53#define DEBUG_TYPE "instsimplify"
101 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
102 if (CPred == Pred && CLHS ==
LHS && CRHS ==
RHS)
115 unsigned MaxRecurse,
Constant *TrueOrFalse) {
117 if (SimplifiedCmp ==
Cond) {
125 return SimplifiedCmp;
131 unsigned MaxRecurse) {
139 unsigned MaxRecurse) {
149 unsigned MaxRecurse) {
200 if (!
B ||
B->getOpcode() != OpcodeToExpand)
202 Value *B0 =
B->getOperand(0), *B1 =
B->getOperand(1);
213 if ((L == B0 && R == B1) ||
234 unsigned MaxRecurse) {
251 unsigned MaxRecurse) {
354 unsigned MaxRecurse) {
391 if (TV ==
SI->getTrueValue() && FV ==
SI->getFalseValue())
397 if ((FV && !TV) || (TV && !FV)) {
401 if (Simplified && Simplified->getOpcode() ==
unsigned(Opcode) &&
402 !Simplified->hasPoisonGeneratingFlags()) {
406 Value *UnsimplifiedBranch = FV ?
SI->getTrueValue() :
SI->getFalseValue();
407 Value *UnsimplifiedLHS =
SI ==
LHS ? UnsimplifiedBranch :
LHS;
408 Value *UnsimplifiedRHS =
SI ==
LHS ?
RHS : UnsimplifiedBranch;
409 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
410 Simplified->getOperand(1) == UnsimplifiedRHS)
412 if (Simplified->isCommutative() &&
413 Simplified->getOperand(1) == UnsimplifiedLHS &&
414 Simplified->getOperand(0) == UnsimplifiedRHS)
445 Value *TV =
SI->getTrueValue();
446 Value *FV =
SI->getFalseValue();
466 if (
Cond->getType()->isVectorTy() ==
RHS->getType()->isVectorTy())
478 unsigned MaxRecurse) {
498 Value *CommonValue =
nullptr;
511 if (!V || (CommonValue && V != CommonValue))
542 Value *CommonValue =
nullptr;
556 if (!V || (CommonValue && V != CommonValue))
572 case Instruction::FAdd:
573 case Instruction::FSub:
574 case Instruction::FMul:
575 case Instruction::FDiv:
576 case Instruction::FRem:
577 if (Q.
CxtI !=
nullptr)
661 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query,
RecursionLimit);
674 bool AllowNonInbounds =
false) {
675 assert(V->getType()->isPtrOrPtrVectorTy());
678 V = V->stripAndAccumulateConstantOffsets(
DL,
Offset, AllowNonInbounds);
681 return Offset.sextOrTrunc(
DL.getIndexTypeSizeInBits(V->getType()));
700 Constant *Res = ConstantInt::get(
LHS->getContext(), LHSOffset - RHSOffset);
716 std::optional<bool> Imp =
721 case Instruction::Sub:
722 case Instruction::Xor:
723 case Instruction::URem:
724 case Instruction::SRem:
727 case Instruction::SDiv:
728 case Instruction::UDiv:
729 return ConstantInt::get(Ty, 1);
731 case Instruction::And:
732 case Instruction::Or:
787 Value *
X =
nullptr, *
Y =
nullptr, *Z = Op1;
845 if (
X->getType() ==
Y->getType())
890 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
940 Instruction::Add, Q, MaxRecurse))
962 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
972 return (
C &&
C->isAllOnesValue());
978 unsigned MaxRecurse,
bool IsSigned) {
995 Type *Ty =
X->getType();
1001 Constant *PosDividendC = ConstantInt::get(Ty,
C->abs());
1002 Constant *NegDividendC = ConstantInt::get(Ty, -
C->abs());
1011 if (
C->isMinSignedValue())
1017 Constant *PosDivisorC = ConstantInt::get(Ty,
C->abs());
1018 Constant *NegDivisorC = ConstantInt::get(Ty, -
C->abs());
1044 unsigned MaxRecurse) {
1045 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
1046 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
1114 if (
isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1138 unsigned MaxRecurse) {
1161 (Opcode == Instruction::UDiv
1181 if ((Opcode == Instruction::SRem &&
1183 (Opcode == Instruction::URem &&
1191 if (Opcode == Instruction::SRem
1194 return C.srem(*C0).isZero();
1198 return C.urem(*C0).isZero();
1214 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1226 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1237 unsigned MaxRecurse) {
1248 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1258 unsigned MaxRecurse) {
1259 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1278 const APInt *AmountC;
1285 for (
unsigned I = 0,
1300 unsigned MaxRecurse) {
1350 assert(Opcode == Instruction::Shl &&
"Expected shl for nsw instruction");
1369 Value *Op1,
bool IsExact,
1388 if (Op0Known.
One[0])
1400 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse))
1424 if (IsNSW && IsNUW &&
1433 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
1455 const APInt *ShRAmt, *ShLAmt;
1458 *ShRAmt == *ShLAmt) {
1461 if (ShRAmt->
uge(EffWidthY))
1509 ICmpInst *UnsignedICmp,
bool IsAnd,
1523 if (
match(UnsignedICmp,
1541 return IsAnd ? UnsignedICmp : ZeroICmp;
1547 return IsAnd ? ZeroICmp : UnsignedICmp;
1553 if (
match(UnsignedICmp,
1557 return UnsignedICmp;
1560 return UnsignedICmp;
1567 else if (
match(UnsignedICmp,
1578 return IsAnd ? ZeroICmp : UnsignedICmp;
1584 return IsAnd ? UnsignedICmp : ZeroICmp;
1594 return IsAnd ? UnsignedICmp : ZeroICmp;
1599 return IsAnd ? ZeroICmp : UnsignedICmp;
1623 const APInt *C0, *C1;
1633 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1638 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1646 if (Range0.contains(Range1))
1647 return IsAnd ? Cmp1 : Cmp0;
1648 if (Range1.contains(Range0))
1649 return IsAnd ? Cmp0 : Cmp1;
1658 const APInt *C0, *C1;
1667 if (AddInst->getOperand(1) != Op1->
getOperand(1))
1674 const APInt Delta = *C1 - *C0;
1749 const APInt *C0, *C1;
1758 if (AddInst->getOperand(1) != Op1->
getOperand(1))
1765 const APInt Delta = *C1 - *C0;
1817 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
1818 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
1831 if ((
match(RHS0, AbsOrSelfLHS0) ||
match(RHS1, AbsOrSelfLHS0)) &&
1846 if ((
match(LHS0, AbsOrSelfRHS0) ||
match(LHS1, AbsOrSelfRHS0)) &&
1857 Value *Op1,
bool IsAnd) {
1861 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1862 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1863 Op0 = Cast0->getOperand(0);
1864 Op1 = Cast1->getOperand(0);
1895 bool AllowRefinement,
1897 unsigned MaxRecurse);
1901 unsigned MaxRecurse) {
1902 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1918 if (Res == Absorber)
1928 if (Res == Absorber)
1938 nullptr, MaxRecurse))
1939 return Simplify(Res);
1942 nullptr, MaxRecurse))
1943 return Simplify(Res);
1975 unsigned MaxRecurse) {
2009 const APInt *Shift1, *Shift2;
2013 Shift1->
uge(*Shift2))
2026 unsigned MaxRecurse) {
2066 (~(*Mask)).lshr(*ShAmt).isZero())
2072 (~(*Mask)).shl(*ShAmt).isZero())
2077 const APInt *PowerC;
2099 Instruction::Or, Q, MaxRecurse))
2104 Instruction::Xor, Q, MaxRecurse))
2149 if (EffWidthY <= ShftCnt) {
2182 if (*Implied ==
true)
2185 if (*Implied ==
false)
2210 assert(
X->getType() ==
Y->getType() &&
"Expected same type for 'or' ops");
2211 Type *Ty =
X->getType();
2301 unsigned MaxRecurse) {
2340 C->ule(
X->getType()->getScalarSizeInBits())) {
2395 Instruction::And, Q, MaxRecurse))
2416 const APInt *C1, *C2;
2452 if (std::optional<bool> Implied =
2455 if (*Implied ==
false)
2458 if (*Implied ==
true)
2461 if (std::optional<bool> Implied =
2464 if (*Implied ==
false)
2467 if (*Implied ==
true)
2485 unsigned MaxRecurse) {
2527 if (
Value *R = foldAndOrNot(Op0, Op1))
2529 if (
Value *R = foldAndOrNot(Op1, Op0))
2582 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2583 if (Pred == Cmp->getPredicate() &&
LHS == CmpLHS &&
RHS == CmpRHS)
2586 LHS == CmpRHS &&
RHS == CmpLHS)
2600 return AI->isStaticAlloca();
2602 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2603 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2604 !GV->isThreadLocal();
2606 return A->hasByValAttr();
2639 auto isByValArg = [](
const Value *V) {
2641 return A &&
A->hasByValAttr();
2685 assert(
LHS->getType() ==
RHS->getType() &&
"Must have same types");
2708 unsigned IndexSize =
DL.getIndexTypeSizeInBits(
LHS->getType());
2709 APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0);
2710 LHS =
LHS->stripAndAccumulateConstantOffsets(
DL, LHSOffset, AllowNonInbounds);
2711 RHS =
RHS->stripAndAccumulateConstantOffsets(
DL, RHSOffset, AllowNonInbounds);
2732 return I->getFunction();
2734 return A->getParent();
2740 APInt Dist = LHSOffset - RHSOffset;
2768 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2769 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2789 bool Captured =
false;
2797 unsigned OtherIdx = 1 - U->getOperandNo();
2807 CustomCaptureTracker Tracker;
2809 if (!Tracker.Captured)
2831 auto ExtractNotLHS = [](
Value *V) ->
Value * {
3023 *MulC != 0 &&
C->urem(*MulC) != 0) ||
3025 *MulC != 0 &&
C->srem(*MulC) != 0)))
3040 unsigned Depth = 0) {
3041 if (!Res.
insert(V).second)
3068 switch (
I->getOpcode()) {
3069 case Instruction::And:
3073 case Instruction::URem:
3074 case Instruction::UDiv:
3075 case Instruction::LShr:
3078 case Instruction::Call:
3100 for (
Value *GV : GreaterValues)
3109 unsigned MaxRecurse) {
3193 const APInt *C1, *C2;
3240 const APInt *C1, *C2;
3254 unsigned MaxRecurse) {
3257 if (MaxRecurse && (LBO || RBO)) {
3259 Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
3261 bool NoLHSWrapProblem =
false, NoRHSWrapProblem =
false;
3262 if (LBO && LBO->
getOpcode() == Instruction::Add) {
3272 if (RBO && RBO->
getOpcode() == Instruction::Add) {
3284 if ((
A ==
RHS ||
B ==
RHS) && NoLHSWrapProblem)
3291 if ((
C ==
LHS ||
D ==
LHS) && NoRHSWrapProblem)
3294 C ==
LHS ?
D :
C, Q, MaxRecurse - 1))
3298 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3300 if (
A &&
C && (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D) && CanSimplify) {
3307 }
else if (
A ==
D) {
3311 }
else if (
B ==
C) {
3339 if (
C->isStrictlyPositive()) {
3345 if (
C->isNonNegative()) {
3395 case Instruction::Shl: {
3411 case Instruction::And:
3412 case Instruction::Or: {
3413 const APInt *C1, *C2;
3443 case Instruction::UDiv:
3444 case Instruction::LShr:
3452 case Instruction::SDiv:
3460 case Instruction::AShr:
3467 case Instruction::Shl: {
3488 unsigned MaxRecurse) {
3650 (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D)) {
3659 (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D)) {
3700 switch (
II->getIntrinsicID()) {
3701 case Intrinsic::uadd_sat:
3711 case Intrinsic::usub_sat:
3734 return A->getRange();
3736 return CB->getRange();
3738 return std::nullopt;
3789 if (LhsCr->icmp(Pred, *RhsCr))
3814 if (RI->getOperand(0)->getType() == SrcTy)
3826 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3830 RI->getOperand(0), Q, MaxRecurse - 1))
3835 if (
SrcOp == RI->getOperand(0)) {
3852 assert(Trunc &&
"Constant-fold of ImmConstant should not fail");
3855 assert(RExt &&
"Constant-fold of ImmConstant should not fail");
3858 assert(AnyEq &&
"Constant-fold of ImmConstant should not fail");
3865 SrcOp, Trunc, Q, MaxRecurse - 1))
3906 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3914 if (
SrcOp == RI->getOperand(0)) {
3930 assert(Trunc &&
"Constant-fold of ImmConstant should not fail");
3933 assert(RExt &&
"Constant-fold of ImmConstant should not fail");
3936 assert(AnyEq &&
"Constant-fold of ImmConstant should not fail");
4024 if (std::optional<bool> Res =
4030 if (
LHS->getType()->isPointerTy())
4035 if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() &&
4039 CRHS->getPointerOperand(), Q))
4059 return ::simplifyICmpInst(Predicate, LHS, RHS, Q,
RecursionLimit);
4066 unsigned MaxRecurse) {
4125 std::optional<KnownFPClass> FullKnownClassLHS;
4129 auto computeLHSClass = [=, &FullKnownClassLHS](
FPClassTest InterestedFlags =
4131 if (FullKnownClassLHS)
4132 return *FullKnownClassLHS;
4145 FullKnownClassLHS = computeLHSClass();
4146 if ((FullKnownClassLHS->KnownFPClasses & ClassTest) ==
fcNone)
4148 if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) ==
fcNone)
4163 if (
C->isNegative() && !
C->isNegZero()) {
4222 return ConstantInt::get(RetTy, IsMaxNum);
4231 return ConstantInt::get(RetTy, !IsMaxNum);
4247 Interested |=
fcNan;
4291 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q,
RecursionLimit);
4297 bool AllowRefinement,
4299 unsigned MaxRecurse) {
4301 "If AllowRefinement=false then CanUseUndef=false");
4302 for (
const auto &OpAndRepOp :
Ops) {
4308 if (V == OpAndRepOp.first)
4309 return OpAndRepOp.second;
4332 for (
const auto &OpAndRepOp :
Ops) {
4335 if (OpAndRepOp.first->getType()->isVectorTy() &&
4342 bool AnyReplaced =
false;
4343 for (
Value *InstOp :
I->operands()) {
4345 InstOp,
Ops, Q, AllowRefinement, DropFlags, MaxRecurse)) {
4347 AnyReplaced = InstOp != NewInstOp;
4361 if (!AllowRefinement) {
4367 unsigned Opcode = BO->getOpcode();
4370 if (!BO->getType()->isFPOrFPVectorTy()) {
4379 if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4380 NewOps[0] == NewOps[1]) {
4383 if (PDI->isDisjoint()) {
4395 if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) &&
4396 NewOps[0] == NewOps[1] &&
4397 any_of(
Ops, [=](
const auto &Rep) {
return NewOps[0] == Rep.second; }))
4408 if ((NewOps[0] == Absorber || NewOps[1] == Absorber) &&
4410 [=](
const auto &Rep) {
return impliesPoison(BO, Rep.first); }))
4430 auto PreventSelfSimplify = [V](
Value *Simplified) {
4431 return Simplified != V ? Simplified :
nullptr;
4434 return PreventSelfSimplify(
4441 for (
Value *NewOp : NewOps) {
4457 if (!AllowRefinement) {
4461 II &&
II->getIntrinsicID() == Intrinsic::abs) {
4462 if (!ConstOps[0]->isNotMinSignedValue())
4469 if (DropFlags && Res &&
I->hasPoisonGeneratingAnnotations())
4480 bool AllowRefinement,
4482 unsigned MaxRecurse) {
4484 DropFlags, MaxRecurse);
4489 bool AllowRefinement,
4493 if (!AllowRefinement)
4496 return ::simplifyWithOpReplaced(V,
Op, RepOp, Q, AllowRefinement, DropFlags,
4503 const APInt *
Y,
bool TrueWhenUnset) {
4510 return TrueWhenUnset ? FalseVal : TrueVal;
4516 return TrueWhenUnset ? FalseVal : TrueVal;
4518 if (
Y->isPowerOf2()) {
4526 return TrueWhenUnset ? TrueVal : FalseVal;
4536 return TrueWhenUnset ? TrueVal : FalseVal;
4547 if (CmpRHS == TVal || CmpRHS == FVal) {
4553 if (CmpLHS == FVal) {
4560 Value *
X = CmpLHS, *
Y = CmpRHS;
4561 bool PeekedThroughSelectShuffle =
false;
4563 if (Shuf && Shuf->isSelect()) {
4564 if (Shuf->getOperand(0) ==
Y)
4565 FVal = Shuf->getOperand(1);
4566 else if (Shuf->getOperand(1) ==
Y)
4567 FVal = Shuf->getOperand(0);
4570 PeekedThroughSelectShuffle =
true;
4575 if (!MMI || TVal !=
X ||
4593 if (PeekedThroughSelectShuffle)
4629 ArrayRef<std::pair<Value *, Value *>> Replacements,
Value *TrueVal,
4631 Value *SimplifiedFalseVal =
4634 nullptr, MaxRecurse);
4635 if (!SimplifiedFalseVal)
4636 SimplifiedFalseVal = FalseVal;
4638 Value *SimplifiedTrueVal =
4641 nullptr, MaxRecurse);
4642 if (!SimplifiedTrueVal)
4643 SimplifiedTrueVal = TrueVal;
4645 if (SimplifiedFalseVal == SimplifiedTrueVal)
4656 unsigned MaxRecurse) {
4658 Value *CmpLHS, *CmpRHS;
4674 if (TrueVal->getType()->isIntOrIntVectorTy()) {
4682 X->getType()->getScalarSizeInBits());
4702 if (
match(TrueVal, isFsh) && FalseVal ==
X && CmpLHS == ShAmt)
4715 if (
match(FalseVal, isRotate) && TrueVal ==
X && CmpLHS == ShAmt &&
4737 FalseVal, Q, MaxRecurse))
4742 FalseVal, Q, MaxRecurse))
4752 {{
X, CmpRHS}, {
Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse))
4761 {{
X, CmpRHS}, {
Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse))
4773 unsigned MaxRecurse) {
4775 Value *CmpLHS, *CmpRHS;
4780 bool IsEquiv =
I->isEquivalence();
4781 if (
I->isEquivalence(
true)) {
4799 if (CmpLHS ==
F && CmpRHS ==
T)
4802 if (CmpLHS !=
T || CmpRHS !=
F)
4847 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
4848 "Select must have bool or bool vector condition");
4849 assert(TrueVal->getType() == FalseVal->getType() &&
4850 "Select must have same types for true/false ops");
4852 if (
Cond->getType() == TrueVal->getType()) {
4915 if (TrueVal == FalseVal)
4918 if (
Cond == TrueVal) {
4926 if (
Cond == FalseVal) {
4957 for (
unsigned i = 0; i != NumElts; ++i) {
4961 if (!TEltC || !FEltC)
4977 if (NewC.
size() == NumElts)
4993 return *Imp ? TrueVal : FalseVal;
5013 if (Indices.
empty())
5031 if (
Ptr->getType() == GEPTy &&
5045 bool IsScalableVec =
5046 SrcTy->isScalableTy() ||
any_of(Indices, [](
const Value *V) {
5050 if (Indices.
size() == 1) {
5052 if (!IsScalableVec && Ty->isSized()) {
5057 if (TyAllocSize == 0 &&
Ptr->getType() == GEPTy)
5064 auto CanSimplify = [GEPTy, &
P,
Ptr]() ->
bool {
5065 return P->getType() == GEPTy &&
5069 if (TyAllocSize == 1 &&
5080 TyAllocSize == 1ULL <<
C && CanSimplify())
5096 [](
Value *Idx) { return match(Idx, m_Zero()); })) {
5100 APInt BasePtrOffset(IdxWidth, 0);
5101 Value *StrippedBasePtr =
5102 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, BasePtrOffset);
5111 !BasePtrOffset.
isZero()) {
5112 auto *CI = ConstantInt::get(GEPTy->
getContext(), BasePtrOffset);
5118 !BasePtrOffset.
isOne()) {
5119 auto *CI = ConstantInt::get(GEPTy->
getContext(), BasePtrOffset - 1);
5161 if (EV->getAggregateOperand()->getType() == Agg->
getType() &&
5162 EV->getIndices() == Idxs) {
5168 return EV->getAggregateOperand();
5171 if (Agg == EV->getAggregateOperand())
5181 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q,
RecursionLimit);
5190 if (VecC && ValC && IdxC)
5211 if (VecC && ValC && VecC->getSplatValue() == ValC)
5231 unsigned NumIdxs = Idxs.
size();
5235 unsigned NumInsertValueIdxs = InsertValueIdxs.
size();
5236 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
5237 if (InsertValueIdxs.
slice(0, NumCommonIdxs) ==
5238 Idxs.
slice(0, NumCommonIdxs)) {
5239 if (NumIdxs == NumInsertValueIdxs)
5240 return IVI->getInsertedValueOperand();
5247 if (Idxs.
size() == 1 &&
5254 assert(Idxs[0] == 1 &&
"invalid index");
5288 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
5292 if (IdxC->getValue().ult(MinNumElts))
5303 if (IE && IE->getOperand(2) == Idx)
5304 return IE->getOperand(1);
5315 return ::simplifyExtractElementInst(Vec, Idx, Q,
RecursionLimit);
5327 Value *CommonValue =
nullptr;
5328 bool HasPoisonInput =
false;
5329 bool HasUndefInput =
false;
5335 HasPoisonInput =
true;
5340 HasUndefInput =
true;
5343 if (CommonValue &&
Incoming != CommonValue)
5354 if (HasPoisonInput || HasUndefInput) {
5362 if (HasUndefInput &&
5377 auto *Src = CI->getOperand(0);
5378 Type *SrcTy = Src->getType();
5379 Type *MidTy = CI->getType();
5381 if (Src->getType() == Ty) {
5382 auto FirstOp = CI->getOpcode();
5391 SrcIntPtrTy, MidIntPtrTy,
5392 DstIntPtrTy) == Instruction::BitCast)
5398 if (CastOpc == Instruction::BitCast)
5399 if (
Op->getType() == Ty)
5404 if (CastOpc == Instruction::PtrToInt &&
5422 int MaskVal,
Value *RootVec,
5423 unsigned MaxRecurse) {
5434 int RootElt = MaskVal;
5435 Value *SourceOp = Op0;
5436 if (MaskVal >= InVecNumElts) {
5437 RootElt = MaskVal - InVecNumElts;
5445 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
5446 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
5455 if (RootVec != SourceOp)
5460 if (RootElt != DestElt)
5469 unsigned MaxRecurse) {
5474 unsigned MaskNumElts = Mask.size();
5475 ElementCount InVecEltCount = InVecTy->getElementCount();
5480 Indices.
assign(Mask.begin(), Mask.end());
5485 bool MaskSelects0 =
false, MaskSelects1 =
false;
5487 for (
unsigned i = 0; i != MaskNumElts; ++i) {
5488 if (Indices[i] == -1)
5490 if ((
unsigned)Indices[i] < InVecNumElts)
5491 MaskSelects0 =
true;
5493 MaskSelects1 =
true;
5507 if (Op0Const && Op1Const)
5513 if (!Scalable && Op0Const && !Op1Const) {
5531 if (
all_of(Indices, [InsertIndex](
int MaskElt) {
5532 return MaskElt == InsertIndex || MaskElt == -1;
5538 for (
unsigned i = 0; i != MaskNumElts; ++i)
5539 if (Indices[i] == -1)
5567 Value *RootVec =
nullptr;
5568 for (
unsigned i = 0; i != MaskNumElts; ++i) {
5575 if (!RootVec || RootVec->
getType() != RetTy)
5585 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q,
RecursionLimit);
5618 Type *Ty = In->getType();
5620 unsigned NumElts = VecTy->getNumElements();
5622 for (
unsigned i = 0; i != NumElts; ++i) {
5623 Constant *EltC = In->getAggregateElement(i);
5628 else if (EltC && EltC->
isNaN())
5629 NewC[i] = ConstantFP::get(
5645 auto *
Splat = In->getSplatValue();
5647 "Found a scalable-vector NaN but not a splat");
5676 if (FMF.
noNaNs() && (IsNan || IsUndef))
5678 if (FMF.
noInfs() && (IsInf || IsUndef))
5893 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5900 return ::simplifyFAddInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5908 return ::simplifyFSubInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5916 return ::simplifyFMulInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5924 return ::simplifyFMAFMul(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5957 return ConstantFP::get(Op0->
getType(), 1.0);
5969 return ConstantFP::get(Op0->
getType(), -1.0);
5983 return ::simplifyFDivInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6021 return ::simplifyFRemInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6030 unsigned MaxRecurse) {
6032 case Instruction::FNeg:
6044 unsigned MaxRecurse) {
6046 case Instruction::FNeg:
6067 case Instruction::Add:
6070 case Instruction::Sub:
6073 case Instruction::Mul:
6076 case Instruction::SDiv:
6078 case Instruction::UDiv:
6080 case Instruction::SRem:
6082 case Instruction::URem:
6084 case Instruction::Shl:
6087 case Instruction::LShr:
6089 case Instruction::AShr:
6091 case Instruction::And:
6093 case Instruction::Or:
6095 case Instruction::Xor:
6097 case Instruction::FAdd:
6099 case Instruction::FSub:
6101 case Instruction::FMul:
6103 case Instruction::FDiv:
6105 case Instruction::FRem:
6117 unsigned MaxRecurse) {
6119 case Instruction::FAdd:
6121 case Instruction::FSub:
6123 case Instruction::FMul:
6125 case Instruction::FDiv:
6139 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q,
RecursionLimit);
6152 return ::simplifyCmpInst(Predicate, LHS, RHS, Q,
RecursionLimit);
6161 case Intrinsic::fabs:
6162 case Intrinsic::floor:
6163 case Intrinsic::ceil:
6164 case Intrinsic::trunc:
6165 case Intrinsic::rint:
6166 case Intrinsic::nearbyint:
6167 case Intrinsic::round:
6168 case Intrinsic::roundeven:
6169 case Intrinsic::canonicalize:
6170 case Intrinsic::arithmetic_fence:
6182 case Intrinsic::floor:
6183 case Intrinsic::ceil:
6184 case Intrinsic::trunc:
6185 case Intrinsic::rint:
6186 case Intrinsic::nearbyint:
6187 case Intrinsic::round:
6188 case Intrinsic::roundeven:
6203 if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64)
6207 DL.getIndexTypeSizeInBits(
Ptr->getType()));
6208 if (OffsetInt.
srem(4) != 0)
6220 if (LoadedCE->getOpcode() == Instruction::Trunc) {
6226 if (LoadedCE->getOpcode() != Instruction::Sub)
6230 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
6232 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
6236 APInt LoadedRHSOffset;
6239 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
6242 return LoadedLHSPtr;
6273 if (
C && (
C->isZero() ||
C->isInfinity()))
6282 if (
C &&
C->isNaN())
6283 return ConstantFP::get(Op0->
getType(),
C->makeQuiet());
6302 if (
II->getIntrinsicID() == IID)
6319 case Intrinsic::fabs:
6323 case Intrinsic::bswap:
6328 case Intrinsic::bitreverse:
6333 case Intrinsic::ctpop: {
6336 return ConstantInt::get(Op0->
getType(), 1);
6345 case Intrinsic::exp:
6347 if (
Call->hasAllowReassoc() &&
6351 case Intrinsic::exp2:
6353 if (
Call->hasAllowReassoc() &&
6357 case Intrinsic::exp10:
6359 if (
Call->hasAllowReassoc() &&
6363 case Intrinsic::log:
6365 if (
Call->hasAllowReassoc() &&
6369 case Intrinsic::log2:
6371 if (
Call->hasAllowReassoc() &&
6377 case Intrinsic::log10:
6380 if (
Call->hasAllowReassoc() &&
6386 case Intrinsic::vector_reverse:
6414 if (Op1 ==
X || Op1 ==
Y ||
6431 assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum ||
6432 IID == Intrinsic::maximum || IID == Intrinsic::minimum) &&
6433 "Unsupported intrinsic");
6439 if (!
M0 ||
M0->getIntrinsicID() != IID)
6441 Value *X0 =
M0->getOperand(0);
6442 Value *Y0 =
M0->getOperand(1);
6449 if (X0 == Op1 || Y0 == Op1)
6455 Value *X1 =
M1->getOperand(0);
6456 Value *Y1 =
M1->getOperand(1);
6464 if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1))
6475 unsigned BitWidth = ReturnType->getScalarSizeInBits();
6477 case Intrinsic::abs:
6485 case Intrinsic::cttz: {
6491 case Intrinsic::ctlz: {
6499 case Intrinsic::ptrmask: {
6507 "Invalid mask width");
6524 APInt IrrelevantPtrBits =
6527 Instruction::Or,
C, ConstantInt::get(
C->getType(), IrrelevantPtrBits),
6529 if (
C !=
nullptr &&
C->isAllOnesValue())
6534 case Intrinsic::smax:
6535 case Intrinsic::smin:
6536 case Intrinsic::umax:
6537 case Intrinsic::umin: {
6548 return ConstantInt::get(
6556 return ConstantInt::get(ReturnType, *
C);
6568 if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
6570 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
6571 const APInt *InnerC;
6594 case Intrinsic::scmp:
6595 case Intrinsic::ucmp: {
6604 return ConstantInt::get(ReturnType, 1);
6613 case Intrinsic::usub_with_overflow:
6614 case Intrinsic::ssub_with_overflow:
6621 case Intrinsic::uadd_with_overflow:
6622 case Intrinsic::sadd_with_overflow:
6632 case Intrinsic::umul_with_overflow:
6633 case Intrinsic::smul_with_overflow:
6643 case Intrinsic::uadd_sat:
6649 case Intrinsic::sadd_sat:
6664 case Intrinsic::usub_sat:
6669 case Intrinsic::ssub_sat:
6677 case Intrinsic::load_relative:
6682 case Intrinsic::powi:
6685 if (Power->isZero())
6686 return ConstantFP::get(Op0->
getType(), 1.0);
6692 case Intrinsic::ldexp:
6694 case Intrinsic::copysign:
6704 case Intrinsic::is_fpclass: {
6708 return ConstantInt::get(ReturnType,
true);
6710 return ConstantInt::get(ReturnType,
false);
6715 case Intrinsic::maxnum:
6716 case Intrinsic::minnum:
6717 case Intrinsic::maximum:
6718 case Intrinsic::minimum: {
6731 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
6732 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
6745 (
C->isInfinity() || (
Call &&
Call->hasNoInfs() &&
C->isLargest()))) {
6750 if (
C->isNegative() == IsMin &&
6751 (!PropagateNaN || (
Call &&
Call->hasNoNaNs())))
6752 return ConstantFP::get(ReturnType, *
C);
6758 if (
C->isNegative() != IsMin &&
6759 (PropagateNaN || (
Call &&
Call->hasNoNaNs())))
6772 case Intrinsic::vector_extract: {
6778 IdxN == 0 &&
X->getType() == ReturnType)
6795 unsigned NumOperands = Args.size();
6806 case Intrinsic::vscale: {
6807 Type *RetTy =
F->getReturnType();
6810 return ConstantInt::get(RetTy,
C->getZExtValue());
6818 if (NumOperands == 1)
6821 if (NumOperands == 2)
6827 case Intrinsic::masked_load:
6828 case Intrinsic::masked_gather: {
6829 Value *MaskArg = Args[2];
6830 Value *PassthruArg = Args[3];
6836 case Intrinsic::fshl:
6837 case Intrinsic::fshr: {
6838 Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2];
6846 return Args[IID == Intrinsic::fshl ? 0 : 1];
6848 const APInt *ShAmtC;
6853 return Args[IID == Intrinsic::fshl ? 0 : 1];
6866 case Intrinsic::experimental_constrained_fma: {
6869 *FPI->getRoundingMode()))
6873 case Intrinsic::fma:
6874 case Intrinsic::fmuladd: {
6880 case Intrinsic::smul_fix:
6881 case Intrinsic::smul_fix_sat: {
6882 Value *Op0 = Args[0];
6883 Value *Op1 = Args[1];
6884 Value *Op2 = Args[2];
6885 Type *ReturnType =
F->getReturnType();
6910 case Intrinsic::vector_insert: {
6911 Value *Vec = Args[0];
6912 Value *SubVec = Args[1];
6913 Value *Idx = Args[2];
6914 Type *ReturnType =
F->getReturnType();
6923 X->getType() == ReturnType)
6928 case Intrinsic::experimental_constrained_fadd: {
6931 *FPI->getExceptionBehavior(),
6932 *FPI->getRoundingMode());
6934 case Intrinsic::experimental_constrained_fsub: {
6937 *FPI->getExceptionBehavior(),
6938 *FPI->getRoundingMode());
6940 case Intrinsic::experimental_constrained_fmul: {
6943 *FPI->getExceptionBehavior(),
6944 *FPI->getRoundingMode());
6946 case Intrinsic::experimental_constrained_fdiv: {
6949 *FPI->getExceptionBehavior(),
6950 *FPI->getRoundingMode());
6952 case Intrinsic::experimental_constrained_frem: {
6955 *FPI->getExceptionBehavior(),
6956 *FPI->getRoundingMode());
6958 case Intrinsic::experimental_constrained_ldexp:
6960 case Intrinsic::experimental_gc_relocate: {
6981 case Intrinsic::experimental_vp_reverse: {
7011 ConstantArgs.
reserve(Args.size());
7012 for (
Value *Arg : Args) {
7032 if (
Call->isMustTailCall())
7044 if (
F &&
F->isIntrinsic())
7071 return ::simplifyFreezeInst(Op0, Q);
7085 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
7116 unsigned MaxRecurse) {
7117 assert(
I->getFunction() &&
"instruction should be inserted in a function");
7119 "context instruction should be in the same function");
7123 switch (
I->getOpcode()) {
7128 [](
Value *V) { return cast<Constant>(V); });
7132 case Instruction::FNeg:
7134 case Instruction::FAdd:
7137 case Instruction::Add:
7141 case Instruction::FSub:
7144 case Instruction::Sub:
7148 case Instruction::FMul:
7151 case Instruction::Mul:
7155 case Instruction::SDiv:
7159 case Instruction::UDiv:
7163 case Instruction::FDiv:
7166 case Instruction::SRem:
7168 case Instruction::URem:
7170 case Instruction::FRem:
7173 case Instruction::Shl:
7177 case Instruction::LShr:
7181 case Instruction::AShr:
7185 case Instruction::And:
7187 case Instruction::Or:
7189 case Instruction::Xor:
7191 case Instruction::ICmp:
7193 NewOps[1], Q, MaxRecurse);
7194 case Instruction::FCmp:
7196 NewOps[1],
I->getFastMathFlags(), Q, MaxRecurse);
7197 case Instruction::Select:
7199 case Instruction::GetElementPtr: {
7202 ArrayRef(NewOps).slice(1), GEPI->getNoWrapFlags(), Q,
7205 case Instruction::InsertValue: {
7210 case Instruction::InsertElement:
7212 case Instruction::ExtractValue: {
7217 case Instruction::ExtractElement:
7219 case Instruction::ShuffleVector: {
7222 SVI->getShuffleMask(), SVI->getType(), Q,
7225 case Instruction::PHI:
7227 case Instruction::Call:
7231 case Instruction::Freeze:
7233#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
7234#include "llvm/IR/Instruction.def"
7235#undef HANDLE_CAST_INST
7238 case Instruction::Alloca:
7241 case Instruction::Load:
7250 "Number of operands should match the instruction!");
7251 return ::simplifyInstructionWithOperands(
I, NewOps, SQ,
RecursionLimit);
7281 bool Simplified =
false;
7288 for (
User *U :
I->users())
7293 I->replaceAllUsesWith(SimpleV);
7295 if (!
I->isEHPad() && !
I->isTerminator() && !
I->mayHaveSideEffects())
7296 I->eraseFromParent();
7302 for (
unsigned Idx = 0; Idx != Worklist.
size(); ++Idx) {
7308 if (UnsimplifiedUsers)
7309 UnsimplifiedUsers->insert(
I);
7318 for (
User *U :
I->users())
7322 I->replaceAllUsesWith(SimpleV);
7324 if (!
I->isEHPad() && !
I->isTerminator() && !
I->mayHaveSideEffects())
7325 I->eraseFromParent();
7334 assert(
I != SimpleV &&
"replaceAndRecursivelySimplify(X,X) is not valid!");
7335 assert(SimpleV &&
"Must provide a simplified value.");
7343 auto *DT = DTWP ? &DTWP->
getDomTree() :
nullptr;
7345 auto *TLI = TLIWP ? &TLIWP->
getTLI(
F) :
nullptr;
7348 return {
F.getDataLayout(), TLI, DT, AC};
7356template <
class T,
class... TArgs>
7359 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(
F);
7360 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(
F);
7361 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(
F);
7362 return {
F.getDataLayout(), TLI, DT, AC};
7376void InstSimplifyFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Value * simplifyCmpSelFalseCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
Simplify comparison with false branch of select.
static Value * simplifyCmpSelCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse, Constant *TrueOrFalse)
Simplify comparison with true or false branch of select: sel = select i1 cond, i32 tv,...
static Value * foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1)
Given a min/max intrinsic, see if it can be removed based on having an operand that is another min/ma...
static Value * expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, Value *R, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify binops of form "A op (B op' C)" or the commuted variant by distributing op over op'.
static Constant * foldOrCommuteConstant(Instruction::BinaryOps Opcode, Value *&Op0, Value *&Op1, const SimplifyQuery &Q)
static bool haveNonOverlappingStorage(const Value *V1, const Value *V2)
Return true if V1 and V2 are each the base of some distict storage region [V, object_size(V)] which d...
static Constant * foldConstant(Instruction::UnaryOps Opcode, Value *&Op, const SimplifyQuery &Q)
static Value * handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
We know comparison with both branches of select can be simplified, but they are not equal.
static Value * threadCmpOverPHI(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a comparison with a PHI instruction, try to simplify the comparison by seeing whether ...
static Constant * propagateNaN(Constant *In)
Try to propagate existing NaN values when possible.
static Value * simplifyICmpOfBools(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Fold an icmp when its operands have i1 scalar type.
static Value * simplifyICmpWithBinOpOnLHS(CmpPredicate Pred, BinaryOperator *LBO, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
static void getUnsignedMonotonicValues(SmallPtrSetImpl< Value * > &Res, Value *V, MonotonicType Type, const SimplifyQuery &Q, unsigned Depth=0)
Get values V_i such that V uge V_i (GreaterEq) or V ule V_i (LowerEq).
static Value * simplifyRelativeLoad(Constant *Ptr, Constant *Offset, const DataLayout &DL)
static Value * simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
These are simplifications common to SDiv and UDiv.
static Value * simplifyPHINode(PHINode *PN, ArrayRef< Value * > IncomingValues, const SimplifyQuery &Q)
See if we can fold the given phi. If not, returns null.
static bool isSameCompare(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS)
isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
static Value * simplifyAndCommutative(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
static bool isIdempotent(Intrinsic::ID ID)
static std::optional< ConstantRange > getRange(Value *V, const InstrInfoQuery &IIQ)
Helper method to get range from metadata or attribute.
static Value * simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd)
Try to simplify and/or of icmp with ctpop intrinsic.
static Value * simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, ICmpInst *UnsignedICmp, bool IsAnd, const SimplifyQuery &Q)
Commuted variants are assumed to be handled by calling this function again with the parameters swappe...
static Value * tryConstantFoldCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
static Value * simplifyWithOpsReplaced(Value *V, ArrayRef< std::pair< Value *, Value * > > Ops, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags, unsigned MaxRecurse)
static Value * simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ)
static Value * simplifyICmpWithMinMax(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
simplify integer comparisons where at least one operand of the compare matches an integer min/max idi...
static Value * simplifyCmpSelTrueCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
Simplify comparison with true branch of select.
static Value * simplifyIntrinsic(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
static Value * simplifyICmpUsingMonotonicValues(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q)
Returns true if a shift by Amount always yields poison.
static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, bool AllowNonInbounds=false)
Compute the base pointer and cumulative constant offsets for V.
static Value * simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an LShr or AShr, see if we can fold the result.
static Value * simplifyICmpWithIntrinsicOnLHS(CmpPredicate Pred, Value *LHS, Value *RHS)
static Value * simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Test if there is a dominating equivalence condition for the two operands.
static Value * simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, const SimplifyQuery &, unsigned)
Given the operand for a UnaryOperator, see if we can fold the result.
static Value * simplifyICmpWithBinOp(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
TODO: A large part of this logic is duplicated in InstCombine's foldICmpBinOp().
static Value * simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q)
static Value * expandBinOp(Instruction::BinaryOps Opcode, Value *V, Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a binary operator of form "V op OtherOp" where V is "(B0 opex B1)" by distributing 'o...
static Value * simplifyICmpWithZero(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Try hard to fold icmp with zero RHS because this is a common case.
static Value * simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is a floating-point comparison.
static Constant * getFalse(Type *Ty)
For a boolean type or a vector of boolean type, return false or a vector with every element false.
static Value * simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Check for common or similar folds of integer division or integer remainder.
static bool removesFPFraction(Intrinsic::ID ID)
Return true if the intrinsic rounds a floating-point value to an integral floating-point value (not a...
static Value * simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ)
static Value * simplifySelectWithEquivalence(ArrayRef< std::pair< Value *, Value * > > Replacements, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is an integer equality or floating-po...
static bool trySimplifyICmpWithAdds(CmpPredicate Pred, Value *LHS, Value *RHS, const InstrInfoQuery &IIQ)
static Value * simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, const APInt *Y, bool TrueWhenUnset)
Try to simplify a select instruction when its condition operand is an integer comparison where one op...
static Value * simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Generic simplifications for associative binary operations.
static Value * threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a binary operation with an operand that is a PHI instruction, try to simplify the bino...
static Value * simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, CmpPredicate Pred, Value *TVal, Value *FVal)
static Constant * simplifyFPOp(ArrayRef< Value * > Ops, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior, RoundingMode Rounding)
Perform folds that are common to any floating-point operation.
static Value * threadCmpOverSelect(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a comparison with a select instruction, try to simplify the comparison by seeing wheth...
static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Implementation of recursive simplification through an instruction's uses.
static bool isAllocDisjoint(const Value *V)
Return true if the underlying object (storage) must be disjoint from storage returned by any noalias ...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, unsigned MaxRecurse, bool IsSigned)
Return true if we can simplify X / Y to 0.
static Value * simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q, bool IsStrict)
static Value * simplifyLogicOfAddSub(Value *Op0, Value *Op1, Instruction::BinaryOps Opcode)
Given a bitwise logic op, check if the operands are add/sub with a common source value and inverted c...
static Value * simplifySelectWithBitTest(Value *CondVal, Value *TrueVal, Value *FalseVal)
An alternative way to test if a bit is set or not.
static Value * simplifyOrLogic(Value *X, Value *Y)
static Type * getCompareTy(Value *Op)
static Value * simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q)
static bool isICmpTrue(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Given a predicate and two operands, return true if the comparison is true.
static Value * foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, int MaskVal, Value *RootVec, unsigned MaxRecurse)
For the given destination element of a shuffle, peek through shuffles to match a root vector source o...
static Value * simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, FCmpInst *RHS, bool IsAnd)
static Value * simplifyICmpWithConstant(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * extractEquivalentCondition(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS)
Rummage around inside V looking for something equivalent to the comparison "LHS Pred RHS".
static Value * simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, Value *Op1, bool IsAnd)
static Value * threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a binary operation with a select instruction as an operand, try to simplify the binop ...
static Constant * computePointerDifference(const DataLayout &DL, Value *LHS, Value *RHS)
Compute the constant difference between two pointer values.
static Value * simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd)
Test if a pair of compares with a shared operand and 2 constants has an empty set intersection,...
static Value * simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
static Value * simplifyICmpWithDominatingAssume(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsNSW, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an Shl, LShr or AShr, see if we can fold the result.
static Constant * computePointerICmp(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
These are simplifications common to SRem and URem.
static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT)
Does the given value dominate the specified phi node?
static Value * simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is an integer comparison.
static Value * foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1)
Given a min/max intrinsic, see if it can be removed based on having an operand that is another min/ma...
static Value * simplifyUnaryIntrinsic(Function *F, Value *Op0, const SimplifyQuery &Q, const CallBase *Call)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This header provides classes for managing per-loop analyses.
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static const uint32_t IV[8]
Class for arbitrary precision integers.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
bool getBoolValue() const
Convert APInt to a boolean value.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isMask(unsigned numBits) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isOne() const
Determine if this is a value of 1.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
an instruction to allocate memory on the stack
A container for analyses that lazily runs them and caches their results.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
size_t size() const
size - Get the array size.
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
An immutable pass that tracks lazily created AssumptionCache objects.
AssumptionCache & getAssumptionCache(Function &F)
Get the cached assumptions for a function.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine how a pair of casts can be eliminated, if they can be at all.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
static Constant * getNegativeZero(Type *Ty)
static LLVM_ABI Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
This class represents a range of values.
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool isEmptySet() const
Return true if this set contains no members.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange inverse() const
Return a new range that is the logical not of the current set.
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI bool isNaN() const
Return true if this is a floating-point NaN constant or a vector floating-point constant with all NaN...
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSizeInBits(unsigned AS=0) const
The size in bits of the pointer representation in a given address space.
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
unsigned getIndexSizeInBits(unsigned AS) const
The size in bits of indices used for address calculation in getelementptr and for addresses in the gi...
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Legacy analysis pass which computes a DominatorTree.
DominatorTree & getDomTree()
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
bool allowReassoc() const
Flag queries.
Represents calls to the gc.relocate intrinsic.
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
Represents flags for the getelementptr instruction/expression.
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
This instruction compares its operands according to the predicate given to the constructor.
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
An instruction for reading from memory.
bool isVolatile() const
Return true if this is a load from a volatile memory location.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Pass interface - Implemented by all 'passes'.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a cast from a pointer to an integer.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
TargetLibraryInfo & getTLI(const Function &F)
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cstfp_pred_ty< is_inf > m_Inf()
Match a positive or negative infinity FP constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< cstfp_pred_ty< is_any_zero_fp >, RHS, Instruction::FSub > m_FNegNSZ(const RHS &X)
Match 'fneg X' as 'fsub +-0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_Sqrt(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
cstfp_pred_ty< is_nan > m_NaN()
Match an arbitrary NaN constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
ExceptionBehavior
Exception behavior used for floating point operations.
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * simplifySDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for an SDiv, fold the result or return null.
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
LLVM_ABI Value * simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q)
Given operand for a UnaryOperator, fold the result or return null.
bool isDefaultFPEnvironment(fp::ExceptionBehavior EB, RoundingMode RM)
Returns true if the exception handling behavior and rounding mode match what is used in the default f...
LLVM_ABI Value * simplifyMulInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Mul, fold the result or return null.
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
bool canRoundingModeBe(RoundingMode RM, RoundingMode QRM)
Returns true if the rounding mode RM may be QRM at compile time or at run time.
LLVM_ABI bool isNoAliasCall(const Value *V)
Return true if this pointer is returned by a noalias function.
LLVM_ABI Value * simplifyFCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FCmpInst, fold the result or return null.
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
LLVM_ABI Value * simplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef< int > Mask, Type *RetTy, const SimplifyQuery &Q)
Given operands for a ShuffleVectorInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
LLVM_ABI Value * simplifyOrInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Or, fold the result or return null.
LLVM_ABI Value * simplifyXorInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Xor, fold the result or return null.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
LLVM_ABI Value * simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, const SimplifyQuery &Q)
Given operands for a CastInst, fold the result or return null.
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
unsigned M1(unsigned Val)
LLVM_ABI Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, const TargetLibraryInfo *TLI, ObjectSizeOpts Opts={})
Compute the size of the object pointed by Ptr.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
LLVM_ABI bool replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI=nullptr, const DominatorTree *DT=nullptr, AssumptionCache *AC=nullptr, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Replace all uses of 'I' with 'SimpleV' and simplify the uses recursively.
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
SelectPatternFlavor
Specific patterns of select instructions we can match.
LLVM_ABI Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
LLVM_ABI Value * simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q)
Given operand for an FNeg, fold the result or return null.
LLVM_ABI Value * simplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FSub, fold the result or return null.
LLVM_ABI bool canReplacePointersIfEqual(const Value *From, const Value *To, const DataLayout &DL)
Returns true if a pointer value From can be replaced with another pointer value \To if they are deeme...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI Value * simplifyFRemInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FRem, fold the result or return null.
LLVM_ABI Value * simplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FAdd, fold the result or return null.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI Value * simplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an InsertValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI Value * simplifyFDivInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FDiv, fold the result or return null.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Value * simplifyLoadInst(LoadInst *LI, Value *PtrOp, const SimplifyQuery &Q)
Given a load instruction and its pointer operand, fold the result or return null.
LLVM_ABI Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
std::optional< DecomposedBitTest > decomposeBitTest(Value *Cond, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
LLVM_ABI Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
LLVM_ABI Value * simplifyUDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for a UDiv, fold the result or return null.
DWARFExpression::Operation Op
LLVM_ABI bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, unsigned MaxUsesToExplore=0)
PointerMayBeCaptured - Return true if this pointer value may be captured by the enclosing function (w...
LLVM_ABI Value * simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType, Value *Op0, Value *Op1, const SimplifyQuery &Q, const CallBase *Call)
Given operands for a BinaryIntrinsic, fold the result or return null.
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ TowardNegative
roundTowardNegative.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
unsigned M0(unsigned Val)
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI Value * simplifyInsertElementInst(Value *Vec, Value *Elt, Value *Idx, const SimplifyQuery &Q)
Given operands for an InsertElement, fold the result or return null.
constexpr unsigned BitWidth
LLVM_ABI Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * simplifySRemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an SRem, fold the result or return null.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI const SimplifyQuery getBestSimplifyQuery(Pass &, Function &)
std::pair< Value *, FPClassTest > fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF)
Returns true if the possibility of a signaling NaN can be safely ignored.
LLVM_ABI Value * simplifyURemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a URem, fold the result or return null.
LLVM_ABI Value * simplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q)
Given operands for an ExtractElementInst, fold the result or return null.
LLVM_ABI Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This callback is used in conjunction with PointerMayBeCaptured.
virtual Action captured(const Use *U, UseCaptureInfo CI)=0
Use U directly captures CI.UseCC and additionally CI.ResultCC through the return value of the user of...
virtual void tooManyUses()=0
tooManyUses - The depth of traversal has breached a limit.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
bool hasConflict() const
Returns true if there is conflicting information.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
bool isKnownAlwaysNaN() const
Return true if it's known this must always be a nan.
static constexpr FPClassTest OrderedLessThanZeroMask
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
Various options to control the behavior of getObjectSize.
bool NullIsUnknownSize
If this is true, null pointers in address space 0 will be treated as though they can't be evaluated.
Mode EvalMode
How we want to evaluate this object's size.
@ Min
Evaluate all branches of an unknown condition.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
bool CanUseUndef
Controls whether simplifications are allowed to constrain the range of possible values for uses of un...
SimplifyQuery getWithInstruction(const Instruction *I) const
LLVM_ABI bool isUndefValue(Value *V) const
If CanUseUndef is true, returns whether V is undef.
const TargetLibraryInfo * TLI
SimplifyQuery getWithoutUndef() const
Capture information for a specific Use.