110#define DEBUG_TYPE "instcombine"
118 "Number of instruction combining iterations performed");
119STATISTIC(NumOneIteration,
"Number of functions with one iteration");
120STATISTIC(NumTwoIterations,
"Number of functions with two iterations");
121STATISTIC(NumThreeIterations,
"Number of functions with three iterations");
123 "Number of functions with four or more iterations");
127STATISTIC(NumDeadInst ,
"Number of dead inst eliminated");
133 "Controls which instructions are visited");
140 "instcombine-max-sink-users",
cl::init(32),
141 cl::desc(
"Maximum number of undroppable users for instruction sinking"));
145 cl::desc(
"Maximum array size considered when doing a combine"));
161std::optional<Instruction *>
164 if (
II.getCalledFunction()->isTargetIntrinsic()) {
165 return TTIForTargetIntrinsicsOnly.instCombineIntrinsic(*
this,
II);
172 bool &KnownBitsComputed) {
174 if (
II.getCalledFunction()->isTargetIntrinsic()) {
175 return TTIForTargetIntrinsicsOnly.simplifyDemandedUseBitsIntrinsic(
176 *
this,
II, DemandedMask, Known, KnownBitsComputed);
187 if (
II.getCalledFunction()->isTargetIntrinsic()) {
188 return TTIForTargetIntrinsicsOnly.simplifyDemandedVectorEltsIntrinsic(
189 *
this,
II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
199 return TTIForTargetIntrinsicsOnly.isValidAddrSpaceCast(FromAS, ToAS);
209 Builder.SetInsertPoint(Inst);
213 if (Inst && !
GEP->hasAllConstantIndices() &&
214 !
GEP->getSourceElementType()->isIntegerTy(8)) {
216 *Inst, Builder.CreateGEP(Builder.getInt8Ty(),
GEP->getPointerOperand(),
234 Value *Sum =
nullptr;
235 Value *OneUseSum =
nullptr;
236 Value *OneUseBase =
nullptr;
243 IRBuilderBase::InsertPointGuard Guard(
Builder);
245 if (RewriteGEPs && Inst)
249 if (
Offset->getType() != IdxTy)
252 if (
GEP->hasOneUse()) {
257 OneUseBase =
GEP->getPointerOperand();
266 if (RewriteGEPs && Inst &&
267 !(
GEP->getSourceElementType()->isIntegerTy(8) &&
272 OneUseBase ? OneUseBase :
GEP->getPointerOperand(),
Offset,
"",
279 OneUseSum = OneUseBase =
nullptr;
283 Sum =
Add(Sum, OneUseSum);
294bool InstCombinerImpl::isDesirableIntType(
unsigned BitWidth)
const {
313bool InstCombinerImpl::shouldChangeType(
unsigned FromWidth,
314 unsigned ToWidth)
const {
315 bool FromLegal = FromWidth == 1 ||
DL.isLegalInteger(FromWidth);
316 bool ToLegal = ToWidth == 1 ||
DL.isLegalInteger(ToWidth);
320 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
325 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
330 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
341bool InstCombinerImpl::shouldChangeType(
Type *From,
Type *To)
const {
349 return shouldChangeType(FromWidth, ToWidth);
359 if (!OBO || !OBO->hasNoSignedWrap())
362 const APInt *BVal, *CVal;
367 bool Overflow =
false;
368 switch (
I.getOpcode()) {
369 case Instruction::Add:
370 (void)BVal->
sadd_ov(*CVal, Overflow);
372 case Instruction::Sub:
373 (void)BVal->
ssub_ov(*CVal, Overflow);
375 case Instruction::Mul:
376 (void)BVal->
smul_ov(*CVal, Overflow);
387 return OBO && OBO->hasNoUnsignedWrap();
392 return OBO && OBO->hasNoSignedWrap();
401 I.clearSubclassOptionalData();
406 I.clearSubclassOptionalData();
407 I.setFastMathFlags(FMF);
417 if (!Cast || !Cast->hasOneUse())
421 auto CastOpcode = Cast->getOpcode();
422 if (CastOpcode != Instruction::ZExt)
431 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
457 Cast->dropPoisonGeneratingFlags();
463Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(
Value *Val) {
465 if (IntToPtr &&
DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
466 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
468 Type *CastTy = IntToPtr->getDestTy();
471 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
472 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
473 DL.getTypeSizeInBits(PtrToInt->getDestTy()))
474 return PtrToInt->getOperand(0);
511 if (
I.isCommutative()) {
512 if (
auto Pair = matchSymmetricPair(
I.getOperand(0),
I.getOperand(1))) {
522 if (
I.isAssociative()) {
545 I.setHasNoUnsignedWrap(
true);
548 I.setHasNoSignedWrap(
true);
577 if (
I.isAssociative() &&
I.isCommutative()) {
654 I.setHasNoUnsignedWrap(
true);
672 if (LOp == Instruction::And)
673 return ROp == Instruction::Or || ROp == Instruction::Xor;
676 if (LOp == Instruction::Or)
677 return ROp == Instruction::And;
681 if (LOp == Instruction::Mul)
682 return ROp == Instruction::Add || ROp == Instruction::Sub;
719 assert(
Op &&
"Expected a binary operator");
720 LHS =
Op->getOperand(0);
721 RHS =
Op->getOperand(1);
722 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
727 Instruction::Shl, ConstantInt::get(
Op->getType(), 1),
C);
728 assert(
RHS &&
"Constant folding of immediate constants failed");
729 return Instruction::Mul;
734 if (OtherOp && OtherOp->
getOpcode() == Instruction::AShr &&
737 return Instruction::AShr;
740 return Op->getOpcode();
749 assert(
A &&
B &&
C &&
D &&
"All values must be provided");
752 Value *RetVal =
nullptr;
763 if (
A ==
C || (InnerCommutative &&
A ==
D)) {
772 if (!V && (
LHS->hasOneUse() ||
RHS->hasOneUse()))
773 V = Builder.CreateBinOp(TopLevelOpcode,
B,
D,
RHS->getName());
775 RetVal = Builder.CreateBinOp(InnerOpcode,
A, V);
783 if (
B ==
D || (InnerCommutative &&
B ==
C)) {
792 if (!V && (
LHS->hasOneUse() ||
RHS->hasOneUse()))
793 V = Builder.CreateBinOp(TopLevelOpcode,
A,
C,
LHS->getName());
795 RetVal = Builder.CreateBinOp(InnerOpcode, V,
B);
810 HasNSW =
I.hasNoSignedWrap();
811 HasNUW =
I.hasNoUnsignedWrap();
814 HasNSW &= LOBO->hasNoSignedWrap();
815 HasNUW &= LOBO->hasNoUnsignedWrap();
819 HasNSW &= ROBO->hasNoSignedWrap();
820 HasNUW &= ROBO->hasNoUnsignedWrap();
823 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
851 unsigned Opc =
I->getOpcode();
852 unsigned ConstIdx = 1;
859 case Instruction::Sub:
862 case Instruction::ICmp:
869 case Instruction::Or:
873 case Instruction::Add:
879 if (!
match(
I->getOperand(1 - ConstIdx),
889 Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
895 if (!Cmp || !Cmp->isZeroValue())
900 bool Consumes =
false;
904 assert(NotOp !=
nullptr &&
905 "Desync between isFreeToInvert and getFreelyInverted");
907 Value *CtpopOfNotOp =
Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
914 case Instruction::Sub:
917 case Instruction::Or:
918 case Instruction::Add:
921 case Instruction::ICmp:
957 auto IsValidBinOpc = [](
unsigned Opc) {
961 case Instruction::And:
962 case Instruction::Or:
963 case Instruction::Xor:
964 case Instruction::Add:
973 auto IsCompletelyDistributable = [](
unsigned BinOpc1,
unsigned BinOpc2,
975 assert(ShOpc != Instruction::AShr);
976 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
977 ShOpc == Instruction::Shl;
980 auto GetInvShift = [](
unsigned ShOpc) {
981 assert(ShOpc != Instruction::AShr);
982 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
985 auto CanDistributeBinops = [&](
unsigned BinOpc1,
unsigned BinOpc2,
989 if (BinOpc1 == Instruction::And)
994 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
1000 if (BinOpc2 == Instruction::And)
1011 auto MatchBinOp = [&](
unsigned ShOpnum) ->
Instruction * {
1013 Value *
X, *
Y, *ShiftedX, *Mask, *Shift;
1014 if (!
match(
I.getOperand(ShOpnum),
1017 if (!
match(
I.getOperand(1 - ShOpnum),
1030 unsigned ShOpc = IY->getOpcode();
1031 if (ShOpc != IX->getOpcode())
1039 unsigned BinOpc = BO2->getOpcode();
1041 if (!IsValidBinOpc(
I.getOpcode()) || !IsValidBinOpc(BinOpc))
1044 if (ShOpc == Instruction::AShr) {
1058 if (BinOpc ==
I.getOpcode() &&
1059 IsCompletelyDistributable(
I.getOpcode(), BinOpc, ShOpc)) {
1074 if (!CanDistributeBinops(
I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
1081 Value *NewBinOp1 =
Builder.CreateBinOp(
I.getOpcode(),
Y, NewBinOp2);
1088 return MatchBinOp(1);
1105 Value *LHS =
I.getOperand(0), *RHS =
I.getOperand(1);
1106 Value *
A, *CondVal, *TrueVal, *FalseVal;
1109 auto MatchSelectAndCast = [&](
Value *CastOp,
Value *SelectOp) {
1111 A->getType()->getScalarSizeInBits() == 1 &&
1118 if (MatchSelectAndCast(LHS, RHS))
1120 else if (MatchSelectAndCast(RHS, LHS))
1125 auto NewFoldedConst = [&](
bool IsTrueArm,
Value *V) {
1126 bool IsCastOpRHS = (CastOp == RHS);
1132 }
else if (IsZExt) {
1133 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1139 return IsCastOpRHS ?
Builder.CreateBinOp(
Opc, V,
C)
1146 Value *NewTrueVal = NewFoldedConst(
false, TrueVal);
1148 NewFoldedConst(
true, FalseVal));
1152 Value *NewTrueVal = NewFoldedConst(
true, TrueVal);
1154 NewFoldedConst(
false, FalseVal));
1161 Value *LHS =
I.getOperand(0), *RHS =
I.getOperand(1);
1175 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
1204 Value *LHS =
I.getOperand(0), *RHS =
I.getOperand(1);
1221 auto SQDistributive =
SQ.getWithInstruction(&
I).getWithoutUndef();
1229 C =
Builder.CreateBinOp(InnerOpcode, L, R);
1238 C =
Builder.CreateBinOp(TopLevelOpcode,
B,
C);
1247 C =
Builder.CreateBinOp(TopLevelOpcode,
A,
C);
1260 auto SQDistributive =
SQ.getWithInstruction(&
I).getWithoutUndef();
1268 A =
Builder.CreateBinOp(InnerOpcode, L, R);
1277 A =
Builder.CreateBinOp(TopLevelOpcode,
A,
C);
1286 A =
Builder.CreateBinOp(TopLevelOpcode,
A,
B);
1295static std::optional<std::pair<Value *, Value *>>
1297 if (
LHS->getParent() !=
RHS->getParent())
1298 return std::nullopt;
1300 if (
LHS->getNumIncomingValues() < 2)
1301 return std::nullopt;
1304 return std::nullopt;
1306 Value *L0 =
LHS->getIncomingValue(0);
1307 Value *R0 =
RHS->getIncomingValue(0);
1309 for (
unsigned I = 1,
E =
LHS->getNumIncomingValues();
I !=
E; ++
I) {
1313 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
1316 return std::nullopt;
1319 return std::optional(std::pair(L0, R0));
1322std::optional<std::pair<Value *, Value *>>
1327 return std::nullopt;
1329 case Instruction::PHI:
1331 case Instruction::Select: {
1337 return std::pair(TrueVal, FalseVal);
1338 return std::nullopt;
1340 case Instruction::Call: {
1344 if (LHSMinMax && RHSMinMax &&
1351 return std::pair(LHSMinMax->
getLHS(), LHSMinMax->
getRHS());
1352 return std::nullopt;
1355 return std::nullopt;
1365 if (!LHSIsSelect && !RHSIsSelect)
1375 FMF =
I.getFastMathFlags();
1376 Builder.setFastMathFlags(FMF);
1382 Value *
Cond, *True =
nullptr, *False =
nullptr;
1390 if (Opcode != Instruction::Add || (!True && !False) || (True && False))
1404 if (LHSIsSelect && RHSIsSelect &&
A ==
D) {
1410 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1412 True =
Builder.CreateBinOp(Opcode,
B, E);
1413 else if (True && !False)
1414 False =
Builder.CreateBinOp(Opcode,
C,
F);
1416 }
else if (LHSIsSelect && LHS->hasOneUse()) {
1421 if (
Value *NewSel = foldAddNegate(
B,
C, RHS))
1423 }
else if (RHSIsSelect && RHS->hasOneUse()) {
1428 if (
Value *NewSel = foldAddNegate(E,
F, LHS))
1432 if (!True || !False)
1445 if (U == IgnoredUser)
1448 case Instruction::Select: {
1451 SI->swapProfMetadata();
1454 case Instruction::Br: {
1461 case Instruction::Xor:
1468 "canFreelyInvertAllUsersOf() ?");
1478 for (
unsigned Idx = 0, End = DbgVal->getNumVariableLocationOps();
1480 if (DbgVal->getVariableLocationOp(Idx) ==
I)
1481 DbgVal->setExpression(
1488Value *InstCombinerImpl::dyn_castNegVal(
Value *V)
const {
1498 if (
C->getType()->getElementType()->isIntegerTy())
1502 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1518 if (CV->getType()->isVectorTy() &&
1519 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
1532Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1533 BinaryOperator &BO,
bool OpsFromSigned, std::array<Value *, 2> IntOps,
1537 Type *IntTy = IntOps[0]->getType();
1542 unsigned MaxRepresentableBits =
1547 unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
1551 auto IsNonZero = [&](
unsigned OpNo) ->
bool {
1552 if (OpsKnown[OpNo].hasKnownBits() &&
1553 OpsKnown[OpNo].getKnownBits(
SQ).isNonZero())
1558 auto IsNonNeg = [&](
unsigned OpNo) ->
bool {
1562 return OpsKnown[OpNo].getKnownBits(
SQ).isNonNegative();
1566 auto IsValidPromotion = [&](
unsigned OpNo) ->
bool {
1577 if (MaxRepresentableBits < IntSz) {
1587 NumUsedLeadingBits[OpNo] =
1588 IntSz - OpsKnown[OpNo].getKnownBits(
SQ).countMinLeadingZeros();
1596 if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
1599 return !OpsFromSigned || BO.
getOpcode() != Instruction::FMul ||
1604 if (Op1FpC !=
nullptr) {
1606 if (OpsFromSigned && BO.
getOpcode() == Instruction::FMul &&
1611 OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
1613 if (Op1IntC ==
nullptr)
1616 : Instruction::UIToFP,
1617 Op1IntC, FPTy,
DL) != Op1FpC)
1621 IntOps[1] = Op1IntC;
1625 if (IntTy != IntOps[1]->
getType())
1628 if (Op1FpC ==
nullptr) {
1629 if (!IsValidPromotion(1))
1632 if (!IsValidPromotion(0))
1638 bool NeedsOverflowCheck =
true;
1641 unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
1642 unsigned OverflowMaxCurBits =
1643 std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
1644 bool OutputSigned = OpsFromSigned;
1646 case Instruction::FAdd:
1647 IntOpc = Instruction::Add;
1648 OverflowMaxOutputBits += OverflowMaxCurBits;
1650 case Instruction::FSub:
1651 IntOpc = Instruction::Sub;
1652 OverflowMaxOutputBits += OverflowMaxCurBits;
1654 case Instruction::FMul:
1655 IntOpc = Instruction::Mul;
1656 OverflowMaxOutputBits += OverflowMaxCurBits * 2;
1662 if (OverflowMaxOutputBits < IntSz) {
1663 NeedsOverflowCheck =
false;
1666 if (IntOpc == Instruction::Sub)
1667 OutputSigned =
true;
1673 if (NeedsOverflowCheck &&
1674 !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
1677 Value *IntBinOp =
Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
1679 IntBO->setHasNoSignedWrap(OutputSigned);
1680 IntBO->setHasNoUnsignedWrap(!OutputSigned);
1683 return new SIToFPInst(IntBinOp, FPTy);
1684 return new UIToFPInst(IntBinOp, FPTy);
1693 std::array<Value *, 2> IntOps = {
nullptr,
nullptr};
1713 if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO,
false,
1714 IntOps, Op1FpC, OpsKnown))
1716 return foldFBinOpOfIntCastsFromSign(BO,
true, IntOps,
1732 !
X->getType()->isIntOrIntVectorTy(1))
1740 return createSelectInst(
X, TVal, FVal);
1749 V = IsTrueArm ?
SI->getTrueValue() :
SI->getFalseValue();
1750 }
else if (
match(
SI->getCondition(),
1775 bool FoldWithMultiUse) {
1777 if (!
SI->hasOneUse() && !FoldWithMultiUse)
1780 Value *TV =
SI->getTrueValue();
1781 Value *FV =
SI->getFalseValue();
1784 if (
SI->getType()->isIntOrIntVectorTy(1))
1790 for (
Value *IntrinOp :
Op.operands())
1792 for (
Value *PhiOp : PN->operands())
1804 if (CI->hasOneUse()) {
1805 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1806 if (((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) &&
1807 !CI->isCommutative())
1816 if (!NewTV && !NewFV)
1836 Ops.push_back(InValue);
1868 bool AllowMultipleUses) {
1870 if (NumPHIValues == 0)
1877 bool IdenticalUsers =
false;
1878 if (!AllowMultipleUses && !OneUse) {
1882 if (UI != &
I && !
I.isIdenticalTo(UI))
1886 IdenticalUsers =
true;
1916 bool SeenNonSimplifiedInVal =
false;
1917 for (
unsigned i = 0; i != NumPHIValues; ++i) {
1928 auto WillFold = [&]() {
1933 const APInt *Ignored;
1954 if (!OneUse && !IdenticalUsers)
1957 if (SeenNonSimplifiedInVal)
1959 SeenNonSimplifiedInVal =
true;
1983 for (
auto OpIndex : OpsToMoveUseToIncomingBB) {
1994 U = U->DoPHITranslation(PN->
getParent(), OpBB);
1997 Clones.
insert({OpBB, Clone});
2002 NewPhiValues[
OpIndex] = Clone;
2011 for (
unsigned i = 0; i != NumPHIValues; ++i)
2014 if (IdenticalUsers) {
2045 BO0->getOpcode() !=
Opc || BO1->getOpcode() !=
Opc ||
2046 !BO0->isAssociative() || !BO1->isAssociative() ||
2047 BO0->getParent() != BO1->getParent())
2051 "Expected commutative instructions!");
2055 Value *Start0, *Step0, *Start1, *Step1;
2062 "Expected PHIs with two incoming values!");
2069 if (!Init0 || !Init1 || !C0 || !C1)
2084 if (
Opc == Instruction::FAdd ||
Opc == Instruction::FMul) {
2088 NewBO->setFastMathFlags(Intersect);
2092 Flags.AllKnownNonZero =
false;
2093 Flags.mergeFlags(*BO0);
2094 Flags.mergeFlags(*BO1);
2095 Flags.mergeFlags(BO);
2096 Flags.applyFlags(*NewBO);
2098 NewBO->takeName(&BO);
2108 "Invalid incoming block!");
2109 NewPN->addIncoming(
Init, BB);
2110 }
else if (V == BO0) {
2115 "Invalid incoming block!");
2116 NewPN->addIncoming(NewBO, BB);
2122 <<
"\n with " << *PN1 <<
"\n " << *BO1
2149 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
2150 Phi0->getNumOperands() != Phi1->getNumOperands())
2154 if (BO.
getParent() != Phi0->getParent() ||
2171 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &>
T) {
2172 auto &Phi0Use = std::get<0>(
T);
2173 auto &Phi1Use = std::get<1>(
T);
2174 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
2176 Value *Phi0UseV = Phi0Use.get();
2177 Value *Phi1UseV = Phi1Use.get();
2180 else if (Phi1UseV ==
C)
2187 if (
all_of(
zip(Phi0->operands(), Phi1->operands()),
2188 CanFoldIncomingValuePair)) {
2191 assert(NewIncomingValues.
size() == Phi0->getNumOperands() &&
2192 "The number of collected incoming values should equal the number "
2193 "of the original PHINode operands!");
2194 for (
unsigned I = 0;
I < Phi0->getNumOperands();
I++)
2195 NewPhi->
addIncoming(NewIncomingValues[
I], Phi0->getIncomingBlock(
I));
2200 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
2207 ConstBB = Phi0->getIncomingBlock(0);
2208 OtherBB = Phi0->getIncomingBlock(1);
2210 ConstBB = Phi0->getIncomingBlock(1);
2211 OtherBB = Phi0->getIncomingBlock(0);
2222 if (!PredBlockBranch || PredBlockBranch->isConditional() ||
2223 !
DT.isReachableFromEntry(OtherBB))
2229 for (
auto BBIter = BO.
getParent()->begin(); &*BBIter != &BO; ++BBIter)
2240 Builder.SetInsertPoint(PredBlockBranch);
2242 Phi0->getIncomingValueForBlock(OtherBB),
2243 Phi1->getIncomingValueForBlock(OtherBB));
2245 NotFoldedNewBO->copyIRFlags(&BO);
2272 if (
GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
2301 for (
unsigned I = 0;
I < NumElts; ++
I) {
2303 if (ShMask[
I] >= 0) {
2304 assert(ShMask[
I] < (
int)NumElts &&
"Not expecting narrowing shuffle");
2315 NewVecC[ShMask[
I]] = CElt;
2335 Value *L0, *L1, *R0, *R1;
2339 LHS->hasOneUse() && RHS->hasOneUse() &&
2362 M, Intrinsic::vector_reverse, V->getType());
2373 (LHS->hasOneUse() || RHS->hasOneUse() ||
2374 (LHS == RHS && LHS->hasNUses(2))))
2375 return createBinOpReverse(V1, V2);
2379 return createBinOpReverse(V1, RHS);
2383 return createBinOpReverse(LHS, V2);
2394 M, Intrinsic::experimental_vp_reverse, V->getType());
2404 (LHS->hasOneUse() || RHS->hasOneUse() ||
2405 (LHS == RHS && LHS->hasNUses(2))))
2406 return createBinOpVPReverse(V1, V2, EVL);
2410 return createBinOpVPReverse(V1, RHS, EVL);
2416 return createBinOpVPReverse(LHS, V2, EVL);
2436 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
2438 return createBinOpShuffle(V1, V2, Mask);
2453 if (LShuf->isSelect() &&
2455 RShuf->isSelect() &&
2477 "Shuffle should not change scalar type");
2489 Value *NewLHS = ConstOp1 ? V1 : NewC;
2490 Value *NewRHS = ConstOp1 ? NewC : V1;
2491 return createBinOpShuffle(NewLHS, NewRHS, Mask);
2526 Value *NewSplat =
Builder.CreateShuffleVector(NewBO, NewMask);
2532 R->copyFastMathFlags(&Inst);
2536 NewInstBO->copyIRFlags(R);
2566 (Op0->
hasOneUse() || Op1->hasOneUse()))) {
2592 NewBinOp->setHasNoSignedWrap();
2594 NewBinOp->setHasNoUnsignedWrap();
2610 if (!
GEP.hasAllConstantIndices())
2626 Type *Ty =
GEP.getSourceElementType();
2627 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC,
"", NW);
2628 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC,
"", NW);
2638 if (
GEP.getNumIndices() != 1)
2648 unsigned IndexSizeInBits =
DL.getIndexTypeSizeInBits(PtrTy);
2659 if (NewOffset.
isZero() ||
2660 (Src->hasOneUse() &&
GEP.getOperand(1)->hasOneUse())) {
2662 if (
GEP.hasNoUnsignedWrap() &&
2682 if (!
GEP.hasAllConstantIndices())
2693 if (InnerGEP->hasAllConstantIndices())
2696 if (!InnerGEP->hasOneUse())
2705 if (Skipped.
empty())
2710 if (!InnerGEP->hasOneUse())
2715 if (InnerGEP->getType() != Ty)
2721 !InnerGEP->accumulateConstantOffset(
DL,
Offset))
2726 SkippedGEP->setNoWrapFlags(NW);
2748 if (Src->getResultElementType() !=
GEP.getSourceElementType())
2752 bool EndsWithSequential =
false;
2755 EndsWithSequential =
I.isSequential();
2756 if (!EndsWithSequential)
2761 Value *SO1 = Src->getOperand(Src->getNumOperands() - 1);
2779 Indices.
append(Src->op_begin() + 1, Src->op_end() - 1);
2784 unsigned NumNonZeroIndices =
count_if(Indices, [](
Value *Idx) {
2786 return !
C || !
C->isNullValue();
2788 if (NumNonZeroIndices > 1)
2793 Src->getSourceElementType(), Src->getOperand(0), Indices,
"",
2799 bool &DoesConsume,
unsigned Depth) {
2800 static Value *
const NonNull =
reinterpret_cast<Value *
>(uintptr_t(1));
2818 if (!WillInvertAllUses)
2825 return Builder->CreateCmp(
I->getInversePredicate(),
I->getOperand(0),
2834 DoesConsume,
Depth))
2837 DoesConsume,
Depth))
2846 DoesConsume,
Depth))
2849 DoesConsume,
Depth))
2858 DoesConsume,
Depth))
2867 DoesConsume,
Depth))
2879 bool LocalDoesConsume = DoesConsume;
2881 LocalDoesConsume,
Depth))
2884 LocalDoesConsume,
Depth)) {
2885 DoesConsume = LocalDoesConsume;
2888 DoesConsume,
Depth);
2889 assert(NotB !=
nullptr &&
2890 "Unable to build inverted value for known freely invertable op");
2892 return Builder->CreateBinaryIntrinsic(
2901 bool LocalDoesConsume = DoesConsume;
2903 for (
Use &U : PN->operands()) {
2904 BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
2908 if (NewIncomingVal ==
nullptr)
2911 if (NewIncomingVal == V)
2914 IncomingValues.
emplace_back(NewIncomingVal, IncomingBlock);
2917 DoesConsume = LocalDoesConsume;
2922 Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
2923 for (
auto [Val, Pred] : IncomingValues)
2932 DoesConsume,
Depth))
2933 return Builder ?
Builder->CreateSExt(AV, V->getType()) : NonNull;
2939 DoesConsume,
Depth))
2940 return Builder ?
Builder->CreateTrunc(AV, V->getType()) : NonNull;
2948 bool IsLogical,
Value *
A,
2950 bool LocalDoesConsume = DoesConsume;
2952 LocalDoesConsume,
Depth))
2955 LocalDoesConsume,
Depth)) {
2957 LocalDoesConsume,
Depth);
2958 DoesConsume = LocalDoesConsume;
2960 return Builder ?
Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
2961 return Builder ?
Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
2968 return TryInvertAndOrUsingDeMorgan(Instruction::And,
false,
A,
2972 return TryInvertAndOrUsingDeMorgan(Instruction::Or,
false,
A,
2976 return TryInvertAndOrUsingDeMorgan(Instruction::And,
true,
A,
2980 return TryInvertAndOrUsingDeMorgan(Instruction::Or,
true,
A,
2989 Type *GEPEltType =
GEP.getSourceElementType();
3000 if (
GEP.getNumIndices() == 1 &&
3009 return PtrOpGep && PtrOpGep->hasAllConstantIndices() &&
3012 return match(V, m_APInt(C)) && !C->isZero();
3036 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
3037 Op1->getSourceElementType() != Op2->getSourceElementType())
3045 Type *CurTy =
nullptr;
3047 for (
unsigned J = 0,
F = Op1->getNumOperands(); J !=
F; ++J) {
3048 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
3051 if (Op1->getOperand(J) != Op2->getOperand(J)) {
3060 assert(CurTy &&
"No current type?");
3080 CurTy = Op1->getSourceElementType();
3088 NW &= Op2->getNoWrapFlags();
3098 NewGEP->setNoWrapFlags(NW);
3110 Builder.SetInsertPoint(PN);
3111 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
3119 NewGEP->setOperand(DI, NewPN);
3122 NewGEP->insertBefore(*
GEP.getParent(),
GEP.getParent()->getFirstInsertionPt());
3129 Type *GEPType =
GEP.getType();
3130 Type *GEPEltType =
GEP.getSourceElementType();
3133 SQ.getWithInstruction(&
GEP)))
3140 auto VWidth = GEPFVTy->getNumElements();
3141 APInt PoisonElts(VWidth, 0);
3153 bool MadeChange =
false;
3157 Type *NewScalarIndexTy =
3158 DL.getIndexType(
GEP.getPointerOperandType()->getScalarType());
3167 Type *IndexTy = (*I)->getType();
3168 Type *NewIndexType =
3177 if (EltTy->
isSized() &&
DL.getTypeAllocSize(EltTy).isZero())
3183 if (IndexTy != NewIndexType) {
3189 if (
GEP.hasNoUnsignedWrap() &&
GEP.hasNoUnsignedSignedWrap())
3190 *
I =
Builder.CreateZExt(*
I, NewIndexType,
"",
true);
3192 *
I =
Builder.CreateSExt(*
I, NewIndexType);
3194 *
I =
Builder.CreateTrunc(*
I, NewIndexType,
"",
GEP.hasNoUnsignedWrap(),
3195 GEP.hasNoUnsignedSignedWrap());
3204 if (!GEPEltType->
isIntegerTy(8) &&
GEP.hasAllConstantIndices()) {
3209 GEP.getNoWrapFlags()));
3221 if (LastIdx && LastIdx->isNullValue() && !LastIdx->getType()->isVectorTy()) {
3229 if (FirstIdx && FirstIdx->isNullValue() &&
3230 !FirstIdx->getType()->isVectorTy()) {
3235 GEP.getPointerOperand(),
3237 GEP.getNoWrapFlags()));
3244 return Op->getType()->isVectorTy() && getSplatValue(Op);
3247 for (
auto &
Op :
GEP.operands()) {
3248 if (
Op->getType()->isVectorTy())
3258 GEP.getNoWrapFlags());
3261 Res =
Builder.CreateVectorSplat(EC, Res);
3266 bool SeenNonZeroIndex =
false;
3267 for (
auto [IdxNum, Idx] :
enumerate(Indices)) {
3269 if (
C &&
C->isNullValue())
3272 if (!SeenNonZeroIndex) {
3273 SeenNonZeroIndex =
true;
3280 Builder.CreateGEP(GEPEltType, PtrOp, FrontIndices,
3281 GEP.getName() +
".split",
GEP.getNoWrapFlags());
3288 BackIndices,
GEP.getNoWrapFlags());
3301 if (
GEP.getNumIndices() == 1) {
3302 unsigned AS =
GEP.getPointerAddressSpace();
3303 if (
GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
3304 DL.getIndexSizeInBits(AS)) {
3305 uint64_t TyAllocSize =
DL.getTypeAllocSize(GEPEltType).getFixedValue();
3307 if (TyAllocSize == 1) {
3316 GEPType ==
Y->getType()) {
3317 bool HasSameUnderlyingObject =
3320 GEP.replaceUsesWithIf(
Y, [&](
Use &U) {
3321 bool ShouldReplace = HasSameUnderlyingObject ||
3325 return ShouldReplace;
3329 }
else if (
auto *ExactIns =
3333 if (ExactIns->isExact()) {
3341 GEP.getPointerOperand(), V,
3342 GEP.getNoWrapFlags());
3345 if (ExactIns->isExact() && ExactIns->hasOneUse()) {
3351 std::optional<APInt> NewC;
3371 if (NewC.has_value()) {
3374 ConstantInt::get(V->getType(), *NewC));
3377 GEP.getPointerOperand(), NewOp,
3378 GEP.getNoWrapFlags());
3388 if (!
GEP.isInBounds()) {
3391 APInt BasePtrOffset(IdxWidth, 0);
3392 Value *UnderlyingPtrOp =
3394 bool CanBeNull, CanBeFreed;
3396 DL, CanBeNull, CanBeFreed);
3397 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
3398 if (
GEP.accumulateConstantOffset(
DL, BasePtrOffset) &&
3400 APInt AllocSize(IdxWidth, DerefBytes);
3401 if (BasePtrOffset.
ule(AllocSize)) {
3403 GEP.getSourceElementType(), PtrOp, Indices,
GEP.getName());
3410 if (
GEP.hasNoUnsignedSignedWrap() && !
GEP.hasNoUnsignedWrap() &&
3412 return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP));
3420 if (
GEP.getNumIndices() == 1) {
3423 auto GetPreservedNoWrapFlags = [&](
bool AddIsNUW) {
3426 if (
GEP.hasNoUnsignedWrap() && AddIsNUW)
3427 return GEP.getNoWrapFlags();
3443 Builder.CreateGEP(
GEP.getSourceElementType(),
GEP.getPointerOperand(),
3446 Builder.CreateGEP(
GEP.getSourceElementType(),
3447 NewPtr, Idx2,
"", NWFlags));
3458 bool NUW =
match(
GEP.getOperand(1),
3461 auto *NewPtr =
Builder.CreateGEP(
3462 GEP.getSourceElementType(),
GEP.getPointerOperand(),
3463 Builder.CreateSExt(Idx1,
GEP.getOperand(1)->getType()),
"", NWFlags);
3466 Builder.CreateGEP(
GEP.getSourceElementType(), NewPtr,
3467 Builder.CreateSExt(
C,
GEP.getOperand(1)->getType()),
3507 return Dest && Dest->Ptr == UsedV;
3510static std::optional<ModRefInfo>
3522 switch (
I->getOpcode()) {
3525 return std::nullopt;
3527 case Instruction::AddrSpaceCast:
3528 case Instruction::BitCast:
3529 case Instruction::GetElementPtr:
3534 case Instruction::ICmp: {
3540 return std::nullopt;
3541 unsigned OtherIndex = (ICI->
getOperand(0) == PI) ? 1 : 0;
3543 return std::nullopt;
3548 auto AlignmentAndSizeKnownValid = [](
CallBase *CB) {
3552 const APInt *Alignment;
3554 return match(CB->getArgOperand(0),
m_APInt(Alignment)) &&
3560 if (CB && TLI.
getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
3561 TLI.
has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
3562 !AlignmentAndSizeKnownValid(CB))
3563 return std::nullopt;
3568 case Instruction::Call:
3571 switch (
II->getIntrinsicID()) {
3573 return std::nullopt;
3575 case Intrinsic::memmove:
3576 case Intrinsic::memcpy:
3577 case Intrinsic::memset: {
3579 if (
MI->isVolatile())
3580 return std::nullopt;
3586 return std::nullopt;
3590 case Intrinsic::assume:
3591 case Intrinsic::invariant_start:
3592 case Intrinsic::invariant_end:
3593 case Intrinsic::lifetime_start:
3594 case Intrinsic::lifetime_end:
3595 case Intrinsic::objectsize:
3598 case Intrinsic::launder_invariant_group:
3599 case Intrinsic::strip_invariant_group:
3626 return std::nullopt;
3628 case Instruction::Store: {
3630 if (
SI->isVolatile() ||
SI->getPointerOperand() != PI)
3631 return std::nullopt;
3633 return std::nullopt;
3639 case Instruction::Load: {
3642 return std::nullopt;
3644 return std::nullopt;
3652 }
while (!Worklist.
empty());
3676 std::unique_ptr<DIBuilder> DIB;
3684 bool KnowInitUndef =
false;
3685 bool KnowInitZero =
false;
3690 KnowInitUndef =
true;
3691 else if (
Init->isNullValue())
3692 KnowInitZero =
true;
3696 auto &
F = *
MI.getFunction();
3697 if (
F.hasFnAttribute(Attribute::SanitizeMemory) ||
3698 F.hasFnAttribute(Attribute::SanitizeAddress))
3699 KnowInitUndef =
false;
3713 if (
II->getIntrinsicID() == Intrinsic::objectsize) {
3716 II,
DL, &
TLI,
AA,
true, &InsertedInstructions);
3717 for (
Instruction *Inserted : InsertedInstructions)
3725 if (KnowInitZero &&
isRefSet(*Removable)) {
3728 auto *M =
Builder.CreateMemSet(
3731 MTI->getLength(), MTI->getDestAlign());
3732 M->copyMetadata(*MTI);
3746 C->isFalseWhenEqual()));
3748 for (
auto *DVR : DVRs)
3749 if (DVR->isAddressOfVariable())
3756 assert(KnowInitZero || KnowInitUndef);
3771 F,
II->getNormalDest(),
II->getUnwindDest(), {},
"",
II->getParent());
3772 NewII->setDebugLoc(
II->getDebugLoc());
3800 for (
auto *DVR : DVRs)
3801 if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
3802 DVR->eraseFromParent();
3848 if (FreeInstrBB->
size() != 2) {
3850 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
3853 if (!Cast || !Cast->isNoopCast(
DL))
3874 "Broken CFG: missing edge from predecessor to successor");
3879 if (&Instr == FreeInstrBBTerminator)
3884 "Only the branch instruction should remain");
3895 Attrs = Attrs.removeParamAttribute(FI.
getContext(), 0, Attribute::NonNull);
3896 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
3897 if (Dereferenceable.
isValid()) {
3899 Attrs = Attrs.removeParamAttribute(FI.
getContext(), 0,
3900 Attribute::Dereferenceable);
3901 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.
getContext(), 0, Bytes);
3940 if (
TLI.getLibFunc(FI, Func) &&
TLI.has(Func) && Func == LibFunc_free)
3956 bool HasDereferenceable =
3957 F->getAttributes().getRetDereferenceableBytes() > 0;
3958 if (
F->hasRetAttribute(Attribute::NonNull) ||
3959 (HasDereferenceable &&
3961 if (
Value *V = simplifyNonNullOperand(RetVal, HasDereferenceable))
3966 if (!AttributeFuncs::isNoFPClassCompatibleType(RetTy))
3969 FPClassTest ReturnClass =
F->getAttributes().getRetNoFPClass();
3970 if (ReturnClass ==
fcNone)
3993 if (Prev->isEHPad())
4025 if (BBI != FirstInstr)
4027 }
while (BBI != FirstInstr && BBI->isDebugOrPseudoInst());
4041 if (!
DeadEdges.insert({From, To}).second)
4046 for (
Use &U : PN.incoming_values())
4063 std::next(
I->getReverseIterator())))) {
4064 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
4068 if (Inst.isEHPad() || Inst.getType()->isTokenTy())
4071 Inst.dropDbgRecords();
4093 return DeadEdges.contains({Pred, BB}) ||
DT.dominates(BB, Pred);
4106 if (Succ == LiveSucc)
4180 if (
DT.dominates(Edge0, U)) {
4186 if (
DT.dominates(Edge1, U)) {
4193 DC.registerBranch(&BI);
4203 unsigned CstOpIdx = IsTrueArm ? 1 : 2;
4208 BasicBlock *CstBB =
SI.findCaseValue(
C)->getCaseSuccessor();
4209 if (CstBB !=
SI.getDefaultDest())
4222 for (
auto Case :
SI.cases())
4223 if (!CR.
contains(Case.getCaseValue()->getValue()))
4235 for (
auto Case :
SI.cases()) {
4238 "Result of expression should be constant");
4247 for (
auto Case :
SI.cases()) {
4250 "Result of expression should be constant");
4259 all_of(
SI.cases(), [&](
const auto &Case) {
4260 return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
4266 Value *NewCond = Op0;
4273 for (
auto Case :
SI.cases()) {
4274 const APInt &CaseVal = Case.getCaseValue()->getValue();
4276 : CaseVal.
lshr(ShiftAmt);
4277 Case.setValue(ConstantInt::get(
SI.getContext(), ShiftedCase));
4289 if (
all_of(
SI.cases(), [&](
const auto &Case) {
4290 const APInt &CaseVal = Case.getCaseValue()->getValue();
4291 return IsZExt ? CaseVal.isIntN(NewWidth)
4292 : CaseVal.isSignedIntN(NewWidth);
4294 for (
auto &Case :
SI.cases()) {
4295 APInt TruncatedCase = Case.getCaseValue()->getValue().
trunc(NewWidth);
4296 Case.setValue(ConstantInt::get(
SI.getContext(), TruncatedCase));
4318 for (
const auto &
C :
SI.cases()) {
4320 std::min(LeadingKnownZeros,
C.getCaseValue()->getValue().countl_zero());
4322 std::min(LeadingKnownOnes,
C.getCaseValue()->getValue().countl_one());
4325 unsigned NewWidth = Known.
getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
4331 if (NewWidth > 0 && NewWidth < Known.
getBitWidth() &&
4332 shouldChangeType(Known.
getBitWidth(), NewWidth)) {
4337 for (
auto Case :
SI.cases()) {
4338 APInt TruncatedCase = Case.getCaseValue()->getValue().
trunc(NewWidth);
4339 Case.setValue(ConstantInt::get(
SI.getContext(), TruncatedCase));
4350 SI.findCaseValue(CI)->getCaseSuccessor());
4364 const APInt *
C =
nullptr;
4366 if (*EV.
idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
4367 OvID == Intrinsic::umul_with_overflow)) {
4372 if (
C->isPowerOf2()) {
4373 return BinaryOperator::CreateShl(
4375 ConstantInt::get(WO->getLHS()->getType(),
C->logBase2()));
4383 if (!WO->hasOneUse())
4397 assert(*EV.
idx_begin() == 1 &&
"Unexpected extract index for overflow inst");
4400 if (OvID == Intrinsic::usub_with_overflow)
4405 if (OvID == Intrinsic::smul_with_overflow &&
4406 WO->getLHS()->getType()->isIntOrIntVectorTy(1))
4407 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
4410 if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
4411 unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
4414 return new ICmpInst(
4416 ConstantInt::get(WO->getLHS()->getType(),
4427 WO->getBinaryOp(), *
C, WO->getNoWrapKind());
4432 auto *OpTy = WO->getRHS()->getType();
4433 auto *NewLHS = WO->getLHS();
4435 NewLHS =
Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy,
Offset));
4437 ConstantInt::get(OpTy, NewRHSC));
4454 const APFloat *ConstVal =
nullptr;
4455 Value *VarOp =
nullptr;
4456 bool ConstIsTrue =
false;
4463 ConstIsTrue =
false;
4468 Builder.SetInsertPoint(&EV);
4474 Value *NewEV = Builder.CreateExtractValue(NewFrexp, 0,
"mantissa");
4479 Constant *ConstantMantissa = ConstantFP::get(TrueVal->getType(), Mantissa);
4481 Value *NewSel = Builder.CreateSelectFMF(
4482 Cond, ConstIsTrue ? ConstantMantissa : NewEV,
4483 ConstIsTrue ? NewEV : ConstantMantissa,
SelectInst,
"select.frexp");
4493 SQ.getWithInstruction(&EV)))
4507 const unsigned *exti, *exte, *insi, *inse;
4508 for (exti = EV.
idx_begin(), insi =
IV->idx_begin(),
4509 exte = EV.
idx_end(), inse =
IV->idx_end();
4510 exti != exte && insi != inse;
4524 if (exti == exte && insi == inse)
4539 Value *NewEV =
Builder.CreateExtractValue(
IV->getAggregateOperand(),
4557 if (
Instruction *R = foldExtractOfOverflowIntrinsic(EV))
4563 STy && STy->isScalableTy())
4571 if (L->isSimple() && L->hasOneUse()) {
4576 for (
unsigned Idx : EV.
indices())
4583 L->getPointerOperand(), Indices);
4617 switch (Personality) {
4661 bool MakeNewInstruction =
false;
4667 bool isLastClause = i + 1 == e;
4675 if (AlreadyCaught.
insert(TypeInfo).second) {
4680 MakeNewInstruction =
true;
4687 MakeNewInstruction =
true;
4688 CleanupFlag =
false;
4707 if (!NumTypeInfos) {
4710 MakeNewInstruction =
true;
4711 CleanupFlag =
false;
4715 bool MakeNewFilter =
false;
4719 assert(NumTypeInfos > 0 &&
"Should have handled empty filter already!");
4725 MakeNewInstruction =
true;
4732 if (NumTypeInfos > 1)
4733 MakeNewFilter =
true;
4737 NewFilterElts.
reserve(NumTypeInfos);
4742 bool SawCatchAll =
false;
4743 for (
unsigned j = 0; j != NumTypeInfos; ++j) {
4771 if (SeenInFilter.
insert(TypeInfo).second)
4777 MakeNewInstruction =
true;
4782 if (NewFilterElts.
size() < NumTypeInfos)
4783 MakeNewFilter =
true;
4785 if (MakeNewFilter) {
4787 NewFilterElts.
size());
4789 MakeNewInstruction =
true;
4798 if (MakeNewFilter && !NewFilterElts.
size()) {
4799 assert(MakeNewInstruction &&
"New filter but not a new instruction!");
4800 CleanupFlag =
false;
4811 for (
unsigned i = 0, e = NewClauses.
size(); i + 1 < e; ) {
4814 for (j = i; j != e; ++j)
4821 for (
unsigned k = i; k + 1 < j; ++k)
4825 std::stable_sort(NewClauses.
begin() + i, NewClauses.
begin() + j,
4827 MakeNewInstruction =
true;
4846 for (
unsigned i = 0; i + 1 < NewClauses.
size(); ++i) {
4856 for (
unsigned j = NewClauses.
size() - 1; j != i; --j) {
4857 Value *LFilter = NewClauses[j];
4868 NewClauses.
erase(J);
4869 MakeNewInstruction =
true;
4873 unsigned LElts = LTy->getNumElements();
4883 assert(FElts <= LElts &&
"Should have handled this case earlier!");
4885 NewClauses.
erase(J);
4886 MakeNewInstruction =
true;
4895 assert(FElts > 0 &&
"Should have eliminated the empty filter earlier!");
4896 for (
unsigned l = 0; l != LElts; ++l)
4899 NewClauses.
erase(J);
4900 MakeNewInstruction =
true;
4911 bool AllFound =
true;
4912 for (
unsigned f = 0; f != FElts; ++f) {
4915 for (
unsigned l = 0; l != LElts; ++l) {
4917 if (LTypeInfo == FTypeInfo) {
4927 NewClauses.
erase(J);
4928 MakeNewInstruction =
true;
4936 if (MakeNewInstruction) {
4944 if (NewClauses.empty())
4953 assert(!CleanupFlag &&
"Adding a cleanup, not removing one?!");
4975 auto CanPushFreeze = [](
Value *V) {
4996 Value *V = U->get();
4997 if (!CanPushFreeze(V)) {
5003 Builder.SetInsertPoint(UserI);
5004 Value *Frozen =
Builder.CreateFreeze(V, V->getName() +
".fr");
5010 if (!Visited.
insert(
I).second)
5021 I->dropPoisonGeneratingAnnotations();
5022 this->Worklist.add(
I);
5025 return OrigUse->get();
5035 Use *StartU =
nullptr;
5053 Value *StartV = StartU->get();
5065 if (!Visited.
insert(V).second)
5068 if (Visited.
size() > 32)
5085 I->dropPoisonGeneratingAnnotations();
5087 if (StartNeedsFreeze) {
5115 MoveBefore = *MoveBeforeOpt;
5119 MoveBefore.setHeadBit(
false);
5122 if (&FI != &*MoveBefore) {
5123 FI.
moveBefore(*MoveBefore->getParent(), MoveBefore);
5127 Op->replaceUsesWithIf(&FI, [&](
Use &U) ->
bool {
5128 bool Dominates =
DT.dominates(&FI, U);
5138 for (
auto *U : V->users()) {
5148 Value *Op0 =
I.getOperand(0);
5178 auto getUndefReplacement = [&](
Type *Ty) {
5179 auto pickCommonConstantFromPHI = [](
PHINode &PN) ->
Value * {
5183 for (
Value *V : PN.incoming_values()) {
5194 if (BestValue && BestValue !=
C)
5203 Value *BestValue =
nullptr;
5204 for (
auto *U :
I.users()) {
5205 Value *V = NullValue;
5214 if (
Value *MaybeV = pickCommonConstantFromPHI(*
PHI))
5220 else if (BestValue != V)
5221 BestValue = NullValue;
5223 assert(BestValue &&
"Must have at least one use");
5224 assert(BestValue != &
I &&
"Cannot replace with itself");
5238 Type *Ty =
C->getType();
5242 unsigned NumElts = VTy->getNumElements();
5244 for (
unsigned i = 0; i != NumElts; ++i) {
5245 Constant *EltC =
C->getAggregateElement(i);
5256 !
C->containsConstantExpression()) {
5257 if (
Constant *Repl = getFreezeVectorReplacement(
C))
5291 for (
const User *U :
I.users()) {
5292 if (Visited.
insert(U).second)
5297 while (!AllocaUsers.
empty()) {
5320 if (
isa<PHINode>(
I) ||
I->isEHPad() ||
I->mayThrow() || !
I->willReturn() ||
5337 if (CI->isConvergent())
5343 if (
I->mayWriteToMemory()) {
5350 if (
I->mayReadFromMemory() &&
5351 !
I->hasMetadata(LLVMContext::MD_invariant_load)) {
5358 E =
I->getParent()->end();
5360 if (Scan->mayWriteToMemory())
5364 I->dropDroppableUses([&](
const Use *U) {
5366 if (
I &&
I->getParent() != DestBlock) {
5376 I->moveBefore(*DestBlock, InsertPos);
5386 if (!DbgVariableRecords.
empty())
5388 DbgVariableRecords);
5411 for (
auto &DVR : DbgVariableRecords)
5412 if (DVR->getParent() != DestBlock)
5413 DbgVariableRecordsToSalvage.
push_back(DVR);
5419 if (DVR->getParent() == SrcBlock)
5420 DbgVariableRecordsToSink.
push_back(DVR);
5427 return B->getInstruction()->comesBefore(
A->getInstruction());
5434 using InstVarPair = std::pair<const Instruction *, DebugVariable>;
5436 if (DbgVariableRecordsToSink.
size() > 1) {
5442 DVR->getDebugLoc()->getInlinedAt());
5443 CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
5449 for (
auto It : CountMap) {
5450 if (It.second > 1) {
5451 FilterOutMap[It.first] =
nullptr;
5452 DupSet.
insert(It.first.first);
5463 DVR.getDebugLoc()->getInlinedAt());
5465 FilterOutMap.
find(std::make_pair(Inst, DbgUserVariable));
5466 if (FilterIt == FilterOutMap.
end())
5468 if (FilterIt->second !=
nullptr)
5470 FilterIt->second = &DVR;
5485 DVR->getDebugLoc()->getInlinedAt());
5489 if (!FilterOutMap.
empty()) {
5490 InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
5491 auto It = FilterOutMap.
find(IVP);
5494 if (It != FilterOutMap.
end() && It->second != DVR)
5498 if (!SunkVariables.
insert(DbgUserVariable).second)
5501 if (DVR->isDbgAssign())
5509 if (DVRClones.
empty())
5523 assert(InsertPos.getHeadBit());
5525 InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
5549 if (
I ==
nullptr)
continue;
5564 auto getOptionalSinkBlockForInst =
5565 [
this](
Instruction *
I) -> std::optional<BasicBlock *> {
5567 return std::nullopt;
5571 unsigned NumUsers = 0;
5573 for (
Use &U :
I->uses()) {
5578 return std::nullopt;
5584 UserBB = PN->getIncomingBlock(U);
5588 if (UserParent && UserParent != UserBB)
5589 return std::nullopt;
5590 UserParent = UserBB;
5594 if (NumUsers == 0) {
5597 if (UserParent == BB || !
DT.isReachableFromEntry(UserParent))
5598 return std::nullopt;
5610 return std::nullopt;
5612 assert(
DT.dominates(BB, UserParent) &&
"Dominance relation broken?");
5620 return std::nullopt;
5625 auto OptBB = getOptionalSinkBlockForInst(
I);
5627 auto *UserParent = *OptBB;
5635 for (
Use &U :
I->operands())
5643 Builder.CollectMetadataToCopy(
5644 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
5657 <<
" New = " << *Result <<
'\n');
5662 Result->setDebugLoc(Result->getDebugLoc().orElse(
I->getDebugLoc()));
5664 Result->copyMetadata(*
I, LLVMContext::MD_annotation);
5666 I->replaceAllUsesWith(Result);
5669 Result->takeName(
I);
5684 Result->insertInto(InstParent, InsertPos);
5687 Worklist.pushUsersToWorkList(*Result);
5693 <<
" New = " << *
I <<
'\n');
5725 if (!
I->hasMetadataOtherThanDebugLoc())
5728 auto Track = [](
Metadata *ScopeList,
auto &Container) {
5730 if (!MDScopeList || !Container.insert(MDScopeList).second)
5732 for (
const auto &
MDOperand : MDScopeList->operands())
5734 Container.insert(MDScope);
5737 Track(
I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
5738 Track(
I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
5747 "llvm.experimental.noalias.scope.decl in use ?");
5750 "llvm.experimental.noalias.scope should refer to a single scope");
5753 return !UsedAliasScopesAndLists.contains(MD) ||
5754 !UsedNoAliasScopesAndLists.contains(MD);
5778 if (Succ != LiveSucc &&
DeadEdges.insert({BB, Succ}).second)
5779 for (
PHINode &PN : Succ->phis())
5780 for (
Use &U : PN.incoming_values())
5789 return DeadEdges.contains({Pred, BB}) ||
DT.dominates(BB, Pred);
5791 HandleOnlyLiveSuccessor(BB,
nullptr);
5798 if (!Inst.use_empty() &&
5799 (Inst.getNumOperands() == 0 ||
isa<Constant>(Inst.getOperand(0))))
5803 Inst.replaceAllUsesWith(
C);
5806 Inst.eraseFromParent();
5812 for (
Use &U : Inst.operands()) {
5817 Constant *&FoldRes = FoldedConstants[
C];
5823 <<
"\n Old = " << *
C
5824 <<
"\n New = " << *FoldRes <<
'\n');
5833 if (!Inst.isDebugOrPseudoInst()) {
5834 InstrsForInstructionWorklist.
push_back(&Inst);
5835 SeenAliasScopes.
analyse(&Inst);
5845 HandleOnlyLiveSuccessor(BB,
nullptr);
5849 bool CondVal =
Cond->getZExtValue();
5850 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
5856 HandleOnlyLiveSuccessor(BB,
nullptr);
5860 HandleOnlyLiveSuccessor(BB,
5861 SI->findCaseValue(
Cond)->getCaseSuccessor());
5871 if (LiveBlocks.
count(&BB))
5874 unsigned NumDeadInstInBB;
5878 NumDeadInst += NumDeadInstInBB;
5895 Inst->eraseFromParent();
5924 auto &
DL =
F.getDataLayout();
5926 !
F.hasFnAttribute(
"instcombine-no-verify-fixpoint");
5942 bool MadeIRChange =
false;
5947 unsigned Iteration = 0;
5951 <<
" on " <<
F.getName()
5952 <<
" reached; stopping without verifying fixpoint\n");
5957 ++NumWorklistIterations;
5958 LLVM_DEBUG(
dbgs() <<
"\n\nINSTCOMBINE ITERATION #" << Iteration <<
" on "
5959 <<
F.getName() <<
"\n");
5961 InstCombinerImpl IC(Worklist, Builder,
F,
AA, AC, TLI,
TTI, DT, ORE, BFI,
5962 BPI, PSI,
DL, RPOT);
5965 MadeChangeInThisIteration |= IC.
run();
5966 if (!MadeChangeInThisIteration)
5969 MadeIRChange =
true;
5972 "Instruction Combining on " +
Twine(
F.getName()) +
5975 "Use 'instcombine<no-verify-fixpoint>' or function attribute "
5976 "'instcombine-no-verify-fixpoint' to suppress this error.");
5982 else if (Iteration == 2)
5984 else if (Iteration == 3)
5985 ++NumThreeIterations;
5987 ++NumFourOrMoreIterations;
5989 return MadeIRChange;
5997 OS, MapClassName2PassName);
5999 OS <<
"max-iterations=" << Options.MaxIterations <<
";";
6000 OS << (Options.VerifyFixpoint ?
"" :
"no-") <<
"verify-fixpoint";
6004char InstCombinePass::ID = 0;
6010 if (LRT.shouldSkip(&ID))
6023 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
6028 BFI, BPI, PSI, Options)) {
6030 LRT.update(&ID,
false);
6036 LRT.update(&ID,
true);
6078 if (
auto *WrapperPass =
6080 BPI = &WrapperPass->getBPI();
6093 "Combine redundant instructions",
false,
false)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
This file defines the DenseMap class.
static bool isSigned(unsigned int Opcode)
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
iv Induction Variable Users
static bool leftDistributesOverRight(Instruction::BinaryOps LOp, bool HasNUW, bool HasNSW, Intrinsic::ID ROp)
Return whether "X LOp (Y ROp Z)" is always equal to "(X LOp Y) ROp (X LOp Z)".
This file provides internal interfaces used to implement the InstCombine.
This file provides the primary interface to the instcombine pass.
static Value * simplifySwitchOnSelectUsingRanges(SwitchInst &SI, SelectInst *Select, bool IsTrueArm)
static bool isUsedWithinShuffleVector(Value *V)
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, Instruction *AI)
static bool shorter_filter(const Value *LHS, const Value *RHS)
static Instruction * combineConstantOffsets(GetElementPtrInst &GEP, InstCombinerImpl &IC)
Combine constant offsets separated by variable offsets.
static Instruction * foldSelectGEP(GetElementPtrInst &GEP, InstCombiner::BuilderTy &Builder)
Thread a GEP operation with constant indices through the constant true/false arms of a select.
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src)
static cl::opt< unsigned > MaxArraySize("instcombine-maxarray-size", cl::init(1024), cl::desc("Maximum array size considered when doing a combine"))
static cl::opt< unsigned > ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", cl::Hidden, cl::init(true))
static bool hasNoSignedWrap(BinaryOperator &I)
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, InstCombinerImpl &IC)
Combine constant operands of associative operations either before or after a cast to eliminate one of...
static bool combineInstructionsOverFunction(Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, const InstCombineOptions &Opts)
static Value * simplifyInstructionWithPHI(Instruction &I, PHINode *PN, Value *InValue, BasicBlock *InBB, const DataLayout &DL, const SimplifyQuery SQ)
static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP)
Return true if we should canonicalize the gep to an i8 ptradd.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I)
Conservatively clears subclassOptionalData after a reassociation or commutation.
static Value * getIdentityValue(Instruction::BinaryOps Opcode, Value *V)
This function returns identity value for given opcode, which can be used to factor patterns like (X *...
static Value * foldFrexpOfSelect(ExtractValueInst &EV, IntrinsicInst *FrexpCall, SelectInst *SelectInst, InstCombiner::BuilderTy &Builder)
static std::optional< std::pair< Value *, Value * > > matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS)
static Value * foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, Value *NewOp, InstCombiner &IC)
static Instruction * canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, GEPOperator *Src, InstCombinerImpl &IC)
static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI, const DataLayout &DL)
Move the call to free before a NULL test.
static Value * simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI, bool IsTrueArm)
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp)
Return whether "(X LOp Y) ROp Z" is always equal to "(X ROp Z) LOp (Y ROp Z)".
static Value * tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, InstCombiner::BuilderTy &Builder, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D)
This tries to simplify binary operations by factorizing out common terms (e.
static bool isRemovableWrite(CallBase &CB, Value *UsedV, const TargetLibraryInfo &TLI)
Given a call CB which uses an address UsedV, return true if we can prove the call's only possible eff...
static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS, BinaryOperator *OtherOp)
This function predicates factorization using distributive laws.
static bool hasNoUnsignedWrap(BinaryOperator &I)
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI)
Check for case where the call writes to an otherwise dead alloca.
static cl::opt< unsigned > MaxSinkNumUsers("instcombine-max-sink-users", cl::init(32), cl::desc("Maximum number of undroppable users for instruction sinking"))
static Instruction * foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN, IRBuilderBase &Builder)
static std::optional< ModRefInfo > isAllocSiteRemovable(Instruction *AI, SmallVectorImpl< WeakTrackingVH > &Users, const TargetLibraryInfo &TLI, bool KnowInit)
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo)
Return 'true' if the given typeinfo will match anything.
static cl::opt< bool > EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), cl::init(true))
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C)
static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1, GEPOperator &GEP2)
Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y)) transform.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
uint64_t IntrinsicInst * II
static bool IsSelect(MachineInstr &MI)
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static const uint32_t IV[8]
bool isNoAliasScopeDeclDead(Instruction *Inst)
void analyse(Instruction *I)
A manager for alias analyses.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
static LLVM_ABI void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sadd_ov(const APInt &RHS, bool &Overflow) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
LLVM_ABI APInt ssub_ov(const APInt &RHS, bool &Overflow) const
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
size_t size() const
size - Get the array size.
Class to represent array types.
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
uint64_t getNumElements() const
Type * getElementType() const
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
LLVM_ABI void registerAssumption(AssumeInst *CI)
Add an @llvm.assume intrinsic to this function's cache.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI uint64_t getDereferenceableBytes() const
Returns the number of dereferenceable bytes from the dereferenceable attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
LLVM_ABI bool isEntryBlock() const
Return true if this is the entry block of the containing function.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI const_iterator getFirstNonPHIOrDbgOrAlloca() const
Returns an iterator to the first instruction in this block that is not a PHINode, a debug intrinsic,...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
static BinaryOperator * CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name="")
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Analysis providing branch probability information.
Represents analyses that only rely on functions' control flow.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
void setAttributes(AttributeList A)
Set the attributes for this call.
bool doesNotThrow() const
Determine if the call cannot unwind.
Value * getArgOperand(unsigned i) const
AttributeList getAttributes() const
Return the attributes for this call.
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_UGT
unsigned greater than
@ ICMP_ULT
unsigned less than
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
ConstantArray - Constant Array Declarations.
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
LLVM_ABI bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
Constant Vector Declarations.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getIntegerValue(Type *Ty, const APInt &V)
Return the value for an integer or pointer constant, or a vector thereof, with the given scalar value...
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
const Constant * stripPointerCasts() const
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
A parsed version of the target data layout string in and methods for querying it.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
static bool shouldExecute(unsigned CounterName)
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Analysis pass which computes a DominatorTree.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
This class represents a freeze function that returns random concrete value if an operand is either a ...
FunctionPass class - This class is used to implement most global optimizations.
bool skipFunction(const Function &F) const
Optional passes call this function to check whether the pass should be skipped.
const BasicBlock & getEntryBlock() const
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
static GEPNoWrapFlags all()
static GEPNoWrapFlags noUnsignedWrap()
GEPNoWrapFlags intersectForReassociate(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep (gep, p, y), x).
bool hasNoUnsignedWrap() const
GEPNoWrapFlags intersectForOffsetAdd(GEPNoWrapFlags Other) const
Given (gep (gep p, x), y), determine the nowrap flags for (gep p, x+y).
static GEPNoWrapFlags none()
GEPNoWrapFlags getNoWrapFlags() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
static GetElementPtrInst * CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create an "inbounds" getelementptr.
Legacy wrapper pass to provide the GlobalsAAResult object.
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getCmpPredicate() const
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Common base class shared among various IRBuilders.
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
ConstantInt * getInt(const APInt &AI)
Get a constant integer value.
Provides an 'InsertHelper' that calls a user-provided callback after performing the default insertion...
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
This instruction inserts a struct field of array element value into an aggregate value.
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI InstCombinePass(InstCombineOptions Opts={})
LLVM_ABI void printPipeline(raw_ostream &OS, function_ref< StringRef(StringRef)> MapClassName2PassName)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Instruction * visitGEPOfGEP(GetElementPtrInst &GEP, GEPOperator *Src)
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * visitUnreachableInst(UnreachableInst &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
void handleUnreachableFrom(Instruction *I, SmallVectorImpl< BasicBlock * > &Worklist)
Value * SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &PoisonElts, unsigned Depth=0, bool AllowMultipleUsers=false) override
The specified value produces a vector with any number of elements.
Instruction * visitFreeze(FreezeInst &I)
void handlePotentiallyDeadBlocks(SmallVectorImpl< BasicBlock * > &Worklist)
bool prepareWorklist(Function &F)
Perform early cleanup and prepare the InstCombine worklist.
Instruction * visitFree(CallInst &FI, Value *FreedOp)
Instruction * visitExtractValueInst(ExtractValueInst &EV)
void handlePotentiallyDeadSuccessors(BasicBlock *BB, BasicBlock *LiveSucc)
Instruction * visitUnconditionalBranchInst(BranchInst &BI)
Instruction * foldBinopWithRecurrence(BinaryOperator &BO)
Try to fold binary operators whose operands are simple interleaved recurrences to a single recurrence...
Instruction * eraseInstFromFunction(Instruction &I) override
Combiner aware instruction erasure.
Instruction * visitLandingPadInst(LandingPadInst &LI)
Instruction * visitReturnInst(ReturnInst &RI)
Instruction * visitSwitchInst(SwitchInst &SI)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
bool mergeStoreIntoSuccessor(StoreInst &SI)
Try to transform: if () { *P = v1; } else { *P = v2 } or: *P = v1; if () { *P = v2; }...
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
void CreateNonTerminatorUnreachable(Instruction *InsertAt)
Create and insert the idiom we use to indicate a block is unreachable without having to rewrite the C...
Value * pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI)
bool run()
Run the combiner over the entire worklist until it is empty.
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
bool removeInstructionsBeforeUnreachable(Instruction &I)
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
void tryToSinkInstructionDbgVariableRecords(Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, BasicBlock *DestBlock, SmallVectorImpl< DbgVariableRecord * > &DPUsers)
void addDeadEdge(BasicBlock *From, BasicBlock *To, SmallVectorImpl< BasicBlock * > &Worklist)
Constant * unshuffleConstant(ArrayRef< int > ShMask, Constant *C, VectorType *NewCTy)
Find a constant NewC that has property: shuffle(NewC, ShMask) = C Returns nullptr if such a constant ...
Instruction * visitAllocSite(Instruction &FI)
Instruction * visitGetElementPtrInst(GetElementPtrInst &GEP)
Instruction * visitBranchInst(BranchInst &BI)
Value * tryFactorizationFolds(BinaryOperator &I)
This tries to simplify binary operations by factorizing out common terms (e.
Instruction * foldFreezeIntoRecurrence(FreezeInst &I, PHINode *PN)
Value * SimplifyDemandedUseFPClass(Value *V, FPClassTest DemandedMask, KnownFPClass &Known, Instruction *CxtI, unsigned Depth=0)
Attempts to replace V with a simpler value based on the demanded floating-point classes.
bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock)
Try to move the specified instruction from its current block into the beginning of DestBlock,...
bool freezeOtherUses(FreezeInst &FI)
void freelyInvertAllUsersOf(Value *V, Value *IgnoredUser=nullptr)
Freely adapt every user of V as-if V was changed to !V.
The core instruction combiner logic.
const DataLayout & getDataLayout() const
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
static unsigned getComplexity(Value *V)
Assign a complexity or rank value to LLVM Values.
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * InsertNewInstBefore(Instruction *New, BasicBlock::iterator Old)
Inserts an instruction New before instruction Old.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
uint64_t MaxArraySizeForCombine
Maximum size of array considered when transforming.
static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI)
void replaceUse(Use &U, Value *NewValue)
Replace use and add the previously used value to the worklist.
static bool isCanonicalPredicate(CmpPredicate Pred)
Predicate canonicalization reduces the number of patterns that need to be matched by other transforms...
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
Instruction * InsertNewInstWith(Instruction *New, BasicBlock::iterator Old)
Same as InsertNewInstBefore, but also sets the debug loc.
BranchProbabilityInfo * BPI
ReversePostOrderTraversal< BasicBlock * > & RPOT
void computeKnownBits(const Value *V, KnownBits &Known, const Instruction *CxtI, unsigned Depth=0) const
std::optional< Instruction * > targetInstCombineIntrinsic(IntrinsicInst &II)
void addToWorklist(Instruction *I)
Value * getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume, unsigned Depth)
Return nonnull value if V is free to invert under the condition of WillInvertAllUses.
SmallDenseSet< std::pair< const BasicBlock *, const BasicBlock * >, 8 > BackEdges
Backedges, used to avoid pushing instructions across backedges in cases where this may result in infi...
std::optional< Value * > targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp)
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
static Constant * getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant)
Some binary operators require special handling to avoid poison and undefined behavior.
SmallDenseSet< std::pair< BasicBlock *, BasicBlock * >, 8 > DeadEdges
Edges that are known to never be taken.
std::optional< Value * > targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed)
bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
bool isBackEdge(const BasicBlock *From, const BasicBlock *To)
void visit(Iterator Start, Iterator End)
The legacy pass manager's instcombine pass.
InstructionCombiningPass()
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
void add(Instruction *I)
Add instruction to the worklist.
LLVM_ABI void dropUBImplyingAttrsAndMetadata(ArrayRef< unsigned > Keep={})
Drop any attributes or metadata that can cause immediate undefined behavior.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI void moveBefore(InstListType::iterator InsertPos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
bool isTerminator() const
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
LLVM_ABI bool willReturn() const LLVM_READONLY
Return true if the instruction will return (unwinding is considered as a form of returning control fl...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
bool isBitwiseLogicOp() const
Return true if this is and/or/xor.
LLVM_ABI void dropPoisonGeneratingFlags()
Drops flags that may cause this instruction to evaluate to poison despite having non-poison inputs.
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A wrapper class for inspecting calls to intrinsic functions.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
unsigned getNumClauses() const
Get the number of clauses for this landing pad.
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
bool isCatch(unsigned Idx) const
Return 'true' if the clause and index Idx is a catch clause.
bool isFilter(unsigned Idx) const
Return 'true' if the clause and index Idx is a filter clause.
Constant * getClause(unsigned Idx) const
Get the value of the clause at index Idx.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
A function/module analysis which provides an empty LastRunTrackingInfo.
This is an alternative analysis pass to BlockFrequencyInfoWrapperPass.
static void getLazyBFIAnalysisUsage(AnalysisUsage &AU)
Helper for client passes to set up the analysis usage on behalf of this pass.
An instruction for reading from memory.
Value * getPointerOperand()
bool isVolatile() const
Return true if this is a load from a volatile memory location.
const MDOperand & getOperand(unsigned I) const
unsigned getNumOperands() const
Return number of MDNode operands.
Tracking metadata reference owned by Metadata.
This is the common base class for memset/memcpy/memmove.
static LLVM_ABI MemoryLocation getForDest(const MemIntrinsic *MI)
Return a location representing the destination of a memory set or transfer.
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
A Module instance is used to store all the information related to an LLVM module.
MDNode * getScopeList() const
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
AnalysisType * getAnalysisIfAvailable() const
getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to get analysis information tha...
In order to facilitate speculative execution, many instructions do not invoke immediate undefined beh...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
PreservedAnalyses & preserve()
Mark an analysis as preserved.
An analysis pass based on the new PM to deliver ProfileSummaryInfo.
An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
Analysis providing profile information.
bool hasProfileSummary() const
Returns true if profile summary is available.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Return a value (possibly void), from a function.
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
This instruction constructs a fixed permutation of two input vectors.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
typename SuperClass::iterator iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
TargetFolder - Create constants with target dependent folding.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
bool has(LibFunc F) const
Tests whether a library function is available.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
bool isStructTy() const
True if this is an instance of StructType.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
LLVM_ABI bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM_ABI bool isDroppable() const
A droppable user is a user for which uses can be dropped without affecting correctness and should be ...
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
LLVM_ABI bool hasOneUser() const
Return true if there is exactly one user of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
iterator_range< user_iterator > users()
bool hasUseList() const
Check if this Value has a use-list.
LLVM_ABI bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI uint64_t getPointerDereferenceableBytes(const DataLayout &DL, bool &CanBeNull, bool &CanBeFreed) const
Returns the number of bytes known to be dereferenceable for the pointer value.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
LLVM_ABI void takeName(Value *V)
Transfer the name from V to this value.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Value handle that is nullable, but tries to track the Value.
An efficient, type-erasing, non-owning reference to a callable.
Type * getIndexedType() const
const ParentTy * getParent() const
reverse_self_iterator getReverseIterator()
self_iterator getIterator()
This class implements an extremely fast bulk output stream that can only output to a stream.
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
OneOps_match< OpTy, Instruction::Freeze > m_Freeze(const OpTy &Op)
Matches FreezeInst.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
br_match m_UnconditionalBr(BasicBlock *&Succ)
ap_match< APInt > m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
constantexpr_match m_ConstantExpr()
Match a constant expression or a constant that contains a constant expression.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
NNegZExt_match< OpTy > m_NNegZExt(const OpTy &Op)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
cstfp_pred_ty< is_non_zero_fp > m_NonZeroFP()
Match a floating-point non-zero.
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
initializer< Ty > init(const Ty &Val)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
FunctionAddr VTableAddr Value
void stable_sort(R &&Range)
LLVM_ABI void initializeInstructionCombiningPassPass(PassRegistry &)
LLVM_ABI unsigned removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB)
Remove all instructions from a basic block other than its terminator and any present EH pad instructi...
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
bool succ_empty(const Instruction *I)
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI FunctionPass * createInstructionCombiningPass()
LLVM_ABI void findDbgValues(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the dbg.values describing a value.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
auto successors(const MachineBasicBlock *BB)
LLVM_ABI Constant * ConstantFoldInstruction(const Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
LLVM_ABI bool isRemovableAlloc(const CallBase *V, const TargetLibraryInfo *TLI)
Return true if this is a call to an allocation function that does not have side effects that we are r...
LLVM_ABI std::optional< StringRef > getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI)
If a function is part of an allocation family (e.g.
OuterAnalysisManagerProxy< ModuleAnalysisManager, Function > ModuleAnalysisManagerFunctionProxy
Provide the ModuleAnalysisManager to Function proxy.
LLVM_ABI Value * lowerObjectSizeCall(IntrinsicInst *ObjectSize, const DataLayout &DL, const TargetLibraryInfo *TLI, bool MustSucceed)
Try to turn a call to @llvm.objectsize into an integer value of the given Type.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
gep_type_iterator gep_type_end(const User *GEP)
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Value * getReallocatedOperand(const CallBase *CB)
If this is a call to a realloc function, return the reallocated operand.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool handleUnreachableTerminator(Instruction *I, SmallVectorImpl< Value * > &PoisonedValues)
If a terminator in an unreachable basic block has an operand of type Instruction, transform it into p...
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Value * emitGEPOffset(IRBuilderBase *Builder, const DataLayout &DL, User *GEP, bool NoAssumptions=false)
Given a getelementptr instruction/constantexpr, emit the code necessary to compute the offset from th...
constexpr unsigned MaxAnalysisRecursionDepth
auto reverse(ContainerTy &&C)
bool isModSet(const ModRefInfo MRI)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool LowerDbgDeclare(Function &F)
Lowers dbg.declare records into appropriate set of dbg.value records.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
generic_gep_type_iterator<> gep_type_iterator
LLVM_ABI void ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, StoreInst *SI, DIBuilder &Builder)
Inserts a dbg.value record before a store to an alloca'd value that has an associated dbg....
LLVM_ABI void salvageDebugInfoForDbgValues(Instruction &I, ArrayRef< DbgVariableRecord * > DPInsns)
Implementation of salvageDebugInfo, applying only to instructions in Insns, rather than all debug use...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT)
Point debug users of From to To or salvage them.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
auto drop_end(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the last N elements excluded.
ModRefInfo
Flags indicating whether a memory access modifies or references memory.
@ Ref
The access may reference the value stored in memory.
@ ModRef
The access may reference and may modify the value stored in memory.
@ Mod
The access may modify the value stored in memory.
@ NoModRef
The access neither references nor modifies the value stored in memory.
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
bool isSafeToSpeculativelyExecuteWithVariableReplaced(const Instruction *I, bool IgnoreUBImplyingAttrs=true)
Don't use information from its non-constant operands.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI Value * getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI)
If this if a call to a free function, return the freed operand.
constexpr unsigned BitWidth
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI Constant * getLosslessInvCast(Constant *C, Type *InvCastTo, unsigned CastOp, const DataLayout &DL, PreservedCastFlags *Flags=nullptr)
Try to cast C to InvC losslessly, satisfying CastOp(InvC) equals C, or CastOp(InvC) is a refined valu...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
gep_type_iterator gep_type_begin(const User *GEP)
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
cl::opt< bool > ProfcheckDisableMetadataFixes("profcheck-disable-metadata-fixes", cl::Hidden, cl::init(false), cl::desc("Disable metadata propagation fixes discovered through Issue #147390"))
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI void initializeInstCombine(PassRegistry &)
Initialize all passes linked into the InstCombine library.
LLVM_ABI void findDbgUsers(Value *V, SmallVectorImpl< DbgVariableRecord * > &DbgVariableRecords)
Finds the debug info records describing a value.
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
bool isRefSet(const ModRefInfo MRI)
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static constexpr roundingMode rmNearestTiesToEven
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
A CRTP mix-in to automatically provide informational APIs needed for passes.
SimplifyQuery getWithInstruction(const Instruction *I) const