if 'MI' is a load or a store that may be fold it's address operand into the load / store ...
static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I)
static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques=false)
static cl::opt< bool > EnableShrinkLoadReplaceStoreWithStore("combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), cl::desc("DAG combiner enable load/<replace bytes>/store with " "a narrower store"))
static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, unsigned ExtOpc, SmallVectorImpl< SDNode * > &ExtendNodes, const TargetLowering &TLI)
static cl::opt< unsigned > TokenFactorInlineLimit("combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), cl::desc("Limit the number of operands to inline for Token Factors"))
static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, const TargetLowering &TLI, EVT VT, bool LegalOperations, SDNode *N, SDValue N0, ISD::LoadExtType ExtLoadType, ISD::NodeType ExtOpc, bool NonNegZExt=false)
static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG)
static SDNode * getBuildPairElt(SDNode *N, unsigned i)
static SDValue foldExtractSubvectorFromShuffleVector(EVT NarrowVT, SDValue Src, unsigned Index, const SDLoc &DL, SelectionDAG &DAG, bool LegalOperations)
Given EXTRACT_SUBVECTOR(VECTOR_SHUFFLE(Op0, Op1, Mask)), try to produce VECTOR_SHUFFLE(EXTRACT_SUBVEC...
static SDValue foldToMaskedStore(StoreSDNode *Store, SelectionDAG &DAG, const SDLoc &Dl)
static SDValue foldBitOrderCrossLogicOp(SDNode *N, SelectionDAG &DAG)
static SDValue tryToFoldExtendOfConstant(SDNode *N, const SDLoc &DL, const TargetLowering &TLI, SelectionDAG &DAG, bool LegalTypes)
Try to fold a sext/zext/aext dag node into a ConstantSDNode or a build_vector of constants.
static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, SDValue ExtractFrom, SDValue &Mask, const SDLoc &DL)
Helper function for visitOR to extract the needed side of a rotate idiom from a shl/srl/mul/udiv.
static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, bool &IsLoad, bool &IsMasked, SDValue &Ptr, const TargetLowering &TLI)
bool refineUniformBase(SDValue &BasePtr, SDValue &Index, bool IndexIsScaled, SelectionDAG &DAG, const SDLoc &DL)
static SDValue narrowExtractedVectorLoad(EVT VT, SDValue Src, unsigned Index, const SDLoc &DL, SelectionDAG &DAG)
If we are extracting a subvector from a wide vector load, convert to a narrow load to eliminate the e...
static SDValue scalarizeExtractedBinOp(SDNode *ExtElt, SelectionDAG &DAG, const SDLoc &DL, bool LegalTypes)
Transform a vector binary operation into a scalar binary operation by moving the math/logic after an ...
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, const TargetLowering &TLI)
Return true if divmod libcall is available.
static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG)
static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, SelectionDAG &DAG, const SDLoc &DL)
Given the operands of an add/sub operation, see if the 2nd operand is a masked 0/1 whose source opera...
static bool mergeEltWithShuffle(SDValue &X, SDValue &Y, ArrayRef< int > Mask, SmallVectorImpl< int > &NewMask, SDValue Elt, unsigned InsIndex)
static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf)
If we have a unary shuffle of a shuffle, see if it can be folded away completely.
static bool canSplitIdx(LoadSDNode *LD)
static SDValue ShrinkLoadReplaceStoreWithStore(const std::pair< unsigned, unsigned > &MaskInfo, SDValue IVal, StoreSDNode *St, DAGCombiner *DC)
Check to see if IVal is something that provides a value as specified by MaskInfo.
static cl::opt< bool > StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, cl::desc("Bypass the profitability model of load slicing"), cl::init(false))
Hidden option to stress test load slicing, i.e., when this option is enabled, load slicing bypasses m...
static cl::opt< bool > UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), cl::desc("Enable DAG combiner's use of TBAA"))
static void adjustCostForPairing(SmallVectorImpl< LoadedSlice > &LoadedSlices, LoadedSlice::Cost &GlobalLSCost)
Adjust the GlobalLSCost according to the target paring capabilities and the layout of the slices.
static SDValue combineCarryDiamond(SelectionDAG &DAG, const TargetLowering &TLI, SDValue N0, SDValue N1, SDNode *N)
static cl::opt< bool > DisableCombines("combiner-disabled", cl::Hidden, cl::init(false), cl::desc("Disable the DAG combiner"))
static SDValue foldExtendVectorInregToExtendOfSubvector(SDNode *N, const SDLoc &DL, const TargetLowering &TLI, SelectionDAG &DAG, bool LegalOperations)
static SDValue narrowExtractedVectorBinOp(EVT VT, SDValue Src, unsigned Index, const SDLoc &DL, SelectionDAG &DAG, bool LegalOperations)
If we are extracting a subvector produced by a wide binary operator try to use a narrow binary operat...
static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode)
Check if N satisfies: N is used once.
static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG, const SDLoc &DL)
Given an extending node with a pop-count operand, if the target does not support a pop-count in the n...
static SDValue foldLogicTreeOfShifts(SDNode *N, SDValue LeftHand, SDValue RightHand, SelectionDAG &DAG)
Given a tree of logic operations with shape like (LOGIC (LOGIC (X, Y), LOGIC (Z, Y))) try to match an...
static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG)
static SDValue takeInexpensiveLog2(SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned Depth, bool AssumeNonZero)
static SDValue combineSelectAsExtAnd(SDValue Cond, SDValue T, SDValue F, const SDLoc &DL, SelectionDAG &DAG)
static bool areUsedBitsDense(const APInt &UsedBits)
Check that all bits set in UsedBits form a dense region, i.e., UsedBits looks like 0....
static SDValue foldMaskedMerge(SDNode *Node, SelectionDAG &DAG, const TargetLowering &TLI, const SDLoc &DL)
Fold "masked merge" expressions like (m & x) | (~m & y) and its DeMorgan variant (~m | x) & (m | y) i...
static SDValue getInputChainForNode(SDNode *N)
Given a node, return its input chain if it has one, otherwise return a null sd operand.
static ElementCount numVectorEltsOrZero(EVT T)
static SDValue foldSelectWithIdentityConstant(SDNode *N, SelectionDAG &DAG, bool ShouldCommuteOperands)
This inverts a canonicalization in IR that replaces a variable select arm with an identity constant.
static SDValue foldAndOrOfSETCC(SDNode *LogicOp, SelectionDAG &DAG)
static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, const TargetLowering &TLI, EVT VT, bool LegalOperations, SDNode *N, SDValue N0, ISD::LoadExtType ExtLoadType)
static SDValue foldAndToUsubsat(SDNode *N, SelectionDAG &DAG, const SDLoc &DL)
For targets that support usubsat, match a bit-hack form of that operation that ends in 'and' and conv...
static cl::opt< bool > CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, cl::desc("Enable DAG combiner's use of IR alias analysis"))
static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy)
static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, SelectionDAG &DAG)
Combine shuffle of shuffle of the form: shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X...
static bool isDivisorPowerOfTwo(SDValue Divisor)
static bool matchRotateHalf(const SelectionDAG &DAG, SDValue Op, SDValue &Shift, SDValue &Mask)
Match "(X shl/srl V1) & V2" where V2 may not be present.
static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG)
static bool hasNoInfs(const TargetOptions &Options, SDValue N)
static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, SDValue RHS, const SDNodeFlags Flags, const TargetLowering &TLI)
static SDValue combineShuffleOfBitcast(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalOperations)
static std::optional< EVT > canCombineShuffleToExtendVectorInreg(unsigned Opcode, EVT VT, std::function< bool(unsigned)> Match, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes, bool LegalOperations)
static SDValue PerformUMinFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, SDValue N3, ISD::CondCode CC, SelectionDAG &DAG)
static SDValue combineShuffleToAnyExtendVectorInreg(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalOperations)
static SDValue foldAddSubOfSignBit(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
Try to fold a 'not' shifted sign-bit with add/sub with constant operand into a shift and add with a d...
static SDValue stripTruncAndExt(SDValue Value)
static SDValue combineUADDO_CARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, SDValue X, SDValue Carry0, SDValue Carry1, SDNode *N)
If we are facing some sort of diamond carry propagation pattern try to break it up to generate someth...
static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, SelectionDAG &DAG)
Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles followed by concatenatio...
static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, SelectionDAG &DAG)
static auto getFirstIndexOf(R &&Range, const T &Val)
static SDValue getSubVectorSrc(SDValue V, unsigned Index, EVT SubVT)
static std::pair< unsigned, unsigned > CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain)
Check to see if V is (and load (ptr), imm), where the load is having specific bytes cleared out.
static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef< int > Mask)
If the shuffle mask is taking exactly one element from the first vector operand and passing through a...
static bool shouldConvertSelectOfConstantsToMath(const SDValue &Cond, EVT VT, const TargetLowering &TLI)
static cl::opt< bool > EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), cl::desc("DAG combiner enable merging multiple stores " "into a wider store"))
static bool isContractableFMUL(const TargetOptions &Options, SDValue N)
static cl::opt< bool > MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), cl::desc("DAG combiner may split indexing from loads"))
static bool areSlicesNextToEachOther(const LoadedSlice &First, const LoadedSlice &Second)
Check whether or not First and Second are next to each other in memory.
static SDValue stripConstantMask(const SelectionDAG &DAG, SDValue Op, SDValue &Mask)
static bool arebothOperandsNotSNan(SDValue Operand1, SDValue Operand2, SelectionDAG &DAG)
static bool isBSwapHWordPair(SDValue N, MutableArrayRef< SDNode * > Parts)
static SDValue foldFPToIntToFP(SDNode *N, const SDLoc &DL, SelectionDAG &DAG, const TargetLowering &TLI)
static bool CanCombineFCOPYSIGN_EXTEND_ROUND(EVT XTy, EVT YTy)
copysign(x, fp_extend(y)) -> copysign(x, y) copysign(x, fp_round(y)) -> copysign(x,...
static cl::opt< bool > ReduceLoadOpStoreWidthForceNarrowingProfitable("combiner-reduce-load-op-store-width-force-narrowing-profitable", cl::Hidden, cl::init(false), cl::desc("DAG combiner force override the narrowing profitable check when " "reducing the width of load/op/store sequences"))
static unsigned getMinMaxOpcodeForFP(SDValue Operand1, SDValue Operand2, ISD::CondCode CC, unsigned OrAndOpcode, SelectionDAG &DAG, bool isFMAXNUMFMINNUM_IEEE, bool isFMAXNUMFMINNUM)
static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &DL)
static SDValue foldToSaturated(SDNode *N, EVT &VT, SDValue &Src, EVT &SrcVT, SDLoc &DL, const TargetLowering &TLI, SelectionDAG &DAG)
static SDValue FoldIntToFPToInt(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
static SDValue foldSubCtlzNot(SDNode *N, SelectionDAG &DAG)
static SDNode * getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, bool &IsMasked, SDValue &Ptr, SDValue &BasePtr, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, const TargetLowering &TLI, bool Force)
Flips a boolean if it is cheaper to compute.
static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, KnownBits &Known)
static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, const TargetLowering &TLI, EVT VT, bool LegalOperations, SDNode *N, SDValue N0, ISD::LoadExtType ExtLoadType, ISD::NodeType ExtOpc)
static SDValue combineConcatVectorOfShuffleAndItsOperands(SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes, bool LegalOperations)
bool refineIndexType(SDValue &Index, ISD::MemIndexType &IndexType, EVT DataVT, SelectionDAG &DAG)
static SDValue foldRemainderIdiom(SDNode *N, SelectionDAG &DAG, const SDLoc &DL)
static SDValue combineMinNumMaxNumImpl(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode CC, const TargetLowering &TLI, SelectionDAG &DAG)
static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG)
If we have a shift-by-constant of a bitwise logic op that itself has a shift-by-constant operand with...
static SDValue widenAbs(SDNode *Extend, SelectionDAG &DAG)
static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset=0)
static SDValue combineShiftToMULH(SDNode *N, const SDLoc &DL, SelectionDAG &DAG, const TargetLowering &TLI)
static ConstantSDNode * getAsNonOpaqueConstant(SDValue N)
If N is a ConstantSDNode with isOpaque() == false return it casted to a ConstantSDNode pointer else n...
static bool arebothOperandsNotNan(SDValue Operand1, SDValue Operand2, SelectionDAG &DAG)
static SDValue detectUSatUPattern(SDValue In, EVT VT)
Detect patterns of truncation with unsigned saturation:
static SDValue PerformMinMaxFpToSatCombine(SDValue N0, SDValue N1, SDValue N2, SDValue N3, ISD::CondCode CC, SelectionDAG &DAG)
static SDValue combineConcatVectorOfSplats(SDNode *N, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalTypes, bool LegalOperations)
static SDValue visitORCommutative(SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N)
OR combines for which the commuted variant will be tried as well.
static SDValue detectSSatUPattern(SDValue In, EVT VT, SelectionDAG &DAG, const SDLoc &DL)
Detect patterns of truncation with unsigned saturation:
static SDValue combineShuffleToZeroExtendVectorInReg(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const TargetLowering &TLI, bool LegalOperations)
static cl::opt< bool > EnableReduceLoadOpStoreWidth("combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), cl::desc("DAG combiner enable reducing the width of load/op/store " "sequence"))
static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, SDValue &BasePtr, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue combineVSelectWithAllOnesOrZeros(SDValue Cond, SDValue TVal, SDValue FVal, const TargetLowering &TLI, SelectionDAG &DAG, const SDLoc &DL)
static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, SelectionDAG &DAG, bool IsRotate, bool FromAdd)
static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, bool LegalOperations)
static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG)
static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG)
Try to replace shift/logic that tests if a bit is clear with mask + setcc.
static bool areBitwiseNotOfEachother(SDValue Op0, SDValue Op1)
static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG)
static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, bool LegalTypes)
If a vector binop is performed on splat values, it may be profitable to extract, scalarize,...
static SDValue foldVSelectToSignBitSplatMask(SDNode *N, SelectionDAG &DAG)
static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
static SDValue combineConcatVectorOfConcatVectors(SDNode *N, SelectionDAG &DAG)
static SDValue tryToFoldExtOfAtomicLoad(SelectionDAG &DAG, const TargetLowering &TLI, EVT VT, SDValue N0, ISD::LoadExtType ExtLoadType)
static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, SelectionDAG &DAG, SDNode *N, SDValue N0, SDValue N1, EVT VT)
static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI, SelectionDAG &DAG, const SDLoc &DL, CombineLevel Level)
Fold (sext (select c, load x, load y)) -> (select c, sextload x, sextload y) (zext (select c,...
static SDValue getAsCarry(const TargetLowering &TLI, SDValue V, bool ForceCarryReconstruction=false)
static SDValue matchMergedBFX(SDValue Root, SelectionDAG &DAG, const TargetLowering &TLI)
static SDValue foldSelectOfConstantsUsingSra(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
If a (v)select has a condition value that is a sign-bit test, try to smear the condition operand sign...
static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG)
static SDValue detectSSatSPattern(SDValue In, EVT VT)
Detect patterns of truncation with signed saturation: (truncate (smin (smax (x, signed_min_of_dest_ty...
static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, SelectionDAG &DAG)
static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, SelectionDAG &DAG, bool LegalOperations)
static cl::opt< unsigned > StoreMergeDependenceLimit("combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), cl::desc("Limit the number of times for the same StoreNode and RootNode " "to bail out in store merging dependence check"))
static SDValue eliminateFPCastPair(SDNode *N)
static cl::opt< std::string > CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, cl::desc("Only use DAG-combiner alias analysis in this" " function"))
static SDValue foldLogicOfShifts(SDNode *N, SDValue LogicOp, SDValue ShiftOp, SelectionDAG &DAG)
Given a bitwise logic operation N with a matching bitwise logic operand, fold a pattern where 2 of th...
ByteProvider< SDNode * > SDByteProvider
Recursively traverses the expression calculating the origin of the requested byte of the given value.
static bool isSlicingProfitable(SmallVectorImpl< LoadedSlice > &LoadedSlices, const APInt &UsedBits, bool ForCodeSize)
Check the profitability of all involved LoadedSlice.
static SDValue narrowInsertExtractVectorBinOp(EVT SubVT, SDValue BinOp, unsigned Index, const SDLoc &DL, SelectionDAG &DAG, bool LegalOperations)
static bool isBSwapHWordElement(SDValue N, MutableArrayRef< SDNode * > Parts)
Return true if the specified node is an element that makes up a 32-bit packed halfword byteswap.
static SDValue isSaturatingMinMax(SDValue N0, SDValue N1, SDValue N2, SDValue N3, ISD::CondCode CC, unsigned &BW, bool &Unsigned, SelectionDAG &DAG)
static SDValue foldBoolSelectToLogic(SDNode *N, const SDLoc &DL, SelectionDAG &DAG)
static std::optional< SDByteProvider > calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, std::optional< uint64_t > VectorIndex, unsigned StartingIndex=0)
dxil translate DXIL Translate Metadata
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
static bool isSigned(unsigned int Opcode)
static MaybeAlign getAlign(Value *Ptr)
iv Induction Variable Users
Definition IVUsers.cpp:48
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
static Value * simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Check for common or similar folds of integer division or integer remainder.
This file implements a coalescing interval map for small objects.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
#define T1
MachineInstr unsigned OpIdx
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define P(N)
if(PassOpts->AAPipeline)
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
static bool isSimple(Instruction *I)
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
This file contains some templates that are useful if you are working with the STL at all.
static cl::opt< bool > UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"))
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file implements a set that has insertion order iteration characteristics.
This file implements the SmallBitVector class.
This file defines the SmallPtrSet class.
This file defines the SmallSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
static unsigned getScalarSizeInBits(Type *Ty)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static constexpr int Concat[]
Value * RHS
Value * LHS
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1208
bool isNegative() const
Definition APFloat.h:1449
bool isNormal() const
Definition APFloat.h:1453
bool isDenormal() const
Definition APFloat.h:1450
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition APFloat.h:1432
const fltSemantics & getSemantics() const
Definition APFloat.h:1457
bool isNaN() const
Definition APFloat.h:1447
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1088
APInt bitcastToAPInt() const
Definition APFloat.h:1353
bool isLargest() const
Definition APFloat.h:1465
bool isInfinity() const
Definition APFloat.h:1446
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition APInt.cpp:1758
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
Definition APInt.cpp:644
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition APInt.h:449
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:229
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1670
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:206
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition APInt.h:466
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition APInt.h:1249
int32_t exactLogBase2() const
Definition APInt.h:1783
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1935
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition APInt.h:1531
unsigned countLeadingZeros() const
Definition APInt.h:1606
void flipAllBits()
Toggle every bit to its opposite value.
Definition APInt.h:1452
unsigned logBase2() const
Definition APInt.h:1761
bool isShiftedMask() const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
Definition APInt.h:510
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition APInt.h:475
bool getBoolValue() const
Convert APInt to a boolean value.
Definition APInt.h:471
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
bool isMask(unsigned numBits) const
Definition APInt.h:488
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1367
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition APInt.h:296
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1562
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition APInt.h:858
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
unsigned countr_one() const
Count the number of trailing one bits.
Definition APInt.h:1656
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition ArrayRef.h:200
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
static LLVM_ABI bool computeAliasing(const SDNode *Op0, const LocationSize NumBytes0, const SDNode *Op1, const LocationSize NumBytes1, const SelectionDAG &DAG, bool &IsAlias)
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
LLVM_ABI bool isConstant() const
Represents known origin of an individual byte in combine pattern.
static ByteProvider getConstantZero()
static ByteProvider getSrc(std::optional< SDNode * > Val, int64_t ByteOffset, int64_t VectorOffset)
Combiner implementation.
Definition Combiner.h:34
ISD::CondCode get() const
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:535
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
bool isNegative() const
Return true if the value is negative.
bool isZero() const
Return true if the value is positive or negative zero.
const APInt & getLower() const
Return the lower value for this range.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI ConstantRange truncate(uint32_t BitWidth, unsigned NoWrapKind=0) const
Return a new range in the specified integer type, which must be strictly smaller than the current typ...
const APInt & getUpper() const
Return the upper value for this range.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
const ConstantInt * getConstantIntValue() const
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:207
bool isBigEndian() const
Definition DataLayout.h:208
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
static bool shouldExecute(unsigned CounterName)
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:167
iterator end()
Definition DenseMap.h:81
static constexpr ElementCount getFixed(ScalarTy MinVal)
Definition TypeSize.h:310
constexpr bool isScalar() const
Exactly one element.
Definition TypeSize.h:321
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:727
const_iterator find(KeyT x) const
find - Return an iterator pointing to the first interval ending at or after x, or end().
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
bool isIndexed() const
Return true if this is a pre/post inc/dec load/store.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
bool hasValue() const
static LocationSize precise(uint64_t Value)
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
bool isScalable() const
TypeSize getValue() const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1561
Machine Value Type.
SimpleValueType SimpleTy
static auto all_valuetypes()
SimpleValueType Iteration.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getIntegerVT(unsigned BitWidth)
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
A description of a memory reference used in the backend.
const PseudoSourceValue * getPseudoValue() const
void clearRanges()
Unset the tracked range metadata.
Flags
Flags values. These may be or'd together.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MONonTemporal
The memory access is non-temporal.
Flags getFlags() const
Return the raw flags of the source value,.
const Value * getValue() const
Return the base address of the memory access.
const SDValue & getPassThru() const
ISD::LoadExtType getExtensionType() const
const SDValue & getBasePtr() const
ISD::MemIndexType getIndexType() const
How is Index applied to BasePtr when computing addresses.
const SDValue & getInc() const
const SDValue & getScale() const
const SDValue & getMask() const
const SDValue & getIntID() const
const SDValue & getIndex() const
const SDValue & getBasePtr() const
ISD::MemIndexType getIndexType() const
This class is used to represent an MLOAD node.
const SDValue & getBasePtr() const
ISD::LoadExtType getExtensionType() const
const SDValue & getMask() const
const SDValue & getPassThru() const
const SDValue & getOffset() const
bool isUnindexed() const
Return true if this is NOT a pre/post inc/dec load/store.
ISD::MemIndexedMode getAddressingMode() const
Return the addressing mode for this load or store: unindexed, pre-inc, pre-dec, post-inc,...
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
This class is used to represent an MSTORE node.
bool isCompressingStore() const
Returns true if the op does a compression to the vector before storing.
const SDValue & getOffset() const
const SDValue & getBasePtr() const
const SDValue & getMask() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
Align getBaseAlign() const
Returns alignment and volatility of the memory access.
const MDNode * getRanges() const
Returns the Ranges that describes the dereference.
Align getAlign() const
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getBasePtr() const
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
bool isNonTemporal() const
bool isInvariant() const
bool isDereferenceable() const
EVT getMemoryVT() const
Return the type of the in-memory value.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
MutableArrayRef< T > take_back(size_t N=1) const
Return a copy of *this with only the last N elements.
Definition ArrayRef.h:424
iterator end() const
Definition ArrayRef.h:348
iterator begin() const
Definition ArrayRef.h:347
MutableArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
Definition ArrayRef.h:417
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dump() const
Dump this node, for debugging.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
iterator_range< use_iterator > uses()
SDNodeFlags getFlags() const
size_t use_size() const
Return the number of uses of this node.
TypeSize getValueSizeInBits(unsigned ResNo) const
Returns MVT::getSizeInBits(getValueType(ResNo)).
MVT getSimpleValueType(unsigned ResNo) const
Return the type of a specified result as a simple type.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
SDVTList getVTList() const
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const
Return true if there are exactly NUSES uses of the indicated value.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
bool isPredecessorOf(const SDNode *N) const
Return true if this node is a predecessor of N.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
iterator_range< user_iterator > users()
user_iterator user_begin() const
Provide iteration support to walk over all users of an SDNode.
static use_iterator use_end()
Represents a use of a SDNode.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
bool isAnyAdd() const
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
unsigned getNumOperands() const
Targets can subclass this to parameterize the SelectionDAG lowering and instruction selection process...
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
bool isSafeToSpeculativelyExecute(unsigned Opcode) const
Some opcodes may create immediate undefined behavior when used with some values (integer division-by-...
LLVM_ABI void Combine(CombineLevel Level, BatchAAResults *BatchAA, CodeGenOptLevel OptLevel)
This iterates over the nodes in the SelectionDAG, folding certain types of nodes together,...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool LegalizeOp(SDNode *N, SmallSetVector< SDNode *, 16 > &UpdatedNodes)
Transforms a SelectionDAG node and any operands to it into a node that is compatible with the target ...
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
bool willNotOverflowMul(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the mul of 2 nodes can never overflow.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
bool isConstantValueOfAnyType(SDValue N) const
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
const TargetMachine & getTarget() const
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
bool isSafeToSpeculativelyExecuteNode(const SDNode *N) const
Check if the provided node is save to speculatively executed given its current arguments.
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
DenormalMode getDenormalMode(EVT VT) const
Return the current function's default denormal handling kind for the given floating point type.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
static unsigned getOpcode_EXTEND(unsigned Opcode)
Convert *_EXTEND_VECTOR_INREG to *_EXTEND opcode.
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
bool empty() const
Determine if the SetVector is empty or not.
Definition SetVector.h:99
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:150
value_type pop_back_val()
Definition SetVector.h:278
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
void push_back(bool Val)
void reserve(unsigned N)
size_type size() const
Definition SmallPtrSet.h:99
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:338
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition SmallSet.h:133
bool empty() const
Definition SmallSet.h:168
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition SmallSet.h:183
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
iterator insert(iterator I, T &&Elt)
void resize(size_type N)
void push_back(const T &Elt)
pointer data()
Return a pointer to the vector's buffer, even if empty().
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
const SDValue & getValue() const
bool isTruncatingStore() const
Return true if the op does a truncation before store.
bool has(LibFunc F) const
Tests whether a library function is available.
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const
virtual bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
virtual bool hasAndNot(SDValue X) const
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool enableAggressiveFMAFusion(EVT VT) const
Return true if target always benefits from combining into FMA for a given value type.
bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool, EVT ValVT) const
Promote the given target boolean to a target boolean of the given type.
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT, bool LegalOnly) const
virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const
Use bitwise logic to make pairs of compares more efficient.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const
Return true if folding a vector load into ExtVal (a sign, zero, or any extend node) is profitable.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, LLT DestTy, LLT SrcTy) const
Return true if an fpext operation input to an Opcode operation is free (for instance,...
virtual bool hasBitTest(SDValue X, SDValue Y) const
Return true if the target has a bit-test instruction: (X & (1 << Y)) ==/!= 0 This knowledge can be us...
bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation is legal on this target.
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
virtual bool areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode &NodeX, const MemSDNode &NodeY) const
Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
virtual bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst, SDValue IntPow2) const
virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context, EVT VT) const
Returns true if we should normalize select(N0&N1, X, Y) => select(N0, select(N1, X,...
virtual bool preferScalarizeSplat(SDNode *N) const
bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const
Return true if it is profitable to convert a select of FP constants into a constant pool load whose a...
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
virtual bool isMulAddWithConstProfitable(SDValue AddNode, SDValue ConstNode) const
Return true if it may be profitable to transform (mul (add x, c1), c2) -> (add (mul x,...
bool isPartialReduceMLALegalOrCustom(unsigned Opc, EVT AccVT, EVT InputVT) const
Return true if a PARTIAL_REDUCE_U/SMLA node with the specified types is legal or custom for this targ...
virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const
Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N, CombineLevel Level) const
Return true if it is profitable to fold a pair of shifts into a mask.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
virtual bool shouldFoldSelectWithSingleBitTest(EVT VT, const APInt &AndMask) const
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
virtual bool preferIncOfAddToSubOfNot(EVT VT) const
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
virtual bool isLegalAddImmediate(int64_t) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual bool canTransformPtrArithOutOfBounds(const Function &F, EVT PtrVT) const
True if the target allows transformations of in-bounds pointer arithmetic that cause out-of-bounds in...
virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const
virtual bool isFNegFree(EVT VT) const
Return true if an fneg operation is free to the point where it is never worthwhile to replace it with...
virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT, unsigned SelectOpcode, SDValue X, SDValue Y) const
Return true if pulling a binary operation into a select with an identity constant is profitable.
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isPredictableSelectExpensive() const
Return true if selects are only cheaper than branches if the branch is unlikely to be predicted right...
virtual bool mergeStoresAfterLegalization(EVT MemVT) const
Allow store merging for the specified type after legalization in addition to before legalization.
virtual bool shouldMergeStoreOfLoadsOverCall(EVT, EVT) const
Returns true if it's profitable to allow merging store of loads when there are functions calls betwee...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned getGatherAllAliasesMaxDepth() const
virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem, unsigned AddrSpace) const
Return true if it is expected to be cheaper to do a store of vector constant with the given size and ...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const
Return true if it is cheaper to split the store of a merged int val from a pair of smaller values int...
bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal or custom on this target.
bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified atomic load with extension is legal on this target.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const
There are two ways to clear extreme bits (either low or high): Mask: x & (-1 << y) (the instcombine c...
bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const
Returns if it's reasonable to merge stores to MemVT size.
virtual bool preferABDSToABSWithNSW(EVT VT) const
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
AndOrSETCCFoldKind
Enum of different potentially desirable ways to fold (and/or (setcc ...), (setcc ....
virtual bool shouldScalarizeBinop(SDValue VecOp) const
Try to convert an extract element of a vector binary operation into an extract element followed by a ...
virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: (store (y (conv x)), y*)) -> (store x,...
bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual bool isVectorClearMaskLegal(ArrayRef< int >, EVT) const
Similar to isShuffleMaskLegal.
bool hasTargetDAGCombine(ISD::NodeType NT) const
If true, the target has custom DAG combine transformations that it can perform for the specified node...
virtual bool shouldSplatInsEltVarIndex(EVT) const
Return true if inserting a scalar into a variable element of an undef vector is more efficiently hand...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
virtual unsigned preferedOpcodeForCmpEqPiecesOfOperand(EVT VT, unsigned ShiftOpc, bool MayTransformRotate, const APInt &ShiftOrRotateAmt, const std::optional< APInt > &AndMask) const
virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const
Returns true if MI can be combined with another instruction to form TargetOpcode::G_FMAD.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const
virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
virtual bool generateFMAsInMachineCombiner(EVT VT, CodeGenOptLevel OptLevel) const
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
virtual bool hasPairedLoad(EVT, Align &) const
Return true if the target supplies and combines to a paired load two loaded values of type LoadedType...
virtual bool convertSelectOfConstantsToMath(EVT VT) const
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const
Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT from min(max(fptoi)) satur...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const
Hooks for building estimates in place of slower divisions and square roots.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const
SDValue getCheaperOrNeutralNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, const NegatibleCost CostThreshold=NegatibleCost::Neutral, unsigned Depth=0) const
virtual bool isTargetCanonicalSelect(SDNode *N) const
Return true if the given select/vselect should be considered canonical and not be transformed.
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression only when the cost is cheaper.
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
virtual bool IsDesirableToPromoteOp(SDValue, EVT &) const
This method query the target whether it is beneficial for dag combiner to promote the specified node.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const
Return a reciprocal estimate value for the input operand.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
TargetLowering(const TargetLowering &)=delete
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
virtual SDValue getSqrtResultForDenormInput(SDValue Operand, SelectionDAG &DAG) const
Return a target-dependent result if the input operand is not suitable for use with a square root esti...
virtual bool getPostIndexedAddressParts(SDNode *, SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if this node ...
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual bool isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const
Return true if it is profitable to move this shift by a constant amount through its operand,...
virtual unsigned combineRepeatedFPDivisors() const
Indicate whether this target prefers to combine FDIVs with the same divisor.
virtual AndOrSETCCFoldKind isDesirableToCombineLogicOpOfSETCC(const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const
virtual bool getPreIndexedAddressParts(SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if the node's...
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad, SelectionDAG &DAG) const
Replace an extraction of a load with a narrowed load.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
virtual bool isDesirableToTransformToIntegerOp(unsigned, EVT) const
Return true if it is profitable for dag combiner to transform a floating point op of specified opcode...
TargetOptions Options
unsigned NoSignedZerosFPMath
NoSignedZerosFPMath - This flag is enabled when the -enable-no-signed-zeros-fp-math is specified on t...
virtual bool useAA() const
Enable use of alias analysis during code generation (during MI scheduling, DAGCombine,...
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI const fltSemantics & getFltSemantics() const
Definition Type.cpp:107
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
Value * getOperand(unsigned i) const
Definition User.h:232
const SDValue & getScale() const
ISD::MemIndexType getIndexType() const
How is Index applied to BasePtr when computing addresses.
const SDValue & getVectorLength() const
const SDValue & getIndex() const
const SDValue & getBasePtr() const
const SDValue & getMask() const
const SDValue & getValue() const
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
int getNumOccurrences() const
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
Definition TypeSize.h:181
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:231
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition TypeSize.h:253
Changed
#define INT64_MAX
Definition DataTypes.h:71
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char IsVolatile[]
Key for Kernel::Arg::Metadata::mIsVolatile.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition APInt.h:2248
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition APInt.h:2253
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition APInt.h:2258
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition APInt.h:2263
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Entry
Definition COFF.h:862
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:801
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:774
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:587
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:765
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition ISDOpcodes.h:387
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition ISDOpcodes.h:393
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:835
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:862
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:571
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:738
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:892
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition ISDOpcodes.h:275
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:826
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:706
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:656
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:773
@ TRUNCATE_SSAT_U
Definition ISDOpcodes.h:855
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:809
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ VECTOR_INTERLEAVE
VECTOR_INTERLEAVE(VEC1, VEC2, ...) - Returns N vectors from N input vectors, where N is the factor to...
Definition ISDOpcodes.h:622
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:682
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:528
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:778
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:663
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:695
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:756
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:636
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:601
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:563
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:832
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:793
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:881
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:870
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:718
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:787
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:908
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:730
@ CARRY_FALSE
CARRY_FALSE - This node is used when folding other nodes, like ADDC/SUBC, which indicate the carry re...
Definition ISDOpcodes.h:280
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:701
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ STRICT_FADD
Constrained versions of the binary floating point operators.
Definition ISDOpcodes.h:420
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:552
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:941
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:690
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:903
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:927
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:838
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:521
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ TRUNCATE_SSAT_S
TRUNCATE_[SU]SAT_[SU] - Truncate for saturated operand [SU] located in middle, prefix for SAT means i...
Definition ISDOpcodes.h:853
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:713
@ TRUNCATE_USAT_U
Definition ISDOpcodes.h:857
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:543
bool isIndexTypeSigned(MemIndexType IndexType)
bool isExtVecInRegOpcode(unsigned Opcode)
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isFPEqualitySetCC(CondCode Code)
Return true if this is a setcc instruction that performs an equality comparison when used with floati...
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isBitwiseLogicOp(unsigned Opcode)
Whether this is bitwise logic opcode.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
bool isUNINDEXEDLoad(const SDNode *N)
Returns true if the specified node is an unindexed load.
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
bool isNormalLoad(const SDNode *N)
Returns true if the specified node is a non-extending and unindexed load.
bool isIntEqualitySetCC(CondCode Code)
Return true if this is a setcc instruction that performs an equality comparison when used with intege...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
CastInst_match< OpTy, FPToUIInst > m_FPToUI(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinOpPred_match< LHS, RHS, is_bitwiselogic_op > m_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
@ Undef
Value of the register doesn't matter.
Opcode_match m_Opc(unsigned Opcode)
auto m_SelectCCLike(const LTy &L, const RTy &R, const TTy &T, const FTy &F, const CCTy &CC)
BinaryOpc_match< LHS, RHS > m_Srl(const LHS &L, const RHS &R)
auto m_SpecificVT(EVT RefVT, const Pattern &P)
Match a specific ValueType.
BinaryOpc_match< LHS, RHS > m_Sra(const LHS &L, const RHS &R)
auto m_UMinLike(const LHS &L, const RHS &R)
auto m_UMaxLike(const LHS &L, const RHS &R)
UnaryOpc_match< Opnd > m_Abs(const Opnd &Op)
Or< Preds... > m_AnyOf(const Preds &...preds)
And< Preds... > m_AllOf(const Preds &...preds)
TernaryOpc_match< T0_P, T1_P, T2_P > m_SetCC(const T0_P &LHS, const T1_P &RHS, const T2_P &CC)
UnaryOpc_match< Opnd > m_AnyExt(const Opnd &Op)
auto m_SMaxLike(const LHS &L, const RHS &R)
UnaryOpc_match< Opnd > m_Ctlz(const Opnd &Op)
TernaryOpc_match< T0_P, T1_P, T2_P > m_VSelect(const T0_P &Cond, const T1_P &T, const T2_P &F)
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
UnaryOpc_match< Opnd > m_UnaryOp(unsigned Opc, const Opnd &Op)
auto m_SMinLike(const LHS &L, const RHS &R)
CondCode_match m_SpecificCondCode(ISD::CondCode CC)
Match a conditional code SDNode with a specific ISD::CondCode.
NUses_match< 1, Value_match > m_OneUse()
CondCode_match m_CondCode()
Match any conditional code SDNode.
Not(const Pred &P) -> Not< Pred >
TernaryOpc_match< T0_P, T1_P, T2_P, true, false > m_c_SetCC(const T0_P &LHS, const T1_P &RHS, const T2_P &CC)
bool sd_context_match(SDValue N, const MatchContext &Ctx, Pattern &&P)
ConstantInt_match m_ConstInt()
Match any integer constants or splat of an integer constant.
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:666
constexpr double e
Definition MathExtras.h:47
@ User
could "use" a pointer
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< UseNode * > Use
Definition RDFGraph.h:385
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition STLExtras.h:318
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
Definition Threading.h:262
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:355
@ Offset
Definition DWP.cpp:477
@ Length
Definition DWP.cpp:477
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition STLExtras.h:831
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
void stable_sort(R &&Range)
Definition STLExtras.h:2038
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1731
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
InstructionCost Cost
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1607
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:279
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition Alignment.h:134
LLVM_ABI llvm::SmallVector< int, 16 > createUnaryMask(ArrayRef< int > Mask, unsigned NumElts)
Given a shuffle mask for a binary shuffle, create the equivalent shuffle mask assuming both operands ...
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
bool operator!=(uint64_t V1, const APInt &V2)
Definition APInt.h:2113
bool operator>=(int64_t V1, const APSInt &V2)
Definition APSInt.h:361
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator+=(DynamicAPInt &A, int64_t B)
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition MathExtras.h:293
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
Definition APFloat.h:1534
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1589
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:348
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
uint64_t PowerOf2Ceil(uint64_t A)
Returns the power of two which is greater than or equal to the given value.
Definition MathExtras.h:396
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition bit.h:186
unsigned M1(unsigned Val)
Definition VE.h:377
constexpr bool has_single_bit(T Value) noexcept
Definition bit.h:147
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:342
LLVM_ABI bool isConstantOrConstantVector(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowFP=true, bool AllowOpaqueConstants=true)
Return true if the specified instruction is known to be a constant, or a vector of constants.
Definition Utils.cpp:1545
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition bit.h:222
bool operator>(int64_t V1, const APSInt &V2)
Definition APSInt.h:363
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
auto reverse(ContainerTy &&C)
Definition STLExtras.h:408
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1624
detail::ValueMatchesPoly< M > HasValue(M Matcher)
Definition Error.h:221
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1719
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
MutableArrayRef(T &OneElt) -> MutableArrayRef< T >
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
@ Other
Any other memory.
Definition ModRef.h:68
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
CombineLevel
Definition DAGCombine.h:15
@ AfterLegalizeDAG
Definition DAGCombine.h:19
@ AfterLegalizeVectorOps
Definition DAGCombine.h:18
@ BeforeLegalizeTypes
Definition DAGCombine.h:16
@ AfterLegalizeTypes
Definition DAGCombine.h:17
LLVM_ABI void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMul
Product of floats.
@ And
Bitwise or logical AND of integers.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
DWARFExpression::Operation Op
unsigned M0(unsigned Val)
Definition VE.h:376
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition STLExtras.h:1941
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
LLVM_ABI void getShuffleMaskWithWidestElts(ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Repetitively apply widenShuffleMaskElts() for as long as it succeeds, to get the shuffle mask with wi...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition STLExtras.h:2088
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
bool operator<=(int64_t V1, const APSInt &V2)
Definition APSInt.h:360
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:384
LLVM_ABI int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
LLVM_ABI AAMDNodes concat(const AAMDNodes &Other) const
Determine the best AAMDNodes after concatenating two different locations together.
static LLVM_ABI ExponentType semanticsMinExponent(const fltSemantics &)
Definition APFloat.cpp:332
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static LLVM_ABI ExponentType semanticsMaxExponent(const fltSemantics &)
Definition APFloat.cpp:328
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
Definition APFloat.cpp:324
static LLVM_ABI bool isIEEELikeFP(const fltSemantics &)
Definition APFloat.cpp:365
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:320
static LLVM_ABI unsigned int semanticsIntSizeInBits(const fltSemantics &, bool)
Definition APFloat.cpp:338
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
static constexpr DenormalMode getIEEE()
Extended Value Type.
Definition ValueTypes.h:35
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
Definition ValueTypes.h:94
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
bool knownBitsLE(EVT VT) const
Return true if we know at compile time this has fewer than or the same bits as VT.
Definition ValueTypes.h:279
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition ValueTypes.h:243
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
Definition ValueTypes.h:470
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
Definition ValueTypes.h:412
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
Definition ValueTypes.h:381
bool isScalableVT() const
Return true if the type is a scalable type.
Definition ValueTypes.h:187
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isRound() const
Return true if the size is a power-of-two number of bytes.
Definition ValueTypes.h:248
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
bool knownBitsGE(EVT VT) const
Return true if we know at compile time this has more than or the same bits as VT.
Definition ValueTypes.h:268
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition ValueTypes.h:157
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool isZeroSized() const
Test if the given EVT has zero size, this will fail if called on a scalable type.
Definition ValueTypes.h:132
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
bool isConstant() const
Returns true if we know the value of all bits.
Definition KnownBits.h:54
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
Definition KnownBits.h:296
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
Definition KnownBits.h:248
bool isAllOnes() const
Returns true if value is all one bits.
Definition KnownBits.h:83
const APInt & getConstant() const
Returns the value when all bits have a known value.
Definition KnownBits.h:60
Matching combinators.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
These are IR-level optimization flags that may be propagated to SDNodes.
void setAllowContract(bool b)
bool hasNoUnsignedWrap() const
void setAllowReassociation(bool b)
void setAllowReciprocal(bool b)
bool hasAllowContract() const
bool hasApproximateFuncs() const
void setApproximateFuncs(bool b)
bool hasNoSignedWrap() const
bool hasAllowReciprocal() const
bool hasAllowReassociation() const
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
LLVM_ABI void AddToWorklist(SDNode *N)
LLVM_ABI bool recursivelyDeleteUnusedNodes(SDNode *N)
LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)
LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...