39#define DEBUG_TYPE "instcombine"
47 bool IsSigned =
false) {
50 Result = In1.
sadd_ov(In2, Overflow);
52 Result = In1.
uadd_ov(In2, Overflow);
60 bool IsSigned =
false) {
63 Result = In1.
ssub_ov(In2, Overflow);
65 Result = In1.
usub_ov(In2, Overflow);
73 for (
auto *U :
I.users())
95 }
else if (
C.isAllOnes()) {
116 if (LI->
isVolatile() || !GV || !GV->isConstant() ||
117 !GV->hasDefinitiveInitializer())
121 TypeSize EltSize =
DL.getTypeStoreSize(EltTy);
137 if (!ConstOffset.
ult(Stride))
151 enum { Overdefined = -3, Undefined = -2 };
160 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
164 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
172 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
182 for (
unsigned i = 0, e = ArrayElementCount; i != e; ++i,
Offset += Stride) {
196 CompareRHS,
DL, &
TLI);
204 if (TrueRangeEnd == (
int)i - 1)
206 if (FalseRangeEnd == (
int)i - 1)
223 if (FirstTrueElement == Undefined)
224 FirstTrueElement = TrueRangeEnd = i;
227 if (SecondTrueElement == Undefined)
228 SecondTrueElement = i;
230 SecondTrueElement = Overdefined;
233 if (TrueRangeEnd == (
int)i - 1)
236 TrueRangeEnd = Overdefined;
240 if (FirstFalseElement == Undefined)
241 FirstFalseElement = FalseRangeEnd = i;
244 if (SecondFalseElement == Undefined)
245 SecondFalseElement = i;
247 SecondFalseElement = Overdefined;
250 if (FalseRangeEnd == (
int)i - 1)
253 FalseRangeEnd = Overdefined;
258 if (i < 64 && IsTrueForElt)
259 MagicBitvector |= 1ULL << i;
264 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
265 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
266 FalseRangeEnd == Overdefined)
280 auto MaskIdx = [&](
Value *Idx) {
284 Idx =
Builder.CreateAnd(Idx, Mask);
291 if (SecondTrueElement != Overdefined) {
294 if (FirstTrueElement == Undefined)
297 Value *FirstTrueIdx = ConstantInt::get(Idx->
getType(), FirstTrueElement);
300 if (SecondTrueElement == Undefined)
305 Value *SecondTrueIdx = ConstantInt::get(Idx->
getType(), SecondTrueElement);
307 return BinaryOperator::CreateOr(C1, C2);
312 if (SecondFalseElement != Overdefined) {
315 if (FirstFalseElement == Undefined)
318 Value *FirstFalseIdx = ConstantInt::get(Idx->
getType(), FirstFalseElement);
321 if (SecondFalseElement == Undefined)
326 Value *SecondFalseIdx =
327 ConstantInt::get(Idx->
getType(), SecondFalseElement);
329 return BinaryOperator::CreateAnd(C1, C2);
334 if (TrueRangeEnd != Overdefined) {
335 assert(TrueRangeEnd != FirstTrueElement &&
"Should emit single compare");
339 if (FirstTrueElement) {
340 Value *Offs = ConstantInt::get(Idx->
getType(), -FirstTrueElement);
341 Idx =
Builder.CreateAdd(Idx, Offs);
345 ConstantInt::get(Idx->
getType(), TrueRangeEnd - FirstTrueElement + 1);
350 if (FalseRangeEnd != Overdefined) {
351 assert(FalseRangeEnd != FirstFalseElement &&
"Should emit single compare");
354 if (FirstFalseElement) {
355 Value *Offs = ConstantInt::get(Idx->
getType(), -FirstFalseElement);
356 Idx =
Builder.CreateAdd(Idx, Offs);
360 ConstantInt::get(Idx->
getType(), FalseRangeEnd - FirstFalseElement);
373 if (ArrayElementCount <= Idx->
getType()->getIntegerBitWidth())
376 Ty =
DL.getSmallestLegalIntType(
Init->getContext(), ArrayElementCount);
381 V =
Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
382 V =
Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
407 while (!WorkList.
empty()) {
410 while (!WorkList.
empty()) {
411 if (Explored.
size() >= 100)
429 if (!
GEP->isInBounds() ||
count_if(
GEP->indices(), IsNonConst) > 1)
437 if (WorkList.
back() == V) {
453 for (
auto *PN : PHIs)
454 for (
Value *
Op : PN->incoming_values())
462 for (
Value *Val : Explored) {
468 if (Inst ==
Base || Inst ==
PHI || !Inst || !
PHI ||
472 if (
PHI->getParent() == Inst->getParent())
482 bool Before =
true) {
490 I = &*std::next(
I->getIterator());
491 Builder.SetInsertPoint(
I);
496 BasicBlock &Entry =
A->getParent()->getEntryBlock();
497 Builder.SetInsertPoint(&Entry, Entry.getFirstInsertionPt());
519 Base->getContext(),
DL.getIndexTypeSizeInBits(Start->getType()));
525 for (
Value *Val : Explored) {
533 PHI->getName() +
".idx",
PHI->getIterator());
538 for (
Value *Val : Explored) {
547 NewInsts[
GEP] = OffsetV;
549 NewInsts[
GEP] = Builder.CreateAdd(
550 Op, OffsetV,
GEP->getOperand(0)->getName() +
".add",
562 for (
Value *Val : Explored) {
569 for (
unsigned I = 0,
E =
PHI->getNumIncomingValues();
I <
E; ++
I) {
570 Value *NewIncoming =
PHI->getIncomingValue(
I);
572 auto It = NewInsts.
find(NewIncoming);
573 if (It != NewInsts.
end())
574 NewIncoming = It->second;
581 for (
Value *Val : Explored) {
587 Value *NewVal = Builder.CreateGEP(Builder.getInt8Ty(),
Base, NewInsts[Val],
588 Val->getName() +
".ptr", NW);
595 return NewInsts[Start];
681 if (
Base.Ptr == RHS && CanFold(
Base.LHSNW) && !
Base.isExpensive()) {
685 EmitGEPOffsets(
Base.LHSGEPs,
Base.LHSNW, IdxTy,
true);
693 RHS->getType()->getPointerAddressSpace())) {
724 if (GEPLHS->
getOperand(0) != GEPRHS->getOperand(0)) {
725 bool IndicesTheSame =
728 GEPRHS->getPointerOperand()->getType() &&
732 if (GEPLHS->
getOperand(i) != GEPRHS->getOperand(i)) {
733 IndicesTheSame =
false;
739 if (IndicesTheSame &&
747 if (GEPLHS->
isInBounds() && GEPRHS->isInBounds() &&
749 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
753 Value *LOffset = EmitGEPOffset(GEPLHS);
754 Value *ROffset = EmitGEPOffset(GEPRHS);
761 if (LHSIndexTy != RHSIndexTy) {
764 ROffset =
Builder.CreateTrunc(ROffset, LHSIndexTy);
766 LOffset =
Builder.CreateTrunc(LOffset, RHSIndexTy);
775 if (GEPLHS->
getOperand(0) == GEPRHS->getOperand(0) &&
779 unsigned NumDifferences = 0;
780 unsigned DiffOperand = 0;
781 for (
unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
782 if (GEPLHS->
getOperand(i) != GEPRHS->getOperand(i)) {
784 Type *RHSType = GEPRHS->getOperand(i)->getType();
795 if (NumDifferences++)
800 if (NumDifferences == 0)
808 Value *RHSV = GEPRHS->getOperand(DiffOperand);
809 return NewICmp(NW, LHSV, RHSV);
817 EmitGEPOffsets(
Base.LHSGEPs,
Base.LHSNW, IdxTy,
true);
819 EmitGEPOffsets(
Base.RHSGEPs,
Base.RHSNW, IdxTy,
true);
820 return NewICmp(
Base.LHSNW &
Base.RHSNW, L, R);
846 bool Captured =
false;
851 CmpCaptureTracker(
AllocaInst *Alloca) : Alloca(Alloca) {}
853 void tooManyUses()
override { Captured =
true; }
865 ICmps[ICmp] |= 1u << U->getOperandNo();
874 CmpCaptureTracker Tracker(Alloca);
876 if (Tracker.Captured)
880 for (
auto [ICmp,
Operands] : Tracker.ICmps) {
886 auto *Res = ConstantInt::get(ICmp->getType(),
912 assert(!!
C &&
"C should not be zero!");
928 ConstantInt::get(
X->getType(), -
C));
940 ConstantInt::get(
X->getType(),
SMax -
C));
951 ConstantInt::get(
X->getType(),
SMax - (
C - 1)));
960 assert(
I.isEquality() &&
"Cannot fold icmp gt/lt");
963 if (
I.getPredicate() ==
I.ICMP_NE)
965 return new ICmpInst(Pred, LHS, RHS);
984 return getICmp(
I.ICMP_UGT,
A,
985 ConstantInt::get(
A->getType(), AP2.
logBase2()));
997 if (IsAShr && AP1 == AP2.
ashr(Shift)) {
1001 return getICmp(
I.ICMP_UGE,
A, ConstantInt::get(
A->getType(), Shift));
1002 return getICmp(
I.ICMP_EQ,
A, ConstantInt::get(
A->getType(), Shift));
1003 }
else if (AP1 == AP2.
lshr(Shift)) {
1004 return getICmp(
I.ICMP_EQ,
A, ConstantInt::get(
A->getType(), Shift));
1010 auto *TorF = ConstantInt::get(
I.getType(),
I.getPredicate() ==
I.ICMP_NE);
1019 assert(
I.isEquality() &&
"Cannot fold icmp gt/lt");
1022 if (
I.getPredicate() ==
I.ICMP_NE)
1024 return new ICmpInst(Pred, LHS, RHS);
1033 if (!AP1 && AP2TrailingZeros != 0)
1036 ConstantInt::get(
A->getType(), AP2.
getBitWidth() - AP2TrailingZeros));
1044 if (Shift > 0 && AP2.
shl(Shift) == AP1)
1045 return getICmp(
I.ICMP_EQ,
A, ConstantInt::get(
A->getType(), Shift));
1049 auto *TorF = ConstantInt::get(
I.getType(),
I.getPredicate() ==
I.ICMP_NE);
1078 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1102 if (U == AddWithCst)
1120 I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1128 Value *TruncA = Builder.CreateTrunc(
A, NewType,
A->getName() +
".trunc");
1129 Value *TruncB = Builder.CreateTrunc(
B, NewType,
B->getName() +
".trunc");
1130 CallInst *
Call = Builder.CreateCall(
F, {TruncA, TruncB},
"sadd");
1131 Value *
Add = Builder.CreateExtractValue(
Call, 0,
"sadd.result");
1149 if (!
I.isEquality())
1180 APInt(XBitWidth, XBitWidth - 1))))
1207 return new ICmpInst(Pred,
B, Cmp.getOperand(1));
1209 return new ICmpInst(Pred,
A, Cmp.getOperand(1));
1226 return new ICmpInst(Pred,
X, Cmp.getOperand(1));
1238 return new ICmpInst(Pred,
Y, Cmp.getOperand(1));
1244 return new ICmpInst(Pred,
X, Cmp.getOperand(1));
1247 if (BO0->hasNoUnsignedWrap() || BO0->hasNoSignedWrap()) {
1255 return new ICmpInst(Pred,
Y, Cmp.getOperand(1));
1260 return new ICmpInst(Pred,
X, Cmp.getOperand(1));
1276 return new ICmpInst(Pred, Stripped,
1289 const APInt *Mask, *Neg;
1305 auto *NewAnd =
Builder.CreateAnd(Num, *Mask);
1308 return new ICmpInst(Pred, NewAnd, Zero);
1329 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1343 if (
all_of(Phi->operands(), [](
Value *V) { return isa<Constant>(V); })) {
1345 for (
Value *V : Phi->incoming_values()) {
1353 PHINode *NewPhi =
Builder.CreatePHI(Cmp.getType(), Phi->getNumOperands());
1354 for (
auto [V, Pred] :
zip(
Ops, Phi->blocks()))
1369 Value *
X = Cmp.getOperand(0), *
Y = Cmp.getOperand(1);
1402 if (Cmp.isEquality() || (IsSignBit &&
hasBranchUse(Cmp)))
1407 if (Cmp.hasOneUse() &&
1421 if (!
match(BI->getCondition(),
1426 if (
DT.dominates(Edge0, Cmp.getParent())) {
1427 if (
auto *V = handleDomCond(DomPred, DomC))
1431 if (
DT.dominates(Edge1, Cmp.getParent()))
1447 Type *SrcTy =
X->getType();
1449 SrcBits = SrcTy->getScalarSizeInBits();
1453 if (shouldChangeType(Trunc->
getType(), SrcTy)) {
1455 return new ICmpInst(Pred,
X, ConstantInt::get(SrcTy,
C.sext(SrcBits)));
1457 return new ICmpInst(Pred,
X, ConstantInt::get(SrcTy,
C.zext(SrcBits)));
1460 if (
C.isOne() &&
C.getBitWidth() > 1) {
1465 ConstantInt::get(V->getType(), 1));
1475 auto NewPred = (Pred == Cmp.ICMP_EQ) ? Cmp.ICMP_UGE : Cmp.ICMP_ULT;
1476 return new ICmpInst(NewPred,
Y, ConstantInt::get(SrcTy, DstBits));
1481 return new ICmpInst(Pred,
Y, ConstantInt::get(SrcTy,
C.logBase2()));
1484 if (Cmp.isEquality() && Trunc->
hasOneUse()) {
1487 if (!SrcTy->isVectorTy() && shouldChangeType(DstBits, SrcBits)) {
1491 Constant *WideC = ConstantInt::get(SrcTy,
C.zext(SrcBits));
1500 if ((Known.
Zero | Known.
One).countl_one() >= SrcBits - DstBits) {
1502 APInt NewRHS =
C.zext(SrcBits);
1504 return new ICmpInst(Pred,
X, ConstantInt::get(SrcTy, NewRHS));
1516 DstBits == SrcBits - ShAmt) {
1533 bool YIsSExt =
false;
1536 unsigned NoWrapFlags =
cast<TruncInst>(Cmp.getOperand(0))->getNoWrapKind() &
1538 if (Cmp.isSigned()) {
1549 if (
X->getType() !=
Y->getType() &&
1550 (!Cmp.getOperand(0)->hasOneUse() || !Cmp.getOperand(1)->hasOneUse()))
1552 if (!isDesirableIntType(
X->getType()->getScalarSizeInBits()) &&
1553 isDesirableIntType(
Y->getType()->getScalarSizeInBits())) {
1555 Pred = Cmp.getSwappedPredicate(Pred);
1560 else if (!Cmp.isSigned() &&
1574 Type *TruncTy = Cmp.getOperand(0)->getType();
1579 if (isDesirableIntType(TruncBits) &&
1580 !isDesirableIntType(
X->getType()->getScalarSizeInBits()))
1603 bool TrueIfSigned =
false;
1620 if (
Xor->hasOneUse()) {
1622 if (!Cmp.isEquality() && XorC->
isSignMask()) {
1623 Pred = Cmp.getFlippedSignednessPredicate();
1624 return new ICmpInst(Pred,
X, ConstantInt::get(
X->getType(),
C ^ *XorC));
1629 Pred = Cmp.getFlippedSignednessPredicate();
1630 Pred = Cmp.getSwappedPredicate(Pred);
1631 return new ICmpInst(Pred,
X, ConstantInt::get(
X->getType(),
C ^ *XorC));
1638 if (*XorC == ~
C && (
C + 1).isPowerOf2())
1641 if (*XorC ==
C && (
C + 1).isPowerOf2())
1646 if (*XorC == -
C &&
C.isPowerOf2())
1648 ConstantInt::get(
X->getType(), ~
C));
1650 if (*XorC ==
C && (-
C).isPowerOf2())
1652 ConstantInt::get(
X->getType(), ~
C));
1674 const APInt *ShiftC;
1679 Type *XType =
X->getType();
1685 return new ICmpInst(Pred,
Add, ConstantInt::get(XType, Bound));
1694 if (!Shift || !Shift->
isShift())
1702 unsigned ShiftOpcode = Shift->
getOpcode();
1703 bool IsShl = ShiftOpcode == Instruction::Shl;
1706 APInt NewAndCst, NewCmpCst;
1707 bool AnyCmpCstBitsShiftedOut;
1708 if (ShiftOpcode == Instruction::Shl) {
1716 NewCmpCst = C1.
lshr(*C3);
1717 NewAndCst = C2.
lshr(*C3);
1718 AnyCmpCstBitsShiftedOut = NewCmpCst.
shl(*C3) != C1;
1719 }
else if (ShiftOpcode == Instruction::LShr) {
1724 NewCmpCst = C1.
shl(*C3);
1725 NewAndCst = C2.
shl(*C3);
1726 AnyCmpCstBitsShiftedOut = NewCmpCst.
lshr(*C3) != C1;
1732 assert(ShiftOpcode == Instruction::AShr &&
"Unknown shift opcode");
1733 NewCmpCst = C1.
shl(*C3);
1734 NewAndCst = C2.
shl(*C3);
1735 AnyCmpCstBitsShiftedOut = NewCmpCst.
ashr(*C3) != C1;
1736 if (NewAndCst.
ashr(*C3) != C2)
1740 if (AnyCmpCstBitsShiftedOut) {
1750 Shift->
getOperand(0), ConstantInt::get(
And->getType(), NewAndCst));
1751 return new ICmpInst(Cmp.getPredicate(), NewAnd,
1752 ConstantInt::get(
And->getType(), NewCmpCst));
1769 return new ICmpInst(Cmp.getPredicate(), NewAnd, Cmp.getOperand(1));
1784 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.
isZero() &&
1786 return new TruncInst(
And->getOperand(0), Cmp.getType());
1797 ConstantInt::get(
X->getType(), ~*C2));
1802 ConstantInt::get(
X->getType(), -*C2));
1805 if (!
And->hasOneUse())
1808 if (Cmp.isEquality() && C1.
isZero()) {
1826 Constant *NegBOC = ConstantInt::get(
And->getType(), -NewC2);
1828 return new ICmpInst(NewPred,
X, NegBOC);
1846 if (!Cmp.getType()->isVectorTy()) {
1847 Type *WideType = W->getType();
1849 Constant *ZextC1 = ConstantInt::get(WideType, C1.
zext(WideScalarBits));
1850 Constant *ZextC2 = ConstantInt::get(WideType, C2->
zext(WideScalarBits));
1852 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1863 if (!Cmp.isSigned() && C1.
isZero() &&
And->getOperand(0)->hasOneUse() &&
1870 unsigned UsesRemoved = 0;
1871 if (
And->hasOneUse())
1873 if (
Or->hasOneUse())
1880 if (UsesRemoved >= RequireUsesRemoved) {
1884 One,
Or->getName());
1886 return new ICmpInst(Cmp.getPredicate(), NewAnd, Cmp.getOperand(1));
1900 if (!Cmp.getParent()->getParent()->hasFnAttribute(
1901 Attribute::NoImplicitFloat) &&
1904 Type *FPType = V->getType()->getScalarType();
1905 if (FPType->isIEEELikeFPTy() && (C1.
isZero() || C1 == *C2)) {
1906 APInt ExponentMask =
1908 if (*C2 == ExponentMask) {
1909 unsigned Mask = C1.
isZero()
1943 Constant *MinSignedC = ConstantInt::get(
1947 return new ICmpInst(NewPred,
X, MinSignedC);
1962 if (!Cmp.isEquality())
1968 if (Cmp.getOperand(1) ==
Y &&
C.isNegatedPowerOf2()) {
1979 X->getType()->isIntOrIntVectorTy(1) && (
C.isZero() ||
C.isOne())) {
1985 return BinaryOperator::CreateAnd(TruncY,
X);
2003 const APInt *Addend, *Msk;
2007 APInt NewComperand = (
C - *Addend) & *Msk;
2008 Value *MaskA =
Builder.CreateAnd(
A, ConstantInt::get(
A->getType(), *Msk));
2010 ConstantInt::get(MaskA->
getType(), NewComperand));
2032 while (!WorkList.
empty()) {
2033 auto MatchOrOperatorArgument = [&](
Value *OrOperatorArgument) {
2036 if (
match(OrOperatorArgument,
2042 if (
match(OrOperatorArgument,
2052 Value *OrOperatorLhs, *OrOperatorRhs;
2054 if (!
match(CurrentValue,
2059 MatchOrOperatorArgument(OrOperatorRhs);
2060 MatchOrOperatorArgument(OrOperatorLhs);
2065 Value *LhsCmp = Builder.CreateICmp(Pred, CmpValues.
rbegin()->first,
2066 CmpValues.
rbegin()->second);
2068 for (
auto It = CmpValues.
rbegin() + 1; It != CmpValues.
rend(); ++It) {
2069 Value *RhsCmp = Builder.CreateICmp(Pred, It->first, It->second);
2070 LhsCmp = Builder.CreateBinOp(BOpc, LhsCmp, RhsCmp);
2086 ConstantInt::get(V->getType(), 1));
2089 Value *OrOp0 =
Or->getOperand(0), *OrOp1 =
Or->getOperand(1);
2096 Builder.CreateXor(OrOp1, ConstantInt::get(OrOp1->getType(),
C));
2097 return new ICmpInst(Pred, OrOp0, NewC);
2101 if (
match(OrOp1,
m_APInt(MaskC)) && Cmp.isEquality()) {
2102 if (*MaskC ==
C && (
C + 1).isPowerOf2()) {
2107 return new ICmpInst(Pred, OrOp0, OrOp1);
2114 if (
Or->hasOneUse()) {
2116 Constant *NewC = ConstantInt::get(
Or->getType(),
C ^ (*MaskC));
2128 Constant *NewC = ConstantInt::get(
X->getType(), TrueIfSigned ? 1 : 0);
2156 if (!Cmp.isEquality() || !
C.isZero() || !
Or->hasOneUse())
2188 if (Cmp.isEquality() &&
C.isZero() &&
X ==
Mul->getOperand(1) &&
2189 (
Mul->hasNoUnsignedWrap() ||
Mul->hasNoSignedWrap()))
2211 if (Cmp.isEquality()) {
2213 if (
Mul->hasNoSignedWrap() &&
C.srem(*MulC).isZero()) {
2214 Constant *NewC = ConstantInt::get(MulTy,
C.sdiv(*MulC));
2222 if (
C.urem(*MulC).isZero()) {
2225 if ((*MulC & 1).isOne() ||
Mul->hasNoUnsignedWrap()) {
2226 Constant *NewC = ConstantInt::get(MulTy,
C.udiv(*MulC));
2239 if (
C.isMinSignedValue() && MulC->
isAllOnes())
2245 NewC = ConstantInt::get(
2249 "Unexpected predicate");
2250 NewC = ConstantInt::get(
2255 NewC = ConstantInt::get(
2259 "Unexpected predicate");
2260 NewC = ConstantInt::get(
2265 return NewC ?
new ICmpInst(Pred,
X, NewC) :
nullptr;
2277 unsigned TypeBits =
C.getBitWidth();
2279 if (Cmp.isUnsigned()) {
2299 return new ICmpInst(Pred,
Y, ConstantInt::get(ShiftType, CLog2));
2300 }
else if (Cmp.isSigned() && C2->
isOne()) {
2301 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2322 const APInt *ShiftVal;
2352 const APInt *ShiftAmt;
2358 unsigned TypeBits =
C.getBitWidth();
2359 if (ShiftAmt->
uge(TypeBits))
2371 APInt ShiftedC =
C.ashr(*ShiftAmt);
2372 return new ICmpInst(Pred,
X, ConstantInt::get(ShType, ShiftedC));
2375 C.ashr(*ShiftAmt).shl(*ShiftAmt) ==
C) {
2376 APInt ShiftedC =
C.ashr(*ShiftAmt);
2377 return new ICmpInst(Pred,
X, ConstantInt::get(ShType, ShiftedC));
2384 assert(!
C.isMinSignedValue() &&
"Unexpected icmp slt");
2385 APInt ShiftedC = (
C - 1).ashr(*ShiftAmt) + 1;
2386 return new ICmpInst(Pred,
X, ConstantInt::get(ShType, ShiftedC));
2396 APInt ShiftedC =
C.lshr(*ShiftAmt);
2397 return new ICmpInst(Pred,
X, ConstantInt::get(ShType, ShiftedC));
2400 C.lshr(*ShiftAmt).shl(*ShiftAmt) ==
C) {
2401 APInt ShiftedC =
C.lshr(*ShiftAmt);
2402 return new ICmpInst(Pred,
X, ConstantInt::get(ShType, ShiftedC));
2409 assert(
C.ugt(0) &&
"ult 0 should have been eliminated");
2410 APInt ShiftedC = (
C - 1).lshr(*ShiftAmt) + 1;
2411 return new ICmpInst(Pred,
X, ConstantInt::get(ShType, ShiftedC));
2415 if (Cmp.isEquality() && Shl->
hasOneUse()) {
2421 Constant *LShrC = ConstantInt::get(ShType,
C.lshr(*ShiftAmt));
2426 bool TrueIfSigned =
false;
2438 if (Cmp.isUnsigned() && Shl->
hasOneUse()) {
2440 if ((
C + 1).isPowerOf2() &&
2448 if (
C.isPowerOf2() &&
2478 Pred, ConstantInt::get(ShType->
getContext(),
C))) {
2479 CmpPred = FlippedStrictness->first;
2487 ConstantInt::get(TruncTy, RHSC.
ashr(*ShiftAmt).
trunc(TypeBits - Amt));
2489 Builder.CreateTrunc(
X, TruncTy,
"",
false,
2506 if (Cmp.isEquality() && Shr->
isExact() &&
C.isZero())
2507 return new ICmpInst(Pred,
X, Cmp.getOperand(1));
2509 bool IsAShr = Shr->
getOpcode() == Instruction::AShr;
2510 const APInt *ShiftValC;
2512 if (Cmp.isEquality())
2530 assert(ShiftValC->
uge(
C) &&
"Expected simplify of compare");
2531 assert((IsUGT || !
C.isZero()) &&
"Expected X u< 0 to simplify");
2533 unsigned CmpLZ = IsUGT ?
C.countl_zero() : (
C - 1).
countl_zero();
2541 const APInt *ShiftAmtC;
2547 unsigned TypeBits =
C.getBitWidth();
2549 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2552 bool IsExact = Shr->
isExact();
2560 (
C - 1).isPowerOf2() &&
C.countLeadingZeros() > ShAmtVal) {
2566 APInt ShiftedC = (
C - 1).shl(ShAmtVal) + 1;
2567 return new ICmpInst(Pred,
X, ConstantInt::get(ShrTy, ShiftedC));
2573 APInt ShiftedC =
C.shl(ShAmtVal);
2574 if (ShiftedC.
ashr(ShAmtVal) ==
C)
2575 return new ICmpInst(Pred,
X, ConstantInt::get(ShrTy, ShiftedC));
2579 APInt ShiftedC = (
C + 1).shl(ShAmtVal) - 1;
2580 if (!
C.isMaxSignedValue() && !(
C + 1).shl(ShAmtVal).isMinSignedValue() &&
2581 (ShiftedC + 1).ashr(ShAmtVal) == (
C + 1))
2582 return new ICmpInst(Pred,
X, ConstantInt::get(ShrTy, ShiftedC));
2588 APInt ShiftedC = (
C + 1).shl(ShAmtVal) - 1;
2589 if ((ShiftedC + 1).ashr(ShAmtVal) == (
C + 1) ||
2590 (
C + 1).shl(ShAmtVal).isMinSignedValue())
2591 return new ICmpInst(Pred,
X, ConstantInt::get(ShrTy, ShiftedC));
2598 if (
C.getBitWidth() > 2 &&
C.getNumSignBits() <= ShAmtVal) {
2608 }
else if (!IsAShr) {
2612 APInt ShiftedC =
C.shl(ShAmtVal);
2613 if (ShiftedC.
lshr(ShAmtVal) ==
C)
2614 return new ICmpInst(Pred,
X, ConstantInt::get(ShrTy, ShiftedC));
2618 APInt ShiftedC = (
C + 1).shl(ShAmtVal) - 1;
2619 if ((ShiftedC + 1).lshr(ShAmtVal) == (
C + 1))
2620 return new ICmpInst(Pred,
X, ConstantInt::get(ShrTy, ShiftedC));
2624 if (!Cmp.isEquality())
2632 assert(((IsAShr &&
C.shl(ShAmtVal).ashr(ShAmtVal) ==
C) ||
2633 (!IsAShr &&
C.shl(ShAmtVal).lshr(ShAmtVal) ==
C)) &&
2634 "Expected icmp+shr simplify did not occur.");
2639 return new ICmpInst(Pred,
X, ConstantInt::get(ShrTy,
C << ShAmtVal));
2645 ConstantInt::get(ShrTy, (
C + 1).shl(ShAmtVal)));
2648 ConstantInt::get(ShrTy, (
C + 1).shl(ShAmtVal) - 1));
2655 Constant *Mask = ConstantInt::get(ShrTy, Val);
2657 return new ICmpInst(Pred,
And, ConstantInt::get(ShrTy,
C << ShAmtVal));
2674 const APInt *DivisorC;
2681 "ult X, 0 should have been simplified already.");
2687 "srem X, 0 should have been simplified already.");
2688 if (!NormalizedC.
uge(DivisorC->
abs() - 1))
2711 const APInt *DivisorC;
2720 !
C.isStrictlyPositive()))
2726 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2730 return new ICmpInst(Pred,
And, ConstantInt::get(Ty,
C));
2757 assert(*C2 != 0 &&
"udiv 0, X should have been simplified already.");
2762 "icmp ugt X, UINT_MAX should have been simplified already.");
2764 ConstantInt::get(Ty, C2->
udiv(
C + 1)));
2769 assert(
C != 0 &&
"icmp ult X, 0 should have been simplified already.");
2771 ConstantInt::get(Ty, C2->
udiv(
C)));
2785 bool DivIsSigned = Div->
getOpcode() == Instruction::SDiv;
2795 if (Cmp.isEquality() && Div->
hasOneUse() &&
C.isSignBitSet() &&
2796 (!DivIsSigned ||
C.isMinSignedValue())) {
2797 Value *XBig =
Builder.CreateICmp(Pred,
X, ConstantInt::get(Ty,
C));
2798 Value *YOne =
Builder.CreateICmp(Pred,
Y, ConstantInt::get(Ty, 1));
2821 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2840 bool ProdOV = (DivIsSigned ? Prod.
sdiv(*C2) : Prod.
udiv(*C2)) !=
C;
2853 int LoOverflow = 0, HiOverflow = 0;
2854 APInt LoBound, HiBound;
2859 HiOverflow = LoOverflow = ProdOV;
2868 LoBound = -(RangeSize - 1);
2869 HiBound = RangeSize;
2870 }
else if (
C.isStrictlyPositive()) {
2872 HiOverflow = LoOverflow = ProdOV;
2878 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2880 APInt DivNeg = -RangeSize;
2881 LoOverflow =
addWithOverflow(LoBound, HiBound, DivNeg,
true) ? -1 : 0;
2889 LoBound = RangeSize + 1;
2890 HiBound = -RangeSize;
2891 if (HiBound == *C2) {
2895 }
else if (
C.isStrictlyPositive()) {
2898 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2904 LoOverflow = HiOverflow = ProdOV;
2917 if (LoOverflow && HiOverflow)
2921 X, ConstantInt::get(Ty, LoBound));
2924 X, ConstantInt::get(Ty, HiBound));
2928 if (LoOverflow && HiOverflow)
2932 X, ConstantInt::get(Ty, LoBound));
2935 X, ConstantInt::get(Ty, HiBound));
2940 if (LoOverflow == +1)
2942 if (LoOverflow == -1)
2944 return new ICmpInst(Pred,
X, ConstantInt::get(Ty, LoBound));
2947 if (HiOverflow == +1)
2949 if (HiOverflow == -1)
2979 bool HasNSW =
Sub->hasNoSignedWrap();
2980 bool HasNUW =
Sub->hasNoUnsignedWrap();
2982 ((Cmp.isUnsigned() && HasNUW) || (Cmp.isSigned() && HasNSW)) &&
2984 return new ICmpInst(SwappedPred,
Y, ConstantInt::get(Ty, SubResult));
2992 if (Cmp.isEquality() &&
C.isZero() &&
2993 none_of((
Sub->users()), [](
const User *U) { return isa<PHINode>(U); }))
3001 if (!
Sub->hasOneUse())
3004 if (
Sub->hasNoSignedWrap()) {
3028 (*C2 & (
C - 1)) == (
C - 1))
3041 return new ICmpInst(SwappedPred,
Add, ConstantInt::get(Ty, ~
C));
3047 auto FoldConstant = [&](
bool Val) {
3048 Constant *Res = Val ? Builder.getTrue() : Builder.getFalse();
3055 switch (Table.to_ulong()) {
3057 return FoldConstant(
false);
3059 return HasOneUse ? Builder.CreateNot(Builder.CreateOr(Op0, Op1)) :
nullptr;
3061 return HasOneUse ? Builder.CreateAnd(Builder.CreateNot(Op0), Op1) :
nullptr;
3063 return Builder.CreateNot(Op0);
3065 return HasOneUse ? Builder.CreateAnd(Op0, Builder.CreateNot(Op1)) :
nullptr;
3067 return Builder.CreateNot(Op1);
3069 return Builder.CreateXor(Op0, Op1);
3071 return HasOneUse ? Builder.CreateNot(Builder.CreateAnd(Op0, Op1)) :
nullptr;
3073 return Builder.CreateAnd(Op0, Op1);
3075 return HasOneUse ? Builder.CreateNot(Builder.CreateXor(Op0, Op1)) :
nullptr;
3079 return HasOneUse ? Builder.CreateOr(Builder.CreateNot(Op0), Op1) :
nullptr;
3083 return HasOneUse ? Builder.CreateOr(Op0, Builder.CreateNot(Op1)) :
nullptr;
3085 return Builder.CreateOr(Op0, Op1);
3087 return FoldConstant(
true);
3102 Cmp.getType() !=
A->getType())
3105 std::bitset<4> Table;
3106 auto ComputeTable = [&](
bool First,
bool Second) -> std::optional<bool> {
3110 auto *Val = Res->getType()->isVectorTy() ? Res->getSplatValue() : Res;
3114 return std::nullopt;
3117 for (
unsigned I = 0;
I < 4; ++
I) {
3118 bool First = (
I >> 1) & 1;
3119 bool Second =
I & 1;
3120 if (
auto Res = ComputeTable(
First, Second))
3148 unsigned BW =
C.getBitWidth();
3149 std::bitset<4> Table;
3150 auto ComputeTable = [&](
bool Op0Val,
bool Op1Val) {
3159 Table[0] = ComputeTable(
false,
false);
3160 Table[1] = ComputeTable(
false,
true);
3161 Table[2] = ComputeTable(
true,
false);
3162 Table[3] = ComputeTable(
true,
true);
3177 if ((
Add->hasNoSignedWrap() &&
3179 (
Add->hasNoUnsignedWrap() &&
3183 Cmp.isSigned() ?
C.ssub_ov(*C2, Overflow) :
C.usub_ov(*C2, Overflow);
3189 return new ICmpInst(Pred,
X, ConstantInt::get(Ty, NewC));
3193 C.isNonNegative() && (
C - *C2).isNonNegative() &&
3196 ConstantInt::get(Ty,
C - *C2));
3201 if (Cmp.isSigned()) {
3202 if (
Lower.isSignMask())
3204 if (
Upper.isSignMask())
3207 if (
Lower.isMinValue())
3209 if (
Upper.isMinValue())
3242 if (!
Add->hasOneUse())
3257 ConstantInt::get(Ty,
C * 2));
3271 Builder.CreateAdd(
X, ConstantInt::get(Ty, *C2 -
C - 1)),
3272 ConstantInt::get(Ty, ~
C));
3277 Type *NewCmpTy = V->getType();
3279 if (shouldChangeType(Ty, NewCmpTy)) {
3290 :
Builder.CreateAdd(V, ConstantInt::get(NewCmpTy, EquivOffset)),
3291 ConstantInt::get(NewCmpTy, EquivInt));
3313 Value *EqualVal =
SI->getTrueValue();
3314 Value *UnequalVal =
SI->getFalseValue();
3337 auto FlippedStrictness =
3339 if (!FlippedStrictness)
3342 "basic correctness failure");
3343 RHS2 = FlippedStrictness->second;
3355 assert(
C &&
"Cmp RHS should be a constant int!");
3361 Value *OrigLHS, *OrigRHS;
3362 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
3363 if (Cmp.hasOneUse() &&
3366 assert(C1LessThan && C2Equal && C3GreaterThan);
3369 C1LessThan->
getValue(),
C->getValue(), Cmp.getPredicate());
3371 Cmp.getPredicate());
3373 C3GreaterThan->
getValue(),
C->getValue(), Cmp.getPredicate());
3384 if (TrueWhenLessThan)
3390 if (TrueWhenGreaterThan)
3405 Value *Op1 = Cmp.getOperand(1);
3406 Value *BCSrcOp = Bitcast->getOperand(0);
3407 Type *SrcType = Bitcast->getSrcTy();
3408 Type *DstType = Bitcast->getType();
3412 if (SrcType->isVectorTy() == DstType->isVectorTy() &&
3413 SrcType->getScalarSizeInBits() == DstType->getScalarSizeInBits()) {
3428 return new ICmpInst(Pred,
X, ConstantInt::get(
X->getType(), 1));
3455 Type *XType =
X->getType();
3458 if (!(XType->
isPPC_FP128Ty() || SrcType->isPPC_FP128Ty())) {
3473 Type *FPType = SrcType->getScalarType();
3474 if (!Cmp.getParent()->getParent()->hasFnAttribute(
3475 Attribute::NoImplicitFloat) &&
3476 Cmp.isEquality() && FPType->isIEEELikeFPTy()) {
3482 Builder.createIsFPClass(BCSrcOp, Mask));
3489 if (!
match(Cmp.getOperand(1),
m_APInt(
C)) || !DstType->isIntegerTy() ||
3490 !SrcType->isIntOrIntVectorTy())
3500 if (Cmp.isEquality() &&
C->isAllOnes() && Bitcast->hasOneUse()) {
3501 if (
Value *NotBCSrcOp =
3503 Value *Cast =
Builder.CreateBitCast(NotBCSrcOp, DstType);
3512 if (Cmp.isEquality() &&
C->isZero() && Bitcast->hasOneUse() &&
3515 Type *NewType =
Builder.getIntNTy(VecTy->getPrimitiveSizeInBits());
3535 if (
C->isSplat(EltTy->getBitWidth())) {
3542 Value *Extract =
Builder.CreateExtractElement(Vec, Elem);
3543 Value *NewC = ConstantInt::get(EltTy,
C->trunc(EltTy->getBitWidth()));
3544 return new ICmpInst(Pred, Extract, NewC);
3580 Value *Cmp0 = Cmp.getOperand(0);
3582 if (
C->isZero() && Cmp.isEquality() && Cmp0->
hasOneUse() &&
3589 return new ICmpInst(Cmp.getPredicate(),
X,
Y);
3604 if (!Cmp.isEquality())
3613 case Instruction::SRem:
3624 case Instruction::Add: {
3631 }
else if (
C.isZero()) {
3634 if (
Value *NegVal = dyn_castNegVal(BOp1))
3635 return new ICmpInst(Pred, BOp0, NegVal);
3636 if (
Value *NegVal = dyn_castNegVal(BOp0))
3637 return new ICmpInst(Pred, NegVal, BOp1);
3646 return new ICmpInst(Pred, BOp0, Neg);
3651 case Instruction::Xor:
3656 }
else if (
C.isZero()) {
3658 return new ICmpInst(Pred, BOp0, BOp1);
3661 case Instruction::Or: {
3682 Cond->getType() == Cmp.getType()) {
3720 case Instruction::UDiv:
3721 case Instruction::SDiv:
3731 return new ICmpInst(Pred, BOp0, BOp1);
3734 Instruction::Mul, BO->
getOpcode() == Instruction::SDiv, BOp1,
3735 Cmp.getOperand(1), BO);
3739 return new ICmpInst(Pred, YC, BOp0);
3743 if (BO->
getOpcode() == Instruction::UDiv &&
C.isZero()) {
3746 return new ICmpInst(NewPred, BOp1, BOp0);
3760 "Non-ctpop intrin in ctpop fold");
3795 Type *Ty =
II->getType();
3799 switch (
II->getIntrinsicID()) {
3800 case Intrinsic::abs:
3803 if (
C.isZero() ||
C.isMinSignedValue())
3804 return new ICmpInst(Pred,
II->getArgOperand(0), ConstantInt::get(Ty,
C));
3807 case Intrinsic::bswap:
3809 return new ICmpInst(Pred,
II->getArgOperand(0),
3810 ConstantInt::get(Ty,
C.byteSwap()));
3812 case Intrinsic::bitreverse:
3814 return new ICmpInst(Pred,
II->getArgOperand(0),
3815 ConstantInt::get(Ty,
C.reverseBits()));
3817 case Intrinsic::ctlz:
3818 case Intrinsic::cttz: {
3821 return new ICmpInst(Pred,
II->getArgOperand(0),
3827 unsigned Num =
C.getLimitedValue(
BitWidth);
3829 bool IsTrailing =
II->getIntrinsicID() == Intrinsic::cttz;
3832 APInt Mask2 = IsTrailing
3836 ConstantInt::get(Ty, Mask2));
3841 case Intrinsic::ctpop: {
3844 bool IsZero =
C.isZero();
3846 return new ICmpInst(Pred,
II->getArgOperand(0),
3853 case Intrinsic::fshl:
3854 case Intrinsic::fshr:
3855 if (
II->getArgOperand(0) ==
II->getArgOperand(1)) {
3856 const APInt *RotAmtC;
3860 return new ICmpInst(Pred,
II->getArgOperand(0),
3861 II->getIntrinsicID() == Intrinsic::fshl
3862 ? ConstantInt::get(Ty,
C.rotr(*RotAmtC))
3863 : ConstantInt::get(Ty,
C.rotl(*RotAmtC)));
3867 case Intrinsic::umax:
3868 case Intrinsic::uadd_sat: {
3871 if (
C.isZero() &&
II->hasOneUse()) {
3878 case Intrinsic::ssub_sat:
3881 return new ICmpInst(Pred,
II->getArgOperand(0),
II->getArgOperand(1));
3883 case Intrinsic::usub_sat: {
3888 return new ICmpInst(NewPred,
II->getArgOperand(0),
II->getArgOperand(1));
3903 assert(Cmp.isEquality());
3906 Value *Op0 = Cmp.getOperand(0);
3907 Value *Op1 = Cmp.getOperand(1);
3910 if (!IIOp0 || !IIOp1 || IIOp0->getIntrinsicID() != IIOp1->getIntrinsicID())
3913 switch (IIOp0->getIntrinsicID()) {
3914 case Intrinsic::bswap:
3915 case Intrinsic::bitreverse:
3918 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3919 case Intrinsic::fshl:
3920 case Intrinsic::fshr: {
3923 if (IIOp0->getOperand(0) != IIOp0->getOperand(1))
3925 if (IIOp1->getOperand(0) != IIOp1->getOperand(1))
3927 if (IIOp0->getOperand(2) == IIOp1->getOperand(2))
3928 return new ICmpInst(Pred, IIOp0->getOperand(0), IIOp1->getOperand(0));
3934 unsigned OneUses = IIOp0->hasOneUse() + IIOp1->hasOneUse();
3939 Builder.CreateSub(IIOp0->getOperand(2), IIOp1->getOperand(2));
3940 Value *CombinedRotate = Builder.CreateIntrinsic(
3941 Op0->
getType(), IIOp0->getIntrinsicID(),
3942 {IIOp0->getOperand(0), IIOp0->getOperand(0), SubAmt});
3943 return new ICmpInst(Pred, IIOp1->getOperand(0), CombinedRotate);
3961 switch (
II->getIntrinsicID()) {
3964 case Intrinsic::fshl:
3965 case Intrinsic::fshr:
3966 if (Cmp.isEquality() &&
II->getArgOperand(0) ==
II->getArgOperand(1)) {
3968 if (
C.isZero() ||
C.isAllOnes())
3969 return new ICmpInst(Pred,
II->getArgOperand(0), Cmp.getOperand(1));
3983 case Instruction::Xor:
3987 case Instruction::And:
3991 case Instruction::Or:
3995 case Instruction::Mul:
3999 case Instruction::Shl:
4003 case Instruction::LShr:
4004 case Instruction::AShr:
4008 case Instruction::SRem:
4012 case Instruction::UDiv:
4016 case Instruction::SDiv:
4020 case Instruction::Sub:
4024 case Instruction::Add:
4048 if (!
II->hasOneUse())
4064 Value *Op0 =
II->getOperand(0);
4065 Value *Op1 =
II->getOperand(1);
4074 switch (
II->getIntrinsicID()) {
4077 "This function only works with usub_sat and uadd_sat for now!");
4078 case Intrinsic::uadd_sat:
4081 case Intrinsic::usub_sat:
4091 II->getBinaryOp(), *COp1,
II->getNoWrapKind());
4098 if (
II->getBinaryOp() == Instruction::Add)
4104 SatValCheck ? Instruction::BinaryOps::Or : Instruction::BinaryOps::And;
4106 std::optional<ConstantRange> Combination;
4107 if (CombiningOp == Instruction::BinaryOps::Or)
4119 Combination->getEquivalentICmp(EquivPred, EquivInt, EquivOffset);
4123 Builder.CreateAdd(Op0, ConstantInt::get(Op1->
getType(), EquivOffset)),
4124 ConstantInt::get(Op1->
getType(), EquivInt));
4131 std::optional<ICmpInst::Predicate> NewPredicate = std::nullopt;
4136 NewPredicate = Pred;
4140 else if (
C.isAllOnes())
4148 else if (
C.isZero())
4165 if (!
C.isZero() && !
C.isAllOnes())
4176 if (
I->getIntrinsicID() == Intrinsic::scmp)
4190 switch (
II->getIntrinsicID()) {
4193 case Intrinsic::uadd_sat:
4194 case Intrinsic::usub_sat:
4199 case Intrinsic::ctpop: {
4204 case Intrinsic::scmp:
4205 case Intrinsic::ucmp:
4211 if (Cmp.isEquality())
4214 Type *Ty =
II->getType();
4216 switch (
II->getIntrinsicID()) {
4217 case Intrinsic::ctpop: {
4229 case Intrinsic::ctlz: {
4232 unsigned Num =
C.getLimitedValue();
4235 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
4240 unsigned Num =
C.getLimitedValue();
4243 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
4247 case Intrinsic::cttz: {
4249 if (!
II->hasOneUse())
4256 Builder.CreateAnd(
II->getArgOperand(0), Mask),
4264 Builder.CreateAnd(
II->getArgOperand(0), Mask),
4269 case Intrinsic::ssub_sat:
4273 return new ICmpInst(Pred,
II->getArgOperand(0),
II->getArgOperand(1));
4277 II->getArgOperand(1));
4281 II->getArgOperand(1));
4293 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
4300 case Instruction::IntToPtr:
4309 case Instruction::Load:
4326 auto SimplifyOp = [&](
Value *
Op,
bool SelectCondIsTrue) ->
Value * {
4330 SI->getCondition(), Pred,
Op, RHS,
DL, SelectCondIsTrue))
4331 return ConstantInt::get(
I.getType(), *Impl);
4336 Value *Op1 = SimplifyOp(
SI->getOperand(1),
true);
4340 Value *Op2 = SimplifyOp(
SI->getOperand(2),
false);
4344 auto Simplifies = [&](
Value *
Op,
unsigned Idx) {
4359 bool Transform =
false;
4362 else if (Simplifies(Op1, 1) || Simplifies(Op2, 2)) {
4364 if (
SI->hasOneUse())
4367 else if (CI && !CI->
isZero())
4375 Op1 =
Builder.CreateICmp(Pred,
SI->getOperand(1), RHS,
I.getName());
4377 Op2 =
Builder.CreateICmp(Pred,
SI->getOperand(2), RHS,
I.getName());
4386 unsigned Depth = 0) {
4389 if (V->getType()->getScalarSizeInBits() == 1)
4397 switch (
I->getOpcode()) {
4398 case Instruction::ZExt:
4401 case Instruction::SExt:
4405 case Instruction::And:
4406 case Instruction::Or:
4413 case Instruction::Xor:
4423 case Instruction::Select:
4427 case Instruction::Shl:
4430 case Instruction::LShr:
4433 case Instruction::AShr:
4437 case Instruction::Add:
4443 case Instruction::Sub:
4449 case Instruction::Call: {
4451 switch (
II->getIntrinsicID()) {
4454 case Intrinsic::umax:
4455 case Intrinsic::smax:
4456 case Intrinsic::umin:
4457 case Intrinsic::smin:
4462 case Intrinsic::bitreverse:
4552 auto IsLowBitMask = [&]() {
4570 auto Check = [&]() {
4588 auto Check = [&]() {
4607 if (!IsLowBitMask())
4626 const APInt *C0, *C1;
4643 const APInt &MaskedBits = *C0;
4644 assert(MaskedBits != 0 &&
"shift by zero should be folded away already.");
4665 auto *XType =
X->getType();
4666 const unsigned XBitWidth = XType->getScalarSizeInBits();
4668 assert(
BitWidth.ugt(MaskedBits) &&
"shifts should leave some bits untouched");
4681 Value *T0 = Builder.CreateAdd(
X, ConstantInt::get(XType, AddCst));
4683 Value *
T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
4699 !
I.getOperand(0)->hasOneUse())
4724 assert(NarrowestTy ==
I.getOperand(0)->getType() &&
4725 "We did not look past any shifts while matching XShift though.");
4726 bool HadTrunc = WidestTy !=
I.getOperand(0)->getType();
4733 auto XShiftOpcode = XShift->
getOpcode();
4734 if (XShiftOpcode == YShift->
getOpcode())
4737 Value *
X, *XShAmt, *
Y, *YShAmt;
4746 if (!
match(
I.getOperand(0),
4772 unsigned MaximalPossibleTotalShiftAmount =
4775 APInt MaximalRepresentableShiftAmount =
4777 if (MaximalRepresentableShiftAmount.
ult(MaximalPossibleTotalShiftAmount))
4786 if (NewShAmt->getType() != WidestTy) {
4796 if (!
match(NewShAmt,
4798 APInt(WidestBitWidth, WidestBitWidth))))
4803 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
4809 ? NewShAmt->getSplatValue()
4812 if (NewShAmtSplat &&
4822 unsigned MaxActiveBits = Known.
getBitWidth() - MinLeadZero;
4823 if (MaxActiveBits <= 1)
4833 unsigned MaxActiveBits = Known.
getBitWidth() - MinLeadZero;
4834 if (MaxActiveBits <= 1)
4837 if (NewShAmtSplat) {
4840 if (AdjNewShAmt.
ule(MinLeadZero))
4851 X = Builder.CreateZExt(
X, WidestTy);
4852 Y = Builder.CreateZExt(
Y, WidestTy);
4854 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
4855 ? Builder.CreateLShr(
X, NewShAmt)
4856 : Builder.CreateShl(
X, NewShAmt);
4857 Value *
T1 = Builder.CreateAnd(T0,
Y);
4858 return Builder.CreateICmp(
I.getPredicate(),
T1,
4876 if (!
I.isEquality() &&
4886 NeedNegation =
false;
4889 NeedNegation =
true;
4895 if (
I.isEquality() &&
4910 bool MulHadOtherUses =
Mul && !
Mul->hasOneUse();
4911 if (MulHadOtherUses)
4915 Div->
getOpcode() == Instruction::UDiv ? Intrinsic::umul_with_overflow
4916 : Intrinsic::smul_with_overflow,
4917 X->getType(), {X, Y},
nullptr,
"mul");
4922 if (MulHadOtherUses)
4927 Res =
Builder.CreateNot(Res,
"mul.not.ov");
4931 if (MulHadOtherUses)
4957 Type *Ty =
X->getType();
4961 Value *
And = Builder.CreateAnd(
X, MaxSignedVal);
4971 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1), *
A;
5033 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1), *
A;
5068 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1), *
A;
5084 return new ICmpInst(PredOut, Op0, Op1);
5104 return new ICmpInst(NewPred, Op0, Const);
5116 if (!
C.isPowerOf2())
5129 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
5197 return new ICmpInst(NewPred, Op1, Zero);
5206 return new ICmpInst(NewPred, Op0, Zero);
5210 bool NoOp0WrapProblem =
false, NoOp1WrapProblem =
false;
5211 bool Op0HasNUW =
false, Op1HasNUW =
false;
5212 bool Op0HasNSW =
false, Op1HasNSW =
false;
5216 bool &HasNSW,
bool &HasNUW) ->
bool {
5223 }
else if (BO.
getOpcode() == Instruction::Or) {
5231 Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
5235 NoOp0WrapProblem = hasNoWrapProblem(*BO0, Pred, Op0HasNSW, Op0HasNUW);
5239 NoOp1WrapProblem = hasNoWrapProblem(*BO1, Pred, Op1HasNSW, Op1HasNUW);
5244 if ((
A == Op1 ||
B == Op1) && NoOp0WrapProblem)
5250 if ((
C == Op0 ||
D == Op0) && NoOp1WrapProblem)
5255 if (
A &&
C && (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D) && NoOp0WrapProblem &&
5263 }
else if (
A ==
D) {
5267 }
else if (
B ==
C) {
5284 bool IsNegative) ->
bool {
5285 const APInt *OffsetC;
5297 if (!
C.isStrictlyPositive())
5318 if (
A && NoOp0WrapProblem &&
5319 ShareCommonDivisor(
A, Op1,
B,
5330 if (
C && NoOp1WrapProblem &&
5331 ShareCommonDivisor(Op0,
C,
D,
5344 if (
A &&
C && NoOp0WrapProblem && NoOp1WrapProblem &&
5346 const APInt *AP1, *AP2;
5354 if (AP1Abs.
uge(AP2Abs)) {
5355 APInt Diff = *AP1 - *AP2;
5358 A, C3,
"", Op0HasNUW && Diff.
ule(*AP1), Op0HasNSW);
5361 APInt Diff = *AP2 - *AP1;
5364 C, C3,
"", Op1HasNUW && Diff.
ule(*AP2), Op1HasNSW);
5383 if (BO0 && BO0->
getOpcode() == Instruction::Sub) {
5387 if (BO1 && BO1->
getOpcode() == Instruction::Sub) {
5393 if (
A == Op1 && NoOp0WrapProblem)
5396 if (
C == Op0 && NoOp1WrapProblem)
5416 if (
B &&
D &&
B ==
D && NoOp0WrapProblem && NoOp1WrapProblem)
5420 if (
A &&
C &&
A ==
C && NoOp0WrapProblem && NoOp1WrapProblem)
5428 if (RHSC->isNotMinSignedValue())
5429 return new ICmpInst(
I.getSwappedPredicate(),
X,
5447 if (Op0HasNSW && Op1HasNSW) {
5454 SQ.getWithInstruction(&
I));
5459 SQ.getWithInstruction(&
I));
5460 if (GreaterThan &&
match(GreaterThan,
m_One()))
5467 if (((Op0HasNSW && Op1HasNSW) || (Op0HasNUW && Op1HasNUW)) &&
5479 if (NonZero && BO0 && BO1 && Op0HasNSW && Op1HasNSW)
5486 if (NonZero && BO0 && BO1 && Op0HasNUW && Op1HasNUW)
5497 else if (BO1 && BO1->
getOpcode() == Instruction::SRem &&
5527 case Instruction::Add:
5528 case Instruction::Sub:
5529 case Instruction::Xor: {
5536 if (
C->isSignMask()) {
5542 if (BO0->
getOpcode() == Instruction::Xor &&
C->isMaxSignedValue()) {
5544 NewPred =
I.getSwappedPredicate(NewPred);
5550 case Instruction::Mul: {
5551 if (!
I.isEquality())
5559 if (
unsigned TZs =
C->countr_zero()) {
5565 return new ICmpInst(Pred, And1, And2);
5570 case Instruction::UDiv:
5571 case Instruction::LShr:
5576 case Instruction::SDiv:
5582 case Instruction::AShr:
5587 case Instruction::Shl: {
5588 bool NUW = Op0HasNUW && Op1HasNUW;
5589 bool NSW = Op0HasNSW && Op1HasNSW;
5592 if (!NSW &&
I.isSigned())
5656 auto IsCondKnownTrue = [](
Value *Val) -> std::optional<bool> {
5658 return std::nullopt;
5663 return std::nullopt;
5669 Pred = Pred.dropSameSign();
5672 if (!CmpXZ.has_value() && !CmpYZ.has_value())
5674 if (!CmpXZ.has_value()) {
5680 if (CmpYZ.has_value())
5704 if (!MinMaxCmpXZ.has_value()) {
5712 if (!MinMaxCmpXZ.has_value())
5728 return FoldIntoCmpYZ();
5755 return FoldIntoCmpYZ();
5764 return FoldIntoCmpYZ();
5786 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
5790 if (
I.isEquality()) {
5825 Type *Ty =
A->getType();
5826 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop,
A);
5828 ConstantInt::get(Ty, 2))
5830 ConstantInt::get(Ty, 1));
5837using OffsetOp = std::pair<Instruction::BinaryOps, Value *>;
5839 bool AllowRecursion) {
5845 case Instruction::Add:
5846 Offsets.emplace_back(Instruction::Sub, Inst->
getOperand(1));
5847 Offsets.emplace_back(Instruction::Sub, Inst->
getOperand(0));
5849 case Instruction::Sub:
5850 Offsets.emplace_back(Instruction::Add, Inst->
getOperand(1));
5852 case Instruction::Xor:
5853 Offsets.emplace_back(Instruction::Xor, Inst->
getOperand(1));
5854 Offsets.emplace_back(Instruction::Xor, Inst->
getOperand(0));
5856 case Instruction::Select:
5857 if (AllowRecursion) {
5890 return Builder.CreateSelect(
V0,
V1,
V2);
5902 assert(
I.isEquality() &&
"Expected an equality icmp");
5903 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
5914 if (!Simplified || Simplified == V)
5923 auto ApplyOffset = [&](
Value *V,
unsigned BinOpc,
5926 if (!Sel->hasOneUse())
5928 Value *TrueVal = ApplyOffsetImpl(Sel->getTrueValue(), BinOpc,
RHS);
5931 Value *FalseVal = ApplyOffsetImpl(Sel->getFalseValue(), BinOpc,
RHS);
5936 if (
Value *Simplified = ApplyOffsetImpl(V, BinOpc,
RHS))
5941 for (
auto [BinOp,
RHS] : OffsetOps) {
5942 auto BinOpc =
static_cast<unsigned>(BinOp);
5944 auto Op0Result = ApplyOffset(Op0, BinOpc,
RHS);
5945 if (!Op0Result.isValid())
5947 auto Op1Result = ApplyOffset(Op1, BinOpc,
RHS);
5948 if (!Op1Result.isValid())
5951 Value *NewLHS = Op0Result.materialize(Builder);
5952 Value *NewRHS = Op1Result.materialize(Builder);
5953 return new ICmpInst(
I.getPredicate(), NewLHS, NewRHS);
5960 if (!
I.isEquality())
5963 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
5967 if (
A == Op1 ||
B == Op1) {
5968 Value *OtherVal =
A == Op1 ?
B :
A;
5996 Value *OtherVal =
A == Op0 ?
B :
A;
6003 Value *
X =
nullptr, *
Y =
nullptr, *Z =
nullptr;
6009 }
else if (
A ==
D) {
6013 }
else if (
B ==
C) {
6017 }
else if (
B ==
D) {
6027 const APInt *C0, *C1;
6029 (*C0 ^ *C1).isNegatedPowerOf2();
6035 int(Op0->
hasOneUse()) + int(Op1->hasOneUse()) +
6037 if (XorIsNegP2 || UseCnt >= 2) {
6040 Op1 =
Builder.CreateAnd(Op1, Z);
6060 (Op0->
hasOneUse() || Op1->hasOneUse())) {
6065 MaskC->
countr_one() ==
A->getType()->getScalarSizeInBits())
6071 const APInt *AP1, *AP2;
6080 if (ShAmt < TypeBits && ShAmt != 0) {
6085 return new ICmpInst(NewPred,
Xor, ConstantInt::get(
A->getType(), CmpVal));
6095 if (ShAmt < TypeBits && ShAmt != 0) {
6115 if (ShAmt < ASize) {
6138 A->getType()->getScalarSizeInBits() ==
BitWidth * 2 &&
6139 (
I.getOperand(0)->hasOneUse() ||
I.getOperand(1)->hasOneUse())) {
6144 Add, ConstantInt::get(
A->getType(),
C.shl(1)));
6171 Builder.CreateIntrinsic(Op0->
getType(), Intrinsic::fshl, {A, A, B}));
6186 std::optional<bool> IsZero = std::nullopt;
6228 Constant *
C = ConstantInt::get(Res->X->getType(), Res->C);
6232 unsigned SrcBits =
X->getType()->getScalarSizeInBits();
6234 if (
II->getIntrinsicID() == Intrinsic::cttz ||
6235 II->getIntrinsicID() == Intrinsic::ctlz) {
6236 unsigned MaxRet = SrcBits;
6262 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
6263 bool IsSignedCmp = ICmp.
isSigned();
6271 if (IsZext0 != IsZext1) {
6276 if (ICmp.
isEquality() &&
X->getType()->isIntOrIntVectorTy(1) &&
6277 Y->getType()->isIntOrIntVectorTy(1))
6287 bool IsNonNeg0 = NonNegInst0 && NonNegInst0->hasNonNeg();
6288 bool IsNonNeg1 = NonNegInst1 && NonNegInst1->hasNonNeg();
6290 if ((IsZext0 && IsNonNeg0) || (IsZext1 && IsNonNeg1))
6297 Type *XTy =
X->getType(), *YTy =
Y->getType();
6304 IsSignedExt ? Instruction::SExt : Instruction::ZExt;
6306 X =
Builder.CreateCast(CastOpcode,
X, YTy);
6308 Y =
Builder.CreateCast(CastOpcode,
Y, XTy);
6320 if (IsSignedCmp && IsSignedExt)
6333 Type *SrcTy = CastOp0->getSrcTy();
6341 if (IsSignedExt && IsSignedCmp)
6372 Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.
getOperand(0));
6373 Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.
getOperand(1));
6374 if (SimplifiedOp0 || SimplifiedOp1)
6376 SimplifiedOp0 ? SimplifiedOp0 : ICmp.
getOperand(0),
6377 SimplifiedOp1 ? SimplifiedOp1 : ICmp.
getOperand(1));
6385 Value *Op0Src = CastOp0->getOperand(0);
6386 Type *SrcTy = CastOp0->getSrcTy();
6387 Type *DestTy = CastOp0->getDestTy();
6391 auto CompatibleSizes = [&](
Type *PtrTy,
Type *IntTy) {
6396 return DL.getPointerTypeSizeInBits(PtrTy) == IntTy->getIntegerBitWidth();
6398 if (CastOp0->getOpcode() == Instruction::PtrToInt &&
6399 CompatibleSizes(SrcTy, DestTy)) {
6400 Value *NewOp1 =
nullptr;
6402 Value *PtrSrc = PtrToIntOp1->getOperand(0);
6404 NewOp1 = PtrToIntOp1->getOperand(0);
6414 if (CastOp0->getOpcode() == Instruction::IntToPtr &&
6415 CompatibleSizes(DestTy, SrcTy)) {
6416 Value *NewOp1 =
nullptr;
6418 Value *IntSrc = IntToPtrOp1->getOperand(0);
6420 NewOp1 = IntToPtrOp1->getOperand(0);
6440 case Instruction::Add:
6441 case Instruction::Sub:
6443 case Instruction::Mul:
6444 return !(
RHS->getType()->isIntOrIntVectorTy(1) && IsSigned) &&
6456 case Instruction::Add:
6461 case Instruction::Sub:
6466 case Instruction::Mul:
6475 bool IsSigned,
Value *LHS,
6486 Builder.SetInsertPoint(&OrigI);
6503 Result = Builder.CreateBinOp(BinaryOp,
LHS,
RHS);
6504 Result->takeName(&OrigI);
6508 Result = Builder.CreateBinOp(BinaryOp,
LHS,
RHS);
6509 Result->takeName(&OrigI);
6513 Inst->setHasNoSignedWrap();
6515 Inst->setHasNoUnsignedWrap();
6538 const APInt *OtherVal,
6548 assert(MulInstr->getOpcode() == Instruction::Mul);
6552 assert(
LHS->getOpcode() == Instruction::ZExt);
6553 assert(
RHS->getOpcode() == Instruction::ZExt);
6557 Type *TyA =
A->getType(), *TyB =
B->getType();
6559 WidthB = TyB->getPrimitiveSizeInBits();
6562 if (WidthB > WidthA) {
6579 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
6580 if (TruncWidth > MulWidth)
6584 if (BO->getOpcode() != Instruction::And)
6587 const APInt &CVal = CI->getValue();
6603 switch (
I.getPredicate()) {
6610 if (MaxVal.
eq(*OtherVal))
6620 if (MaxVal.
eq(*OtherVal))
6634 if (WidthA < MulWidth)
6635 MulA = Builder.CreateZExt(
A, MulType);
6636 if (WidthB < MulWidth)
6637 MulB = Builder.CreateZExt(
B, MulType);
6639 Builder.CreateIntrinsic(Intrinsic::umul_with_overflow, MulType,
6640 {MulA, MulB},
nullptr,
"umul");
6647 Value *
Mul = Builder.CreateExtractValue(
Call, 0,
"umul.value");
6652 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
6657 assert(BO->getOpcode() == Instruction::And);
6661 Value *ShortAnd = Builder.CreateAnd(
Mul, ShortMask);
6662 Value *Zext = Builder.CreateZExt(ShortAnd, BO->
getType());
6674 Value *Res = Builder.CreateExtractValue(
Call, 1);
6695 switch (
I.getPredicate()) {
6726 assert(DI && UI &&
"Instruction not defined\n");
6738 if (Usr != UI && !
DT.dominates(DB, Usr->getParent()))
6750 if (!BI || BI->getNumSuccessors() != 2)
6753 if (!IC || (IC->getOperand(0) !=
SI && IC->getOperand(1) !=
SI))
6800 const unsigned SIOpd) {
6801 assert((SIOpd == 1 || SIOpd == 2) &&
"Invalid select operand!");
6803 BasicBlock *Succ =
SI->getParent()->getTerminator()->getSuccessor(1);
6817 SI->replaceUsesOutsideBlock(
SI->getOperand(SIOpd),
SI->getParent());
6827 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
6832 unsigned BitWidth = Ty->isIntOrIntVectorTy()
6833 ? Ty->getScalarSizeInBits()
6834 :
DL.getPointerTypeSizeInBits(Ty->getScalarType());
6887 if (!Cmp.hasOneUse())
6896 if (!isMinMaxCmp(
I)) {
6901 if (Op1Min == Op0Max)
6906 if (*CmpC == Op0Min + 1)
6908 ConstantInt::get(Op1->getType(), *CmpC - 1));
6918 if (Op1Max == Op0Min)
6923 if (*CmpC == Op0Max - 1)
6925 ConstantInt::get(Op1->getType(), *CmpC + 1));
6935 if (Op1Min == Op0Max)
6939 if (*CmpC == Op0Min + 1)
6941 ConstantInt::get(Op1->getType(), *CmpC - 1));
6946 if (Op1Max == Op0Min)
6950 if (*CmpC == Op0Max - 1)
6952 ConstantInt::get(Op1->getType(), *CmpC + 1));
6969 APInt Op0KnownZeroInverted = ~Op0Known.Zero;
6972 Value *LHS =
nullptr;
6975 *LHSC != Op0KnownZeroInverted)
6981 Type *XTy =
X->getType();
6983 APInt C2 = Op0KnownZeroInverted;
6984 APInt C2Pow2 = (C2 & ~(*C1 - 1)) + *C1;
6990 auto *CmpC = ConstantInt::get(XTy, Log2C2 - Log2C1);
7000 (Op0Known & Op1Known) == Op0Known)
7006 if (Op1Min == Op0Max)
7010 if (Op1Max == Op0Min)
7014 if (Op1Min == Op0Max)
7018 if (Op1Max == Op0Min)
7026 if ((
I.isSigned() || (
I.isUnsigned() && !
I.hasSameSign())) &&
7029 I.setPredicate(
I.getUnsignedPredicate());
7047 return BinaryOperator::CreateAnd(
Builder.CreateIsNull(
X),
Y);
7053 return BinaryOperator::CreateOr(
Builder.CreateIsNull(
X),
Y);
7064 bool IsSExt = ExtI->
getOpcode() == Instruction::SExt;
7066 auto CreateRangeCheck = [&] {
7081 }
else if (!IsSExt || HasOneUse) {
7086 return CreateRangeCheck();
7088 }
else if (IsSExt ?
C->isAllOnes() :
C->isOne()) {
7096 }
else if (!IsSExt || HasOneUse) {
7101 return CreateRangeCheck();
7115 Instruction::ICmp, Pred1,
X,
7134 Value *Op0 =
I.getOperand(0);
7135 Value *Op1 =
I.getOperand(1);
7141 if (!FlippedStrictness)
7144 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
7162 I.setName(
I.getName() +
".not");
7173 Value *
A =
I.getOperand(0), *
B =
I.getOperand(1);
7174 assert(
A->getType()->isIntOrIntVectorTy(1) &&
"Bools only");
7180 switch (
I.getPredicate()) {
7189 switch (
I.getPredicate()) {
7199 switch (
I.getPredicate()) {
7208 return BinaryOperator::CreateXor(
A,
B);
7216 return BinaryOperator::CreateAnd(Builder.CreateNot(
A),
B);
7224 return BinaryOperator::CreateAnd(Builder.CreateNot(
B),
A);
7232 return BinaryOperator::CreateOr(Builder.CreateNot(
A),
B);
7240 return BinaryOperator::CreateOr(Builder.CreateNot(
B),
A);
7288 Value *NewX = Builder.CreateLShr(
X,
Y,
X->getName() +
".highbits");
7296 Value *
LHS = Cmp.getOperand(0), *
RHS = Cmp.getOperand(1);
7300 Value *V = Builder.CreateCmp(Pred,
X,
Y, Cmp.getName());
7302 I->copyIRFlags(&Cmp);
7303 Module *M = Cmp.getModule();
7305 M, Intrinsic::vector_reverse, V->getType());
7312 (
LHS->hasOneUse() ||
RHS->hasOneUse()))
7313 return createCmpReverse(Pred, V1, V2);
7317 return createCmpReverse(Pred, V1,
RHS);
7321 return createCmpReverse(Pred,
LHS, V2);
7332 V1Ty == V2->
getType() && (
LHS->hasOneUse() ||
RHS->hasOneUse())) {
7333 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
7346 Constant *ScalarC =
C->getSplatValue(
true);
7354 Value *NewCmp = Builder.CreateCmp(Pred, V1,
C);
7365 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
7371 if (
match(Op0, UAddOvResultPat) &&
7382 (Op0 ==
A || Op0 ==
B))
7392 if (!
I.getOperand(0)->getType()->isPointerTy() ||
7394 I.getParent()->getParent(),
7395 I.getOperand(0)->getType()->getPointerAddressSpace())) {
7401 Op->isLaunderOrStripInvariantGroup()) {
7403 Op->getOperand(0),
I.getOperand(1));
7415 if (
I.getType()->isVectorTy())
7438 if (!LHSTy || !LHSTy->getElementType()->isIntegerTy())
7441 LHSTy->getNumElements() * LHSTy->getElementType()->getIntegerBitWidth();
7443 if (!
DL.isLegalInteger(NumBits))
7447 auto *ScalarTy = Builder.getIntNTy(NumBits);
7448 LHS = Builder.CreateBitCast(
LHS, ScalarTy,
LHS->getName() +
".scalar");
7449 RHS = Builder.CreateBitCast(
RHS, ScalarTy,
RHS->getName() +
".scalar");
7501 bool IsIntMinPosion =
C->isAllOnesValue();
7513 CxtI, IsIntMinPosion
7514 ?
Builder.CreateICmpSGT(
X, AllOnesValue)
7516 X, ConstantInt::get(
X->getType(),
SMin + 1)));
7522 CxtI, IsIntMinPosion
7523 ?
Builder.CreateICmpSLT(
X, NullValue)
7525 X, ConstantInt::get(
X->getType(),
SMin)));
7538 auto CheckUGT1 = [](
const APInt &Divisor) {
return Divisor.ugt(1); };
7553 auto CheckNE0 = [](
const APInt &Shift) {
return !Shift.isZero(); };
7573 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
7580 if (Op0Cplxity < Op1Cplxity) {
7595 if (
Value *V = dyn_castNegVal(SelectTrue)) {
7596 if (V == SelectFalse)
7598 }
else if (
Value *V = dyn_castNegVal(SelectFalse)) {
7599 if (V == SelectTrue)
7708 if (
I.isCommutative()) {
7709 if (
auto Pair = matchSymmetricPair(
I.getOperand(0),
I.getOperand(1))) {
7733 (Op0->
hasOneUse() || Op1->hasOneUse())) {
7757 bool I0NUW = I0->hasNoUnsignedWrap();
7758 bool I1NUW = I1->hasNoUnsignedWrap();
7759 bool I0NSW = I0->hasNoSignedWrap();
7760 bool I1NSW = I1->hasNoSignedWrap();
7764 ((I0NUW || I0NSW) && (I1NUW || I1NSW)))) {
7766 ConstantInt::get(Op0->
getType(), 0));
7773 assert(Op1->getType()->isPointerTy() &&
7774 "Comparing pointer with non-pointer?");
7803 bool ConsumesOp0, ConsumesOp1;
7806 (ConsumesOp0 || ConsumesOp1)) {
7809 assert(InvOp0 && InvOp1 &&
7810 "Mismatch between isFreeToInvert and getFreelyInverted");
7811 return new ICmpInst(
I.getSwappedPredicate(), InvOp0, InvOp1);
7823 if (AddI->
getOpcode() == Instruction::Add &&
7824 OptimizeOverflowCheck(Instruction::Add,
false,
X,
Y, *AddI,
7825 Result, Overflow)) {
7843 if ((
I.isUnsigned() ||
I.isEquality()) &&
7846 Y->getType()->getScalarSizeInBits() == 1 &&
7847 (Op0->
hasOneUse() || Op1->hasOneUse())) {
7854 unsigned ShiftOpc = ShiftI->
getOpcode();
7855 if ((ExtOpc == Instruction::ZExt && ShiftOpc == Instruction::LShr) ||
7856 (ExtOpc == Instruction::SExt && ShiftOpc == Instruction::AShr)) {
7887 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
7894 if (
I.getType()->isVectorTy())
7906 const APInt *C1, *C2;
7913 Type *InputTy =
A->getType();
7920 TruncC1.
setBit(InputBitWidth - 1);
7924 ConstantInt::get(InputTy, C2->
trunc(InputBitWidth)));
7944 if (MantissaWidth == -1)
7951 if (
I.isEquality()) {
7953 bool IsExact =
false;
7954 APSInt RHSCvt(IntWidth, LHSUnsigned);
7963 if (*RHS != RHSRoundInt) {
7983 if ((
int)IntWidth > MantissaWidth) {
7985 int Exp =
ilogb(*RHS);
7988 if (MaxExponent < (
int)IntWidth - !LHSUnsigned)
7994 if (MantissaWidth <= Exp && Exp <= (
int)IntWidth - !LHSUnsigned)
8003 assert(!RHS->isNaN() &&
"NaN comparison not already folded!");
8006 switch (
I.getPredicate()) {
8097 APSInt RHSInt(IntWidth, LHSUnsigned);
8100 if (!RHS->isZero()) {
8115 if (RHS->isNegative())
8121 if (RHS->isNegative())
8127 if (RHS->isNegative())
8134 if (!RHS->isNegative())
8140 if (RHS->isNegative())
8146 if (RHS->isNegative())
8152 if (RHS->isNegative())
8159 if (!RHS->isNegative())
8213 if (
C->isNegative())
8214 Pred =
I.getSwappedPredicate();
8230 bool RoundDown =
false;
8255 auto NextValue = [](
const APFloat &
Value,
bool RoundDown) {
8257 NextValue.
next(RoundDown);
8261 APFloat NextCValue = NextValue(*CValue, RoundDown);
8267 APFloat ExtCValue = ConvertFltSema(*CValue, DestFltSema);
8268 APFloat ExtNextCValue = ConvertFltSema(NextCValue, DestFltSema);
8275 APFloat PrevCValue = NextValue(*CValue, !RoundDown);
8276 APFloat Bias = ConvertFltSema(*CValue - PrevCValue, DestFltSema);
8278 ExtNextCValue = ExtCValue + Bias;
8285 C.getType()->getScalarType()->getFltSemantics();
8288 APFloat MidValue = ConvertFltSema(ExtMidValue, SrcFltSema);
8289 if (MidValue != *CValue)
8290 ExtMidValue.
next(!RoundDown);
8298 if (ConvertFltSema(ExtMidValue, SrcFltSema).isInfinity())
8302 APFloat NextExtMidValue = NextValue(ExtMidValue, RoundDown);
8303 if (ConvertFltSema(NextExtMidValue, SrcFltSema).
isFinite())
8308 ConstantFP::get(DestType, ExtMidValue),
"", &
I);
8321 if (!
C->isPosZero()) {
8322 if (!
C->isSmallestNormalized())
8335 switch (
I.getPredicate()) {
8361 switch (
I.getPredicate()) {
8386 assert(!
I.hasNoNaNs() &&
"fcmp should have simplified");
8391 assert(!
I.hasNoNaNs() &&
"fcmp should have simplified");
8405 return replacePredAndOp0(&
I,
I.getPredicate(),
X);
8428 I.setHasNoInfs(
false);
8430 switch (
I.getPredicate()) {
8475 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
8480 Pred =
I.getSwappedPredicate();
8489 return new FCmpInst(Pred, Op0, Zero,
"", &
I);
8525 I.getFunction()->getDenormalMode(
8541 Type *OpType =
LHS->getType();
8547 if (!FloorX && !CeilX) {
8551 Pred =
I.getSwappedPredicate();
8619 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
8621 SQ.getWithInstruction(&
I)))
8626 assert(OpType == Op1->getType() &&
"fcmp with different-typed operands?");
8651 if (
I.isCommutative()) {
8652 if (
auto Pair = matchSymmetricPair(
I.getOperand(0),
I.getOperand(1))) {
8674 return new FCmpInst(
I.getSwappedPredicate(),
X,
Y,
"", &
I);
8756 Type *IntTy =
X->getType();
8757 const APInt &SignMask =
~APInt::getSignMask(IntTy->getScalarSizeInBits());
8758 Value *MaskX =
Builder.CreateAnd(
X, ConstantInt::get(IntTy, SignMask));
8768 case Instruction::Select:
8776 case Instruction::FSub:
8781 case Instruction::PHI:
8785 case Instruction::SIToFP:
8786 case Instruction::UIToFP:
8790 case Instruction::FDiv:
8794 case Instruction::Load:
8800 case Instruction::FPTrunc:
8821 return new FCmpInst(
I.getSwappedPredicate(),
X, NegC,
"", &
I);
8840 X->getType()->getScalarType()->getFltSemantics();
8876 Constant *NewC = ConstantFP::get(
X->getType(), TruncC);
8889 Type *IntType =
Builder.getIntNTy(
X->getType()->getScalarSizeInBits());
8902 Value *CanonLHS =
nullptr;
8905 if (CanonLHS == Op1)
8906 return new FCmpInst(Pred, Op1, Op1,
"", &
I);
8908 Value *CanonRHS =
nullptr;
8911 if (CanonRHS == Op0)
8912 return new FCmpInst(Pred, Op0, Op0,
"", &
I);
8915 if (CanonLHS && CanonRHS)
8916 return new FCmpInst(Pred, CanonLHS, CanonRHS,
"", &
I);
8919 if (
I.getType()->isVectorTy())
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static Instruction * foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI, Constant *RHSC)
Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
static Instruction * foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC)
Optimize fabs(X) compared with zero.
static void collectOffsetOp(Value *V, SmallVectorImpl< OffsetOp > &Offsets, bool AllowRecursion)
static Value * rewriteGEPAsOffset(Value *Start, Value *Base, GEPNoWrapFlags NW, const DataLayout &DL, SetVector< Value * > &Explored, InstCombiner &IC)
Returns a re-written value of Start as an indexed GEP using Base as a pointer.
static Instruction * foldICmpEqualityWithOffset(ICmpInst &I, InstCombiner::BuilderTy &Builder, const SimplifyQuery &SQ)
Offset both sides of an equality icmp to see if we can save some instructions: icmp eq/ne X,...
static bool addWithOverflow(APInt &Result, const APInt &In1, const APInt &In2, bool IsSigned=false)
Compute Result = In1+In2, returning true if the result overflowed for this type.
static Instruction * foldICmpAndXX(ICmpInst &I, const SimplifyQuery &Q, InstCombinerImpl &IC)
static Instruction * foldVectorCmp(CmpInst &Cmp, InstCombiner::BuilderTy &Builder)
static bool isMaskOrZero(const Value *V, bool Not, const SimplifyQuery &Q, unsigned Depth=0)
static Value * createLogicFromTable(const std::bitset< 4 > &Table, Value *Op0, Value *Op1, IRBuilderBase &Builder, bool HasOneUse)
static Instruction * foldICmpOfUAddOv(ICmpInst &I)
static bool isChainSelectCmpBranch(const SelectInst *SI)
Return true when the instruction sequence within a block is select-cmp-br.
static Instruction * foldICmpInvariantGroup(ICmpInst &I)
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
static Instruction * foldReductionIdiom(ICmpInst &I, InstCombiner::BuilderTy &Builder, const DataLayout &DL)
This function folds patterns produced by lowering of reduce idioms, such as llvm.vector....
static Instruction * canonicalizeICmpBool(ICmpInst &I, InstCombiner::BuilderTy &Builder)
Integer compare with boolean values can always be turned into bitwise ops.
static Instruction * foldFCmpFSubIntoFCmp(FCmpInst &I, Instruction *LHSI, Constant *RHSC, InstCombinerImpl &CI)
static Value * foldICmpOrXorSubChain(ICmpInst &Cmp, BinaryOperator *Or, InstCombiner::BuilderTy &Builder)
Fold icmp eq/ne (or (xor/sub (X1, X2), xor/sub (X3, X4))), 0.
static bool hasBranchUse(ICmpInst &I)
Given an icmp instruction, return true if any use of this comparison is a branch on sign bit comparis...
static Value * foldICmpWithLowBitMaskedVal(CmpPredicate Pred, Value *Op0, Value *Op1, const SimplifyQuery &Q, InstCombiner &IC)
Some comparisons can be simplified.
static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth)
When performing a comparison against a constant, it is possible that not all the bits in the LHS are ...
static Instruction * foldICmpShlLHSC(ICmpInst &Cmp, Instruction *Shl, const APInt &C)
Fold icmp (shl nuw C2, Y), C.
static Instruction * foldFCmpWithFloorAndCeil(FCmpInst &I, InstCombinerImpl &IC)
static Instruction * foldICmpXorXX(ICmpInst &I, const SimplifyQuery &Q, InstCombinerImpl &IC)
static Instruction * foldICmpOfCmpIntrinsicWithConstant(CmpPredicate Pred, IntrinsicInst *I, const APInt &C, InstCombiner::BuilderTy &Builder)
static Instruction * processUMulZExtIdiom(ICmpInst &I, Value *MulVal, const APInt *OtherVal, InstCombinerImpl &IC)
Recognize and process idiom involving test for multiplication overflow.
static Instruction * foldSqrtWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC)
Optimize sqrt(X) compared with zero.
static Instruction * foldFCmpFNegCommonOp(FCmpInst &I)
static Instruction * foldICmpWithHighBitMask(ICmpInst &Cmp, InstCombiner::BuilderTy &Builder)
static ICmpInst * canonicalizeCmpWithConstant(ICmpInst &I)
If we have an icmp le or icmp ge instruction with a constant operand, turn it into the appropriate ic...
static Instruction * foldICmpIntrinsicWithIntrinsic(ICmpInst &Cmp, InstCombiner::BuilderTy &Builder)
Fold an icmp with LLVM intrinsics.
static Instruction * foldICmpUSubSatOrUAddSatWithConstant(CmpPredicate Pred, SaturatingInst *II, const APInt &C, InstCombiner::BuilderTy &Builder)
static Instruction * foldICmpPow2Test(ICmpInst &I, InstCombiner::BuilderTy &Builder)
static bool subWithOverflow(APInt &Result, const APInt &In1, const APInt &In2, bool IsSigned=false)
Compute Result = In1-In2, returning true if the result overflowed for this type.
static bool canRewriteGEPAsOffset(Value *Start, Value *Base, GEPNoWrapFlags &NW, const DataLayout &DL, SetVector< Value * > &Explored)
Returns true if we can rewrite Start as a GEP with pointer Base and some integer offset.
static Instruction * foldFCmpFpTrunc(FCmpInst &I, const Instruction &FPTrunc, const Constant &C)
static Instruction * foldICmpXNegX(ICmpInst &I, InstCombiner::BuilderTy &Builder)
static Instruction * processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, ConstantInt *CI2, ConstantInt *CI1, InstCombinerImpl &IC)
The caller has matched a pattern of the form: I = icmp ugt (add (add A, B), CI2), CI1 If this is of t...
static Value * foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ, InstCombiner::BuilderTy &Builder)
static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C)
Returns true if the exploded icmp can be expressed as a signed comparison to zero and updates the pre...
static Instruction * transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS, CmpPredicate Cond, const DataLayout &DL, InstCombiner &IC)
Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
static Instruction * foldCtpopPow2Test(ICmpInst &I, IntrinsicInst *CtpopLhs, const APInt &CRhs, InstCombiner::BuilderTy &Builder, const SimplifyQuery &Q)
static void setInsertionPoint(IRBuilder<> &Builder, Value *V, bool Before=true)
static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS, bool IsSigned)
static bool isMultipleOf(Value *X, const APInt &C, const SimplifyQuery &Q)
Return true if X is a multiple of C.
static Value * foldICmpWithTruncSignExtendedVal(ICmpInst &I, InstCombiner::BuilderTy &Builder)
Some comparisons can be simplified.
static Instruction * foldICmpOrXX(ICmpInst &I, const SimplifyQuery &Q, InstCombinerImpl &IC)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
mir Rename Register Operands
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
This file implements a set that has insertion order iteration characteristics.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
APInt bitcastToAPInt() const
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus next(bool nextDown)
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
LLVM_ABI FPClassTest classify() const
Return the FPClassTest which will return true for the value.
opStatus roundToIntegral(roundingMode RM)
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
unsigned ceilLogBase2() const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
LLVM_ABI APInt usub_ov(const APInt &RHS, bool &Overflow) const
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
bool eq(const APInt &RHS) const
Equality comparison.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
LLVM_ABI APInt uadd_ov(const APInt &RHS, bool &Overflow) const
void negate()
Negate this APInt in place.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
void flipAllBits()
Toggle every bit to its opposite value.
unsigned countl_one() const
Count the number of leading one bits.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
unsigned countr_one() const
Count the number of trailing one bits.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
An arbitrary precision integer that knows its signedness.
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
Conditional or Unconditional Branch instruction.
Value * getArgOperand(unsigned i) const
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
static LLVM_ABI Predicate getFlippedStrictnessPredicate(Predicate pred)
This is a static version that you can use without an instruction available.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static LLVM_ABI CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
static LLVM_ABI bool isStrictPredicate(Predicate predicate)
This is a static version that you can use without an instruction available.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static bool isIntPredicate(Predicate P)
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI CmpPredicate getSwapped(CmpPredicate P)
Get the swapped predicate of a CmpPredicate.
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getPointerBitCastOrAddrSpaceCast(Constant *C, Type *Ty)
Create a BitCast or AddrSpaceCast for a pointer type depending on the address space.
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getXor(Constant *C1, Constant *C2)
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
This is the shared class of boolean and integer constants.
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
LLVM_ABI ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
LLVM_ABI std::optional< ConstantRange > exactUnionWith(const ConstantRange &CR) const
Union the two ranges and return the result if it can be represented exactly, otherwise return std::nu...
LLVM_ABI bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
LLVM_ABI ConstantRange subtract(const APInt &CI) const
Subtract the specified constant from the endpoints of this constant range.
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
LLVM_ABI ConstantRange difference(const ConstantRange &CR) const
Subtract the specified range from this range (aka relative complement of the sets).
LLVM_ABI bool isEmptySet() const
Return true if this set contains no members.
LLVM_ABI ConstantRange truncate(uint32_t BitWidth, unsigned NoWrapKind=0) const
Return a new range in the specified integer type, which must be strictly smaller than the current typ...
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange inverse() const
Return a new range that is the logical not of the current set.
LLVM_ABI std::optional< ConstantRange > exactIntersectWith(const ConstantRange &CR) const
Intersect the two ranges and return the result if it can be represented exactly, otherwise return std...
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
static LLVM_ABI ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
This is an important base class in LLVM.
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI const APInt & getUniqueInteger() const
If C is a constant integer then return its value, otherwise C must be a vector of constant integers,...
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
This instruction compares its operands according to the predicate given to the constructor.
static bool isEquality(Predicate Pred)
Represents flags for the getelementptr instruction/expression.
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
GEPNoWrapFlags intersectForOffsetAdd(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep p, x+y).
static GEPNoWrapFlags none()
bool isInBounds() const
Test whether this is an inbounds GEP, as defined by LangRef.html.
LLVM_ABI Type * getSourceElementType() const
Value * getPointerOperand()
GEPNoWrapFlags getNoWrapFlags() const
bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
This instruction compares its operands according to the predicate given to the constructor.
static bool isGE(Predicate P)
Return true if the predicate is SGE or UGE.
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
static bool isLE(Predicate P)
Return true if the predicate is SLE or ULE.
Common base class shared among various IRBuilders.
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Instruction * foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr, const APInt &C)
Fold icmp ({al}shr X, Y), C.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldICmpWithZextOrSext(ICmpInst &ICmp)
Instruction * foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select, ConstantInt *C)
Instruction * foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv, const APInt &C)
Instruction * foldICmpBinOpWithConstant(ICmpInst &Cmp, BinaryOperator *BO, const APInt &C)
Fold an icmp with BinaryOp and constant operand: icmp Pred BO, C.
Instruction * foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or, const APInt &C)
Fold icmp (or X, Y), C.
Instruction * foldICmpTruncWithTruncOrExt(ICmpInst &Cmp, const SimplifyQuery &Q)
Fold icmp (trunc nuw/nsw X), (trunc nuw/nsw Y).
Instruction * foldSignBitTest(ICmpInst &I)
Fold equality-comparison between zero and any (maybe truncated) right-shift by one-less-than-bitwidth...
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi, bool isSigned, bool Inside)
Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise (V < Lo || V >= Hi).
Instruction * foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ)
Try to fold icmp (binop), X or icmp X, (binop).
Instruction * foldCmpLoadFromIndexedGlobal(LoadInst *LI, GetElementPtrInst *GEP, CmpInst &ICI, ConstantInt *AndCst=nullptr)
This is called when we see this pattern: cmp pred (load (gep GV, ...)), cmpcst where GV is a global v...
Instruction * foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub, const APInt &C)
Fold icmp (sub X, Y), C.
Instruction * foldICmpInstWithConstantNotInt(ICmpInst &Cmp)
Handle icmp with constant (but not simple integer constant) RHS.
bool SimplifyDemandedBits(Instruction *I, unsigned Op, const APInt &DemandedMask, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0) override
This form of SimplifyDemandedBits simplifies the specified instruction operand if possible,...
Instruction * foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1, const APInt &C2)
Handle "(icmp eq/ne (shl AP2, A), AP1)" -> (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
Value * reassociateShiftAmtsOfTwoSameDirectionShifts(BinaryOperator *Sh0, const SimplifyQuery &SQ, bool AnalyzeForSignBitExtraction=false)
Instruction * foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II, const APInt &C)
Fold an equality icmp with LLVM intrinsic and constant operand.
Value * foldMultiplicationOverflowCheck(ICmpInst &Cmp)
Fold (-1 u/ x) u< y ((x * y) ?
Instruction * foldICmpWithConstant(ICmpInst &Cmp)
Fold icmp Pred X, C.
CmpInst * canonicalizeICmpPredicate(CmpInst &I)
If we have a comparison with a non-canonical predicate, if we can update all the users,...
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * foldICmpWithZero(ICmpInst &Cmp)
Instruction * foldICmpCommutative(CmpPredicate Pred, Value *Op0, Value *Op1, ICmpInst &CxtI)
Instruction * foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp, BinaryOperator *BO, const APInt &C)
Fold an icmp equality instruction with binary operator LHS and constant RHS: icmp eq/ne BO,...
Instruction * foldICmpUsingBoolRange(ICmpInst &I)
If one operand of an icmp is effectively a bool (value range of {0,1}), then try to reduce patterns b...
Instruction * foldICmpWithTrunc(ICmpInst &Cmp)
Instruction * foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II, const APInt &C)
Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS, ConstantInt *&Less, ConstantInt *&Equal, ConstantInt *&Greater)
Match a select chain which produces one of three values based on whether the LHS is less than,...
Instruction * visitFCmpInst(FCmpInst &I)
Instruction * foldICmpUsingKnownBits(ICmpInst &Cmp)
Try to fold the comparison based on range information we can get by checking whether bits are known t...
Instruction * foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div, const APInt &C)
Fold icmp ({su}div X, Y), C.
Instruction * foldIRemByPowerOfTwoToBitTest(ICmpInst &I)
If we have: icmp eq/ne (urem/srem x, y), 0 iff y is a power-of-two, we can replace this with a bit te...
Instruction * foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI, Constant *RHSC)
Fold fcmp ([us]itofp x, cst) if possible.
Instruction * foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv, const APInt &C)
Fold icmp (udiv X, Y), C.
Instruction * foldICmpAddOpConst(Value *X, const APInt &C, CmpPredicate Pred)
Fold "icmp pred (X+C), X".
Instruction * foldICmpWithCastOp(ICmpInst &ICmp)
Handle icmp (cast x), (cast or constant).
Instruction * foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc, const APInt &C)
Fold icmp (trunc X), C.
Instruction * foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add, const APInt &C)
Fold icmp (add X, Y), C.
Instruction * foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul, const APInt &C)
Fold icmp (mul X, Y), C.
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
Instruction * foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor, const APInt &C)
Fold icmp (xor X, Y), C.
Instruction * foldSelectICmp(CmpPredicate Pred, SelectInst *SI, Value *RHS, const ICmpInst &I)
Instruction * foldICmpInstWithConstantAllowPoison(ICmpInst &Cmp, const APInt &C)
Try to fold integer comparisons with a constant operand: icmp Pred X, C where X is some kind of instr...
Instruction * foldIsMultipleOfAPowerOfTwo(ICmpInst &Cmp)
Fold icmp eq (num + mask) & ~mask, num to icmp eq (and num, mask), 0 Where mask is a low bit mask.
Instruction * foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And, const APInt &C1, const APInt &C2)
Fold icmp (and (sh X, Y), C2), C1.
Instruction * foldICmpBinOpWithConstantViaTruthTable(ICmpInst &Cmp, BinaryOperator *BO, const APInt &C)
Instruction * foldICmpInstWithConstant(ICmpInst &Cmp)
Try to fold integer comparisons with a constant operand: icmp Pred X, C where X is some kind of instr...
Instruction * foldICmpXorShiftConst(ICmpInst &Cmp, BinaryOperator *Xor, const APInt &C)
For power-of-2 C: ((X s>> ShiftC) ^ X) u< C --> (X + C) u< (C << 1) ((X s>> ShiftC) ^ X) u> (C - 1) -...
Instruction * foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl, const APInt &C)
Fold icmp (shl X, Y), C.
Instruction * foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And, const APInt &C)
Fold icmp (and X, Y), C.
Instruction * foldICmpEquality(ICmpInst &Cmp)
Instruction * foldICmpWithMinMax(Instruction &I, MinMaxIntrinsic *MinMax, Value *Z, CmpPredicate Pred)
Fold icmp Pred min|max(X, Y), Z.
bool dominatesAllUses(const Instruction *DI, const Instruction *UI, const BasicBlock *DB) const
True when DB dominates all uses of DI except UI.
bool foldAllocaCmp(AllocaInst *Alloca)
Instruction * visitICmpInst(ICmpInst &I)
OverflowResult computeOverflow(Instruction::BinaryOps BinaryOp, bool IsSigned, Value *LHS, Value *RHS, Instruction *CxtI) const
Instruction * foldICmpWithDominatingICmp(ICmpInst &Cmp)
Canonicalize icmp instructions based on dominating conditions.
bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp, const unsigned SIOpd)
Try to replace select with select operand SIOpd in SI-ICmp sequence.
Instruction * foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1, const APInt &C2)
Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" -> (icmp eq/ne A, Log2(AP2/AP1)) -> (icmp eq/ne A,...
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
Instruction * foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And, const APInt &C1)
Fold icmp (and X, C2), C1.
Instruction * foldICmpBitCast(ICmpInst &Cmp)
Instruction * foldGEPICmp(GEPOperator *GEPLHS, Value *RHS, CmpPredicate Cond, Instruction &I)
Fold comparisons between a GEP instruction and something else.
The core instruction combiner logic.
OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
unsigned ComputeMaxSignificantBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const Instruction *CxtI, bool IsNSW=false) const
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const Instruction *CxtI) const
static Constant * SubOne(Constant *C)
Subtract one from a Constant.
OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser)
Given i1 V, can every user of V be freely adapted if V is changed to !V ?
void addToWorklist(Instruction *I)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const Instruction *CxtI) const
OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const Instruction *CxtI) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
bool isArithmeticShift() const
Return true if this is an arithmetic shift right.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
An instruction for reading from memory.
bool isVolatile() const
Return true if this is a load from a volatile memory location.
This class represents min/max intrinsics.
A Module instance is used to store all the information related to an LLVM module.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
Represents a saturating add/sub intrinsic.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
A vector that has set insertion semantics.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
bool contains(const key_type &key) const
Check if the SetVector contains the given key.
This instruction constructs a fixed permutation of two input vectors.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
reverse_iterator rbegin()
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class represents a truncation of integer types.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isPPC_FP128Ty() const
Return true if this is powerpc long double.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
LLVM_ABI int getFPMantissaWidth() const
Return the width of the mantissa of this type.
LLVM_ABI const fltSemantics & getFltSemantics() const
A Use represents the edge between a Value definition and its users.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A unsign-divided by B, rounded by the given rounding mode.
LLVM_ABI APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM)
Return A sign-divided by B, rounded by the given rounding mode.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
BinOpPred_match< LHS, RHS, is_logical_shift_op > m_LogicalShift(const LHS &L, const RHS &R)
Matches logical shift operations.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_Sqrt(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
NoWrapTrunc_match< OpTy, TruncInst::NoSignedWrap > m_NSWTrunc(const OpTy &Op)
Matches trunc nsw.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< is_negated_power2_or_zero > m_NegatedPower2OrZero()
Match a integer or vector negated power-of-2.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
cst_pred_ty< is_lowbit_mask_or_zero > m_LowBitMaskOrZero()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Signum_match< Val_t > m_Signum(const Val_t &V)
Matches a signum pattern.
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
UAddWithOverflow_match< LHS_t, RHS_t, Sum_t > m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S)
Match an icmp instruction checking for unsigned overflow on addition.
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
CastInst_match< OpTy, FPTruncInst > m_FPTrunc(const OpTy &Op)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_unless< Ty > m_Unless(const Ty &M)
Match if the inner matcher does NOT match.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
cst_pred_ty< icmp_pred_with_threshold > m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold)
Match an integer or vector with every element comparing 'pred' (eg/ne/...) to Threshold.
This is an optimization pass for GlobalISel generic memory operations.
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
LLVM_ABI Value * simplifyFCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FCmpInst, fold the result or return null.
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
LLVM_ABI Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
SelectPatternFlavor
Specific patterns of select instructions we can match.
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI LinearExpression decomposeLinearExpression(const DataLayout &DL, Value *Ptr)
Decompose a pointer into a linear expression.
LLVM_ABI bool isFinite(const Loop *L)
Return true if this loop can be assumed to run for a finite number of iterations.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM)
Returns: X * 2^Exp for integral exponents.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Constant * ConstantFoldLoadFromConst(Constant *C, Type *Ty, const APInt &Offset, const DataLayout &DL)
Extract value of C at the given Offset reinterpreted as Ty.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
DWARFExpression::Operation Op
LLVM_ABI bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, unsigned MaxUsesToExplore=0)
PointerMayBeCaptured - Return true if this pointer value may be captured by the enclosing function (w...
constexpr unsigned BitWidth
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
std::optional< DecomposedBitTest > decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate Pred, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Value * materialize(InstCombiner::BuilderTy &Builder) const
static OffsetResult value(Value *V)
static OffsetResult select(Value *Cond, Value *TrueV, Value *FalseV)
static OffsetResult invalid()
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
This callback is used in conjunction with PointerMayBeCaptured.
static CommonPointerBase compute(Value *LHS, Value *RHS)
Represent subnormal handling kind for floating point instruction inputs and outputs.
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
static constexpr DenormalMode getIEEE()
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
APInt getSignedMaxValue() const
Return the maximal signed value possible given these KnownBits.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
unsigned getBitWidth() const
Get the bit width of this value.
bool isConstant() const
Returns true if we know the value of all bits.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
bool isNegative() const
Returns true if this value is known to be negative.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
APInt getSignedMinValue() const
Return the minimal signed value possible given these KnownBits.
const APInt & getConstant() const
Returns the value when all bits have a known value.
Linear expression BasePtr + Index * Scale + Offset.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithInstruction(const Instruction *I) const
A MapVector that performs no allocations if smaller than a certain size.
Capture information for a specific Use.