LLVM 22.0.0git
InstCombineMulDivRem.cpp
Go to the documentation of this file.
1//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10// srem, urem, frem.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/ADT/APInt.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/Constant.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/InstrTypes.h"
24#include "llvm/IR/Instruction.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/Operator.h"
30#include "llvm/IR/Type.h"
31#include "llvm/IR/Value.h"
36#include <cassert>
37
38#define DEBUG_TYPE "instcombine"
40
41using namespace llvm;
42using namespace PatternMatch;
43
44/// The specific integer value is used in a context where it is known to be
45/// non-zero. If this allows us to simplify the computation, do so and return
46/// the new operand, otherwise return null.
48 Instruction &CxtI) {
49 // If V has multiple uses, then we would have to do more analysis to determine
50 // if this is safe. For example, the use could be in dynamically unreached
51 // code.
52 if (!V->hasOneUse()) return nullptr;
53
54 bool MadeChange = false;
55
56 // ((1 << A) >>u B) --> (1 << (A-B))
57 // Because V cannot be zero, we know that B is less than A.
58 Value *A = nullptr, *B = nullptr, *One = nullptr;
59 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
60 match(One, m_One())) {
61 A = IC.Builder.CreateSub(A, B);
62 return IC.Builder.CreateShl(One, A);
63 }
64
65 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
66 // inexact. Similarly for <<.
67 BinaryOperator *I = dyn_cast<BinaryOperator>(V);
68 if (I && I->isLogicalShift() &&
69 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, &CxtI)) {
70 // We know that this is an exact/nuw shift and that the input is a
71 // non-zero context as well.
72 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
73 IC.replaceOperand(*I, 0, V2);
74 MadeChange = true;
75 }
76
77 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
78 I->setIsExact();
79 MadeChange = true;
80 }
81
82 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
83 I->setHasNoUnsignedWrap();
84 MadeChange = true;
85 }
86 }
87
88 // TODO: Lots more we could do here:
89 // If V is a phi node, we can call this on each of its operands.
90 // "select cond, X, 0" can simplify to "X".
91
92 return MadeChange ? V : nullptr;
93}
94
95// TODO: This is a specific form of a much more general pattern.
96// We could detect a select with any binop identity constant, or we
97// could use SimplifyBinOp to see if either arm of the select reduces.
98// But that needs to be done carefully and/or while removing potential
99// reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
101 InstCombiner::BuilderTy &Builder) {
102 Value *Cond, *OtherOp;
103
104 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
105 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
107 m_Value(OtherOp)))) {
108 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
109 Value *Neg = Builder.CreateNeg(OtherOp, "", HasAnyNoWrap);
110 return Builder.CreateSelect(Cond, OtherOp, Neg);
111 }
112 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
113 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
115 m_Value(OtherOp)))) {
116 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
117 Value *Neg = Builder.CreateNeg(OtherOp, "", HasAnyNoWrap);
118 return Builder.CreateSelect(Cond, Neg, OtherOp);
119 }
120
121 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
122 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
124 m_SpecificFP(-1.0))),
125 m_Value(OtherOp))))
126 return Builder.CreateSelectFMF(Cond, OtherOp,
127 Builder.CreateFNegFMF(OtherOp, &I), &I);
128
129 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
130 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
132 m_SpecificFP(1.0))),
133 m_Value(OtherOp))))
134 return Builder.CreateSelectFMF(Cond, Builder.CreateFNegFMF(OtherOp, &I),
135 OtherOp, &I);
136
137 return nullptr;
138}
139
140/// Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
141/// Callers are expected to call this twice to handle commuted patterns.
142static Value *foldMulShl1(BinaryOperator &Mul, bool CommuteOperands,
143 InstCombiner::BuilderTy &Builder) {
144 Value *X = Mul.getOperand(0), *Y = Mul.getOperand(1);
145 if (CommuteOperands)
146 std::swap(X, Y);
147
148 const bool HasNSW = Mul.hasNoSignedWrap();
149 const bool HasNUW = Mul.hasNoUnsignedWrap();
150
151 // X * (1 << Z) --> X << Z
152 Value *Z;
153 if (match(Y, m_Shl(m_One(), m_Value(Z)))) {
154 bool PropagateNSW = HasNSW && cast<ShlOperator>(Y)->hasNoSignedWrap();
155 return Builder.CreateShl(X, Z, Mul.getName(), HasNUW, PropagateNSW);
156 }
157
158 // Similar to above, but an increment of the shifted value becomes an add:
159 // X * ((1 << Z) + 1) --> (X * (1 << Z)) + X --> (X << Z) + X
160 // This increases uses of X, so it may require a freeze, but that is still
161 // expected to be an improvement because it removes the multiply.
162 BinaryOperator *Shift;
163 if (match(Y, m_OneUse(m_Add(m_BinOp(Shift), m_One()))) &&
164 match(Shift, m_OneUse(m_Shl(m_One(), m_Value(Z))))) {
165 bool PropagateNSW = HasNSW && Shift->hasNoSignedWrap();
166 Value *FrX = X;
168 FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
169 Value *Shl = Builder.CreateShl(FrX, Z, "mulshl", HasNUW, PropagateNSW);
170 return Builder.CreateAdd(Shl, FrX, Mul.getName(), HasNUW, PropagateNSW);
171 }
172
173 // Similar to above, but a decrement of the shifted value is disguised as
174 // 'not' and becomes a sub:
175 // X * (~(-1 << Z)) --> X * ((1 << Z) - 1) --> (X << Z) - X
176 // This increases uses of X, so it may require a freeze, but that is still
177 // expected to be an improvement because it removes the multiply.
179 Value *FrX = X;
181 FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
182 Value *Shl = Builder.CreateShl(FrX, Z, "mulshl");
183 return Builder.CreateSub(Shl, FrX, Mul.getName());
184 }
185
186 return nullptr;
187}
188
190 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
191 if (Value *V =
192 simplifyMulInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
194 return replaceInstUsesWith(I, V);
195
197 return &I;
198
200 return X;
201
203 return Phi;
204
206 return replaceInstUsesWith(I, V);
207
208 Type *Ty = I.getType();
209 const unsigned BitWidth = Ty->getScalarSizeInBits();
210 const bool HasNSW = I.hasNoSignedWrap();
211 const bool HasNUW = I.hasNoUnsignedWrap();
212
213 // X * -1 --> 0 - X
214 if (match(Op1, m_AllOnes())) {
215 return HasNSW ? BinaryOperator::CreateNSWNeg(Op0)
217 }
218
219 // Also allow combining multiply instructions on vectors.
220 {
221 Value *NewOp;
222 Constant *C1, *C2;
223 const APInt *IVal;
224 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_ImmConstant(C2)),
225 m_ImmConstant(C1))) &&
226 match(C1, m_APInt(IVal))) {
227 // ((X << C2)*C1) == (X * (C1 << C2))
228 Constant *Shl =
229 ConstantFoldBinaryOpOperands(Instruction::Shl, C1, C2, DL);
230 assert(Shl && "Constant folding of immediate constants failed");
231 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
232 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
233 if (HasNUW && Mul->hasNoUnsignedWrap())
235 if (HasNSW && Mul->hasNoSignedWrap() && Shl->isNotMinSignedValue())
236 BO->setHasNoSignedWrap();
237 return BO;
238 }
239
240 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
241 // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
242 if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
243 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
244
245 if (HasNUW)
247 if (HasNSW) {
248 const APInt *V;
249 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
250 Shl->setHasNoSignedWrap();
251 }
252
253 return Shl;
254 }
255 }
256 }
257
258 // mul (shr exact X, N), (2^N + 1) -> add (X, shr exact (X, N))
259 {
260 Value *NewOp;
261 const APInt *ShiftC;
262 const APInt *MulAP;
263 if (BitWidth > 2 &&
264 match(&I, m_Mul(m_Exact(m_Shr(m_Value(NewOp), m_APInt(ShiftC))),
265 m_APInt(MulAP))) &&
266 (*MulAP - 1).isPowerOf2() && *ShiftC == MulAP->logBase2()) {
267 Value *BinOp = Op0;
268 BinaryOperator *OpBO = cast<BinaryOperator>(Op0);
269
270 // mul nuw (ashr exact X, N) -> add nuw (X, lshr exact (X, N))
271 if (HasNUW && OpBO->getOpcode() == Instruction::AShr && OpBO->hasOneUse())
272 BinOp = Builder.CreateLShr(NewOp, ConstantInt::get(Ty, *ShiftC), "",
273 /*isExact=*/true);
274
275 auto *NewAdd = BinaryOperator::CreateAdd(NewOp, BinOp);
276 if (HasNSW && (HasNUW || OpBO->getOpcode() == Instruction::LShr ||
277 ShiftC->getZExtValue() < BitWidth - 1))
278 NewAdd->setHasNoSignedWrap(true);
279
280 NewAdd->setHasNoUnsignedWrap(HasNUW);
281 return NewAdd;
282 }
283 }
284
285 if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
286 // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
287 // The "* (1<<C)" thus becomes a potential shifting opportunity.
288 if (Value *NegOp0 =
289 Negator::Negate(/*IsNegation*/ true, HasNSW, Op0, *this)) {
290 auto *Op1C = cast<Constant>(Op1);
291 return replaceInstUsesWith(
292 I, Builder.CreateMul(NegOp0, ConstantExpr::getNeg(Op1C), "",
293 /*HasNUW=*/false,
294 HasNSW && Op1C->isNotMinSignedValue()));
295 }
296
297 // Try to convert multiply of extended operand to narrow negate and shift
298 // for better analysis.
299 // This is valid if the shift amount (trailing zeros in the multiplier
300 // constant) clears more high bits than the bitwidth difference between
301 // source and destination types:
302 // ({z/s}ext X) * (-1<<C) --> (zext (-X)) << C
303 const APInt *NegPow2C;
304 Value *X;
305 if (match(Op0, m_ZExtOrSExt(m_Value(X))) &&
306 match(Op1, m_APIntAllowPoison(NegPow2C))) {
307 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
308 unsigned ShiftAmt = NegPow2C->countr_zero();
309 if (ShiftAmt >= BitWidth - SrcWidth) {
310 Value *N = Builder.CreateNeg(X, X->getName() + ".neg");
311 Value *Z = Builder.CreateZExt(N, Ty, N->getName() + ".z");
312 return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
313 }
314 }
315 }
316
317 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
318 return FoldedMul;
319
320 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
321 return replaceInstUsesWith(I, FoldedMul);
322
323 // Simplify mul instructions with a constant RHS.
324 Constant *MulC;
325 if (match(Op1, m_ImmConstant(MulC))) {
326 // Canonicalize (X+C1)*MulC -> X*MulC+C1*MulC.
327 // Canonicalize (X|C1)*MulC -> X*MulC+C1*MulC.
328 Value *X;
329 Constant *C1;
330 if (match(Op0, m_OneUse(m_AddLike(m_Value(X), m_ImmConstant(C1))))) {
331 // C1*MulC simplifies to a tidier constant.
332 Value *NewC = Builder.CreateMul(C1, MulC);
333 auto *BOp0 = cast<BinaryOperator>(Op0);
334 bool Op0NUW =
335 (BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
336 Value *NewMul = Builder.CreateMul(X, MulC);
337 auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
338 if (HasNUW && Op0NUW) {
339 // If NewMulBO is constant we also can set BO to nuw.
340 if (auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul))
341 NewMulBO->setHasNoUnsignedWrap();
342 BO->setHasNoUnsignedWrap();
343 }
344 return BO;
345 }
346 }
347
348 // abs(X) * abs(X) -> X * X
349 Value *X;
350 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
351 return BinaryOperator::CreateMul(X, X);
352
353 {
354 Value *Y;
355 // abs(X) * abs(Y) -> abs(X * Y)
356 if (I.hasNoSignedWrap() &&
357 match(Op0,
358 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One()))) &&
359 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(Y), m_One()))))
360 return replaceInstUsesWith(
361 I, Builder.CreateBinaryIntrinsic(Intrinsic::abs,
363 Builder.getTrue()));
364 }
365
366 // -X * C --> X * -C
367 Value *Y;
368 Constant *Op1C;
369 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
370 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
371
372 // -X * -Y --> X * Y
373 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
374 auto *NewMul = BinaryOperator::CreateMul(X, Y);
375 if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
376 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
377 NewMul->setHasNoSignedWrap();
378 return NewMul;
379 }
380
381 // -X * Y --> -(X * Y)
382 // X * -Y --> -(X * Y)
385
386 // (-X * Y) * -X --> (X * Y) * X
387 // (-X << Y) * -X --> (X << Y) * X
388 if (match(Op1, m_Neg(m_Value(X)))) {
389 if (Value *NegOp0 = Negator::Negate(false, /*IsNSW*/ false, Op0, *this))
390 return BinaryOperator::CreateMul(NegOp0, X);
391 }
392
393 if (Op0->hasOneUse()) {
394 // (mul (div exact X, C0), C1)
395 // -> (div exact X, C0 / C1)
396 // iff C0 % C1 == 0 and X / (C0 / C1) doesn't create UB.
397 const APInt *C1;
398 auto UDivCheck = [&C1](const APInt &C) { return C.urem(*C1).isZero(); };
399 auto SDivCheck = [&C1](const APInt &C) {
400 APInt Quot, Rem;
401 APInt::sdivrem(C, *C1, Quot, Rem);
402 return Rem.isZero() && !Quot.isAllOnes();
403 };
404 if (match(Op1, m_APInt(C1)) &&
405 (match(Op0, m_Exact(m_UDiv(m_Value(X), m_CheckedInt(UDivCheck)))) ||
406 match(Op0, m_Exact(m_SDiv(m_Value(X), m_CheckedInt(SDivCheck)))))) {
407 auto BOpc = cast<BinaryOperator>(Op0)->getOpcode();
409 BOpc, X,
410 Builder.CreateBinOp(BOpc, cast<BinaryOperator>(Op0)->getOperand(1),
411 Op1));
412 }
413 }
414
415 // (X / Y) * Y = X - (X % Y)
416 // (X / Y) * -Y = (X % Y) - X
417 {
418 Value *Y = Op1;
419 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
420 if (!Div || (Div->getOpcode() != Instruction::UDiv &&
421 Div->getOpcode() != Instruction::SDiv)) {
422 Y = Op0;
423 Div = dyn_cast<BinaryOperator>(Op1);
424 }
425 Value *Neg = dyn_castNegVal(Y);
426 if (Div && Div->hasOneUse() &&
427 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
428 (Div->getOpcode() == Instruction::UDiv ||
429 Div->getOpcode() == Instruction::SDiv)) {
430 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
431
432 // If the division is exact, X % Y is zero, so we end up with X or -X.
433 if (Div->isExact()) {
434 if (DivOp1 == Y)
435 return replaceInstUsesWith(I, X);
437 }
438
439 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
440 : Instruction::SRem;
441 // X must be frozen because we are increasing its number of uses.
442 Value *XFreeze = X;
444 XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr");
445 Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
446 if (DivOp1 == Y)
447 return BinaryOperator::CreateSub(XFreeze, Rem);
448 return BinaryOperator::CreateSub(Rem, XFreeze);
449 }
450 }
451
452 // Fold the following two scenarios:
453 // 1) i1 mul -> i1 and.
454 // 2) X * Y --> X & Y, iff X, Y can be only {0,1}.
455 // Note: We could use known bits to generalize this and related patterns with
456 // shifts/truncs
457 if (Ty->isIntOrIntVectorTy(1) ||
458 (match(Op0, m_And(m_Value(), m_One())) &&
459 match(Op1, m_And(m_Value(), m_One()))))
460 return BinaryOperator::CreateAnd(Op0, Op1);
461
462 if (Value *R = foldMulShl1(I, /* CommuteOperands */ false, Builder))
463 return replaceInstUsesWith(I, R);
464 if (Value *R = foldMulShl1(I, /* CommuteOperands */ true, Builder))
465 return replaceInstUsesWith(I, R);
466
467 // (zext bool X) * (zext bool Y) --> zext (and X, Y)
468 // (sext bool X) * (sext bool Y) --> zext (and X, Y)
469 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
470 if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
471 (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
472 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
473 (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
474 Value *And = Builder.CreateAnd(X, Y, "mulbool");
475 return CastInst::Create(Instruction::ZExt, And, Ty);
476 }
477 // (sext bool X) * (zext bool Y) --> sext (and X, Y)
478 // (zext bool X) * (sext bool Y) --> sext (and X, Y)
479 // Note: -1 * 1 == 1 * -1 == -1
480 if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
481 (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
482 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
483 (Op0->hasOneUse() || Op1->hasOneUse())) {
484 Value *And = Builder.CreateAnd(X, Y, "mulbool");
485 return CastInst::Create(Instruction::SExt, And, Ty);
486 }
487
488 // (zext bool X) * Y --> X ? Y : 0
489 // Y * (zext bool X) --> X ? Y : 0
490 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
492 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
494
495 // mul (sext X), Y -> select X, -Y, 0
496 // mul Y, (sext X) -> select X, -Y, 0
497 if (match(&I, m_c_Mul(m_OneUse(m_SExt(m_Value(X))), m_Value(Y))) &&
498 X->getType()->isIntOrIntVectorTy(1))
499 return SelectInst::Create(X, Builder.CreateNeg(Y, "", I.hasNoSignedWrap()),
501
502 Constant *ImmC;
503 if (match(Op1, m_ImmConstant(ImmC))) {
504 // (sext bool X) * C --> X ? -C : 0
505 if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
506 Constant *NegC = ConstantExpr::getNeg(ImmC);
508 }
509
510 // (ashr i32 X, 31) * C --> (X < 0) ? -C : 0
511 const APInt *C;
512 if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) &&
513 *C == C->getBitWidth() - 1) {
514 Constant *NegC = ConstantExpr::getNeg(ImmC);
515 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
516 return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty));
517 }
518 }
519
520 // (lshr X, 31) * Y --> (X < 0) ? Y : 0
521 // TODO: We are not checking one-use because the elimination of the multiply
522 // is better for analysis?
523 const APInt *C;
524 if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) &&
525 *C == C->getBitWidth() - 1) {
526 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
528 }
529
530 // (and X, 1) * Y --> (trunc X) ? Y : 0
531 if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) {
534 }
535
536 // ((ashr X, 31) | 1) * X --> abs(X)
537 // X * ((ashr X, 31) | 1) --> abs(X)
540 m_One()),
541 m_Deferred(X)))) {
543 Intrinsic::abs, X, ConstantInt::getBool(I.getContext(), HasNSW));
544 Abs->takeName(&I);
545 return replaceInstUsesWith(I, Abs);
546 }
547
548 if (Instruction *Ext = narrowMathIfNoOverflow(I))
549 return Ext;
550
552 return Res;
553
554 // (mul Op0 Op1):
555 // if Log2(Op0) folds away ->
556 // (shl Op1, Log2(Op0))
557 // if Log2(Op1) folds away ->
558 // (shl Op0, Log2(Op1))
559 if (Value *Res = tryGetLog2(Op0, /*AssumeNonZero=*/false)) {
560 BinaryOperator *Shl = BinaryOperator::CreateShl(Op1, Res);
561 // We can only propegate nuw flag.
562 Shl->setHasNoUnsignedWrap(HasNUW);
563 return Shl;
564 }
565 if (Value *Res = tryGetLog2(Op1, /*AssumeNonZero=*/false)) {
566 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, Res);
567 // We can only propegate nuw flag.
568 Shl->setHasNoUnsignedWrap(HasNUW);
569 return Shl;
570 }
571
572 bool Changed = false;
573 if (!HasNSW && willNotOverflowSignedMul(Op0, Op1, I)) {
574 Changed = true;
575 I.setHasNoSignedWrap(true);
576 }
577
578 if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1, I, I.hasNoSignedWrap())) {
579 Changed = true;
580 I.setHasNoUnsignedWrap(true);
581 }
582
583 return Changed ? &I : nullptr;
584}
585
586Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
587 BinaryOperator::BinaryOps Opcode = I.getOpcode();
588 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
589 "Expected fmul or fdiv");
590
591 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
592 Value *X, *Y;
593
594 // -X * -Y --> X * Y
595 // -X / -Y --> X / Y
596 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
597 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
598
599 // fabs(X) * fabs(X) -> X * X
600 // fabs(X) / fabs(X) -> X / X
601 if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
602 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
603
604 // fabs(X) * fabs(Y) --> fabs(X * Y)
605 // fabs(X) / fabs(Y) --> fabs(X / Y)
606 if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
607 (Op0->hasOneUse() || Op1->hasOneUse())) {
608 Value *XY = Builder.CreateBinOpFMF(Opcode, X, Y, &I);
609 Value *Fabs =
610 Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY, &I, I.getName());
611 return replaceInstUsesWith(I, Fabs);
612 }
613
614 return nullptr;
615}
616
618 auto createPowiExpr = [](BinaryOperator &I, InstCombinerImpl &IC, Value *X,
619 Value *Y, Value *Z) {
620 InstCombiner::BuilderTy &Builder = IC.Builder;
621 Value *YZ = Builder.CreateAdd(Y, Z);
623 Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
624
625 return NewPow;
626 };
627
628 Value *X, *Y, *Z;
629 unsigned Opcode = I.getOpcode();
630 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
631 "Unexpected opcode");
632
633 // powi(X, Y) * X --> powi(X, Y+1)
634 // X * powi(X, Y) --> powi(X, Y+1)
635 if (match(&I, m_c_FMul(m_OneUse(m_AllowReassoc(m_Intrinsic<Intrinsic::powi>(
636 m_Value(X), m_Value(Y)))),
637 m_Deferred(X)))) {
638 Constant *One = ConstantInt::get(Y->getType(), 1);
639 if (willNotOverflowSignedAdd(Y, One, I)) {
640 Instruction *NewPow = createPowiExpr(I, *this, X, Y, One);
641 return replaceInstUsesWith(I, NewPow);
642 }
643 }
644
645 // powi(x, y) * powi(x, z) -> powi(x, y + z)
646 Value *Op0 = I.getOperand(0);
647 Value *Op1 = I.getOperand(1);
648 if (Opcode == Instruction::FMul && I.isOnlyUserOfAnyOperand() &&
650 m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y)))) &&
651 match(Op1, m_AllowReassoc(m_Intrinsic<Intrinsic::powi>(m_Specific(X),
652 m_Value(Z)))) &&
653 Y->getType() == Z->getType()) {
654 Instruction *NewPow = createPowiExpr(I, *this, X, Y, Z);
655 return replaceInstUsesWith(I, NewPow);
656 }
657
658 if (Opcode == Instruction::FDiv && I.hasAllowReassoc() && I.hasNoNaNs()) {
659 // powi(X, Y) / X --> powi(X, Y-1)
660 // This is legal when (Y - 1) can't wraparound, in which case reassoc and
661 // nnan are required.
662 // TODO: Multi-use may be also better off creating Powi(x,y-1)
663 if (match(Op0, m_OneUse(m_AllowReassoc(m_Intrinsic<Intrinsic::powi>(
664 m_Specific(Op1), m_Value(Y))))) &&
665 willNotOverflowSignedSub(Y, ConstantInt::get(Y->getType(), 1), I)) {
666 Constant *NegOne = ConstantInt::getAllOnesValue(Y->getType());
667 Instruction *NewPow = createPowiExpr(I, *this, Op1, Y, NegOne);
668 return replaceInstUsesWith(I, NewPow);
669 }
670
671 // powi(X, Y) / (X * Z) --> powi(X, Y-1) / Z
672 // This is legal when (Y - 1) can't wraparound, in which case reassoc and
673 // nnan are required.
674 // TODO: Multi-use may be also better off creating Powi(x,y-1)
675 if (match(Op0, m_OneUse(m_AllowReassoc(m_Intrinsic<Intrinsic::powi>(
676 m_Value(X), m_Value(Y))))) &&
678 willNotOverflowSignedSub(Y, ConstantInt::get(Y->getType(), 1), I)) {
679 Constant *NegOne = ConstantInt::getAllOnesValue(Y->getType());
680 auto *NewPow = createPowiExpr(I, *this, X, Y, NegOne);
681 return BinaryOperator::CreateFDivFMF(NewPow, Z, &I);
682 }
683 }
684
685 return nullptr;
686}
687
688// If we have the following pattern,
689// X = 1.0/sqrt(a)
690// R1 = X * X
691// R2 = a/sqrt(a)
692// then this method collects all the instructions that match R1 and R2.
696 Value *A;
697 if (match(Div, m_FDiv(m_FPOne(), m_Sqrt(m_Value(A)))) ||
698 match(Div, m_FDiv(m_SpecificFP(-1.0), m_Sqrt(m_Value(A))))) {
699 for (User *U : Div->users()) {
700 Instruction *I = cast<Instruction>(U);
701 if (match(I, m_FMul(m_Specific(Div), m_Specific(Div))))
702 R1.insert(I);
703 }
704
705 CallInst *CI = cast<CallInst>(Div->getOperand(1));
706 for (User *U : CI->users()) {
707 Instruction *I = cast<Instruction>(U);
709 R2.insert(I);
710 }
711 }
712 return !R1.empty() && !R2.empty();
713}
714
715// Check legality for transforming
716// x = 1.0/sqrt(a)
717// r1 = x * x;
718// r2 = a/sqrt(a);
719//
720// TO
721//
722// r1 = 1/a
723// r2 = sqrt(a)
724// x = r1 * r2
725// This transform works only when 'a' is known positive.
729 // Check if the required pattern for the transformation exists.
730 if (!getFSqrtDivOptPattern(X, R1, R2))
731 return false;
732
733 BasicBlock *BBx = X->getParent();
734 BasicBlock *BBr1 = (*R1.begin())->getParent();
735 BasicBlock *BBr2 = (*R2.begin())->getParent();
736
737 CallInst *FSqrt = cast<CallInst>(X->getOperand(1));
738 if (!FSqrt->hasAllowReassoc() || !FSqrt->hasNoNaNs() ||
739 !FSqrt->hasNoSignedZeros() || !FSqrt->hasNoInfs())
740 return false;
741
742 // We change x = 1/sqrt(a) to x = sqrt(a) * 1/a . This change isn't allowed
743 // by recip fp as it is strictly meant to transform ops of type a/b to
744 // a * 1/b. So, this can be considered as algebraic rewrite and reassoc flag
745 // has been used(rather abused)in the past for algebraic rewrites.
746 if (!X->hasAllowReassoc() || !X->hasAllowReciprocal() || !X->hasNoInfs())
747 return false;
748
749 // Check the constraints on X, R1 and R2 combined.
750 // fdiv instruction and one of the multiplications must reside in the same
751 // block. If not, the optimized code may execute more ops than before and
752 // this may hamper the performance.
753 if (BBx != BBr1 && BBx != BBr2)
754 return false;
755
756 // Check the constraints on instructions in R1.
757 if (any_of(R1, [BBr1](Instruction *I) {
758 // When you have multiple instructions residing in R1 and R2
759 // respectively, it's difficult to generate combinations of (R1,R2) and
760 // then check if we have the required pattern. So, for now, just be
761 // conservative.
762 return (I->getParent() != BBr1 || !I->hasAllowReassoc());
763 }))
764 return false;
765
766 // Check the constraints on instructions in R2.
767 return all_of(R2, [BBr2](Instruction *I) {
768 // When you have multiple instructions residing in R1 and R2
769 // respectively, it's difficult to generate combination of (R1,R2) and
770 // then check if we have the required pattern. So, for now, just be
771 // conservative.
772 return (I->getParent() == BBr2 && I->hasAllowReassoc());
773 });
774}
775
777 Value *Op0 = I.getOperand(0);
778 Value *Op1 = I.getOperand(1);
779 Value *X, *Y;
780 Constant *C;
781 BinaryOperator *Op0BinOp;
782
783 // Reassociate constant RHS with another constant to form constant
784 // expression.
785 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP() &&
786 match(Op0, m_AllowReassoc(m_BinOp(Op0BinOp)))) {
787 // Everything in this scope folds I with Op0, intersecting their FMF.
788 FastMathFlags FMF = I.getFastMathFlags() & Op0BinOp->getFastMathFlags();
789 Constant *C1;
790 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
791 // (C1 / X) * C --> (C * C1) / X
792 Constant *CC1 =
793 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
794 if (CC1 && CC1->isNormalFP())
795 return BinaryOperator::CreateFDivFMF(CC1, X, FMF);
796 }
797 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
798 // FIXME: This seems like it should also be checking for arcp
799 // (X / C1) * C --> X * (C / C1)
800 Constant *CDivC1 =
801 ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
802 if (CDivC1 && CDivC1->isNormalFP())
803 return BinaryOperator::CreateFMulFMF(X, CDivC1, FMF);
804
805 // If the constant was a denormal, try reassociating differently.
806 // (X / C1) * C --> X / (C1 / C)
807 Constant *C1DivC =
808 ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
809 if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
810 return BinaryOperator::CreateFDivFMF(X, C1DivC, FMF);
811 }
812
813 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
814 // canonicalized to 'fadd X, C'. Distributing the multiply may allow
815 // further folds and (X * C) + C2 is 'fma'.
816 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
817 // (X + C1) * C --> (X * C) + (C * C1)
818 if (Constant *CC1 =
819 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
820 Value *XC = Builder.CreateFMulFMF(X, C, FMF);
821 return BinaryOperator::CreateFAddFMF(XC, CC1, FMF);
822 }
823 }
824 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
825 // (C1 - X) * C --> (C * C1) - (X * C)
826 if (Constant *CC1 =
827 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL)) {
828 Value *XC = Builder.CreateFMulFMF(X, C, FMF);
829 return BinaryOperator::CreateFSubFMF(CC1, XC, FMF);
830 }
831 }
832 }
833
834 Value *Z;
835 if (match(&I,
837 m_Value(Z)))) {
838 BinaryOperator *DivOp = cast<BinaryOperator>(((Z == Op0) ? Op1 : Op0));
839 FastMathFlags FMF = I.getFastMathFlags() & DivOp->getFastMathFlags();
840 if (FMF.allowReassoc()) {
841 // Sink division: (X / Y) * Z --> (X * Z) / Y
842 auto *NewFMul = Builder.CreateFMulFMF(X, Z, FMF);
843 return BinaryOperator::CreateFDivFMF(NewFMul, Y, FMF);
844 }
845 }
846
847 // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
848 // nnan disallows the possibility of returning a number if both operands are
849 // negative (in that case, we should return NaN).
850 if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
851 match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
852 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
853 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
854 return replaceInstUsesWith(I, Sqrt);
855 }
856
857 // The following transforms are done irrespective of the number of uses
858 // for the expression "1.0/sqrt(X)".
859 // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
860 // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
861 // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
862 // has the necessary (reassoc) fast-math-flags.
863 if (I.hasNoSignedZeros() &&
864 match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
865 match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
867 if (I.hasNoSignedZeros() &&
868 match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
869 match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
871
872 // Like the similar transform in instsimplify, this requires 'nsz' because
873 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
874 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 && Op0->hasNUses(2)) {
875 // Peek through fdiv to find squaring of square root:
876 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
877 if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
878 Value *XX = Builder.CreateFMulFMF(X, X, &I);
879 return BinaryOperator::CreateFDivFMF(XX, Y, &I);
880 }
881 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
882 if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
883 Value *XX = Builder.CreateFMulFMF(X, X, &I);
884 return BinaryOperator::CreateFDivFMF(Y, XX, &I);
885 }
886 }
887
888 // pow(X, Y) * X --> pow(X, Y+1)
889 // X * pow(X, Y) --> pow(X, Y+1)
890 if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
891 m_Value(Y))),
892 m_Deferred(X)))) {
893 Value *Y1 = Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
894 Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
895 return replaceInstUsesWith(I, Pow);
896 }
897
898 if (Instruction *FoldedPowi = foldPowiReassoc(I))
899 return FoldedPowi;
900
901 if (I.isOnlyUserOfAnyOperand()) {
902 // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
903 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
904 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
905 auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
906 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
907 return replaceInstUsesWith(I, NewPow);
908 }
909 // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
910 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
911 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
912 auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
913 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
914 return replaceInstUsesWith(I, NewPow);
915 }
916
917 // exp(X) * exp(Y) -> exp(X + Y)
918 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
919 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
920 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
921 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
922 return replaceInstUsesWith(I, Exp);
923 }
924
925 // exp2(X) * exp2(Y) -> exp2(X + Y)
926 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
927 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
928 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
929 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
930 return replaceInstUsesWith(I, Exp2);
931 }
932 }
933
934 // (X*Y) * X => (X*X) * Y where Y != X
935 // The purpose is two-fold:
936 // 1) to form a power expression (of X).
937 // 2) potentially shorten the critical path: After transformation, the
938 // latency of the instruction Y is amortized by the expression of X*X,
939 // and therefore Y is in a "less critical" position compared to what it
940 // was before the transformation.
941 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) && Op1 != Y) {
942 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
943 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
944 }
945 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) && Op0 != Y) {
946 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
947 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
948 }
949
950 return nullptr;
951}
952
954 if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
955 I.getFastMathFlags(),
957 return replaceInstUsesWith(I, V);
958
960 return &I;
961
963 return X;
964
966 return Phi;
967
968 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
969 return FoldedMul;
970
971 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
972 return replaceInstUsesWith(I, FoldedMul);
973
974 if (Instruction *R = foldFPSignBitOps(I))
975 return R;
976
977 if (Instruction *R = foldFBinOpOfIntCasts(I))
978 return R;
979
980 // X * -1.0 --> -X
981 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
982 if (match(Op1, m_SpecificFP(-1.0)))
983 return UnaryOperator::CreateFNegFMF(Op0, &I);
984
985 // With no-nans/no-infs:
986 // X * 0.0 --> copysign(0.0, X)
987 // X * -0.0 --> copysign(0.0, -X)
988 const APFloat *FPC;
989 if (match(Op1, m_APFloatAllowPoison(FPC)) && FPC->isZero() &&
990 ((I.hasNoInfs() && isKnownNeverNaN(Op0, SQ.getWithInstruction(&I))) ||
992 if (FPC->isNegative())
993 Op0 = Builder.CreateFNegFMF(Op0, &I);
994 CallInst *CopySign = Builder.CreateIntrinsic(Intrinsic::copysign,
995 {I.getType()}, {Op1, Op0}, &I);
996 return replaceInstUsesWith(I, CopySign);
997 }
998
999 // -X * C --> X * -C
1000 Value *X, *Y;
1001 Constant *C;
1002 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
1003 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1004 return BinaryOperator::CreateFMulFMF(X, NegC, &I);
1005
1006 if (I.hasNoNaNs() && I.hasNoSignedZeros()) {
1007 // (uitofp bool X) * Y --> X ? Y : 0
1008 // Y * (uitofp bool X) --> X ? Y : 0
1009 // Note INF * 0 is NaN.
1010 if (match(Op0, m_UIToFP(m_Value(X))) &&
1011 X->getType()->isIntOrIntVectorTy(1)) {
1012 auto *SI = SelectInst::Create(X, Op1, ConstantFP::get(I.getType(), 0.0));
1013 SI->copyFastMathFlags(I.getFastMathFlags());
1014 return SI;
1015 }
1016 if (match(Op1, m_UIToFP(m_Value(X))) &&
1017 X->getType()->isIntOrIntVectorTy(1)) {
1018 auto *SI = SelectInst::Create(X, Op0, ConstantFP::get(I.getType(), 0.0));
1019 SI->copyFastMathFlags(I.getFastMathFlags());
1020 return SI;
1021 }
1022 }
1023
1024 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
1025 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
1026 return replaceInstUsesWith(I, V);
1027
1028 if (I.hasAllowReassoc())
1029 if (Instruction *FoldedMul = foldFMulReassoc(I))
1030 return FoldedMul;
1031
1032 // log2(X * 0.5) * Y = log2(X) * Y - Y
1033 if (I.isFast()) {
1034 IntrinsicInst *Log2 = nullptr;
1035 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
1036 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
1037 Log2 = cast<IntrinsicInst>(Op0);
1038 Y = Op1;
1039 }
1040 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
1041 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
1042 Log2 = cast<IntrinsicInst>(Op1);
1043 Y = Op0;
1044 }
1045 if (Log2) {
1046 Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
1047 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
1048 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
1049 }
1050 }
1051
1052 // Simplify FMUL recurrences starting with 0.0 to 0.0 if nnan and nsz are set.
1053 // Given a phi node with entry value as 0 and it used in fmul operation,
1054 // we can replace fmul with 0 safely and eleminate loop operation.
1055 PHINode *PN = nullptr;
1056 Value *Start = nullptr, *Step = nullptr;
1057 if (matchSimpleRecurrence(&I, PN, Start, Step) && I.hasNoNaNs() &&
1058 I.hasNoSignedZeros() && match(Start, m_Zero()))
1059 return replaceInstUsesWith(I, Start);
1060
1061 // minimum(X, Y) * maximum(X, Y) => X * Y.
1062 if (match(&I,
1063 m_c_FMul(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
1064 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
1065 m_Deferred(Y))))) {
1067 // We cannot preserve ninf if nnan flag is not set.
1068 // If X is NaN and Y is Inf then in original program we had NaN * NaN,
1069 // while in optimized version NaN * Inf and this is a poison with ninf flag.
1070 if (!Result->hasNoNaNs())
1071 Result->setHasNoInfs(false);
1072 return Result;
1073 }
1074
1075 // tan(X) * cos(X) -> sin(X)
1076 if (I.hasAllowContract() &&
1077 match(&I,
1078 m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::tan>(m_Value(X))),
1079 m_OneUse(m_Intrinsic<Intrinsic::cos>(m_Deferred(X)))))) {
1080 auto *Sin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, &I);
1081 if (auto *Metadata = I.getMetadata(LLVMContext::MD_fpmath)) {
1082 Sin->setMetadata(LLVMContext::MD_fpmath, Metadata);
1083 }
1084 return replaceInstUsesWith(I, Sin);
1085 }
1086
1087 return nullptr;
1088}
1089
1090/// Fold a divide or remainder with a select instruction divisor when one of the
1091/// select operands is zero. In that case, we can use the other select operand
1092/// because div/rem by zero is undefined.
1094 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
1095 if (!SI)
1096 return false;
1097
1098 int NonNullOperand;
1099 if (match(SI->getTrueValue(), m_Zero()))
1100 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
1101 NonNullOperand = 2;
1102 else if (match(SI->getFalseValue(), m_Zero()))
1103 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
1104 NonNullOperand = 1;
1105 else
1106 return false;
1107
1108 // Change the div/rem to use 'Y' instead of the select.
1109 replaceOperand(I, 1, SI->getOperand(NonNullOperand));
1110
1111 // Okay, we know we replace the operand of the div/rem with 'Y' with no
1112 // problem. However, the select, or the condition of the select may have
1113 // multiple uses. Based on our knowledge that the operand must be non-zero,
1114 // propagate the known value for the select into other uses of it, and
1115 // propagate a known value of the condition into its other users.
1116
1117 // If the select and condition only have a single use, don't bother with this,
1118 // early exit.
1119 Value *SelectCond = SI->getCondition();
1120 if (SI->use_empty() && SelectCond->hasOneUse())
1121 return true;
1122
1123 // Scan the current block backward, looking for other uses of SI.
1124 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
1125 Type *CondTy = SelectCond->getType();
1126 while (BBI != BBFront) {
1127 --BBI;
1128 // If we found an instruction that we can't assume will return, so
1129 // information from below it cannot be propagated above it.
1131 break;
1132
1133 // Replace uses of the select or its condition with the known values.
1134 for (Use &Op : BBI->operands()) {
1135 if (Op == SI) {
1136 replaceUse(Op, SI->getOperand(NonNullOperand));
1137 Worklist.push(&*BBI);
1138 } else if (Op == SelectCond) {
1139 replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
1140 : ConstantInt::getFalse(CondTy));
1141 Worklist.push(&*BBI);
1142 }
1143 }
1144
1145 // If we past the instruction, quit looking for it.
1146 if (&*BBI == SI)
1147 SI = nullptr;
1148 if (&*BBI == SelectCond)
1149 SelectCond = nullptr;
1150
1151 // If we ran out of things to eliminate, break out of the loop.
1152 if (!SelectCond && !SI)
1153 break;
1154
1155 }
1156 return true;
1157}
1158
1159/// True if the multiply can not be expressed in an int this size.
1160static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
1161 bool IsSigned) {
1162 bool Overflow;
1163 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
1164 return Overflow;
1165}
1166
1167/// True if C1 is a multiple of C2. Quotient contains C1/C2.
1168static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
1169 bool IsSigned) {
1170 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
1171
1172 // Bail if we will divide by zero.
1173 if (C2.isZero())
1174 return false;
1175
1176 // Bail if we would divide INT_MIN by -1.
1177 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
1178 return false;
1179
1180 APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
1181 if (IsSigned)
1182 APInt::sdivrem(C1, C2, Quotient, Remainder);
1183 else
1184 APInt::udivrem(C1, C2, Quotient, Remainder);
1185
1186 return Remainder.isMinValue();
1187}
1188
1190 assert((I.getOpcode() == Instruction::SDiv ||
1191 I.getOpcode() == Instruction::UDiv) &&
1192 "Expected integer divide");
1193
1194 bool IsSigned = I.getOpcode() == Instruction::SDiv;
1195 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1196 Type *Ty = I.getType();
1197
1198 Value *X, *Y, *Z;
1199
1200 // With appropriate no-wrap constraints, remove a common factor in the
1201 // dividend and divisor that is disguised as a left-shifted value.
1202 if (match(Op1, m_Shl(m_Value(X), m_Value(Z))) &&
1203 match(Op0, m_c_Mul(m_Specific(X), m_Value(Y)))) {
1204 // Both operands must have the matching no-wrap for this kind of division.
1205 auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1206 auto *Shl = cast<OverflowingBinaryOperator>(Op1);
1207 bool HasNUW = Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
1208 bool HasNSW = Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
1209
1210 // (X * Y) u/ (X << Z) --> Y u>> Z
1211 if (!IsSigned && HasNUW)
1212 return Builder.CreateLShr(Y, Z, "", I.isExact());
1213
1214 // (X * Y) s/ (X << Z) --> Y s/ (1 << Z)
1215 if (IsSigned && HasNSW && (Op0->hasOneUse() || Op1->hasOneUse())) {
1216 Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z);
1217 return Builder.CreateSDiv(Y, Shl, "", I.isExact());
1218 }
1219 }
1220
1221 // With appropriate no-wrap constraints, remove a common factor in the
1222 // dividend and divisor that is disguised as a left-shift amount.
1223 if (match(Op0, m_Shl(m_Value(X), m_Value(Z))) &&
1224 match(Op1, m_Shl(m_Value(Y), m_Specific(Z)))) {
1225 auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
1226 auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
1227
1228 // For unsigned div, we need 'nuw' on both shifts or
1229 // 'nsw' on both shifts + 'nuw' on the dividend.
1230 // (X << Z) / (Y << Z) --> X / Y
1231 if (!IsSigned &&
1232 ((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
1233 (Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
1234 Shl1->hasNoSignedWrap())))
1235 return Builder.CreateUDiv(X, Y, "", I.isExact());
1236
1237 // For signed div, we need 'nsw' on both shifts + 'nuw' on the divisor.
1238 // (X << Z) / (Y << Z) --> X / Y
1239 if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
1240 Shl1->hasNoUnsignedWrap())
1241 return Builder.CreateSDiv(X, Y, "", I.isExact());
1242 }
1243
1244 // If X << Y and X << Z does not overflow, then:
1245 // (X << Y) / (X << Z) -> (1 << Y) / (1 << Z) -> 1 << Y >> Z
1246 if (match(Op0, m_Shl(m_Value(X), m_Value(Y))) &&
1247 match(Op1, m_Shl(m_Specific(X), m_Value(Z)))) {
1248 auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
1249 auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
1250
1251 if (IsSigned ? (Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap())
1252 : (Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap())) {
1253 Constant *One = ConstantInt::get(X->getType(), 1);
1254 // Only preserve the nsw flag if dividend has nsw
1255 // or divisor has nsw and operator is sdiv.
1256 Value *Dividend = Builder.CreateShl(
1257 One, Y, "shl.dividend",
1258 /*HasNUW=*/true,
1259 /*HasNSW=*/
1260 IsSigned ? (Shl0->hasNoUnsignedWrap() || Shl1->hasNoUnsignedWrap())
1261 : Shl0->hasNoSignedWrap());
1262 return Builder.CreateLShr(Dividend, Z, "", I.isExact());
1263 }
1264 }
1265
1266 return nullptr;
1267}
1268
1269/// Common integer divide/remainder transforms
1271 assert(I.isIntDivRem() && "Unexpected instruction");
1272 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1273
1274 // If any element of a constant divisor fixed width vector is zero or undef
1275 // the behavior is undefined and we can fold the whole op to poison.
1276 auto *Op1C = dyn_cast<Constant>(Op1);
1277 Type *Ty = I.getType();
1278 auto *VTy = dyn_cast<FixedVectorType>(Ty);
1279 if (Op1C && VTy) {
1280 unsigned NumElts = VTy->getNumElements();
1281 for (unsigned i = 0; i != NumElts; ++i) {
1282 Constant *Elt = Op1C->getAggregateElement(i);
1283 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
1285 }
1286 }
1287
1289 return Phi;
1290
1291 // The RHS is known non-zero.
1292 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1293 return replaceOperand(I, 1, V);
1294
1295 // Handle cases involving: div/rem X, (select Cond, Y, Z)
1297 return &I;
1298
1299 // If the divisor is a select-of-constants, try to constant fold all div ops:
1300 // C div/rem (select Cond, TrueC, FalseC) --> select Cond, (C div/rem TrueC),
1301 // (C div/rem FalseC)
1302 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1303 if (match(Op0, m_ImmConstant()) &&
1305 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
1306 /*FoldWithMultiUse*/ true))
1307 return R;
1308 }
1309
1310 return nullptr;
1311}
1312
1313/// This function implements the transforms common to both integer division
1314/// instructions (udiv and sdiv). It is called by the visitors to those integer
1315/// division instructions.
1316/// Common integer divide transforms
1319 return Res;
1320
1321 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1322 bool IsSigned = I.getOpcode() == Instruction::SDiv;
1323 Type *Ty = I.getType();
1324
1325 const APInt *C2;
1326 if (match(Op1, m_APInt(C2))) {
1327 Value *X;
1328 const APInt *C1;
1329
1330 // (X / C1) / C2 -> X / (C1*C2)
1331 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
1332 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
1333 APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
1334 if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
1335 return BinaryOperator::Create(I.getOpcode(), X,
1336 ConstantInt::get(Ty, Product));
1337 }
1338
1339 APInt Quotient(C2->getBitWidth(), /*val=*/0ULL, IsSigned);
1340 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
1341 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
1342
1343 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
1344 if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
1345 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
1346 ConstantInt::get(Ty, Quotient));
1347 NewDiv->setIsExact(I.isExact());
1348 return NewDiv;
1349 }
1350
1351 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
1352 if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
1353 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1354 ConstantInt::get(Ty, Quotient));
1355 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1356 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1357 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1358 return Mul;
1359 }
1360 }
1361
1362 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
1363 C1->ult(C1->getBitWidth() - 1)) ||
1364 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
1365 C1->ult(C1->getBitWidth()))) {
1366 APInt C1Shifted = APInt::getOneBitSet(
1367 C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
1368
1369 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
1370 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
1371 auto *BO = BinaryOperator::Create(I.getOpcode(), X,
1372 ConstantInt::get(Ty, Quotient));
1373 BO->setIsExact(I.isExact());
1374 return BO;
1375 }
1376
1377 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
1378 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
1379 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1380 ConstantInt::get(Ty, Quotient));
1381 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1382 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1383 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1384 return Mul;
1385 }
1386 }
1387
1388 // Distribute div over add to eliminate a matching div/mul pair:
1389 // ((X * C2) + C1) / C2 --> X + C1/C2
1390 // We need a multiple of the divisor for a signed add constant, but
1391 // unsigned is fine with any constant pair.
1392 if (IsSigned &&
1394 m_APInt(C1))) &&
1395 isMultiple(*C1, *C2, Quotient, IsSigned)) {
1396 return BinaryOperator::CreateNSWAdd(X, ConstantInt::get(Ty, Quotient));
1397 }
1398 if (!IsSigned &&
1400 m_APInt(C1)))) {
1401 return BinaryOperator::CreateNUWAdd(X,
1402 ConstantInt::get(Ty, C1->udiv(*C2)));
1403 }
1404
1405 if (!C2->isZero()) // avoid X udiv 0
1406 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
1407 return FoldedDiv;
1408 }
1409
1410 if (match(Op0, m_One())) {
1411 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
1412 if (IsSigned) {
1413 // 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0
1414 // (Op1 + 1) u< 3 ? Op1 : 0
1415 // Op1 must be frozen because we are increasing its number of uses.
1416 Value *F1 = Op1;
1417 if (!isGuaranteedNotToBeUndef(Op1))
1418 F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr");
1419 Value *Inc = Builder.CreateAdd(F1, Op0);
1420 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
1421 return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0));
1422 } else {
1423 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
1424 // result is one, otherwise it's zero.
1425 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
1426 }
1427 }
1428
1429 // See if we can fold away this div instruction.
1431 return &I;
1432
1433 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
1434 Value *X, *Z;
1435 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
1436 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
1437 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
1438 return BinaryOperator::Create(I.getOpcode(), X, Op1);
1439
1440 // (X << Y) / X -> 1 << Y
1441 Value *Y;
1442 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
1443 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
1444 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
1445 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
1446
1447 // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
1448 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
1449 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1450 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1451 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
1452 replaceOperand(I, 0, ConstantInt::get(Ty, 1));
1453 replaceOperand(I, 1, Y);
1454 return &I;
1455 }
1456 }
1457
1458 // (X << Z) / (X * Y) -> (1 << Z) / Y
1459 // TODO: Handle sdiv.
1460 if (!IsSigned && Op1->hasOneUse() &&
1461 match(Op0, m_NUWShl(m_Value(X), m_Value(Z))) &&
1462 match(Op1, m_c_Mul(m_Specific(X), m_Value(Y))))
1463 if (cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap()) {
1464 Instruction *NewDiv = BinaryOperator::CreateUDiv(
1465 Builder.CreateShl(ConstantInt::get(Ty, 1), Z, "", /*NUW*/ true), Y);
1466 NewDiv->setIsExact(I.isExact());
1467 return NewDiv;
1468 }
1469
1470 if (Value *R = foldIDivShl(I, Builder))
1471 return replaceInstUsesWith(I, R);
1472
1473 // With the appropriate no-wrap constraint, remove a multiply by the divisor
1474 // after peeking through another divide:
1475 // ((Op1 * X) / Y) / Op1 --> X / Y
1476 if (match(Op0, m_BinOp(I.getOpcode(), m_c_Mul(m_Specific(Op1), m_Value(X)),
1477 m_Value(Y)))) {
1478 auto *InnerDiv = cast<PossiblyExactOperator>(Op0);
1479 auto *Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0));
1480 Instruction *NewDiv = nullptr;
1481 if (!IsSigned && Mul->hasNoUnsignedWrap())
1482 NewDiv = BinaryOperator::CreateUDiv(X, Y);
1483 else if (IsSigned && Mul->hasNoSignedWrap())
1484 NewDiv = BinaryOperator::CreateSDiv(X, Y);
1485
1486 // Exact propagates only if both of the original divides are exact.
1487 if (NewDiv) {
1488 NewDiv->setIsExact(I.isExact() && InnerDiv->isExact());
1489 return NewDiv;
1490 }
1491 }
1492
1493 // (X * Y) / (X * Z) --> Y / Z (and commuted variants)
1494 if (match(Op0, m_Mul(m_Value(X), m_Value(Y)))) {
1495 auto OB0HasNSW = cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap();
1496 auto OB0HasNUW = cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap();
1497
1498 auto CreateDivOrNull = [&](Value *A, Value *B) -> Instruction * {
1499 auto OB1HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1500 auto OB1HasNUW =
1501 cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1502 const APInt *C1, *C2;
1503 if (IsSigned && OB0HasNSW) {
1504 if (OB1HasNSW && match(B, m_APInt(C1)) && !C1->isAllOnes())
1505 return BinaryOperator::CreateSDiv(A, B);
1506 }
1507 if (!IsSigned && OB0HasNUW) {
1508 if (OB1HasNUW)
1509 return BinaryOperator::CreateUDiv(A, B);
1510 if (match(A, m_APInt(C1)) && match(B, m_APInt(C2)) && C2->ule(*C1))
1511 return BinaryOperator::CreateUDiv(A, B);
1512 }
1513 return nullptr;
1514 };
1515
1516 if (match(Op1, m_c_Mul(m_Specific(X), m_Value(Z)))) {
1517 if (auto *Val = CreateDivOrNull(Y, Z))
1518 return Val;
1519 }
1520 if (match(Op1, m_c_Mul(m_Specific(Y), m_Value(Z)))) {
1521 if (auto *Val = CreateDivOrNull(X, Z))
1522 return Val;
1523 }
1524 }
1525 return nullptr;
1526}
1527
1528Value *InstCombinerImpl::takeLog2(Value *Op, unsigned Depth, bool AssumeNonZero,
1529 bool DoFold) {
1530 auto IfFold = [DoFold](function_ref<Value *()> Fn) {
1531 if (!DoFold)
1532 return reinterpret_cast<Value *>(-1);
1533 return Fn();
1534 };
1535
1536 // FIXME: assert that Op1 isn't/doesn't contain undef.
1537
1538 // log2(2^C) -> C
1539 if (match(Op, m_Power2()))
1540 return IfFold([&]() {
1541 Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
1542 if (!C)
1543 llvm_unreachable("Failed to constant fold udiv -> logbase2");
1544 return C;
1545 });
1546
1547 // The remaining tests are all recursive, so bail out if we hit the limit.
1549 return nullptr;
1550
1551 // log2(zext X) -> zext log2(X)
1552 // FIXME: Require one use?
1553 Value *X, *Y;
1554 if (match(Op, m_ZExt(m_Value(X))))
1555 if (Value *LogX = takeLog2(X, Depth, AssumeNonZero, DoFold))
1556 return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
1557
1558 // log2(trunc x) -> trunc log2(X)
1559 // FIXME: Require one use?
1560 if (match(Op, m_Trunc(m_Value(X)))) {
1561 auto *TI = cast<TruncInst>(Op);
1562 if (AssumeNonZero || TI->hasNoUnsignedWrap())
1563 if (Value *LogX = takeLog2(X, Depth, AssumeNonZero, DoFold))
1564 return IfFold([&]() {
1565 return Builder.CreateTrunc(LogX, Op->getType(), "",
1566 /*IsNUW=*/TI->hasNoUnsignedWrap());
1567 });
1568 }
1569
1570 // log2(X << Y) -> log2(X) + Y
1571 // FIXME: Require one use unless X is 1?
1572 if (match(Op, m_Shl(m_Value(X), m_Value(Y)))) {
1573 auto *BO = cast<OverflowingBinaryOperator>(Op);
1574 // nuw will be set if the `shl` is trivially non-zero.
1575 if (AssumeNonZero || BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap())
1576 if (Value *LogX = takeLog2(X, Depth, AssumeNonZero, DoFold))
1577 return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
1578 }
1579
1580 // log2(X >>u Y) -> log2(X) - Y
1581 // FIXME: Require one use?
1582 if (match(Op, m_LShr(m_Value(X), m_Value(Y)))) {
1583 auto *PEO = cast<PossiblyExactOperator>(Op);
1584 if (AssumeNonZero || PEO->isExact())
1585 if (Value *LogX = takeLog2(X, Depth, AssumeNonZero, DoFold))
1586 return IfFold([&]() { return Builder.CreateSub(LogX, Y); });
1587 }
1588
1589 // log2(X & Y) -> either log2(X) or log2(Y)
1590 // This requires `AssumeNonZero` as `X & Y` may be zero when X != Y.
1591 if (AssumeNonZero && match(Op, m_And(m_Value(X), m_Value(Y)))) {
1592 if (Value *LogX = takeLog2(X, Depth, AssumeNonZero, DoFold))
1593 return IfFold([&]() { return LogX; });
1594 if (Value *LogY = takeLog2(Y, Depth, AssumeNonZero, DoFold))
1595 return IfFold([&]() { return LogY; });
1596 }
1597
1598 // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
1599 // FIXME: Require one use?
1600 if (SelectInst *SI = dyn_cast<SelectInst>(Op))
1601 if (Value *LogX = takeLog2(SI->getOperand(1), Depth, AssumeNonZero, DoFold))
1602 if (Value *LogY =
1603 takeLog2(SI->getOperand(2), Depth, AssumeNonZero, DoFold))
1604 return IfFold([&]() {
1605 return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
1606 });
1607
1608 // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
1609 // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
1610 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
1611 if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned()) {
1612 // Use AssumeNonZero as false here. Otherwise we can hit case where
1613 // log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow).
1614 if (Value *LogX = takeLog2(MinMax->getLHS(), Depth,
1615 /*AssumeNonZero*/ false, DoFold))
1616 if (Value *LogY = takeLog2(MinMax->getRHS(), Depth,
1617 /*AssumeNonZero*/ false, DoFold))
1618 return IfFold([&]() {
1619 return Builder.CreateBinaryIntrinsic(MinMax->getIntrinsicID(), LogX,
1620 LogY);
1621 });
1622 }
1623
1624 return nullptr;
1625}
1626
1627/// If we have zero-extended operands of an unsigned div or rem, we may be able
1628/// to narrow the operation (sink the zext below the math).
1630 InstCombinerImpl &IC) {
1631 Instruction::BinaryOps Opcode = I.getOpcode();
1632 Value *N = I.getOperand(0);
1633 Value *D = I.getOperand(1);
1634 Type *Ty = I.getType();
1635 Value *X, *Y;
1636 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
1637 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
1638 // udiv (zext X), (zext Y) --> zext (udiv X, Y)
1639 // urem (zext X), (zext Y) --> zext (urem X, Y)
1640 Value *NarrowOp = IC.Builder.CreateBinOp(Opcode, X, Y);
1641 return new ZExtInst(NarrowOp, Ty);
1642 }
1643
1644 Constant *C;
1645 if (isa<Instruction>(N) && match(N, m_OneUse(m_ZExt(m_Value(X)))) &&
1646 match(D, m_Constant(C))) {
1647 // If the constant is the same in the smaller type, use the narrow version.
1648 Constant *TruncC = IC.getLosslessUnsignedTrunc(C, X->getType());
1649 if (!TruncC)
1650 return nullptr;
1651
1652 // udiv (zext X), C --> zext (udiv X, C')
1653 // urem (zext X), C --> zext (urem X, C')
1654 return new ZExtInst(IC.Builder.CreateBinOp(Opcode, X, TruncC), Ty);
1655 }
1656 if (isa<Instruction>(D) && match(D, m_OneUse(m_ZExt(m_Value(X)))) &&
1657 match(N, m_Constant(C))) {
1658 // If the constant is the same in the smaller type, use the narrow version.
1659 Constant *TruncC = IC.getLosslessUnsignedTrunc(C, X->getType());
1660 if (!TruncC)
1661 return nullptr;
1662
1663 // udiv C, (zext X) --> zext (udiv C', X)
1664 // urem C, (zext X) --> zext (urem C', X)
1665 return new ZExtInst(IC.Builder.CreateBinOp(Opcode, TruncC, X), Ty);
1666 }
1667
1668 return nullptr;
1669}
1670
1672 if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1674 return replaceInstUsesWith(I, V);
1675
1677 return X;
1678
1679 // Handle the integer div common cases
1680 if (Instruction *Common = commonIDivTransforms(I))
1681 return Common;
1682
1683 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1684 Value *X;
1685 const APInt *C1, *C2;
1686 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1687 // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1688 bool Overflow;
1689 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1690 if (!Overflow) {
1691 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1692 BinaryOperator *BO = BinaryOperator::CreateUDiv(
1693 X, ConstantInt::get(X->getType(), C2ShlC1));
1694 if (IsExact)
1695 BO->setIsExact();
1696 return BO;
1697 }
1698 }
1699
1700 // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1701 // TODO: Could use isKnownNegative() to handle non-constant values.
1702 Type *Ty = I.getType();
1703 if (match(Op1, m_Negative())) {
1704 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1705 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1706 }
1707 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1708 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1710 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1711 }
1712
1713 if (Instruction *NarrowDiv = narrowUDivURem(I, *this))
1714 return NarrowDiv;
1715
1716 Value *A, *B;
1717
1718 // Look through a right-shift to find the common factor:
1719 // ((Op1 *nuw A) >> B) / Op1 --> A >> B
1720 if (match(Op0, m_LShr(m_NUWMul(m_Specific(Op1), m_Value(A)), m_Value(B))) ||
1721 match(Op0, m_LShr(m_NUWMul(m_Value(A), m_Specific(Op1)), m_Value(B)))) {
1722 Instruction *Lshr = BinaryOperator::CreateLShr(A, B);
1723 if (I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact())
1724 Lshr->setIsExact();
1725 return Lshr;
1726 }
1727
1728 auto GetShiftableDenom = [&](Value *Denom) -> Value * {
1729 // Op0 udiv Op1 -> Op0 lshr log2(Op1), if log2() folds away.
1730 if (Value *Log2 = tryGetLog2(Op1, /*AssumeNonZero=*/true))
1731 return Log2;
1732
1733 // Op0 udiv Op1 -> Op0 lshr cttz(Op1), if Op1 is a power of 2.
1734 if (isKnownToBeAPowerOfTwo(Denom, /*OrZero=*/true, &I))
1735 // This will increase instruction count but it's okay
1736 // since bitwise operations are substantially faster than
1737 // division.
1738 return Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Denom,
1739 Builder.getTrue());
1740
1741 return nullptr;
1742 };
1743
1744 if (auto *Res = GetShiftableDenom(Op1))
1745 return replaceInstUsesWith(
1746 I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
1747
1748 return nullptr;
1749}
1750
1752 if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1754 return replaceInstUsesWith(I, V);
1755
1757 return X;
1758
1759 // Handle the integer div common cases
1760 if (Instruction *Common = commonIDivTransforms(I))
1761 return Common;
1762
1763 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1764 Type *Ty = I.getType();
1765 Value *X;
1766 // sdiv Op0, -1 --> -Op0
1767 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1768 if (match(Op1, m_AllOnes()) ||
1769 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1770 return BinaryOperator::CreateNSWNeg(Op0);
1771
1772 // X / INT_MIN --> X == INT_MIN
1773 if (match(Op1, m_SignMask()))
1774 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1775
1776 if (I.isExact()) {
1777 // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
1778 if (match(Op1, m_Power2()) && match(Op1, m_NonNegative())) {
1779 Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
1780 return BinaryOperator::CreateExactAShr(Op0, C);
1781 }
1782
1783 // sdiv exact X, (1<<ShAmt) --> ashr exact X, ShAmt (if shl is non-negative)
1784 Value *ShAmt;
1785 if (match(Op1, m_NSWShl(m_One(), m_Value(ShAmt))))
1786 return BinaryOperator::CreateExactAShr(Op0, ShAmt);
1787
1788 // sdiv exact X, -1<<C --> -(ashr exact X, C)
1789 if (match(Op1, m_NegatedPower2())) {
1790 Constant *NegPow2C = ConstantExpr::getNeg(cast<Constant>(Op1));
1792 Value *Ashr = Builder.CreateAShr(Op0, C, I.getName() + ".neg", true);
1793 return BinaryOperator::CreateNSWNeg(Ashr);
1794 }
1795 }
1796
1797 const APInt *Op1C;
1798 if (match(Op1, m_APInt(Op1C))) {
1799 // If the dividend is sign-extended and the constant divisor is small enough
1800 // to fit in the source type, shrink the division to the narrower type:
1801 // (sext X) sdiv C --> sext (X sdiv C)
1802 Value *Op0Src;
1803 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1804 Op0Src->getType()->getScalarSizeInBits() >=
1805 Op1C->getSignificantBits()) {
1806
1807 // In the general case, we need to make sure that the dividend is not the
1808 // minimum signed value because dividing that by -1 is UB. But here, we
1809 // know that the -1 divisor case is already handled above.
1810
1811 Constant *NarrowDivisor =
1812 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1813 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1814 return new SExtInst(NarrowOp, Ty);
1815 }
1816
1817 // -X / C --> X / -C (if the negation doesn't overflow).
1818 // TODO: This could be enhanced to handle arbitrary vector constants by
1819 // checking if all elements are not the min-signed-val.
1820 if (!Op1C->isMinSignedValue() && match(Op0, m_NSWNeg(m_Value(X)))) {
1821 Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1822 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1823 BO->setIsExact(I.isExact());
1824 return BO;
1825 }
1826 }
1827
1828 // -X / Y --> -(X / Y)
1829 Value *Y;
1832 Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1833
1834 // abs(X) / X --> X > -1 ? 1 : -1
1835 // X / abs(X) --> X > -1 ? 1 : -1
1836 if (match(&I, m_c_BinOp(
1837 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1838 m_Deferred(X)))) {
1840 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
1842 }
1843
1844 KnownBits KnownDividend = computeKnownBits(Op0, &I);
1845 if (!I.isExact() &&
1846 (match(Op1, m_Power2(Op1C)) || match(Op1, m_NegatedPower2(Op1C))) &&
1847 KnownDividend.countMinTrailingZeros() >= Op1C->countr_zero()) {
1848 I.setIsExact();
1849 return &I;
1850 }
1851
1852 if (KnownDividend.isNonNegative()) {
1853 // If both operands are unsigned, turn this into a udiv.
1855 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1856 BO->setIsExact(I.isExact());
1857 return BO;
1858 }
1859
1860 if (match(Op1, m_NegatedPower2())) {
1861 // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1862 // -> -(X udiv (1 << C)) -> -(X u>> C)
1864 ConstantExpr::getNeg(cast<Constant>(Op1)));
1865 Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
1866 return BinaryOperator::CreateNeg(Shr);
1867 }
1868
1869 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, &I)) {
1870 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1871 // Safe because the only negative value (1 << Y) can take on is
1872 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1873 // the sign bit set.
1874 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1875 BO->setIsExact(I.isExact());
1876 return BO;
1877 }
1878 }
1879
1880 // -X / X --> X == INT_MIN ? 1 : -1
1881 if (isKnownNegation(Op0, Op1)) {
1883 Value *Cond = Builder.CreateICmpEQ(Op0, ConstantInt::get(Ty, MinVal));
1884 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
1886 }
1887 return nullptr;
1888}
1889
1890/// Remove negation and try to convert division into multiplication.
1891Instruction *InstCombinerImpl::foldFDivConstantDivisor(BinaryOperator &I) {
1892 Constant *C;
1893 if (!match(I.getOperand(1), m_Constant(C)))
1894 return nullptr;
1895
1896 // -X / C --> X / -C
1897 Value *X;
1898 const DataLayout &DL = I.getDataLayout();
1899 if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1900 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1901 return BinaryOperator::CreateFDivFMF(X, NegC, &I);
1902
1903 // nnan X / +0.0 -> copysign(inf, X)
1904 // nnan nsz X / -0.0 -> copysign(inf, X)
1905 if (I.hasNoNaNs() &&
1906 (match(I.getOperand(1), m_PosZeroFP()) ||
1907 (I.hasNoSignedZeros() && match(I.getOperand(1), m_AnyZeroFP())))) {
1908 IRBuilder<> B(&I);
1909 CallInst *CopySign = B.CreateIntrinsic(
1910 Intrinsic::copysign, {C->getType()},
1911 {ConstantFP::getInfinity(I.getType()), I.getOperand(0)}, &I);
1912 CopySign->takeName(&I);
1913 return replaceInstUsesWith(I, CopySign);
1914 }
1915
1916 // If the constant divisor has an exact inverse, this is always safe. If not,
1917 // then we can still create a reciprocal if fast-math-flags allow it and the
1918 // constant is a regular number (not zero, infinite, or denormal).
1919 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1920 return nullptr;
1921
1922 // Disallow denormal constants because we don't know what would happen
1923 // on all targets.
1924 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1925 // denorms are flushed?
1926 auto *RecipC = ConstantFoldBinaryOpOperands(
1927 Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL);
1928 if (!RecipC || !RecipC->isNormalFP())
1929 return nullptr;
1930
1931 // X / C --> X * (1 / C)
1932 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1933}
1934
1935/// Remove negation and try to reassociate constant math.
1937 Constant *C;
1938 if (!match(I.getOperand(0), m_Constant(C)))
1939 return nullptr;
1940
1941 // C / -X --> -C / X
1942 Value *X;
1943 const DataLayout &DL = I.getDataLayout();
1944 if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1945 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1946 return BinaryOperator::CreateFDivFMF(NegC, X, &I);
1947
1948 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1949 return nullptr;
1950
1951 // Try to reassociate C / X expressions where X includes another constant.
1952 Constant *C2, *NewC = nullptr;
1953 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1954 // C / (X * C2) --> (C / C2) / X
1955 NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL);
1956 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1957 // C / (X / C2) --> (C * C2) / X
1958 NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL);
1959 }
1960 // Disallow denormal constants because we don't know what would happen
1961 // on all targets.
1962 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1963 // denorms are flushed?
1964 if (!NewC || !NewC->isNormalFP())
1965 return nullptr;
1966
1967 return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1968}
1969
1970/// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1972 InstCombiner::BuilderTy &Builder) {
1973 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1974 auto *II = dyn_cast<IntrinsicInst>(Op1);
1975 if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1976 !I.hasAllowReciprocal())
1977 return nullptr;
1978
1979 // Z / pow(X, Y) --> Z * pow(X, -Y)
1980 // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1981 // In the general case, this creates an extra instruction, but fmul allows
1982 // for better canonicalization and optimization than fdiv.
1983 Intrinsic::ID IID = II->getIntrinsicID();
1985 switch (IID) {
1986 case Intrinsic::pow:
1987 Args.push_back(II->getArgOperand(0));
1988 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1989 break;
1990 case Intrinsic::powi: {
1991 // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1992 // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1993 // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1994 // non-standard results, so this corner case should be acceptable if the
1995 // code rules out INF values.
1996 if (!I.hasNoInfs())
1997 return nullptr;
1998 Args.push_back(II->getArgOperand(0));
1999 Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
2000 Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
2001 Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
2002 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
2003 }
2004 case Intrinsic::exp:
2005 case Intrinsic::exp2:
2006 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
2007 break;
2008 default:
2009 return nullptr;
2010 }
2011 Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
2012 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
2013}
2014
2015/// Convert div to mul if we have an sqrt divisor iff sqrt's operand is a fdiv
2016/// instruction.
2018 InstCombiner::BuilderTy &Builder) {
2019 // X / sqrt(Y / Z) --> X * sqrt(Z / Y)
2020 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
2021 return nullptr;
2022 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2023 auto *II = dyn_cast<IntrinsicInst>(Op1);
2024 if (!II || II->getIntrinsicID() != Intrinsic::sqrt || !II->hasOneUse() ||
2025 !II->hasAllowReassoc() || !II->hasAllowReciprocal())
2026 return nullptr;
2027
2028 Value *Y, *Z;
2029 auto *DivOp = dyn_cast<Instruction>(II->getOperand(0));
2030 if (!DivOp)
2031 return nullptr;
2032 if (!match(DivOp, m_FDiv(m_Value(Y), m_Value(Z))))
2033 return nullptr;
2034 if (!DivOp->hasAllowReassoc() || !I.hasAllowReciprocal() ||
2035 !DivOp->hasOneUse())
2036 return nullptr;
2037 Value *SwapDiv = Builder.CreateFDivFMF(Z, Y, DivOp);
2038 Value *NewSqrt =
2039 Builder.CreateUnaryIntrinsic(II->getIntrinsicID(), SwapDiv, II);
2040 return BinaryOperator::CreateFMulFMF(Op0, NewSqrt, &I);
2041}
2042
2043// Change
2044// X = 1/sqrt(a)
2045// R1 = X * X
2046// R2 = a * X
2047//
2048// TO
2049//
2050// FDiv = 1/a
2051// FSqrt = sqrt(a)
2052// FMul = FDiv * FSqrt
2053// Replace Uses Of R1 With FDiv
2054// Replace Uses Of R2 With FSqrt
2055// Replace Uses Of X With FMul
2056static Instruction *
2061
2062 B.SetInsertPoint(X);
2063
2064 // Have an instruction that is representative of all of instructions in R1 and
2065 // get the most common fpmath metadata and fast-math flags on it.
2066 Value *SqrtOp = CI->getArgOperand(0);
2067 auto *FDiv = cast<Instruction>(
2068 B.CreateFDiv(ConstantFP::get(X->getType(), 1.0), SqrtOp));
2069 auto *R1FPMathMDNode = (*R1.begin())->getMetadata(LLVMContext::MD_fpmath);
2070 FastMathFlags R1FMF = (*R1.begin())->getFastMathFlags(); // Common FMF
2071 for (Instruction *I : R1) {
2072 R1FPMathMDNode = MDNode::getMostGenericFPMath(
2073 R1FPMathMDNode, I->getMetadata(LLVMContext::MD_fpmath));
2074 R1FMF &= I->getFastMathFlags();
2075 IC->replaceInstUsesWith(*I, FDiv);
2077 }
2078 FDiv->setMetadata(LLVMContext::MD_fpmath, R1FPMathMDNode);
2079 FDiv->copyFastMathFlags(R1FMF);
2080
2081 // Have a single sqrt call instruction that is representative of all of
2082 // instructions in R2 and get the most common fpmath metadata and fast-math
2083 // flags on it.
2084 auto *FSqrt = cast<CallInst>(CI->clone());
2085 FSqrt->insertBefore(CI->getIterator());
2086 auto *R2FPMathMDNode = (*R2.begin())->getMetadata(LLVMContext::MD_fpmath);
2087 FastMathFlags R2FMF = (*R2.begin())->getFastMathFlags(); // Common FMF
2088 for (Instruction *I : R2) {
2089 R2FPMathMDNode = MDNode::getMostGenericFPMath(
2090 R2FPMathMDNode, I->getMetadata(LLVMContext::MD_fpmath));
2091 R2FMF &= I->getFastMathFlags();
2092 IC->replaceInstUsesWith(*I, FSqrt);
2094 }
2095 FSqrt->setMetadata(LLVMContext::MD_fpmath, R2FPMathMDNode);
2096 FSqrt->copyFastMathFlags(R2FMF);
2097
2099 // If X = -1/sqrt(a) initially,then FMul = -(FDiv * FSqrt)
2100 if (match(X, m_FDiv(m_SpecificFP(-1.0), m_Specific(CI)))) {
2101 Value *Mul = B.CreateFMul(FDiv, FSqrt);
2102 FMul = cast<Instruction>(B.CreateFNeg(Mul));
2103 } else
2104 FMul = cast<Instruction>(B.CreateFMul(FDiv, FSqrt));
2105 FMul->copyMetadata(*X);
2106 FMul->copyFastMathFlags(FastMathFlags::intersectRewrite(R1FMF, R2FMF) |
2107 FastMathFlags::unionValue(R1FMF, R2FMF));
2108 return IC->replaceInstUsesWith(*X, FMul);
2109}
2110
2112 Module *M = I.getModule();
2113
2114 if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1),
2115 I.getFastMathFlags(),
2117 return replaceInstUsesWith(I, V);
2118
2120 return X;
2121
2123 return Phi;
2124
2125 if (Instruction *R = foldFDivConstantDivisor(I))
2126 return R;
2127
2129 return R;
2130
2131 if (Instruction *R = foldFPSignBitOps(I))
2132 return R;
2133
2134 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2135
2136 // Convert
2137 // x = 1.0/sqrt(a)
2138 // r1 = x * x;
2139 // r2 = a/sqrt(a);
2140 //
2141 // TO
2142 //
2143 // r1 = 1/a
2144 // r2 = sqrt(a)
2145 // x = r1 * r2
2147 if (isFSqrtDivToFMulLegal(&I, R1, R2)) {
2148 CallInst *CI = cast<CallInst>(I.getOperand(1));
2149 if (Instruction *D = convertFSqrtDivIntoFMul(CI, &I, R1, R2, Builder, this))
2150 return D;
2151 }
2152
2153 if (isa<Constant>(Op0))
2154 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2155 if (Instruction *R = FoldOpIntoSelect(I, SI))
2156 return R;
2157
2158 if (isa<Constant>(Op1))
2159 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2160 if (Instruction *R = FoldOpIntoSelect(I, SI))
2161 return R;
2162
2163 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
2164 Value *X, *Y;
2165 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
2166 (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
2167 // (X / Y) / Z => X / (Y * Z)
2168 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
2169 return BinaryOperator::CreateFDivFMF(X, YZ, &I);
2170 }
2171 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
2172 (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
2173 // Z / (X / Y) => (Y * Z) / X
2174 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
2175 return BinaryOperator::CreateFDivFMF(YZ, X, &I);
2176 }
2177 // Z / (1.0 / Y) => (Y * Z)
2178 //
2179 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
2180 // m_OneUse check is avoided because even in the case of the multiple uses
2181 // for 1.0/Y, the number of instructions remain the same and a division is
2182 // replaced by a multiplication.
2183 if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
2184 return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
2185 }
2186
2187 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
2188 // sin(X) / cos(X) -> tan(X)
2189 // cos(X) / sin(X) -> 1/tan(X) (cotangent)
2190 Value *X;
2191 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
2192 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
2193 bool IsCot =
2194 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
2195 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
2196
2197 if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
2198 LibFunc_tanf, LibFunc_tanl)) {
2199 IRBuilder<> B(&I);
2201 B.setFastMathFlags(I.getFastMathFlags());
2202 AttributeList Attrs =
2203 cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
2204 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
2205 LibFunc_tanl, B, Attrs);
2206 if (IsCot)
2207 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
2208 return replaceInstUsesWith(I, Res);
2209 }
2210 }
2211
2212 // X / (X * Y) --> 1.0 / Y
2213 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
2214 // We can ignore the possibility that X is infinity because INF/INF is NaN.
2215 Value *X, *Y;
2216 if (I.hasNoNaNs() && I.hasAllowReassoc() &&
2217 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
2218 replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
2219 replaceOperand(I, 1, Y);
2220 return &I;
2221 }
2222
2223 // X / fabs(X) -> copysign(1.0, X)
2224 // fabs(X) / X -> copysign(1.0, X)
2225 if (I.hasNoNaNs() && I.hasNoInfs() &&
2226 (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
2227 match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
2229 Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
2230 return replaceInstUsesWith(I, V);
2231 }
2232
2234 return Mul;
2235
2237 return Mul;
2238
2239 // pow(X, Y) / X --> pow(X, Y-1)
2240 if (I.hasAllowReassoc() &&
2241 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1),
2242 m_Value(Y))))) {
2243 Value *Y1 =
2244 Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), -1.0), &I);
2245 Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &I);
2246 return replaceInstUsesWith(I, Pow);
2247 }
2248
2249 if (Instruction *FoldedPowi = foldPowiReassoc(I))
2250 return FoldedPowi;
2251
2252 return nullptr;
2253}
2254
2255// Variety of transform for:
2256// (urem/srem (mul X, Y), (mul X, Z))
2257// (urem/srem (shl X, Y), (shl X, Z))
2258// (urem/srem (shl Y, X), (shl Z, X))
2259// NB: The shift cases are really just extensions of the mul case. We treat
2260// shift as Val * (1 << Amt).
2262 InstCombinerImpl &IC) {
2263 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *X = nullptr;
2264 APInt Y, Z;
2265 bool ShiftByX = false;
2266
2267 // If V is not nullptr, it will be matched using m_Specific.
2268 auto MatchShiftOrMulXC = [](Value *Op, Value *&V, APInt &C,
2269 bool &PreserveNSW) -> bool {
2270 const APInt *Tmp = nullptr;
2271 if ((!V && match(Op, m_Mul(m_Value(V), m_APInt(Tmp)))) ||
2272 (V && match(Op, m_Mul(m_Specific(V), m_APInt(Tmp)))))
2273 C = *Tmp;
2274 else if ((!V && match(Op, m_Shl(m_Value(V), m_APInt(Tmp)))) ||
2275 (V && match(Op, m_Shl(m_Specific(V), m_APInt(Tmp))))) {
2276 C = APInt(Tmp->getBitWidth(), 1) << *Tmp;
2277 // We cannot preserve NSW when shifting by BW - 1.
2278 PreserveNSW = Tmp->ult(Tmp->getBitWidth() - 1);
2279 }
2280 if (Tmp != nullptr)
2281 return true;
2282
2283 // Reset `V` so we don't start with specific value on next match attempt.
2284 V = nullptr;
2285 return false;
2286 };
2287
2288 auto MatchShiftCX = [](Value *Op, APInt &C, Value *&V) -> bool {
2289 const APInt *Tmp = nullptr;
2290 if ((!V && match(Op, m_Shl(m_APInt(Tmp), m_Value(V)))) ||
2291 (V && match(Op, m_Shl(m_APInt(Tmp), m_Specific(V))))) {
2292 C = *Tmp;
2293 return true;
2294 }
2295
2296 // Reset `V` so we don't start with specific value on next match attempt.
2297 V = nullptr;
2298 return false;
2299 };
2300
2301 bool Op0PreserveNSW = true, Op1PreserveNSW = true;
2302 if (MatchShiftOrMulXC(Op0, X, Y, Op0PreserveNSW) &&
2303 MatchShiftOrMulXC(Op1, X, Z, Op1PreserveNSW)) {
2304 // pass
2305 } else if (MatchShiftCX(Op0, Y, X) && MatchShiftCX(Op1, Z, X)) {
2306 ShiftByX = true;
2307 } else {
2308 return nullptr;
2309 }
2310
2311 bool IsSRem = I.getOpcode() == Instruction::SRem;
2312
2313 OverflowingBinaryOperator *BO0 = cast<OverflowingBinaryOperator>(Op0);
2314 // TODO: We may be able to deduce more about nsw/nuw of BO0/BO1 based on Y >=
2315 // Z or Z >= Y.
2316 bool BO0HasNSW = Op0PreserveNSW && BO0->hasNoSignedWrap();
2317 bool BO0HasNUW = BO0->hasNoUnsignedWrap();
2318 bool BO0NoWrap = IsSRem ? BO0HasNSW : BO0HasNUW;
2319
2320 APInt RemYZ = IsSRem ? Y.srem(Z) : Y.urem(Z);
2321 // (rem (mul nuw/nsw X, Y), (mul X, Z))
2322 // if (rem Y, Z) == 0
2323 // -> 0
2324 if (RemYZ.isZero() && BO0NoWrap)
2325 return IC.replaceInstUsesWith(I, ConstantInt::getNullValue(I.getType()));
2326
2327 // Helper function to emit either (RemSimplificationC << X) or
2328 // (RemSimplificationC * X) depending on whether we matched Op0/Op1 as
2329 // (shl V, X) or (mul V, X) respectively.
2330 auto CreateMulOrShift =
2331 [&](const APInt &RemSimplificationC) -> BinaryOperator * {
2332 Value *RemSimplification =
2333 ConstantInt::get(I.getType(), RemSimplificationC);
2334 return ShiftByX ? BinaryOperator::CreateShl(RemSimplification, X)
2335 : BinaryOperator::CreateMul(X, RemSimplification);
2336 };
2337
2338 OverflowingBinaryOperator *BO1 = cast<OverflowingBinaryOperator>(Op1);
2339 bool BO1HasNSW = Op1PreserveNSW && BO1->hasNoSignedWrap();
2340 bool BO1HasNUW = BO1->hasNoUnsignedWrap();
2341 bool BO1NoWrap = IsSRem ? BO1HasNSW : BO1HasNUW;
2342 // (rem (mul X, Y), (mul nuw/nsw X, Z))
2343 // if (rem Y, Z) == Y
2344 // -> (mul nuw/nsw X, Y)
2345 if (RemYZ == Y && BO1NoWrap) {
2346 BinaryOperator *BO = CreateMulOrShift(Y);
2347 // Copy any overflow flags from Op0.
2348 BO->setHasNoSignedWrap(IsSRem || BO0HasNSW);
2349 BO->setHasNoUnsignedWrap(!IsSRem || BO0HasNUW);
2350 return BO;
2351 }
2352
2353 // (rem (mul nuw/nsw X, Y), (mul {nsw} X, Z))
2354 // if Y >= Z
2355 // -> (mul {nuw} nsw X, (rem Y, Z))
2356 if (Y.uge(Z) && (IsSRem ? (BO0HasNSW && BO1HasNSW) : BO0HasNUW)) {
2357 BinaryOperator *BO = CreateMulOrShift(RemYZ);
2358 BO->setHasNoSignedWrap();
2359 BO->setHasNoUnsignedWrap(BO0HasNUW);
2360 return BO;
2361 }
2362
2363 return nullptr;
2364}
2365
2366/// This function implements the transforms common to both integer remainder
2367/// instructions (urem and srem). It is called by the visitors to those integer
2368/// remainder instructions.
2369/// Common integer remainder transforms
2372 return Res;
2373
2374 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2375
2376 if (isa<Constant>(Op1)) {
2377 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2378 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2379 if (Instruction *R = FoldOpIntoSelect(I, SI))
2380 return R;
2381 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
2382 const APInt *Op1Int;
2383 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
2384 (I.getOpcode() == Instruction::URem ||
2385 !Op1Int->isMinSignedValue())) {
2386 // foldOpIntoPhi will speculate instructions to the end of the PHI's
2387 // predecessor blocks, so do this only if we know the srem or urem
2388 // will not fault.
2389 if (Instruction *NV = foldOpIntoPhi(I, PN))
2390 return NV;
2391 }
2392 }
2393
2394 // See if we can fold away this rem instruction.
2396 return &I;
2397 }
2398 }
2399
2400 if (Instruction *R = simplifyIRemMulShl(I, *this))
2401 return R;
2402
2403 return nullptr;
2404}
2405
2407 if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1),
2409 return replaceInstUsesWith(I, V);
2410
2412 return X;
2413
2414 if (Instruction *common = commonIRemTransforms(I))
2415 return common;
2416
2417 if (Instruction *NarrowRem = narrowUDivURem(I, *this))
2418 return NarrowRem;
2419
2420 // X urem Y -> X and Y-1, where Y is a power of 2,
2421 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2422 Type *Ty = I.getType();
2423 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, &I)) {
2424 // This may increase instruction count, we don't enforce that Y is a
2425 // constant.
2427 Value *Add = Builder.CreateAdd(Op1, N1);
2428 return BinaryOperator::CreateAnd(Op0, Add);
2429 }
2430
2431 // 1 urem X -> zext(X != 1)
2432 if (match(Op0, m_One())) {
2433 Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
2434 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
2435 }
2436
2437 // Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit.
2438 // Op0 must be frozen because we are increasing its number of uses.
2439 if (match(Op1, m_Negative())) {
2440 Value *F0 = Op0;
2441 if (!isGuaranteedNotToBeUndef(Op0))
2442 F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr");
2443 Value *Cmp = Builder.CreateICmpULT(F0, Op1);
2444 Value *Sub = Builder.CreateSub(F0, Op1);
2445 return SelectInst::Create(Cmp, F0, Sub);
2446 }
2447
2448 // If the divisor is a sext of a boolean, then the divisor must be max
2449 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
2450 // max unsigned value. In that case, the remainder is 0:
2451 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
2452 Value *X;
2453 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
2454 Value *FrozenOp0 = Op0;
2455 if (!isGuaranteedNotToBeUndef(Op0))
2456 FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
2457 Value *Cmp =
2459 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
2460 }
2461
2462 // For "(X + 1) % Op1" and if (X u< Op1) => (X + 1) == Op1 ? 0 : X + 1 .
2463 if (match(Op0, m_Add(m_Value(X), m_One()))) {
2464 Value *Val =
2466 if (Val && match(Val, m_One())) {
2467 Value *FrozenOp0 = Op0;
2468 if (!isGuaranteedNotToBeUndef(Op0))
2469 FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
2470 Value *Cmp = Builder.CreateICmpEQ(FrozenOp0, Op1);
2471 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
2472 }
2473 }
2474
2475 return nullptr;
2476}
2477
2479 if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1),
2481 return replaceInstUsesWith(I, V);
2482
2484 return X;
2485
2486 // Handle the integer rem common cases
2487 if (Instruction *Common = commonIRemTransforms(I))
2488 return Common;
2489
2490 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2491 {
2492 const APInt *Y;
2493 // X % -Y -> X % Y
2494 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
2495 return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
2496 }
2497
2498 // -X srem Y --> -(X srem Y)
2499 Value *X, *Y;
2502
2503 // If the sign bits of both operands are zero (i.e. we can prove they are
2504 // unsigned inputs), turn this into a urem.
2505 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
2506 if (MaskedValueIsZero(Op1, Mask, &I) && MaskedValueIsZero(Op0, Mask, &I)) {
2507 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
2508 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
2509 }
2510
2511 // If it's a constant vector, flip any negative values positive.
2512 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
2513 Constant *C = cast<Constant>(Op1);
2514 unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
2515
2516 bool hasNegative = false;
2517 bool hasMissing = false;
2518 for (unsigned i = 0; i != VWidth; ++i) {
2519 Constant *Elt = C->getAggregateElement(i);
2520 if (!Elt) {
2521 hasMissing = true;
2522 break;
2523 }
2524
2525 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
2526 if (RHS->isNegative())
2527 hasNegative = true;
2528 }
2529
2530 if (hasNegative && !hasMissing) {
2531 SmallVector<Constant *, 16> Elts(VWidth);
2532 for (unsigned i = 0; i != VWidth; ++i) {
2533 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
2534 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
2535 if (RHS->isNegative())
2536 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
2537 }
2538 }
2539
2540 Constant *NewRHSV = ConstantVector::get(Elts);
2541 if (NewRHSV != C) // Don't loop on -MININT
2542 return replaceOperand(I, 1, NewRHSV);
2543 }
2544 }
2545
2546 return nullptr;
2547}
2548
2550 if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1),
2551 I.getFastMathFlags(),
2553 return replaceInstUsesWith(I, V);
2554
2556 return X;
2557
2559 return Phi;
2560
2561 return nullptr;
2562}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This file provides internal interfaces used to implement the InstCombine.
static Instruction * convertFSqrtDivIntoFMul(CallInst *CI, Instruction *X, const SmallPtrSetImpl< Instruction * > &R1, const SmallPtrSetImpl< Instruction * > &R2, InstCombiner::BuilderTy &B, InstCombinerImpl *IC)
static Instruction * simplifyIRemMulShl(BinaryOperator &I, InstCombinerImpl &IC)
static Instruction * narrowUDivURem(BinaryOperator &I, InstCombinerImpl &IC)
If we have zero-extended operands of an unsigned div or rem, we may be able to narrow the operation (...
static Value * simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC, Instruction &CxtI)
The specific integer value is used in a context where it is known to be non-zero.
static bool getFSqrtDivOptPattern(Instruction *Div, SmallPtrSetImpl< Instruction * > &R1, SmallPtrSetImpl< Instruction * > &R2)
static Value * foldMulSelectToNegate(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static bool isFSqrtDivToFMulLegal(Instruction *X, SmallPtrSetImpl< Instruction * > &R1, SmallPtrSetImpl< Instruction * > &R2)
static Instruction * foldFDivPowDivisor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Negate the exponent of pow/exp to fold division-by-pow() into multiply.
static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product, bool IsSigned)
True if the multiply can not be expressed in an int this size.
static Value * foldMulShl1(BinaryOperator &Mul, bool CommuteOperands, InstCombiner::BuilderTy &Builder)
Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient, bool IsSigned)
True if C1 is a multiple of C2. Quotient contains C1/C2.
static Instruction * foldFDivSqrtDivisor(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Convert div to mul if we have an sqrt divisor iff sqrt's operand is a fdiv instruction.
static Instruction * foldFDivConstantDividend(BinaryOperator &I)
Remove negation and try to reassociate constant math.
static Value * foldIDivShl(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
This file provides the interface for the instcombine pass implementation.
static bool hasNoSignedWrap(BinaryOperator &I)
static bool hasNoUnsignedWrap(BinaryOperator &I)
#define I(x, y, z)
Definition: MD5.cpp:58
#define R2(n)
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
Value * RHS
BinaryOperator * Mul
bool isNegative() const
Definition: APFloat.h:1449
bool isZero() const
Definition: APFloat.h:1445
Class for arbitrary precision integers.
Definition: APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1971
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition: APInt.cpp:1573
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition: APInt.cpp:1758
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition: APInt.h:229
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:423
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1540
static LLVM_ABI void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Definition: APInt.cpp:1890
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition: APInt.h:371
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition: APInt.h:380
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.h:1111
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:417
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition: APInt.h:1639
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:219
LLVM_ABI APInt ushl_ov(const APInt &Amt, bool &Overflow) const
Definition: APInt.cpp:2005
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition: APInt.h:1531
unsigned logBase2() const
Definition: APInt.h:1761
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition: APInt.cpp:1960
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1150
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:239
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:170
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition: InstrTypes.h:236
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
Definition: InstrTypes.h:374
static BinaryOperator * CreateExact(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Definition: InstrTypes.h:309
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition: InstrTypes.h:244
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition: InstrTypes.h:248
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition: InstrTypes.h:240
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition: InstrTypes.h:219
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1292
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition: InstrTypes.h:984
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:703
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
Definition: Constants.cpp:2635
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2272
static LLVM_ABI Constant * getExactLogBase2(Constant *C)
If C is a scalar/fixed width vector of known powers of 2, then this function returns a new scalar/fix...
Definition: Constants.cpp:2665
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
Definition: Constants.cpp:1105
This is the shared class of boolean and integer constants.
Definition: Constants.h:87
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:868
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:875
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
Definition: Constants.cpp:882
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:1423
This is an important base class in LLVM.
Definition: Constant.h:43
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
Definition: Constants.cpp:420
LLVM_ABI bool isNormalFP() const
Return true if this is a normal (as opposed to denormal, infinity, nan, or zero) floating-point scala...
Definition: Constants.cpp:235
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
Definition: Constants.cpp:435
LLVM_ABI bool isNotMinSignedValue() const
Return true if the value is not the smallest signed value, or, for vectors, does not contain smallest...
Definition: Constants.cpp:186
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:90
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:22
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
Definition: FMF.h:112
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
Definition: FMF.h:120
bool allowReassoc() const
Flag queries.
Definition: FMF.h:64
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2345
Value * CreateSRem(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1486
LLVM_ABI Value * CreateSelectFMF(Value *C, Value *True, Value *False, FMFSource FMFSource, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1010
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition: IRBuilder.h:502
LLVM_ABI Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1005
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition: IRBuilder.h:2637
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1513
Value * CreateIsNotNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg > -1.
Definition: IRBuilder.h:2661
Value * CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1446
Value * CreateUDiv(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1454
Value * CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2333
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
Definition: IRBuilder.h:1781
LLVM_ABI Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Definition: IRBuilder.cpp:823
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:834
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2329
Value * CreateBinOpFMF(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1714
Value * CreateIsNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg < 0.
Definition: IRBuilder.h:2656
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1420
LLVM_ABI CallInst * CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with 1 operand which is mangled on its type.
Definition: IRBuilder.cpp:815
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1492
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition: IRBuilder.h:2082
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1551
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1403
Value * CreateSDiv(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1467
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2068
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1708
Value * CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:2341
Value * CreateFAddFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1618
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:1532
Value * CreateFNegFMF(Value *V, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1795
Value * CreateFDivFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1675
Value * CreateFMulFMF(Value *L, Value *R, FMFSource FMFSource, const Twine &Name="", MDNode *FPMD=nullptr)
Definition: IRBuilder.h:1656
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1437
Instruction * visitMul(BinaryOperator &I)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
Instruction * visitUDiv(BinaryOperator &I)
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * visitURem(BinaryOperator &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Value * takeLog2(Value *Op, unsigned Depth, bool AssumeNonZero, bool DoFold)
Take the exact integer log2 of the value.
Instruction * visitSRem(BinaryOperator &I)
Instruction * visitFDiv(BinaryOperator &I)
bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I)
Fold a divide or remainder with a select instruction divisor when one of the select operands is zero.
Constant * getLosslessUnsignedTrunc(Constant *C, Type *TruncTy)
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * commonIDivRemTransforms(BinaryOperator &I)
Common integer divide/remainder transforms.
Value * tryGetLog2(Value *Op, bool AssumeNonZero)
Instruction * commonIDivTransforms(BinaryOperator &I)
This function implements the transforms common to both integer division instructions (udiv and sdiv).
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * visitFRem(BinaryOperator &I)
bool SimplifyDemandedInstructionBits(Instruction &Inst)
Tries to simplify operands to an integer instruction based on its demanded bits.
Instruction * visitFMul(BinaryOperator &I)
Instruction * foldFMulReassoc(BinaryOperator &I)
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
Instruction * foldPowiReassoc(BinaryOperator &I)
Instruction * visitSDiv(BinaryOperator &I)
Instruction * commonIRemTransforms(BinaryOperator &I)
This function implements the transforms common to both integer remainder instructions (urem and srem)...
SimplifyQuery SQ
Definition: InstCombiner.h:77
TargetLibraryInfo & TLI
Definition: InstCombiner.h:74
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:388
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
Definition: InstCombiner.h:420
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Definition: InstCombiner.h:65
const DataLayout & DL
Definition: InstCombiner.h:76
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
Definition: InstCombiner.h:433
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombiner.h:412
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Definition: InstCombiner.h:450
BuilderTy & Builder
Definition: InstCombiner.h:61
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero=false, const Instruction *CxtI=nullptr, unsigned Depth=0)
Definition: InstCombiner.h:443
void push(Instruction *I)
Push the instruction onto the worklist stack.
LLVM_ABI Instruction * clone() const
Create a copy of 'this' instruction that is identical in all ways except the following:
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoInfs() const LLVM_READONLY
Determine whether the no-infs flag is set.
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1718
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool hasAllowReassoc() const LLVM_READONLY
Determine whether the allow-reassociation flag is set.
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:49
static LLVM_ABI MDNode * getMostGenericFPMath(MDNode *A, MDNode *B)
Definition: Metadata.cpp:1174
Root of the metadata hierarchy.
Definition: Metadata.h:63
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:67
static Value * Negate(bool LHSIsZero, bool IsNSW, Value *Root, InstCombinerImpl &IC)
Attempt to negate Root.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition: Operator.h:78
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition: Operator.h:111
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition: Operator.h:105
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1885
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:380
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
iterator begin() const
Definition: SmallPtrSet.h:494
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:246
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition: InstrTypes.h:147
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
Value * getOperand(unsigned i) const
Definition: User.h:232
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:439
iterator_range< user_iterator > users()
Definition: Value.h:426
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition: Value.cpp:150
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:396
This class represents zero extension of integer types.
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
Definition: ilist_node.h:134
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
Definition: PatternMatch.h:524
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
Definition: PatternMatch.h:550
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
Definition: PatternMatch.h:664
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
Definition: PatternMatch.h:619
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:165
AllowReassoc_match< T > m_AllowReassoc(const T &SubPattern)
Definition: PatternMatch.h:83
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
Definition: PatternMatch.h:766
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:962
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
OverflowingBinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWNeg(const ValTy &V)
Matches a 'Neg' as 'sub nsw 0, V'.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
Definition: PatternMatch.h:560
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:592
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
m_Intrinsic_Ty< Opnd0 >::Ty m_Sqrt(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
Definition: PatternMatch.h:980
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
Definition: PatternMatch.h:305
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
Definition: PatternMatch.h:627
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
Definition: PatternMatch.h:931
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
Definition: PatternMatch.h:481
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
Definition: PatternMatch.h:322
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
Definition: PatternMatch.h:299
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
Definition: PatternMatch.h:775
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:612
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
LLVM_ABI Value * emitUnaryFloatFnCall(Value *Op, const TargetLibraryInfo *TLI, StringRef Name, IRBuilderBase &B, const AttributeList &Attrs)
Emit a call to the unary function named 'Name' (e.g.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1744
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI Value * simplifySDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for an SDiv, fold the result or return null.
LLVM_ABI Value * simplifyMulInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Mul, fold the result or return null.
LLVM_ABI bool hasFloatFn(const Module *M, const TargetLibraryInfo *TLI, Type *Ty, LibFunc DoubleFn, LibFunc FloatFn, LibFunc LongDoubleFn)
Check whether the overloaded floating point function corresponding to Ty is available.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
constexpr unsigned MaxAnalysisRecursionDepth
Definition: ValueTracking.h:47
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Value * simplifyFRemInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FRem, fold the result or return null.
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI Value * simplifyFDivInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FDiv, fold the result or return null.
@ Mul
Product of integers.
@ FMul
Product of floats.
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
LLVM_ABI Value * simplifyUDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for a UDiv, fold the result or return null.
DWARFExpression::Operation Op
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:223
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
LLVM_ABI Value * simplifySRemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an SRem, fold the result or return null.
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition: Alignment.h:208
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI Value * simplifyURemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a URem, fold the result or return null.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:858
#define N
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition: KnownBits.h:101
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition: KnownBits.h:235
Matching combinators.
SimplifyQuery getWithInstruction(const Instruction *I) const