LLVM 22.0.0git
Value.h
Go to the documentation of this file.
1//===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the Value class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_IR_VALUE_H
14#define LLVM_IR_VALUE_H
15
16#include "llvm-c/Types.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
20#include "llvm/IR/Use.h"
25#include <cassert>
26#include <iterator>
27#include <memory>
28
29namespace llvm {
30
31class APInt;
32class Argument;
33class BasicBlock;
34class Constant;
35class ConstantData;
36class ConstantAggregate;
37class DataLayout;
38class Function;
39class GlobalAlias;
40class GlobalIFunc;
41class GlobalObject;
42class GlobalValue;
43class GlobalVariable;
44class InlineAsm;
45class Instruction;
46class LLVMContext;
47class MDNode;
48class Module;
49class ModuleSlotTracker;
50class raw_ostream;
51template<typename ValueTy> class StringMapEntry;
52class Twine;
53class Type;
54class User;
55
57
58//===----------------------------------------------------------------------===//
59// Value Class
60//===----------------------------------------------------------------------===//
61
62/// LLVM Value Representation
63///
64/// This is a very important LLVM class. It is the base class of all values
65/// computed by a program that may be used as operands to other values. Value is
66/// the super class of other important classes such as Instruction and Function.
67/// All Values have a Type. Type is not a subclass of Value. Some values can
68/// have a name and they belong to some Module. Setting the name on the Value
69/// automatically updates the module's symbol table.
70///
71/// Every value has a "use list" that keeps track of which other Values are
72/// using this Value. A Value can also have an arbitrary number of ValueHandle
73/// objects that watch it and listen to RAUW and Destroy events. See
74/// llvm/IR/ValueHandle.h for details.
75class Value {
76 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
77 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
78
79protected:
80 /// Hold subclass data that can be dropped.
81 ///
82 /// This member is similar to SubclassData, however it is for holding
83 /// information which may be used to aid optimization, but which may be
84 /// cleared to zero without affecting conservative interpretation.
85 unsigned char SubclassOptionalData : 7;
86
87private:
88 /// Hold arbitrary subclass data.
89 ///
90 /// This member is defined by this class, but is not used for anything.
91 /// Subclasses can use it to hold whatever state they find useful. This
92 /// field is initialized to zero by the ctor.
93 unsigned short SubclassData;
94
95protected:
96 /// The number of operands in the subclass.
97 ///
98 /// This member is defined by this class, but not used for anything.
99 /// Subclasses can use it to store their number of operands, if they have
100 /// any.
101 ///
102 /// This is stored here to save space in User on 64-bit hosts. Since most
103 /// instances of Value have operands, 32-bit hosts aren't significantly
104 /// affected.
105 ///
106 /// Note, this should *NOT* be used directly by any class other than User.
107 /// User uses this value to find the Use list.
108 enum : unsigned { NumUserOperandsBits = 27 };
110
111 // Use the same type as the bitfield above so that MSVC will pack them.
112 unsigned IsUsedByMD : 1;
113 unsigned HasName : 1;
114 unsigned HasMetadata : 1; // Has metadata attached to this?
115 unsigned HasHungOffUses : 1;
116 unsigned HasDescriptor : 1;
117
118private:
119 Type *VTy;
120 Use *UseList = nullptr;
121
122 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
123 friend class ValueHandleBase; // Allow access to HasValueHandle.
124
125 template <typename UseT> // UseT == 'Use' or 'const Use'
126 class use_iterator_impl {
127 friend class Value;
128
129 UseT *U;
130
131 explicit use_iterator_impl(UseT *u) : U(u) {}
132
133 public:
134 using iterator_category = std::forward_iterator_tag;
135 using value_type = UseT;
136 using difference_type = std::ptrdiff_t;
137 using pointer = value_type *;
138 using reference = value_type &;
139
140 use_iterator_impl() : U() {}
141
142 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
143 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
144
145 use_iterator_impl &operator++() { // Preincrement
146 assert(U && "Cannot increment end iterator!");
147 U = U->getNext();
148 return *this;
149 }
150
151 use_iterator_impl operator++(int) { // Postincrement
152 auto tmp = *this;
153 ++*this;
154 return tmp;
155 }
156
157 UseT &operator*() const {
158 assert(U && "Cannot dereference end iterator!");
159 return *U;
160 }
161
162 UseT *operator->() const { return &operator*(); }
163
164 operator use_iterator_impl<const UseT>() const {
165 return use_iterator_impl<const UseT>(U);
166 }
167 };
168
169 template <typename UserTy> // UserTy == 'User' or 'const User'
170 class user_iterator_impl {
171 use_iterator_impl<Use> UI;
172 explicit user_iterator_impl(Use *U) : UI(U) {}
173 friend class Value;
174
175 public:
176 using iterator_category = std::forward_iterator_tag;
177 using value_type = UserTy *;
178 using difference_type = std::ptrdiff_t;
179 using pointer = value_type *;
180 using reference = value_type &;
181
182 user_iterator_impl() = default;
183
184 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
185 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
186
187 /// Returns true if this iterator is equal to user_end() on the value.
188 bool atEnd() const { return *this == user_iterator_impl(); }
189
190 user_iterator_impl &operator++() { // Preincrement
191 ++UI;
192 return *this;
193 }
194
195 user_iterator_impl operator++(int) { // Postincrement
196 auto tmp = *this;
197 ++*this;
198 return tmp;
199 }
200
201 // Retrieve a pointer to the current User.
202 UserTy *operator*() const {
203 return UI->getUser();
204 }
205
206 UserTy *operator->() const { return operator*(); }
207
208 operator user_iterator_impl<const UserTy>() const {
209 return user_iterator_impl<const UserTy>(*UI);
210 }
211
212 Use &getUse() const { return *UI; }
213 };
214
215protected:
216 LLVM_ABI Value(Type *Ty, unsigned scid);
217
218 /// Value's destructor should be virtual by design, but that would require
219 /// that Value and all of its subclasses have a vtable that effectively
220 /// duplicates the information in the value ID. As a size optimization, the
221 /// destructor has been protected, and the caller should manually call
222 /// deleteValue.
223 LLVM_ABI ~Value(); // Use deleteValue() to delete a generic Value.
224
225public:
226 Value(const Value &) = delete;
227 Value &operator=(const Value &) = delete;
228
229 /// Delete a pointer to a generic Value.
230 LLVM_ABI void deleteValue();
231
232 /// Support for debugging, callable in GDB: V->dump()
233 LLVM_ABI void dump() const;
234
235 /// Implement operator<< on Value.
236 /// @{
237 LLVM_ABI void print(raw_ostream &O, bool IsForDebug = false) const;
239 bool IsForDebug = false) const;
240 /// @}
241
242 /// Print the name of this Value out to the specified raw_ostream.
243 ///
244 /// This is useful when you just want to print 'int %reg126', not the
245 /// instruction that generated it. If you specify a Module for context, then
246 /// even constants get pretty-printed; for example, the type of a null
247 /// pointer is printed symbolically.
248 /// @{
249 LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType = true,
250 const Module *M = nullptr) const;
251 LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType,
252 ModuleSlotTracker &MST) const;
253 /// @}
254
255 /// All values are typed, get the type of this value.
256 Type *getType() const { return VTy; }
257
258 /// All values hold a context through their type.
260
261 // All values can potentially be named.
262 bool hasName() const { return HasName; }
265
266private:
267 void destroyValueName();
268 enum class ReplaceMetadataUses { No, Yes };
269 void doRAUW(Value *New, ReplaceMetadataUses);
270 void setNameImpl(const Twine &Name);
271
272public:
273 /// Return a constant reference to the value's name.
274 ///
275 /// This guaranteed to return the same reference as long as the value is not
276 /// modified. If the value has a name, this does a hashtable lookup, so it's
277 /// not free.
278 LLVM_ABI StringRef getName() const;
279
280 /// Change the name of the value.
281 ///
282 /// Choose a new unique name if the provided name is taken.
283 ///
284 /// \param Name The new name; or "" if the value's name should be removed.
285 LLVM_ABI void setName(const Twine &Name);
286
287 /// Transfer the name from V to this value.
288 ///
289 /// After taking V's name, sets V's name to empty.
290 ///
291 /// \note It is an error to call V->takeName(V).
292 LLVM_ABI void takeName(Value *V);
293
294 LLVM_ABI std::string getNameOrAsOperand() const;
295
296 /// Change all uses of this to point to a new Value.
297 ///
298 /// Go through the uses list for this definition and make each use point to
299 /// "V" instead of "this". After this completes, 'this's use list is
300 /// guaranteed to be empty.
301 LLVM_ABI void replaceAllUsesWith(Value *V);
302
303 /// Change non-metadata uses of this to point to a new Value.
304 ///
305 /// Go through the uses list for this definition and make each use point to
306 /// "V" instead of "this". This function skips metadata entries in the list.
308
309 /// Go through the uses list for this definition and make each use point
310 /// to "V" if the callback ShouldReplace returns true for the given Use.
311 /// Unlike replaceAllUsesWith() this function does not support basic block
312 /// values.
313 LLVM_ABI void
314 replaceUsesWithIf(Value *New, llvm::function_ref<bool(Use &U)> ShouldReplace);
315
316 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
317 /// make each use point to "V" instead of "this" when the use is outside the
318 /// block. 'This's use list is expected to have at least one element.
319 /// Unlike replaceAllUsesWith() this function does not support basic block
320 /// values.
321 LLVM_ABI void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
322
323 //----------------------------------------------------------------------
324 // Methods for handling the chain of uses of this Value.
325 //
326 // Materializing a function can introduce new uses, so these methods come in
327 // two variants:
328 // The methods that start with materialized_ check the uses that are
329 // currently known given which functions are materialized. Be very careful
330 // when using them since you might not get all uses.
331 // The methods that don't start with materialized_ assert that modules is
332 // fully materialized.
334 // This indirection exists so we can keep assertModuleIsMaterializedImpl()
335 // around in release builds of Value.cpp to be linked with other code built
336 // in debug mode. But this avoids calling it in any of the release built code.
338#ifndef NDEBUG
340#endif
341 }
342
343 /// Check if this Value has a use-list.
344 bool hasUseList() const { return !isa<ConstantData>(this); }
345
346 bool use_empty() const {
348 return UseList == nullptr;
349 }
350
351 bool materialized_use_empty() const { return UseList == nullptr; }
352
353 using use_iterator = use_iterator_impl<Use>;
354 using const_use_iterator = use_iterator_impl<const Use>;
355
358 return use_iterator(UseList);
359 }
362 return const_use_iterator(UseList);
363 }
366 return materialized_use_begin();
367 }
370 return materialized_use_begin();
371 }
376 }
379 }
382 return materialized_uses();
383 }
386 return materialized_uses();
387 }
388
389 bool user_empty() const { return use_empty(); }
390
391 using user_iterator = user_iterator_impl<User>;
392 using const_user_iterator = user_iterator_impl<const User>;
393
396 return user_iterator(UseList);
397 }
400 return const_user_iterator(UseList);
401 }
405 }
409 }
414 return *materialized_user_begin();
415 }
416 const User *user_back() const {
418 return *materialized_user_begin();
419 }
422 }
425 }
428 return materialized_users();
429 }
432 return materialized_users();
433 }
434
435 /// Return true if there is exactly one use of this value.
436 ///
437 /// This is specialized because it is a common request and does not require
438 /// traversing the whole use list.
439 bool hasOneUse() const { return UseList && hasSingleElement(uses()); }
440
441 /// Return true if this Value has exactly N uses.
442 LLVM_ABI bool hasNUses(unsigned N) const;
443
444 /// Return true if this value has N uses or more.
445 ///
446 /// This is logically equivalent to getNumUses() >= N.
447 LLVM_ABI bool hasNUsesOrMore(unsigned N) const;
448
449 /// Return true if there is exactly one user of this value.
450 ///
451 /// Note that this is not the same as "has one use". If a value has one use,
452 /// then there certainly is a single user. But if value has several uses,
453 /// it is possible that all uses are in a single user, or not.
454 ///
455 /// This check is potentially costly, since it requires traversing,
456 /// in the worst case, the whole use list of a value.
457 LLVM_ABI bool hasOneUser() const;
458
459 /// Return true if there is exactly one use of this value that cannot be
460 /// dropped.
463 return const_cast<Value *>(this)->getSingleUndroppableUse();
464 }
465
466 /// Return true if there is exactly one unique user of this value that cannot be
467 /// dropped (that user can have multiple uses of this value).
470 return const_cast<Value *>(this)->getUniqueUndroppableUser();
471 }
472
473 /// Return true if there this value.
474 ///
475 /// This is specialized because it is a common request and does not require
476 /// traversing the whole use list.
477 LLVM_ABI bool hasNUndroppableUses(unsigned N) const;
478
479 /// Return true if this value has N uses or more.
480 ///
481 /// This is logically equivalent to getNumUses() >= N.
482 LLVM_ABI bool hasNUndroppableUsesOrMore(unsigned N) const;
483
484 /// Remove every uses that can safely be removed.
485 ///
486 /// This will remove for example uses in llvm.assume.
487 /// This should be used when performing want to perform a tranformation but
488 /// some Droppable uses pervent it.
489 /// This function optionally takes a filter to only remove some droppable
490 /// uses.
491 LLVM_ABI void
492 dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop =
493 [](const Use *) { return true; });
494
495 /// Remove every use of this value in \p User that can safely be removed.
496 LLVM_ABI void dropDroppableUsesIn(User &Usr);
497
498 /// Remove the droppable use \p U.
499 LLVM_ABI static void dropDroppableUse(Use &U);
500
501 /// Check if this value is used in the specified basic block.
502 ///
503 /// Not supported for ConstantData.
504 LLVM_ABI bool isUsedInBasicBlock(const BasicBlock *BB) const;
505
506 /// This method computes the number of uses of this Value.
507 ///
508 /// This is a linear time operation. Use hasOneUse, hasNUses, or
509 /// hasNUsesOrMore to check for specific values.
510 LLVM_ABI unsigned getNumUses() const;
511
512 /// This method should only be used by the Use class.
513 void addUse(Use &U) {
514 if (hasUseList())
515 U.addToList(&UseList);
516 }
517
518 /// Concrete subclass of this.
519 ///
520 /// An enumeration for keeping track of the concrete subclass of Value that
521 /// is actually instantiated. Values of this enumeration are kept in the
522 /// Value classes SubclassID field. They are used for concrete type
523 /// identification.
524 enum ValueTy {
525#define HANDLE_VALUE(Name) Name##Val,
526#include "llvm/IR/Value.def"
527
528 // Markers:
529#define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
530#include "llvm/IR/Value.def"
531 };
532
533 /// Return an ID for the concrete type of this object.
534 ///
535 /// This is used to implement the classof checks. This should not be used
536 /// for any other purpose, as the values may change as LLVM evolves. Also,
537 /// note that for instructions, the Instruction's opcode is added to
538 /// InstructionVal. So this means three things:
539 /// # there is no value with code InstructionVal (no opcode==0).
540 /// # there are more possible values for the value type than in ValueTy enum.
541 /// # the InstructionVal enumerator must be the highest valued enumerator in
542 /// the ValueTy enum.
543 unsigned getValueID() const {
544 return SubclassID;
545 }
546
547 /// Return the raw optional flags value contained in this value.
548 ///
549 /// This should only be used when testing two Values for equivalence.
550 unsigned getRawSubclassOptionalData() const {
552 }
553
554 /// Clear the optional flags contained in this value.
557 }
558
559 /// Check the optional flags for equality.
560 bool hasSameSubclassOptionalData(const Value *V) const {
561 return SubclassOptionalData == V->SubclassOptionalData;
562 }
563
564 /// Return true if there is a value handle associated with this value.
565 bool hasValueHandle() const { return HasValueHandle; }
566
567 /// Return true if there is metadata referencing this value.
568 bool isUsedByMetadata() const { return IsUsedByMD; }
569
570protected:
571 /// Get the current metadata attachments for the given kind, if any.
572 ///
573 /// These functions require that the value have at most a single attachment
574 /// of the given kind, and return \c nullptr if such an attachment is missing.
575 /// @{
576 MDNode *getMetadata(unsigned KindID) const {
577 if (!HasMetadata)
578 return nullptr;
579 return getMetadataImpl(KindID);
580 }
582 /// @}
583
584 /// Appends all attachments with the given ID to \c MDs in insertion order.
585 /// If the Value has no attachments with the given ID, or if ID is invalid,
586 /// leaves MDs unchanged.
587 /// @{
588 LLVM_ABI void getMetadata(unsigned KindID,
589 SmallVectorImpl<MDNode *> &MDs) const;
591 SmallVectorImpl<MDNode *> &MDs) const;
592 /// @}
593
594 /// Appends all metadata attached to this value to \c MDs, sorting by
595 /// KindID. The first element of each pair returned is the KindID, the second
596 /// element is the metadata value. Attachments with the same ID appear in
597 /// insertion order.
598 LLVM_ABI void
599 getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const;
600
601 /// Return true if this value has any metadata attached to it.
602 bool hasMetadata() const { return (bool)HasMetadata; }
603
604 /// Return true if this value has the given type of metadata attached.
605 /// @{
606 bool hasMetadata(unsigned KindID) const {
607 return getMetadata(KindID) != nullptr;
608 }
609 bool hasMetadata(StringRef Kind) const {
610 return getMetadata(Kind) != nullptr;
611 }
612 /// @}
613
614 /// Set a particular kind of metadata attachment.
615 ///
616 /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or
617 /// replacing it if it already exists.
618 /// @{
619 LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node);
621 /// @}
622
623 /// Add a metadata attachment.
624 /// @{
625 LLVM_ABI void addMetadata(unsigned KindID, MDNode &MD);
626 LLVM_ABI void addMetadata(StringRef Kind, MDNode &MD);
627 /// @}
628
629 /// Erase all metadata attachments with the given kind.
630 ///
631 /// \returns true if any metadata was removed.
632 LLVM_ABI bool eraseMetadata(unsigned KindID);
633
634 /// Erase all metadata attachments matching the given predicate.
635 LLVM_ABI void eraseMetadataIf(function_ref<bool(unsigned, MDNode *)> Pred);
636
637 /// Erase all metadata attached to this Value.
638 LLVM_ABI void clearMetadata();
639
640 /// Get metadata for the given kind, if any.
641 /// This is an internal function that must only be called after
642 /// checking that `hasMetadata()` returns true.
643 LLVM_ABI MDNode *getMetadataImpl(unsigned KindID) const;
644
645public:
646 /// Return true if this value is a swifterror value.
647 ///
648 /// swifterror values can be either a function argument or an alloca with a
649 /// swifterror attribute.
650 LLVM_ABI bool isSwiftError() const;
651
652 /// Strip off pointer casts, all-zero GEPs and address space casts.
653 ///
654 /// Returns the original uncasted value. If this is called on a non-pointer
655 /// value, it returns 'this'.
656 LLVM_ABI const Value *stripPointerCasts() const;
658 return const_cast<Value *>(
659 static_cast<const Value *>(this)->stripPointerCasts());
660 }
661
662 /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
663 ///
664 /// Returns the original uncasted value. If this is called on a non-pointer
665 /// value, it returns 'this'.
668 return const_cast<Value *>(
669 static_cast<const Value *>(this)->stripPointerCastsAndAliases());
670 }
671
672 /// Strip off pointer casts, all-zero GEPs and address space casts
673 /// but ensures the representation of the result stays the same.
674 ///
675 /// Returns the original uncasted value with the same representation. If this
676 /// is called on a non-pointer value, it returns 'this'.
679 return const_cast<Value *>(static_cast<const Value *>(this)
681 }
682
683 /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and
684 /// invariant group info.
685 ///
686 /// Returns the original uncasted value. If this is called on a non-pointer
687 /// value, it returns 'this'. This function should be used only in
688 /// Alias analysis.
691 return const_cast<Value *>(static_cast<const Value *>(this)
693 }
694
695 /// Strip off pointer casts and all-constant inbounds GEPs.
696 ///
697 /// Returns the original pointer value. If this is called on a non-pointer
698 /// value, it returns 'this'.
701 return const_cast<Value *>(
702 static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
703 }
704
705 /// Accumulate the constant offset this value has compared to a base pointer.
706 /// Only 'getelementptr' instructions (GEPs) are accumulated but other
707 /// instructions, e.g., casts, are stripped away as well.
708 /// The accumulated constant offset is added to \p Offset and the base
709 /// pointer is returned.
710 ///
711 /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
712 /// the address space of 'this' pointer value, e.g., use
713 /// DataLayout::getIndexTypeSizeInBits(Ty).
714 ///
715 /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and
716 /// accumulated even if the GEP is not "inbounds".
717 ///
718 /// If \p AllowInvariantGroup is true then this method also looks through
719 /// strip.invariant.group and launder.invariant.group intrinsics.
720 ///
721 /// If \p ExternalAnalysis is provided it will be used to calculate a offset
722 /// when a operand of GEP is not constant.
723 /// For example, for a value \p ExternalAnalysis might try to calculate a
724 /// lower bound. If \p ExternalAnalysis is successful, it should return true.
725 ///
726 /// If \p LookThroughIntToPtr is true then this method also looks through
727 /// IntToPtr and PtrToInt constant expressions. The returned pointer may not
728 /// have the same provenance as this value.
729 ///
730 /// If this is called on a non-pointer value, it returns 'this' and the
731 /// \p Offset is not modified.
732 ///
733 /// Note that this function will never return a nullptr. It will also never
734 /// manipulate the \p Offset in a way that would not match the difference
735 /// between the underlying value and the returned one. Thus, if no constant
736 /// offset was found, the returned value is the underlying one and \p Offset
737 /// is unchanged.
739 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
740 bool AllowInvariantGroup = false,
741 function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis =
742 nullptr,
743 bool LookThroughIntToPtr = false) const;
744
746 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
747 bool AllowInvariantGroup = false,
748 function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis =
749 nullptr,
750 bool LookThroughIntToPtr = false) {
751 return const_cast<Value *>(
752 static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
753 DL, Offset, AllowNonInbounds, AllowInvariantGroup, ExternalAnalysis,
754 LookThroughIntToPtr));
755 }
756
757 /// This is a wrapper around stripAndAccumulateConstantOffsets with the
758 /// in-bounds requirement set to false.
760 APInt &Offset) const {
762 /* AllowNonInbounds */ false);
763 }
765 APInt &Offset) {
767 /* AllowNonInbounds */ false);
768 }
769
770 /// Strip off pointer casts and inbounds GEPs.
771 ///
772 /// Returns the original pointer value. If this is called on a non-pointer
773 /// value, it returns 'this'.
775 function_ref<void(const Value *)> Func = [](const Value *) {}) const;
776 inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
777 [](const Value *) {}) {
778 return const_cast<Value *>(
779 static_cast<const Value *>(this)->stripInBoundsOffsets(Func));
780 }
781
782 /// If this ptr is provably equal to \p Other plus a constant offset, return
783 /// that offset in bytes. Essentially `ptr this` subtract `ptr Other`.
784 LLVM_ABI std::optional<int64_t>
785 getPointerOffsetFrom(const Value *Other, const DataLayout &DL) const;
786
787 /// Return true if the memory object referred to by V can by freed in the
788 /// scope for which the SSA value defining the allocation is statically
789 /// defined. E.g. deallocation after the static scope of a value does not
790 /// count, but a deallocation before that does.
791 LLVM_ABI bool canBeFreed() const;
792
793 /// Returns the number of bytes known to be dereferenceable for the
794 /// pointer value.
795 ///
796 /// If CanBeNull is set by this function the pointer can either be null or be
797 /// dereferenceable up to the returned number of bytes.
798 ///
799 /// IF CanBeFreed is true, the pointer is known to be dereferenceable at
800 /// point of definition only. Caller must prove that allocation is not
801 /// deallocated between point of definition and use.
803 bool &CanBeNull,
804 bool &CanBeFreed) const;
805
806 /// Returns an alignment of the pointer value.
807 ///
808 /// Returns an alignment which is either specified explicitly, e.g. via
809 /// align attribute of a function argument, or guaranteed by DataLayout.
810 LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const;
811
812 /// Translate PHI node to its predecessor from the given basic block.
813 ///
814 /// If this value is a PHI node with CurBB as its parent, return the value in
815 /// the PHI node corresponding to PredBB. If not, return ourself. This is
816 /// useful if you want to know the value something has in a predecessor
817 /// block.
818 LLVM_ABI const Value *DoPHITranslation(const BasicBlock *CurBB,
819 const BasicBlock *PredBB) const;
820 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
821 return const_cast<Value *>(
822 static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
823 }
824
825 /// The maximum alignment for instructions.
826 ///
827 /// This is the greatest alignment value supported by load, store, and alloca
828 /// instructions, and global values.
829 static constexpr unsigned MaxAlignmentExponent = 32;
831
832 /// Mutate the type of this Value to be of the specified type.
833 ///
834 /// Note that this is an extremely dangerous operation which can create
835 /// completely invalid IR very easily. It is strongly recommended that you
836 /// recreate IR objects with the right types instead of mutating them in
837 /// place.
838 void mutateType(Type *Ty) {
839 VTy = Ty;
840 }
841
842 /// Sort the use-list.
843 ///
844 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
845 /// expected to compare two \a Use references.
846 template <class Compare> void sortUseList(Compare Cmp);
847
848 /// Reverse the use-list.
850
851private:
852 /// Merge two lists together.
853 ///
854 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
855 /// "equal" items from L before items from R.
856 ///
857 /// \return the first element in the list.
858 ///
859 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
860 template <class Compare>
861 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
862 Use *Merged;
863 Use **Next = &Merged;
864
865 while (true) {
866 if (!L) {
867 *Next = R;
868 break;
869 }
870 if (!R) {
871 *Next = L;
872 break;
873 }
874 if (Cmp(*R, *L)) {
875 *Next = R;
876 Next = &R->Next;
877 R = R->Next;
878 } else {
879 *Next = L;
880 Next = &L->Next;
881 L = L->Next;
882 }
883 }
884
885 return Merged;
886 }
887
888protected:
889 unsigned short getSubclassDataFromValue() const { return SubclassData; }
890 void setValueSubclassData(unsigned short D) { SubclassData = D; }
891};
892
893struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
894
895/// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
896/// Those don't work because Value and Instruction's destructors are protected,
897/// aren't virtual, and won't destroy the complete object.
898using unique_value = std::unique_ptr<Value, ValueDeleter>;
899
901 V.print(OS);
902 return OS;
903}
904
905void Use::set(Value *V) {
906 removeFromList();
907 Val = V;
908 if (V)
909 V->addUse(*this);
910}
911
913 set(RHS);
914 return RHS;
915}
916
917const Use &Use::operator=(const Use &RHS) {
918 set(RHS.Val);
919 return *this;
920}
921
922template <class Compare> void Value::sortUseList(Compare Cmp) {
923 if (!UseList || !UseList->Next)
924 // No need to sort 0 or 1 uses.
925 return;
926
927 // Note: this function completely ignores Prev pointers until the end when
928 // they're fixed en masse.
929
930 // Create a binomial vector of sorted lists, visiting uses one at a time and
931 // merging lists as necessary.
932 const unsigned MaxSlots = 32;
933 Use *Slots[MaxSlots];
934
935 // Collect the first use, turning it into a single-item list.
936 Use *Next = UseList->Next;
937 UseList->Next = nullptr;
938 unsigned NumSlots = 1;
939 Slots[0] = UseList;
940
941 // Collect all but the last use.
942 while (Next->Next) {
943 Use *Current = Next;
944 Next = Current->Next;
945
946 // Turn Current into a single-item list.
947 Current->Next = nullptr;
948
949 // Save Current in the first available slot, merging on collisions.
950 unsigned I;
951 for (I = 0; I < NumSlots; ++I) {
952 if (!Slots[I])
953 break;
954
955 // Merge two lists, doubling the size of Current and emptying slot I.
956 //
957 // Since the uses in Slots[I] originally preceded those in Current, send
958 // Slots[I] in as the left parameter to maintain a stable sort.
959 Current = mergeUseLists(Slots[I], Current, Cmp);
960 Slots[I] = nullptr;
961 }
962 // Check if this is a new slot.
963 if (I == NumSlots) {
964 ++NumSlots;
965 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
966 }
967
968 // Found an open slot.
969 Slots[I] = Current;
970 }
971
972 // Merge all the lists together.
973 assert(Next && "Expected one more Use");
974 assert(!Next->Next && "Expected only one Use");
975 UseList = Next;
976 for (unsigned I = 0; I < NumSlots; ++I)
977 if (Slots[I])
978 // Since the uses in Slots[I] originally preceded those in UseList, send
979 // Slots[I] in as the left parameter to maintain a stable sort.
980 UseList = mergeUseLists(Slots[I], UseList, Cmp);
981
982 // Fix the Prev pointers.
983 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
984 I->Prev = Prev;
985 Prev = &I->Next;
986 }
987}
988
989// isa - Provide some specializations of isa so that we don't have to include
990// the subtype header files to test to see if the value is a subclass...
991//
992template <> struct isa_impl<Constant, Value> {
993 static inline bool doit(const Value &Val) {
994 static_assert(Value::ConstantFirstVal == 0,
995 "Val.getValueID() >= Value::ConstantFirstVal");
996 return Val.getValueID() <= Value::ConstantLastVal;
997 }
998};
999
1000template <> struct isa_impl<ConstantData, Value> {
1001 static inline bool doit(const Value &Val) {
1002 static_assert(Value::ConstantDataFirstVal == 0,
1003 "Val.getValueID() >= Value::ConstantDataFirstVal");
1004 return Val.getValueID() <= Value::ConstantDataLastVal;
1005 }
1006};
1007
1008template <> struct isa_impl<ConstantAggregate, Value> {
1009 static inline bool doit(const Value &Val) {
1010 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
1011 Val.getValueID() <= Value::ConstantAggregateLastVal;
1012 }
1013};
1014
1015template <> struct isa_impl<Argument, Value> {
1016 static inline bool doit (const Value &Val) {
1017 return Val.getValueID() == Value::ArgumentVal;
1018 }
1019};
1020
1021template <> struct isa_impl<InlineAsm, Value> {
1022 static inline bool doit(const Value &Val) {
1023 return Val.getValueID() == Value::InlineAsmVal;
1024 }
1025};
1026
1027template <> struct isa_impl<Instruction, Value> {
1028 static inline bool doit(const Value &Val) {
1029 return Val.getValueID() >= Value::InstructionVal;
1030 }
1031};
1032
1033template <> struct isa_impl<BasicBlock, Value> {
1034 static inline bool doit(const Value &Val) {
1035 return Val.getValueID() == Value::BasicBlockVal;
1036 }
1037};
1038
1039template <> struct isa_impl<Function, Value> {
1040 static inline bool doit(const Value &Val) {
1041 return Val.getValueID() == Value::FunctionVal;
1042 }
1043};
1044
1045template <> struct isa_impl<GlobalVariable, Value> {
1046 static inline bool doit(const Value &Val) {
1047 return Val.getValueID() == Value::GlobalVariableVal;
1048 }
1049};
1050
1051template <> struct isa_impl<GlobalAlias, Value> {
1052 static inline bool doit(const Value &Val) {
1053 return Val.getValueID() == Value::GlobalAliasVal;
1054 }
1055};
1056
1057template <> struct isa_impl<GlobalIFunc, Value> {
1058 static inline bool doit(const Value &Val) {
1059 return Val.getValueID() == Value::GlobalIFuncVal;
1060 }
1061};
1062
1063template <> struct isa_impl<GlobalValue, Value> {
1064 static inline bool doit(const Value &Val) {
1065 return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val);
1066 }
1067};
1068
1069template <> struct isa_impl<GlobalObject, Value> {
1070 static inline bool doit(const Value &Val) {
1071 return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
1072 isa<GlobalIFunc>(Val);
1073 }
1074};
1075
1076// Create wrappers for C Binding types (see CBindingWrapping.h).
1078
1079// Specialized opaque value conversions.
1081 return reinterpret_cast<Value**>(Vals);
1082}
1083
1084template<typename T>
1085inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
1086#ifndef NDEBUG
1087 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
1088 unwrap<T>(*I); // For side effect of calling assert on invalid usage.
1089#endif
1090 (void)Length;
1091 return reinterpret_cast<T**>(Vals);
1092}
1093
1094inline LLVMValueRef *wrap(const Value **Vals) {
1095 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
1096}
1097
1098} // end namespace llvm
1099
1100#endif // LLVM_IR_VALUE_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
always inline
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define DEFINE_ISA_CONVERSION_FUNCTIONS(ty, ref)
RelocType Type
Definition: COFFYAML.cpp:410
#define LLVM_ABI
Definition: Compiler.h:213
uint64_t Align
std::string Name
This defines the Use class.
#define I(x, y, z)
Definition: MD5.cpp:58
Machine Check Debug Module
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
Value * RHS
Class for arbitrary precision integers.
Definition: APInt.h:78
This class represents an incoming formal argument to a Function.
Definition: Argument.h:32
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
Base class for aggregate constants (with operands).
Definition: Constants.h:408
Base class for constants with no operands.
Definition: Constants.h:56
This is an important base class in LLVM.
Definition: Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:68
Metadata node.
Definition: Metadata.h:1077
Manage lifetime of a slot tracker for printing IR.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
StringMapEntry - This is used to represent one value that is inserted into a StringMap.
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
LLVM_ABI void set(Value *Val)
Definition: Value.h:905
LLVM_ABI Value * operator=(Value *RHS)
Definition: Value.h:912
Value wrapper in the Metadata hierarchy.
Definition: Metadata.h:457
This is the common base class of value handles.
Definition: ValueHandle.h:30
LLVM Value Representation.
Definition: Value.h:75
iterator_range< user_iterator > materialized_users()
Definition: Value.h:420
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
Value * stripInBoundsOffsets(function_ref< void(const Value *)> Func=[](const Value *) {})
Definition: Value.h:776
unsigned short getSubclassDataFromValue() const
Definition: Value.h:889
const_use_iterator materialized_use_begin() const
Definition: Value.h:360
static constexpr uint64_t MaximumAlignment
Definition: Value.h:830
Value * stripPointerCasts()
Definition: Value.h:657
unsigned IsUsedByMD
Definition: Value.h:112
bool hasMetadata(StringRef Kind) const
Definition: Value.h:609
user_iterator_impl< const User > const_user_iterator
Definition: Value.h:392
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
Definition: Value.h:759
user_iterator user_begin()
Definition: Value.h:402
LLVM_ABI const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
Definition: Value.cpp:1090
unsigned HasName
Definition: Value.h:113
LLVM_ABI Value(Type *Ty, unsigned scid)
Definition: Value.cpp:53
iterator_range< use_iterator > materialized_uses()
Definition: Value.h:374
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false) const
Implement operator<< on Value.
Definition: AsmWriter.cpp:5222
use_iterator_impl< const Use > const_use_iterator
Definition: Value.h:354
bool hasMetadata() const
Return true if this value has any metadata attached to it.
Definition: Value.h:602
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
Definition: Value.h:85
iterator_range< const_use_iterator > uses() const
Definition: Value.h:384
const_use_iterator use_begin() const
Definition: Value.h:368
iterator_range< const_user_iterator > materialized_users() const
Definition: Value.h:423
LLVM_ABI void reverseUseList()
Reverse the use-list.
Definition: Value.cpp:1100
const User * getUniqueUndroppableUser() const
Definition: Value.h:469
LLVM_ABI void assertModuleIsMaterializedImpl() const
Definition: Value.cpp:467
LLVM_ABI bool hasNUndroppableUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
Definition: Value.cpp:204
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
Definition: Value.cpp:166
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
Definition: Value.cpp:705
void assertModuleIsMaterialized() const
Definition: Value.h:337
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set a particular kind of metadata attachment.
Definition: Metadata.cpp:1571
unsigned getRawSubclassOptionalData() const
Return the raw optional flags value contained in this value.
Definition: Value.h:550
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:390
LLVM_ABI const Value * stripInBoundsConstantOffsets() const
Strip off pointer casts and all-constant inbounds GEPs.
Definition: Value.cpp:713
LLVM_ABI std::string getNameOrAsOperand() const
Definition: Value.cpp:457
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:439
LLVM_ABI ~Value()
Value's destructor should be virtual by design, but that would require that Value and all of its subc...
Definition: Value.cpp:76
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:546
LLVM_ABI void getAllMetadata(SmallVectorImpl< std::pair< unsigned, MDNode * > > &MDs) const
Appends all metadata attached to this value to MDs, sorting by KindID.
Definition: Metadata.cpp:1561
LLVM_ABI const Value * stripInBoundsOffsets(function_ref< void(const Value *)> Func=[](const Value *) {}) const
Strip off pointer casts and inbounds GEPs.
Definition: Value.cpp:812
iterator_range< user_iterator > users()
Definition: Value.h:426
use_iterator use_begin()
Definition: Value.h:364
static LLVM_ABI void dropDroppableUse(Use &U)
Remove the droppable use U.
Definition: Value.cpp:226
void sortUseList(Compare Cmp)
Sort the use-list.
Definition: Value.h:922
User * user_back()
Definition: Value.h:412
iterator_range< const_user_iterator > users() const
Definition: Value.h:430
LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
Definition: Value.cpp:953
void clearSubclassOptionalData()
Clear the optional flags contained in this value.
Definition: Value.h:555
unsigned getValueID() const
Return an ID for the concrete type of this object.
Definition: Value.h:543
Value * stripPointerCastsAndAliases()
Definition: Value.h:667
LLVM_ABI bool isUsedInBasicBlock(const BasicBlock *BB) const
Check if this value is used in the specified basic block.
Definition: Value.cpp:242
@ NumUserOperandsBits
Definition: Value.h:108
Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset)
Definition: Value.h:764
const User * user_back() const
Definition: Value.h:416
LLVM_ABI MDNode * getMetadataImpl(unsigned KindID) const
Get metadata for the given kind, if any.
Definition: Metadata.cpp:1545
bool materialized_use_empty() const
Definition: Value.h:351
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
Definition: AsmWriter.cpp:5305
bool hasUseList() const
Check if this Value has a use-list.
Definition: Value.h:344
Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false)
Definition: Value.h:745
bool isUsedByMetadata() const
Return true if there is metadata referencing this value.
Definition: Value.h:568
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
Definition: Value.cpp:158
LLVM_ABI void dropDroppableUsesIn(User &Usr)
Remove every use of this value in User that can safely be removed.
Definition: Value.cpp:218
use_iterator materialized_use_begin()
Definition: Value.h:356
LLVM_ABI Use * getSingleUndroppableUse()
Return true if there is exactly one use of this value that cannot be dropped.
Definition: Value.cpp:176
LLVM_ABI bool canBeFreed() const
Return true if the memory object referred to by V can by freed in the scope for which the SSA value d...
Definition: Value.cpp:816
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition: Value.cpp:150
LLVM_ABI void replaceUsesWithIf(Value *New, llvm::function_ref< bool(Use &U)> ShouldReplace)
Go through the uses list for this definition and make each use point to "V" if the callback ShouldRep...
Definition: Value.cpp:554
Value(const Value &)=delete
iterator_range< const_use_iterator > materialized_uses() const
Definition: Value.h:377
use_iterator_impl< Use > use_iterator
Definition: Value.h:353
LLVM_ABI void setValueName(ValueName *VN)
Definition: Value.cpp:305
LLVM_ABI User * getUniqueUndroppableUser()
Return true if there is exactly one unique user of this value that cannot be dropped (that user can h...
Definition: Value.cpp:188
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:701
LLVM_ABI bool isSwiftError() const
Return true if this value is a swifterror value.
Definition: Value.cpp:1119
LLVM_ABI void deleteValue()
Delete a pointer to a generic Value.
Definition: Value.cpp:111
LLVM_ABI ValueName * getValueName() const
Definition: Value.cpp:294
LLVM_ABI const Value * stripPointerCastsSameRepresentation() const
Strip off pointer casts, all-zero GEPs and address space casts but ensures the representation of the ...
Definition: Value.cpp:709
bool use_empty() const
Definition: Value.h:346
LLVM_ABI bool eraseMetadata(unsigned KindID)
Erase all metadata attachments with the given kind.
Definition: Metadata.cpp:1616
unsigned HasMetadata
Definition: Value.h:114
LLVM_ABI void addMetadata(unsigned KindID, MDNode &MD)
Add a metadata attachment.
Definition: Metadata.cpp:1605
LLVM_ABI void dropDroppableUses(llvm::function_ref< bool(const Use *)> ShouldDrop=[](const Use *) { return true;})
Remove every uses that can safely be removed.
Definition: Value.cpp:208
user_iterator user_end()
Definition: Value.h:410
bool hasSameSubclassOptionalData(const Value *V) const
Check the optional flags for equality.
Definition: Value.h:560
LLVM_ABI void replaceUsesOutsideBlock(Value *V, BasicBlock *BB)
replaceUsesOutsideBlock - Go through the uses list for this definition and make each use point to "V"...
Definition: Value.cpp:599
void addUse(Use &U)
This method should only be used by the Use class.
Definition: Value.h:513
void setValueSubclassData(unsigned short D)
Definition: Value.h:890
LLVM_ABI void eraseMetadataIf(function_ref< bool(unsigned, MDNode *)> Pred)
Erase all metadata attachments matching the given predicate.
Definition: Metadata.cpp:1628
Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB)
Definition: Value.h:820
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1098
static constexpr unsigned MaxAlignmentExponent
The maximum alignment for instructions.
Definition: Value.h:829
bool hasValueHandle() const
Return true if there is a value handle associated with this value.
Definition: Value.h:565
unsigned NumUserOperands
Definition: Value.h:109
LLVM_ABI unsigned getNumUses() const
This method computes the number of uses of this Value.
Definition: Value.cpp:265
Value & operator=(const Value &)=delete
unsigned HasHungOffUses
Definition: Value.h:115
iterator_range< use_iterator > uses()
Definition: Value.h:380
void mutateType(Type *Ty)
Mutate the type of this Value to be of the specified type.
Definition: Value.h:838
const_use_iterator use_end() const
Definition: Value.h:373
Value * stripPointerCastsForAliasAnalysis()
Definition: Value.h:690
LLVM_ABI std::optional< int64_t > getPointerOffsetFrom(const Value *Other, const DataLayout &DL) const
If this ptr is provably equal to Other plus a constant offset, return that offset in bytes.
Definition: Value.cpp:1051
bool hasMetadata(unsigned KindID) const
Return true if this value has the given type of metadata attached.
Definition: Value.h:606
Value * stripInBoundsConstantOffsets()
Definition: Value.h:700
const Use * getSingleUndroppableUse() const
Definition: Value.h:462
user_iterator_impl< User > user_iterator
Definition: Value.h:391
user_iterator materialized_user_begin()
Definition: Value.h:394
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
Definition: Value.cpp:878
LLVM_ABI void clearMetadata()
Erase all metadata attached to this Value.
Definition: Metadata.cpp:1643
use_iterator use_end()
Definition: Value.h:372
bool hasName() const
Definition: Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
LLVM_ABI void replaceNonMetadataUsesWith(Value *V)
Change non-metadata uses of this to point to a new Value.
Definition: Value.cpp:550
Value * stripPointerCastsSameRepresentation()
Definition: Value.h:678
unsigned HasDescriptor
Definition: Value.h:116
const_user_iterator materialized_user_begin() const
Definition: Value.h:398
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:396
const_user_iterator user_end() const
Definition: Value.h:411
MDNode * getMetadata(unsigned KindID) const
Get the current metadata attachments for the given kind, if any.
Definition: Value.h:576
bool user_empty() const
Definition: Value.h:389
LLVM_ABI bool hasNUndroppableUses(unsigned N) const
Return true if there this value.
Definition: Value.cpp:200
ValueTy
Concrete subclass of this.
Definition: Value.h:524
LLVM_ABI const Value * stripPointerCastsForAliasAnalysis() const
Strip off pointer casts, all-zero GEPs, single-argument phi nodes and invariant group info.
Definition: Value.cpp:717
LLVM_ABI void dump() const
Support for debugging, callable in GDB: V->dump()
Definition: AsmWriter.cpp:5465
const_user_iterator user_begin() const
Definition: Value.h:406
An efficient, type-erasing, non-owning reference to a callable.
A range adaptor for a pair of iterators.
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
struct LLVMOpaqueValue * LLVMValueRef
Represents an individual value in LLVM IR.
Definition: Types.h:75
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
@ BasicBlock
Various leaf nodes.
Definition: ISDOpcodes.h:81
@ User
could "use" a pointer
NodeAddr< UseNode * > Use
Definition: RDFGraph.h:385
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:477
@ Length
Definition: DWP.cpp:477
std::unique_ptr< Value, ValueDeleter > unique_value
Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
Definition: Value.h:898
APInt operator*(APInt a, uint64_t RHS)
Definition: APInt.h:2235
bool operator!=(uint64_t V1, const APInt &V2)
Definition: APInt.h:2113
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
bool operator==(const AddressRangeValuePair &LHS, const AddressRangeValuePair &RHS)
bool hasSingleElement(ContainerTy &&C)
Returns true if the given container only contains a single element.
Definition: STLExtras.h:322
@ Other
Any other memory.
Attribute unwrap(LLVMAttributeRef Attr)
Definition: Attributes.h:351
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:312
LLVMAttributeRef wrap(Attribute Attr)
Definition: Attributes.h:346
#define N
void operator()(Value *V)
Definition: Value.h:893
static bool doit(const Value &Val)
Definition: Value.h:1016
static bool doit(const Value &Val)
Definition: Value.h:1034
static bool doit(const Value &Val)
Definition: Value.h:1009
static bool doit(const Value &Val)
Definition: Value.h:1001
static bool doit(const Value &Val)
Definition: Value.h:993
static bool doit(const Value &Val)
Definition: Value.h:1040
static bool doit(const Value &Val)
Definition: Value.h:1052
static bool doit(const Value &Val)
Definition: Value.h:1058
static bool doit(const Value &Val)
Definition: Value.h:1070
static bool doit(const Value &Val)
Definition: Value.h:1064
static bool doit(const Value &Val)
Definition: Value.h:1046
static bool doit(const Value &Val)
Definition: Value.h:1022
static bool doit(const Value &Val)
Definition: Value.h:1028