LLVM 22.0.0git
InlineSpiller.cpp
Go to the documentation of this file.
1//===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The inline spiller modifies the machine function directly instead of
10// inserting spills and restores in VirtRegMap.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AllocationOrder.h"
15#include "SplitKit.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/MapVector.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/Statistic.h"
46#include "llvm/Config/llvm-config.h"
51#include "llvm/Support/Debug.h"
54#include <cassert>
55#include <iterator>
56#include <tuple>
57#include <utility>
58
59using namespace llvm;
60
61#define DEBUG_TYPE "regalloc"
62
63STATISTIC(NumSpilledRanges, "Number of spilled live ranges");
64STATISTIC(NumSnippets, "Number of spilled snippets");
65STATISTIC(NumSpills, "Number of spills inserted");
66STATISTIC(NumSpillsRemoved, "Number of spills removed");
67STATISTIC(NumReloads, "Number of reloads inserted");
68STATISTIC(NumReloadsRemoved, "Number of reloads removed");
69STATISTIC(NumFolded, "Number of folded stack accesses");
70STATISTIC(NumFoldedLoads, "Number of folded loads");
71STATISTIC(NumRemats, "Number of rematerialized defs for spilling");
72
73static cl::opt<bool>
74RestrictStatepointRemat("restrict-statepoint-remat",
75 cl::init(false), cl::Hidden,
76 cl::desc("Restrict remat for statepoint operands"));
77
78namespace {
79class HoistSpillHelper : private LiveRangeEdit::Delegate {
81 LiveIntervals &LIS;
82 LiveStacks &LSS;
84 VirtRegMap &VRM;
86 const TargetInstrInfo &TII;
88 const MachineBlockFrequencyInfo &MBFI;
89
91
92 // Map from StackSlot to the LiveInterval of the original register.
93 // Note the LiveInterval of the original register may have been deleted
94 // after it is spilled. We keep a copy here to track the range where
95 // spills can be moved.
97
98 // Map from pair of (StackSlot and Original VNI) to a set of spills which
99 // have the same stackslot and have equal values defined by Original VNI.
100 // These spills are mergeable and are hoist candidates.
101 using MergeableSpillsMap =
103 MergeableSpillsMap MergeableSpills;
104
105 /// This is the map from original register to a set containing all its
106 /// siblings. To hoist a spill to another BB, we need to find out a live
107 /// sibling there and use it as the source of the new spill.
109
110 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
111 MachineBasicBlock &BB, Register &LiveReg);
112
113 void rmRedundantSpills(
117
118 void getVisitOrders(
124
125 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
129
130public:
131 HoistSpillHelper(const Spiller::RequiredAnalyses &Analyses,
132 MachineFunction &mf, VirtRegMap &vrm)
133 : MF(mf), LIS(Analyses.LIS), LSS(Analyses.LSS), MDT(Analyses.MDT),
134 VRM(vrm), MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
135 TRI(*mf.getSubtarget().getRegisterInfo()), MBFI(Analyses.MBFI),
136 IPA(LIS, mf.getNumBlockIDs()) {}
137
138 void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
139 Register Original);
140 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
141 void hoistAllSpills();
142 void LRE_DidCloneVirtReg(Register, Register) override;
143};
144
145class InlineSpiller : public Spiller {
146 MachineFunction &MF;
147 LiveIntervals &LIS;
148 LiveStacks &LSS;
149 VirtRegMap &VRM;
151 const TargetInstrInfo &TII;
152 const TargetRegisterInfo &TRI;
153 LiveRegMatrix *Matrix = nullptr;
154
155 // Variables that are valid during spill(), but used by multiple methods.
156 LiveRangeEdit *Edit = nullptr;
157 LiveInterval *StackInt = nullptr;
158 int StackSlot;
159 Register Original;
160 AllocationOrder *Order = nullptr;
161
162 // All registers to spill to StackSlot, including the main register.
163 SmallVector<Register, 8> RegsToSpill;
164
165 // All registers that were replaced by the spiller through some other method,
166 // e.g. rematerialization.
167 SmallVector<Register, 8> RegsReplaced;
168
169 // All COPY instructions to/from snippets.
170 // They are ignored since both operands refer to the same stack slot.
171 // For bundled copies, this will only include the first header copy.
172 SmallPtrSet<MachineInstr*, 8> SnippetCopies;
173
174 // Values that failed to remat at some point.
175 SmallPtrSet<VNInfo*, 8> UsedValues;
176
177 // Dead defs generated during spilling.
179
180 // Object records spills information and does the hoisting.
181 HoistSpillHelper HSpiller;
182
183 // Live range weight calculator.
184 VirtRegAuxInfo &VRAI;
185
186 ~InlineSpiller() override = default;
187
188public:
189 InlineSpiller(const Spiller::RequiredAnalyses &Analyses, MachineFunction &MF,
190 VirtRegMap &VRM, VirtRegAuxInfo &VRAI, LiveRegMatrix *Matrix)
191 : MF(MF), LIS(Analyses.LIS), LSS(Analyses.LSS), VRM(VRM),
192 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
193 TRI(*MF.getSubtarget().getRegisterInfo()), Matrix(Matrix),
194 HSpiller(Analyses, MF, VRM), VRAI(VRAI) {}
195
196 void spill(LiveRangeEdit &, AllocationOrder *Order = nullptr) override;
197 ArrayRef<Register> getSpilledRegs() override { return RegsToSpill; }
198 ArrayRef<Register> getReplacedRegs() override { return RegsReplaced; }
199 void postOptimization() override;
200
201private:
202 bool isSnippet(const LiveInterval &SnipLI);
203 void collectRegsToSpill();
204
205 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
206
207 bool isSibling(Register Reg);
208 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
209 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
210
211 void markValueUsed(LiveInterval*, VNInfo*);
212 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
213 bool hasPhysRegAvailable(const MachineInstr &MI);
214 bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
215 void reMaterializeAll();
216
217 bool coalesceStackAccess(MachineInstr *MI, Register Reg);
218 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
219 MachineInstr *LoadMI = nullptr);
220 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
221 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
222
223 void spillAroundUses(Register Reg);
224 void spillAll();
225};
226
227} // end anonymous namespace
228
229Spiller::~Spiller() = default;
230
231void Spiller::anchor() {}
232
233Spiller *
234llvm::createInlineSpiller(const InlineSpiller::RequiredAnalyses &Analyses,
235 MachineFunction &MF, VirtRegMap &VRM,
237 return new InlineSpiller(Analyses, MF, VRM, VRAI, Matrix);
238}
239
240//===----------------------------------------------------------------------===//
241// Snippets
242//===----------------------------------------------------------------------===//
243
244// When spilling a virtual register, we also spill any snippets it is connected
245// to. The snippets are small live ranges that only have a single real use,
246// leftovers from live range splitting. Spilling them enables memory operand
247// folding or tightens the live range around the single use.
248//
249// This minimizes register pressure and maximizes the store-to-load distance for
250// spill slots which can be important in tight loops.
251
252/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
253/// otherwise return 0.
255 const TargetInstrInfo &TII) {
256 if (!TII.isCopyInstr(MI))
257 return Register();
258
259 const MachineOperand &DstOp = MI.getOperand(0);
260 const MachineOperand &SrcOp = MI.getOperand(1);
261
262 // TODO: Probably only worth allowing subreg copies with undef dests.
263 if (DstOp.getSubReg() != SrcOp.getSubReg())
264 return Register();
265 if (DstOp.getReg() == Reg)
266 return SrcOp.getReg();
267 if (SrcOp.getReg() == Reg)
268 return DstOp.getReg();
269 return Register();
270}
271
272/// Check for a copy bundle as formed by SplitKit.
273static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg,
274 const TargetInstrInfo &TII) {
275 if (!FirstMI.isBundled())
276 return isCopyOf(FirstMI, Reg, TII);
277
278 assert(!FirstMI.isBundledWithPred() && FirstMI.isBundledWithSucc() &&
279 "expected to see first instruction in bundle");
280
281 Register SnipReg;
283 while (I->isBundledWithSucc()) {
284 const MachineInstr &MI = *I;
285 auto CopyInst = TII.isCopyInstr(MI);
286 if (!CopyInst)
287 return Register();
288
289 const MachineOperand &DstOp = *CopyInst->Destination;
290 const MachineOperand &SrcOp = *CopyInst->Source;
291 if (DstOp.getReg() == Reg) {
292 if (!SnipReg)
293 SnipReg = SrcOp.getReg();
294 else if (SnipReg != SrcOp.getReg())
295 return Register();
296 } else if (SrcOp.getReg() == Reg) {
297 if (!SnipReg)
298 SnipReg = DstOp.getReg();
299 else if (SnipReg != DstOp.getReg())
300 return Register();
301 }
302
303 ++I;
304 }
305
306 return Register();
307}
308
309static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
310 for (const MachineOperand &MO : MI.all_defs())
311 if (MO.getReg().isVirtual())
312 LIS.getInterval(MO.getReg());
313}
314
315/// isSnippet - Identify if a live interval is a snippet that should be spilled.
316/// It is assumed that SnipLI is a virtual register with the same original as
317/// Edit->getReg().
318bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
319 Register Reg = Edit->getReg();
320
321 // A snippet is a tiny live range with only a single instruction using it
322 // besides copies to/from Reg or spills/fills.
323 // Exception is done for statepoint instructions which will fold fills
324 // into their operands.
325 // We accept:
326 //
327 // %snip = COPY %Reg / FILL fi#
328 // %snip = USE %snip
329 // %snip = STATEPOINT %snip in var arg area
330 // %Reg = COPY %snip / SPILL %snip, fi#
331 //
332 if (!LIS.intervalIsInOneMBB(SnipLI))
333 return false;
334
335 // Number of defs should not exceed 2 not accounting defs coming from
336 // statepoint instructions.
337 unsigned NumValNums = SnipLI.getNumValNums();
338 for (auto *VNI : SnipLI.vnis()) {
339 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
340 if (MI->getOpcode() == TargetOpcode::STATEPOINT)
341 --NumValNums;
342 }
343 if (NumValNums > 2)
344 return false;
345
346 MachineInstr *UseMI = nullptr;
347
348 // Check that all uses satisfy our criteria.
350 RI = MRI.reg_bundle_nodbg_begin(SnipLI.reg()),
351 E = MRI.reg_bundle_nodbg_end();
352 RI != E;) {
353 MachineInstr &MI = *RI++;
354
355 // Allow copies to/from Reg.
356 if (isCopyOfBundle(MI, Reg, TII))
357 continue;
358
359 // Allow stack slot loads.
360 int FI;
361 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
362 continue;
363
364 // Allow stack slot stores.
365 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
366 continue;
367
368 if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg()))
369 continue;
370
371 // Allow a single additional instruction.
372 if (UseMI && &MI != UseMI)
373 return false;
374 UseMI = &MI;
375 }
376 return true;
377}
378
379/// collectRegsToSpill - Collect live range snippets that only have a single
380/// real use.
381void InlineSpiller::collectRegsToSpill() {
382 Register Reg = Edit->getReg();
383
384 // Main register always spills.
385 RegsToSpill.assign(1, Reg);
386 SnippetCopies.clear();
387 RegsReplaced.clear();
388
389 // Snippets all have the same original, so there can't be any for an original
390 // register.
391 if (Original == Reg)
392 return;
393
394 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
395 Register SnipReg = isCopyOfBundle(MI, Reg, TII);
396 if (!isSibling(SnipReg))
397 continue;
398 LiveInterval &SnipLI = LIS.getInterval(SnipReg);
399 if (!isSnippet(SnipLI))
400 continue;
401 SnippetCopies.insert(&MI);
402 if (isRegToSpill(SnipReg))
403 continue;
404 RegsToSpill.push_back(SnipReg);
405 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
406 ++NumSnippets;
407 }
408}
409
410bool InlineSpiller::isSibling(Register Reg) {
411 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
412}
413
414/// It is beneficial to spill to earlier place in the same BB in case
415/// as follows:
416/// There is an alternative def earlier in the same MBB.
417/// Hoist the spill as far as possible in SpillMBB. This can ease
418/// register pressure:
419///
420/// x = def
421/// y = use x
422/// s = copy x
423///
424/// Hoisting the spill of s to immediately after the def removes the
425/// interference between x and y:
426///
427/// x = def
428/// spill x
429/// y = use killed x
430///
431/// This hoist only helps when the copy kills its source.
432///
433bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
434 MachineInstr &CopyMI) {
435 SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
436#ifndef NDEBUG
437 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
438 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
439#endif
440
441 Register SrcReg = CopyMI.getOperand(1).getReg();
442 LiveInterval &SrcLI = LIS.getInterval(SrcReg);
443 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
444 LiveQueryResult SrcQ = SrcLI.Query(Idx);
445 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
446 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
447 return false;
448
449 // Conservatively extend the stack slot range to the range of the original
450 // value. We may be able to do better with stack slot coloring by being more
451 // careful here.
452 assert(StackInt && "No stack slot assigned yet.");
453 LiveInterval &OrigLI = LIS.getInterval(Original);
454 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
455 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
456 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
457 << *StackInt << '\n');
458
459 // We are going to spill SrcVNI immediately after its def, so clear out
460 // any later spills of the same value.
461 eliminateRedundantSpills(SrcLI, SrcVNI);
462
463 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
465 if (SrcVNI->isPHIDef())
466 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin(), SrcReg);
467 else {
468 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
469 assert(DefMI && "Defining instruction disappeared");
470 MII = DefMI;
471 ++MII;
472 }
473 MachineInstrSpan MIS(MII, MBB);
474 // Insert spill without kill flag immediately after def.
475 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
476 MRI.getRegClass(SrcReg), &TRI, Register());
477 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
478 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
479 getVDefInterval(MI, LIS);
480 --MII; // Point to store instruction.
481 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
482
483 // If there is only 1 store instruction is required for spill, add it
484 // to mergeable list. In X86 AMX, 2 intructions are required to store.
485 // We disable the merge for this case.
486 if (MIS.begin() == MII)
487 HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
488 ++NumSpills;
489 return true;
490}
491
492/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
493/// redundant spills of this value in SLI.reg and sibling copies.
494void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
495 assert(VNI && "Missing value");
497 WorkList.push_back(std::make_pair(&SLI, VNI));
498 assert(StackInt && "No stack slot assigned yet.");
499
500 do {
501 LiveInterval *LI;
502 std::tie(LI, VNI) = WorkList.pop_back_val();
503 Register Reg = LI->reg();
504 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
505 << VNI->def << " in " << *LI << '\n');
506
507 // Regs to spill are taken care of.
508 if (isRegToSpill(Reg))
509 continue;
510
511 // Add all of VNI's live range to StackInt.
512 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
513 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
514
515 // Find all spills and copies of VNI.
516 for (MachineInstr &MI :
517 llvm::make_early_inc_range(MRI.use_nodbg_bundles(Reg))) {
518 if (!MI.mayStore() && !TII.isCopyInstr(MI))
519 continue;
520 SlotIndex Idx = LIS.getInstructionIndex(MI);
521 if (LI->getVNInfoAt(Idx) != VNI)
522 continue;
523
524 // Follow sibling copies down the dominator tree.
525 if (Register DstReg = isCopyOfBundle(MI, Reg, TII)) {
526 if (isSibling(DstReg)) {
527 LiveInterval &DstLI = LIS.getInterval(DstReg);
528 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
529 assert(DstVNI && "Missing defined value");
530 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
531
532 WorkList.push_back(std::make_pair(&DstLI, DstVNI));
533 }
534 continue;
535 }
536
537 // Erase spills.
538 int FI;
539 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
540 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
541 // eliminateDeadDefs won't normally remove stores, so switch opcode.
542 MI.setDesc(TII.get(TargetOpcode::KILL));
543 DeadDefs.push_back(&MI);
544 ++NumSpillsRemoved;
545 if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
546 --NumSpills;
547 }
548 }
549 } while (!WorkList.empty());
550}
551
552//===----------------------------------------------------------------------===//
553// Rematerialization
554//===----------------------------------------------------------------------===//
555
556/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
557/// instruction cannot be eliminated. See through snippet copies
558void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
560 WorkList.push_back(std::make_pair(LI, VNI));
561 do {
562 std::tie(LI, VNI) = WorkList.pop_back_val();
563 if (!UsedValues.insert(VNI).second)
564 continue;
565
566 if (VNI->isPHIDef()) {
567 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
568 for (MachineBasicBlock *P : MBB->predecessors()) {
569 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
570 if (PVNI)
571 WorkList.push_back(std::make_pair(LI, PVNI));
572 }
573 continue;
574 }
575
576 // Follow snippet copies.
577 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
578 if (!SnippetCopies.count(MI))
579 continue;
580 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
581 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
582 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
583 assert(SnipVNI && "Snippet undefined before copy");
584 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
585 } while (!WorkList.empty());
586}
587
588bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
589 MachineInstr &MI) {
591 return true;
592 // Here's a quick explanation of the problem we're trying to handle here:
593 // * There are some pseudo instructions with more vreg uses than there are
594 // physical registers on the machine.
595 // * This is normally handled by spilling the vreg, and folding the reload
596 // into the user instruction. (Thus decreasing the number of used vregs
597 // until the remainder can be assigned to physregs.)
598 // * However, since we may try to spill vregs in any order, we can end up
599 // trying to spill each operand to the instruction, and then rematting it
600 // instead. When that happens, the new live intervals (for the remats) are
601 // expected to be trivially assignable (i.e. RS_Done). However, since we
602 // may have more remats than physregs, we're guaranteed to fail to assign
603 // one.
604 // At the moment, we only handle this for STATEPOINTs since they're the only
605 // pseudo op where we've seen this. If we start seeing other instructions
606 // with the same problem, we need to revisit this.
607 if (MI.getOpcode() != TargetOpcode::STATEPOINT)
608 return true;
609 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
610 // that number of physical registers is enough to cover all fixed arguments.
611 // If it is not true we need to revisit it.
612 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
613 EndIdx = MI.getNumOperands();
614 Idx < EndIdx; ++Idx) {
615 MachineOperand &MO = MI.getOperand(Idx);
616 if (MO.isReg() && MO.getReg() == VReg)
617 return false;
618 }
619 return true;
620}
621
622/// hasPhysRegAvailable - Check if there is an available physical register for
623/// rematerialization.
624bool InlineSpiller::hasPhysRegAvailable(const MachineInstr &MI) {
625 if (!Order || !Matrix)
626 return false;
627
628 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
629 SlotIndex PrevIdx = UseIdx.getPrevSlot();
630
631 for (MCPhysReg PhysReg : *Order) {
632 if (!Matrix->checkInterference(PrevIdx, UseIdx, PhysReg))
633 return true;
634 }
635
636 return false;
637}
638
639/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
640bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
641 // Analyze instruction
643 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
644
645 if (!RI.Reads)
646 return false;
647
648 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
649 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
650
651 if (!ParentVNI) {
652 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
653 for (MachineOperand &MO : MI.all_uses())
654 if (MO.getReg() == VirtReg.reg())
655 MO.setIsUndef();
656 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
657 return true;
658 }
659
660 if (SnippetCopies.count(&MI))
661 return false;
662
663 LiveInterval &OrigLI = LIS.getInterval(Original);
664 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
665 LiveRangeEdit::Remat RM(ParentVNI);
666 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
667
668 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx)) {
669 markValueUsed(&VirtReg, ParentVNI);
670 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
671 return false;
672 }
673
674 // If the instruction also writes VirtReg.reg, it had better not require the
675 // same register for uses and defs.
676 if (RI.Tied) {
677 markValueUsed(&VirtReg, ParentVNI);
678 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
679 return false;
680 }
681
682 // Before rematerializing into a register for a single instruction, try to
683 // fold a load into the instruction. That avoids allocating a new register.
684 if (RM.OrigMI->canFoldAsLoad() &&
685 (RM.OrigMI->mayLoad() || !hasPhysRegAvailable(MI)) &&
686 foldMemoryOperand(Ops, RM.OrigMI)) {
687 Edit->markRematerialized(RM.ParentVNI);
688 ++NumFoldedLoads;
689 return true;
690 }
691
692 // If we can't guarantee that we'll be able to actually assign the new vreg,
693 // we can't remat.
694 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
695 markValueUsed(&VirtReg, ParentVNI);
696 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
697 return false;
698 }
699
700 // Allocate a new register for the remat.
701 Register NewVReg = Edit->createFrom(Original);
702
703 // Finally we can rematerialize OrigMI before MI.
704 SlotIndex DefIdx =
705 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
706
707 // We take the DebugLoc from MI, since OrigMI may be attributed to a
708 // different source location.
709 auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
710 NewMI->setDebugLoc(MI.getDebugLoc());
711
712 (void)DefIdx;
713 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
714 << *LIS.getInstructionFromIndex(DefIdx));
715
716 // Replace operands
717 for (const auto &OpPair : Ops) {
718 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
719 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
720 MO.setReg(NewVReg);
721 MO.setIsKill();
722 }
723 }
724 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n');
725
726 ++NumRemats;
727 return true;
728}
729
730/// reMaterializeAll - Try to rematerialize as many uses as possible,
731/// and trim the live ranges after.
732void InlineSpiller::reMaterializeAll() {
733 if (!Edit->anyRematerializable())
734 return;
735
736 UsedValues.clear();
737
738 // Try to remat before all uses of snippets.
739 bool anyRemat = false;
740 for (Register Reg : RegsToSpill) {
741 LiveInterval &LI = LIS.getInterval(Reg);
742 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
743 // Debug values are not allowed to affect codegen.
744 if (MI.isDebugValue())
745 continue;
746
747 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
748 "instruction that isn't a DBG_VALUE");
749
750 anyRemat |= reMaterializeFor(LI, MI);
751 }
752 }
753 if (!anyRemat)
754 return;
755
756 // Remove any values that were completely rematted.
757 for (Register Reg : RegsToSpill) {
758 LiveInterval &LI = LIS.getInterval(Reg);
759 for (VNInfo *VNI : LI.vnis()) {
760 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
761 continue;
762 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
763 MI->addRegisterDead(Reg, &TRI);
764 if (!MI->allDefsAreDead())
765 continue;
766 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
767 DeadDefs.push_back(MI);
768 // If MI is a bundle header, also try removing copies inside the bundle,
769 // otherwise the verifier would complain "live range continues after dead
770 // def flag".
771 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) {
772 MachineBasicBlock::instr_iterator BeginIt = MI->getIterator(),
773 EndIt = MI->getParent()->instr_end();
774 ++BeginIt; // Skip MI that was already handled.
775
776 bool OnlyDeadCopies = true;
777 for (MachineBasicBlock::instr_iterator It = BeginIt;
778 It != EndIt && It->isBundledWithPred(); ++It) {
779
780 auto DestSrc = TII.isCopyInstr(*It);
781 bool IsCopyToDeadReg =
782 DestSrc && DestSrc->Destination->getReg() == Reg;
783 if (!IsCopyToDeadReg) {
784 OnlyDeadCopies = false;
785 break;
786 }
787 }
788 if (OnlyDeadCopies) {
789 for (MachineBasicBlock::instr_iterator It = BeginIt;
790 It != EndIt && It->isBundledWithPred(); ++It) {
791 It->addRegisterDead(Reg, &TRI);
792 LLVM_DEBUG(dbgs() << "All defs dead: " << *It);
793 DeadDefs.push_back(&*It);
794 }
795 }
796 }
797 }
798 }
799
800 // Eliminate dead code after remat. Note that some snippet copies may be
801 // deleted here.
802 if (DeadDefs.empty())
803 return;
804 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
805 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
806
807 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
808 // after rematerialization. To remove a VNI for a vreg from its LiveInterval,
809 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
810 // removed, PHI VNI are still left in the LiveInterval.
811 // So to get rid of unused reg, we need to check whether it has non-dbg
812 // reference instead of whether it has non-empty interval.
813 unsigned ResultPos = 0;
814 for (Register Reg : RegsToSpill) {
815 if (MRI.reg_nodbg_empty(Reg)) {
816 Edit->eraseVirtReg(Reg);
817 RegsReplaced.push_back(Reg);
818 continue;
819 }
820
821 assert(LIS.hasInterval(Reg) &&
822 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
823 "Empty and not used live-range?!");
824
825 RegsToSpill[ResultPos++] = Reg;
826 }
827 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
828 LLVM_DEBUG(dbgs() << RegsToSpill.size()
829 << " registers to spill after remat.\n");
830}
831
832//===----------------------------------------------------------------------===//
833// Spilling
834//===----------------------------------------------------------------------===//
835
836/// If MI is a load or store of StackSlot, it can be removed.
837bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
838 int FI = 0;
839 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
840 bool IsLoad = InstrReg.isValid();
841 if (!IsLoad)
842 InstrReg = TII.isStoreToStackSlot(*MI, FI);
843
844 // We have a stack access. Is it the right register and slot?
845 if (InstrReg != Reg || FI != StackSlot)
846 return false;
847
848 if (!IsLoad)
849 HSpiller.rmFromMergeableSpills(*MI, StackSlot);
850
851 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
852 LIS.RemoveMachineInstrFromMaps(*MI);
853 MI->eraseFromParent();
854
855 if (IsLoad) {
856 ++NumReloadsRemoved;
857 --NumReloads;
858 } else {
859 ++NumSpillsRemoved;
860 --NumSpills;
861 }
862
863 return true;
864}
865
866#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
868// Dump the range of instructions from B to E with their slot indexes.
871 LiveIntervals const &LIS,
872 const char *const header,
873 Register VReg = Register()) {
874 char NextLine = '\n';
875 char SlotIndent = '\t';
876
877 if (std::next(B) == E) {
878 NextLine = ' ';
879 SlotIndent = ' ';
880 }
881
882 dbgs() << '\t' << header << ": " << NextLine;
883
884 for (MachineBasicBlock::iterator I = B; I != E; ++I) {
886
887 // If a register was passed in and this instruction has it as a
888 // destination that is marked as an early clobber, print the
889 // early-clobber slot index.
890 if (VReg) {
891 MachineOperand *MO = I->findRegisterDefOperand(VReg, /*TRI=*/nullptr);
892 if (MO && MO->isEarlyClobber())
893 Idx = Idx.getRegSlot(true);
894 }
895
896 dbgs() << SlotIndent << Idx << '\t' << *I;
897 }
898}
899#endif
900
901/// foldMemoryOperand - Try folding stack slot references in Ops into their
902/// instructions.
903///
904/// @param Ops Operand indices from AnalyzeVirtRegInBundle().
905/// @param LoadMI Load instruction to use instead of stack slot when non-null.
906/// @return True on success.
907bool InlineSpiller::
908foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
909 MachineInstr *LoadMI) {
910 if (Ops.empty())
911 return false;
912 // Don't attempt folding in bundles.
913 MachineInstr *MI = Ops.front().first;
914 if (Ops.back().first != MI || MI->isBundled())
915 return false;
916
917 bool WasCopy = TII.isCopyInstr(*MI).has_value();
918 Register ImpReg;
919
920 // TII::foldMemoryOperand will do what we need here for statepoint
921 // (fold load into use and remove corresponding def). We will replace
922 // uses of removed def with loads (spillAroundUses).
923 // For that to work we need to untie def and use to pass it through
924 // foldMemoryOperand and signal foldPatchpoint that it is allowed to
925 // fold them.
926 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
927
928 // Spill subregs if the target allows it.
929 // We always want to spill subregs for stackmap/patchpoint pseudos.
930 bool SpillSubRegs = TII.isSubregFoldable() ||
931 MI->getOpcode() == TargetOpcode::STATEPOINT ||
932 MI->getOpcode() == TargetOpcode::PATCHPOINT ||
933 MI->getOpcode() == TargetOpcode::STACKMAP;
934
935 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
936 // operands.
938 for (const auto &OpPair : Ops) {
939 unsigned Idx = OpPair.second;
940 assert(MI == OpPair.first && "Instruction conflict during operand folding");
941 MachineOperand &MO = MI->getOperand(Idx);
942
943 // No point restoring an undef read, and we'll produce an invalid live
944 // interval.
945 // TODO: Is this really the correct way to handle undef tied uses?
946 if (MO.isUse() && !MO.readsReg() && !MO.isTied())
947 continue;
948
949 if (MO.isImplicit()) {
950 ImpReg = MO.getReg();
951 continue;
952 }
953
954 if (!SpillSubRegs && MO.getSubReg())
955 return false;
956 // We cannot fold a load instruction into a def.
957 if (LoadMI && MO.isDef())
958 return false;
959 // Tied use operands should not be passed to foldMemoryOperand.
960 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
961 FoldOps.push_back(Idx);
962 }
963
964 // If we only have implicit uses, we won't be able to fold that.
965 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
966 if (FoldOps.empty())
967 return false;
968
969 MachineInstrSpan MIS(MI, MI->getParent());
970
972 if (UntieRegs)
973 for (unsigned Idx : FoldOps) {
974 MachineOperand &MO = MI->getOperand(Idx);
975 if (!MO.isTied())
976 continue;
977 unsigned Tied = MI->findTiedOperandIdx(Idx);
978 if (MO.isUse())
979 TiedOps.emplace_back(Tied, Idx);
980 else {
981 assert(MO.isDef() && "Tied to not use and def?");
982 TiedOps.emplace_back(Idx, Tied);
983 }
984 MI->untieRegOperand(Idx);
985 }
986
987 MachineInstr *FoldMI =
988 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
989 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
990 if (!FoldMI) {
991 // Re-tie operands.
992 for (auto Tied : TiedOps)
993 MI->tieOperands(Tied.first, Tied.second);
994 return false;
995 }
996
997 // Remove LIS for any dead defs in the original MI not in FoldMI.
998 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
999 if (!MO->isReg())
1000 continue;
1001 Register Reg = MO->getReg();
1002 if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) {
1003 continue;
1004 }
1005 // Skip non-Defs, including undef uses and internal reads.
1006 if (MO->isUse())
1007 continue;
1008 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
1009 if (RI.FullyDefined)
1010 continue;
1011 // FoldMI does not define this physreg. Remove the LI segment.
1012 assert(MO->isDead() && "Cannot fold physreg def");
1014 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
1015 }
1016
1017 int FI;
1018 if (TII.isStoreToStackSlot(*MI, FI) &&
1019 HSpiller.rmFromMergeableSpills(*MI, FI))
1020 --NumSpills;
1021 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
1022 // Update the call info.
1023 if (MI->isCandidateForAdditionalCallInfo())
1024 MI->getMF()->moveAdditionalCallInfo(MI, FoldMI);
1025
1026 // If we've folded a store into an instruction labelled with debug-info,
1027 // record a substitution from the old operand to the memory operand. Handle
1028 // the simple common case where operand 0 is the one being folded, plus when
1029 // the destination operand is also a tied def. More values could be
1030 // substituted / preserved with more analysis.
1031 if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
1032 // Helper lambda.
1033 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
1034 // Substitute old operand zero to the new instructions memory operand.
1035 unsigned OldOperandNum = Ops[0].second;
1036 unsigned NewNum = FoldMI->getDebugInstrNum();
1037 unsigned OldNum = MI->getDebugInstrNum();
1038 MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
1040 };
1041
1042 const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
1043 if (Ops.size() == 1 && Op0.isDef()) {
1044 MakeSubstitution();
1045 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
1046 Op0.getReg() == MI->getOperand(1).getReg()) {
1047 MakeSubstitution();
1048 }
1049 } else if (MI->peekDebugInstrNum()) {
1050 // This is a debug-labelled instruction, but the operand being folded isn't
1051 // at operand zero. Most likely this means it's a load being folded in.
1052 // Substitute any register defs from operand zero up to the one being
1053 // folded -- past that point, we don't know what the new operand indexes
1054 // will be.
1055 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
1056 }
1057
1058 MI->eraseFromParent();
1059
1060 // Insert any new instructions other than FoldMI into the LIS maps.
1061 assert(!MIS.empty() && "Unexpected empty span of instructions!");
1062 for (MachineInstr &MI : MIS)
1063 if (&MI != FoldMI)
1065
1066 // TII.foldMemoryOperand may have left some implicit operands on the
1067 // instruction. Strip them.
1068 if (ImpReg)
1069 for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1070 MachineOperand &MO = FoldMI->getOperand(i - 1);
1071 if (!MO.isReg() || !MO.isImplicit())
1072 break;
1073 if (MO.getReg() == ImpReg)
1074 FoldMI->removeOperand(i - 1);
1075 }
1076
1077 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
1078 "folded"));
1079
1080 if (!WasCopy)
1081 ++NumFolded;
1082 else if (Ops.front().second == 0) {
1083 ++NumSpills;
1084 // If there is only 1 store instruction is required for spill, add it
1085 // to mergeable list. In X86 AMX, 2 intructions are required to store.
1086 // We disable the merge for this case.
1087 if (std::distance(MIS.begin(), MIS.end()) <= 1)
1088 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
1089 } else
1090 ++NumReloads;
1091 return true;
1092}
1093
1094void InlineSpiller::insertReload(Register NewVReg,
1095 SlotIndex Idx,
1097 MachineBasicBlock &MBB = *MI->getParent();
1098
1099 MachineInstrSpan MIS(MI, &MBB);
1100 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1101 MRI.getRegClass(NewVReg), &TRI, Register());
1102
1103 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1104
1105 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1106 NewVReg));
1107 ++NumReloads;
1108}
1109
1110/// Check if \p Def fully defines a VReg with an undefined value.
1111/// If that's the case, that means the value of VReg is actually
1112/// not relevant.
1113static bool isRealSpill(const MachineInstr &Def) {
1114 if (!Def.isImplicitDef())
1115 return true;
1116
1117 // We can say that the VReg defined by Def is undef, only if it is
1118 // fully defined by Def. Otherwise, some of the lanes may not be
1119 // undef and the value of the VReg matters.
1120 return Def.getOperand(0).getSubReg();
1121}
1122
1123/// insertSpill - Insert a spill of NewVReg after MI.
1124void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1126 // Spill are not terminators, so inserting spills after terminators will
1127 // violate invariants in MachineVerifier.
1128 assert(!MI->isTerminator() && "Inserting a spill after a terminator");
1129 MachineBasicBlock &MBB = *MI->getParent();
1130
1131 MachineInstrSpan MIS(MI, &MBB);
1132 MachineBasicBlock::iterator SpillBefore = std::next(MI);
1133 bool IsRealSpill = isRealSpill(*MI);
1134
1135 if (IsRealSpill)
1136 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1137 MRI.getRegClass(NewVReg), &TRI, Register());
1138 else
1139 // Don't spill undef value.
1140 // Anything works for undef, in particular keeping the memory
1141 // uninitialized is a viable option and it saves code size and
1142 // run time.
1143 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1144 .addReg(NewVReg, getKillRegState(isKill));
1145
1147 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1148 for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1149 getVDefInterval(MI, LIS);
1150
1151 LLVM_DEBUG(
1152 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1153 ++NumSpills;
1154 // If there is only 1 store instruction is required for spill, add it
1155 // to mergeable list. In X86 AMX, 2 intructions are required to store.
1156 // We disable the merge for this case.
1157 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1158 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1159}
1160
1161/// spillAroundUses - insert spill code around each use of Reg.
1162void InlineSpiller::spillAroundUses(Register Reg) {
1163 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1164 LiveInterval &OldLI = LIS.getInterval(Reg);
1165
1166 // Iterate over instructions using Reg.
1167 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
1168 // Debug values are not allowed to affect codegen.
1169 if (MI.isDebugValue()) {
1170 // Modify DBG_VALUE now that the value is in a spill slot.
1171 MachineBasicBlock *MBB = MI.getParent();
1172 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI);
1173 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg);
1174 MBB->erase(MI);
1175 continue;
1176 }
1177
1178 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
1179 "instruction that isn't a DBG_VALUE");
1180
1181 // Ignore copies to/from snippets. We'll delete them.
1182 if (SnippetCopies.count(&MI))
1183 continue;
1184
1185 // Stack slot accesses may coalesce away.
1186 if (coalesceStackAccess(&MI, Reg))
1187 continue;
1188
1189 // Analyze instruction.
1191 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops);
1192
1193 // Find the slot index where this instruction reads and writes OldLI.
1194 // This is usually the def slot, except for tied early clobbers.
1196 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1197 if (SlotIndex::isSameInstr(Idx, VNI->def))
1198 Idx = VNI->def;
1199
1200 // Check for a sibling copy.
1201 Register SibReg = isCopyOfBundle(MI, Reg, TII);
1202 if (SibReg && isSibling(SibReg)) {
1203 // This may actually be a copy between snippets.
1204 if (isRegToSpill(SibReg)) {
1205 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI);
1206 SnippetCopies.insert(&MI);
1207 continue;
1208 }
1209 if (RI.Writes) {
1210 if (hoistSpillInsideBB(OldLI, MI)) {
1211 // This COPY is now dead, the value is already in the stack slot.
1212 MI.getOperand(0).setIsDead();
1213 DeadDefs.push_back(&MI);
1214 continue;
1215 }
1216 } else {
1217 // This is a reload for a sib-reg copy. Drop spills downstream.
1218 LiveInterval &SibLI = LIS.getInterval(SibReg);
1219 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1220 // The COPY will fold to a reload below.
1221 }
1222 }
1223
1224 // Attempt to fold memory ops.
1225 if (foldMemoryOperand(Ops))
1226 continue;
1227
1228 // Create a new virtual register for spill/fill.
1229 // FIXME: Infer regclass from instruction alone.
1230 Register NewVReg = Edit->createFrom(Reg);
1231
1232 if (RI.Reads)
1233 insertReload(NewVReg, Idx, &MI);
1234
1235 // Rewrite instruction operands.
1236 bool hasLiveDef = false;
1237 for (const auto &OpPair : Ops) {
1238 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1239 MO.setReg(NewVReg);
1240 if (MO.isUse()) {
1241 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1242 MO.setIsKill();
1243 } else {
1244 if (!MO.isDead())
1245 hasLiveDef = true;
1246 }
1247 }
1248 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n');
1249
1250 // FIXME: Use a second vreg if instruction has no tied ops.
1251 if (RI.Writes)
1252 if (hasLiveDef)
1253 insertSpill(NewVReg, true, &MI);
1254 }
1255}
1256
1257/// spillAll - Spill all registers remaining after rematerialization.
1258void InlineSpiller::spillAll() {
1259 // Update LiveStacks now that we are committed to spilling.
1260 if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1261 StackSlot = VRM.assignVirt2StackSlot(Original);
1262 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1263 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1264 } else
1265 StackInt = &LSS.getInterval(StackSlot);
1266
1267 if (Original != Edit->getReg())
1268 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1269
1270 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1271 for (Register Reg : RegsToSpill)
1272 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1273 StackInt->getValNumInfo(0));
1274 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1275
1276 // Spill around uses of all RegsToSpill.
1277 for (Register Reg : RegsToSpill) {
1278 spillAroundUses(Reg);
1279 // Assign all of the spilled registers to the slot so that
1280 // LiveDebugVariables knows about these locations later on.
1281 if (VRM.getStackSlot(Reg) == VirtRegMap::NO_STACK_SLOT)
1282 VRM.assignVirt2StackSlot(Reg, StackSlot);
1283 }
1284
1285 // Hoisted spills may cause dead code.
1286 if (!DeadDefs.empty()) {
1287 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1288 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1289 }
1290
1291 // Finally delete the SnippetCopies.
1292 for (Register Reg : RegsToSpill) {
1293 for (MachineInstr &MI :
1294 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
1295 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1296 // FIXME: Do this with a LiveRangeEdit callback.
1298 MI.eraseFromBundle();
1299 }
1300 }
1301
1302 // Delete all spilled registers.
1303 for (Register Reg : RegsToSpill)
1304 Edit->eraseVirtReg(Reg);
1305}
1306
1307void InlineSpiller::spill(LiveRangeEdit &edit, AllocationOrder *order) {
1308 ++NumSpilledRanges;
1309 Edit = &edit;
1310 Order = order;
1311 assert(!edit.getReg().isStack() && "Trying to spill a stack slot.");
1312 // Share a stack slot among all descendants of Original.
1313 Original = VRM.getOriginal(edit.getReg());
1314 StackSlot = VRM.getStackSlot(Original);
1315 StackInt = nullptr;
1316
1317 LLVM_DEBUG(dbgs() << "Inline spilling "
1318 << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1319 << ':' << edit.getParent() << "\nFrom original "
1320 << printReg(Original) << '\n');
1321 assert(edit.getParent().isSpillable() &&
1322 "Attempting to spill already spilled value.");
1323 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1324
1325 collectRegsToSpill();
1326 reMaterializeAll();
1327
1328 // Remat may handle everything.
1329 if (!RegsToSpill.empty())
1330 spillAll();
1331
1332 Edit->calculateRegClassAndHint(MF, VRAI);
1333}
1334
1335/// Optimizations after all the reg selections and spills are done.
1336void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1337
1338/// When a spill is inserted, add the spill to MergeableSpills map.
1339void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1340 Register Original) {
1342 LiveInterval &OrigLI = LIS.getInterval(Original);
1343 // save a copy of LiveInterval in StackSlotToOrigLI because the original
1344 // LiveInterval may be cleared after all its references are spilled.
1345
1346 auto [Place, Inserted] = StackSlotToOrigLI.try_emplace(StackSlot);
1347 if (Inserted) {
1348 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1349 LI->assign(OrigLI, Allocator);
1350 Place->second = std::move(LI);
1351 }
1352
1353 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1354 VNInfo *OrigVNI = Place->second->getVNInfoAt(Idx.getRegSlot());
1355 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1356 MergeableSpills[MIdx].insert(&Spill);
1357}
1358
1359/// When a spill is removed, remove the spill from MergeableSpills map.
1360/// Return true if the spill is removed successfully.
1361bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1362 int StackSlot) {
1363 auto It = StackSlotToOrigLI.find(StackSlot);
1364 if (It == StackSlotToOrigLI.end())
1365 return false;
1366 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1367 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1368 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1369 return MergeableSpills[MIdx].erase(&Spill);
1370}
1371
1372/// Check BB to see if it is a possible target BB to place a hoisted spill,
1373/// i.e., there should be a living sibling of OrigReg at the insert point.
1374bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1375 MachineBasicBlock &BB, Register &LiveReg) {
1376 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1377 // The original def could be after the last insert point in the root block,
1378 // we can't hoist to here.
1379 if (Idx < OrigVNI.def) {
1380 // TODO: We could be better here. If LI is not alive in landing pad
1381 // we could hoist spill after LIP.
1382 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1383 return false;
1384 }
1385 Register OrigReg = OrigLI.reg();
1386 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1387 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1388
1389 for (const Register &SibReg : Siblings) {
1390 LiveInterval &LI = LIS.getInterval(SibReg);
1391 VNInfo *VNI = LI.getVNInfoAt(Idx);
1392 if (VNI) {
1393 LiveReg = SibReg;
1394 return true;
1395 }
1396 }
1397 return false;
1398}
1399
1400/// Remove redundant spills in the same BB. Save those redundant spills in
1401/// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1402void HoistSpillHelper::rmRedundantSpills(
1406 // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1407 // another spill inside. If a BB contains more than one spill, only keep the
1408 // earlier spill with smaller SlotIndex.
1409 for (auto *const CurrentSpill : Spills) {
1410 MachineBasicBlock *Block = CurrentSpill->getParent();
1411 MachineDomTreeNode *Node = MDT.getNode(Block);
1412 MachineInstr *PrevSpill = SpillBBToSpill[Node];
1413 if (PrevSpill) {
1414 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1415 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1416 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1417 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1418 SpillsToRm.push_back(SpillToRm);
1419 SpillBBToSpill[MDT.getNode(Block)] = SpillToKeep;
1420 } else {
1421 SpillBBToSpill[MDT.getNode(Block)] = CurrentSpill;
1422 }
1423 }
1424 for (auto *const SpillToRm : SpillsToRm)
1425 Spills.erase(SpillToRm);
1426}
1427
1428/// Starting from \p Root find a top-down traversal order of the dominator
1429/// tree to visit all basic blocks containing the elements of \p Spills.
1430/// Redundant spills will be found and put into \p SpillsToRm at the same
1431/// time. \p SpillBBToSpill will be populated as part of the process and
1432/// maps a basic block to the first store occurring in the basic block.
1433/// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1434void HoistSpillHelper::getVisitOrders(
1440 // The set contains all the possible BB nodes to which we may hoist
1441 // original spills.
1443 // Save the BB nodes on the path from the first BB node containing
1444 // non-redundant spill to the Root node.
1446 // All the spills to be hoisted must originate from a single def instruction
1447 // to the OrigReg. It means the def instruction should dominate all the spills
1448 // to be hoisted. We choose the BB where the def instruction is located as
1449 // the Root.
1450 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1451 // For every node on the dominator tree with spill, walk up on the dominator
1452 // tree towards the Root node until it is reached. If there is other node
1453 // containing spill in the middle of the path, the previous spill saw will
1454 // be redundant and the node containing it will be removed. All the nodes on
1455 // the path starting from the first node with non-redundant spill to the Root
1456 // node will be added to the WorkSet, which will contain all the possible
1457 // locations where spills may be hoisted to after the loop below is done.
1458 for (auto *const Spill : Spills) {
1459 MachineBasicBlock *Block = Spill->getParent();
1461 MachineInstr *SpillToRm = nullptr;
1462 while (Node != RootIDomNode) {
1463 // If Node dominates Block, and it already contains a spill, the spill in
1464 // Block will be redundant.
1465 if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1466 SpillToRm = SpillBBToSpill[MDT[Block]];
1467 break;
1468 /// If we see the Node already in WorkSet, the path from the Node to
1469 /// the Root node must already be traversed by another spill.
1470 /// Then no need to repeat.
1471 } else if (WorkSet.count(Node)) {
1472 break;
1473 } else {
1474 NodesOnPath.insert(Node);
1475 }
1476 Node = Node->getIDom();
1477 }
1478 if (SpillToRm) {
1479 SpillsToRm.push_back(SpillToRm);
1480 } else {
1481 // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1482 // set the initial status before hoisting start. The value of BBs
1483 // containing original spills is set to 0, in order to descriminate
1484 // with BBs containing hoisted spills which will be inserted to
1485 // SpillsToKeep later during hoisting.
1486 SpillsToKeep[MDT[Block]] = Register();
1487 WorkSet.insert_range(NodesOnPath);
1488 }
1489 NodesOnPath.clear();
1490 }
1491
1492 // Sort the nodes in WorkSet in top-down order and save the nodes
1493 // in Orders. Orders will be used for hoisting in runHoistSpills.
1494 unsigned idx = 0;
1495 Orders.push_back(MDT.getNode(Root));
1496 do {
1497 MachineDomTreeNode *Node = Orders[idx++];
1498 for (MachineDomTreeNode *Child : Node->children()) {
1499 if (WorkSet.count(Child))
1500 Orders.push_back(Child);
1501 }
1502 } while (idx != Orders.size());
1503 assert(Orders.size() == WorkSet.size() &&
1504 "Orders have different size with WorkSet");
1505
1506#ifndef NDEBUG
1507 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1509 for (; RIt != Orders.rend(); RIt++)
1510 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1511 LLVM_DEBUG(dbgs() << "\n");
1512#endif
1513}
1514
1515/// Try to hoist spills according to BB hotness. The spills to removed will
1516/// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1517/// \p SpillsToIns.
1518void HoistSpillHelper::runHoistSpills(
1519 LiveInterval &OrigLI, VNInfo &OrigVNI,
1523 // Visit order of dominator tree nodes.
1525 // SpillsToKeep contains all the nodes where spills are to be inserted
1526 // during hoisting. If the spill to be inserted is an original spill
1527 // (not a hoisted one), the value of the map entry is 0. If the spill
1528 // is a hoisted spill, the value of the map entry is the VReg to be used
1529 // as the source of the spill.
1531 // Map from BB to the first spill inside of it.
1533
1534 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1535
1536 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1537 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1538 SpillBBToSpill);
1539
1540 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1541 // nodes set and the cost of all the spills inside those nodes.
1542 // The nodes set are the locations where spills are to be inserted
1543 // in the subtree of current node.
1544 using NodesCostPair =
1545 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1547
1548 // Iterate Orders set in reverse order, which will be a bottom-up order
1549 // in the dominator tree. Once we visit a dom tree node, we know its
1550 // children have already been visited and the spill locations in the
1551 // subtrees of all the children have been determined.
1553 for (; RIt != Orders.rend(); RIt++) {
1554 MachineBasicBlock *Block = (*RIt)->getBlock();
1555
1556 // If Block contains an original spill, simply continue.
1557 if (auto It = SpillsToKeep.find(*RIt);
1558 It != SpillsToKeep.end() && !It->second) {
1559 auto &SIt = SpillsInSubTreeMap[*RIt];
1560 SIt.first.insert(*RIt);
1561 // Sit.second contains the cost of spill.
1562 SIt.second = MBFI.getBlockFreq(Block);
1563 continue;
1564 }
1565
1566 // Collect spills in subtree of current node (*RIt) to
1567 // SpillsInSubTreeMap[*RIt].first.
1568 for (MachineDomTreeNode *Child : (*RIt)->children()) {
1569 if (!SpillsInSubTreeMap.contains(Child))
1570 continue;
1571 // The stmt:
1572 // "auto &[SpillsInSubTree, SubTreeCost] = SpillsInSubTreeMap[*RIt]"
1573 // below should be placed before getting the begin and end iterators of
1574 // SpillsInSubTreeMap[Child].first, or else the iterators may be
1575 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1576 // and the map grows and then the original buckets in the map are moved.
1577 auto &[SpillsInSubTree, SubTreeCost] = SpillsInSubTreeMap[*RIt];
1578 auto ChildIt = SpillsInSubTreeMap.find(Child);
1579 SubTreeCost += ChildIt->second.second;
1580 auto BI = ChildIt->second.first.begin();
1581 auto EI = ChildIt->second.first.end();
1582 SpillsInSubTree.insert(BI, EI);
1583 SpillsInSubTreeMap.erase(ChildIt);
1584 }
1585
1586 auto &[SpillsInSubTree, SubTreeCost] = SpillsInSubTreeMap[*RIt];
1587 // No spills in subtree, simply continue.
1588 if (SpillsInSubTree.empty())
1589 continue;
1590
1591 // Check whether Block is a possible candidate to insert spill.
1592 Register LiveReg;
1593 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1594 continue;
1595
1596 // If there are multiple spills that could be merged, bias a little
1597 // to hoist the spill.
1598 BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1599 ? BranchProbability(9, 10)
1600 : BranchProbability(1, 1);
1601 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1602 // Hoist: Move spills to current Block.
1603 for (auto *const SpillBB : SpillsInSubTree) {
1604 // When SpillBB is a BB contains original spill, insert the spill
1605 // to SpillsToRm.
1606 if (auto It = SpillsToKeep.find(SpillBB);
1607 It != SpillsToKeep.end() && !It->second) {
1608 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1609 SpillsToRm.push_back(SpillToRm);
1610 }
1611 // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1612 SpillsToKeep.erase(SpillBB);
1613 }
1614 // Current Block is the BB containing the new hoisted spill. Add it to
1615 // SpillsToKeep. LiveReg is the source of the new spill.
1616 SpillsToKeep[*RIt] = LiveReg;
1617 LLVM_DEBUG({
1618 dbgs() << "spills in BB: ";
1619 for (const auto Rspill : SpillsInSubTree)
1620 dbgs() << Rspill->getBlock()->getNumber() << " ";
1621 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1622 << "\n";
1623 });
1624 SpillsInSubTree.clear();
1625 SpillsInSubTree.insert(*RIt);
1626 SubTreeCost = MBFI.getBlockFreq(Block);
1627 }
1628 }
1629 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1630 // save them to SpillsToIns.
1631 for (const auto &Ent : SpillsToKeep) {
1632 if (Ent.second)
1633 SpillsToIns[Ent.first->getBlock()] = Ent.second;
1634 }
1635}
1636
1637/// For spills with equal values, remove redundant spills and hoist those left
1638/// to less hot spots.
1639///
1640/// Spills with equal values will be collected into the same set in
1641/// MergeableSpills when spill is inserted. These equal spills are originated
1642/// from the same defining instruction and are dominated by the instruction.
1643/// Before hoisting all the equal spills, redundant spills inside in the same
1644/// BB are first marked to be deleted. Then starting from the spills left, walk
1645/// up on the dominator tree towards the Root node where the define instruction
1646/// is located, mark the dominated spills to be deleted along the way and
1647/// collect the BB nodes on the path from non-dominated spills to the define
1648/// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1649/// where we are considering to hoist the spills. We iterate the WorkSet in
1650/// bottom-up order, and for each node, we will decide whether to hoist spills
1651/// inside its subtree to that node. In this way, we can get benefit locally
1652/// even if hoisting all the equal spills to one cold place is impossible.
1653void HoistSpillHelper::hoistAllSpills() {
1654 SmallVector<Register, 4> NewVRegs;
1655 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1656
1657 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1659 Register Original = VRM.getPreSplitReg(Reg);
1660 if (!MRI.def_empty(Reg) && Original.isValid())
1661 Virt2SiblingsMap[Original].insert(Reg);
1662 }
1663
1664 // Each entry in MergeableSpills contains a spill set with equal values.
1665 for (auto &Ent : MergeableSpills) {
1666 int Slot = Ent.first.first;
1667 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1668 VNInfo *OrigVNI = Ent.first.second;
1669 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1670 if (Ent.second.empty())
1671 continue;
1672
1673 LLVM_DEBUG({
1674 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1675 << "Equal spills in BB: ";
1676 for (const auto spill : EqValSpills)
1677 dbgs() << spill->getParent()->getNumber() << " ";
1678 dbgs() << "\n";
1679 });
1680
1681 // SpillsToRm is the spill set to be removed from EqValSpills.
1683 // SpillsToIns is the spill set to be newly inserted after hoisting.
1685
1686 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1687
1688 LLVM_DEBUG({
1689 dbgs() << "Finally inserted spills in BB: ";
1690 for (const auto &Ispill : SpillsToIns)
1691 dbgs() << Ispill.first->getNumber() << " ";
1692 dbgs() << "\nFinally removed spills in BB: ";
1693 for (const auto Rspill : SpillsToRm)
1694 dbgs() << Rspill->getParent()->getNumber() << " ";
1695 dbgs() << "\n";
1696 });
1697
1698 // Stack live range update.
1699 LiveInterval &StackIntvl = LSS.getInterval(Slot);
1700 if (!SpillsToIns.empty() || !SpillsToRm.empty())
1701 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1702 StackIntvl.getValNumInfo(0));
1703
1704 // Insert hoisted spills.
1705 for (auto const &Insert : SpillsToIns) {
1706 MachineBasicBlock *BB = Insert.first;
1707 Register LiveReg = Insert.second;
1708 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1709 MachineInstrSpan MIS(MII, BB);
1710 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1711 MRI.getRegClass(LiveReg), &TRI, Register());
1712 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1713 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1714 getVDefInterval(MI, LIS);
1715 ++NumSpills;
1716 }
1717
1718 // Remove redundant spills or change them to dead instructions.
1719 NumSpills -= SpillsToRm.size();
1720 for (auto *const RMEnt : SpillsToRm) {
1721 RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1722 for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1723 MachineOperand &MO = RMEnt->getOperand(i - 1);
1724 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1725 RMEnt->removeOperand(i - 1);
1726 }
1727 }
1728 Edit.eliminateDeadDefs(SpillsToRm, {});
1729 }
1730}
1731
1732/// For VirtReg clone, the \p New register should have the same physreg or
1733/// stackslot as the \p old register.
1734void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1735 if (VRM.hasPhys(Old))
1736 VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1737 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1738 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1739 else
1740 llvm_unreachable("VReg should be assigned either physreg or stackslot");
1741 if (VRM.hasShape(Old))
1742 VRM.assignVirt2Shape(New, VRM.getShape(Old));
1743}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:638
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
static LLVM_DUMP_METHOD void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, LiveIntervals const &LIS, const char *const header, Register VReg=Register())
static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg, const TargetInstrInfo &TII)
Check for a copy bundle as formed by SplitKit.
static bool isRealSpill(const MachineInstr &Def)
Check if Def fully defines a VReg with an undefined value.
static cl::opt< bool > RestrictStatepointRemat("restrict-statepoint-remat", cl::init(false), cl::Hidden, cl::desc("Restrict remat for statepoint operands"))
static Register isCopyOf(const MachineInstr &MI, Register Reg, const TargetInstrInfo &TII)
isFullCopyOf - If MI is a COPY to or from Reg, return the other register, otherwise return 0.
static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS)
Live Register Matrix
#define I(x, y, z)
Definition: MD5.cpp:58
Register const TargetRegisterInfo * TRI
This file implements a map that provides insertion order iteration.
#define P(N)
Basic Register Allocator
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define LLVM_DEBUG(...)
Definition: Debug.h:119
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:67
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:177
bool erase(const KeyT &Val)
Definition: DenseMap.h:319
iterator end()
Definition: DenseMap.h:87
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:168
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:230
Base class for the actual dominator tree node.
iterator_range< iterator > children()
DomTreeNodeBase * getIDom() const
Register getReg() const
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
TargetInstrInfo overrides.
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Store the specified register of the given register class to the specified stack frame index.
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Load the specified register of the given register class from the specified stack frame index.
Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override
If the specified machine instruction is a direct store to a stack slot, return the virtual or physica...
Determines the latest safe point in a block in which we can insert a split, spill or other instructio...
Definition: SplitKit.h:50
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:690
float weight() const
Definition: LiveInterval.h:722
Register reg() const
Definition: LiveInterval.h:721
bool isSpillable() const
isSpillable - Can this interval be spilled?
Definition: LiveInterval.h:829
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI)
SlotIndexes * getSlotIndexes() const
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
VNInfo::Allocator & getVNInfoAllocator()
LiveInterval & getInterval(Register Reg)
void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E)
LLVM_ABI void removePhysRegDefAt(MCRegister Reg, SlotIndex Pos)
Remove value numbers and related live segments starting at position Pos that are part of any liverang...
MachineBasicBlock * getMBBFromIndex(SlotIndex index) const
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
Result of a LiveRange query.
Definition: LiveInterval.h:91
bool isKill() const
Return true if the live-in value is killed by this instruction.
Definition: LiveInterval.h:113
Callback methods for LiveRangeEdit owners.
Definition: LiveRangeEdit.h:45
virtual void LRE_DidCloneVirtReg(Register New, Register Old)
Called after cloning a virtual register.
Definition: LiveRangeEdit.h:63
const LiveInterval & getParent() const
Register getReg() const
VNInfo * getValNumInfo(unsigned ValNo)
getValNumInfo - Returns pointer to the specified val#.
Definition: LiveInterval.h:318
LLVM_ABI void MergeValueInAsValue(const LiveRange &RHS, const VNInfo *RHSValNo, VNInfo *LHSValNo)
MergeValueInAsValue - Merge all of the segments of a specific val# in RHS into this live range as the...
iterator_range< vni_iterator > vnis()
Definition: LiveInterval.h:231
LiveQueryResult Query(SlotIndex Idx) const
Query Liveness at Idx.
Definition: LiveInterval.h:545
VNInfo * getVNInfoBefore(SlotIndex Idx) const
getVNInfoBefore - Return the VNInfo that is live up to but not necessarily including Idx,...
Definition: LiveInterval.h:431
unsigned getNumValNums() const
Definition: LiveInterval.h:314
void assign(const LiveRange &Other, BumpPtrAllocator &Allocator)
Copies values numbers and live segments from Other into this range.
Definition: LiveInterval.h:253
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:423
MIBundleOperands - Iterate over all operands in a bundle of machine instructions.
LLVM_ABI iterator SkipPHIsLabelsAndDebug(iterator I, Register Reg=Register(), bool SkipPseudoOp=true)
Return the first instruction in MBB after I that is not a PHI, label or debug.
Instructions::iterator instr_iterator
Instructions::const_iterator const_instr_iterator
LLVM_ABI instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
iterator_range< pred_iterator > predecessors()
MachineBlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate machine basic b...
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
static const unsigned int DebugOperandMemNumber
A reserved operand number representing the instructions memory operand, for instructions that have a ...
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
MachineInstrSpan provides an interface to get an iteration range containing the instruction it was in...
Representation of each machine instruction.
Definition: MachineInstr.h:72
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:359
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:590
bool isBundledWithPred() const
Return true if this instruction is part of a bundle, and it is not the first instruction in the bundl...
Definition: MachineInstr.h:490
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
bool isBundledWithSucc() const
Return true if this instruction is part of a bundle, and it is not the last instruction in the bundle...
Definition: MachineInstr.h:494
LLVM_ABI unsigned getDebugInstrNum()
Fetch the instruction number of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:595
bool isBundled() const
Return true if this instruction part of a bundle.
Definition: MachineInstr.h:484
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
bool readsReg() const
readsReg - Returns true if this operand reads the previous value of its register.
bool isImplicit() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
LLVM_ABI void setReg(Register Reg)
Change the register this operand corresponds to.
void setIsKill(bool Val=true)
void setIsUndef(bool Val=true)
bool isEarlyClobber() const
Register getReg() const
getReg - Returns the register number.
defusechain_iterator - This class provides iterator support for machine operands in the function that...
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isStack() const
Return true if this is a stack slot.
Definition: Register.h:43
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
Definition: Register.h:67
constexpr bool isValid() const
Definition: Register.h:107
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:66
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
Definition: SlotIndexes.h:177
SlotIndex getBaseIndex() const
Returns the base index for associated with this index.
Definition: SlotIndexes.h:225
SlotIndex getPrevSlot() const
Returns the previous slot in the index list.
Definition: SlotIndexes.h:273
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
Definition: SlotIndexes.h:238
LLVM_ABI void removeSingleMachineInstrFromMaps(MachineInstr &MI)
Removes a single machine instruction MI from the mapping.
size_type size() const
Definition: SmallPtrSet.h:99
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:470
void insert_range(Range &&R)
Definition: SmallPtrSet.h:490
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:356
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:938
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
Spiller interface.
Definition: Spiller.h:33
virtual ~Spiller()=0
virtual ArrayRef< Register > getReplacedRegs()=0
Return registers that were not spilled, but otherwise replaced (e.g.
virtual ArrayRef< Register > getSpilledRegs()=0
Return the registers that were spilled.
virtual void postOptimization()
Definition: Spiller.h:49
virtual void spill(LiveRangeEdit &LRE, AllocationOrder *Order=nullptr)=0
spill - Spill the LRE.getParent() live interval.
Register getReg() const
MI-level Statepoint operands.
Definition: StackMaps.h:159
LLVM_ABI bool isFoldableReg(Register Reg) const
Return true if Reg is used only in operands which can be folded to stack usage.
Definition: StackMaps.cpp:148
TargetInstrInfo - Interface to description of machine instruction set.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
VNInfo - Value Number Information.
Definition: LiveInterval.h:54
bool isUnused() const
Returns true if this value is unused.
Definition: LiveInterval.h:82
unsigned id
The ID number of this value.
Definition: LiveInterval.h:59
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:62
bool isPHIDef() const
Returns true if this value is defined by a PHI instruction (or was, PHI instructions may have been el...
Definition: LiveInterval.h:79
Calculate auxiliary information for a virtual register such as its spill weight and allocation hint.
static constexpr int NO_STACK_SLOT
Definition: VirtRegMap.h:66
self_iterator getIterator()
Definition: ilist_node.h:134
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI PhysRegInfo AnalyzePhysRegInBundle(const MachineInstr &MI, Register Reg, const TargetRegisterInfo *TRI)
AnalyzePhysRegInBundle - Analyze how the current instruction or bundle uses a physical register.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:663
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
LLVM_ABI VirtRegInfo AnalyzeVirtRegInBundle(MachineInstr &MI, Register Reg, SmallVectorImpl< std::pair< MachineInstr *, unsigned > > *Ops=nullptr)
AnalyzeVirtRegInBundle - Analyze how the current instruction or bundle uses a virtual register.
unsigned getKillRegState(bool B)
Spiller * createInlineSpiller(const Spiller::RequiredAnalyses &Analyses, MachineFunction &MF, VirtRegMap &VRM, VirtRegAuxInfo &VRAI, LiveRegMatrix *Matrix=nullptr)
Create and return a spiller that will insert spill code directly instead of deferring though VirtRegM...
LLVM_ABI MachineInstr * buildDbgValueForSpill(MachineBasicBlock &BB, MachineBasicBlock::iterator I, const MachineInstr &Orig, int FrameIndex, Register SpillReg)
Clone a DBG_VALUE whose value has been spilled to FrameIndex.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1916
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
Remat - Information needed to rematerialize at a specific location.
Information about how a physical register Reg is used by a set of operands.
bool FullyDefined
Reg or a super-register is defined.
VirtRegInfo - Information about a virtual register used by a set of operands.
bool Reads
Reads - One of the operands read the virtual register.
bool Tied
Tied - Uses and defs must use the same register.
bool Writes
Writes - One of the operands writes the virtual register.