LLVM 22.0.0git
HexagonBitSimplify.cpp
Go to the documentation of this file.
1//===- HexagonBitSimplify.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "BitTracker.h"
10#include "Hexagon.h"
11#include "HexagonBitTracker.h"
12#include "HexagonInstrInfo.h"
13#include "HexagonRegisterInfo.h"
14#include "HexagonSubtarget.h"
15#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/StringRef.h"
26#include "llvm/IR/DebugLoc.h"
28#include "llvm/MC/MCInstrDesc.h"
29#include "llvm/Pass.h"
30#include "llvm/Support/Debug.h"
32
33#define DEBUG_TYPE "hexbit"
34
35using namespace llvm;
36
37static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
38 cl::init(true), cl::desc("Preserve subregisters in tied operands"));
39static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
40 cl::init(true), cl::desc("Generate extract instructions"));
41static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
42 cl::init(true), cl::desc("Generate bitsplit instructions"));
43
44static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
45 cl::init(std::numeric_limits<unsigned>::max()));
46static unsigned CountExtract = 0;
47static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
48 cl::init(std::numeric_limits<unsigned>::max()));
49static unsigned CountBitSplit = 0;
50
51static cl::opt<unsigned> RegisterSetLimit("hexbit-registerset-limit",
52 cl::Hidden, cl::init(1000));
53
54namespace {
55
56 // Set of virtual registers, based on BitVector.
57 struct RegisterSet {
58 RegisterSet() = default;
59 explicit RegisterSet(unsigned s, bool t = false) : Bits(s, t) {}
60 RegisterSet(const RegisterSet &RS) = default;
61
62 void clear() {
63 Bits.clear();
64 LRU.clear();
65 }
66
67 unsigned count() const {
68 return Bits.count();
69 }
70
71 unsigned find_first() const {
72 int First = Bits.find_first();
73 if (First < 0)
74 return 0;
75 return x2v(First);
76 }
77
78 unsigned find_next(unsigned Prev) const {
79 int Next = Bits.find_next(v2x(Prev));
80 if (Next < 0)
81 return 0;
82 return x2v(Next);
83 }
84
85 RegisterSet &insert(unsigned R) {
86 unsigned Idx = v2x(R);
87 ensure(Idx);
88 bool Exists = Bits.test(Idx);
89 Bits.set(Idx);
90 if (!Exists) {
91 LRU.push_back(Idx);
92 if (LRU.size() > RegisterSetLimit) {
93 unsigned T = LRU.front();
94 Bits.reset(T);
95 LRU.pop_front();
96 }
97 }
98 return *this;
99 }
100 RegisterSet &remove(unsigned R) {
101 unsigned Idx = v2x(R);
102 if (Idx < Bits.size()) {
103 bool Exists = Bits.test(Idx);
104 Bits.reset(Idx);
105 if (Exists) {
106 auto F = llvm::find(LRU, Idx);
107 assert(F != LRU.end());
108 LRU.erase(F);
109 }
110 }
111 return *this;
112 }
113
114 RegisterSet &insert(const RegisterSet &Rs) {
115 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R))
116 insert(R);
117 return *this;
118 }
119 RegisterSet &remove(const RegisterSet &Rs) {
120 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R))
121 remove(R);
122 return *this;
123 }
124
125 bool operator[](unsigned R) const {
126 unsigned Idx = v2x(R);
127 return Idx < Bits.size() ? Bits[Idx] : false;
128 }
129 bool has(unsigned R) const {
130 unsigned Idx = v2x(R);
131 if (Idx >= Bits.size())
132 return false;
133 return Bits.test(Idx);
134 }
135
136 bool empty() const {
137 return !Bits.any();
138 }
139 bool includes(const RegisterSet &Rs) const {
140 // A.test(B) <=> A-B != {}
141 return !Rs.Bits.test(Bits);
142 }
143 bool intersects(const RegisterSet &Rs) const {
144 return Bits.anyCommon(Rs.Bits);
145 }
146
147 private:
149 std::deque<unsigned> LRU;
150
151 void ensure(unsigned Idx) {
152 if (Bits.size() <= Idx)
153 Bits.resize(std::max(Idx+1, 32U));
154 }
155
156 static inline unsigned v2x(unsigned v) {
157 return Register(v).virtRegIndex();
158 }
159
160 static inline unsigned x2v(unsigned x) {
161 return Register::index2VirtReg(x);
162 }
163 };
164
165 struct PrintRegSet {
166 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
167 : RS(S), TRI(RI) {}
168
170 const PrintRegSet &P);
171
172 private:
173 const RegisterSet &RS;
174 const TargetRegisterInfo *TRI;
175 };
176
177 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
179 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
180 OS << '{';
181 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
182 OS << ' ' << printReg(R, P.TRI);
183 OS << " }";
184 return OS;
185 }
186
187 class Transformation;
188
189 class HexagonBitSimplify : public MachineFunctionPass {
190 public:
191 static char ID;
192
193 HexagonBitSimplify() : MachineFunctionPass(ID) {}
194
195 StringRef getPassName() const override {
196 return "Hexagon bit simplification";
197 }
198
199 void getAnalysisUsage(AnalysisUsage &AU) const override {
203 }
204
205 bool runOnMachineFunction(MachineFunction &MF) override;
206
207 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
208 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
209 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
210 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
211 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
212 uint16_t W);
213 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
214 uint16_t W, uint64_t &U);
215 static bool replaceReg(Register OldR, Register NewR,
217 static bool getSubregMask(const BitTracker::RegisterRef &RR,
218 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
219 static bool replaceRegWithSub(Register OldR, Register NewR, unsigned NewSR,
221 static bool replaceSubWithSub(Register OldR, unsigned OldSR, Register NewR,
222 unsigned NewSR, MachineRegisterInfo &MRI);
223 static bool parseRegSequence(const MachineInstr &I,
225 const MachineRegisterInfo &MRI);
226
227 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
228 uint16_t Begin);
229 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
230 uint16_t Begin, const HexagonInstrInfo &HII);
231
232 static const TargetRegisterClass *getFinalVRegClass(
234 static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
236
237 private:
238 MachineDominatorTree *MDT = nullptr;
239
240 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
241 static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
242 unsigned NewSub = Hexagon::NoSubRegister);
243 };
244
245 using HBS = HexagonBitSimplify;
246
247 // The purpose of this class is to provide a common facility to traverse
248 // the function top-down or bottom-up via the dominator tree, and keep
249 // track of the available registers.
250 class Transformation {
251 public:
252 bool TopDown;
253
254 Transformation(bool TD) : TopDown(TD) {}
255 virtual ~Transformation() = default;
256
257 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
258 };
259
260} // end anonymous namespace
261
262char HexagonBitSimplify::ID = 0;
263
264INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
265 "Hexagon bit simplification", false, false)
267INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
268 "Hexagon bit simplification", false, false)
269
270bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
271 RegisterSet &AVs) {
272 bool Changed = false;
273
274 if (T.TopDown)
275 Changed = T.processBlock(B, AVs);
276
277 RegisterSet Defs;
278 for (auto &I : B)
279 getInstrDefs(I, Defs);
280 RegisterSet NewAVs = AVs;
281 NewAVs.insert(Defs);
282
283 for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
284 Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
285
286 if (!T.TopDown)
287 Changed |= T.processBlock(B, AVs);
288
289 return Changed;
290}
291
292//
293// Utility functions:
294//
295void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
296 RegisterSet &Defs) {
297 for (auto &Op : MI.operands()) {
298 if (!Op.isReg() || !Op.isDef())
299 continue;
300 Register R = Op.getReg();
301 if (!R.isVirtual())
302 continue;
303 Defs.insert(R);
304 }
305}
306
307void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
308 RegisterSet &Uses) {
309 for (auto &Op : MI.operands()) {
310 if (!Op.isReg() || !Op.isUse())
311 continue;
312 Register R = Op.getReg();
313 if (!R.isVirtual())
314 continue;
315 Uses.insert(R);
316 }
317}
318
319// Check if all the bits in range [B, E) in both cells are equal.
320bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
321 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
322 uint16_t W) {
323 for (uint16_t i = 0; i < W; ++i) {
324 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
325 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
326 return false;
327 // Same for RC2[i].
328 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
329 return false;
330 if (RC1[B1+i] != RC2[B2+i])
331 return false;
332 }
333 return true;
334}
335
336bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
337 uint16_t B, uint16_t W) {
338 assert(B < RC.width() && B+W <= RC.width());
339 for (uint16_t i = B; i < B+W; ++i)
340 if (!RC[i].is(0))
341 return false;
342 return true;
343}
344
345bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
346 uint16_t B, uint16_t W, uint64_t &U) {
347 assert(B < RC.width() && B+W <= RC.width());
348 int64_t T = 0;
349 for (uint16_t i = B+W; i > B; --i) {
350 const BitTracker::BitValue &BV = RC[i-1];
351 T <<= 1;
352 if (BV.is(1))
353 T |= 1;
354 else if (!BV.is(0))
355 return false;
356 }
357 U = T;
358 return true;
359}
360
361bool HexagonBitSimplify::replaceReg(Register OldR, Register NewR,
363 if (!OldR.isVirtual() || !NewR.isVirtual())
364 return false;
365 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
366 decltype(End) NextI;
367 for (auto I = Begin; I != End; I = NextI) {
368 NextI = std::next(I);
369 I->setReg(NewR);
370 }
371 return Begin != End;
372}
373
374bool HexagonBitSimplify::replaceRegWithSub(Register OldR, Register NewR,
375 unsigned NewSR,
377 if (!OldR.isVirtual() || !NewR.isVirtual())
378 return false;
379 if (hasTiedUse(OldR, MRI, NewSR))
380 return false;
381 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
382 decltype(End) NextI;
383 for (auto I = Begin; I != End; I = NextI) {
384 NextI = std::next(I);
385 I->setReg(NewR);
386 I->setSubReg(NewSR);
387 }
388 return Begin != End;
389}
390
391bool HexagonBitSimplify::replaceSubWithSub(Register OldR, unsigned OldSR,
392 Register NewR, unsigned NewSR,
394 if (!OldR.isVirtual() || !NewR.isVirtual())
395 return false;
396 if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
397 return false;
398 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
399 decltype(End) NextI;
400 for (auto I = Begin; I != End; I = NextI) {
401 NextI = std::next(I);
402 if (I->getSubReg() != OldSR)
403 continue;
404 I->setReg(NewR);
405 I->setSubReg(NewSR);
406 }
407 return Begin != End;
408}
409
410// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
411// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
412// if this succeeded, otherwise return false.
413bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
414 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
415 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
416 if (RR.Sub == 0) {
417 Begin = 0;
418 Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
419 return true;
420 }
421
422 Begin = 0;
423
424 switch (RC->getID()) {
425 case Hexagon::DoubleRegsRegClassID:
426 case Hexagon::HvxWRRegClassID:
427 Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
428 if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
429 Begin = Width;
430 break;
431 default:
432 return false;
433 }
434 return true;
435}
436
437
438// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
439// subregister.
440bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
442 const MachineRegisterInfo &MRI) {
443 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
444 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
445 auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
446 auto &HRI = static_cast<const HexagonRegisterInfo&>(
447 *MRI.getTargetRegisterInfo());
448 unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
449 unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
450 assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
451 if (Sub1 == SubLo && Sub2 == SubHi) {
452 SL = I.getOperand(1);
453 SH = I.getOperand(3);
454 return true;
455 }
456 if (Sub1 == SubHi && Sub2 == SubLo) {
457 SH = I.getOperand(1);
458 SL = I.getOperand(3);
459 return true;
460 }
461 return false;
462}
463
464// All stores (except 64-bit stores) take a 32-bit register as the source
465// of the value to be stored. If the instruction stores into a location
466// that is shorter than 32 bits, some bits of the source register are not
467// used. For each store instruction, calculate the set of used bits in
468// the source register, and set appropriate bits in Bits. Return true if
469// the bits are calculated, false otherwise.
470bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
471 uint16_t Begin) {
472 using namespace Hexagon;
473
474 switch (Opc) {
475 // Store byte
476 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
477 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
478 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
479 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
480 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
481 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
482 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
483 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
484 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
485 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
486 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
487 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
488 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
489 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
490 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
491 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
492 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
493 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
494 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
495 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
496 case S4_storerb_ap: // memb(Re32=#U6)=Rt32
497 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
498 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
499 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
500 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
501 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
502 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
503 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
504 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
505 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
506 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
507 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
508 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
509 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
510 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
511 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
512 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
513 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
514 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
515 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
516 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
517 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
518 case S2_storerbgp: // memb(gp+#u16:0)=Rt32
519 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
520 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
521 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
522 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
523 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
524 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
525 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
526 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
527 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
528 Bits.set(Begin, Begin+8);
529 return true;
530
531 // Store low half
532 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
533 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
534 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
535 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
536 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
537 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
538 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
539 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
540 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
541 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
542 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
543 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
544 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
545 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
546 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
547 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
548 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
549 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
550 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
551 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
552 case S4_storerh_ap: // memh(Re32=#U6)=Rt32
553 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
554 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
555 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
556 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
557 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
558 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
559 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
560 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
561 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
562 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
563 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
564 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
565 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
566 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
567 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
568 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
569 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
570 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
571 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
572 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
573 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
574 case S2_storerhgp: // memh(gp+#u16:1)=Rt32
575 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
576 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
577 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
578 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
579 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
580 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
581 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
582 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
583 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
584 Bits.set(Begin, Begin+16);
585 return true;
586
587 // Store high half
588 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
589 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
590 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
591 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
592 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
593 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
594 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
595 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
596 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
597 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
598 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
599 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
600 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
601 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
602 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
603 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
604 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
605 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
606 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
607 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
608 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
609 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
610 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
611 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
612 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
613 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
614 Bits.set(Begin+16, Begin+32);
615 return true;
616 }
617
618 return false;
619}
620
621// For an instruction with opcode Opc, calculate the set of bits that it
622// uses in a register in operand OpN. This only calculates the set of used
623// bits for cases where it does not depend on any operands (as is the case
624// in shifts, for example). For concrete instructions from a program, the
625// operand may be a subregister of a larger register, while Bits would
626// correspond to the larger register in its entirety. Because of that,
627// the parameter Begin can be used to indicate which bit of Bits should be
628// considered the LSB of the operand.
629bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
630 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
631 using namespace Hexagon;
632
633 const MCInstrDesc &D = HII.get(Opc);
634 if (D.mayStore()) {
635 if (OpN == D.getNumOperands()-1)
636 return getUsedBitsInStore(Opc, Bits, Begin);
637 return false;
638 }
639
640 switch (Opc) {
641 // One register source. Used bits: R1[0-7].
642 case A2_sxtb:
643 case A2_zxtb:
644 case A4_cmpbeqi:
645 case A4_cmpbgti:
646 case A4_cmpbgtui:
647 if (OpN == 1) {
648 Bits.set(Begin, Begin+8);
649 return true;
650 }
651 break;
652
653 // One register source. Used bits: R1[0-15].
654 case A2_aslh:
655 case A2_sxth:
656 case A2_zxth:
657 case A4_cmpheqi:
658 case A4_cmphgti:
659 case A4_cmphgtui:
660 if (OpN == 1) {
661 Bits.set(Begin, Begin+16);
662 return true;
663 }
664 break;
665
666 // One register source. Used bits: R1[16-31].
667 case A2_asrh:
668 if (OpN == 1) {
669 Bits.set(Begin+16, Begin+32);
670 return true;
671 }
672 break;
673
674 // Two register sources. Used bits: R1[0-7], R2[0-7].
675 case A4_cmpbeq:
676 case A4_cmpbgt:
677 case A4_cmpbgtu:
678 if (OpN == 1) {
679 Bits.set(Begin, Begin+8);
680 return true;
681 }
682 break;
683
684 // Two register sources. Used bits: R1[0-15], R2[0-15].
685 case A4_cmpheq:
686 case A4_cmphgt:
687 case A4_cmphgtu:
688 case A2_addh_h16_ll:
689 case A2_addh_h16_sat_ll:
690 case A2_addh_l16_ll:
691 case A2_addh_l16_sat_ll:
692 case A2_combine_ll:
693 case A2_subh_h16_ll:
694 case A2_subh_h16_sat_ll:
695 case A2_subh_l16_ll:
696 case A2_subh_l16_sat_ll:
697 case M2_mpy_acc_ll_s0:
698 case M2_mpy_acc_ll_s1:
699 case M2_mpy_acc_sat_ll_s0:
700 case M2_mpy_acc_sat_ll_s1:
701 case M2_mpy_ll_s0:
702 case M2_mpy_ll_s1:
703 case M2_mpy_nac_ll_s0:
704 case M2_mpy_nac_ll_s1:
705 case M2_mpy_nac_sat_ll_s0:
706 case M2_mpy_nac_sat_ll_s1:
707 case M2_mpy_rnd_ll_s0:
708 case M2_mpy_rnd_ll_s1:
709 case M2_mpy_sat_ll_s0:
710 case M2_mpy_sat_ll_s1:
711 case M2_mpy_sat_rnd_ll_s0:
712 case M2_mpy_sat_rnd_ll_s1:
713 case M2_mpyd_acc_ll_s0:
714 case M2_mpyd_acc_ll_s1:
715 case M2_mpyd_ll_s0:
716 case M2_mpyd_ll_s1:
717 case M2_mpyd_nac_ll_s0:
718 case M2_mpyd_nac_ll_s1:
719 case M2_mpyd_rnd_ll_s0:
720 case M2_mpyd_rnd_ll_s1:
721 case M2_mpyu_acc_ll_s0:
722 case M2_mpyu_acc_ll_s1:
723 case M2_mpyu_ll_s0:
724 case M2_mpyu_ll_s1:
725 case M2_mpyu_nac_ll_s0:
726 case M2_mpyu_nac_ll_s1:
727 case M2_mpyud_acc_ll_s0:
728 case M2_mpyud_acc_ll_s1:
729 case M2_mpyud_ll_s0:
730 case M2_mpyud_ll_s1:
731 case M2_mpyud_nac_ll_s0:
732 case M2_mpyud_nac_ll_s1:
733 if (OpN == 1 || OpN == 2) {
734 Bits.set(Begin, Begin+16);
735 return true;
736 }
737 break;
738
739 // Two register sources. Used bits: R1[0-15], R2[16-31].
740 case A2_addh_h16_lh:
741 case A2_addh_h16_sat_lh:
742 case A2_combine_lh:
743 case A2_subh_h16_lh:
744 case A2_subh_h16_sat_lh:
745 case M2_mpy_acc_lh_s0:
746 case M2_mpy_acc_lh_s1:
747 case M2_mpy_acc_sat_lh_s0:
748 case M2_mpy_acc_sat_lh_s1:
749 case M2_mpy_lh_s0:
750 case M2_mpy_lh_s1:
751 case M2_mpy_nac_lh_s0:
752 case M2_mpy_nac_lh_s1:
753 case M2_mpy_nac_sat_lh_s0:
754 case M2_mpy_nac_sat_lh_s1:
755 case M2_mpy_rnd_lh_s0:
756 case M2_mpy_rnd_lh_s1:
757 case M2_mpy_sat_lh_s0:
758 case M2_mpy_sat_lh_s1:
759 case M2_mpy_sat_rnd_lh_s0:
760 case M2_mpy_sat_rnd_lh_s1:
761 case M2_mpyd_acc_lh_s0:
762 case M2_mpyd_acc_lh_s1:
763 case M2_mpyd_lh_s0:
764 case M2_mpyd_lh_s1:
765 case M2_mpyd_nac_lh_s0:
766 case M2_mpyd_nac_lh_s1:
767 case M2_mpyd_rnd_lh_s0:
768 case M2_mpyd_rnd_lh_s1:
769 case M2_mpyu_acc_lh_s0:
770 case M2_mpyu_acc_lh_s1:
771 case M2_mpyu_lh_s0:
772 case M2_mpyu_lh_s1:
773 case M2_mpyu_nac_lh_s0:
774 case M2_mpyu_nac_lh_s1:
775 case M2_mpyud_acc_lh_s0:
776 case M2_mpyud_acc_lh_s1:
777 case M2_mpyud_lh_s0:
778 case M2_mpyud_lh_s1:
779 case M2_mpyud_nac_lh_s0:
780 case M2_mpyud_nac_lh_s1:
781 // These four are actually LH.
782 case A2_addh_l16_hl:
783 case A2_addh_l16_sat_hl:
784 case A2_subh_l16_hl:
785 case A2_subh_l16_sat_hl:
786 if (OpN == 1) {
787 Bits.set(Begin, Begin+16);
788 return true;
789 }
790 if (OpN == 2) {
791 Bits.set(Begin+16, Begin+32);
792 return true;
793 }
794 break;
795
796 // Two register sources, used bits: R1[16-31], R2[0-15].
797 case A2_addh_h16_hl:
798 case A2_addh_h16_sat_hl:
799 case A2_combine_hl:
800 case A2_subh_h16_hl:
801 case A2_subh_h16_sat_hl:
802 case M2_mpy_acc_hl_s0:
803 case M2_mpy_acc_hl_s1:
804 case M2_mpy_acc_sat_hl_s0:
805 case M2_mpy_acc_sat_hl_s1:
806 case M2_mpy_hl_s0:
807 case M2_mpy_hl_s1:
808 case M2_mpy_nac_hl_s0:
809 case M2_mpy_nac_hl_s1:
810 case M2_mpy_nac_sat_hl_s0:
811 case M2_mpy_nac_sat_hl_s1:
812 case M2_mpy_rnd_hl_s0:
813 case M2_mpy_rnd_hl_s1:
814 case M2_mpy_sat_hl_s0:
815 case M2_mpy_sat_hl_s1:
816 case M2_mpy_sat_rnd_hl_s0:
817 case M2_mpy_sat_rnd_hl_s1:
818 case M2_mpyd_acc_hl_s0:
819 case M2_mpyd_acc_hl_s1:
820 case M2_mpyd_hl_s0:
821 case M2_mpyd_hl_s1:
822 case M2_mpyd_nac_hl_s0:
823 case M2_mpyd_nac_hl_s1:
824 case M2_mpyd_rnd_hl_s0:
825 case M2_mpyd_rnd_hl_s1:
826 case M2_mpyu_acc_hl_s0:
827 case M2_mpyu_acc_hl_s1:
828 case M2_mpyu_hl_s0:
829 case M2_mpyu_hl_s1:
830 case M2_mpyu_nac_hl_s0:
831 case M2_mpyu_nac_hl_s1:
832 case M2_mpyud_acc_hl_s0:
833 case M2_mpyud_acc_hl_s1:
834 case M2_mpyud_hl_s0:
835 case M2_mpyud_hl_s1:
836 case M2_mpyud_nac_hl_s0:
837 case M2_mpyud_nac_hl_s1:
838 if (OpN == 1) {
839 Bits.set(Begin+16, Begin+32);
840 return true;
841 }
842 if (OpN == 2) {
843 Bits.set(Begin, Begin+16);
844 return true;
845 }
846 break;
847
848 // Two register sources, used bits: R1[16-31], R2[16-31].
849 case A2_addh_h16_hh:
850 case A2_addh_h16_sat_hh:
851 case A2_combine_hh:
852 case A2_subh_h16_hh:
853 case A2_subh_h16_sat_hh:
854 case M2_mpy_acc_hh_s0:
855 case M2_mpy_acc_hh_s1:
856 case M2_mpy_acc_sat_hh_s0:
857 case M2_mpy_acc_sat_hh_s1:
858 case M2_mpy_hh_s0:
859 case M2_mpy_hh_s1:
860 case M2_mpy_nac_hh_s0:
861 case M2_mpy_nac_hh_s1:
862 case M2_mpy_nac_sat_hh_s0:
863 case M2_mpy_nac_sat_hh_s1:
864 case M2_mpy_rnd_hh_s0:
865 case M2_mpy_rnd_hh_s1:
866 case M2_mpy_sat_hh_s0:
867 case M2_mpy_sat_hh_s1:
868 case M2_mpy_sat_rnd_hh_s0:
869 case M2_mpy_sat_rnd_hh_s1:
870 case M2_mpyd_acc_hh_s0:
871 case M2_mpyd_acc_hh_s1:
872 case M2_mpyd_hh_s0:
873 case M2_mpyd_hh_s1:
874 case M2_mpyd_nac_hh_s0:
875 case M2_mpyd_nac_hh_s1:
876 case M2_mpyd_rnd_hh_s0:
877 case M2_mpyd_rnd_hh_s1:
878 case M2_mpyu_acc_hh_s0:
879 case M2_mpyu_acc_hh_s1:
880 case M2_mpyu_hh_s0:
881 case M2_mpyu_hh_s1:
882 case M2_mpyu_nac_hh_s0:
883 case M2_mpyu_nac_hh_s1:
884 case M2_mpyud_acc_hh_s0:
885 case M2_mpyud_acc_hh_s1:
886 case M2_mpyud_hh_s0:
887 case M2_mpyud_hh_s1:
888 case M2_mpyud_nac_hh_s0:
889 case M2_mpyud_nac_hh_s1:
890 if (OpN == 1 || OpN == 2) {
891 Bits.set(Begin+16, Begin+32);
892 return true;
893 }
894 break;
895 }
896
897 return false;
898}
899
900// Calculate the register class that matches Reg:Sub. For example, if
901// %1 is a double register, then %1:isub_hi would match the "int"
902// register class.
903const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
905 if (!RR.Reg.isVirtual())
906 return nullptr;
907 auto *RC = MRI.getRegClass(RR.Reg);
908 if (RR.Sub == 0)
909 return RC;
910 auto &HRI = static_cast<const HexagonRegisterInfo&>(
911 *MRI.getTargetRegisterInfo());
912
913 auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
914 (void)HRI;
915 assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
916 Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
917 };
918
919 switch (RC->getID()) {
920 case Hexagon::DoubleRegsRegClassID:
921 VerifySR(RC, RR.Sub);
922 return &Hexagon::IntRegsRegClass;
923 case Hexagon::HvxWRRegClassID:
924 VerifySR(RC, RR.Sub);
925 return &Hexagon::HvxVRRegClass;
926 }
927 return nullptr;
928}
929
930// Check if RD could be replaced with RS at any possible use of RD.
931// For example a predicate register cannot be replaced with a integer
932// register, but a 64-bit register with a subregister can be replaced
933// with a 32-bit register.
934bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
936 if (!RD.Reg.isVirtual() || !RS.Reg.isVirtual())
937 return false;
938 // Return false if one (or both) classes are nullptr.
939 auto *DRC = getFinalVRegClass(RD, MRI);
940 if (!DRC)
941 return false;
942
943 return DRC == getFinalVRegClass(RS, MRI);
944}
945
946bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
947 unsigned NewSub) {
948 if (!PreserveTiedOps)
949 return false;
950 return llvm::any_of(MRI.use_operands(Reg),
951 [NewSub] (const MachineOperand &Op) -> bool {
952 return Op.getSubReg() != NewSub && Op.isTied();
953 });
954}
955
956namespace {
957
958 class DeadCodeElimination {
959 public:
960 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
961 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
962 MDT(mdt), MRI(mf.getRegInfo()) {}
963
964 bool run() {
965 return runOnNode(MDT.getRootNode());
966 }
967
968 private:
969 bool isDead(unsigned R) const;
970 bool runOnNode(MachineDomTreeNode *N);
971
972 MachineFunction &MF;
973 const HexagonInstrInfo &HII;
976 };
977
978} // end anonymous namespace
979
980bool DeadCodeElimination::isDead(unsigned R) const {
981 for (const MachineOperand &MO : MRI.use_operands(R)) {
982 const MachineInstr *UseI = MO.getParent();
983 if (UseI->isDebugInstr())
984 continue;
985 if (UseI->isPHI()) {
986 assert(!UseI->getOperand(0).getSubReg());
987 Register DR = UseI->getOperand(0).getReg();
988 if (DR == R)
989 continue;
990 }
991 return false;
992 }
993 return true;
994}
995
996bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
997 bool Changed = false;
998
999 for (auto *DTN : children<MachineDomTreeNode*>(N))
1000 Changed |= runOnNode(DTN);
1001
1002 MachineBasicBlock *B = N->getBlock();
1003 std::vector<MachineInstr*> Instrs;
1004 for (MachineInstr &MI : llvm::reverse(*B))
1005 Instrs.push_back(&MI);
1006
1007 for (auto *MI : Instrs) {
1008 unsigned Opc = MI->getOpcode();
1009 // Do not touch lifetime markers. This is why the target-independent DCE
1010 // cannot be used.
1011 if (Opc == TargetOpcode::LIFETIME_START ||
1012 Opc == TargetOpcode::LIFETIME_END)
1013 continue;
1014 bool Store = false;
1015 if (MI->isInlineAsm())
1016 continue;
1017 // Delete PHIs if possible.
1018 if (!MI->isPHI() && !MI->isSafeToMove(Store))
1019 continue;
1020
1021 bool AllDead = true;
1023 for (auto &Op : MI->operands()) {
1024 if (!Op.isReg() || !Op.isDef())
1025 continue;
1026 Register R = Op.getReg();
1027 if (!R.isVirtual() || !isDead(R)) {
1028 AllDead = false;
1029 break;
1030 }
1031 Regs.push_back(R);
1032 }
1033 if (!AllDead)
1034 continue;
1035
1036 B->erase(MI);
1037 for (unsigned Reg : Regs)
1038 MRI.markUsesInDebugValueAsUndef(Reg);
1039 Changed = true;
1040 }
1041
1042 return Changed;
1043}
1044
1045namespace {
1046
1047// Eliminate redundant instructions
1048//
1049// This transformation will identify instructions where the output register
1050// is the same as one of its input registers. This only works on instructions
1051// that define a single register (unlike post-increment loads, for example).
1052// The equality check is actually more detailed: the code calculates which
1053// bits of the output are used, and only compares these bits with the input
1054// registers.
1055// If the output matches an input, the instruction is replaced with COPY.
1056// The copies will be removed by another transformation.
1057 class RedundantInstrElimination : public Transformation {
1058 public:
1059 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1061 : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1062
1063 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1064
1065 private:
1066 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1067 unsigned &LostB, unsigned &LostE);
1068 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1069 unsigned &LostB, unsigned &LostE);
1070 bool computeUsedBits(unsigned Reg, BitVector &Bits);
1071 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1072 uint16_t Begin);
1073 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1074
1075 const HexagonInstrInfo &HII;
1076 const HexagonRegisterInfo &HRI;
1078 BitTracker &BT;
1079 };
1080
1081} // end anonymous namespace
1082
1083// Check if the instruction is a lossy shift left, where the input being
1084// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1085// of bit indices that are lost.
1086bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1087 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1088 using namespace Hexagon;
1089
1090 unsigned Opc = MI.getOpcode();
1091 unsigned ImN, RegN, Width;
1092 switch (Opc) {
1093 case S2_asl_i_p:
1094 ImN = 2;
1095 RegN = 1;
1096 Width = 64;
1097 break;
1098 case S2_asl_i_p_acc:
1099 case S2_asl_i_p_and:
1100 case S2_asl_i_p_nac:
1101 case S2_asl_i_p_or:
1102 case S2_asl_i_p_xacc:
1103 ImN = 3;
1104 RegN = 2;
1105 Width = 64;
1106 break;
1107 case S2_asl_i_r:
1108 ImN = 2;
1109 RegN = 1;
1110 Width = 32;
1111 break;
1112 case S2_addasl_rrri:
1113 case S4_andi_asl_ri:
1114 case S4_ori_asl_ri:
1115 case S4_addi_asl_ri:
1116 case S4_subi_asl_ri:
1117 case S2_asl_i_r_acc:
1118 case S2_asl_i_r_and:
1119 case S2_asl_i_r_nac:
1120 case S2_asl_i_r_or:
1121 case S2_asl_i_r_sat:
1122 case S2_asl_i_r_xacc:
1123 ImN = 3;
1124 RegN = 2;
1125 Width = 32;
1126 break;
1127 default:
1128 return false;
1129 }
1130
1131 if (RegN != OpN)
1132 return false;
1133
1134 assert(MI.getOperand(ImN).isImm());
1135 unsigned S = MI.getOperand(ImN).getImm();
1136 if (S == 0)
1137 return false;
1138 LostB = Width-S;
1139 LostE = Width;
1140 return true;
1141}
1142
1143// Check if the instruction is a lossy shift right, where the input being
1144// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1145// of bit indices that are lost.
1146bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1147 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1148 using namespace Hexagon;
1149
1150 unsigned Opc = MI.getOpcode();
1151 unsigned ImN, RegN;
1152 switch (Opc) {
1153 case S2_asr_i_p:
1154 case S2_lsr_i_p:
1155 ImN = 2;
1156 RegN = 1;
1157 break;
1158 case S2_asr_i_p_acc:
1159 case S2_asr_i_p_and:
1160 case S2_asr_i_p_nac:
1161 case S2_asr_i_p_or:
1162 case S2_lsr_i_p_acc:
1163 case S2_lsr_i_p_and:
1164 case S2_lsr_i_p_nac:
1165 case S2_lsr_i_p_or:
1166 case S2_lsr_i_p_xacc:
1167 ImN = 3;
1168 RegN = 2;
1169 break;
1170 case S2_asr_i_r:
1171 case S2_lsr_i_r:
1172 ImN = 2;
1173 RegN = 1;
1174 break;
1175 case S4_andi_lsr_ri:
1176 case S4_ori_lsr_ri:
1177 case S4_addi_lsr_ri:
1178 case S4_subi_lsr_ri:
1179 case S2_asr_i_r_acc:
1180 case S2_asr_i_r_and:
1181 case S2_asr_i_r_nac:
1182 case S2_asr_i_r_or:
1183 case S2_lsr_i_r_acc:
1184 case S2_lsr_i_r_and:
1185 case S2_lsr_i_r_nac:
1186 case S2_lsr_i_r_or:
1187 case S2_lsr_i_r_xacc:
1188 ImN = 3;
1189 RegN = 2;
1190 break;
1191
1192 default:
1193 return false;
1194 }
1195
1196 if (RegN != OpN)
1197 return false;
1198
1199 assert(MI.getOperand(ImN).isImm());
1200 unsigned S = MI.getOperand(ImN).getImm();
1201 LostB = 0;
1202 LostE = S;
1203 return true;
1204}
1205
1206// Calculate the bit vector that corresponds to the used bits of register Reg.
1207// The vector Bits has the same size, as the size of Reg in bits. If the cal-
1208// culation fails (i.e. the used bits are unknown), it returns false. Other-
1209// wise, it returns true and sets the corresponding bits in Bits.
1210bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1211 BitVector Used(Bits.size());
1212 RegisterSet Visited;
1213 std::vector<unsigned> Pending;
1214 Pending.push_back(Reg);
1215
1216 for (unsigned i = 0; i < Pending.size(); ++i) {
1217 unsigned R = Pending[i];
1218 if (Visited.has(R))
1219 continue;
1220 Visited.insert(R);
1221 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1223 unsigned B, W;
1224 if (!HBS::getSubregMask(UR, B, W, MRI))
1225 return false;
1226 MachineInstr &UseI = *I->getParent();
1227 if (UseI.isPHI() || UseI.isCopy()) {
1228 Register DefR = UseI.getOperand(0).getReg();
1229 if (!DefR.isVirtual())
1230 return false;
1231 Pending.push_back(DefR);
1232 } else {
1233 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1234 return false;
1235 }
1236 }
1237 }
1238 Bits |= Used;
1239 return true;
1240}
1241
1242// Calculate the bits used by instruction MI in a register in operand OpN.
1243// Return true/false if the calculation succeeds/fails. If is succeeds, set
1244// used bits in Bits. This function does not reset any bits in Bits, so
1245// subsequent calls over different instructions will result in the union
1246// of the used bits in all these instructions.
1247// The register in question may be used with a sub-register, whereas Bits
1248// holds the bits for the entire register. To keep track of that, the
1249// argument Begin indicates where in Bits is the lowest-significant bit
1250// of the register used in operand OpN. For example, in instruction:
1251// %1 = S2_lsr_i_r %2:isub_hi, 10
1252// the operand 1 is a 32-bit register, which happens to be a subregister
1253// of the 64-bit register %2, and that subregister starts at position 32.
1254// In this case Begin=32, since Bits[32] would be the lowest-significant bit
1255// of %2:isub_hi.
1256bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1257 unsigned OpN, BitVector &Bits, uint16_t Begin) {
1258 unsigned Opc = MI.getOpcode();
1259 BitVector T(Bits.size());
1260 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1261 // Even if we don't have bits yet, we could still provide some information
1262 // if the instruction is a lossy shift: the lost bits will be marked as
1263 // not used.
1264 unsigned LB, LE;
1265 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1266 assert(MI.getOperand(OpN).isReg());
1267 BitTracker::RegisterRef RR = MI.getOperand(OpN);
1268 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1269 uint16_t Width = HRI.getRegSizeInBits(*RC);
1270
1271 if (!GotBits)
1272 T.set(Begin, Begin+Width);
1273 assert(LB <= LE && LB < Width && LE <= Width);
1274 T.reset(Begin+LB, Begin+LE);
1275 GotBits = true;
1276 }
1277 if (GotBits)
1278 Bits |= T;
1279 return GotBits;
1280}
1281
1282// Calculates the used bits in RD ("defined register"), and checks if these
1283// bits in RS ("used register") and RD are identical.
1284bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1286 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1287 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1288
1289 unsigned DB, DW;
1290 if (!HBS::getSubregMask(RD, DB, DW, MRI))
1291 return false;
1292 unsigned SB, SW;
1293 if (!HBS::getSubregMask(RS, SB, SW, MRI))
1294 return false;
1295 if (SW != DW)
1296 return false;
1297
1298 BitVector Used(DC.width());
1299 if (!computeUsedBits(RD.Reg, Used))
1300 return false;
1301
1302 for (unsigned i = 0; i != DW; ++i)
1303 if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1304 return false;
1305 return true;
1306}
1307
1308bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1309 const RegisterSet&) {
1310 if (!BT.reached(&B))
1311 return false;
1312 bool Changed = false;
1313
1314 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1315 MachineInstr *MI = &*I;
1316
1317 if (MI->getOpcode() == TargetOpcode::COPY)
1318 continue;
1319 if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1320 continue;
1321 unsigned NumD = MI->getDesc().getNumDefs();
1322 if (NumD != 1)
1323 continue;
1324
1325 BitTracker::RegisterRef RD = MI->getOperand(0);
1326 if (!BT.has(RD.Reg))
1327 continue;
1328 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1330
1331 // Find a source operand that is equal to the result.
1332 for (auto &Op : MI->uses()) {
1333 if (!Op.isReg())
1334 continue;
1336 if (!BT.has(RS.Reg))
1337 continue;
1338 if (!HBS::isTransparentCopy(RD, RS, MRI))
1339 continue;
1340
1341 unsigned BN, BW;
1342 if (!HBS::getSubregMask(RS, BN, BW, MRI))
1343 continue;
1344
1345 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1346 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1347 continue;
1348
1349 // If found, replace the instruction with a COPY.
1350 const DebugLoc &DL = MI->getDebugLoc();
1351 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1352 Register NewR = MRI.createVirtualRegister(FRC);
1353 MachineInstr *CopyI =
1354 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1355 .addReg(RS.Reg, 0, RS.Sub);
1356 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1357 // This pass can create copies between registers that don't have the
1358 // exact same values. Updating the tracker has to involve updating
1359 // all dependent cells. Example:
1360 // %1 = inst %2 ; %1 != %2, but used bits are equal
1361 //
1362 // %3 = copy %2 ; <- inserted
1363 // ... = %3 ; <- replaced from %2
1364 // Indirectly, we can create a "copy" between %1 and %2 even
1365 // though their exact values do not match.
1366 BT.visit(*CopyI);
1367 Changed = true;
1368 break;
1369 }
1370 }
1371
1372 return Changed;
1373}
1374
1375namespace {
1376
1377// Recognize instructions that produce constant values known at compile-time.
1378// Replace them with register definitions that load these constants directly.
1379 class ConstGeneration : public Transformation {
1380 public:
1381 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1383 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1384
1385 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1386 static bool isTfrConst(const MachineInstr &MI);
1387
1388 private:
1389 Register genTfrConst(const TargetRegisterClass *RC, int64_t C,
1391 DebugLoc &DL);
1392
1393 const HexagonInstrInfo &HII;
1395 BitTracker &BT;
1396 };
1397
1398} // end anonymous namespace
1399
1400bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
1401 unsigned Opc = MI.getOpcode();
1402 switch (Opc) {
1403 case Hexagon::A2_combineii:
1404 case Hexagon::A4_combineii:
1405 case Hexagon::A2_tfrsi:
1406 case Hexagon::A2_tfrpi:
1407 case Hexagon::PS_true:
1408 case Hexagon::PS_false:
1409 case Hexagon::CONST32:
1410 case Hexagon::CONST64:
1411 return true;
1412 }
1413 return false;
1414}
1415
1416// Generate a transfer-immediate instruction that is appropriate for the
1417// register class and the actual value being transferred.
1418Register ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1421 DebugLoc &DL) {
1422 Register Reg = MRI.createVirtualRegister(RC);
1423 if (RC == &Hexagon::IntRegsRegClass) {
1424 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1425 .addImm(int32_t(C));
1426 return Reg;
1427 }
1428
1429 if (RC == &Hexagon::DoubleRegsRegClass) {
1430 if (isInt<8>(C)) {
1431 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1432 .addImm(C);
1433 return Reg;
1434 }
1435
1436 unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1437 if (isInt<8>(Lo) || isInt<8>(Hi)) {
1438 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1439 : Hexagon::A4_combineii;
1440 BuildMI(B, At, DL, HII.get(Opc), Reg)
1441 .addImm(int32_t(Hi))
1442 .addImm(int32_t(Lo));
1443 return Reg;
1444 }
1445 MachineFunction *MF = B.getParent();
1446 auto &HST = MF->getSubtarget<HexagonSubtarget>();
1447
1448 // Disable CONST64 for tiny core since it takes a LD resource.
1449 if (!HST.isTinyCore() ||
1450 MF->getFunction().hasOptSize()) {
1451 BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
1452 .addImm(C);
1453 return Reg;
1454 }
1455 }
1456
1457 if (RC == &Hexagon::PredRegsRegClass) {
1458 unsigned Opc;
1459 if (C == 0)
1460 Opc = Hexagon::PS_false;
1461 else if ((C & 0xFF) == 0xFF)
1462 Opc = Hexagon::PS_true;
1463 else
1464 return 0;
1465 BuildMI(B, At, DL, HII.get(Opc), Reg);
1466 return Reg;
1467 }
1468
1469 return 0;
1470}
1471
1472bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1473 if (!BT.reached(&B))
1474 return false;
1475 bool Changed = false;
1476 RegisterSet Defs;
1477
1478 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1479 if (isTfrConst(*I))
1480 continue;
1481 Defs.clear();
1482 HBS::getInstrDefs(*I, Defs);
1483 if (Defs.count() != 1)
1484 continue;
1485 Register DR = Defs.find_first();
1486 if (!DR.isVirtual())
1487 continue;
1488 uint64_t U;
1489 const BitTracker::RegisterCell &DRC = BT.lookup(DR);
1490 if (HBS::getConst(DRC, 0, DRC.width(), U)) {
1491 int64_t C = U;
1492 DebugLoc DL = I->getDebugLoc();
1493 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1494 Register ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1495 if (ImmReg) {
1496 HBS::replaceReg(DR, ImmReg, MRI);
1497 BT.put(ImmReg, DRC);
1498 Changed = true;
1499 }
1500 }
1501 }
1502 return Changed;
1503}
1504
1505namespace {
1506
1507// Identify pairs of available registers which hold identical values.
1508// In such cases, only one of them needs to be calculated, the other one
1509// will be defined as a copy of the first.
1510 class CopyGeneration : public Transformation {
1511 public:
1512 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1514 : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
1515
1516 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1517
1518 private:
1519 bool findMatch(const BitTracker::RegisterRef &Inp,
1520 BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1521
1522 const HexagonInstrInfo &HII;
1523 const HexagonRegisterInfo &HRI;
1525 BitTracker &BT;
1526 RegisterSet Forbidden;
1527 };
1528
1529// Eliminate register copies RD = RS, by replacing the uses of RD with
1530// with uses of RS.
1531 class CopyPropagation : public Transformation {
1532 public:
1533 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1534 : Transformation(false), HRI(hri), MRI(mri) {}
1535
1536 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1537
1538 static bool isCopyReg(unsigned Opc, bool NoConv);
1539
1540 private:
1541 bool propagateRegCopy(MachineInstr &MI);
1542
1543 const HexagonRegisterInfo &HRI;
1545 };
1546
1547} // end anonymous namespace
1548
1549/// Check if there is a register in AVs that is identical to Inp. If so,
1550/// set Out to the found register. The output may be a pair Reg:Sub.
1551bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1552 BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1553 if (!BT.has(Inp.Reg))
1554 return false;
1555 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1556 auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
1557 unsigned B, W;
1558 if (!HBS::getSubregMask(Inp, B, W, MRI))
1559 return false;
1560
1561 for (Register R = AVs.find_first(); R; R = AVs.find_next(R)) {
1562 if (!BT.has(R) || Forbidden[R])
1563 continue;
1564 const BitTracker::RegisterCell &RC = BT.lookup(R);
1565 unsigned RW = RC.width();
1566 if (W == RW) {
1567 if (FRC != MRI.getRegClass(R))
1568 continue;
1569 if (!HBS::isTransparentCopy(R, Inp, MRI))
1570 continue;
1571 if (!HBS::isEqual(InpRC, B, RC, 0, W))
1572 continue;
1573 Out.Reg = R;
1574 Out.Sub = 0;
1575 return true;
1576 }
1577 // Check if there is a super-register, whose part (with a subregister)
1578 // is equal to the input.
1579 // Only do double registers for now.
1580 if (W*2 != RW)
1581 continue;
1582 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1583 continue;
1584
1585 if (HBS::isEqual(InpRC, B, RC, 0, W))
1586 Out.Sub = Hexagon::isub_lo;
1587 else if (HBS::isEqual(InpRC, B, RC, W, W))
1588 Out.Sub = Hexagon::isub_hi;
1589 else
1590 continue;
1591 Out.Reg = R;
1592 if (HBS::isTransparentCopy(Out, Inp, MRI))
1593 return true;
1594 }
1595 return false;
1596}
1597
1598bool CopyGeneration::processBlock(MachineBasicBlock &B,
1599 const RegisterSet &AVs) {
1600 if (!BT.reached(&B))
1601 return false;
1602 RegisterSet AVB(AVs);
1603 bool Changed = false;
1604 RegisterSet Defs;
1605
1606 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
1607 Defs.clear();
1608 HBS::getInstrDefs(*I, Defs);
1609
1610 unsigned Opc = I->getOpcode();
1611 if (CopyPropagation::isCopyReg(Opc, false) ||
1612 ConstGeneration::isTfrConst(*I))
1613 continue;
1614
1615 DebugLoc DL = I->getDebugLoc();
1616 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1617
1618 for (Register R = Defs.find_first(); R; R = Defs.find_next(R)) {
1620 auto *FRC = HBS::getFinalVRegClass(R, MRI);
1621
1622 if (findMatch(R, MR, AVB)) {
1623 Register NewR = MRI.createVirtualRegister(FRC);
1624 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1625 .addReg(MR.Reg, 0, MR.Sub);
1626 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1627 HBS::replaceReg(R, NewR, MRI);
1628 Forbidden.insert(R);
1629 continue;
1630 }
1631
1632 if (FRC == &Hexagon::DoubleRegsRegClass ||
1633 FRC == &Hexagon::HvxWRRegClass) {
1634 // Try to generate REG_SEQUENCE.
1635 unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
1636 unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
1637 BitTracker::RegisterRef TL = { R, SubLo };
1638 BitTracker::RegisterRef TH = { R, SubHi };
1640 if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
1641 auto *FRC = HBS::getFinalVRegClass(R, MRI);
1642 Register NewR = MRI.createVirtualRegister(FRC);
1643 BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
1644 .addReg(ML.Reg, 0, ML.Sub)
1645 .addImm(SubLo)
1646 .addReg(MH.Reg, 0, MH.Sub)
1647 .addImm(SubHi);
1648 BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
1649 HBS::replaceReg(R, NewR, MRI);
1650 Forbidden.insert(R);
1651 }
1652 }
1653 }
1654 }
1655
1656 return Changed;
1657}
1658
1659bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
1660 switch (Opc) {
1661 case TargetOpcode::COPY:
1662 case TargetOpcode::REG_SEQUENCE:
1663 case Hexagon::A4_combineir:
1664 case Hexagon::A4_combineri:
1665 return true;
1666 case Hexagon::A2_tfr:
1667 case Hexagon::A2_tfrp:
1668 case Hexagon::A2_combinew:
1669 case Hexagon::V6_vcombine:
1670 return NoConv;
1671 default:
1672 break;
1673 }
1674 return false;
1675}
1676
1677bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1678 bool Changed = false;
1679 unsigned Opc = MI.getOpcode();
1680 BitTracker::RegisterRef RD = MI.getOperand(0);
1681 assert(MI.getOperand(0).getSubReg() == 0);
1682
1683 switch (Opc) {
1684 case TargetOpcode::COPY:
1685 case Hexagon::A2_tfr:
1686 case Hexagon::A2_tfrp: {
1687 BitTracker::RegisterRef RS = MI.getOperand(1);
1688 if (!HBS::isTransparentCopy(RD, RS, MRI))
1689 break;
1690 if (RS.Sub != 0)
1691 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1692 else
1693 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1694 break;
1695 }
1696 case TargetOpcode::REG_SEQUENCE: {
1698 if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
1699 const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1700 unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1701 unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1702 Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
1703 Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
1704 }
1705 break;
1706 }
1707 case Hexagon::A2_combinew:
1708 case Hexagon::V6_vcombine: {
1709 const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
1710 unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
1711 unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
1712 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1713 Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
1714 Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
1715 break;
1716 }
1717 case Hexagon::A4_combineir:
1718 case Hexagon::A4_combineri: {
1719 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1720 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
1721 : Hexagon::isub_hi;
1722 BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1723 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1724 break;
1725 }
1726 }
1727 return Changed;
1728}
1729
1730bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1731 std::vector<MachineInstr*> Instrs;
1732 for (MachineInstr &MI : llvm::reverse(B))
1733 Instrs.push_back(&MI);
1734
1735 bool Changed = false;
1736 for (auto *I : Instrs) {
1737 unsigned Opc = I->getOpcode();
1738 if (!CopyPropagation::isCopyReg(Opc, true))
1739 continue;
1740 Changed |= propagateRegCopy(*I);
1741 }
1742
1743 return Changed;
1744}
1745
1746namespace {
1747
1748// Recognize patterns that can be simplified and replace them with the
1749// simpler forms.
1750// This is by no means complete
1751 class BitSimplification : public Transformation {
1752 public:
1753 BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
1754 const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
1756 : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
1757 MF(mf), BT(bt) {}
1758
1759 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1760
1761 private:
1762 struct RegHalf : public BitTracker::RegisterRef {
1763 bool Low; // Low/High halfword.
1764 };
1765
1766 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1767 unsigned B, RegHalf &RH);
1768 bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
1769
1770 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1772 unsigned getCombineOpcode(bool HLow, bool LLow);
1773
1774 bool genStoreUpperHalf(MachineInstr *MI);
1775 bool genStoreImmediate(MachineInstr *MI);
1776 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1777 const BitTracker::RegisterCell &RC);
1778 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1779 const BitTracker::RegisterCell &RC);
1780 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1781 const BitTracker::RegisterCell &RC);
1782 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1783 const BitTracker::RegisterCell &RC);
1784 bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
1785 const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1786 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1787 const BitTracker::RegisterCell &RC);
1788 bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1789 const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
1790 bool simplifyRCmp0(MachineInstr *MI, BitTracker::RegisterRef RD);
1791
1792 // Cache of created instructions to avoid creating duplicates.
1793 // XXX Currently only used by genBitSplit.
1794 std::vector<MachineInstr*> NewMIs;
1795
1796 const MachineDominatorTree &MDT;
1797 const HexagonInstrInfo &HII;
1798 const HexagonRegisterInfo &HRI;
1800 MachineFunction &MF;
1801 BitTracker &BT;
1802 };
1803
1804} // end anonymous namespace
1805
1806// Check if the bits [B..B+16) in register cell RC form a valid halfword,
1807// i.e. [0..16), [16..32), etc. of some register. If so, return true and
1808// set the information about the found register in RH.
1809bool BitSimplification::matchHalf(unsigned SelfR,
1810 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1811 // XXX This could be searching in the set of available registers, in case
1812 // the match is not exact.
1813
1814 // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1815 // register and all the bits B..B+15 match between RC and the register.
1816 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1817 // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1818 bool Low = false;
1819 unsigned I = B;
1820 while (I < B+16 && RC[I].num())
1821 I++;
1822 if (I == B+16)
1823 return false;
1824
1825 Register Reg = RC[I].RefI.Reg;
1826 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
1827 if (P < I-B)
1828 return false;
1829 unsigned Pos = P - (I-B);
1830
1831 if (Reg == 0 || Reg == SelfR) // Don't match "self".
1832 return false;
1833 if (!Reg.isVirtual())
1834 return false;
1835 if (!BT.has(Reg))
1836 return false;
1837
1838 const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1839 if (Pos+16 > SC.width())
1840 return false;
1841
1842 for (unsigned i = 0; i < 16; ++i) {
1843 const BitTracker::BitValue &RV = RC[i+B];
1844 if (RV.Type == BitTracker::BitValue::Ref) {
1845 if (RV.RefI.Reg != Reg)
1846 return false;
1847 if (RV.RefI.Pos != i+Pos)
1848 return false;
1849 continue;
1850 }
1851 if (RC[i+B] != SC[i+Pos])
1852 return false;
1853 }
1854
1855 unsigned Sub = 0;
1856 switch (Pos) {
1857 case 0:
1858 Sub = Hexagon::isub_lo;
1859 Low = true;
1860 break;
1861 case 16:
1862 Sub = Hexagon::isub_lo;
1863 Low = false;
1864 break;
1865 case 32:
1866 Sub = Hexagon::isub_hi;
1867 Low = true;
1868 break;
1869 case 48:
1870 Sub = Hexagon::isub_hi;
1871 Low = false;
1872 break;
1873 default:
1874 return false;
1875 }
1876
1877 RH.Reg = Reg;
1878 RH.Sub = Sub;
1879 RH.Low = Low;
1880 // If the subregister is not valid with the register, set it to 0.
1881 if (!HBS::getFinalVRegClass(RH, MRI))
1882 RH.Sub = 0;
1883
1884 return true;
1885}
1886
1887bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
1888 unsigned OpNum) {
1889 auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
1890 auto *RRC = HBS::getFinalVRegClass(R, MRI);
1891 return OpRC->hasSubClassEq(RRC);
1892}
1893
1894// Check if RC matches the pattern of a S2_packhl. If so, return true and
1895// set the inputs Rs and Rt.
1896bool BitSimplification::matchPackhl(unsigned SelfR,
1899 RegHalf L1, H1, L2, H2;
1900
1901 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
1902 return false;
1903 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1904 return false;
1905
1906 // Rs = H1.L1, Rt = H2.L2
1907 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1908 return false;
1909 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1910 return false;
1911
1912 Rs = H1;
1913 Rt = H2;
1914 return true;
1915}
1916
1917unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1918 return HLow ? LLow ? Hexagon::A2_combine_ll
1919 : Hexagon::A2_combine_lh
1920 : LLow ? Hexagon::A2_combine_hl
1921 : Hexagon::A2_combine_hh;
1922}
1923
1924// If MI stores the upper halfword of a register (potentially obtained via
1925// shifts or extracts), replace it with a storerf instruction. This could
1926// cause the "extraction" code to become dead.
1927bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1928 unsigned Opc = MI->getOpcode();
1929 if (Opc != Hexagon::S2_storerh_io)
1930 return false;
1931
1932 MachineOperand &ValOp = MI->getOperand(2);
1933 BitTracker::RegisterRef RS = ValOp;
1934 if (!BT.has(RS.Reg))
1935 return false;
1936 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1937 RegHalf H;
1938 unsigned B = (RS.Sub == Hexagon::isub_hi) ? 32 : 0;
1939 if (!matchHalf(0, RC, B, H))
1940 return false;
1941 if (H.Low)
1942 return false;
1943 MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1944 ValOp.setReg(H.Reg);
1945 ValOp.setSubReg(H.Sub);
1946 return true;
1947}
1948
1949// If MI stores a value known at compile-time, and the value is within a range
1950// that avoids using constant-extenders, replace it with a store-immediate.
1951bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1952 unsigned Opc = MI->getOpcode();
1953 unsigned Align = 0;
1954 switch (Opc) {
1955 case Hexagon::S2_storeri_io:
1956 Align++;
1957 [[fallthrough]];
1958 case Hexagon::S2_storerh_io:
1959 Align++;
1960 [[fallthrough]];
1961 case Hexagon::S2_storerb_io:
1962 break;
1963 default:
1964 return false;
1965 }
1966
1967 // Avoid stores to frame-indices (due to an unknown offset).
1968 if (!MI->getOperand(0).isReg())
1969 return false;
1970 MachineOperand &OffOp = MI->getOperand(1);
1971 if (!OffOp.isImm())
1972 return false;
1973
1974 int64_t Off = OffOp.getImm();
1975 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1976 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1977 return false;
1978 // Source register:
1979 BitTracker::RegisterRef RS = MI->getOperand(2);
1980 if (!BT.has(RS.Reg))
1981 return false;
1982 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1983 uint64_t U;
1984 if (!HBS::getConst(RC, 0, RC.width(), U))
1985 return false;
1986
1987 // Only consider 8-bit values to avoid constant-extenders.
1988 int V;
1989 switch (Opc) {
1990 case Hexagon::S2_storerb_io:
1991 V = int8_t(U);
1992 break;
1993 case Hexagon::S2_storerh_io:
1994 V = int16_t(U);
1995 break;
1996 case Hexagon::S2_storeri_io:
1997 V = int32_t(U);
1998 break;
1999 default:
2000 // Opc is already checked above to be one of the three store instructions.
2001 // This silences a -Wuninitialized false positive on GCC 5.4.
2002 llvm_unreachable("Unexpected store opcode");
2003 }
2004 if (!isInt<8>(V))
2005 return false;
2006
2007 MI->removeOperand(2);
2008 switch (Opc) {
2009 case Hexagon::S2_storerb_io:
2010 MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
2011 break;
2012 case Hexagon::S2_storerh_io:
2013 MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
2014 break;
2015 case Hexagon::S2_storeri_io:
2016 MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
2017 break;
2018 }
2019 MI->addOperand(MachineOperand::CreateImm(V));
2020 return true;
2021}
2022
2023// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
2024// last instruction in a sequence that results in something equivalent to
2025// the pack-halfwords. The intent is to cause the entire sequence to become
2026// dead.
2027bool BitSimplification::genPackhl(MachineInstr *MI,
2029 unsigned Opc = MI->getOpcode();
2030 if (Opc == Hexagon::S2_packhl)
2031 return false;
2033 if (!matchPackhl(RD.Reg, RC, Rs, Rt))
2034 return false;
2035 if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
2036 !validateReg(Rt, Hexagon::S2_packhl, 2))
2037 return false;
2038
2039 MachineBasicBlock &B = *MI->getParent();
2040 Register NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2041 DebugLoc DL = MI->getDebugLoc();
2042 auto At = MI->isPHI() ? B.getFirstNonPHI()
2044 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
2045 .addReg(Rs.Reg, 0, Rs.Sub)
2046 .addReg(Rt.Reg, 0, Rt.Sub);
2047 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2048 BT.put(BitTracker::RegisterRef(NewR), RC);
2049 return true;
2050}
2051
2052// If MI produces halfword of the input in the low half of the output,
2053// replace it with zero-extend or extractu.
2054bool BitSimplification::genExtractHalf(MachineInstr *MI,
2056 RegHalf L;
2057 // Check for halfword in low 16 bits, zeros elsewhere.
2058 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
2059 return false;
2060
2061 unsigned Opc = MI->getOpcode();
2062 MachineBasicBlock &B = *MI->getParent();
2063 DebugLoc DL = MI->getDebugLoc();
2064
2065 // Prefer zxth, since zxth can go in any slot, while extractu only in
2066 // slots 2 and 3.
2067 unsigned NewR = 0;
2068 auto At = MI->isPHI() ? B.getFirstNonPHI()
2070 if (L.Low && Opc != Hexagon::A2_zxth) {
2071 if (validateReg(L, Hexagon::A2_zxth, 1)) {
2072 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2073 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
2074 .addReg(L.Reg, 0, L.Sub);
2075 }
2076 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
2077 if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
2078 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2079 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
2080 .addReg(L.Reg, 0, L.Sub)
2081 .addImm(16);
2082 }
2083 }
2084 if (NewR == 0)
2085 return false;
2086 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2087 BT.put(BitTracker::RegisterRef(NewR), RC);
2088 return true;
2089}
2090
2091// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
2092// combine.
2093bool BitSimplification::genCombineHalf(MachineInstr *MI,
2095 RegHalf L, H;
2096 // Check for combine h/l
2097 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
2098 return false;
2099 // Do nothing if this is just a reg copy.
2100 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
2101 return false;
2102
2103 unsigned Opc = MI->getOpcode();
2104 unsigned COpc = getCombineOpcode(H.Low, L.Low);
2105 if (COpc == Opc)
2106 return false;
2107 if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
2108 return false;
2109
2110 MachineBasicBlock &B = *MI->getParent();
2111 DebugLoc DL = MI->getDebugLoc();
2112 Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2113 auto At = MI->isPHI() ? B.getFirstNonPHI()
2115 BuildMI(B, At, DL, HII.get(COpc), NewR)
2116 .addReg(H.Reg, 0, H.Sub)
2117 .addReg(L.Reg, 0, L.Sub);
2118 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2119 BT.put(BitTracker::RegisterRef(NewR), RC);
2120 return true;
2121}
2122
2123// If MI resets high bits of a register and keeps the lower ones, replace it
2124// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2125bool BitSimplification::genExtractLow(MachineInstr *MI,
2127 unsigned Opc = MI->getOpcode();
2128 switch (Opc) {
2129 case Hexagon::A2_zxtb:
2130 case Hexagon::A2_zxth:
2131 case Hexagon::S2_extractu:
2132 return false;
2133 }
2134 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2135 int32_t Imm = MI->getOperand(2).getImm();
2136 if (isInt<10>(Imm))
2137 return false;
2138 }
2139
2140 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2141 return false;
2142 unsigned W = RC.width();
2143 while (W > 0 && RC[W-1].is(0))
2144 W--;
2145 if (W == 0 || W == RC.width())
2146 return false;
2147 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
2148 : (W == 16) ? Hexagon::A2_zxth
2149 : (W < 10) ? Hexagon::A2_andir
2150 : Hexagon::S2_extractu;
2151 MachineBasicBlock &B = *MI->getParent();
2152 DebugLoc DL = MI->getDebugLoc();
2153
2154 for (auto &Op : MI->uses()) {
2155 if (!Op.isReg())
2156 continue;
2158 if (!BT.has(RS.Reg))
2159 continue;
2160 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2161 unsigned BN, BW;
2162 if (!HBS::getSubregMask(RS, BN, BW, MRI))
2163 continue;
2164 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2165 continue;
2166 if (!validateReg(RS, NewOpc, 1))
2167 continue;
2168
2169 Register NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
2170 auto At = MI->isPHI() ? B.getFirstNonPHI()
2172 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
2173 .addReg(RS.Reg, 0, RS.Sub);
2174 if (NewOpc == Hexagon::A2_andir)
2175 MIB.addImm((1 << W) - 1);
2176 else if (NewOpc == Hexagon::S2_extractu)
2177 MIB.addImm(W).addImm(0);
2178 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2179 BT.put(BitTracker::RegisterRef(NewR), RC);
2180 return true;
2181 }
2182 return false;
2183}
2184
2185bool BitSimplification::genBitSplit(MachineInstr *MI,
2187 const RegisterSet &AVs) {
2188 if (!GenBitSplit)
2189 return false;
2190 if (MaxBitSplit.getNumOccurrences()) {
2192 return false;
2193 }
2194
2195 unsigned Opc = MI->getOpcode();
2196 switch (Opc) {
2197 case Hexagon::A4_bitsplit:
2198 case Hexagon::A4_bitspliti:
2199 return false;
2200 }
2201
2202 unsigned W = RC.width();
2203 if (W != 32)
2204 return false;
2205
2206 auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
2207 unsigned Z = C.width();
2208 while (Z > 0 && C[Z-1].is(0))
2209 --Z;
2210 return C.width() - Z;
2211 };
2212
2213 // Count the number of leading zeros in the target RC.
2214 unsigned Z = ctlz(RC);
2215 if (Z == 0 || Z == W)
2216 return false;
2217
2218 // A simplistic analysis: assume the source register (the one being split)
2219 // is fully unknown, and that all its bits are self-references.
2220 const BitTracker::BitValue &B0 = RC[0];
2222 return false;
2223
2224 unsigned SrcR = B0.RefI.Reg;
2225 unsigned SrcSR = 0;
2226 unsigned Pos = B0.RefI.Pos;
2227
2228 // All the non-zero bits should be consecutive bits from the same register.
2229 for (unsigned i = 1; i < W-Z; ++i) {
2230 const BitTracker::BitValue &V = RC[i];
2231 if (V.Type != BitTracker::BitValue::Ref)
2232 return false;
2233 if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
2234 return false;
2235 }
2236
2237 // Now, find the other bitfield among AVs.
2238 for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
2239 // The number of leading zeros here should be the number of trailing
2240 // non-zeros in RC.
2241 unsigned SRC = MRI.getRegClass(S)->getID();
2242 if (SRC != Hexagon::IntRegsRegClassID &&
2243 SRC != Hexagon::DoubleRegsRegClassID)
2244 continue;
2245 if (!BT.has(S))
2246 continue;
2247 const BitTracker::RegisterCell &SC = BT.lookup(S);
2248 if (SC.width() != W || ctlz(SC) != W-Z)
2249 continue;
2250 // The Z lower bits should now match SrcR.
2251 const BitTracker::BitValue &S0 = SC[0];
2252 if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
2253 continue;
2254 unsigned P = S0.RefI.Pos;
2255
2256 if (Pos <= P && (Pos + W-Z) != P)
2257 continue;
2258 if (P < Pos && (P + Z) != Pos)
2259 continue;
2260 // The starting bitfield position must be at a subregister boundary.
2261 if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
2262 continue;
2263
2264 unsigned I;
2265 for (I = 1; I < Z; ++I) {
2266 const BitTracker::BitValue &V = SC[I];
2267 if (V.Type != BitTracker::BitValue::Ref)
2268 break;
2269 if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
2270 break;
2271 }
2272 if (I != Z)
2273 continue;
2274
2275 // Generate bitsplit where S is defined.
2276 if (MaxBitSplit.getNumOccurrences())
2277 CountBitSplit++;
2278 MachineInstr *DefS = MRI.getVRegDef(S);
2279 assert(DefS != nullptr);
2280 DebugLoc DL = DefS->getDebugLoc();
2281 MachineBasicBlock &B = *DefS->getParent();
2282 auto At = DefS->isPHI() ? B.getFirstNonPHI()
2284 if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
2285 SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
2286 if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
2287 continue;
2288 unsigned ImmOp = Pos <= P ? W-Z : Z;
2289
2290 // Find an existing bitsplit instruction if one already exists.
2291 unsigned NewR = 0;
2292 for (MachineInstr *In : NewMIs) {
2293 if (In->getOpcode() != Hexagon::A4_bitspliti)
2294 continue;
2295 MachineOperand &Op1 = In->getOperand(1);
2296 if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
2297 continue;
2298 if (In->getOperand(2).getImm() != ImmOp)
2299 continue;
2300 // Check if the target register is available here.
2301 MachineOperand &Op0 = In->getOperand(0);
2302 MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
2303 assert(DefI != nullptr);
2304 if (!MDT.dominates(DefI, &*At))
2305 continue;
2306
2307 // Found one that can be reused.
2308 assert(Op0.getSubReg() == 0);
2309 NewR = Op0.getReg();
2310 break;
2311 }
2312 if (!NewR) {
2313 NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
2314 auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
2315 .addReg(SrcR, 0, SrcSR)
2316 .addImm(ImmOp);
2317 NewMIs.push_back(NewBS);
2318 }
2319 if (Pos <= P) {
2320 HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
2321 HBS::replaceRegWithSub(S, NewR, Hexagon::isub_hi, MRI);
2322 } else {
2323 HBS::replaceRegWithSub(S, NewR, Hexagon::isub_lo, MRI);
2324 HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
2325 }
2326 return true;
2327 }
2328
2329 return false;
2330}
2331
2332// Check for tstbit simplification opportunity, where the bit being checked
2333// can be tracked back to another register. For example:
2334// %2 = S2_lsr_i_r %1, 5
2335// %3 = S2_tstbit_i %2, 0
2336// =>
2337// %3 = S2_tstbit_i %1, 5
2338bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2340 unsigned Opc = MI->getOpcode();
2341 if (Opc != Hexagon::S2_tstbit_i)
2342 return false;
2343
2344 unsigned BN = MI->getOperand(2).getImm();
2345 BitTracker::RegisterRef RS = MI->getOperand(1);
2346 unsigned F, W;
2347 DebugLoc DL = MI->getDebugLoc();
2348 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2349 return false;
2350 MachineBasicBlock &B = *MI->getParent();
2351 auto At = MI->isPHI() ? B.getFirstNonPHI()
2353
2354 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2355 const BitTracker::BitValue &V = SC[F+BN];
2356 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2357 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2358 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2359 // a double register, need to use a subregister and adjust bit
2360 // number.
2361 unsigned P = std::numeric_limits<unsigned>::max();
2362 BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2363 if (TC == &Hexagon::DoubleRegsRegClass) {
2364 P = V.RefI.Pos;
2365 RR.Sub = Hexagon::isub_lo;
2366 if (P >= 32) {
2367 P -= 32;
2368 RR.Sub = Hexagon::isub_hi;
2369 }
2370 } else if (TC == &Hexagon::IntRegsRegClass) {
2371 P = V.RefI.Pos;
2372 }
2373 if (P != std::numeric_limits<unsigned>::max()) {
2374 Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2375 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
2376 .addReg(RR.Reg, 0, RR.Sub)
2377 .addImm(P);
2378 HBS::replaceReg(RD.Reg, NewR, MRI);
2379 BT.put(NewR, RC);
2380 return true;
2381 }
2382 } else if (V.is(0) || V.is(1)) {
2383 Register NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2384 unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
2385 BuildMI(B, At, DL, HII.get(NewOpc), NewR);
2386 HBS::replaceReg(RD.Reg, NewR, MRI);
2387 return true;
2388 }
2389
2390 return false;
2391}
2392
2393// Detect whether RD is a bitfield extract (sign- or zero-extended) of
2394// some register from the AVs set. Create a new corresponding instruction
2395// at the location of MI. The intent is to recognize situations where
2396// a sequence of instructions performs an operation that is equivalent to
2397// an extract operation, such as a shift left followed by a shift right.
2398bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
2400 const RegisterSet &AVs) {
2401 if (!GenExtract)
2402 return false;
2403 if (MaxExtract.getNumOccurrences()) {
2404 if (CountExtract >= MaxExtract)
2405 return false;
2406 CountExtract++;
2407 }
2408
2409 unsigned W = RC.width();
2410 unsigned RW = W;
2411 unsigned Len;
2412 bool Signed;
2413
2414 // The code is mostly class-independent, except for the part that generates
2415 // the extract instruction, and establishes the source register (in case it
2416 // needs to use a subregister).
2417 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2418 if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2419 return false;
2420 assert(RD.Sub == 0);
2421
2422 // Observation:
2423 // If the cell has a form of 00..0xx..x with k zeros and n remaining
2424 // bits, this could be an extractu of the n bits, but it could also be
2425 // an extractu of a longer field which happens to have 0s in the top
2426 // bit positions.
2427 // The same logic applies to sign-extended fields.
2428 //
2429 // Do not check for the extended extracts, since it would expand the
2430 // search space quite a bit. The search may be expensive as it is.
2431
2432 const BitTracker::BitValue &TopV = RC[W-1];
2433
2434 // Eliminate candidates that have self-referential bits, since they
2435 // cannot be extracts from other registers. Also, skip registers that
2436 // have compile-time constant values.
2437 bool IsConst = true;
2438 for (unsigned I = 0; I != W; ++I) {
2439 const BitTracker::BitValue &V = RC[I];
2440 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
2441 return false;
2442 IsConst = IsConst && (V.is(0) || V.is(1));
2443 }
2444 if (IsConst)
2445 return false;
2446
2447 if (TopV.is(0) || TopV.is(1)) {
2448 bool S = TopV.is(1);
2449 for (--W; W > 0 && RC[W-1].is(S); --W)
2450 ;
2451 Len = W;
2452 Signed = S;
2453 // The sign bit must be a part of the field being extended.
2454 if (Signed)
2455 ++Len;
2456 } else {
2457 // This could still be a sign-extended extract.
2459 if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
2460 return false;
2461 for (--W; W > 0 && RC[W-1] == TopV; --W)
2462 ;
2463 // The top bits of RC are copies of TopV. One occurrence of TopV will
2464 // be a part of the field.
2465 Len = W + 1;
2466 Signed = true;
2467 }
2468
2469 // This would be just a copy. It should be handled elsewhere.
2470 if (Len == RW)
2471 return false;
2472
2473 LLVM_DEBUG({
2474 dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
2475 << ", MI: " << *MI;
2476 dbgs() << "Cell: " << RC << '\n';
2477 dbgs() << "Expected bitfield size: " << Len << " bits, "
2478 << (Signed ? "sign" : "zero") << "-extended\n";
2479 });
2480
2481 bool Changed = false;
2482
2483 for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
2484 if (!BT.has(R))
2485 continue;
2486 const BitTracker::RegisterCell &SC = BT.lookup(R);
2487 unsigned SW = SC.width();
2488
2489 // The source can be longer than the destination, as long as its size is
2490 // a multiple of the size of the destination. Also, we would need to be
2491 // able to refer to the subregister in the source that would be of the
2492 // same size as the destination, but only check the sizes here.
2493 if (SW < RW || (SW % RW) != 0)
2494 continue;
2495
2496 // The field can start at any offset in SC as long as it contains Len
2497 // bits and does not cross subregister boundary (if the source register
2498 // is longer than the destination).
2499 unsigned Off = 0;
2500 while (Off <= SW-Len) {
2501 unsigned OE = (Off+Len)/RW;
2502 if (OE != Off/RW) {
2503 // The assumption here is that if the source (R) is longer than the
2504 // destination, then the destination is a sequence of words of
2505 // size RW, and each such word in R can be accessed via a subregister.
2506 //
2507 // If the beginning and the end of the field cross the subregister
2508 // boundary, advance to the next subregister.
2509 Off = OE*RW;
2510 continue;
2511 }
2512 if (HBS::isEqual(RC, 0, SC, Off, Len))
2513 break;
2514 ++Off;
2515 }
2516
2517 if (Off > SW-Len)
2518 continue;
2519
2520 // Found match.
2521 unsigned ExtOpc = 0;
2522 if (Off == 0) {
2523 if (Len == 8)
2524 ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
2525 else if (Len == 16)
2526 ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
2527 else if (Len < 10 && !Signed)
2528 ExtOpc = Hexagon::A2_andir;
2529 }
2530 if (ExtOpc == 0) {
2531 ExtOpc =
2532 Signed ? (RW == 32 ? Hexagon::S4_extract : Hexagon::S4_extractp)
2533 : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
2534 }
2535 unsigned SR = 0;
2536 // This only recognizes isub_lo and isub_hi.
2537 if (RW != SW && RW*2 != SW)
2538 continue;
2539 if (RW != SW)
2540 SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
2541 Off = Off % RW;
2542
2543 if (!validateReg({R,SR}, ExtOpc, 1))
2544 continue;
2545
2546 // Don't generate the same instruction as the one being optimized.
2547 if (MI->getOpcode() == ExtOpc) {
2548 // All possible ExtOpc's have the source in operand(1).
2549 const MachineOperand &SrcOp = MI->getOperand(1);
2550 if (SrcOp.getReg() == R)
2551 continue;
2552 }
2553
2554 DebugLoc DL = MI->getDebugLoc();
2555 MachineBasicBlock &B = *MI->getParent();
2556 Register NewR = MRI.createVirtualRegister(FRC);
2557 auto At = MI->isPHI() ? B.getFirstNonPHI()
2559 auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
2560 .addReg(R, 0, SR);
2561 switch (ExtOpc) {
2562 case Hexagon::A2_sxtb:
2563 case Hexagon::A2_zxtb:
2564 case Hexagon::A2_sxth:
2565 case Hexagon::A2_zxth:
2566 break;
2567 case Hexagon::A2_andir:
2568 MIB.addImm((1u << Len) - 1);
2569 break;
2570 case Hexagon::S4_extract:
2571 case Hexagon::S2_extractu:
2572 case Hexagon::S4_extractp:
2573 case Hexagon::S2_extractup:
2574 MIB.addImm(Len)
2575 .addImm(Off);
2576 break;
2577 default:
2578 llvm_unreachable("Unexpected opcode");
2579 }
2580
2581 HBS::replaceReg(RD.Reg, NewR, MRI);
2582 BT.put(BitTracker::RegisterRef(NewR), RC);
2583 Changed = true;
2584 break;
2585 }
2586
2587 return Changed;
2588}
2589
2590bool BitSimplification::simplifyRCmp0(MachineInstr *MI,
2592 unsigned Opc = MI->getOpcode();
2593 if (Opc != Hexagon::A4_rcmpeqi && Opc != Hexagon::A4_rcmpneqi)
2594 return false;
2595 MachineOperand &CmpOp = MI->getOperand(2);
2596 if (!CmpOp.isImm() || CmpOp.getImm() != 0)
2597 return false;
2598
2599 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2600 if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
2601 return false;
2602 assert(RD.Sub == 0);
2603
2604 MachineBasicBlock &B = *MI->getParent();
2605 const DebugLoc &DL = MI->getDebugLoc();
2606 auto At = MI->isPHI() ? B.getFirstNonPHI()
2608 bool KnownZ = true;
2609 bool KnownNZ = false;
2610
2611 BitTracker::RegisterRef SR = MI->getOperand(1);
2612 if (!BT.has(SR.Reg))
2613 return false;
2614 const BitTracker::RegisterCell &SC = BT.lookup(SR.Reg);
2615 unsigned F, W;
2616 if (!HBS::getSubregMask(SR, F, W, MRI))
2617 return false;
2618
2619 for (uint16_t I = F; I != F+W; ++I) {
2620 const BitTracker::BitValue &V = SC[I];
2621 if (!V.is(0))
2622 KnownZ = false;
2623 if (V.is(1))
2624 KnownNZ = true;
2625 }
2626
2627 auto ReplaceWithConst = [&](int C) {
2628 Register NewR = MRI.createVirtualRegister(FRC);
2629 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), NewR)
2630 .addImm(C);
2631 HBS::replaceReg(RD.Reg, NewR, MRI);
2632 BitTracker::RegisterCell NewRC(W);
2633 for (uint16_t I = 0; I != W; ++I) {
2634 NewRC[I] = BitTracker::BitValue(C & 1);
2635 C = unsigned(C) >> 1;
2636 }
2637 BT.put(BitTracker::RegisterRef(NewR), NewRC);
2638 return true;
2639 };
2640
2641 auto IsNonZero = [] (const MachineOperand &Op) {
2642 if (Op.isGlobal() || Op.isBlockAddress())
2643 return true;
2644 if (Op.isImm())
2645 return Op.getImm() != 0;
2646 if (Op.isCImm())
2647 return !Op.getCImm()->isZero();
2648 if (Op.isFPImm())
2649 return !Op.getFPImm()->isZero();
2650 return false;
2651 };
2652
2653 auto IsZero = [] (const MachineOperand &Op) {
2654 if (Op.isGlobal() || Op.isBlockAddress())
2655 return false;
2656 if (Op.isImm())
2657 return Op.getImm() == 0;
2658 if (Op.isCImm())
2659 return Op.getCImm()->isZero();
2660 if (Op.isFPImm())
2661 return Op.getFPImm()->isZero();
2662 return false;
2663 };
2664
2665 // If the source register is known to be 0 or non-0, the comparison can
2666 // be folded to a load of a constant.
2667 if (KnownZ || KnownNZ) {
2668 assert(KnownZ != KnownNZ && "Register cannot be both 0 and non-0");
2669 return ReplaceWithConst(KnownZ == (Opc == Hexagon::A4_rcmpeqi));
2670 }
2671
2672 // Special case: if the compare comes from a C2_muxii, then we know the
2673 // two possible constants that can be the source value.
2674 MachineInstr *InpDef = MRI.getVRegDef(SR.Reg);
2675 if (!InpDef)
2676 return false;
2677 if (SR.Sub == 0 && InpDef->getOpcode() == Hexagon::C2_muxii) {
2678 MachineOperand &Src1 = InpDef->getOperand(2);
2679 MachineOperand &Src2 = InpDef->getOperand(3);
2680 // Check if both are non-zero.
2681 bool KnownNZ1 = IsNonZero(Src1), KnownNZ2 = IsNonZero(Src2);
2682 if (KnownNZ1 && KnownNZ2)
2683 return ReplaceWithConst(Opc == Hexagon::A4_rcmpneqi);
2684 // Check if both are zero.
2685 bool KnownZ1 = IsZero(Src1), KnownZ2 = IsZero(Src2);
2686 if (KnownZ1 && KnownZ2)
2687 return ReplaceWithConst(Opc == Hexagon::A4_rcmpeqi);
2688
2689 // If for both operands we know that they are either 0 or non-0,
2690 // replace the comparison with a C2_muxii, using the same predicate
2691 // register, but with operands substituted with 0/1 accordingly.
2692 if ((KnownZ1 || KnownNZ1) && (KnownZ2 || KnownNZ2)) {
2693 Register NewR = MRI.createVirtualRegister(FRC);
2694 BuildMI(B, At, DL, HII.get(Hexagon::C2_muxii), NewR)
2695 .addReg(InpDef->getOperand(1).getReg())
2696 .addImm(KnownZ1 == (Opc == Hexagon::A4_rcmpeqi))
2697 .addImm(KnownZ2 == (Opc == Hexagon::A4_rcmpeqi));
2698 HBS::replaceReg(RD.Reg, NewR, MRI);
2699 // Create a new cell with only the least significant bit unknown.
2700 BitTracker::RegisterCell NewRC(W);
2701 NewRC[0] = BitTracker::BitValue::self();
2702 NewRC.fill(1, W, BitTracker::BitValue::Zero);
2703 BT.put(BitTracker::RegisterRef(NewR), NewRC);
2704 return true;
2705 }
2706 }
2707
2708 return false;
2709}
2710
2711bool BitSimplification::processBlock(MachineBasicBlock &B,
2712 const RegisterSet &AVs) {
2713 if (!BT.reached(&B))
2714 return false;
2715 bool Changed = false;
2716 RegisterSet AVB = AVs;
2717 RegisterSet Defs;
2718
2719 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2720 MachineInstr *MI = &*I;
2721 Defs.clear();
2722 HBS::getInstrDefs(*MI, Defs);
2723
2724 unsigned Opc = MI->getOpcode();
2725 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2726 continue;
2727
2728 if (MI->mayStore()) {
2729 bool T = genStoreUpperHalf(MI);
2730 T = T || genStoreImmediate(MI);
2731 Changed |= T;
2732 continue;
2733 }
2734
2735 if (Defs.count() != 1)
2736 continue;
2737 const MachineOperand &Op0 = MI->getOperand(0);
2738 if (!Op0.isReg() || !Op0.isDef())
2739 continue;
2740 BitTracker::RegisterRef RD = Op0;
2741 if (!BT.has(RD.Reg))
2742 continue;
2743 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2744 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2745
2746 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2747 bool T = genPackhl(MI, RD, RC);
2748 T = T || simplifyExtractLow(MI, RD, RC, AVB);
2749 Changed |= T;
2750 continue;
2751 }
2752
2753 if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2754 bool T = genBitSplit(MI, RD, RC, AVB);
2755 T = T || simplifyExtractLow(MI, RD, RC, AVB);
2756 T = T || genExtractHalf(MI, RD, RC);
2757 T = T || genCombineHalf(MI, RD, RC);
2758 T = T || genExtractLow(MI, RD, RC);
2759 T = T || simplifyRCmp0(MI, RD);
2760 Changed |= T;
2761 continue;
2762 }
2763
2764 if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2765 bool T = simplifyTstbit(MI, RD, RC);
2766 Changed |= T;
2767 continue;
2768 }
2769 }
2770 return Changed;
2771}
2772
2773bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
2774 if (skipFunction(MF.getFunction()))
2775 return false;
2776
2777 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2778 auto &HRI = *HST.getRegisterInfo();
2779 auto &HII = *HST.getInstrInfo();
2780
2781 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
2783 bool Changed;
2784
2785 Changed = DeadCodeElimination(MF, *MDT).run();
2786
2787 const HexagonEvaluator HE(HRI, MRI, HII, MF);
2788 BitTracker BT(HE, MF);
2789 LLVM_DEBUG(BT.trace(true));
2790 BT.run();
2791
2793
2794 RegisterSet AIG; // Available registers for IG.
2795 ConstGeneration ImmG(BT, HII, MRI);
2796 Changed |= visitBlock(Entry, ImmG, AIG);
2797
2798 RegisterSet ARE; // Available registers for RIE.
2799 RedundantInstrElimination RIE(BT, HII, HRI, MRI);
2800 bool Ried = visitBlock(Entry, RIE, ARE);
2801 if (Ried) {
2802 Changed = true;
2803 BT.run();
2804 }
2805
2806 RegisterSet ACG; // Available registers for CG.
2807 CopyGeneration CopyG(BT, HII, HRI, MRI);
2808 Changed |= visitBlock(Entry, CopyG, ACG);
2809
2810 RegisterSet ACP; // Available registers for CP.
2811 CopyPropagation CopyP(HRI, MRI);
2812 Changed |= visitBlock(Entry, CopyP, ACP);
2813
2814 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2815
2816 BT.run();
2817 RegisterSet ABS; // Available registers for BS.
2818 BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
2819 Changed |= visitBlock(Entry, BitS, ABS);
2820
2821 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2822
2823 if (Changed) {
2824 for (auto &B : MF)
2825 for (auto &I : B)
2826 I.clearKillInfo();
2827 DeadCodeElimination(MF, *MDT).run();
2828 }
2829 return Changed;
2830}
2831
2832// Recognize loops where the code at the end of the loop matches the code
2833// before the entry of the loop, and the matching code is such that is can
2834// be simplified. This pass relies on the bit simplification above and only
2835// prepares code in a way that can be handled by the bit simplification.
2836//
2837// This is the motivating testcase (and explanation):
2838//
2839// {
2840// loop0(.LBB0_2, r1) // %for.body.preheader
2841// r5:4 = memd(r0++#8)
2842// }
2843// {
2844// r3 = lsr(r4, #16)
2845// r7:6 = combine(r5, r5)
2846// }
2847// {
2848// r3 = insert(r5, #16, #16)
2849// r7:6 = vlsrw(r7:6, #16)
2850// }
2851// .LBB0_2:
2852// {
2853// memh(r2+#4) = r5
2854// memh(r2+#6) = r6 # R6 is really R5.H
2855// }
2856// {
2857// r2 = add(r2, #8)
2858// memh(r2+#0) = r4
2859// memh(r2+#2) = r3 # R3 is really R4.H
2860// }
2861// {
2862// r5:4 = memd(r0++#8)
2863// }
2864// { # "Shuffling" code that sets up R3 and R6
2865// r3 = lsr(r4, #16) # so that their halves can be stored in the
2866// r7:6 = combine(r5, r5) # next iteration. This could be folded into
2867// } # the stores if the code was at the beginning
2868// { # of the loop iteration. Since the same code
2869// r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
2870// r7:6 = vlsrw(r7:6, #16) # there.
2871// }:endloop0
2872//
2873//
2874// The outcome:
2875//
2876// {
2877// loop0(.LBB0_2, r1)
2878// r5:4 = memd(r0++#8)
2879// }
2880// .LBB0_2:
2881// {
2882// memh(r2+#4) = r5
2883// memh(r2+#6) = r5.h
2884// }
2885// {
2886// r2 = add(r2, #8)
2887// memh(r2+#0) = r4
2888// memh(r2+#2) = r4.h
2889// }
2890// {
2891// r5:4 = memd(r0++#8)
2892// }:endloop0
2893
2894namespace {
2895
2896 class HexagonLoopRescheduling : public MachineFunctionPass {
2897 public:
2898 static char ID;
2899
2900 HexagonLoopRescheduling() : MachineFunctionPass(ID) {}
2901
2902 bool runOnMachineFunction(MachineFunction &MF) override;
2903
2904 private:
2905 const HexagonInstrInfo *HII = nullptr;
2906 const HexagonRegisterInfo *HRI = nullptr;
2907 MachineRegisterInfo *MRI = nullptr;
2908 BitTracker *BTP = nullptr;
2909
2910 struct LoopCand {
2911 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2912 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2913
2914 MachineBasicBlock *LB, *PB, *EB;
2915 };
2916 using InstrList = std::vector<MachineInstr *>;
2917 struct InstrGroup {
2918 BitTracker::RegisterRef Inp, Out;
2919 InstrList Ins;
2920 };
2921 struct PhiInfo {
2923
2924 unsigned DefR;
2925 BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
2926 MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block
2927 };
2928
2929 static unsigned getDefReg(const MachineInstr *MI);
2930 bool isConst(unsigned Reg) const;
2931 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2932 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2933 bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2934 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2935 unsigned &InpR2) const;
2936 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2937 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2938 bool processLoop(LoopCand &C);
2939 };
2940
2941} // end anonymous namespace
2942
2943char HexagonLoopRescheduling::ID = 0;
2944
2945INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched-pass",
2946 "Hexagon Loop Rescheduling", false, false)
2947
2948HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2950 DefR = HexagonLoopRescheduling::getDefReg(&P);
2951 LB = &B;
2952 PB = nullptr;
2953 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2954 const MachineOperand &OpB = P.getOperand(i+1);
2955 if (OpB.getMBB() == &B) {
2956 LR = P.getOperand(i);
2957 continue;
2958 }
2959 PB = OpB.getMBB();
2960 PR = P.getOperand(i);
2961 }
2962}
2963
2964unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2965 RegisterSet Defs;
2966 HBS::getInstrDefs(*MI, Defs);
2967 if (Defs.count() != 1)
2968 return 0;
2969 return Defs.find_first();
2970}
2971
2972bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2973 if (!BTP->has(Reg))
2974 return false;
2975 const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2976 for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2977 const BitTracker::BitValue &V = RC[i];
2978 if (!V.is(0) && !V.is(1))
2979 return false;
2980 }
2981 return true;
2982}
2983
2984bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2985 unsigned DefR) const {
2986 unsigned Opc = MI->getOpcode();
2987 switch (Opc) {
2988 case TargetOpcode::COPY:
2989 case Hexagon::S2_lsr_i_r:
2990 case Hexagon::S2_asr_i_r:
2991 case Hexagon::S2_asl_i_r:
2992 case Hexagon::S2_lsr_i_p:
2993 case Hexagon::S2_asr_i_p:
2994 case Hexagon::S2_asl_i_p:
2995 case Hexagon::S2_insert:
2996 case Hexagon::A2_or:
2997 case Hexagon::A2_orp:
2998 case Hexagon::A2_and:
2999 case Hexagon::A2_andp:
3000 case Hexagon::A2_combinew:
3001 case Hexagon::A4_combineri:
3002 case Hexagon::A4_combineir:
3003 case Hexagon::A2_combineii:
3004 case Hexagon::A4_combineii:
3005 case Hexagon::A2_combine_ll:
3006 case Hexagon::A2_combine_lh:
3007 case Hexagon::A2_combine_hl:
3008 case Hexagon::A2_combine_hh:
3009 return true;
3010 }
3011 return false;
3012}
3013
3014bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
3015 unsigned InpR) const {
3016 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
3017 const MachineOperand &Op = MI->getOperand(i);
3018 if (!Op.isReg())
3019 continue;
3020 if (Op.getReg() == InpR)
3021 return i == n-1;
3022 }
3023 return false;
3024}
3025
3026bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
3027 if (!BTP->has(OutR) || !BTP->has(InpR))
3028 return false;
3029 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
3030 for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
3031 const BitTracker::BitValue &V = OutC[i];
3032 if (V.Type != BitTracker::BitValue::Ref)
3033 continue;
3034 if (V.RefI.Reg != InpR)
3035 return false;
3036 }
3037 return true;
3038}
3039
3040bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
3041 unsigned OutR2, unsigned &InpR2) const {
3042 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
3043 return false;
3044 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
3045 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
3046 unsigned W = OutC1.width();
3047 unsigned MatchR = 0;
3048 if (W != OutC2.width())
3049 return false;
3050 for (unsigned i = 0; i < W; ++i) {
3051 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
3052 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
3053 return false;
3055 continue;
3056 if (V1.RefI.Pos != V2.RefI.Pos)
3057 return false;
3058 if (V1.RefI.Reg != InpR1)
3059 return false;
3060 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
3061 return false;
3062 if (!MatchR)
3063 MatchR = V2.RefI.Reg;
3064 else if (V2.RefI.Reg != MatchR)
3065 return false;
3066 }
3067 InpR2 = MatchR;
3068 return true;
3069}
3070
3071void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
3072 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
3073 unsigned NewPredR) {
3075
3076 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
3077 Register PhiR = MRI->createVirtualRegister(PhiRC);
3078 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
3079 .addReg(NewPredR)
3080 .addMBB(&PB)
3081 .addReg(G.Inp.Reg)
3082 .addMBB(&LB);
3083 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
3084
3085 for (const MachineInstr *SI : llvm::reverse(G.Ins)) {
3086 unsigned DR = getDefReg(SI);
3087 const TargetRegisterClass *RC = MRI->getRegClass(DR);
3088 Register NewDR = MRI->createVirtualRegister(RC);
3089 DebugLoc DL = SI->getDebugLoc();
3090
3091 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
3092 for (const MachineOperand &Op : SI->operands()) {
3093 if (!Op.isReg()) {
3094 MIB.add(Op);
3095 continue;
3096 }
3097 if (!Op.isUse())
3098 continue;
3099 unsigned UseR = RegMap[Op.getReg()];
3100 MIB.addReg(UseR, 0, Op.getSubReg());
3101 }
3102 RegMap.insert(std::make_pair(DR, NewDR));
3103 }
3104
3105 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
3106}
3107
3108bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
3109 LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
3110 << "\n");
3111 std::vector<PhiInfo> Phis;
3112 for (auto &I : *C.LB) {
3113 if (!I.isPHI())
3114 break;
3115 unsigned PR = getDefReg(&I);
3116 if (isConst(PR))
3117 continue;
3118 bool BadUse = false, GoodUse = false;
3119 for (const MachineOperand &MO : MRI->use_operands(PR)) {
3120 const MachineInstr *UseI = MO.getParent();
3121 if (UseI->getParent() != C.LB) {
3122 BadUse = true;
3123 break;
3124 }
3125 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
3126 GoodUse = true;
3127 }
3128 if (BadUse || !GoodUse)
3129 continue;
3130
3131 Phis.push_back(PhiInfo(I, *C.LB));
3132 }
3133
3134 LLVM_DEBUG({
3135 dbgs() << "Phis: {";
3136 for (auto &I : Phis) {
3137 dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
3138 << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
3139 << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
3140 << I.LB->getNumber() << ')';
3141 }
3142 dbgs() << " }\n";
3143 });
3144
3145 if (Phis.empty())
3146 return false;
3147
3148 bool Changed = false;
3149 InstrList ShufIns;
3150
3151 // Go backwards in the block: for each bit shuffling instruction, check
3152 // if that instruction could potentially be moved to the front of the loop:
3153 // the output of the loop cannot be used in a non-shuffling instruction
3154 // in this loop.
3155 for (MachineInstr &MI : llvm::reverse(*C.LB)) {
3156 if (MI.isTerminator())
3157 continue;
3158 if (MI.isPHI())
3159 break;
3160
3161 RegisterSet Defs;
3162 HBS::getInstrDefs(MI, Defs);
3163 if (Defs.count() != 1)
3164 continue;
3165 Register DefR = Defs.find_first();
3166 if (!DefR.isVirtual())
3167 continue;
3168 if (!isBitShuffle(&MI, DefR))
3169 continue;
3170
3171 bool BadUse = false;
3172 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
3173 MachineInstr *UseI = UI->getParent();
3174 if (UseI->getParent() == C.LB) {
3175 if (UseI->isPHI()) {
3176 // If the use is in a phi node in this loop, then it should be
3177 // the value corresponding to the back edge.
3178 unsigned Idx = UI.getOperandNo();
3179 if (UseI->getOperand(Idx+1).getMBB() != C.LB)
3180 BadUse = true;
3181 } else {
3182 if (!llvm::is_contained(ShufIns, UseI))
3183 BadUse = true;
3184 }
3185 } else {
3186 // There is a use outside of the loop, but there is no epilog block
3187 // suitable for a copy-out.
3188 if (C.EB == nullptr)
3189 BadUse = true;
3190 }
3191 if (BadUse)
3192 break;
3193 }
3194
3195 if (BadUse)
3196 continue;
3197 ShufIns.push_back(&MI);
3198 }
3199
3200 // Partition the list of shuffling instructions into instruction groups,
3201 // where each group has to be moved as a whole (i.e. a group is a chain of
3202 // dependent instructions). A group produces a single live output register,
3203 // which is meant to be the input of the loop phi node (although this is
3204 // not checked here yet). It also uses a single register as its input,
3205 // which is some value produced in the loop body. After moving the group
3206 // to the beginning of the loop, that input register would need to be
3207 // the loop-carried register (through a phi node) instead of the (currently
3208 // loop-carried) output register.
3209 using InstrGroupList = std::vector<InstrGroup>;
3210 InstrGroupList Groups;
3211
3212 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
3213 MachineInstr *SI = ShufIns[i];
3214 if (SI == nullptr)
3215 continue;
3216
3217 InstrGroup G;
3218 G.Ins.push_back(SI);
3219 G.Out.Reg = getDefReg(SI);
3220 RegisterSet Inputs;
3221 HBS::getInstrUses(*SI, Inputs);
3222
3223 for (unsigned j = i+1; j < n; ++j) {
3224 MachineInstr *MI = ShufIns[j];
3225 if (MI == nullptr)
3226 continue;
3227 RegisterSet Defs;
3228 HBS::getInstrDefs(*MI, Defs);
3229 // If this instruction does not define any pending inputs, skip it.
3230 if (!Defs.intersects(Inputs))
3231 continue;
3232 // Otherwise, add it to the current group and remove the inputs that
3233 // are defined by MI.
3234 G.Ins.push_back(MI);
3235 Inputs.remove(Defs);
3236 // Then add all registers used by MI.
3237 HBS::getInstrUses(*MI, Inputs);
3238 ShufIns[j] = nullptr;
3239 }
3240
3241 // Only add a group if it requires at most one register.
3242 if (Inputs.count() > 1)
3243 continue;
3244 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3245 return G.Out.Reg == P.LR.Reg;
3246 };
3247 if (llvm::none_of(Phis, LoopInpEq))
3248 continue;
3249
3250 G.Inp.Reg = Inputs.find_first();
3251 Groups.push_back(G);
3252 }
3253
3254 LLVM_DEBUG({
3255 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
3256 InstrGroup &G = Groups[i];
3257 dbgs() << "Group[" << i << "] inp: "
3258 << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
3259 << " out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
3260 for (const MachineInstr *MI : G.Ins)
3261 dbgs() << " " << MI;
3262 }
3263 });
3264
3265 for (InstrGroup &G : Groups) {
3266 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
3267 continue;
3268 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
3269 return G.Out.Reg == P.LR.Reg;
3270 };
3271 auto F = llvm::find_if(Phis, LoopInpEq);
3272 if (F == Phis.end())
3273 continue;
3274 unsigned PrehR = 0;
3275 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
3276 const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
3277 unsigned Opc = DefPrehR->getOpcode();
3278 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
3279 continue;
3280 if (!DefPrehR->getOperand(1).isImm())
3281 continue;
3282 if (DefPrehR->getOperand(1).getImm() != 0)
3283 continue;
3284 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
3285 if (RC != MRI->getRegClass(F->PR.Reg)) {
3286 PrehR = MRI->createVirtualRegister(RC);
3287 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
3288 : Hexagon::A2_tfrpi;
3289 auto T = C.PB->getFirstTerminator();
3290 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
3291 BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
3292 .addImm(0);
3293 } else {
3294 PrehR = F->PR.Reg;
3295 }
3296 }
3297 // isSameShuffle could match with PrehR being of a wider class than
3298 // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
3299 // it would match for the input being a 32-bit register, and PrehR
3300 // being a 64-bit register (where the low 32 bits match). This could
3301 // be handled, but for now skip these cases.
3302 if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
3303 continue;
3304 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
3305 Changed = true;
3306 }
3307
3308 return Changed;
3309}
3310
3311bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
3312 if (skipFunction(MF.getFunction()))
3313 return false;
3314
3315 auto &HST = MF.getSubtarget<HexagonSubtarget>();
3316 HII = HST.getInstrInfo();
3317 HRI = HST.getRegisterInfo();
3318 MRI = &MF.getRegInfo();
3319 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
3320 BitTracker BT(HE, MF);
3321 LLVM_DEBUG(BT.trace(true));
3322 BT.run();
3323 BTP = &BT;
3324
3325 std::vector<LoopCand> Cand;
3326
3327 for (auto &B : MF) {
3328 if (B.pred_size() != 2 || B.succ_size() != 2)
3329 continue;
3330 MachineBasicBlock *PB = nullptr;
3331 bool IsLoop = false;
3332 for (MachineBasicBlock *Pred : B.predecessors()) {
3333 if (Pred != &B)
3334 PB = Pred;
3335 else
3336 IsLoop = true;
3337 }
3338 if (!IsLoop)
3339 continue;
3340
3341 MachineBasicBlock *EB = nullptr;
3342 for (MachineBasicBlock *Succ : B.successors()) {
3343 if (Succ == &B)
3344 continue;
3345 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
3346 // edge from B to EP is non-critical.
3347 if (Succ->pred_size() == 1)
3348 EB = Succ;
3349 break;
3350 }
3351
3352 Cand.push_back(LoopCand(&B, PB, EB));
3353 }
3354
3355 bool Changed = false;
3356 for (auto &C : Cand)
3357 Changed |= processLoop(C);
3358
3359 return Changed;
3360}
3361
3362//===----------------------------------------------------------------------===//
3363// Public Constructor Functions
3364//===----------------------------------------------------------------------===//
3365
3367 return new HexagonLoopRescheduling();
3368}
3369
3371 return new HexagonBitSimplify();
3372}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
BitTracker BT
Definition: BitTracker.cpp:68
This file implements the BitVector class.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
#define LLVM_ATTRIBUTE_UNUSED
Definition: Compiler.h:298
static std::optional< ArrayRef< InsnRange >::iterator > intersects(const MachineInstr *StartMI, const MachineInstr *EndMI, const ArrayRef< InsnRange > &Ranges, const InstructionOrdering &Ordering)
Check if the instruction range [StartMI, EndMI] intersects any instruction range in Ranges.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
bool End
Definition: ELF_riscv.cpp:480
static unsigned CountBitSplit
static cl::opt< bool > PreserveTiedOps("hexbit-keep-tied", cl::Hidden, cl::init(true), cl::desc("Preserve subregisters in tied operands"))
static cl::opt< bool > GenExtract("hexbit-extract", cl::Hidden, cl::init(true), cl::desc("Generate extract instructions"))
static cl::opt< unsigned > MaxBitSplit("hexbit-max-bitsplit", cl::Hidden, cl::init(std::numeric_limits< unsigned >::max()))
hexagon bit Hexagon bit simplification
static cl::opt< bool > GenBitSplit("hexbit-bitsplit", cl::Hidden, cl::init(true), cl::desc("Generate bitsplit instructions"))
static cl::opt< unsigned > MaxExtract("hexbit-max-extract", cl::Hidden, cl::init(std::numeric_limits< unsigned >::max()))
hexagon bit simplify
static cl::opt< unsigned > RegisterSetLimit("hexbit-registerset-limit", cl::Hidden, cl::init(1000))
static unsigned CountExtract
IRTranslator LLVM IR MI
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:546
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define G(x, y, z)
Definition: MD5.cpp:56
#define H(x, y, z)
Definition: MD5.cpp:57
Register const TargetRegisterInfo * TRI
#define P(N)
PassBuilder PB(Machine, PassOpts->PTO, std::nullopt, &PIC)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:39
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:56
Remove Loads Into Fake Uses
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
raw_pwrite_stream & OS
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition: Debug.h:119
static const X86InstrFMA3Group Groups[]
support::ulittle16_t & Lo
Definition: aarch32.cpp:205
support::ulittle16_t & Hi
Definition: aarch32.cpp:204
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:124
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:214
Base class for the actual dominator tree node.
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition: Function.h:706
unsigned getHexagonSubRegIndex(const TargetRegisterClass &RC, unsigned GenIdx) const
const HexagonRegisterInfo * getRegisterInfo() const override
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:199
void push_back(MachineInstr *MI)
MachineInstrBundleIterator< MachineInstr > iterator
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineBasicBlock & front() const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:72
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:587
bool isCopy() const
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:359
bool isDebugInstr() const
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:511
bool isPHI() const
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:595
MachineOperand class - Representation of each machine instruction operand.
void setSubReg(unsigned subReg)
unsigned getSubReg() const
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
static MachineOperand CreateImm(int64_t Val)
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:85
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
Definition: Register.h:67
unsigned virtRegIndex() const
Convert a virtual register number to a 0-based index.
Definition: Register.h:82
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:74
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
Register getReg() const
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
unsigned getID() const
Return the register class ID number.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char IsConst[]
Key for Kernel::Arg::Metadata::mIsConst.
@ Entry
Definition: COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition: ISDOpcodes.h:738
SmallVector< const MachineInstr * > InstrList
bool isConst(unsigned Opc)
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
std::set< RegisterRef > RegisterSet
Definition: RDFGraph.h:450
LLVM_ABI std::error_code remove(const Twine &path, bool IgnoreNonExisting=true)
Remove path.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1770
bool includes(R1 &&Range1, R2 &&Range2)
Provide wrappers to std::includes which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1953
bool isEqual(const GCNRPTracker::LiveRegSet &S1, const GCNRPTracker::LiveRegSet &S2)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:252
FunctionPass * createHexagonBitSimplify()
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:428
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
Definition: MathExtras.h:159
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1758
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition: MathExtras.h:164
FunctionPass * createHexagonLoopRescheduling()
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
@ Sub
Subtraction of integers.
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
Definition: STLExtras.h:1973
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:312
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1777
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1916
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
LLVM_ABI Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
#define N
Maximum remaining allocation size observed for a phi node, and how often the allocation size has alre...
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
bool is(unsigned T) const
Definition: BitTracker.h:206
static BitValue self(const BitRef &Self=BitRef())
Definition: BitTracker.h:277
bool has(unsigned Reg) const
Definition: BitTracker.h:349
const RegisterCell & lookup(unsigned Reg) const
Definition: BitTracker.h:354
bool reached(const MachineBasicBlock *B) const
void trace(bool On=false)
Definition: BitTracker.h:47
void put(RegisterRef RR, const RegisterCell &RC)
Definition: BitTracker.cpp:988
void visit(const MachineInstr &MI)
RegisterCell get(RegisterRef RR) const
Definition: BitTracker.cpp:984