54#define DEBUG_TYPE "instsimplify"
102 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
103 if (CPred == Pred && CLHS ==
LHS && CRHS ==
RHS)
116 unsigned MaxRecurse,
Constant *TrueOrFalse) {
118 if (SimplifiedCmp ==
Cond) {
126 return SimplifiedCmp;
132 unsigned MaxRecurse) {
140 unsigned MaxRecurse) {
150 unsigned MaxRecurse) {
201 if (!
B ||
B->getOpcode() != OpcodeToExpand)
203 Value *B0 =
B->getOperand(0), *B1 =
B->getOperand(1);
214 if ((L == B0 && R == B1) ||
235 unsigned MaxRecurse) {
252 unsigned MaxRecurse) {
355 unsigned MaxRecurse) {
392 if (TV ==
SI->getTrueValue() && FV ==
SI->getFalseValue())
398 if ((FV && !TV) || (TV && !FV)) {
402 if (Simplified && Simplified->getOpcode() ==
unsigned(Opcode) &&
403 !Simplified->hasPoisonGeneratingFlags()) {
407 Value *UnsimplifiedBranch = FV ?
SI->getTrueValue() :
SI->getFalseValue();
408 Value *UnsimplifiedLHS =
SI ==
LHS ? UnsimplifiedBranch :
LHS;
409 Value *UnsimplifiedRHS =
SI ==
LHS ?
RHS : UnsimplifiedBranch;
410 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
411 Simplified->getOperand(1) == UnsimplifiedRHS)
413 if (Simplified->isCommutative() &&
414 Simplified->getOperand(1) == UnsimplifiedLHS &&
415 Simplified->getOperand(0) == UnsimplifiedRHS)
446 Value *TV =
SI->getTrueValue();
447 Value *FV =
SI->getFalseValue();
467 if (
Cond->getType()->isVectorTy() ==
RHS->getType()->isVectorTy())
479 unsigned MaxRecurse) {
499 Value *CommonValue =
nullptr;
512 if (!V || (CommonValue && V != CommonValue))
543 Value *CommonValue =
nullptr;
557 if (!V || (CommonValue && V != CommonValue))
573 case Instruction::FAdd:
574 case Instruction::FSub:
575 case Instruction::FMul:
576 case Instruction::FDiv:
577 case Instruction::FRem:
578 if (Q.
CxtI !=
nullptr)
662 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query,
RecursionLimit);
675 bool AllowNonInbounds =
false) {
676 assert(V->getType()->isPtrOrPtrVectorTy());
679 V = V->stripAndAccumulateConstantOffsets(
DL,
Offset, AllowNonInbounds);
682 return Offset.sextOrTrunc(
DL.getIndexTypeSizeInBits(V->getType()));
701 Constant *Res = ConstantInt::get(
LHS->getContext(), LHSOffset - RHSOffset);
717 std::optional<bool> Imp =
722 case Instruction::Sub:
723 case Instruction::Xor:
724 case Instruction::URem:
725 case Instruction::SRem:
728 case Instruction::SDiv:
729 case Instruction::UDiv:
730 return ConstantInt::get(Ty, 1);
732 case Instruction::And:
733 case Instruction::Or:
788 Value *
X =
nullptr, *
Y =
nullptr, *Z = Op1;
846 if (
X->getType() ==
Y->getType())
891 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
941 Instruction::Add, Q, MaxRecurse))
963 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
973 return (
C &&
C->isAllOnesValue());
979 unsigned MaxRecurse,
bool IsSigned) {
996 Type *Ty =
X->getType();
1002 Constant *PosDividendC = ConstantInt::get(Ty,
C->abs());
1003 Constant *NegDividendC = ConstantInt::get(Ty, -
C->abs());
1012 if (
C->isMinSignedValue())
1018 Constant *PosDivisorC = ConstantInt::get(Ty,
C->abs());
1019 Constant *NegDivisorC = ConstantInt::get(Ty, -
C->abs());
1045 unsigned MaxRecurse) {
1046 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
1047 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
1115 if (
isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1139 unsigned MaxRecurse) {
1162 (Opcode == Instruction::UDiv
1182 if ((Opcode == Instruction::SRem &&
1184 (Opcode == Instruction::URem &&
1192 if (Opcode == Instruction::SRem
1195 return C.srem(*C0).isZero();
1199 return C.urem(*C0).isZero();
1215 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1227 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1238 unsigned MaxRecurse) {
1249 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1259 unsigned MaxRecurse) {
1260 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1279 const APInt *AmountC;
1286 for (
unsigned I = 0,
1301 unsigned MaxRecurse) {
1351 assert(Opcode == Instruction::Shl &&
"Expected shl for nsw instruction");
1370 Value *Op1,
bool IsExact,
1389 if (Op0Known.
One[0])
1401 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse))
1425 if (IsNSW && IsNUW &&
1434 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q,
RecursionLimit);
1456 const APInt *ShRAmt, *ShLAmt;
1459 *ShRAmt == *ShLAmt) {
1462 if (ShRAmt->
uge(EffWidthY))
1510 ICmpInst *UnsignedICmp,
bool IsAnd,
1524 if (
match(UnsignedICmp,
1542 return IsAnd ? UnsignedICmp : ZeroICmp;
1548 return IsAnd ? ZeroICmp : UnsignedICmp;
1554 if (
match(UnsignedICmp,
1558 return UnsignedICmp;
1561 return UnsignedICmp;
1568 else if (
match(UnsignedICmp,
1579 return IsAnd ? ZeroICmp : UnsignedICmp;
1585 return IsAnd ? UnsignedICmp : ZeroICmp;
1595 return IsAnd ? UnsignedICmp : ZeroICmp;
1600 return IsAnd ? ZeroICmp : UnsignedICmp;
1624 const APInt *C0, *C1;
1634 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1639 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1647 if (Range0.contains(Range1))
1648 return IsAnd ? Cmp1 : Cmp0;
1649 if (Range1.contains(Range0))
1650 return IsAnd ? Cmp0 : Cmp1;
1659 const APInt *C0, *C1;
1668 if (AddInst->getOperand(1) != Op1->
getOperand(1))
1675 const APInt Delta = *C1 - *C0;
1750 const APInt *C0, *C1;
1759 if (AddInst->getOperand(1) != Op1->
getOperand(1))
1766 const APInt Delta = *C1 - *C0;
1835 if (!Range0 || !Range1)
1840 if (Range0->intersectWith(*Range1).isEmptySet())
1848 if (Range0->contains(*Range1))
1850 if (Range1->contains(*Range0))
1858 Value *LHS0 =
LHS->getOperand(0), *LHS1 =
LHS->getOperand(1);
1859 Value *RHS0 =
RHS->getOperand(0), *RHS1 =
RHS->getOperand(1);
1872 if ((
match(RHS0, AbsOrSelfLHS0) ||
match(RHS1, AbsOrSelfLHS0)) &&
1887 if ((
match(LHS0, AbsOrSelfRHS0) ||
match(LHS1, AbsOrSelfRHS0)) &&
1901 Value *Op1,
bool IsAnd) {
1905 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1906 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1907 Op0 = Cast0->getOperand(0);
1908 Op1 = Cast1->getOperand(0);
1939 bool AllowRefinement,
1941 unsigned MaxRecurse);
1945 unsigned MaxRecurse) {
1946 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1962 if (Res == Absorber)
1972 if (Res == Absorber)
1982 nullptr, MaxRecurse))
1983 return Simplify(Res);
1986 nullptr, MaxRecurse))
1987 return Simplify(Res);
2019 unsigned MaxRecurse) {
2053 const APInt *Shift1, *Shift2;
2057 Shift1->
uge(*Shift2))
2070 unsigned MaxRecurse) {
2110 (~(*Mask)).lshr(*ShAmt).isZero())
2116 (~(*Mask)).shl(*ShAmt).isZero())
2121 const APInt *PowerC;
2143 Instruction::Or, Q, MaxRecurse))
2148 Instruction::Xor, Q, MaxRecurse))
2193 if (EffWidthY <= ShftCnt) {
2226 if (*Implied ==
true)
2229 if (*Implied ==
false)
2254 assert(
X->getType() ==
Y->getType() &&
"Expected same type for 'or' ops");
2255 Type *Ty =
X->getType();
2345 unsigned MaxRecurse) {
2384 C->ule(
X->getType()->getScalarSizeInBits())) {
2439 Instruction::And, Q, MaxRecurse))
2460 const APInt *C1, *C2;
2496 if (std::optional<bool> Implied =
2499 if (*Implied ==
false)
2502 if (*Implied ==
true)
2505 if (std::optional<bool> Implied =
2508 if (*Implied ==
false)
2511 if (*Implied ==
true)
2529 unsigned MaxRecurse) {
2571 if (
Value *R = foldAndOrNot(Op0, Op1))
2573 if (
Value *R = foldAndOrNot(Op1, Op0))
2626 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2627 if (Pred == Cmp->getPredicate() &&
LHS == CmpLHS &&
RHS == CmpRHS)
2630 LHS == CmpRHS &&
RHS == CmpLHS)
2644 return AI->isStaticAlloca();
2646 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2647 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2648 !GV->isThreadLocal();
2650 return A->hasByValAttr();
2683 auto isByValArg = [](
const Value *V) {
2685 return A &&
A->hasByValAttr();
2729 assert(
LHS->getType() ==
RHS->getType() &&
"Must have same types");
2752 unsigned IndexSize =
DL.getIndexTypeSizeInBits(
LHS->getType());
2753 APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0);
2754 LHS =
LHS->stripAndAccumulateConstantOffsets(
DL, LHSOffset, AllowNonInbounds);
2755 RHS =
RHS->stripAndAccumulateConstantOffsets(
DL, RHSOffset, AllowNonInbounds);
2776 return I->getFunction();
2778 return A->getParent();
2784 APInt Dist = LHSOffset - RHSOffset;
2812 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2813 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2833 bool Captured =
false;
2841 unsigned OtherIdx = 1 - U->getOperandNo();
2851 CustomCaptureTracker Tracker;
2853 if (!Tracker.Captured)
2875 auto ExtractNotLHS = [](
Value *V) ->
Value * {
3067 *MulC != 0 &&
C->urem(*MulC) != 0) ||
3069 *MulC != 0 &&
C->srem(*MulC) != 0)))
3084 unsigned Depth = 0) {
3085 if (!Res.
insert(V).second)
3112 switch (
I->getOpcode()) {
3113 case Instruction::And:
3117 case Instruction::URem:
3118 case Instruction::UDiv:
3119 case Instruction::LShr:
3122 case Instruction::Call:
3144 for (
Value *GV : GreaterValues)
3153 unsigned MaxRecurse) {
3237 const APInt *C1, *C2;
3284 const APInt *C1, *C2;
3298 unsigned MaxRecurse) {
3301 if (MaxRecurse && (LBO || RBO)) {
3303 Value *
A =
nullptr, *
B =
nullptr, *
C =
nullptr, *
D =
nullptr;
3305 bool NoLHSWrapProblem =
false, NoRHSWrapProblem =
false;
3306 if (LBO && LBO->
getOpcode() == Instruction::Add) {
3316 if (RBO && RBO->
getOpcode() == Instruction::Add) {
3328 if ((
A ==
RHS ||
B ==
RHS) && NoLHSWrapProblem)
3335 if ((
C ==
LHS ||
D ==
LHS) && NoRHSWrapProblem)
3338 C ==
LHS ?
D :
C, Q, MaxRecurse - 1))
3342 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3344 if (
A &&
C && (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D) && CanSimplify) {
3351 }
else if (
A ==
D) {
3355 }
else if (
B ==
C) {
3383 if (
C->isStrictlyPositive()) {
3389 if (
C->isNonNegative()) {
3439 case Instruction::Shl: {
3455 case Instruction::And:
3456 case Instruction::Or: {
3457 const APInt *C1, *C2;
3487 case Instruction::UDiv:
3488 case Instruction::LShr:
3496 case Instruction::SDiv:
3504 case Instruction::AShr:
3511 case Instruction::Shl: {
3532 unsigned MaxRecurse) {
3694 (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D)) {
3703 (
A ==
C ||
A ==
D ||
B ==
C ||
B ==
D)) {
3744 switch (
II->getIntrinsicID()) {
3745 case Intrinsic::uadd_sat:
3755 case Intrinsic::usub_sat:
3778 return A->getRange();
3780 return CB->getRange();
3782 return std::nullopt;
3833 if (LhsCr->icmp(Pred, *RhsCr))
3858 if (RI->getOperand(0)->getType() == SrcTy)
3870 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3874 RI->getOperand(0), Q, MaxRecurse - 1))
3879 if (
SrcOp == RI->getOperand(0)) {
3896 assert(Trunc &&
"Constant-fold of ImmConstant should not fail");
3899 assert(RExt &&
"Constant-fold of ImmConstant should not fail");
3902 assert(AnyEq &&
"Constant-fold of ImmConstant should not fail");
3909 SrcOp, Trunc, Q, MaxRecurse - 1))
3950 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3958 if (
SrcOp == RI->getOperand(0)) {
3974 assert(Trunc &&
"Constant-fold of ImmConstant should not fail");
3977 assert(RExt &&
"Constant-fold of ImmConstant should not fail");
3980 assert(AnyEq &&
"Constant-fold of ImmConstant should not fail");
4068 if (std::optional<bool> Res =
4074 if (
LHS->getType()->isPointerTy())
4079 if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() &&
4083 CRHS->getPointerOperand(), Q))
4103 return ::simplifyICmpInst(Predicate, LHS, RHS, Q,
RecursionLimit);
4110 unsigned MaxRecurse) {
4169 std::optional<KnownFPClass> FullKnownClassLHS;
4173 auto computeLHSClass = [=, &FullKnownClassLHS](
FPClassTest InterestedFlags =
4175 if (FullKnownClassLHS)
4176 return *FullKnownClassLHS;
4189 FullKnownClassLHS = computeLHSClass();
4190 if ((FullKnownClassLHS->KnownFPClasses & ClassTest) ==
fcNone)
4192 if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) ==
fcNone)
4207 if (
C->isNegative() && !
C->isNegZero()) {
4266 return ConstantInt::get(RetTy, IsMaxNum);
4275 return ConstantInt::get(RetTy, !IsMaxNum);
4291 Interested |=
fcNan;
4335 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q,
RecursionLimit);
4341 bool AllowRefinement,
4343 unsigned MaxRecurse) {
4345 "If AllowRefinement=false then CanUseUndef=false");
4346 for (
const auto &OpAndRepOp :
Ops) {
4352 if (V == OpAndRepOp.first)
4353 return OpAndRepOp.second;
4376 for (
const auto &OpAndRepOp :
Ops) {
4379 if (OpAndRepOp.first->getType()->isVectorTy() &&
4386 bool AnyReplaced =
false;
4387 for (
Value *InstOp :
I->operands()) {
4389 InstOp,
Ops, Q, AllowRefinement, DropFlags, MaxRecurse)) {
4391 AnyReplaced = InstOp != NewInstOp;
4405 if (!AllowRefinement) {
4411 unsigned Opcode = BO->getOpcode();
4414 if (!BO->getType()->isFPOrFPVectorTy()) {
4423 if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4424 NewOps[0] == NewOps[1]) {
4427 if (PDI->isDisjoint()) {
4439 if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) &&
4440 NewOps[0] == NewOps[1] &&
4441 any_of(
Ops, [=](
const auto &Rep) {
return NewOps[0] == Rep.second; }))
4452 if ((NewOps[0] == Absorber || NewOps[1] == Absorber) &&
4454 [=](
const auto &Rep) {
return impliesPoison(BO, Rep.first); }))
4474 auto PreventSelfSimplify = [V](
Value *Simplified) {
4475 return Simplified != V ? Simplified :
nullptr;
4478 return PreventSelfSimplify(
4485 for (
Value *NewOp : NewOps) {
4501 if (!AllowRefinement) {
4505 II &&
II->getIntrinsicID() == Intrinsic::abs) {
4506 if (!ConstOps[0]->isNotMinSignedValue())
4513 if (DropFlags && Res &&
I->hasPoisonGeneratingAnnotations())
4524 bool AllowRefinement,
4526 unsigned MaxRecurse) {
4528 DropFlags, MaxRecurse);
4533 bool AllowRefinement,
4537 if (!AllowRefinement)
4540 return ::simplifyWithOpReplaced(V,
Op, RepOp, Q, AllowRefinement, DropFlags,
4547 const APInt *
Y,
bool TrueWhenUnset) {
4554 return TrueWhenUnset ? FalseVal : TrueVal;
4560 return TrueWhenUnset ? FalseVal : TrueVal;
4562 if (
Y->isPowerOf2()) {
4570 return TrueWhenUnset ? TrueVal : FalseVal;
4580 return TrueWhenUnset ? TrueVal : FalseVal;
4591 if (CmpRHS == TVal || CmpRHS == FVal) {
4597 if (CmpLHS == FVal) {
4604 Value *
X = CmpLHS, *
Y = CmpRHS;
4605 bool PeekedThroughSelectShuffle =
false;
4607 if (Shuf && Shuf->isSelect()) {
4608 if (Shuf->getOperand(0) ==
Y)
4609 FVal = Shuf->getOperand(1);
4610 else if (Shuf->getOperand(1) ==
Y)
4611 FVal = Shuf->getOperand(0);
4614 PeekedThroughSelectShuffle =
true;
4619 if (!MMI || TVal !=
X ||
4637 if (PeekedThroughSelectShuffle)
4673 ArrayRef<std::pair<Value *, Value *>> Replacements,
Value *TrueVal,
4675 Value *SimplifiedFalseVal =
4678 nullptr, MaxRecurse);
4679 if (!SimplifiedFalseVal)
4680 SimplifiedFalseVal = FalseVal;
4682 Value *SimplifiedTrueVal =
4685 nullptr, MaxRecurse);
4686 if (!SimplifiedTrueVal)
4687 SimplifiedTrueVal = TrueVal;
4689 if (SimplifiedFalseVal == SimplifiedTrueVal)
4700 unsigned MaxRecurse) {
4702 Value *CmpLHS, *CmpRHS;
4718 if (TrueVal->getType()->isIntOrIntVectorTy()) {
4726 X->getType()->getScalarSizeInBits());
4746 if (
match(TrueVal, isFsh) && FalseVal ==
X && CmpLHS == ShAmt)
4759 if (
match(FalseVal, isRotate) && TrueVal ==
X && CmpLHS == ShAmt &&
4781 FalseVal, Q, MaxRecurse))
4786 FalseVal, Q, MaxRecurse))
4796 {{
X, CmpRHS}, {
Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse))
4805 {{
X, CmpRHS}, {
Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse))
4817 unsigned MaxRecurse) {
4819 Value *CmpLHS, *CmpRHS;
4824 bool IsEquiv =
I->isEquivalence();
4825 if (
I->isEquivalence(
true)) {
4843 if (CmpLHS ==
F && CmpRHS ==
T)
4846 if (CmpLHS !=
T || CmpRHS !=
F)
4891 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
4892 "Select must have bool or bool vector condition");
4893 assert(TrueVal->getType() == FalseVal->getType() &&
4894 "Select must have same types for true/false ops");
4896 if (
Cond->getType() == TrueVal->getType()) {
4959 if (TrueVal == FalseVal)
4962 if (
Cond == TrueVal) {
4970 if (
Cond == FalseVal) {
5001 for (
unsigned i = 0; i != NumElts; ++i) {
5005 if (!TEltC || !FEltC)
5021 if (NewC.
size() == NumElts)
5037 return *Imp ? TrueVal : FalseVal;
5057 if (Indices.
empty())
5087 bool IsScalableVec =
5088 SrcTy->isScalableTy() ||
any_of(Indices, [](
const Value *V) {
5092 if (Indices.
size() == 1) {
5094 if (!IsScalableVec && Ty->isSized()) {
5099 if (TyAllocSize == 0 &&
Ptr->getType() == GEPTy)
5106 auto CanSimplify = [GEPTy, &
P,
Ptr]() ->
bool {
5107 return P->getType() == GEPTy &&
5111 if (TyAllocSize == 1 &&
5122 TyAllocSize == 1ULL <<
C && CanSimplify())
5141 APInt BasePtrOffset(IdxWidth, 0);
5142 Value *StrippedBasePtr =
5143 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, BasePtrOffset);
5152 !BasePtrOffset.
isZero()) {
5153 auto *CI = ConstantInt::get(GEPTy->
getContext(), BasePtrOffset);
5159 !BasePtrOffset.
isOne()) {
5160 auto *CI = ConstantInt::get(GEPTy->
getContext(), BasePtrOffset - 1);
5201 if (EV->getAggregateOperand()->getType() == Agg->
getType() &&
5202 EV->getIndices() == Idxs) {
5208 return EV->getAggregateOperand();
5211 if (Agg == EV->getAggregateOperand())
5221 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q,
RecursionLimit);
5230 if (VecC && ValC && IdxC)
5251 if (VecC && ValC && VecC->getSplatValue() == ValC)
5271 unsigned NumIdxs = Idxs.
size();
5275 unsigned NumInsertValueIdxs = InsertValueIdxs.
size();
5276 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
5277 if (InsertValueIdxs.
slice(0, NumCommonIdxs) ==
5278 Idxs.
slice(0, NumCommonIdxs)) {
5279 if (NumIdxs == NumInsertValueIdxs)
5280 return IVI->getInsertedValueOperand();
5287 if (Idxs.
size() == 1 &&
5294 assert(Idxs[0] == 1 &&
"invalid index");
5328 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
5332 if (IdxC->getValue().ult(MinNumElts))
5343 if (IE && IE->getOperand(2) == Idx)
5344 return IE->getOperand(1);
5355 return ::simplifyExtractElementInst(Vec, Idx, Q,
RecursionLimit);
5367 Value *CommonValue =
nullptr;
5368 bool HasPoisonInput =
false;
5369 bool HasUndefInput =
false;
5375 HasPoisonInput =
true;
5380 HasUndefInput =
true;
5383 if (CommonValue &&
Incoming != CommonValue)
5394 if (HasPoisonInput || HasUndefInput) {
5402 if (HasUndefInput &&
5417 auto *Src = CI->getOperand(0);
5418 Type *SrcTy = Src->getType();
5419 Type *MidTy = CI->getType();
5421 if (Src->getType() == Ty) {
5422 auto FirstOp = CI->getOpcode();
5431 SrcIntPtrTy, MidIntPtrTy,
5432 DstIntPtrTy) == Instruction::BitCast)
5438 if (CastOpc == Instruction::BitCast)
5439 if (
Op->getType() == Ty)
5444 if (CastOpc == Instruction::PtrToInt &&
5462 int MaskVal,
Value *RootVec,
5463 unsigned MaxRecurse) {
5474 int RootElt = MaskVal;
5475 Value *SourceOp = Op0;
5476 if (MaskVal >= InVecNumElts) {
5477 RootElt = MaskVal - InVecNumElts;
5485 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
5486 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
5495 if (RootVec != SourceOp)
5500 if (RootElt != DestElt)
5509 unsigned MaxRecurse) {
5514 unsigned MaskNumElts = Mask.size();
5515 ElementCount InVecEltCount = InVecTy->getElementCount();
5520 Indices.
assign(Mask.begin(), Mask.end());
5525 bool MaskSelects0 =
false, MaskSelects1 =
false;
5527 for (
unsigned i = 0; i != MaskNumElts; ++i) {
5528 if (Indices[i] == -1)
5530 if ((
unsigned)Indices[i] < InVecNumElts)
5531 MaskSelects0 =
true;
5533 MaskSelects1 =
true;
5547 if (Op0Const && Op1Const)
5553 if (!Scalable && Op0Const && !Op1Const) {
5571 if (
all_of(Indices, [InsertIndex](
int MaskElt) {
5572 return MaskElt == InsertIndex || MaskElt == -1;
5578 for (
unsigned i = 0; i != MaskNumElts; ++i)
5579 if (Indices[i] == -1)
5607 Value *RootVec =
nullptr;
5608 for (
unsigned i = 0; i != MaskNumElts; ++i) {
5615 if (!RootVec || RootVec->
getType() != RetTy)
5625 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q,
RecursionLimit);
5658 Type *Ty = In->getType();
5660 unsigned NumElts = VecTy->getNumElements();
5662 for (
unsigned i = 0; i != NumElts; ++i) {
5663 Constant *EltC = In->getAggregateElement(i);
5668 else if (EltC && EltC->
isNaN())
5669 NewC[i] = ConstantFP::get(
5685 auto *
Splat = In->getSplatValue();
5687 "Found a scalable-vector NaN but not a splat");
5716 if (FMF.
noNaNs() && (IsNan || IsUndef))
5718 if (FMF.
noInfs() && (IsInf || IsUndef))
5933 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5940 return ::simplifyFAddInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5948 return ::simplifyFSubInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5956 return ::simplifyFMulInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5964 return ::simplifyFMAFMul(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
5997 return ConstantFP::get(Op0->
getType(), 1.0);
6009 return ConstantFP::get(Op0->
getType(), -1.0);
6023 return ::simplifyFDivInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6061 return ::simplifyFRemInst(Op0, Op1, FMF, Q,
RecursionLimit, ExBehavior,
6070 unsigned MaxRecurse) {
6072 case Instruction::FNeg:
6084 unsigned MaxRecurse) {
6086 case Instruction::FNeg:
6107 case Instruction::Add:
6110 case Instruction::Sub:
6113 case Instruction::Mul:
6116 case Instruction::SDiv:
6118 case Instruction::UDiv:
6120 case Instruction::SRem:
6122 case Instruction::URem:
6124 case Instruction::Shl:
6127 case Instruction::LShr:
6129 case Instruction::AShr:
6131 case Instruction::And:
6133 case Instruction::Or:
6135 case Instruction::Xor:
6137 case Instruction::FAdd:
6139 case Instruction::FSub:
6141 case Instruction::FMul:
6143 case Instruction::FDiv:
6145 case Instruction::FRem:
6157 unsigned MaxRecurse) {
6159 case Instruction::FAdd:
6161 case Instruction::FSub:
6163 case Instruction::FMul:
6165 case Instruction::FDiv:
6179 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q,
RecursionLimit);
6192 return ::simplifyCmpInst(Predicate, LHS, RHS, Q,
RecursionLimit);
6201 case Intrinsic::fabs:
6202 case Intrinsic::floor:
6203 case Intrinsic::ceil:
6204 case Intrinsic::trunc:
6205 case Intrinsic::rint:
6206 case Intrinsic::nearbyint:
6207 case Intrinsic::round:
6208 case Intrinsic::roundeven:
6209 case Intrinsic::canonicalize:
6210 case Intrinsic::arithmetic_fence:
6222 case Intrinsic::floor:
6223 case Intrinsic::ceil:
6224 case Intrinsic::trunc:
6225 case Intrinsic::rint:
6226 case Intrinsic::nearbyint:
6227 case Intrinsic::round:
6228 case Intrinsic::roundeven:
6243 if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64)
6247 DL.getIndexTypeSizeInBits(
Ptr->getType()));
6248 if (OffsetInt.
srem(4) != 0)
6260 if (LoadedCE->getOpcode() == Instruction::Trunc) {
6266 if (LoadedCE->getOpcode() != Instruction::Sub)
6270 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
6272 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
6276 APInt LoadedRHSOffset;
6279 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
6282 return LoadedLHSPtr;
6313 if (
C && (
C->isZero() ||
C->isInfinity()))
6322 if (
C &&
C->isNaN())
6323 return ConstantFP::get(Op0->
getType(),
C->makeQuiet());
6342 if (
II->getIntrinsicID() == IID)
6359 case Intrinsic::fabs:
6363 case Intrinsic::bswap:
6368 case Intrinsic::bitreverse:
6373 case Intrinsic::ctpop: {
6376 return ConstantInt::get(Op0->
getType(), 1);
6385 case Intrinsic::exp:
6387 if (
Call->hasAllowReassoc() &&
6391 case Intrinsic::exp2:
6393 if (
Call->hasAllowReassoc() &&
6397 case Intrinsic::exp10:
6399 if (
Call->hasAllowReassoc() &&
6403 case Intrinsic::log:
6405 if (
Call->hasAllowReassoc() &&
6409 case Intrinsic::log2:
6411 if (
Call->hasAllowReassoc() &&
6417 case Intrinsic::log10:
6420 if (
Call->hasAllowReassoc() &&
6426 case Intrinsic::vector_reverse:
6454 if (Op1 ==
X || Op1 ==
Y ||
6471 assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum ||
6472 IID == Intrinsic::maximum || IID == Intrinsic::minimum) &&
6473 "Unsupported intrinsic");
6479 if (!
M0 ||
M0->getIntrinsicID() != IID)
6481 Value *X0 =
M0->getOperand(0);
6482 Value *Y0 =
M0->getOperand(1);
6489 if (X0 == Op1 || Y0 == Op1)
6495 Value *X1 =
M1->getOperand(0);
6496 Value *Y1 =
M1->getOperand(1);
6504 if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1))
6515 unsigned BitWidth = ReturnType->getScalarSizeInBits();
6517 case Intrinsic::get_active_lane_mask:
6521 case Intrinsic::abs:
6529 case Intrinsic::cttz: {
6535 case Intrinsic::ctlz: {
6543 case Intrinsic::ptrmask: {
6551 "Invalid mask width");
6568 APInt IrrelevantPtrBits =
6571 Instruction::Or,
C, ConstantInt::get(
C->getType(), IrrelevantPtrBits),
6573 if (
C !=
nullptr &&
C->isAllOnesValue())
6578 case Intrinsic::smax:
6579 case Intrinsic::smin:
6580 case Intrinsic::umax:
6581 case Intrinsic::umin: {
6592 return ConstantInt::get(
6600 return ConstantInt::get(ReturnType, *
C);
6612 if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
6614 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
6615 const APInt *InnerC;
6638 case Intrinsic::scmp:
6639 case Intrinsic::ucmp: {
6648 return ConstantInt::get(ReturnType, 1);
6657 case Intrinsic::usub_with_overflow:
6658 case Intrinsic::ssub_with_overflow:
6665 case Intrinsic::uadd_with_overflow:
6666 case Intrinsic::sadd_with_overflow:
6676 case Intrinsic::umul_with_overflow:
6677 case Intrinsic::smul_with_overflow:
6687 case Intrinsic::uadd_sat:
6693 case Intrinsic::sadd_sat:
6708 case Intrinsic::usub_sat:
6713 case Intrinsic::ssub_sat:
6721 case Intrinsic::load_relative:
6726 case Intrinsic::powi:
6729 if (Power->isZero())
6730 return ConstantFP::get(Op0->
getType(), 1.0);
6736 case Intrinsic::ldexp:
6738 case Intrinsic::copysign:
6748 case Intrinsic::is_fpclass: {
6752 return ConstantInt::get(ReturnType,
true);
6754 return ConstantInt::get(ReturnType,
false);
6759 case Intrinsic::maxnum:
6760 case Intrinsic::minnum:
6761 case Intrinsic::maximum:
6762 case Intrinsic::minimum: {
6775 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
6776 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
6789 (
C->isInfinity() || (
Call &&
Call->hasNoInfs() &&
C->isLargest()))) {
6794 if (
C->isNegative() == IsMin &&
6795 (!PropagateNaN || (
Call &&
Call->hasNoNaNs())))
6796 return ConstantFP::get(ReturnType, *
C);
6802 if (
C->isNegative() != IsMin &&
6803 (PropagateNaN || (
Call &&
Call->hasNoNaNs())))
6816 case Intrinsic::vector_extract: {
6822 IdxN == 0 &&
X->getType() == ReturnType)
6839 unsigned NumOperands = Args.size();
6850 case Intrinsic::vscale: {
6851 Type *RetTy =
F->getReturnType();
6854 return ConstantInt::get(RetTy,
C->getZExtValue());
6862 if (NumOperands == 1)
6865 if (NumOperands == 2)
6871 case Intrinsic::masked_load:
6872 case Intrinsic::masked_gather: {
6873 Value *MaskArg = Args[2];
6874 Value *PassthruArg = Args[3];
6880 case Intrinsic::fshl:
6881 case Intrinsic::fshr: {
6882 Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2];
6890 return Args[IID == Intrinsic::fshl ? 0 : 1];
6892 const APInt *ShAmtC;
6897 return Args[IID == Intrinsic::fshl ? 0 : 1];
6910 case Intrinsic::experimental_constrained_fma: {
6913 *FPI->getRoundingMode()))
6917 case Intrinsic::fma:
6918 case Intrinsic::fmuladd: {
6924 case Intrinsic::smul_fix:
6925 case Intrinsic::smul_fix_sat: {
6926 Value *Op0 = Args[0];
6927 Value *Op1 = Args[1];
6928 Value *Op2 = Args[2];
6929 Type *ReturnType =
F->getReturnType();
6954 case Intrinsic::vector_insert: {
6955 Value *Vec = Args[0];
6956 Value *SubVec = Args[1];
6957 Value *Idx = Args[2];
6958 Type *ReturnType =
F->getReturnType();
6967 X->getType() == ReturnType)
6972 case Intrinsic::experimental_constrained_fadd: {
6975 *FPI->getExceptionBehavior(),
6976 *FPI->getRoundingMode());
6978 case Intrinsic::experimental_constrained_fsub: {
6981 *FPI->getExceptionBehavior(),
6982 *FPI->getRoundingMode());
6984 case Intrinsic::experimental_constrained_fmul: {
6987 *FPI->getExceptionBehavior(),
6988 *FPI->getRoundingMode());
6990 case Intrinsic::experimental_constrained_fdiv: {
6993 *FPI->getExceptionBehavior(),
6994 *FPI->getRoundingMode());
6996 case Intrinsic::experimental_constrained_frem: {
6999 *FPI->getExceptionBehavior(),
7000 *FPI->getRoundingMode());
7002 case Intrinsic::experimental_constrained_ldexp:
7004 case Intrinsic::experimental_gc_relocate: {
7025 case Intrinsic::experimental_vp_reverse: {
7055 ConstantArgs.
reserve(Args.size());
7056 for (
Value *Arg : Args) {
7076 if (
Call->isMustTailCall())
7088 if (
F &&
F->isIntrinsic())
7115 return ::simplifyFreezeInst(Op0, Q);
7129 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
7160 unsigned MaxRecurse) {
7161 assert(
I->getFunction() &&
"instruction should be inserted in a function");
7163 "context instruction should be in the same function");
7167 switch (
I->getOpcode()) {
7172 [](
Value *V) { return cast<Constant>(V); });
7176 case Instruction::FNeg:
7178 case Instruction::FAdd:
7181 case Instruction::Add:
7185 case Instruction::FSub:
7188 case Instruction::Sub:
7192 case Instruction::FMul:
7195 case Instruction::Mul:
7199 case Instruction::SDiv:
7203 case Instruction::UDiv:
7207 case Instruction::FDiv:
7210 case Instruction::SRem:
7212 case Instruction::URem:
7214 case Instruction::FRem:
7217 case Instruction::Shl:
7221 case Instruction::LShr:
7225 case Instruction::AShr:
7229 case Instruction::And:
7231 case Instruction::Or:
7233 case Instruction::Xor:
7235 case Instruction::ICmp:
7237 NewOps[1], Q, MaxRecurse);
7238 case Instruction::FCmp:
7240 NewOps[1],
I->getFastMathFlags(), Q, MaxRecurse);
7241 case Instruction::Select:
7243 case Instruction::GetElementPtr: {
7246 ArrayRef(NewOps).slice(1), GEPI->getNoWrapFlags(), Q,
7249 case Instruction::InsertValue: {
7254 case Instruction::InsertElement:
7256 case Instruction::ExtractValue: {
7261 case Instruction::ExtractElement:
7263 case Instruction::ShuffleVector: {
7266 SVI->getShuffleMask(), SVI->getType(), Q,
7269 case Instruction::PHI:
7271 case Instruction::Call:
7275 case Instruction::Freeze:
7277#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
7278#include "llvm/IR/Instruction.def"
7279#undef HANDLE_CAST_INST
7282 case Instruction::Alloca:
7285 case Instruction::Load:
7294 "Number of operands should match the instruction!");
7295 return ::simplifyInstructionWithOperands(
I, NewOps, SQ,
RecursionLimit);
7325 bool Simplified =
false;
7332 for (
User *U :
I->users())
7337 I->replaceAllUsesWith(SimpleV);
7339 if (!
I->isEHPad() && !
I->isTerminator() && !
I->mayHaveSideEffects())
7340 I->eraseFromParent();
7346 for (
unsigned Idx = 0; Idx != Worklist.
size(); ++Idx) {
7352 if (UnsimplifiedUsers)
7353 UnsimplifiedUsers->insert(
I);
7362 for (
User *U :
I->users())
7366 I->replaceAllUsesWith(SimpleV);
7368 if (!
I->isEHPad() && !
I->isTerminator() && !
I->mayHaveSideEffects())
7369 I->eraseFromParent();
7378 assert(
I != SimpleV &&
"replaceAndRecursivelySimplify(X,X) is not valid!");
7379 assert(SimpleV &&
"Must provide a simplified value.");
7387 auto *DT = DTWP ? &DTWP->
getDomTree() :
nullptr;
7389 auto *TLI = TLIWP ? &TLIWP->
getTLI(
F) :
nullptr;
7392 return {
F.getDataLayout(), TLI, DT, AC};
7400template <
class T,
class... TArgs>
7403 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(
F);
7404 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(
F);
7405 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(
F);
7406 return {
F.getDataLayout(), TLI, DT, AC};
7420void InstSimplifyFolder::anchor() {}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static Value * simplifyCmpSelFalseCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
Simplify comparison with false branch of select.
static Value * simplifyCmpSelCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse, Constant *TrueOrFalse)
Simplify comparison with true or false branch of select: sel = select i1 cond, i32 tv,...
static Value * foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1)
Given a min/max intrinsic, see if it can be removed based on having an operand that is another min/ma...
static Value * expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, Value *R, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify binops of form "A op (B op' C)" or the commuted variant by distributing op over op'.
static Constant * foldOrCommuteConstant(Instruction::BinaryOps Opcode, Value *&Op0, Value *&Op1, const SimplifyQuery &Q)
static bool haveNonOverlappingStorage(const Value *V1, const Value *V2)
Return true if V1 and V2 are each the base of some distict storage region [V, object_size(V)] which d...
static Constant * foldConstant(Instruction::UnaryOps Opcode, Value *&Op, const SimplifyQuery &Q)
static Value * handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
We know comparison with both branches of select can be simplified, but they are not equal.
static Value * threadCmpOverPHI(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a comparison with a PHI instruction, try to simplify the comparison by seeing whether ...
static Constant * propagateNaN(Constant *In)
Try to propagate existing NaN values when possible.
static Value * simplifyICmpOfBools(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Fold an icmp when its operands have i1 scalar type.
static Value * simplifyICmpWithBinOpOnLHS(CmpPredicate Pred, BinaryOperator *LBO, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
static void getUnsignedMonotonicValues(SmallPtrSetImpl< Value * > &Res, Value *V, MonotonicType Type, const SimplifyQuery &Q, unsigned Depth=0)
Get values V_i such that V uge V_i (GreaterEq) or V ule V_i (LowerEq).
static Value * simplifyRelativeLoad(Constant *Ptr, Constant *Offset, const DataLayout &DL)
static Value * simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
These are simplifications common to SDiv and UDiv.
static Value * simplifyPHINode(PHINode *PN, ArrayRef< Value * > IncomingValues, const SimplifyQuery &Q)
See if we can fold the given phi. If not, returns null.
static bool isSameCompare(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS)
isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
static Value * simplifyAndCommutative(Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
static bool isIdempotent(Intrinsic::ID ID)
static std::optional< ConstantRange > getRange(Value *V, const InstrInfoQuery &IIQ)
Helper method to get range from metadata or attribute.
static Value * simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd)
Try to simplify and/or of icmp with ctpop intrinsic.
static Value * simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, ICmpInst *UnsignedICmp, bool IsAnd, const SimplifyQuery &Q)
Commuted variants are assumed to be handled by calling this function again with the parameters swappe...
static Value * tryConstantFoldCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
static Value * simplifyWithOpsReplaced(Value *V, ArrayRef< std::pair< Value *, Value * > > Ops, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags, unsigned MaxRecurse)
static Value * simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ)
static Value * simplifyAndOrOfFCmpsWithConstants(FCmpInst *Cmp0, FCmpInst *Cmp1, bool IsAnd)
Test if a pair of compares with a shared operand and 2 constants has an empty set intersection,...
static Value * simplifyICmpWithMinMax(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
simplify integer comparisons where at least one operand of the compare matches an integer min/max idi...
static Value * simplifyCmpSelTrueCase(CmpPredicate Pred, Value *LHS, Value *RHS, Value *Cond, const SimplifyQuery &Q, unsigned MaxRecurse)
Simplify comparison with true branch of select.
static Value * simplifyIntrinsic(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
static Value * simplifyICmpUsingMonotonicValues(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q)
Returns true if a shift by Amount always yields poison.
static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, bool AllowNonInbounds=false)
Compute the base pointer and cumulative constant offsets for V.
static Value * simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an LShr or AShr, see if we can fold the result.
static Value * simplifyICmpWithIntrinsicOnLHS(CmpPredicate Pred, Value *LHS, Value *RHS)
static Value * simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Test if there is a dominating equivalence condition for the two operands.
static Value * simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, const SimplifyQuery &, unsigned)
Given the operand for a UnaryOperator, see if we can fold the result.
static Value * simplifyICmpWithBinOp(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
TODO: A large part of this logic is duplicated in InstCombine's foldICmpBinOp().
static Value * simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q)
static Value * expandBinOp(Instruction::BinaryOps Opcode, Value *V, Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a binary operator of form "V op OtherOp" where V is "(B0 opex B1)" by distributing 'o...
static Value * simplifyICmpWithZero(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Try hard to fold icmp with zero RHS because this is a common case.
static Value * simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is a floating-point comparison.
static Constant * getFalse(Type *Ty)
For a boolean type or a vector of boolean type, return false or a vector with every element false.
static Value * simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
Check for common or similar folds of integer division or integer remainder.
static bool removesFPFraction(Intrinsic::ID ID)
Return true if the intrinsic rounds a floating-point value to an integral floating-point value (not a...
static Value * simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, const InstrInfoQuery &IIQ)
static Value * simplifySelectWithEquivalence(ArrayRef< std::pair< Value *, Value * > > Replacements, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is an integer equality or floating-po...
static bool trySimplifyICmpWithAdds(CmpPredicate Pred, Value *LHS, Value *RHS, const InstrInfoQuery &IIQ)
static Value * simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, const APInt *Y, bool TrueWhenUnset)
Try to simplify a select instruction when its condition operand is an integer comparison where one op...
static Value * simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Generic simplifications for associative binary operations.
static Value * threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a binary operation with an operand that is a PHI instruction, try to simplify the bino...
static Value * simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, CmpPredicate Pred, Value *TVal, Value *FVal)
static Constant * simplifyFPOp(ArrayRef< Value * > Ops, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior, RoundingMode Rounding)
Perform folds that are common to any floating-point operation.
static Value * threadCmpOverSelect(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a comparison with a select instruction, try to simplify the comparison by seeing wheth...
static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Implementation of recursive simplification through an instruction's uses.
static bool isAllocDisjoint(const Value *V)
Return true if the underlying object (storage) must be disjoint from storage returned by any noalias ...
static Constant * getTrue(Type *Ty)
For a boolean type or a vector of boolean type, return true or a vector with every element true.
static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, unsigned MaxRecurse, bool IsSigned)
Return true if we can simplify X / Y to 0.
static Value * simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q, bool IsStrict)
static Value * simplifyLogicOfAddSub(Value *Op0, Value *Op1, Instruction::BinaryOps Opcode)
Given a bitwise logic op, check if the operands are add/sub with a common source value and inverted c...
static Value * simplifySelectWithBitTest(Value *CondVal, Value *TrueVal, Value *FalseVal)
An alternative way to test if a bit is set or not.
static Value * simplifyOrLogic(Value *X, Value *Y)
static Type * getCompareTy(Value *Op)
static Value * simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, const SimplifyQuery &Q)
static bool isICmpTrue(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
Given a predicate and two operands, return true if the comparison is true.
static Value * foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, int MaskVal, Value *RootVec, unsigned MaxRecurse)
For the given destination element of a shuffle, peek through shuffles to match a root vector source o...
static Value * simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, FCmpInst *RHS, bool IsAnd)
static Value * simplifyICmpWithConstant(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * extractEquivalentCondition(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS)
Rummage around inside V looking for something equivalent to the comparison "LHS Pred RHS".
static Value * simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, Value *Op1, bool IsAnd)
static Value * threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q, unsigned MaxRecurse)
In the case of a binary operation with a select instruction as an operand, try to simplify the binop ...
static Constant * computePointerDifference(const DataLayout &DL, Value *LHS, Value *RHS)
Compute the constant difference between two pointer values.
static Value * simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd)
Test if a pair of compares with a shared operand and 2 constants has an empty set intersection,...
static Value * simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
static Value * simplifyICmpWithDominatingAssume(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, bool IsNSW, const SimplifyQuery &Q, unsigned MaxRecurse)
Given operands for an Shl, LShr or AShr, see if we can fold the result.
static Constant * computePointerICmp(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
static Value * simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse)
These are simplifications common to SRem and URem.
static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT)
Does the given value dominate the specified phi node?
static Value * simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse)
Try to simplify a select instruction when its condition operand is an integer comparison.
static Value * foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1)
Given a min/max intrinsic, see if it can be removed based on having an operand that is another min/ma...
static Value * simplifyUnaryIntrinsic(Function *F, Value *Op0, const SimplifyQuery &Q, const CallBase *Call)
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
This header provides classes for managing per-loop analyses.
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
static const uint32_t IV[8]
Class for arbitrary precision integers.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
bool getBoolValue() const
Convert APInt to a boolean value.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isMask(unsigned numBits) const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isOne() const
Determine if this is a value of 1.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
an instruction to allocate memory on the stack
A container for analyses that lazily runs them and caches their results.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
const T & back() const
back - Get the last element.
size_t size() const
size - Get the array size.
ArrayRef< T > drop_back(size_t N=1) const
Drop the last N elements of the array.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
An immutable pass that tracks lazily created AssumptionCache objects.
AssumptionCache & getAssumptionCache(Function &F)
Get the cached assumptions for a function.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
BinaryOps getOpcode() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine how a pair of casts can be eliminated, if they can be at all.
This class is the base class for the comparison instructions.
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI Constant * getShuffleVector(Constant *V1, Constant *V2, ArrayRef< int > Mask, Type *OnlyIfReducedTy=nullptr)
static bool isSupportedGetElementPtr(const Type *SrcElemTy)
Whether creating a constant expression for this getelementptr type is supported.
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI std::optional< ConstantFPRange > makeExactFCmpRegion(FCmpInst::Predicate Pred, const APFloat &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
static LLVM_ABI Constant * getZero(Type *Ty, bool Negative=false)
static Constant * getNegativeZero(Type *Ty)
static LLVM_ABI Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
static LLVM_ABI ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
This class represents a range of values.
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool isEmptySet() const
Return true if this set contains no members.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI ConstantRange inverse() const
Return a new range that is the logical not of the current set.
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
LLVM_ABI bool isAllOnesValue() const
Return true if this is the value that would be returned by getAllOnesValue.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI bool isNaN() const
Return true if this is a floating-point NaN constant or a vector floating-point constant with all NaN...
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSizeInBits(unsigned AS=0) const
The size in bits of the pointer representation in a given address space.
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
unsigned getIndexSizeInBits(unsigned AS) const
The size in bits of indices used for address calculation in getelementptr and for addresses in the gi...
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Legacy analysis pass which computes a DominatorTree.
DominatorTree & getDomTree()
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
bool allowReassoc() const
Flag queries.
Represents calls to the gc.relocate intrinsic.
LLVM_ABI Value * getBasePtr() const
LLVM_ABI Value * getDerivedPtr() const
Represents flags for the getelementptr instruction/expression.
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
This instruction compares its operands according to the predicate given to the constructor.
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
bool isEquality() const
Return true if this predicate is either EQ or NE.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
LLVM_ABI bool hasNoSignedZeros() const LLVM_READONLY
Determine whether the no-signed-zeros flag is set.
static bool isBitwiseLogicOp(unsigned Opcode)
Determine if the Opcode is and/or/xor.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
An instruction for reading from memory.
bool isVolatile() const
Return true if this is a load from a volatile memory location.
static APInt getSaturationPoint(Intrinsic::ID ID, unsigned numBits)
Min/max intrinsics are monotonic, they operate on a fixed-bitwidth values, so there is a certain thre...
static ICmpInst::Predicate getPredicate(Intrinsic::ID ID)
Returns the comparison predicate underlying the intrinsic.
op_range incoming_values()
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Pass interface - Implemented by all 'passes'.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a cast from a pointer to an integer.
This class represents a sign extension of integer types.
This class represents the LLVM 'select' instruction.
size_type size() const
Determine the number of elements in the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
TargetLibraryInfo & getTLI(const Function &F)
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrAdd_match< PointerOpTy, OffsetOpTy > m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp)
Matches GEP with i8 source element type.
cst_pred_ty< is_negative > m_Negative()
Match an integer or vector of negative values.
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
cstfp_pred_ty< is_inf > m_Inf()
Match a positive or negative infinity FP constant.
m_Intrinsic_Ty< Opnd0 >::Ty m_BitReverse(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< cstfp_pred_ty< is_any_zero_fp >, RHS, Instruction::FSub > m_FNegNSZ(const RHS &X)
Match 'fneg X' as 'fsub +-0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_Sqrt(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
apint_match m_APIntAllowPoison(const APInt *&Res)
Match APInt while allowing poison in splat vector constants.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
cst_pred_ty< custom_checkfn< APInt > > m_CheckedInt(function_ref< bool(const APInt &)> CheckFn)
Match an integer or vector where CheckFn(ele) for each element is true.
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
apfloat_match m_APFloatAllowPoison(const APFloat *&Res)
Match APFloat while allowing poison in splat vector constants.
CastInst_match< OpTy, UIToFPInst > m_UIToFP(const OpTy &Op)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
CastInst_match< OpTy, SIToFPInst > m_SIToFP(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Exact_match< T > m_Exact(const T &SubPattern)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
cstfp_pred_ty< is_pos_zero_fp > m_PosZeroFP()
Match a floating-point positive zero.
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::And, true > m_c_LogicalAnd(const LHS &L, const RHS &R)
Matches L && R with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > > > m_MaxOrMin(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0, Opnd1, Opnd2 >::Ty m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
cstfp_pred_ty< is_nan > m_NaN()
Match an arbitrary NaN constant.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_BSwap(const Opnd0 &Op0)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
LogicalOp_match< LHS, RHS, Instruction::Or, true > m_c_LogicalOr(const LHS &L, const RHS &R)
Matches L || R with LHS and RHS in either order.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
ExceptionBehavior
Exception behavior used for floating point operations.
@ ebStrict
This corresponds to "fpexcept.strict".
@ ebIgnore
This corresponds to "fpexcept.ignore".
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
LLVM_ABI Value * simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a AShr, fold the result or return nulll.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Value * simplifyFMulInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FMul, fold the result or return null.
LLVM_ABI Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
LLVM_ABI Value * simplifyFreezeInst(Value *Op, const SimplifyQuery &Q)
Given an operand for a Freeze, see if we can fold the result.
LLVM_ABI Constant * ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL, const Instruction *I, bool AllowNonDeterministic=true)
Attempt to constant fold a floating point binary operation with the specified operands,...
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * simplifySDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for an SDiv, fold the result or return null.
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
LLVM_ABI Value * simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q)
Given operand for a UnaryOperator, fold the result or return null.
bool isDefaultFPEnvironment(fp::ExceptionBehavior EB, RoundingMode RM)
Returns true if the exception handling behavior and rounding mode match what is used in the default f...
LLVM_ABI Value * simplifyMulInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Mul, fold the result or return null.
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
LLVM_ABI Value * simplifyInstructionWithOperands(Instruction *I, ArrayRef< Value * > NewOps, const SimplifyQuery &Q)
Like simplifyInstruction but the operands of I are replaced with NewOps.
LLVM_ABI Value * simplifyCall(CallBase *Call, Value *Callee, ArrayRef< Value * > Args, const SimplifyQuery &Q)
Given a callsite, callee, and arguments, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
bool canRoundingModeBe(RoundingMode RM, RoundingMode QRM)
Returns true if the rounding mode RM may be QRM at compile time or at run time.
LLVM_ABI bool isNoAliasCall(const Value *V)
Return true if this pointer is returned by a noalias function.
LLVM_ABI Value * simplifyFCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q)
Given operands for an FCmpInst, fold the result or return null.
LLVM_ABI Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
LLVM_ABI Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
LLVM_ABI Value * simplifyShuffleVectorInst(Value *Op0, Value *Op1, ArrayRef< int > Mask, Type *RetTy, const SimplifyQuery &Q)
Given operands for a ShuffleVectorInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
LLVM_ABI Value * simplifyOrInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Or, fold the result or return null.
LLVM_ABI Value * simplifyXorInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an Xor, fold the result or return null.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
LLVM_ABI bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc,...
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
LLVM_ABI Value * simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, const SimplifyQuery &Q)
Given operands for a CastInst, fold the result or return null.
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
unsigned M1(unsigned Val)
LLVM_ABI Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, const TargetLibraryInfo *TLI, ObjectSizeOpts Opts={})
Compute the size of the object pointed by Ptr.
LLVM_ABI bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
LLVM_ABI Constant * ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, const DataLayout &DL)
If C is a uniform value where all bits are the same (either all zero, all ones, all undef or all pois...
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
LLVM_ABI bool replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI=nullptr, const DominatorTree *DT=nullptr, AssumptionCache *AC=nullptr, SmallSetVector< Instruction *, 8 > *UnsimplifiedUsers=nullptr)
Replace all uses of 'I' with 'SimpleV' and simplify the uses recursively.
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
SelectPatternFlavor
Specific patterns of select instructions we can match.
LLVM_ABI Value * simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Shl, fold the result or return null.
LLVM_ABI Value * simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q)
Given operand for an FNeg, fold the result or return null.
LLVM_ABI Value * simplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FSub, fold the result or return null.
LLVM_ABI bool canReplacePointersIfEqual(const Value *From, const Value *To, const DataLayout &DL)
Returns true if a pointer value From can be replaced with another pointer value \To if they are deeme...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI Value * simplifyFRemInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FRem, fold the result or return null.
LLVM_ABI Value * simplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FAdd, fold the result or return null.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI Value * simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, const SimplifyQuery &Q)
Given operands for a LShr, fold the result or return null.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI Value * simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an ICmpInst, fold the result or return null.
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI Value * simplifyAndInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an And, fold the result or return null.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI Value * simplifyExtractValueInst(Value *Agg, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an ExtractValueInst, fold the result or return null.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI Value * simplifyInsertValueInst(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const SimplifyQuery &Q)
Given operands for an InsertValueInst, fold the result or return null.
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI Value * simplifyFDivInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FDiv, fold the result or return null.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI Value * simplifyLoadInst(LoadInst *LI, Value *PtrOp, const SimplifyQuery &Q)
Given a load instruction and its pointer operand, fold the result or return null.
LLVM_ABI Value * simplifyFMAFMul(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for the multiplication of a FMA, fold the result or return null.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI Value * simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q)
Given a constrained FP intrinsic call, tries to compute its simplified version.
LLVM_ABI Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
std::optional< DecomposedBitTest > decomposeBitTest(Value *Cond, bool LookThroughTrunc=true, bool AllowNonZeroC=false, bool DecomposeAnd=false)
Decompose an icmp into the form ((X & Mask) pred C) if possible.
LLVM_ABI Value * findScalarElement(Value *V, unsigned EltNo)
Given a vector and an element number, see if the scalar value is already around as a register,...
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
LLVM_ABI Value * simplifyUDivInst(Value *LHS, Value *RHS, bool IsExact, const SimplifyQuery &Q)
Given operands for a UDiv, fold the result or return null.
DWARFExpression::Operation Op
LLVM_ABI bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, unsigned MaxUsesToExplore=0)
PointerMayBeCaptured - Return true if this pointer value may be captured by the enclosing function (w...
LLVM_ABI Value * simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType, Value *Op0, Value *Op1, const SimplifyQuery &Q, const CallBase *Call)
Given operands for a BinaryIntrinsic, fold the result or return null.
RoundingMode
Rounding mode.
@ NearestTiesToEven
roundTiesToEven.
@ TowardNegative
roundTowardNegative.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
unsigned M0(unsigned Val)
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI Value * simplifyInsertElementInst(Value *Vec, Value *Elt, Value *Idx, const SimplifyQuery &Q)
Given operands for an InsertElement, fold the result or return null.
constexpr unsigned BitWidth
LLVM_ABI Value * simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const SimplifyQuery &Q, bool AllowRefinement, SmallVectorImpl< Instruction * > *DropFlags=nullptr)
See if V simplifies when its operand Op is replaced with RepOp.
LLVM_ABI bool maskIsAllZeroOrUndef(Value *Mask)
Given a mask vector of i1, Return true if all of the elements of this predicate mask are known to be ...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI Value * simplifySRemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for an SRem, fold the result or return null.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
LLVM_ABI Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI const SimplifyQuery getBestSimplifyQuery(Pass &, Function &)
std::pair< Value *, FPClassTest > fcmpToClassTest(FCmpInst::Predicate Pred, const Function &F, Value *LHS, Value *RHS, bool LookThroughSrc=true)
Returns a pair of values, which if passed to llvm.is.fpclass, returns the same result as an fcmp with...
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
bool isCheckForZeroAndMulWithOverflow(Value *Op0, Value *Op1, bool IsAnd, Use *&Y)
Match one of the patterns up to the select/logic op: Op0 = icmp ne i4 X, 0 Agg = call { i4,...
bool canIgnoreSNaN(fp::ExceptionBehavior EB, FastMathFlags FMF)
Returns true if the possibility of a signaling NaN can be safely ignored.
LLVM_ABI Value * simplifyURemInst(Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a URem, fold the result or return null.
LLVM_ABI Value * simplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &Q)
Given operands for an ExtractElementInst, fold the result or return null.
LLVM_ABI Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
constexpr detail::IsaCheckPredicate< Types... > IsaPred
Function object wrapper for the llvm::isa type check.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This callback is used in conjunction with PointerMayBeCaptured.
virtual Action captured(const Use *U, UseCaptureInfo CI)=0
Use U directly captures CI.UseCC and additionally CI.ResultCC through the return value of the user of...
virtual void tooManyUses()=0
tooManyUses - The depth of traversal has breached a limit.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
bool hasConflict() const
Returns true if there is conflicting information.
unsigned getBitWidth() const
Get the bit width of this value.
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
bool isKnownAlwaysNaN() const
Return true if it's known this must always be a nan.
static constexpr FPClassTest OrderedLessThanZeroMask
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...
Various options to control the behavior of getObjectSize.
bool NullIsUnknownSize
If this is true, null pointers in address space 0 will be treated as though they can't be evaluated.
Mode EvalMode
How we want to evaluate this object's size.
@ Min
Evaluate all branches of an unknown condition.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
bool CanUseUndef
Controls whether simplifications are allowed to constrain the range of possible values for uses of un...
SimplifyQuery getWithInstruction(const Instruction *I) const
LLVM_ABI bool isUndefValue(Value *V) const
If CanUseUndef is true, returns whether V is undef.
const TargetLibraryInfo * TLI
SimplifyQuery getWithoutUndef() const
Capture information for a specific Use.