LLVM 22.0.0git
IRMover.cpp
Go to the documentation of this file.
1//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include "LinkDiagnosticInfo.h"
11#include "llvm/ADT/DenseMap.h"
12#include "llvm/ADT/DenseSet.h"
13#include "llvm/ADT/SetVector.h"
15#include "llvm/IR/AutoUpgrade.h"
16#include "llvm/IR/Constants.h"
19#include "llvm/IR/Function.h"
21#include "llvm/IR/GlobalValue.h"
22#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Intrinsics.h"
25#include "llvm/IR/Module.h"
26#include "llvm/IR/PseudoProbe.h"
27#include "llvm/IR/TypeFinder.h"
29#include "llvm/Support/Error.h"
32#include <optional>
33#include <utility>
34using namespace llvm;
35
36/// Most of the errors produced by this module are inconvertible StringErrors.
37/// This convenience function lets us return one of those more easily.
41
42//===----------------------------------------------------------------------===//
43// TypeMap implementation.
44//===----------------------------------------------------------------------===//
45
46namespace {
47class TypeMapTy : public ValueMapTypeRemapper {
48 /// This is a mapping from a source type to a destination type to use.
49 DenseMap<Type *, Type *> MappedTypes;
50
51public:
52 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
53 : DstStructTypesSet(DstStructTypesSet) {}
54
55 IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
56 /// Indicate that the specified type in the destination module is conceptually
57 /// equivalent to the specified type in the source module.
58 void addTypeMapping(Type *DstTy, Type *SrcTy);
59
60 /// Return the mapped type to use for the specified input type from the
61 /// source module.
62 Type *get(Type *SrcTy);
63
64 FunctionType *get(FunctionType *T) {
65 return cast<FunctionType>(get((Type *)T));
66 }
67
68private:
69 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
70
71 bool recursivelyAddMappingIfTypesAreIsomorphic(Type *DstTy, Type *SrcTy);
72};
73}
74
75void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
76 recursivelyAddMappingIfTypesAreIsomorphic(DstTy, SrcTy);
77}
78
79/// Recursively walk this pair of types, returning true if they are isomorphic,
80/// false if they are not. Types that were determined to be isomorphic are
81/// added to MappedTypes.
82bool TypeMapTy::recursivelyAddMappingIfTypesAreIsomorphic(Type *DstTy,
83 Type *SrcTy) {
84 // Two types with differing kinds are clearly not isomorphic.
85 if (DstTy->getTypeID() != SrcTy->getTypeID())
86 return false;
87
88 // If we have an entry in the MappedTypes table, then we have our answer.
89 Type *&Entry = MappedTypes[SrcTy];
90 if (Entry)
91 return Entry == DstTy;
92
93 // Two identical types are clearly isomorphic. Remember this
94 // non-speculatively.
95 if (DstTy == SrcTy) {
96 Entry = DstTy;
97 return true;
98 }
99
100 // Okay, we have two types with identical kinds that we haven't seen before.
101
102 // Always consider opaque struct types non-isomorphic.
103 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
104 if (SSTy->isOpaque() || cast<StructType>(DstTy)->isOpaque())
105 return false;
106 }
107
108 // If the number of subtypes disagree between the two types, then we fail.
109 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
110 return false;
111
112 // Fail if any of the extra properties (e.g. array size) of the type disagree.
113 if (isa<IntegerType>(DstTy))
114 return false; // bitwidth disagrees.
115 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
116 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
117 return false;
118 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
119 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
120 return false;
121 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
122 StructType *SSTy = cast<StructType>(SrcTy);
123 if (DSTy->isLiteral() != SSTy->isLiteral() ||
124 DSTy->isPacked() != SSTy->isPacked())
125 return false;
126 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
127 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
128 return false;
129 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
130 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
131 return false;
132 }
133
134 // Recursively check the subelements.
135 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
136 if (!recursivelyAddMappingIfTypesAreIsomorphic(DstTy->getContainedType(I),
137 SrcTy->getContainedType(I)))
138 return false;
139
140 // If everything seems to have lined up, then everything is great.
141 [[maybe_unused]] auto Res = MappedTypes.insert({SrcTy, DstTy});
142 assert(!Res.second && "Recursive type?");
143
144 if (auto *STy = dyn_cast<StructType>(SrcTy)) {
145 // We clear name of SrcTy to lower amount of renaming in LLVM context.
146 // Renaming occurs because we load all source modules to the same context
147 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
148 // As a result we may get several different types in the destination
149 // module, which are in fact the same.
150 if (STy->hasName())
151 STy->setName("");
152 }
153
154 return true;
155}
156
157Type *TypeMapTy::get(Type *Ty) {
158 // If we already have an entry for this type, return it.
159 Type **Entry = &MappedTypes[Ty];
160 if (*Entry)
161 return *Entry;
162
163 // These are types that LLVM itself will unique.
164 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
165
166 if (!IsUniqued) {
167#ifndef NDEBUG
168 for (auto &Pair : MappedTypes) {
169 assert(!(Pair.first != Ty && Pair.second == Ty) &&
170 "mapping to a source type");
171 }
172#endif
173 }
174
175 // If this is not a recursive type, then just map all of the elements and
176 // then rebuild the type from inside out.
177 SmallVector<Type *, 4> ElementTypes;
178
179 // If there are no element types to map, then the type is itself. This is
180 // true for the anonymous {} struct, things like 'float', integers, etc.
181 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
182 return *Entry = Ty;
183
184 // Remap all of the elements, keeping track of whether any of them change.
185 bool AnyChange = false;
186 ElementTypes.resize(Ty->getNumContainedTypes());
187 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
188 ElementTypes[I] = get(Ty->getContainedType(I));
189 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
190 }
191
192 // Refresh Entry after recursively processing stuff.
193 Entry = &MappedTypes[Ty];
194 assert(!*Entry && "Recursive type!");
195
196 // If all of the element types mapped directly over and the type is not
197 // a named struct, then the type is usable as-is.
198 if (!AnyChange && IsUniqued)
199 return *Entry = Ty;
200
201 // Otherwise, rebuild a modified type.
202 switch (Ty->getTypeID()) {
203 default:
204 llvm_unreachable("unknown derived type to remap");
205 case Type::ArrayTyID:
206 return *Entry = ArrayType::get(ElementTypes[0],
208 case Type::ScalableVectorTyID:
209 case Type::FixedVectorTyID:
210 return *Entry = VectorType::get(ElementTypes[0],
211 cast<VectorType>(Ty)->getElementCount());
212 case Type::FunctionTyID:
213 return *Entry = FunctionType::get(ElementTypes[0],
214 ArrayRef(ElementTypes).slice(1),
215 cast<FunctionType>(Ty)->isVarArg());
216 case Type::StructTyID: {
217 auto *STy = cast<StructType>(Ty);
218 bool IsPacked = STy->isPacked();
219 if (IsUniqued)
220 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
221
222 // If the type is opaque, we can just use it directly.
223 if (STy->isOpaque()) {
224 DstStructTypesSet.addOpaque(STy);
225 return *Entry = Ty;
226 }
227
228 if (StructType *OldT =
229 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
230 STy->setName("");
231 return *Entry = OldT;
232 }
233
234 if (!AnyChange) {
235 DstStructTypesSet.addNonOpaque(STy);
236 return *Entry = Ty;
237 }
238
239 StructType *DTy =
240 StructType::create(Ty->getContext(), ElementTypes, "", STy->isPacked());
241
242 // Steal STy's name.
243 if (STy->hasName()) {
244 SmallString<16> TmpName = STy->getName();
245 STy->setName("");
246 DTy->setName(TmpName);
247 }
248
249 DstStructTypesSet.addNonOpaque(DTy);
250 return *Entry = DTy;
251 }
252 }
253}
254
256 const Twine &Msg)
257 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
258void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
259
260//===----------------------------------------------------------------------===//
261// IRLinker implementation.
262//===----------------------------------------------------------------------===//
263
264namespace {
265class IRLinker;
266
267/// Creates prototypes for functions that are lazily linked on the fly. This
268/// speeds up linking for modules with many/ lazily linked functions of which
269/// few get used.
270class GlobalValueMaterializer final : public ValueMaterializer {
271 IRLinker &TheIRLinker;
272
273public:
274 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
275 Value *materialize(Value *V) override;
276};
277
278class LocalValueMaterializer final : public ValueMaterializer {
279 IRLinker &TheIRLinker;
280
281public:
282 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
283 Value *materialize(Value *V) override;
284};
285
286/// Type of the Metadata map in \a ValueToValueMapTy.
288
289/// This is responsible for keeping track of the state used for moving data
290/// from SrcM to DstM.
291class IRLinker {
292 Module &DstM;
293 std::unique_ptr<Module> SrcM;
294
295 // Lookup table to optimize IRMover::linkNamedMDNodes().
296 IRMover::NamedMDNodesT &NamedMDNodes;
297
298 /// See IRMover::move().
299 IRMover::LazyCallback AddLazyFor;
300
301 TypeMapTy TypeMap;
302 GlobalValueMaterializer GValMaterializer;
303 LocalValueMaterializer LValMaterializer;
304
305 /// A metadata map that's shared between IRLinker instances.
306 MDMapT &SharedMDs;
307
308 /// Mapping of values from what they used to be in Src, to what they are now
309 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
310 /// due to the use of Value handles which the Linker doesn't actually need,
311 /// but this allows us to reuse the ValueMapper code.
312 ValueToValueMapTy ValueMap;
313 ValueToValueMapTy IndirectSymbolValueMap;
314
315 DenseSet<GlobalValue *> ValuesToLink;
316 std::vector<GlobalValue *> Worklist;
317 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
318
319 /// Set of globals with eagerly copied metadata that may require remapping.
320 /// This remapping is performed after metadata linking.
321 DenseSet<GlobalObject *> UnmappedMetadata;
322
323 void maybeAdd(GlobalValue *GV) {
324 if (ValuesToLink.insert(GV).second)
325 Worklist.push_back(GV);
326 }
327
328 /// Whether we are importing globals for ThinLTO, as opposed to linking the
329 /// source module. If this flag is set, it means that we can rely on some
330 /// other object file to define any non-GlobalValue entities defined by the
331 /// source module. This currently causes us to not link retained types in
332 /// debug info metadata and module inline asm.
333 bool IsPerformingImport;
334
335 /// Set to true when all global value body linking is complete (including
336 /// lazy linking). Used to prevent metadata linking from creating new
337 /// references.
338 bool DoneLinkingBodies = false;
339
340 /// The Error encountered during materialization. We use an Optional here to
341 /// avoid needing to manage an unconsumed success value.
342 std::optional<Error> FoundError;
343 void setError(Error E) {
344 if (E)
345 FoundError = std::move(E);
346 }
347
348 /// Entry point for mapping values and alternate context for mapping aliases.
349 ValueMapper Mapper;
350 unsigned IndirectSymbolMCID;
351
352 /// Handles cloning of a global values from the source module into
353 /// the destination module, including setting the attributes and visibility.
354 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
355
356 void emitWarning(const Twine &Message) {
357 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
358 }
359
360 /// Given a global in the source module, return the global in the
361 /// destination module that is being linked to, if any.
362 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
363 // If the source has no name it can't link. If it has local linkage,
364 // there is no name match-up going on.
365 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
366 return nullptr;
367
368 // Otherwise see if we have a match in the destination module's symtab.
369 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
370 if (!DGV)
371 return nullptr;
372
373 // If we found a global with the same name in the dest module, but it has
374 // internal linkage, we are really not doing any linkage here.
375 if (DGV->hasLocalLinkage())
376 return nullptr;
377
378 // If we found an intrinsic declaration with mismatching prototypes, we
379 // probably had a nameclash. Don't use that version.
380 if (auto *FDGV = dyn_cast<Function>(DGV))
381 if (FDGV->isIntrinsic())
382 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV))
383 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType()))
384 return nullptr;
385
386 // Otherwise, we do in fact link to the destination global.
387 return DGV;
388 }
389
390 void computeTypeMapping();
391
392 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
393 const GlobalVariable *SrcGV);
394
395 /// Given the GlobaValue \p SGV in the source module, and the matching
396 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
397 /// into the destination module.
398 ///
399 /// Note this code may call the client-provided \p AddLazyFor.
400 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
401 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
402 bool ForIndirectSymbol);
403
404 Error linkModuleFlagsMetadata();
405
406 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
407 Error linkFunctionBody(Function &Dst, Function &Src);
408 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src);
409 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src);
410 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
411
412 /// Replace all types in the source AttributeList with the
413 /// corresponding destination type.
414 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
415
416 /// Functions that take care of cloning a specific global value type
417 /// into the destination module.
418 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
419 Function *copyFunctionProto(const Function *SF);
420 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV);
421
422 /// Perform "replace all uses with" operations. These work items need to be
423 /// performed as part of materialization, but we postpone them to happen after
424 /// materialization is done. The materializer called by ValueMapper is not
425 /// expected to delete constants, as ValueMapper is holding pointers to some
426 /// of them, but constant destruction may be indirectly triggered by RAUW.
427 /// Hence, the need to move this out of the materialization call chain.
428 void flushRAUWWorklist();
429
430 /// When importing for ThinLTO, prevent importing of types listed on
431 /// the DICompileUnit that we don't need a copy of in the importing
432 /// module.
433 void prepareCompileUnitsForImport();
434 void linkNamedMDNodes();
435
436 /// Update attributes while linking.
437 void updateAttributes(GlobalValue &GV);
438
439public:
440 IRLinker(Module &DstM, MDMapT &SharedMDs,
441 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
442 ArrayRef<GlobalValue *> ValuesToLink,
443 IRMover::LazyCallback AddLazyFor, bool IsPerformingImport,
444 IRMover::NamedMDNodesT &NamedMDNodes)
445 : DstM(DstM), SrcM(std::move(SrcM)), NamedMDNodes(NamedMDNodes),
446 AddLazyFor(std::move(AddLazyFor)), TypeMap(Set),
447 GValMaterializer(*this), LValMaterializer(*this), SharedMDs(SharedMDs),
448 IsPerformingImport(IsPerformingImport),
450 &TypeMap, &GValMaterializer),
451 IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
452 IndirectSymbolValueMap, &LValMaterializer)) {
453 ValueMap.getMDMap() = std::move(SharedMDs);
454 for (GlobalValue *GV : ValuesToLink)
455 maybeAdd(GV);
456 if (IsPerformingImport)
457 prepareCompileUnitsForImport();
458 }
459 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
460
461 Error run();
462 Value *materialize(Value *V, bool ForIndirectSymbol);
463};
464}
465
466/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
467/// table. This is good for all clients except for us. Go through the trouble
468/// to force this back.
469static void forceRenaming(GlobalValue *GV, StringRef Name) {
470 // If the global doesn't force its name or if it already has the right name,
471 // there is nothing for us to do.
472 if (GV->hasLocalLinkage() || GV->getName() == Name)
473 return;
474
475 Module *M = GV->getParent();
476
477 // If there is a conflict, rename the conflict.
478 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
479 GV->takeName(ConflictGV);
480 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
481 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
482 } else {
483 GV->setName(Name); // Force the name back
484 }
485}
486
487Value *GlobalValueMaterializer::materialize(Value *SGV) {
488 return TheIRLinker.materialize(SGV, false);
489}
490
491Value *LocalValueMaterializer::materialize(Value *SGV) {
492 return TheIRLinker.materialize(SGV, true);
493}
494
495Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
496 auto *SGV = dyn_cast<GlobalValue>(V);
497 if (!SGV)
498 return nullptr;
499
500 // If SGV is from dest, it was already materialized when dest was loaded.
501 if (SGV->getParent() == &DstM)
502 return nullptr;
503
504 // When linking a global from other modules than source & dest, skip
505 // materializing it because it would be mapped later when its containing
506 // module is linked. Linking it now would potentially pull in many types that
507 // may not be mapped properly.
508 if (SGV->getParent() != SrcM.get())
509 return nullptr;
510
511 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
512 if (!NewProto) {
513 setError(NewProto.takeError());
514 return nullptr;
515 }
516 if (!*NewProto)
517 return nullptr;
518
520 if (!New)
521 return *NewProto;
522
523 // If we already created the body, just return.
524 if (auto *F = dyn_cast<Function>(New)) {
525 if (!F->isDeclaration())
526 return New;
527 } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
528 if (V->hasInitializer() || V->hasAppendingLinkage())
529 return New;
530 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) {
531 if (GA->getAliasee())
532 return New;
533 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) {
534 if (GI->getResolver())
535 return New;
536 } else {
537 llvm_unreachable("Invalid GlobalValue type");
538 }
539
540 // If the global is being linked for an indirect symbol, it may have already
541 // been scheduled to satisfy a regular symbol. Similarly, a global being linked
542 // for a regular symbol may have already been scheduled for an indirect
543 // symbol. Check for these cases by looking in the other value map and
544 // confirming the same value has been scheduled. If there is an entry in the
545 // ValueMap but the value is different, it means that the value already had a
546 // definition in the destination module (linkonce for instance), but we need a
547 // new definition for the indirect symbol ("New" will be different).
548 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) ||
549 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New))
550 return New;
551
552 if (ForIndirectSymbol || shouldLink(New, *SGV))
553 setError(linkGlobalValueBody(*New, *SGV));
554
555 updateAttributes(*New);
556 return New;
557}
558
559/// Loop through the global variables in the src module and merge them into the
560/// dest module.
561GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
562 // No linking to be performed or linking from the source: simply create an
563 // identical version of the symbol over in the dest module... the
564 // initializer will be filled in later by LinkGlobalInits.
565 GlobalVariable *NewDGV =
566 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
568 /*init*/ nullptr, SGVar->getName(),
569 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
570 SGVar->getAddressSpace());
571 NewDGV->setAlignment(SGVar->getAlign());
572 NewDGV->copyAttributesFrom(SGVar);
573 return NewDGV;
574}
575
576AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
577 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
578 for (int AttrIdx = Attribute::FirstTypeAttr;
579 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) {
580 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx;
581 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) {
582 if (Type *Ty =
583 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) {
584 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr,
585 TypeMap.get(Ty));
586 break;
587 }
588 }
589 }
590 }
591 return Attrs;
592}
593
594/// Link the function in the source module into the destination module if
595/// needed, setting up mapping information.
596Function *IRLinker::copyFunctionProto(const Function *SF) {
597 // If there is no linkage to be performed or we are linking from the source,
598 // bring SF over.
599 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
601 SF->getAddressSpace(), SF->getName(), &DstM);
602 F->copyAttributesFrom(SF);
603 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
604 return F;
605}
606
607/// Set up prototypes for any indirect symbols that come over from the source
608/// module.
609GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) {
610 // If there is no linkage to be performed or we're linking from the source,
611 // bring over SGA.
612 auto *Ty = TypeMap.get(SGV->getValueType());
613
614 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) {
615 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(),
617 SGV->getName(), &DstM);
618 DGA->copyAttributesFrom(GA);
619 return DGA;
620 }
621
622 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) {
623 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(),
625 SGV->getName(), nullptr, &DstM);
626 DGI->copyAttributesFrom(GI);
627 return DGI;
628 }
629
630 llvm_unreachable("Invalid source global value type");
631}
632
633GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
634 bool ForDefinition) {
635 GlobalValue *NewGV;
636 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
637 NewGV = copyGlobalVariableProto(SGVar);
638 } else if (auto *SF = dyn_cast<Function>(SGV)) {
639 NewGV = copyFunctionProto(SF);
640 } else {
641 if (ForDefinition)
642 NewGV = copyIndirectSymbolProto(SGV);
643 else if (SGV->getValueType()->isFunctionTy())
644 NewGV =
647 SGV->getName(), &DstM);
648 else
649 NewGV =
650 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
651 /*isConstant*/ false, GlobalValue::ExternalLinkage,
652 /*init*/ nullptr, SGV->getName(),
653 /*insertbefore*/ nullptr,
654 SGV->getThreadLocalMode(), SGV->getAddressSpace());
655 }
656
657 if (ForDefinition)
658 NewGV->setLinkage(SGV->getLinkage());
659 else if (SGV->hasExternalWeakLinkage())
661
662 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
663 // Metadata for global variables and function declarations is copied eagerly.
664 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) {
665 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
666 if (SGV->isDeclaration() && NewGO->hasMetadata())
667 UnmappedMetadata.insert(NewGO);
668 }
669 }
670
671 // Remove these copied constants in case this stays a declaration, since
672 // they point to the source module. If the def is linked the values will
673 // be mapped in during linkFunctionBody.
674 if (auto *NewF = dyn_cast<Function>(NewGV)) {
675 NewF->setPersonalityFn(nullptr);
676 NewF->setPrefixData(nullptr);
677 NewF->setPrologueData(nullptr);
678 }
679
680 return NewGV;
681}
682
684 size_t DotPos = Name.rfind('.');
685 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
686 !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
687 ? Name
688 : Name.substr(0, DotPos);
689}
690
691/// Loop over all of the linked values to compute type mappings. For example,
692/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
693/// types 'Foo' but one got renamed when the module was loaded into the same
694/// LLVMContext.
695void IRLinker::computeTypeMapping() {
696 for (GlobalValue &SGV : SrcM->globals()) {
697 GlobalValue *DGV = getLinkedToGlobal(&SGV);
698 if (!DGV)
699 continue;
700
701 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
702 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
703 continue;
704 }
705
706 // Unify the element type of appending arrays.
709 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
710 }
711
712 for (GlobalValue &SGV : *SrcM)
713 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
714 if (DGV->getType() == SGV.getType()) {
715 // If the types of DGV and SGV are the same, it means that DGV is from
716 // the source module and got added to DstM from a shared metadata. We
717 // shouldn't map this type to itself in case the type's components get
718 // remapped to a new type from DstM (for instance, during the loop over
719 // SrcM->getIdentifiedStructTypes() below).
720 continue;
721 }
722
723 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
724 }
725
726 for (GlobalValue &SGV : SrcM->aliases())
727 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
728 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
729
730 // Incorporate types by name, scanning all the types in the source module.
731 // At this point, the destination module may have a type "%foo = { i32 }" for
732 // example. When the source module got loaded into the same LLVMContext, if
733 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
734 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
735 for (StructType *ST : Types) {
736 if (!ST->hasName())
737 continue;
738
739 if (TypeMap.DstStructTypesSet.hasType(ST)) {
740 // This is actually a type from the destination module.
741 // getIdentifiedStructTypes() can have found it by walking debug info
742 // metadata nodes, some of which get linked by name when ODR Type Uniquing
743 // is enabled on the Context, from the source to the destination module.
744 continue;
745 }
746
747 auto STTypePrefix = getTypeNamePrefix(ST->getName());
748 if (STTypePrefix.size() == ST->getName().size())
749 continue;
750
751 // Check to see if the destination module has a struct with the prefix name.
752 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix);
753 if (!DST)
754 continue;
755
756 // Don't use it if this actually came from the source module. They're in
757 // the same LLVMContext after all. Also don't use it unless the type is
758 // actually used in the destination module. This can happen in situations
759 // like this:
760 //
761 // Module A Module B
762 // -------- --------
763 // %Z = type { %A } %B = type { %C.1 }
764 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
765 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
766 // %C = type { i8* } %B.3 = type { %C.1 }
767 //
768 // When we link Module B with Module A, the '%B' in Module B is
769 // used. However, that would then use '%C.1'. But when we process '%C.1',
770 // we prefer to take the '%C' version. So we are then left with both
771 // '%C.1' and '%C' being used for the same types. This leads to some
772 // variables using one type and some using the other.
773 if (TypeMap.DstStructTypesSet.hasType(DST))
774 TypeMap.addTypeMapping(DST, ST);
775 }
776}
777
778static void getArrayElements(const Constant *C,
780 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
781
782 for (unsigned i = 0; i != NumElements; ++i)
783 Dest.push_back(C->getAggregateElement(i));
784}
785
786/// If there were any appending global variables, link them together now.
788IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
789 const GlobalVariable *SrcGV) {
790 // Check that both variables have compatible properties.
791 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) {
792 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
793 return stringErr(
794 "Linking globals named '" + SrcGV->getName() +
795 "': can only link appending global with another appending "
796 "global!");
797
798 if (DstGV->isConstant() != SrcGV->isConstant())
799 return stringErr("Appending variables linked with different const'ness!");
800
801 if (DstGV->getAlign() != SrcGV->getAlign())
802 return stringErr(
803 "Appending variables with different alignment need to be linked!");
804
805 if (DstGV->getVisibility() != SrcGV->getVisibility())
806 return stringErr(
807 "Appending variables with different visibility need to be linked!");
808
809 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
810 return stringErr(
811 "Appending variables with different unnamed_addr need to be linked!");
812
813 if (DstGV->getSection() != SrcGV->getSection())
814 return stringErr(
815 "Appending variables with different section name need to be linked!");
816
817 if (DstGV->getAddressSpace() != SrcGV->getAddressSpace())
818 return stringErr("Appending variables with different address spaces need "
819 "to be linked!");
820 }
821
822 // Do not need to do anything if source is a declaration.
823 if (SrcGV->isDeclaration())
824 return DstGV;
825
826 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
827 ->getElementType();
828
829 // FIXME: This upgrade is done during linking to support the C API. Once the
830 // old form is deprecated, we should move this upgrade to
831 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
832 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
833 StringRef Name = SrcGV->getName();
834 bool IsNewStructor = false;
835 bool IsOldStructor = false;
836 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
837 if (cast<StructType>(EltTy)->getNumElements() == 3)
838 IsNewStructor = true;
839 else
840 IsOldStructor = true;
841 }
842
843 PointerType *VoidPtrTy = PointerType::get(SrcGV->getContext(), 0);
844 if (IsOldStructor) {
845 auto &ST = *cast<StructType>(EltTy);
846 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
847 EltTy = StructType::get(SrcGV->getContext(), Tys, false);
848 }
849
850 uint64_t DstNumElements = 0;
851 if (DstGV && !DstGV->isDeclaration()) {
852 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
853 DstNumElements = DstTy->getNumElements();
854
855 // Check to see that they two arrays agree on type.
856 if (EltTy != DstTy->getElementType())
857 return stringErr("Appending variables with different element types!");
858 }
859
860 SmallVector<Constant *, 16> SrcElements;
861 getArrayElements(SrcGV->getInitializer(), SrcElements);
862
863 if (IsNewStructor) {
864 erase_if(SrcElements, [this](Constant *E) {
865 auto *Key =
866 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
867 if (!Key)
868 return false;
869 GlobalValue *DGV = getLinkedToGlobal(Key);
870 return !shouldLink(DGV, *Key);
871 });
872 }
873 uint64_t NewSize = DstNumElements + SrcElements.size();
874 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
875
876 // Create the new global variable.
878 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
879 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
880 SrcGV->getAddressSpace());
881
882 NG->copyAttributesFrom(SrcGV);
883 forceRenaming(NG, SrcGV->getName());
884
886 *NG,
887 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr,
888 IsOldStructor, SrcElements);
889
890 // Replace any uses of the two global variables with uses of the new
891 // global.
892 if (DstGV) {
893 RAUWWorklist.push_back(std::make_pair(DstGV, NG));
894 }
895
896 return NG;
897}
898
899bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
900 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
901 return true;
902
903 if (DGV && !DGV->isDeclarationForLinker())
904 return false;
905
906 if (SGV.isDeclaration() || DoneLinkingBodies)
907 return false;
908
909 // Callback to the client to give a chance to lazily add the Global to the
910 // list of value to link.
911 bool LazilyAdded = false;
912 if (AddLazyFor)
913 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
914 maybeAdd(&GV);
915 LazilyAdded = true;
916 });
917 return LazilyAdded;
918}
919
920Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
921 bool ForIndirectSymbol) {
922 GlobalValue *DGV = getLinkedToGlobal(SGV);
923
924 bool ShouldLink = shouldLink(DGV, *SGV);
925
926 // just missing from map
927 if (ShouldLink) {
928 auto I = ValueMap.find(SGV);
929 if (I != ValueMap.end())
930 return cast<Constant>(I->second);
931
932 I = IndirectSymbolValueMap.find(SGV);
933 if (I != IndirectSymbolValueMap.end())
934 return cast<Constant>(I->second);
935 }
936
937 if (!ShouldLink && ForIndirectSymbol)
938 DGV = nullptr;
939
940 // Handle the ultra special appending linkage case first.
941 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage()))
942 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
944
945 bool NeedsRenaming = false;
946 GlobalValue *NewGV;
947 if (DGV && !ShouldLink) {
948 NewGV = DGV;
949 } else {
950 // If we are done linking global value bodies (i.e. we are performing
951 // metadata linking), don't link in the global value due to this
952 // reference, simply map it to null.
953 if (DoneLinkingBodies)
954 return nullptr;
955
956 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
957 if (ShouldLink || !ForIndirectSymbol)
958 NeedsRenaming = true;
959 }
960
961 // Overloaded intrinsics have overloaded types names as part of their
962 // names. If we renamed overloaded types we should rename the intrinsic
963 // as well.
964 if (Function *F = dyn_cast<Function>(NewGV))
965 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
966 // Note: remangleIntrinsicFunction does not copy metadata and as such
967 // F should not occur in the set of objects with unmapped metadata.
968 // If this assertion fails then remangleIntrinsicFunction needs updating.
969 assert(!UnmappedMetadata.count(F) && "intrinsic has unmapped metadata");
970 NewGV->eraseFromParent();
971 NewGV = *Remangled;
972 NeedsRenaming = false;
973 }
974
975 if (NeedsRenaming)
976 forceRenaming(NewGV, SGV->getName());
977
978 if (ShouldLink || ForIndirectSymbol) {
979 if (const Comdat *SC = SGV->getComdat()) {
980 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
981 Comdat *DC = DstM.getOrInsertComdat(SC->getName());
982 DC->setSelectionKind(SC->getSelectionKind());
983 GO->setComdat(DC);
984 }
985 }
986 }
987
988 if (!ShouldLink && ForIndirectSymbol)
990
991 Constant *C = NewGV;
992 // Only create a bitcast if necessary. In particular, with
993 // DebugTypeODRUniquing we may reach metadata in the destination module
994 // containing a GV from the source module, in which case SGV will be
995 // the same as DGV and NewGV, and TypeMap.get() will assert since it
996 // assumes it is being invoked on a type in the source module.
997 if (DGV && NewGV != SGV) {
999 NewGV, TypeMap.get(SGV->getType()));
1000 }
1001
1002 if (DGV && NewGV != DGV) {
1003 // Schedule "replace all uses with" to happen after materializing is
1004 // done. It is not safe to do it now, since ValueMapper may be holding
1005 // pointers to constants that will get deleted if RAUW runs.
1006 RAUWWorklist.push_back(std::make_pair(
1007 DGV,
1009 }
1010
1011 return C;
1012}
1013
1014/// Update the initializers in the Dest module now that all globals that may be
1015/// referenced are in Dest.
1016void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1017 // Figure out what the initializer looks like in the dest module.
1018 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1019}
1020
1021/// Copy the source function over into the dest function and fix up references
1022/// to values. At this point we know that Dest is an external function, and
1023/// that Src is not.
1024Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1025 assert(Dst.isDeclaration() && !Src.isDeclaration());
1026
1027 // Materialize if needed.
1028 if (Error Err = Src.materialize())
1029 return Err;
1030
1031 // Link in the operands without remapping.
1032 if (Src.hasPrefixData())
1033 Dst.setPrefixData(Src.getPrefixData());
1034 if (Src.hasPrologueData())
1035 Dst.setPrologueData(Src.getPrologueData());
1036 if (Src.hasPersonalityFn())
1037 Dst.setPersonalityFn(Src.getPersonalityFn());
1038
1039 // Copy over the metadata attachments without remapping.
1040 Dst.copyMetadata(&Src, 0);
1041
1042 // Steal arguments and splice the body of Src into Dst.
1043 Dst.stealArgumentListFrom(Src);
1044 Dst.splice(Dst.end(), &Src);
1045
1046 // Everything has been moved over. Remap it.
1047 Mapper.scheduleRemapFunction(Dst);
1048 return Error::success();
1049}
1050
1051void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) {
1052 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID);
1053}
1054
1055void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) {
1056 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID);
1057}
1058
1059Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1060 if (auto *F = dyn_cast<Function>(&Src))
1061 return linkFunctionBody(cast<Function>(Dst), *F);
1062 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1063 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1064 return Error::success();
1065 }
1066 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) {
1067 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA);
1068 return Error::success();
1069 }
1070 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src));
1071 return Error::success();
1072}
1073
1074void IRLinker::flushRAUWWorklist() {
1075 for (const auto &Elem : RAUWWorklist) {
1076 GlobalValue *Old;
1077 Value *New;
1078 std::tie(Old, New) = Elem;
1079
1080 Old->replaceAllUsesWith(New);
1081 Old->eraseFromParent();
1082 }
1083 RAUWWorklist.clear();
1084}
1085
1086void IRLinker::prepareCompileUnitsForImport() {
1087 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1088 if (!SrcCompileUnits)
1089 return;
1090 // When importing for ThinLTO, prevent importing of types listed on
1091 // the DICompileUnit that we don't need a copy of in the importing
1092 // module. They will be emitted by the originating module.
1093 for (MDNode *N : SrcCompileUnits->operands()) {
1094 auto *CU = cast<DICompileUnit>(N);
1095 assert(CU && "Expected valid compile unit");
1096 // Enums, macros, and retained types don't need to be listed on the
1097 // imported DICompileUnit. This means they will only be imported
1098 // if reached from the mapped IR.
1099 CU->replaceEnumTypes(nullptr);
1100 CU->replaceMacros(nullptr);
1101 CU->replaceRetainedTypes(nullptr);
1102
1103 // The original definition (or at least its debug info - if the variable is
1104 // internalized and optimized away) will remain in the source module, so
1105 // there's no need to import them.
1106 // If LLVM ever does more advanced optimizations on global variables
1107 // (removing/localizing write operations, for instance) that can track
1108 // through debug info, this decision may need to be revisited - but do so
1109 // with care when it comes to debug info size. Emitting small CUs containing
1110 // only a few imported entities into every destination module may be very
1111 // size inefficient.
1112 CU->replaceGlobalVariables(nullptr);
1113
1114 CU->replaceImportedEntities(nullptr);
1115 }
1116}
1117
1118/// Insert all of the named MDNodes in Src into the Dest module.
1119void IRLinker::linkNamedMDNodes() {
1120 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1121 for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1122 // Don't link module flags here. Do them separately.
1123 if (&NMD == SrcModFlags)
1124 continue;
1125 // Don't import pseudo probe descriptors here for thinLTO. They will be
1126 // emitted by the originating module.
1127 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) {
1128 if (!DstM.getNamedMetadata(NMD.getName()))
1129 emitWarning("Pseudo-probe ignored: source module '" +
1130 SrcM->getModuleIdentifier() +
1131 "' is compiled with -fpseudo-probe-for-profiling while "
1132 "destination module '" +
1133 DstM.getModuleIdentifier() + "' is not\n");
1134 continue;
1135 }
1136 // The stats are computed per module and will all be merged in the binary.
1137 // Importing the metadata will cause duplication of the stats.
1138 if (IsPerformingImport && NMD.getName() == "llvm.stats")
1139 continue;
1140
1141 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1142
1143 auto &Inserted = NamedMDNodes[DestNMD];
1144 if (Inserted.empty()) {
1145 // Must be the first module, copy everything from DestNMD.
1146 Inserted.insert(DestNMD->operands().begin(), DestNMD->operands().end());
1147 }
1148
1149 // Add Src elements into Dest node.
1150 for (const MDNode *Op : NMD.operands()) {
1151 MDNode *MD = Mapper.mapMDNode(*Op);
1152 if (Inserted.insert(MD).second)
1153 DestNMD->addOperand(MD);
1154 }
1155 }
1156}
1157
1158/// Merge the linker flags in Src into the Dest module.
1159Error IRLinker::linkModuleFlagsMetadata() {
1160 // If the source module has no module flags, we are done.
1161 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1162 if (!SrcModFlags)
1163 return Error::success();
1164
1165 // Check for module flag for updates before do anything.
1166 UpgradeModuleFlags(*SrcM);
1168
1169 // If the destination module doesn't have module flags yet, then just copy
1170 // over the source module's flags.
1171 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1172 if (DstModFlags->getNumOperands() == 0) {
1173 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1174 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1175
1176 return Error::success();
1177 }
1178
1179 // First build a map of the existing module flags and requirements.
1181 SmallSetVector<MDNode *, 16> Requirements;
1183 DenseSet<MDString *> SeenMin;
1184 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1185 MDNode *Op = DstModFlags->getOperand(I);
1186 uint64_t Behavior =
1187 mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue();
1188 MDString *ID = cast<MDString>(Op->getOperand(1));
1189
1190 if (Behavior == Module::Require) {
1191 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1192 } else {
1193 if (Behavior == Module::Min)
1194 Mins.push_back(I);
1195 Flags[ID] = std::make_pair(Op, I);
1196 }
1197 }
1198
1199 // Merge in the flags from the source module, and also collect its set of
1200 // requirements.
1201 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1202 MDNode *SrcOp = SrcModFlags->getOperand(I);
1203 ConstantInt *SrcBehavior =
1204 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1205 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1206 MDNode *DstOp;
1207 unsigned DstIndex;
1208 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1209 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1210 SeenMin.insert(ID);
1211
1212 // If this is a requirement, add it and continue.
1213 if (SrcBehaviorValue == Module::Require) {
1214 // If the destination module does not already have this requirement, add
1215 // it.
1216 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1217 DstModFlags->addOperand(SrcOp);
1218 }
1219 continue;
1220 }
1221
1222 // If there is no existing flag with this ID, just add it.
1223 if (!DstOp) {
1224 if (SrcBehaviorValue == Module::Min) {
1225 Mins.push_back(DstModFlags->getNumOperands());
1226 SeenMin.erase(ID);
1227 }
1228 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1229 DstModFlags->addOperand(SrcOp);
1230 continue;
1231 }
1232
1233 // Otherwise, perform a merge.
1234 ConstantInt *DstBehavior =
1235 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1236 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1237
1238 auto overrideDstValue = [&]() {
1239 DstModFlags->setOperand(DstIndex, SrcOp);
1240 Flags[ID].first = SrcOp;
1241 };
1242
1243 // If either flag has override behavior, handle it first.
1244 if (DstBehaviorValue == Module::Override) {
1245 // Diagnose inconsistent flags which both have override behavior.
1246 if (SrcBehaviorValue == Module::Override &&
1247 SrcOp->getOperand(2) != DstOp->getOperand(2))
1248 return stringErr("linking module flags '" + ID->getString() +
1249 "': IDs have conflicting override values in '" +
1250 SrcM->getModuleIdentifier() + "' and '" +
1251 DstM.getModuleIdentifier() + "'");
1252 continue;
1253 } else if (SrcBehaviorValue == Module::Override) {
1254 // Update the destination flag to that of the source.
1255 overrideDstValue();
1256 continue;
1257 }
1258
1259 // Diagnose inconsistent merge behavior types.
1260 if (SrcBehaviorValue != DstBehaviorValue) {
1261 bool MinAndWarn = (SrcBehaviorValue == Module::Min &&
1262 DstBehaviorValue == Module::Warning) ||
1263 (DstBehaviorValue == Module::Min &&
1264 SrcBehaviorValue == Module::Warning);
1265 bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
1266 DstBehaviorValue == Module::Warning) ||
1267 (DstBehaviorValue == Module::Max &&
1268 SrcBehaviorValue == Module::Warning);
1269 if (!(MaxAndWarn || MinAndWarn))
1270 return stringErr("linking module flags '" + ID->getString() +
1271 "': IDs have conflicting behaviors in '" +
1272 SrcM->getModuleIdentifier() + "' and '" +
1273 DstM.getModuleIdentifier() + "'");
1274 }
1275
1276 auto ensureDistinctOp = [&](MDNode *DstValue) {
1277 assert(isa<MDTuple>(DstValue) &&
1278 "Expected MDTuple when appending module flags");
1279 if (DstValue->isDistinct())
1280 return dyn_cast<MDTuple>(DstValue);
1281 ArrayRef<MDOperand> DstOperands = DstValue->operands();
1283 DstM.getContext(), SmallVector<Metadata *, 4>(DstOperands));
1284 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1285 MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps);
1286 DstModFlags->setOperand(DstIndex, Flag);
1287 Flags[ID].first = Flag;
1288 return New;
1289 };
1290
1291 // Emit a warning if the values differ and either source or destination
1292 // request Warning behavior.
1293 if ((DstBehaviorValue == Module::Warning ||
1294 SrcBehaviorValue == Module::Warning) &&
1295 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1296 std::string Str;
1298 << "linking module flags '" << ID->getString()
1299 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1300 << "' from " << SrcM->getModuleIdentifier() << " with '"
1301 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1302 << ')';
1303 emitWarning(Str);
1304 }
1305
1306 // Choose the minimum if either source or destination request Min behavior.
1307 if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) {
1308 ConstantInt *DstValue =
1309 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1310 ConstantInt *SrcValue =
1311 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1312
1313 // The resulting flag should have a Min behavior, and contain the minimum
1314 // value from between the source and destination values.
1315 Metadata *FlagOps[] = {
1316 (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID,
1317 (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp)
1318 ->getOperand(2)};
1319 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1320 DstModFlags->setOperand(DstIndex, Flag);
1321 Flags[ID].first = Flag;
1322 continue;
1323 }
1324
1325 // Choose the maximum if either source or destination request Max behavior.
1326 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
1327 ConstantInt *DstValue =
1328 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1329 ConstantInt *SrcValue =
1330 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1331
1332 // The resulting flag should have a Max behavior, and contain the maximum
1333 // value from between the source and destination values.
1334 Metadata *FlagOps[] = {
1335 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
1336 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
1337 ->getOperand(2)};
1338 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1339 DstModFlags->setOperand(DstIndex, Flag);
1340 Flags[ID].first = Flag;
1341 continue;
1342 }
1343
1344 // Perform the merge for standard behavior types.
1345 switch (SrcBehaviorValue) {
1346 case Module::Require:
1347 case Module::Override:
1348 llvm_unreachable("not possible");
1349 case Module::Error: {
1350 // Emit an error if the values differ.
1351 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1352 std::string Str;
1354 << "linking module flags '" << ID->getString()
1355 << "': IDs have conflicting values: '" << *SrcOp->getOperand(2)
1356 << "' from " << SrcM->getModuleIdentifier() << ", and '"
1357 << *DstOp->getOperand(2) << "' from " + DstM.getModuleIdentifier();
1358 return stringErr(Str);
1359 }
1360 continue;
1361 }
1362 case Module::Warning: {
1363 break;
1364 }
1365 case Module::Max: {
1366 break;
1367 }
1368 case Module::Append: {
1369 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1370 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1371 for (const auto &O : SrcValue->operands())
1372 DstValue->push_back(O);
1373 break;
1374 }
1375 case Module::AppendUnique: {
1377 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2)));
1378 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1379 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1380 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1381 for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++)
1382 DstValue->push_back(Elts[I]);
1383 break;
1384 }
1385 }
1386
1387 }
1388
1389 // For the Min behavior, set the value to 0 if either module does not have the
1390 // flag.
1391 for (auto Idx : Mins) {
1392 MDNode *Op = DstModFlags->getOperand(Idx);
1393 MDString *ID = cast<MDString>(Op->getOperand(1));
1394 if (!SeenMin.count(ID)) {
1395 ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2));
1396 Metadata *FlagOps[] = {
1397 Op->getOperand(0), ID,
1398 ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))};
1399 DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps));
1400 }
1401 }
1402
1403 // Check all of the requirements.
1404 for (MDNode *Requirement : Requirements) {
1405 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1406 Metadata *ReqValue = Requirement->getOperand(1);
1407
1408 MDNode *Op = Flags[Flag].first;
1409 if (!Op || Op->getOperand(2) != ReqValue)
1410 return stringErr("linking module flags '" + Flag->getString() +
1411 "': does not have the required value");
1412 }
1413 return Error::success();
1414}
1415
1416/// Return InlineAsm adjusted with target-specific directives if required.
1417/// For ARM and Thumb, we have to add directives to select the appropriate ISA
1418/// to support mixing module-level inline assembly from ARM and Thumb modules.
1419static std::string adjustInlineAsm(const std::string &InlineAsm,
1420 const Triple &Triple) {
1422 return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1424 return ".text\n.balign 4\n.arm\n" + InlineAsm;
1425 return InlineAsm;
1426}
1427
1428void IRLinker::updateAttributes(GlobalValue &GV) {
1429 /// Remove nocallback attribute while linking, because nocallback attribute
1430 /// indicates that the function is only allowed to jump back into caller's
1431 /// module only by a return or an exception. When modules are linked, this
1432 /// property cannot be guaranteed anymore. For example, the nocallback
1433 /// function may contain a call to another module. But if we merge its caller
1434 /// and callee module here, and not the module containing the nocallback
1435 /// function definition itself, the nocallback property will be violated
1436 /// (since the nocallback function will call back into the newly merged module
1437 /// containing both its caller and callee). This could happen if the module
1438 /// containing the nocallback function definition is native code, so it does
1439 /// not participate in the LTO link. Note if the nocallback function does
1440 /// participate in the LTO link, and thus ends up in the merged module
1441 /// containing its caller and callee, removing the attribute doesn't hurt as
1442 /// it has no effect on definitions in the same module.
1443 if (auto *F = dyn_cast<Function>(&GV)) {
1444 if (!F->isIntrinsic())
1445 F->removeFnAttr(llvm::Attribute::NoCallback);
1446
1447 // Remove nocallback attribute when it is on a call-site.
1448 for (BasicBlock &BB : *F)
1449 for (Instruction &I : BB)
1450 if (CallBase *CI = dyn_cast<CallBase>(&I))
1451 CI->removeFnAttr(Attribute::NoCallback);
1452 }
1453}
1454
1455Error IRLinker::run() {
1456 // Ensure metadata materialized before value mapping.
1457 if (SrcM->getMaterializer())
1458 if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1459 return Err;
1460
1461 // Inherit the target data from the source module if the destination
1462 // module doesn't have one already.
1463 if (DstM.getDataLayout().isDefault())
1464 DstM.setDataLayout(SrcM->getDataLayout());
1465
1466 // Copy the target triple from the source to dest if the dest's is empty.
1467 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1468 DstM.setTargetTriple(SrcM->getTargetTriple());
1469
1470 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1471
1472 // During CUDA compilation we have to link with the bitcode supplied with
1473 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has
1474 // the layout that is different from the one used by LLVM/clang (it does not
1475 // include i128). Issuing a warning is not very helpful as there's not much
1476 // the user can do about it.
1477 bool EnableDLWarning = true;
1478 bool EnableTripleWarning = true;
1479 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) {
1480 bool SrcHasLibDeviceDL =
1481 (SrcM->getDataLayoutStr().empty() ||
1482 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64");
1483 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just
1484 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with
1485 // all NVPTX variants.
1486 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA &&
1487 SrcTriple.getOSName() == "gpulibs") ||
1488 (SrcTriple.getVendorName() == "unknown" &&
1489 SrcTriple.getOSName() == "unknown");
1490 EnableTripleWarning = !SrcHasLibDeviceTriple;
1491 EnableDLWarning = !(SrcHasLibDeviceTriple && SrcHasLibDeviceDL);
1492 }
1493
1494 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) {
1495 emitWarning("Linking two modules of different data layouts: '" +
1496 SrcM->getModuleIdentifier() + "' is '" +
1497 SrcM->getDataLayoutStr() + "' whereas '" +
1498 DstM.getModuleIdentifier() + "' is '" +
1499 DstM.getDataLayoutStr() + "'\n");
1500 }
1501
1502 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() &&
1503 !SrcTriple.isCompatibleWith(DstTriple))
1504 emitWarning("Linking two modules of different target triples: '" +
1505 SrcM->getModuleIdentifier() + "' is '" +
1506 SrcM->getTargetTriple().str() + "' whereas '" +
1507 DstM.getModuleIdentifier() + "' is '" +
1508 DstM.getTargetTriple().str() + "'\n");
1509
1510 DstM.setTargetTriple(Triple(SrcTriple.merge(DstTriple)));
1511
1512 // Loop over all of the linked values to compute type mappings.
1513 computeTypeMapping();
1514
1515 std::reverse(Worklist.begin(), Worklist.end());
1516 while (!Worklist.empty()) {
1517 GlobalValue *GV = Worklist.back();
1518 Worklist.pop_back();
1519
1520 // Already mapped.
1521 if (ValueMap.find(GV) != ValueMap.end() ||
1522 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
1523 continue;
1524
1525 assert(!GV->isDeclaration());
1526 Mapper.mapValue(*GV);
1527 if (FoundError)
1528 return std::move(*FoundError);
1529 flushRAUWWorklist();
1530 }
1531
1532 // Note that we are done linking global value bodies. This prevents
1533 // metadata linking from creating new references.
1534 DoneLinkingBodies = true;
1536
1537 // Remap all of the named MDNodes in Src into the DstM module. We do this
1538 // after linking GlobalValues so that MDNodes that reference GlobalValues
1539 // are properly remapped.
1540 linkNamedMDNodes();
1541
1542 // Clean up any global objects with potentially unmapped metadata.
1543 // Specifically declarations which did not become definitions.
1544 for (GlobalObject *NGO : UnmappedMetadata) {
1545 if (NGO->isDeclaration())
1546 Mapper.remapGlobalObjectMetadata(*NGO);
1547 }
1548
1549 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1550 // Append the module inline asm string.
1551 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(),
1552 SrcTriple));
1553 } else if (IsPerformingImport) {
1554 // Import any symver directives for symbols in DstM.
1556 [&](StringRef Name, StringRef Alias) {
1557 if (DstM.getNamedValue(Name)) {
1558 SmallString<256> S(".symver ");
1559 S += Name;
1560 S += ", ";
1561 S += Alias;
1562 DstM.appendModuleInlineAsm(S);
1563 }
1564 });
1565 }
1566
1567 // Reorder the globals just added to the destination module to match their
1568 // original order in the source module.
1569 for (GlobalVariable &GV : SrcM->globals()) {
1570 if (GV.hasAppendingLinkage())
1571 continue;
1572 Value *NewValue = Mapper.mapValue(GV);
1573 if (FoundError)
1574 return std::move(*FoundError);
1575 if (NewValue) {
1576 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts());
1577 if (NewGV) {
1578 NewGV->removeFromParent();
1579 DstM.insertGlobalVariable(NewGV);
1580 }
1581 }
1582 }
1583
1584 // Merge the module flags into the DstM module.
1585 return linkModuleFlagsMetadata();
1586}
1587
1590
1592 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1593
1595 return IsPacked == That.IsPacked && ETypes == That.ETypes;
1596}
1597
1599 return !this->operator==(That);
1600}
1601
1602StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1604}
1605
1606StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1608}
1609
1610unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1611 return hash_combine(hash_combine_range(Key.ETypes), Key.IsPacked);
1612}
1613
1614unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1615 return getHashValue(KeyTy(ST));
1616}
1617
1618bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1619 const StructType *RHS) {
1620 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1621 return false;
1622 return LHS == KeyTy(RHS);
1623}
1624
1625bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1626 const StructType *RHS) {
1627 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1628 return LHS == RHS;
1629 return KeyTy(LHS) == KeyTy(RHS);
1630}
1631
1633 assert(!Ty->isOpaque());
1634 NonOpaqueStructTypes.insert(Ty);
1635}
1636
1638 assert(!Ty->isOpaque());
1639 NonOpaqueStructTypes.insert(Ty);
1640 bool Removed = OpaqueStructTypes.erase(Ty);
1641 (void)Removed;
1642 assert(Removed);
1643}
1644
1646 assert(Ty->isOpaque());
1647 OpaqueStructTypes.insert(Ty);
1648}
1649
1650StructType *
1652 bool IsPacked) {
1653 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1654 auto I = NonOpaqueStructTypes.find_as(Key);
1655 return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1656}
1657
1659 if (Ty->isOpaque())
1660 return OpaqueStructTypes.count(Ty);
1661 auto I = NonOpaqueStructTypes.find(Ty);
1662 return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1663}
1664
1665IRMover::IRMover(Module &M) : Composite(M) {
1666 TypeFinder StructTypes;
1667 StructTypes.run(M, /* OnlyNamed */ false);
1668 for (StructType *Ty : StructTypes) {
1669 if (Ty->isOpaque())
1670 IdentifiedStructTypes.addOpaque(Ty);
1671 else
1672 IdentifiedStructTypes.addNonOpaque(Ty);
1673 }
1674 // Self-map metadatas in the destination module. This is needed when
1675 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1676 // destination module may be reached from the source module.
1677 for (const auto *MD : StructTypes.getVisitedMetadata()) {
1678 SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1679 }
1680}
1681
1682Error IRMover::move(std::unique_ptr<Module> Src,
1683 ArrayRef<GlobalValue *> ValuesToLink,
1684 LazyCallback AddLazyFor, bool IsPerformingImport) {
1685 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1686 std::move(Src), ValuesToLink, std::move(AddLazyFor),
1687 IsPerformingImport, NamedMDNodes);
1688 return TheIRLinker.run();
1689}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
static void forceRenaming(GlobalValue *GV, StringRef Name)
The LLVM SymbolTable class autorenames globals that conflict in the symbol table.
Definition IRMover.cpp:469
static void getArrayElements(const Constant *C, SmallVectorImpl< Constant * > &Dest)
Definition IRMover.cpp:778
static std::string adjustInlineAsm(const std::string &InlineAsm, const Triple &Triple)
Return InlineAsm adjusted with target-specific directives if required.
Definition IRMover.cpp:1419
static StringRef getTypeNamePrefix(StringRef Name)
Definition IRMover.cpp:683
static Error stringErr(const Twine &T)
Most of the errors produced by this module are inconvertible StringErrors.
Definition IRMover.cpp:38
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
Machine Check Debug Module
#define T
#define P(N)
static unsigned getNumElements(Type *Ty)
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallString class.
Value * RHS
Value * LHS
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
Class to represent array types.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
Definition Attributes.h:88
LLVM Basic Block Representation.
Definition BasicBlock.h:62
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
void setSelectionKind(SelectionKind Val)
Definition Comdat.h:48
static ConstantAsMetadata * get(Constant *C)
Definition Metadata.h:535
static LLVM_ABI Constant * getPointerBitCastOrAddrSpaceCast(Constant *C, Type *Ty)
Create a BitCast or AddrSpaceCast for a pointer type depending on the address space.
This is the shared class of boolean and integer constants.
Definition Constants.h:87
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:163
This is an important base class in LLVM.
Definition Constant.h:43
bool isDefault() const
Test if the DataLayout was constructed from an empty string.
Definition DataLayout.h:211
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition DenseMap.h:214
Implements a dense probed hash-table based set.
Definition DenseSet.h:261
DiagnosticInfo(int Kind, DiagnosticSeverity Severity)
Interface for custom diagnostic printing.
Lightweight error class with error context and mandatory checking.
Definition Error.h:159
static ErrorSuccess success()
Create a success value.
Definition Error.h:336
Tagged union holding either a T or a Error.
Definition Error.h:485
Error takeError()
Take ownership of the stored error.
Definition Error.h:612
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition Function.h:166
FunctionType * getFunctionType() const
Returns the FunctionType for me.
Definition Function.h:209
static LLVM_ABI GlobalAlias * create(Type *Ty, unsigned AddressSpace, LinkageTypes Linkage, const Twine &Name, Constant *Aliasee, Module *Parent)
If a parent module is specified, the alias is automatically inserted into the end of the specified mo...
Definition Globals.cpp:585
static LLVM_ABI GlobalIFunc * create(Type *Ty, unsigned AddressSpace, LinkageTypes Linkage, const Twine &Name, Constant *Resolver, Module *Parent)
If a parent module is specified, the ifunc is automatically inserted into the end of the specified mo...
Definition Globals.cpp:642
StringRef getSection() const
Get the custom section of this global if it has one.
VisibilityTypes getVisibility() const
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition Globals.cpp:316
LinkageTypes getLinkage() const
bool hasLocalLinkage() const
LLVM_ABI const Comdat * getComdat() const
Definition Globals.cpp:201
bool hasExternalWeakLinkage() const
ThreadLocalMode getThreadLocalMode() const
void setLinkage(LinkageTypes LT)
bool isDeclarationForLinker() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
LLVM_ABI void eraseFromParent()
This method unlinks 'this' from the containing module and deletes it.
Definition Globals.cpp:93
PointerType * getType() const
Global values are always pointers.
bool hasGlobalUnnamedAddr() const
bool hasAppendingLinkage() const
LLVM_ABI void removeFromParent()
This method unlinks 'this' from the containing module, but does not delete it.
Definition Globals.cpp:81
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
@ ExternalWeakLinkage
ExternalWeak linkage description.
Definition GlobalValue.h:62
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
MaybeAlign getAlign() const
Returns the alignment of the given variable.
LLVM_ABI void copyAttributesFrom(const GlobalVariable *Src)
copyAttributesFrom - copy all additional attributes (those not needed to create a GlobalVariable) fro...
Definition Globals.cpp:540
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
void setAlignment(Align Align)
Sets the alignment attribute of the GlobalVariable.
LLVM_ABI void addNonOpaque(StructType *Ty)
Definition IRMover.cpp:1632
LLVM_ABI bool hasType(StructType *Ty)
Definition IRMover.cpp:1658
LLVM_ABI void switchToNonOpaque(StructType *Ty)
Definition IRMover.cpp:1637
LLVM_ABI void addOpaque(StructType *Ty)
Definition IRMover.cpp:1645
LLVM_ABI StructType * findNonOpaque(ArrayRef< Type * > ETypes, bool IsPacked)
Definition IRMover.cpp:1651
LLVM_ABI IRMover(Module &M)
Definition IRMover.cpp:1665
LLVM_ABI Error move(std::unique_ptr< Module > Src, ArrayRef< GlobalValue * > ValuesToLink, LazyCallback AddLazyFor, bool IsPerformingImport)
Move in the provide values in ValuesToLink from Src.
Definition IRMover.cpp:1682
DenseMap< const NamedMDNode *, SmallPtrSet< const MDNode *, 8 > > NamedMDNodesT
Definition IRMover.h:74
llvm::unique_function< void(GlobalValue &GV, ValueAdder Add)> LazyCallback
Definition IRMover.h:71
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg LLVM_LIFETIME_BOUND)
Definition IRMover.cpp:255
void print(DiagnosticPrinter &DP) const override
Print using the given DP a user-friendly message.
Definition IRMover.cpp:258
Metadata node.
Definition Metadata.h:1077
ArrayRef< MDOperand > operands() const
Definition Metadata.h:1443
op_iterator op_end() const
Definition Metadata.h:1439
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition Metadata.h:1565
unsigned getNumOperands() const
Return number of MDNode operands.
Definition Metadata.h:1451
op_iterator op_begin() const
Definition Metadata.h:1435
A single uniqued string.
Definition Metadata.h:720
Tuple of metadata.
Definition Metadata.h:1493
static MDTuple * getDistinct(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Return a distinct node.
Definition Metadata.h:1533
void push_back(Metadata *MD)
Append an element to the tuple. This will resize the node.
Definition Metadata.h:1551
Root of the metadata hierarchy.
Definition Metadata.h:63
static LLVM_ABI void CollectAsmSymvers(const Module &M, function_ref< void(StringRef, StringRef)> AsmSymver)
Parse inline ASM and collect the symvers directives that are defined in the current module.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
const Triple & getTargetTriple() const
Get the target triple which is a string describing the target host.
Definition Module.h:281
NamedMDNode * getNamedMetadata(StringRef Name) const
Return the first NamedMDNode in the module with the specified name.
Definition Module.cpp:296
@ AppendUnique
Appends the two values, which are required to be metadata nodes.
Definition Module.h:146
@ Override
Uses the specified value, regardless of the behavior or value of the other module.
Definition Module.h:138
@ Warning
Emits a warning if two values disagree.
Definition Module.h:124
@ Error
Emits an error if two values disagree, otherwise the resulting value is that of the operands.
Definition Module.h:120
@ Min
Takes the min of the two values, which are required to be integers.
Definition Module.h:152
@ Append
Appends the two values, which are required to be metadata nodes.
Definition Module.h:141
@ Max
Takes the max of the two values, which are required to be integers.
Definition Module.h:149
@ Require
Adds a requirement that another module flag be present and have a specified value after linking is pe...
Definition Module.h:133
LLVMContext & getContext() const
Get the global data context.
Definition Module.h:285
void setTargetTriple(Triple T)
Set the target triple.
Definition Module.h:324
NamedMDNode * getOrInsertModuleFlagsMetadata()
Returns the NamedMDNode in the module that represents module-level flags.
Definition Module.cpp:367
const std::string & getModuleIdentifier() const
Get the module identifier which is, essentially, the name of the module.
Definition Module.h:252
void setDataLayout(StringRef Desc)
Set the data layout.
Definition Module.cpp:424
void insertGlobalVariable(GlobalVariable *GV)
Insert global variable GV at the end of the global variable list and take ownership.
Definition Module.h:568
GlobalValue * getNamedValue(StringRef Name) const
Return the global value in the module with the specified name, of arbitrary type.
Definition Module.cpp:172
NamedMDNode * getOrInsertNamedMetadata(StringRef Name)
Return the named MDNode in the module with the specified name.
Definition Module.cpp:303
Comdat * getOrInsertComdat(StringRef Name)
Return the Comdat in the module with the specified name.
Definition Module.cpp:611
const DataLayout & getDataLayout() const
Get the data layout for the module's target platform.
Definition Module.h:278
const std::string & getDataLayoutStr() const
Get the data layout string for the module's target platform.
Definition Module.h:273
void appendModuleInlineAsm(StringRef Asm)
Append to the module-scope inline assembly blocks.
Definition Module.h:336
A tuple of MDNodes.
Definition Metadata.h:1753
LLVM_ABI void setOperand(unsigned I, MDNode *New)
LLVM_ABI MDNode * getOperand(unsigned i) const
LLVM_ABI unsigned getNumOperands() const
iterator_range< op_iterator > operands()
Definition Metadata.h:1849
LLVM_ABI void addOperand(MDNode *M)
Class to represent pointers.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
size_type size() const
Determine the number of elements in the SetVector.
Definition SetVector.h:104
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:168
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:356
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void resize(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
static constexpr size_t npos
Definition StringRef.h:57
Class to represent struct types.
static LLVM_ABI StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition Type.cpp:414
static LLVM_ABI StructType * getTypeByName(LLVMContext &C, StringRef Name)
Return the type with the specified name, or null if there is none by that name.
Definition Type.cpp:739
static LLVM_ABI StructType * create(LLVMContext &Context, StringRef Name)
This creates an identified struct.
Definition Type.cpp:620
bool isPacked() const
LLVM_ABI void setName(StringRef Name)
Change the name of this type to the specified name, or to a name with a suffix if there is a collisio...
Definition Type.cpp:569
bool isLiteral() const
Return true if this type is uniqued by structural equivalence, false if it is a struct definition.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
ArchType getArch() const
Get the parsed architecture type of this triple.
Definition Triple.h:411
const std::string & str() const
Definition Triple.h:478
bool empty() const
Whether the triple is empty / default constructed.
Definition Triple.h:483
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
TypeFinder - Walk over a module, identifying all of the types that are used by the module.
Definition TypeFinder.h:31
DenseSet< const MDNode * > & getVisitedMetadata()
Definition TypeFinder.h:63
void run(const Module &M, bool onlyNamed)
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
unsigned getNumContainedTypes() const
Return the number of types in the derived type.
Definition Type.h:387
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
bool isFunctionTy() const
True if this is an instance of FunctionType.
Definition Type.h:258
TypeID getTypeID() const
Return the type id for the type.
Definition Type.h:136
Type * getContainedType(unsigned i) const
This method is used to implement the type iterator (defined at the end of the file).
Definition Type.h:381
This is a class that can be implemented by clients to remap types when cloning constants and instruct...
Definition ValueMapper.h:45
See the file comment.
Definition ValueMap.h:84
ValueT lookup(const KeyT &Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition ValueMap.h:169
std::optional< MDMapT > & getMDMap()
Definition ValueMap.h:121
iterator find(const KeyT &Val)
Definition ValueMap.h:160
iterator end()
Definition ValueMap.h:139
LLVM_ABI MDNode * mapMDNode(const MDNode &N)
LLVM_ABI void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, unsigned MappingContextID=0)
LLVM_ABI void scheduleRemapFunction(Function &F, unsigned MappingContextID=0)
LLVM_ABI void scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, unsigned MappingContextID=0)
LLVM_ABI void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, bool IsOldCtorDtor, ArrayRef< Constant * > NewMembers, unsigned MappingContextID=0)
LLVM_ABI void scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, unsigned MappingContextID=0)
LLVM_ABI void remapGlobalObjectMetadata(GlobalObject &GO)
LLVM_ABI Value * mapValue(const Value &V)
LLVM_ABI void addFlags(RemapFlags Flags)
Add to the current RemapFlags.
This is a class that can be implemented by clients to materialize Values on demand.
Definition ValueMapper.h:58
LLVM Value Representation.
Definition Value.h:75
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition Value.cpp:390
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition Value.cpp:546
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1101
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition Value.cpp:396
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
bool erase(const ValueT &V)
Definition DenseSet.h:100
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition DenseSet.h:174
IteratorT end() const
IteratorT begin() const
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
@ Entry
Definition COFF.h:862
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI std::optional< Function * > remangleIntrinsicFunction(Function *F)
Flag
These should be considered private to the implementation of the MCInstrDesc class.
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:666
bool empty() const
Definition BasicBlock.h:101
This is an optimization pass for GlobalISel generic memory operations.
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
LLVM_ABI std::error_code inconvertibleErrorCode()
The value returned by this function can be returned from convertToErrorCode for Error values where no...
Definition Error.cpp:98
LLVM_ABI void UpgradeNVVMAnnotations(Module &M)
Convert legacy nvvm.annotations metadata to appropriate function attributes.
auto cast_or_null(const Y &Val)
Definition Casting.h:720
LLVM_ABI bool UpgradeModuleFlags(Module &M)
This checks for module flags which should be upgraded.
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
Definition ValueMapper.h:98
@ RF_NullMapMissingGlobalValues
Any global values not in value map are mapped to null instead of mapping to self.
@ RF_ReuseAndMutateDistinctMDs
Instruct the remapper to reuse and mutate distinct metadata (remapping them in place) instead of clon...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
Error make_error(ArgTs &&... Args)
Make a Error instance representing failure using the given error info type.
Definition Error.h:340
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1869
DiagnosticSeverity
Defines the different supported severity of a diagnostic.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2122
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
Definition Hashing.h:591
hash_code hash_combine_range(InputIteratorT first, InputIteratorT last)
Compute a hash_code for a sequence of values.
Definition Hashing.h:465
constexpr const char * PseudoProbeDescMetadataName
Definition PseudoProbe.h:26
#define N
An information struct used to provide DenseMap with the various necessary components for a given valu...
LLVM_ABI KeyTy(ArrayRef< Type * > E, bool P)
Definition IRMover.cpp:1588
LLVM_ABI bool operator==(const KeyTy &that) const
Definition IRMover.cpp:1594
LLVM_ABI bool operator!=(const KeyTy &that) const
Definition IRMover.cpp:1598