57 "disable-i2p-p2i-opt",
cl::init(
false),
58 cl::desc(
"Disables inttoptr/ptrtoint roundtrip optimization"));
64std::optional<TypeSize>
71 assert(!
Size.isScalable() &&
"Array elements cannot have a scalable size");
81std::optional<TypeSize>
101 return "both values to select must have same type";
104 return "select values cannot have token type";
109 return "vector select condition element type must be i1";
112 return "selected values for vector select must be vectors";
114 return "vector select requires selected vectors to have "
115 "the same vector length as select condition";
117 return "select condition must be i1 or <n x i1>";
126PHINode::PHINode(
const PHINode &PN)
128 ReservedSpace(PN.getNumOperands()) {
150 Op<-1>().set(
nullptr);
163 bool DeletePHIIfEmpty) {
167 RemoveIndices.
insert(Idx);
169 if (RemoveIndices.
empty())
174 return RemoveIndices.
contains(U.getOperandNo());
199void PHINode::growOperands() {
201 unsigned NumOps = e + e / 2;
215 if (ConstantValue !=
this)
220 if (ConstantValue ==
this)
222 return ConstantValue;
231 Value *ConstantValue =
nullptr;
235 if (ConstantValue && ConstantValue !=
Incoming)
247LandingPadInst::LandingPadInst(
Type *RetTy,
unsigned NumReservedValues,
248 const Twine &NameStr,
251 init(NumReservedValues, NameStr);
256 ReservedSpace(LP.getNumOperands()) {
261 for (
unsigned I = 0,
E = ReservedSpace;
I !=
E; ++
I)
268 const Twine &NameStr,
270 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
273void LandingPadInst::init(
unsigned NumReservedValues,
const Twine &NameStr) {
274 ReservedSpace = NumReservedValues;
283void LandingPadInst::growOperands(
unsigned Size) {
285 if (ReservedSpace >= e +
Size)
return;
286 ReservedSpace = (std::max(e, 1U) +
Size / 2) * 2;
293 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
305 case Instruction::Call:
307 case Instruction::Invoke:
309 case Instruction::CallBr:
321 if (ChildOB.getTagName() != OpB.
getTag())
346 return CI->isMustTailCall();
353 return CI->isTailCall();
359 return F->getIntrinsicID();
367 Mask |=
F->getAttributes().getRetNoFPClass();
375 Mask |=
F->getAttributes().getParamNoFPClass(i);
383 FnAttr =
F->getRetAttribute(Attribute::Range);
408 if (
Attrs.hasAttrSomewhere(Kind, &Index))
411 if (
F->getAttributes().hasAttrSomewhere(Kind, &Index))
421 if (
Attrs.hasParamAttr(ArgNo, Kind))
428 if (!
F->getAttributes().hasParamAttr(ArgNo, Kind))
433 case Attribute::ReadNone:
435 case Attribute::ReadOnly:
437 case Attribute::WriteOnly:
445 bool AllowUndefOrPoison)
const {
447 "Argument must be a pointer");
449 (AllowUndefOrPoison ||
paramHasAttr(ArgNo, Attribute::NoUndef)))
463 return F->getAttributes().hasFnAttr(Kind);
468bool CallBase::hasFnAttrOnCalledFunction(
StringRef Kind)
const {
470 return F->getAttributes().hasFnAttr(Kind);
475template <
typename AK>
476Attribute CallBase::getFnAttrOnCalledFunction(AK Kind)
const {
477 if constexpr (std::is_same_v<AK, Attribute::AttrKind>) {
480 assert(Kind != Attribute::Memory &&
"Use getMemoryEffects() instead");
484 return F->getAttributes().getFnAttr(Kind);
492CallBase::getFnAttrOnCalledFunction(
StringRef Kind)
const;
494template <
typename AK>
495Attribute CallBase::getParamAttrOnCalledFunction(
unsigned ArgNo,
500 return F->getAttributes().getParamAttr(ArgNo, Kind);
507CallBase::getParamAttrOnCalledFunction(
unsigned ArgNo,
StringRef Kind)
const;
517 const unsigned BeginIndex) {
519 for (
auto &
B : Bundles)
520 It = std::copy(
B.input_begin(),
B.input_end(), It);
523 auto BI = Bundles.
begin();
524 unsigned CurrentIndex = BeginIndex;
527 assert(BI != Bundles.
end() &&
"Incorrect allocation?");
529 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
530 BOI.Begin = CurrentIndex;
531 BOI.End = CurrentIndex + BI->input_size();
532 CurrentIndex = BOI.End;
536 assert(BI == Bundles.
end() &&
"Incorrect allocation?");
556 "The Idx isn't in the operand bundle");
560 constexpr unsigned NumberScaling = 1024;
566 while (Begin != End) {
567 unsigned ScaledOperandPerBundle =
568 NumberScaling * (std::prev(End)->End - Begin->
Begin) / (End - Begin);
569 Current = Begin + (((
OpIdx - Begin->
Begin) * NumberScaling) /
570 ScaledOperandPerBundle);
572 Current = std::prev(End);
573 assert(Current < End && Current >= Begin &&
574 "the operand bundle doesn't cover every value in the range");
584 "the operand bundle doesn't cover every value in the range");
597 return Create(CB, Bundles, InsertPt);
603 bool CreateNew =
false;
607 if (Bundle.getTagID() ==
ID) {
614 return CreateNew ?
Create(CB, Bundles, InsertPt) : CB;
719 CI &= Fn->getAttributes().getParamAttrs(OpNo).getCaptureInfo();
740 CI &= Fn->getAttributes().getParamAttrs(
I).getCaptureInfo();
755 "NumOperands not set up?");
760 "Calling a function with bad signature!");
762 for (
unsigned i = 0; i != Args.size(); ++i)
765 "Calling a function with a bad signature!");
794 init(Ty, Func, Name);
800 "Wrong number of operands allocated");
815 Args, OpB, CI->
getName(), InsertPt);
829 LLVM_DEBUG(
dbgs() <<
"Attempting to update profile weights will result in "
830 "div by 0. Ignoring. Likely the function "
832 <<
" has 0 entry count, and contains call instructions "
833 "with non-zero prof info.");
846 const Twine &NameStr) {
851 "NumOperands not set up?");
856 "Invoking a function with bad signature");
858 for (
unsigned i = 0, e = Args.size(); i != e; i++)
861 "Invoking a function with a bad signature!");
881 "Wrong number of operands allocated");
884 std::copy(
II.bundle_op_info_begin(),
II.bundle_op_info_end(),
891 std::vector<Value *> Args(
II->arg_begin(),
II->arg_end());
894 II->getFunctionType(),
II->getCalledOperand(),
II->getNormalDest(),
895 II->getUnwindDest(), Args, OpB,
II->getName(), InsertPt);
896 NewII->setCallingConv(
II->getCallingConv());
897 NewII->SubclassOptionalData =
II->SubclassOptionalData;
898 NewII->setAttributes(
II->getAttributes());
899 NewII->setDebugLoc(
II->getDebugLoc());
909 LLVM_DEBUG(
dbgs() <<
"Attempting to update profile weights will result in "
910 "div by 0. Ignoring. Likely the function "
912 <<
" has 0 entry count, and contains call instructions "
913 "with non-zero prof info.");
927 const Twine &NameStr) {
931 IndirectDests.
size(),
933 "NumOperands not set up?");
938 "Calling a function with bad signature");
940 for (
unsigned i = 0, e = Args.size(); i != e; i++)
943 "Calling a function with a bad signature!");
949 NumIndirectDests = IndirectDests.
size();
951 for (
unsigned i = 0; i != NumIndirectDests; ++i)
966 "Wrong number of operands allocated");
972 NumIndirectDests = CBI.NumIndirectDests;
986 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
998 "Wrong number of operands allocated");
1024 AllocMarker, InsertBefore) {
1036 "Wrong number of operands allocated");
1037 setSubclassData<Instruction::OpaqueField>(
1044void CleanupReturnInst::init(
Value *CleanupPad,
BasicBlock *UnwindBB) {
1046 setSubclassData<UnwindDestField>(
true);
1048 Op<0>() = CleanupPad;
1053CleanupReturnInst::CleanupReturnInst(
Value *CleanupPad,
BasicBlock *UnwindBB,
1058 init(CleanupPad, UnwindBB);
1079 AllocMarker, InsertBefore) {
1087CatchSwitchInst::CatchSwitchInst(
Value *ParentPad,
BasicBlock *UnwindDest,
1088 unsigned NumReservedValues,
1089 const Twine &NameStr,
1094 ++NumReservedValues;
1095 init(ParentPad, UnwindDest, NumReservedValues + 1);
1106 for (
unsigned I = 1,
E = ReservedSpace;
I !=
E; ++
I)
1111 unsigned NumReservedValues) {
1112 assert(ParentPad && NumReservedValues);
1114 ReservedSpace = NumReservedValues;
1118 Op<0>() = ParentPad;
1127void CatchSwitchInst::growOperands(
unsigned Size) {
1129 assert(NumOperands >= 1);
1130 if (ReservedSpace >= NumOperands +
Size)
1132 ReservedSpace = (NumOperands +
Size / 2) * 2;
1139 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
1147 for (
Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1148 *CurDst = *(CurDst + 1);
1159 const Twine &NameStr) {
1169 "Wrong number of operands allocated");
1176 const Twine &NameStr,
1179 init(ParentPad, Args, NameStr);
1189 AllocMarker, InsertBefore) {}
1195void BranchInst::AssertOK() {
1198 "May only branch on boolean predicates!");
1205 assert(IfTrue &&
"Branch destination may not be null!");
1226 "Wrong number of operands allocated");
1230 Op<-3>() = BI.
Op<-3>();
1231 Op<-2>() = BI.
Op<-2>();
1233 Op<-1>() = BI.
Op<-1>();
1239 "Cannot swap successors of an unconditional branch");
1256 "Passed basic block into allocation size parameter! Use other ctor");
1258 "Allocation array size is not an integer!");
1265 "Insertion position cannot be null when alignment not provided!");
1268 "BB must be in a Function when alignment not provided!");
1270 return DL.getPrefTypeAlign(Ty);
1275 :
AllocaInst(Ty, AddrSpace, nullptr, Name, InsertBefore) {}
1290 assert(!Ty->isVoidTy() &&
"Cannot allocate void!");
1296 return !CI->isOne();
1316void LoadInst::AssertOK() {
1318 "Ptr must have pointer type.");
1323 "Insertion position cannot be null when alignment not provided!");
1326 "BB must be in a Function when alignment not provided!");
1328 return DL.getABITypeAlign(Ty);
1360void StoreInst::AssertOK() {
1363 "Ptr must have pointer type!");
1410 "All operands must be non-null!");
1412 "Ptr must have pointer type!");
1414 "Cmp type and NewVal type must be same!");
1425 AtomicCmpXchg, AllocMarker, InsertBefore) {
1426 Init(
Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1437 "atomicrmw instructions can only be atomic.");
1439 "atomicrmw instructions cannot be unordered.");
1449 "Ptr must have pointer type!");
1451 "AtomicRMW instructions must be atomic!");
1506 return "<invalid operation>";
1528 const Twine &Name) {
1530 "NumOperands not initialized?");
1539 SourceElementType(GEPI.SourceElementType),
1540 ResultElementType(GEPI.ResultElementType) {
1542 "Wrong number of operands allocated");
1549 if (!
Struct->indexValid(Idx))
1551 return Struct->getTypeAtIndex(Idx);
1556 return Array->getElementType();
1558 return Vector->getElementType();
1564 if (Idx >=
Struct->getNumElements())
1566 return Struct->getElementType(Idx);
1569 return Array->getElementType();
1571 return Vector->getElementType();
1575template <
typename IndexTy>
1577 if (IdxList.
empty())
1579 for (IndexTy V : IdxList.
slice(1)) {
1606 if (!CI->isZero())
return false;
1663 APInt &ConstantOffset)
const {
1673ExtractElementInst::ExtractElementInst(
Value *Val,
Value *Index,
1677 ExtractElement, AllocMarker, InsertBef) {
1678 assert(isValidOperands(Val, Index) &&
1679 "Invalid extractelement instruction operands!");
1695InsertElementInst::InsertElementInst(
Value *Vec,
Value *Elt,
Value *Index,
1700 "Invalid insertelement instruction operands!");
1708 const Value *Index) {
1715 if (!Index->getType()->isIntegerTy())
1725 assert(V &&
"Cannot create placeholder of nullptr V");
1746 ShuffleVector, AllocMarker, InsertBefore) {
1748 "Invalid shuffle vector instruction operands!");
1764 ShuffleVector, AllocMarker, InsertBefore) {
1766 "Invalid shuffle vector instruction operands!");
1775 int NumMaskElts = ShuffleMask.size();
1777 for (
int i = 0; i != NumMaskElts; ++i) {
1783 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts &&
"Out-of-range mask");
1784 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1785 NewMask[i] = MaskElt;
1800 for (
int Elem : Mask)
1812 const Value *Mask) {
1820 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
1836 return !CI->uge(V1Size * 2);
1839 for (
Value *
Op : MV->operands()) {
1841 if (CI->uge(V1Size*2))
1853 if (CDS->getElementAsInteger(i) >= V1Size*2)
1867 Result.append(EC.getKnownMinValue(), MaskVal);
1871 assert(!EC.isScalable() &&
1872 "Scalable vector shuffle mask must be undef or zeroinitializer");
1874 unsigned NumElts = EC.getFixedValue();
1876 Result.reserve(NumElts);
1879 for (
unsigned i = 0; i != NumElts; ++i)
1880 Result.push_back(CDS->getElementAsInteger(i));
1883 for (
unsigned i = 0; i != NumElts; ++i) {
1884 Constant *
C = Mask->getAggregateElement(i);
1891 ShuffleMask.assign(Mask.begin(), Mask.end());
1906 for (
int Elem : Mask) {
1916 assert(!Mask.empty() &&
"Shuffle mask must contain elements");
1917 bool UsesLHS =
false;
1918 bool UsesRHS =
false;
1919 for (
int I : Mask) {
1922 assert(
I >= 0 &&
I < (NumOpElts * 2) &&
1923 "Out-of-bounds shuffle mask element");
1924 UsesLHS |= (
I < NumOpElts);
1925 UsesRHS |= (
I >= NumOpElts);
1926 if (UsesLHS && UsesRHS)
1930 return UsesLHS || UsesRHS;
1942 for (
int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1945 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1952 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1960 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1969 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1972 if (Mask[
I] != (NumSrcElts - 1 -
I) &&
1973 Mask[
I] != (NumSrcElts + NumSrcElts - 1 -
I))
1980 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1984 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
1987 if (Mask[
I] != 0 && Mask[
I] != NumSrcElts)
1994 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
1999 for (
int I = 0, E = Mask.size();
I < E; ++
I) {
2002 if (Mask[
I] !=
I && Mask[
I] != (NumSrcElts +
I))
2015 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
2018 int Sz = Mask.size();
2023 if (Mask[0] != 0 && Mask[0] != 1)
2028 if ((Mask[1] - Mask[0]) != NumSrcElts)
2033 for (
int I = 2;
I < Sz; ++
I) {
2034 int MaskEltVal = Mask[
I];
2035 if (MaskEltVal == -1)
2037 int MaskEltPrevVal = Mask[
I - 2];
2038 if (MaskEltVal - MaskEltPrevVal != 2)
2046 if (Mask.size() !=
static_cast<unsigned>(NumSrcElts))
2049 int StartIndex = -1;
2050 for (
int I = 0, E = Mask.size();
I != E; ++
I) {
2051 int MaskEltVal = Mask[
I];
2052 if (MaskEltVal == -1)
2055 if (StartIndex == -1) {
2058 if (MaskEltVal <
I || NumSrcElts <= (MaskEltVal -
I))
2061 StartIndex = MaskEltVal -
I;
2066 if (MaskEltVal != (StartIndex +
I))
2070 if (StartIndex == -1)
2079 int NumSrcElts,
int &Index) {
2085 if (NumSrcElts <= (
int)Mask.size())
2090 for (
int i = 0, e = Mask.size(); i != e; ++i) {
2094 int Offset = (M % NumSrcElts) - i;
2095 if (0 <= SubIndex && SubIndex !=
Offset)
2100 if (0 <= SubIndex && SubIndex + (
int)Mask.size() <= NumSrcElts) {
2108 int NumSrcElts,
int &NumSubElts,
2110 int NumMaskElts = Mask.size();
2113 if (NumMaskElts < NumSrcElts)
2124 bool Src0Identity =
true;
2125 bool Src1Identity =
true;
2127 for (
int i = 0; i != NumMaskElts; ++i) {
2133 if (M < NumSrcElts) {
2135 Src0Identity &= (M == i);
2139 Src1Identity &= (M == (i + NumSrcElts));
2141 assert((Src0Elts | Src1Elts | UndefElts).isAllOnes() &&
2142 "unknown shuffle elements");
2144 "2-source shuffle not found");
2150 int Src0Hi = NumMaskElts - Src0Elts.
countl_zero();
2151 int Src1Hi = NumMaskElts - Src1Elts.
countl_zero();
2156 int NumSub1Elts = Src1Hi - Src1Lo;
2159 NumSubElts = NumSub1Elts;
2168 int NumSub0Elts = Src0Hi - Src0Lo;
2171 NumSubElts = NumSub0Elts;
2188 if (NumMaskElts <= NumOpElts)
2197 for (
int i = NumOpElts; i < NumMaskElts; ++i)
2212 if (NumMaskElts >= NumOpElts)
2230 if (NumMaskElts != NumOpElts * 2)
2241 int ReplicationFactor,
int VF) {
2242 assert(Mask.size() == (
unsigned)ReplicationFactor * VF &&
2243 "Unexpected mask size.");
2245 for (
int CurrElt :
seq(VF)) {
2246 ArrayRef<int> CurrSubMask = Mask.take_front(ReplicationFactor);
2247 assert(CurrSubMask.
size() == (
unsigned)ReplicationFactor &&
2248 "Run out of mask?");
2249 Mask = Mask.drop_front(ReplicationFactor);
2250 if (!
all_of(CurrSubMask, [CurrElt](
int MaskElt) {
2255 assert(Mask.empty() &&
"Did not consume the whole mask?");
2261 int &ReplicationFactor,
int &VF) {
2265 Mask.take_while([](
int MaskElt) {
return MaskElt == 0; }).
size();
2266 if (ReplicationFactor == 0 || Mask.size() % ReplicationFactor != 0)
2268 VF = Mask.size() / ReplicationFactor;
2280 for (
int MaskElt : Mask) {
2284 if (MaskElt < Largest)
2286 Largest = std::max(Largest, MaskElt);
2290 for (
int PossibleReplicationFactor :
2292 if (Mask.size() % PossibleReplicationFactor != 0)
2294 int PossibleVF = Mask.size() / PossibleReplicationFactor;
2298 ReplicationFactor = PossibleReplicationFactor;
2314 if (ShuffleMask.size() % VF != 0)
2316 ReplicationFactor = ShuffleMask.size() / VF;
2322 if (VF <= 0 || Mask.size() <
static_cast<unsigned>(VF) ||
2323 Mask.size() % VF != 0)
2325 for (
unsigned K = 0, Sz = Mask.size(); K < Sz; K += VF) {
2330 for (
int Idx : SubMask) {
2366 unsigned NumElts = Mask.size();
2367 if (NumElts % Factor)
2370 unsigned LaneLen = NumElts / Factor;
2374 StartIndexes.
resize(Factor);
2380 for (;
I < Factor;
I++) {
2381 unsigned SavedLaneValue;
2382 unsigned SavedNoUndefs = 0;
2385 for (J = 0; J < LaneLen - 1; J++) {
2387 unsigned Lane = J * Factor +
I;
2388 unsigned NextLane = Lane + Factor;
2389 int LaneValue = Mask[Lane];
2390 int NextLaneValue = Mask[NextLane];
2393 if (LaneValue >= 0 && NextLaneValue >= 0 &&
2394 LaneValue + 1 != NextLaneValue)
2398 if (LaneValue >= 0 && NextLaneValue < 0) {
2399 SavedLaneValue = LaneValue;
2408 if (SavedNoUndefs > 0 && LaneValue < 0) {
2410 if (NextLaneValue >= 0 &&
2411 SavedLaneValue + SavedNoUndefs != (
unsigned)NextLaneValue)
2416 if (J < LaneLen - 1)
2422 StartMask = Mask[
I];
2423 }
else if (Mask[(LaneLen - 1) * Factor +
I] >= 0) {
2425 StartMask = Mask[(LaneLen - 1) * Factor +
I] - J;
2426 }
else if (SavedNoUndefs > 0) {
2428 StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
2435 if (StartMask + LaneLen > NumInputElts)
2438 StartIndexes[
I] = StartMask;
2451 for (
unsigned Idx = 0; Idx < Factor; Idx++) {
2456 for (;
I < Mask.size();
I++)
2457 if (Mask[
I] >= 0 &&
static_cast<unsigned>(Mask[
I]) != Idx +
I * Factor)
2460 if (
I == Mask.size()) {
2474 int NumElts = Mask.size();
2475 assert((NumElts % NumSubElts) == 0 &&
"Illegal shuffle mask");
2478 for (
int i = 0; i != NumElts; i += NumSubElts) {
2479 for (
int j = 0; j != NumSubElts; ++j) {
2480 int M = Mask[i + j];
2483 if (M < i || M >= i + NumSubElts)
2485 int Offset = (NumSubElts - (M - (i + j))) % NumSubElts;
2486 if (0 <= RotateAmt &&
Offset != RotateAmt)
2495 ArrayRef<int> Mask,
unsigned EltSizeInBits,
unsigned MinSubElts,
2496 unsigned MaxSubElts,
unsigned &NumSubElts,
unsigned &RotateAmt) {
2497 for (NumSubElts = MinSubElts; NumSubElts <= MaxSubElts; NumSubElts *= 2) {
2499 if (EltRotateAmt < 0)
2501 RotateAmt = EltRotateAmt * EltSizeInBits;
2513 const Twine &Name) {
2520 assert(!Idxs.
empty() &&
"InsertValueInst must have at least one index");
2523 Val->
getType() &&
"Inserted value must match indexed type!");
2533 Indices(IVI.Indices) {
2548 assert(!Idxs.
empty() &&
"ExtractValueInst must have at least one index");
2550 Indices.append(Idxs.
begin(), Idxs.
end());
2557 Indices(EVI.Indices) {
2569 for (
unsigned Index : Idxs) {
2577 if (Index >= AT->getNumElements())
2579 Agg = AT->getElementType();
2581 if (Index >= ST->getNumElements())
2583 Agg = ST->getElementType(Index);
2609void UnaryOperator::AssertOK() {
2616 "Unary operation should return same type as operand!");
2618 "Tried to create a floating-point operation on a "
2619 "non-floating-point type!");
2632 :
Instruction(Ty, iType, AllocMarker, InsertBefore) {
2639void BinaryOperator::AssertOK() {
2641 (void)LHS; (void)RHS;
2642 assert(LHS->getType() == RHS->getType() &&
2643 "Binary operator operand types must match!");
2649 "Arithmetic operation should return same type as operands!");
2651 "Tried to create an integer operation on a non-integer type!");
2653 case FAdd:
case FSub:
2656 "Arithmetic operation should return same type as operands!");
2658 "Tried to create a floating-point operation on a "
2659 "non-floating-point type!");
2664 "Arithmetic operation should return same type as operands!");
2666 "Incorrect operand type (not integer) for S/UDIV");
2670 "Arithmetic operation should return same type as operands!");
2672 "Incorrect operand type (not floating point) for FDIV");
2677 "Arithmetic operation should return same type as operands!");
2679 "Incorrect operand type (not integer) for S/UREM");
2683 "Arithmetic operation should return same type as operands!");
2685 "Incorrect operand type (not floating point) for FREM");
2691 "Shift operation should return same type as operands!");
2693 "Tried to create a shift operation on a non-integral type!");
2698 "Logical operation should return same type as operands!");
2700 "Tried to create a logical operation on a non-integral type!");
2711 "Cannot create binary operator with two operands of differing type!");
2717 Value *Zero = ConstantInt::get(
Op->getType(), 0);
2724 Value *Zero = ConstantInt::get(
Op->getType(), 0);
2725 return BinaryOperator::CreateNSWSub(Zero,
Op, Name, InsertBefore);
2732 Op->getType(), Name, InsertBefore);
2765 default:
return false;
2766 case Instruction::ZExt:
2767 case Instruction::SExt:
2768 case Instruction::Trunc:
2770 case Instruction::BitCast:
2791 case Instruction::Trunc:
2792 case Instruction::ZExt:
2793 case Instruction::SExt:
2794 case Instruction::FPTrunc:
2795 case Instruction::FPExt:
2796 case Instruction::UIToFP:
2797 case Instruction::SIToFP:
2798 case Instruction::FPToUI:
2799 case Instruction::FPToSI:
2800 case Instruction::AddrSpaceCast:
2803 case Instruction::BitCast:
2805 case Instruction::PtrToAddr:
2806 case Instruction::PtrToInt:
2807 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2809 case Instruction::IntToPtr:
2810 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2811 SrcTy->getScalarSizeInBits();
2830 Type *DstIntPtrTy) {
2861 const unsigned numCastOps =
2862 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2864 static const uint8_t CastResults[numCastOps][numCastOps] = {
2870 { 1, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2871 { 8, 1, 9,99,99, 2,17,99,99,99,99, 2, 3, 0},
2872 { 8, 0, 1,99,99, 0, 2,99,99,99,99, 0, 3, 0},
2873 { 0, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2874 { 0, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2875 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0},
2876 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0},
2877 { 99,99,99, 0, 0,99,99, 0, 0,99,99,99, 4, 0},
2878 { 99,99,99, 2, 2,99,99, 8, 2,99,99,99, 4, 0},
2879 { 1, 0, 0,99,99, 0, 0,99,99,99,99, 7, 3, 0},
2880 { 1, 0, 0,99,99, 0, 0,99,99,99,99, 0, 3, 0},
2881 { 99,99,99,99,99,99,99,99,99,11,99,99,15, 0},
2882 { 5, 5, 5, 0, 0, 5, 5, 0, 0,16,16, 5, 1,14},
2883 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12},
2891 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2892 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2893 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2898 if (!AreBothBitcasts)
2901 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2902 [secondOp-Instruction::CastOpsBegin];
2929 if (SrcTy->isIntegerTy())
2947 return Instruction::BitCast;
2950 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2953 if (MidSize >= PtrSize)
2954 return Instruction::BitCast;
2961 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2964 return Instruction::BitCast;
2965 if (SrcSize < DstSize)
2967 if (SrcSize > DstSize)
2973 return Instruction::ZExt;
2979 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2981 if (SrcSize <= PtrSize && SrcSize == DstSize)
2982 return Instruction::BitCast;
2989 return Instruction::AddrSpaceCast;
2990 return Instruction::BitCast;
2996 SrcTy->isPtrOrPtrVectorTy() &&
3001 "Illegal addrspacecast, bitcast sequence!");
3006 return Instruction::AddrSpaceCast;
3012 SrcTy->isIntOrIntVectorTy() &&
3016 "Illegal inttoptr, bitcast sequence!");
3024 SrcTy->isPtrOrPtrVectorTy() &&
3028 "Illegal bitcast, ptrtoint sequence!");
3033 return Instruction::UIToFP;
3048 case Trunc:
return new TruncInst (S, Ty, Name, InsertBefore);
3049 case ZExt:
return new ZExtInst (S, Ty, Name, InsertBefore);
3050 case SExt:
return new SExtInst (S, Ty, Name, InsertBefore);
3051 case FPTrunc:
return new FPTruncInst (S, Ty, Name, InsertBefore);
3052 case FPExt:
return new FPExtInst (S, Ty, Name, InsertBefore);
3053 case UIToFP:
return new UIToFPInst (S, Ty, Name, InsertBefore);
3054 case SIToFP:
return new SIToFPInst (S, Ty, Name, InsertBefore);
3055 case FPToUI:
return new FPToUIInst (S, Ty, Name, InsertBefore);
3056 case FPToSI:
return new FPToSIInst (S, Ty, Name, InsertBefore);
3057 case PtrToAddr:
return new PtrToAddrInst (S, Ty, Name, InsertBefore);
3058 case PtrToInt:
return new PtrToIntInst (S, Ty, Name, InsertBefore);
3059 case IntToPtr:
return new IntToPtrInst (S, Ty, Name, InsertBefore);
3061 return new BitCastInst(S, Ty, Name, InsertBefore);
3072 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3073 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3079 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3080 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3086 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3087 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3094 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3097 assert((!Ty->isVectorTy() ||
3102 if (Ty->isIntOrIntVectorTy())
3103 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3111 assert(Ty->isPtrOrPtrVectorTy() &&
"Invalid cast");
3114 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3116 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3123 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3125 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3127 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3133 assert(
C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3134 "Invalid integer cast");
3135 unsigned SrcBits =
C->getType()->getScalarSizeInBits();
3136 unsigned DstBits = Ty->getScalarSizeInBits();
3138 (SrcBits == DstBits ? Instruction::BitCast :
3139 (SrcBits > DstBits ? Instruction::Trunc :
3140 (
isSigned ? Instruction::SExt : Instruction::ZExt)));
3141 return Create(opcode,
C, Ty, Name, InsertBefore);
3146 assert(
C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3148 unsigned SrcBits =
C->getType()->getScalarSizeInBits();
3149 unsigned DstBits = Ty->getScalarSizeInBits();
3150 assert((
C->getType() == Ty || SrcBits != DstBits) &&
"Invalid cast");
3152 (SrcBits == DstBits ? Instruction::BitCast :
3153 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3154 return Create(opcode,
C, Ty, Name, InsertBefore);
3161 if (SrcTy == DestTy)
3166 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3168 SrcTy = SrcVecTy->getElementType();
3169 DestTy = DestVecTy->getElementType();
3176 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3180 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();
3188 if (SrcBits != DestBits)
3199 return (IntTy->getBitWidth() ==
DL.getPointerTypeSizeInBits(PtrTy) &&
3200 !
DL.isNonIntegralPointerType(PtrTy));
3203 return (IntTy->getBitWidth() ==
DL.getPointerTypeSizeInBits(PtrTy) &&
3204 !
DL.isNonIntegralPointerType(PtrTy));
3217 const Value *Src,
bool SrcIsSigned,
Type *DestTy,
bool DestIsSigned) {
3218 Type *SrcTy = Src->getType();
3221 "Only first class types are castable!");
3223 if (SrcTy == DestTy)
3229 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3232 SrcTy = SrcVecTy->getElementType();
3233 DestTy = DestVecTy->getElementType();
3237 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
3242 if (SrcTy->isIntegerTy()) {
3243 if (DestBits < SrcBits)
3245 else if (DestBits > SrcBits) {
3253 }
else if (SrcTy->isFloatingPointTy()) {
3258 }
else if (SrcTy->isVectorTy()) {
3259 assert(DestBits == SrcBits &&
3260 "Casting vector to integer of different width");
3263 assert(SrcTy->isPointerTy() &&
3264 "Casting from a value that is not first-class type");
3268 if (SrcTy->isIntegerTy()) {
3273 }
else if (SrcTy->isFloatingPointTy()) {
3274 if (DestBits < SrcBits) {
3276 }
else if (DestBits > SrcBits) {
3281 }
else if (SrcTy->isVectorTy()) {
3282 assert(DestBits == SrcBits &&
3283 "Casting vector to floating point of different width");
3288 assert(DestBits == SrcBits &&
3289 "Illegal cast to vector (wrong type or size)");
3292 if (SrcTy->isPointerTy()) {
3294 return AddrSpaceCast;
3296 }
else if (SrcTy->isIntegerTy()) {
3322 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3335 default:
return false;
3336 case Instruction::Trunc:
3338 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3339 case Instruction::ZExt:
3341 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3342 case Instruction::SExt:
3344 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3345 case Instruction::FPTrunc:
3347 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3348 case Instruction::FPExt:
3350 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3351 case Instruction::UIToFP:
3352 case Instruction::SIToFP:
3355 case Instruction::FPToUI:
3356 case Instruction::FPToSI:
3359 case Instruction::PtrToAddr:
3360 case Instruction::PtrToInt:
3364 case Instruction::IntToPtr:
3368 case Instruction::BitCast: {
3374 if (!SrcPtrTy != !DstPtrTy)
3387 if (SrcIsVec && DstIsVec)
3388 return SrcEC == DstEC;
3396 case Instruction::AddrSpaceCast: {
3408 return SrcEC == DstEC;
3415 :
CastInst(Ty, Trunc, S, Name, InsertBefore) {
3421 :
CastInst(Ty, ZExt, S, Name, InsertBefore) {
3427 :
CastInst(Ty, SExt, S, Name, InsertBefore) {
3433 :
CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3439 :
CastInst(Ty, FPExt, S, Name, InsertBefore) {
3445 :
CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3451 :
CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3457 :
CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3463 :
CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3469 :
CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3475 :
CastInst(Ty, PtrToAddr, S, Name, InsertBefore) {
3481 :
CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3487 :
CastInst(Ty, BitCast, S, Name, InsertBefore) {
3493 :
CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3515 if (
Op == Instruction::ICmp) {
3551 return IC->isCommutative();
3628 default:
return "unknown";
3809 switch (predicate) {
3810 default:
return false;
3817 switch (predicate) {
3818 default:
return false;
3833 return LHS.ugt(RHS);
3835 return LHS.uge(RHS);
3837 return LHS.ult(RHS);
3839 return LHS.ule(RHS);
3841 return LHS.sgt(RHS);
3843 return LHS.sge(RHS);
3845 return LHS.slt(RHS);
3847 return LHS.sle(RHS);
3935 switch (predicate) {
3936 default:
return false;
3944 switch (predicate) {
3945 default:
return false;
3954 default:
return false;
3964 default:
return false;
4010 return std::nullopt;
4019 if (
A.Pred ==
B.Pred)
4023 if (
A.HasSameSign &&
4026 if (
B.HasSameSign &&
4038 return ICI->getCmpPredicate();
4039 return Cmp->getPredicate();
4056 ReservedSpace = NumReserved;
4071 AllocMarker, InsertBefore) {
4077 init(
SI.getCondition(),
SI.getDefaultDest(),
SI.getNumOperands());
4078 setNumHungOffUseOperands(
SI.getNumOperands());
4079 Use *OL = getOperandList();
4080 const Use *InOL =
SI.getOperandList();
4081 for (
unsigned i = 2,
E =
SI.getNumOperands(); i !=
E; i += 2) {
4083 OL[i+1] = InOL[i+1];
4085 SubclassOptionalData =
SI.SubclassOptionalData;
4093 if (OpNo+2 > ReservedSpace)
4096 assert(OpNo+1 < ReservedSpace &&
"Growing didn't work!");
4106 unsigned idx =
I->getCaseIndex();
4114 if (2 + (idx + 1) * 2 !=
NumOps) {
4115 OL[2 + idx * 2] = OL[
NumOps - 2];
4116 OL[2 + idx * 2 + 1] = OL[
NumOps - 1];
4124 return CaseIt(
this, idx);
4130void SwitchInst::growOperands() {
4139 assert(Changed &&
"called only if metadata has changed");
4144 assert(SI.getNumSuccessors() == Weights->size() &&
4145 "num of prof branch_weights must accord with num of successors");
4147 bool AllZeroes =
all_of(*Weights, [](
uint32_t W) {
return W == 0; });
4149 if (AllZeroes || Weights->size() < 2)
4162 "not correspond to number of succesors");
4168 this->Weights = std::move(Weights);
4174 assert(SI.getNumSuccessors() == Weights->size() &&
4175 "num of prof branch_weights must accord with num of successors");
4180 (*Weights)[
I->getCaseIndex() + 1] = Weights->back();
4181 Weights->pop_back();
4183 return SI.removeCase(
I);
4189 SI.addCase(OnVal, Dest);
4191 if (!Weights && W && *W) {
4194 (*Weights)[SI.getNumSuccessors() - 1] = *W;
4195 }
else if (Weights) {
4197 Weights->push_back(W.value_or(0));
4200 assert(SI.getNumSuccessors() == Weights->size() &&
4201 "num of prof branch_weights must accord with num of successors");
4210 return SI.eraseFromParent();
4216 return std::nullopt;
4217 return (*Weights)[idx];
4229 auto &OldW = (*Weights)[idx];
4241 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4246 return std::nullopt;
4253void IndirectBrInst::init(
Value *
Address,
unsigned NumDests) {
4255 "Address of indirectbr must be a pointer");
4256 ReservedSpace = 1+NumDests;
4267void IndirectBrInst::growOperands() {
4275IndirectBrInst::IndirectBrInst(
Value *
Address,
unsigned NumCases,
4278 Instruction::IndirectBr, AllocMarker, InsertBefore) {
4287 Use *OL = getOperandList();
4298 if (OpNo+1 > ReservedSpace)
4301 assert(OpNo < ReservedSpace &&
"Growing didn't work!");
4315 OL[idx+1] = OL[
NumOps-1];
4340 return new (AllocMarker) GetElementPtrInst(*
this, AllocMarker);
4360 return new ExtractValueInst(*
this);
4364 return new InsertValueInst(*
this);
4390 Result->setWeak(
isWeak());
4467 return new (AllocMarker) CallInst(*
this, AllocMarker);
4470 return new (AllocMarker) CallInst(*
this, AllocMarker);
4496 return new LandingPadInst(*
this);
4501 return new (AllocMarker) ReturnInst(*
this, AllocMarker);
4506 return new (AllocMarker) BranchInst(*
this, AllocMarker);
4512 return new IndirectBrInst(*
this);
4520 return new (AllocMarker) InvokeInst(*
this, AllocMarker);
4523 return new (AllocMarker) InvokeInst(*
this, AllocMarker);
4531 return new (AllocMarker) CallBrInst(*
this, AllocMarker);
4534 return new (AllocMarker) CallBrInst(*
this, AllocMarker);
4538 return new (AllocMarker) ResumeInst(*
this);
4543 return new (AllocMarker) CleanupReturnInst(*
this, AllocMarker);
4547 return new (AllocMarker) CatchReturnInst(*
this);
4551 return new CatchSwitchInst(*
this);
4556 return new (AllocMarker) FuncletPadInst(*
this, AllocMarker);
4565 bool NoTrapAfterNoreturn)
const {
4566 if (!TrapUnreachable)
4572 if (NoTrapAfterNoreturn)
4575 if (
Call->isNonContinuableTrap())
4579 if (
getFunction()->hasFnAttribute(Attribute::Naked))
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static bool isSigned(unsigned int Opcode)
Module.h This file contains the declarations for the Module class.
static Align computeLoadStoreDefaultAlign(Type *Ty, InsertPosition Pos)
static bool isImpliedFalseByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
static Value * createPlaceholderForShuffleVector(Value *V)
static Align computeAllocaDefaultAlign(Type *Ty, InsertPosition Pos)
static cl::opt< bool > DisableI2pP2iOpt("disable-i2p-p2i-opt", cl::init(false), cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"))
static bool hasNonZeroFPOperands(const CmpInst *Cmp)
static int matchShuffleAsBitRotate(ArrayRef< int > Mask, int NumSubElts)
Try to lower a vector shuffle as a bit rotation.
static Type * getIndexedTypeInternal(Type *Ty, ArrayRef< IndexTy > IdxList)
static bool isReplicationMaskWithParams(ArrayRef< int > Mask, int ReplicationFactor, int VF)
static bool isIdentityMaskImpl(ArrayRef< int > Mask, int NumOpElts)
static bool isSingleSourceMaskImpl(ArrayRef< int > Mask, int NumOpElts)
static Value * getAISize(LLVMContext &Context, Value *Amt)
static bool isImpliedTrueByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
static unsigned getNumElements(Type *Ty)
This file implements the SmallBitVector class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
LLVM_ABI float convertToFloat() const
Converts this APFloat to host float value.
Class for arbitrary precision integers.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
This class represents a conversion between pointers from one address space to another.
LLVM_ABI AddrSpaceCastInst * cloneImpl() const
Clone an identical AddrSpaceCastInst.
LLVM_ABI AddrSpaceCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI std::optional< TypeSize > getAllocationSizeInBits(const DataLayout &DL) const
Get allocation size in bits.
bool isSwiftError() const
Return true if this alloca is used as a swifterror argument to a call.
LLVM_ABI bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
LLVM_ABI AllocaInst * cloneImpl() const
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
bool isUsedWithInAlloca() const
Return true if this alloca is used as an inalloca argument to a call.
unsigned getAddressSpace() const
Return the address space for the allocation.
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
LLVM_ABI bool isArrayAllocation() const
Return true if there is an allocation size parameter to the allocation instruction that is not 1.
void setAlignment(Align Align)
const Value * getArraySize() const
Get the number of elements allocated.
LLVM_ABI AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, const Twine &Name, InsertPosition InsertBefore)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this cmpxchg instruction.
bool isVolatile() const
Return true if this is a cmpxchg from a volatile memory location.
void setFailureOrdering(AtomicOrdering Ordering)
Sets the failure ordering constraint of this cmpxchg instruction.
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
void setSuccessOrdering(AtomicOrdering Ordering)
Sets the success ordering constraint of this cmpxchg instruction.
LLVM_ABI AtomicCmpXchgInst * cloneImpl() const
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
bool isWeak() const
Return true if this cmpxchg may spuriously fail.
void setAlignment(Align Align)
AtomicOrdering getSuccessOrdering() const
Returns the success ordering constraint of this cmpxchg instruction.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this cmpxchg instruction.
LLVM_ABI AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
LLVM_ABI AtomicRMWInst * cloneImpl() const
bool isVolatile() const
Return true if this is a RMW on a volatile memory location.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ FMinimum
*p = minimum(old, v) minimum matches the behavior of llvm.minimum.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ FMaximum
*p = maximum(old, v) maximum matches the behavior of llvm.maximum.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ FMin
*p = minnum(old, v) minnum matches the behavior of llvm.minnum.
@ UMax
*p = old >unsigned v ? old : v
@ FMax
*p = maxnum(old, v) maxnum matches the behavior of llvm.maxnum.
@ UDecWrap
Decrement one until a minimum value or zero.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this rmw instruction.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this rmw instruction.
void setOperation(BinOp Operation)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
BinOp getOperation() const
LLVM_ABI AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, AtomicOrdering Ordering, SyncScope::ID SSID, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
void setAlignment(Align Align)
static LLVM_ABI StringRef getOperationName(BinOp Op)
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM_ABI CaptureInfo getCaptureInfo() const
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI const ConstantRange & getRange() const
Returns the value of the range attribute.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
static LLVM_ABI Attribute getWithMemoryEffects(LLVMContext &Context, MemoryEffects ME)
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM Basic Block Representation.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
BinaryOps getOpcode() const
LLVM_ABI bool swapOperands()
Exchange the two operands to this instruction.
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
static LLVM_ABI BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
LLVM_ABI BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
static LLVM_ABI BinaryOperator * CreateNSWNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
LLVM_ABI BinaryOperator * cloneImpl() const
This class represents a no-op cast from one type to another.
LLVM_ABI BitCastInst * cloneImpl() const
Clone an identical BitCastInst.
LLVM_ABI BitCastInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Conditional or Unconditional Branch instruction.
LLVM_ABI void swapSuccessors()
Swap the successors of this branch instruction.
LLVM_ABI BranchInst * cloneImpl() const
bool isConditional() const
Value * getCondition() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
LLVM_ABI FPClassTest getParamNoFPClass(unsigned i) const
Extract a test mask for disallowed floating-point value classes for the parameter.
bool isInlineAsm() const
Check if this call is an inline asm statement.
LLVM_ABI BundleOpInfo & getBundleOpInfoForOperand(unsigned OpIdx)
Return the BundleOpInfo for the operand at index OpIdx.
void setCallingConv(CallingConv::ID CC)
LLVM_ABI FPClassTest getRetNoFPClass() const
Extract a test mask for disallowed floating-point value classes for the return value.
bundle_op_iterator bundle_op_info_begin()
Return the start of the list of BundleOpInfo instances associated with this OperandBundleUser.
LLVM_ABI bool paramHasNonNullAttr(unsigned ArgNo, bool AllowUndefOrPoison) const
Return true if this argument has the nonnull attribute on either the CallBase instruction or the call...
LLVM_ABI MemoryEffects getMemoryEffects() const
void addFnAttr(Attribute::AttrKind Kind)
Adds the attribute to the function.
LLVM_ABI bool doesNotAccessMemory() const
Determine if the call does not access memory.
LLVM_ABI void getOperandBundlesAsDefs(SmallVectorImpl< OperandBundleDef > &Defs) const
Return the list of operand bundles attached to this instruction as a vector of OperandBundleDefs.
LLVM_ABI void setOnlyAccessesArgMemory()
OperandBundleUse getOperandBundleAt(unsigned Index) const
Return the operand bundle at a specific index.
OperandBundleUse operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const
Simple helper function to map a BundleOpInfo to an OperandBundleUse.
LLVM_ABI void setOnlyAccessesInaccessibleMemOrArgMem()
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI void setDoesNotAccessMemory()
AttributeSet getParamAttributes(unsigned ArgNo) const
Return the param attributes for this call.
bool hasRetAttr(Attribute::AttrKind Kind) const
Determine whether the return value has the given attribute.
LLVM_ABI bool onlyAccessesInaccessibleMemory() const
Determine if the function may only access memory that is inaccessible from the IR.
unsigned getNumOperandBundles() const
Return the number of operand bundles associated with this User.
CallingConv::ID getCallingConv() const
bundle_op_iterator bundle_op_info_end()
Return the end of the list of BundleOpInfo instances associated with this OperandBundleUser.
LLVM_ABI unsigned getNumSubclassExtraOperandsDynamic() const
Get the number of extra operands for instructions that don't have a fixed number of extra operands.
BundleOpInfo * bundle_op_iterator
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
LLVM_ABI bool onlyReadsMemory() const
Determine if the call does not access or only reads memory.
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
iterator_range< bundle_op_iterator > bundle_op_infos()
Return the range [bundle_op_info_begin, bundle_op_info_end).
LLVM_ABI void setOnlyReadsMemory()
static LLVM_ABI CallBase * addOperandBundle(CallBase *CB, uint32_t ID, OperandBundleDef OB, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle OB added.
LLVM_ABI bool onlyAccessesInaccessibleMemOrArgMem() const
Determine if the function may only access memory that is either inaccessible from the IR or pointed t...
LLVM_ABI CaptureInfo getCaptureInfo(unsigned OpNo) const
Return which pointer components this operand may capture.
LLVM_ABI bool hasArgumentWithAdditionalReturnCaptureComponents() const
Returns whether the call has an argument that has an attribute like captures(ret: address,...
CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
Value * getCalledOperand() const
LLVM_ABI void setOnlyWritesMemory()
LLVM_ABI op_iterator populateBundleOperandInfos(ArrayRef< OperandBundleDef > Bundles, const unsigned BeginIndex)
Populate the BundleOpInfo instances and the Use& vector from Bundles.
AttributeList Attrs
parameter attributes for callable
bool hasOperandBundlesOtherThan(ArrayRef< uint32_t > IDs) const
Return true if this operand bundle user contains operand bundles with tags other than those specified...
LLVM_ABI std::optional< ConstantRange > getRange() const
If this return value has a range attribute, return the value range of the argument.
LLVM_ABI bool isReturnNonNull() const
Return true if the return value is known to be not null.
Value * getArgOperand(unsigned i) const
uint64_t getRetDereferenceableBytes() const
Extract the number of dereferenceable bytes for a call or parameter (0=unknown).
User::op_iterator arg_end()
Return the iterator pointing to the end of the argument list.
FunctionType * getFunctionType() const
LLVM_ABI Intrinsic::ID getIntrinsicID() const
Returns the intrinsic ID of the intrinsic called or Intrinsic::not_intrinsic if the called function i...
static unsigned CountBundleInputs(ArrayRef< OperandBundleDef > Bundles)
Return the total number of values used in Bundles.
LLVM_ABI Value * getArgOperandWithAttribute(Attribute::AttrKind Kind) const
If one of the arguments has the specified attribute, returns its operand value.
LLVM_ABI void setOnlyAccessesInaccessibleMemory()
static LLVM_ABI CallBase * Create(CallBase *CB, ArrayRef< OperandBundleDef > Bundles, InsertPosition InsertPt=nullptr)
Create a clone of CB with a different set of operand bundles and insert it before InsertPt.
LLVM_ABI bool onlyWritesMemory() const
Determine if the call does not access or only writes memory.
LLVM_ABI bool hasClobberingOperandBundles() const
Return true if this operand bundle user has operand bundles that may write to the heap.
void setCalledOperand(Value *V)
static LLVM_ABI CallBase * removeOperandBundle(CallBase *CB, uint32_t ID, InsertPosition InsertPt=nullptr)
Create a clone of CB with operand bundle ID removed.
LLVM_ABI bool hasReadingOperandBundles() const
Return true if this operand bundle user has operand bundles that may read from the heap.
LLVM_ABI bool onlyAccessesArgMemory() const
Determine if the call can access memmory only using pointers based on its arguments.
unsigned arg_size() const
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI void setMemoryEffects(MemoryEffects ME)
bool hasOperandBundles() const
Return true if this User has any operand bundles.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
LLVM_ABI Function * getCaller()
Helper to get the caller (the parent function).
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
SmallVector< BasicBlock *, 16 > getIndirectDests() const
void setDefaultDest(BasicBlock *B)
void setIndirectDest(unsigned i, BasicBlock *B)
BasicBlock * getDefaultDest() const
static CallBrInst * Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, ArrayRef< BasicBlock * > IndirectDests, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
LLVM_ABI CallBrInst * cloneImpl() const
This class represents a function call, abstracting a target machine's calling convention.
LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
TailCallKind getTailCallKind() const
LLVM_ABI CallInst * cloneImpl() const
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Represents which components of the pointer may be captured in which location.
CaptureComponents getOtherComponents() const
Get components potentially captured through locations other than the return value.
static CaptureInfo none()
Create CaptureInfo that does not capture any components of the pointer.
static CaptureInfo all()
Create CaptureInfo that may capture all components of the pointer.
CaptureComponents getRetComponents() const
Get components potentially captured by the return value.
static LLVM_ABI Instruction::CastOps getCastOpcode(const Value *Val, bool SrcIsSigned, Type *Ty, bool DstIsSigned)
Returns the opcode necessary to cast Val into Ty using usual casting rules.
static LLVM_ABI CastInst * CreatePointerBitCastOrAddrSpaceCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast or an AddrSpaceCast cast instruction.
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
static LLVM_ABI CastInst * CreateIntegerCast(Value *S, Type *Ty, bool isSigned, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt, BitCast, or Trunc for int -> int casts.
static LLVM_ABI CastInst * CreateFPCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create an FPExt, BitCast, or FPTrunc for fp -> fp casts.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine how a pair of casts can be eliminated, if they can be at all.
CastInst(Type *Ty, unsigned iType, Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics for subclasses.
static LLVM_ABI bool isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, const DataLayout &DL)
Check whether a bitcast, inttoptr, or ptrtoint cast between these types is valid and a no-op.
static LLVM_ABI bool isBitCastable(Type *SrcTy, Type *DestTy)
Check whether a bitcast between these types is valid.
static LLVM_ABI CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static LLVM_ABI CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
static LLVM_ABI CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
static LLVM_ABI bool isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DstTy, const DataLayout &DL)
A no-op cast is one that can be effected without changing any bits.
static LLVM_ABI CastInst * CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a ZExt or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
LLVM_ABI bool isIntegerCast() const
There are several places where we need to know if a cast instruction only deals with integer source a...
static LLVM_ABI CastInst * CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a SExt or BitCast cast instruction.
static LLVM_ABI bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy)
This method can be used to determine if a cast from SrcTy to DstTy using Opcode op is valid or not.
LLVM_ABI CatchReturnInst * cloneImpl() const
void setUnwindDest(BasicBlock *UnwindDest)
LLVM_ABI void addHandler(BasicBlock *Dest)
Add an entry to the switch instruction... Note: This action invalidates handler_end().
LLVM_ABI CatchSwitchInst * cloneImpl() const
mapped_iterator< op_iterator, DerefFnTy > handler_iterator
Value * getParentPad() const
void setParentPad(Value *ParentPad)
BasicBlock * getUnwindDest() const
LLVM_ABI void removeHandler(handler_iterator HI)
bool hasUnwindDest() const
LLVM_ABI CleanupReturnInst * cloneImpl() const
This class is the base class for the comparison instructions.
Predicate getStrictPredicate() const
For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
bool isEquality() const
Determine if this is an equals/not equals predicate.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ ICMP_SGE
signed greater or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
LLVM_ABI bool isEquivalence(bool Invert=false) const
Determine if one operand of this compare can always be replaced by the other operand,...
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static LLVM_ABI CmpInst * Create(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate and the two operands.
static bool isFPPredicate(Predicate P)
Predicate getNonStrictPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
static LLVM_ABI CmpInst * CreateWithCopiedFlags(OtherOps Op, Predicate Pred, Value *S1, Value *S2, const Instruction *FlagsSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Construct a compare instruction, given the opcode, the predicate, the two operands and the instructio...
bool isNonStrictPredicate() const
LLVM_ABI void swapOperands()
This is just a convenience that dispatches to the subclasses.
static bool isRelational(Predicate P)
Return true if the predicate is relational (not EQ or NE).
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
static LLVM_ABI StringRef getPredicateName(Predicate P)
Predicate getPredicate() const
Return the predicate for this instruction.
bool isStrictPredicate() const
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
LLVM_ABI CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred, Value *LHS, Value *RHS, const Twine &Name="", InsertPosition InsertBefore=nullptr, Instruction *FlagsSource=nullptr)
LLVM_ABI bool isCommutative() const
This is just a convenience that dispatches to the subclasses.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
CmpPredicate()
Default constructor.
static LLVM_ABI CmpPredicate get(const CmpInst *Cmp)
Do a ICmpInst::getCmpPredicate() or CmpInst::getPredicate(), as appropriate.
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
bool hasSameSign() const
Query samesign information, for optimizations.
static LLVM_ABI CmpPredicate getSwapped(CmpPredicate P)
Get the swapped predicate of a CmpPredicate.
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
This is the shared class of boolean and integer constants.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount getFixed(ScalarTy MinVal)
This instruction compares its operands according to the predicate given to the constructor.
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
LLVM_ABI FCmpInst * cloneImpl() const
Clone an identical FCmpInst.
FCmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
This class represents an extension of floating point types.
LLVM_ABI FPExtInst * cloneImpl() const
Clone an identical FPExtInst.
LLVM_ABI FPExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI float getFPAccuracy() const
Get the maximum error permitted by this operation in ULPs.
This class represents a cast from floating point to signed integer.
LLVM_ABI FPToSIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI FPToSIInst * cloneImpl() const
Clone an identical FPToSIInst.
This class represents a cast from floating point to unsigned integer.
LLVM_ABI FPToUIInst * cloneImpl() const
Clone an identical FPToUIInst.
LLVM_ABI FPToUIInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
This class represents a truncation of floating point types.
LLVM_ABI FPTruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI FPTruncInst * cloneImpl() const
Clone an identical FPTruncInst.
LLVM_ABI FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System, InsertPosition InsertBefore=nullptr)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this fence instruction.
void setSyncScopeID(SyncScope::ID SSID)
Sets the synchronization scope ID of this fence instruction.
LLVM_ABI FenceInst * cloneImpl() const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
void setOrdering(AtomicOrdering Ordering)
Sets the ordering constraint of this fence instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this fence instruction.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
LLVM_ABI FreezeInst(Value *S, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI FreezeInst * cloneImpl() const
Clone an identical FreezeInst.
void setParentPad(Value *ParentPad)
Value * getParentPad() const
Convenience accessors.
LLVM_ABI FuncletPadInst * cloneImpl() const
Class to represent function types.
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Type * getParamType(unsigned i) const
Parameter type accessors.
Represents flags for the getelementptr instruction/expression.
static GEPNoWrapFlags inBounds()
GEPNoWrapFlags withoutInBounds() const
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
LLVM_ABI bool isInBounds() const
Determine whether the GEP has the inbounds flag.
LLVM_ABI bool hasNoUnsignedSignedWrap() const
Determine whether the GEP has the nusw flag.
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
LLVM_ABI bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
LLVM_ABI bool hasNoUnsignedWrap() const
Determine whether the GEP has the nuw flag.
LLVM_ABI bool hasAllConstantIndices() const
Return true if all of the indices of this GEP are constant integers.
LLVM_ABI void setIsInBounds(bool b=true)
Set or clear the inbounds flag on this GEP instruction.
static LLVM_ABI Type * getIndexedType(Type *Ty, ArrayRef< Value * > IdxList)
Returns the result type of a getelementptr with the given source element type and indexes.
LLVM_ABI bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
LLVM_ABI GetElementPtrInst * cloneImpl() const
LLVM_ABI bool collectOffset(const DataLayout &DL, unsigned BitWidth, SmallMapVector< Value *, APInt, 4 > &VariableOffsets, APInt &ConstantOffset) const
LLVM_ABI void setNoWrapFlags(GEPNoWrapFlags NW)
Set nowrap flags for GEP instruction.
LLVM_ABI GEPNoWrapFlags getNoWrapFlags() const
Get the nowrap flags for the GEP instruction.
Module * getParent()
Get the module that this global value is contained inside of...
This instruction compares its operands according to the predicate given to the constructor.
ICmpInst(InsertPosition InsertBefore, Predicate pred, Value *LHS, Value *RHS, const Twine &NameStr="")
Constructor with insertion semantics.
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
LLVM_ABI ICmpInst * cloneImpl() const
Clone an identical ICmpInst.
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
Predicate getSignedPredicate() const
For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
bool isEquality() const
Return true if this predicate is either EQ or NE.
static LLVM_ABI Predicate getFlippedSignednessPredicate(Predicate Pred)
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
Indirect Branch Instruction.
LLVM_ABI void addDestination(BasicBlock *Dest)
Add a destination.
LLVM_ABI void removeDestination(unsigned i)
This method removes the specified successor from the indirectbr instruction.
LLVM_ABI IndirectBrInst * cloneImpl() const
LLVM_ABI InsertElementInst * cloneImpl() const
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI bool isValidOperands(const Value *Vec, const Value *NewElt, const Value *Idx)
Return true if an insertelement instruction can be formed with the specified operands.
BasicBlock * getBasicBlock()
This instruction inserts a struct field of array element value into an aggregate value.
LLVM_ABI InsertValueInst * cloneImpl() const
BitfieldElement::Type getSubclassData() const
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI void swapProfMetadata()
If the instruction has "branch_weights" MD_prof metadata and the MDNode has three operands (including...
LLVM_ABI bool isVolatile() const LLVM_READONLY
Return true if this instruction has a volatile memory access.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Bitfield::Element< uint16_t, 0, 15 > OpaqueField
Instruction(const Instruction &)=delete
friend class BasicBlock
Various leaf nodes.
void setSubclassData(typename BitfieldElement::Type Value)
This class represents a cast from an integer to a pointer.
LLVM_ABI IntToPtrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI IntToPtrInst * cloneImpl() const
Clone an identical IntToPtrInst.
BasicBlock * getUnwindDest() const
void setNormalDest(BasicBlock *B)
LLVM_ABI InvokeInst * cloneImpl() const
LLVM_ABI LandingPadInst * getLandingPadInst() const
Get the landingpad instruction from the landing pad block (the unwind destination).
void setUnwindDest(BasicBlock *B)
LLVM_ABI void updateProfWeight(uint64_t S, uint64_t T)
Updates profile metadata by scaling it by S / T.
static InvokeInst * Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr, InsertPosition InsertBefore=nullptr)
This is an important class for using LLVM in a threaded context.
LLVMContextImpl *const pImpl
The landingpad instruction holds all of the information necessary to generate correct exception handl...
bool isCleanup() const
Return 'true' if this landingpad instruction is a cleanup.
LLVM_ABI LandingPadInst * cloneImpl() const
static LLVM_ABI LandingPadInst * Create(Type *RetTy, unsigned NumReservedClauses, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedClauses is a hint for the number of incoming clauses that this landingpad w...
LLVM_ABI void addClause(Constant *ClauseVal)
Add a catch or filter clause to the landing pad.
void setCleanup(bool V)
Indicate that this landingpad instruction is a cleanup.
void setAlignment(Align Align)
bool isVolatile() const
Return true if this is a load from a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this load instruction.
LLVM_ABI LoadInst * cloneImpl() const
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
void setVolatile(bool V)
Specify whether this is a volatile load or not.
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
LLVM_ABI LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, InsertPosition InsertBefore)
Align getAlign() const
Return the alignment of the access that is being performed.
LLVM_ABI MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
const MDOperand & getOperand(unsigned I) const
static MemoryEffectsBase readOnly()
bool onlyWritesMemory() const
Whether this function only (at most) writes memory.
bool doesNotAccessMemory() const
Whether this function accesses no memory.
static MemoryEffectsBase argMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
static MemoryEffectsBase inaccessibleMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
bool onlyAccessesInaccessibleMem() const
Whether this function only (at most) accesses inaccessible memory.
bool onlyAccessesArgPointees() const
Whether this function only (at most) accesses argument memory.
bool onlyReadsMemory() const
Whether this function only (at most) reads memory.
static MemoryEffectsBase writeOnly()
static MemoryEffectsBase inaccessibleOrArgMemOnly(ModRefInfo MR=ModRefInfo::ModRef)
static MemoryEffectsBase none()
bool onlyAccessesInaccessibleOrArgMem() const
Whether this function only (at most) accesses argument and inaccessible memory.
iterator_range< const_block_iterator > blocks() const
void allocHungoffUses(unsigned N)
const_block_iterator block_begin() const
LLVM_ABI void removeIncomingValueIf(function_ref< bool(unsigned)> Predicate, bool DeletePHIIfEmpty=true)
Remove all incoming values for which the predicate returns true.
BasicBlock ** block_iterator
LLVM_ABI Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
LLVM_ABI bool hasConstantOrUndefValue() const
Whether the specified PHI node always merges together the same value, assuming undefs are equal to a ...
void copyIncomingBlocks(iterator_range< const_block_iterator > BBRange, uint32_t ToIdx=0)
Copies the basic blocks from BBRange to the incoming basic block list of this PHINode,...
const_block_iterator block_end() const
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
LLVM_ABI Value * hasConstantValue() const
If the specified PHI node always merges together the same value, return the value,...
LLVM_ABI PHINode * cloneImpl() const
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
This class represents a cast from a pointer to an address (non-capturing ptrtoint).
PtrToAddrInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
PtrToAddrInst * cloneImpl() const
Clone an identical PtrToAddrInst.
This class represents a cast from a pointer to an integer.
LLVM_ABI PtrToIntInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI PtrToIntInst * cloneImpl() const
Clone an identical PtrToIntInst.
Resume the propagation of an exception.
LLVM_ABI ResumeInst * cloneImpl() const
Return a value (possibly void), from a function.
LLVM_ABI ReturnInst * cloneImpl() const
This class represents a sign extension of integer types.
LLVM_ABI SExtInst * cloneImpl() const
Clone an identical SExtInst.
LLVM_ABI SExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
This class represents a cast from signed integer to floating point.
LLVM_ABI SIToFPInst * cloneImpl() const
Clone an identical SIToFPInst.
LLVM_ABI SIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Class to represent scalable SIMD vectors.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
LLVM_ABI SelectInst * cloneImpl() const
static LLVM_ABI const char * areInvalidOperands(Value *Cond, Value *True, Value *False)
Return a string if the specified operands are invalid for a select operation, otherwise return null.
static LLVM_ABI bool isZeroEltSplatMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses all elements with the same value as the first element of exa...
ArrayRef< int > getShuffleMask() const
static LLVM_ABI bool isSpliceMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is a splice mask, concatenating the two inputs together and then ext...
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
LLVM_ABI ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI bool isValidOperands(const Value *V1, const Value *V2, const Value *Mask)
Return true if a shufflevector instruction can be formed with the specified operands.
static LLVM_ABI bool isSelectMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from its source vectors without lane crossings.
static LLVM_ABI bool isBitRotateMask(ArrayRef< int > Mask, unsigned EltSizeInBits, unsigned MinSubElts, unsigned MaxSubElts, unsigned &NumSubElts, unsigned &RotateAmt)
Checks if the shuffle is a bit rotation of the first operand across multiple subelements,...
VectorType * getType() const
Overload to return most specific vector type.
LLVM_ABI bool isIdentityWithExtract() const
Return true if this shuffle extracts the first N elements of exactly one source vector.
static LLVM_ABI bool isOneUseSingleSourceMask(ArrayRef< int > Mask, int VF)
Return true if this shuffle mask represents "clustered" mask of size VF, i.e.
LLVM_ABI bool isIdentityWithPadding() const
Return true if this shuffle lengthens exactly one source vector with undefs in the high elements.
static LLVM_ABI bool isSingleSourceMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector.
LLVM_ABI bool isConcat() const
Return true if this shuffle concatenates its 2 source vectors.
static LLVM_ABI bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index,...
LLVM_ABI ShuffleVectorInst * cloneImpl() const
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static LLVM_ABI bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
LLVM_ABI void setShuffleMask(ArrayRef< int > Mask)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI bool isInterleave(unsigned Factor)
Return if this shuffle interleaves its two input vectors together.
static LLVM_ABI bool isReverseMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask swaps the order of elements from exactly one source vector.
static LLVM_ABI bool isTransposeMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask is a transpose mask.
LLVM_ABI void commute()
Swap the operands and adjust the mask to preserve the semantics of the instruction.
static LLVM_ABI bool isInsertSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &NumSubElts, int &Index)
Return true if this shuffle mask is an insert subvector mask.
static LLVM_ABI Constant * convertShuffleMaskForBitcode(ArrayRef< int > Mask, Type *ResultTy)
static LLVM_ABI bool isReplicationMask(ArrayRef< int > Mask, int &ReplicationFactor, int &VF)
Return true if this shuffle mask replicates each of the VF elements in a vector ReplicationFactor tim...
static LLVM_ABI bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
Implements a dense probed hash-table based set with some number of buckets stored inline.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this store instruction.
void setVolatile(bool V)
Specify whether this is a volatile store or not.
void setAlignment(Align Align)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI StoreInst * cloneImpl() const
LLVM_ABI StoreInst(Value *Val, Value *Ptr, InsertPosition InsertBefore)
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this store instruction.
bool isVolatile() const
Return true if this is a store to a volatile memory location.
void setAtomic(AtomicOrdering Ordering, SyncScope::ID SSID=SyncScope::System)
Sets the ordering constraint and the synchronization scope ID of this store instruction.
StringRef - Represent a constant reference to a string, i.e.
Class to represent struct types.
LLVM_ABI void setSuccessorWeight(unsigned idx, CaseWeightOpt W)
LLVM_ABI Instruction::InstListType::iterator eraseFromParent()
Delegate the call to the underlying SwitchInst::eraseFromParent() and mark this object to not touch t...
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W)
Delegate the call to the underlying SwitchInst::addCase() and set the specified branch weight for the...
LLVM_ABI CaseWeightOpt getSuccessorWeight(unsigned idx)
LLVM_ABI MDNode * buildProfBranchWeightsMD()
std::optional< uint32_t > CaseWeightOpt
LLVM_ABI SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I)
Delegate the call to the underlying SwitchInst::removeCase() and remove correspondent branch weight.
void setValue(ConstantInt *V) const
Sets the new value for current case.
void setSuccessor(BasicBlock *S) const
Sets the new successor for current case.
LLVM_ABI SwitchInst * cloneImpl() const
LLVM_ABI void addCase(ConstantInt *OnVal, BasicBlock *Dest)
Add an entry to the switch instruction.
CaseIteratorImpl< CaseHandle > CaseIt
unsigned getNumCases() const
Return the number of 'cases' in this switch instruction, excluding the default case.
LLVM_ABI CaseIt removeCase(CaseIt I)
This method removes the specified case and its successor from the switch instruction.
This class represents a truncation of integer types.
LLVM_ABI TruncInst * cloneImpl() const
Clone an identical TruncInst.
LLVM_ABI TruncInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize get(ScalarTy Quantity, bool Scalable)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isAggregateType() const
Return true if the type is an aggregate type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isTokenTy() const
Return true if this is 'token'.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
This class represents a cast unsigned integer to floating point.
LLVM_ABI UIToFPInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI UIToFPInst * cloneImpl() const
Clone an identical UIToFPInst.
UnaryInstruction(Type *Ty, unsigned iType, Value *V, InsertPosition InsertBefore=nullptr)
static LLVM_ABI UnaryOperator * Create(UnaryOps Op, Value *S, const Twine &Name=Twine(), InsertPosition InsertBefore=nullptr)
Construct a unary instruction, given the opcode and an operand.
LLVM_ABI UnaryOperator(UnaryOps iType, Value *S, Type *Ty, const Twine &Name, InsertPosition InsertBefore)
LLVM_ABI UnaryOperator * cloneImpl() const
UnaryOps getOpcode() const
LLVM_ABI UnreachableInst(LLVMContext &C, InsertPosition InsertBefore=nullptr)
LLVM_ABI bool shouldLowerToTrap(bool TrapUnreachable, bool NoTrapAfterNoreturn) const
friend class Instruction
Iterator for Instructions in a `BasicBlock.
LLVM_ABI UnreachableInst * cloneImpl() const
A Use represents the edge between a Value definition and its users.
LLVM_ABI void set(Value *Val)
const Use * getOperandList() const
LLVM_ABI void allocHungoffUses(unsigned N, bool IsPhi=false)
Allocate the array of Uses, followed by a pointer (with bottom bit set) to the User.
void setNumHungOffUseOperands(unsigned NumOps)
Subclasses with hung off uses need to manage the operand count themselves.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM_ABI void growHungoffUses(unsigned N, bool IsPhi=false)
Grow the number of hung off uses.
VAArgInst(Value *List, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI VAArgInst * cloneImpl() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI Value(Type *Ty, unsigned scid)
unsigned char SubclassOptionalData
Hold subclass data that can be dropped.
LLVM_ABI void setName(const Twine &Name)
Change the name of the value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
This class represents zero extension of integer types.
LLVM_ABI ZExtInst(Value *S, Type *Ty, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructor with insert-before-instruction semantics.
LLVM_ABI ZExtInst * cloneImpl() const
Clone an identical ZExtInst.
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
const ilist_detail::compute_node_options< Instruction, Options... >::type::parent_ty * getParent() const
Instruction * getPrevNode()
base_list_type::iterator iterator
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_non_zero_not_denormal_fp > m_NonZeroNotDenormalFP()
Match a floating-point non-zero that is not a denormal.
initializer< Ty > init(const Ty &Val)
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< UseNode * > Use
Context & getContext() const
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
auto seq_inclusive(T Begin, T End)
Iterate over an integral type from Begin to End inclusive.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
unsigned getPointerAddressSpace(const Type *T)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI MDNode * getBranchWeightMDNode(const Instruction &I)
Get the branch weights metadata node.
MemoryEffectsBase< IRMemLocation > MemoryEffects
Summary of how a function affects memory in the program.
std::enable_if_t< std::is_unsigned_v< T >, std::optional< T > > checkedMulUnsigned(T LHS, T RHS)
Multiply two unsigned integers LHS and RHS.
auto dyn_cast_or_null(const Y &Val)
auto reverse(ContainerTy &&C)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isPointerTy(const Type *T)
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
LLVM_ABI unsigned getNumBranchWeights(const MDNode &ProfileData)
AtomicOrdering
Atomic ordering for LLVM's memory model.
auto remove_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::remove_if which take ranges instead of having to pass begin/end explicitly.
OperandBundleDefT< Value * > OperandBundleDef
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
bool capturesAnything(CaptureComponents CC)
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
@ Default
The result values are uniform if and only if all operands are uniform.
LLVM_ABI void scaleProfData(Instruction &I, uint64_t S, uint64_t T)
Scaling the profile data attached to 'I' using the ratio of S/T.
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Summary of memprof metadata on allocations.
Used to keep track of an operand bundle.
uint32_t End
The index in the Use& vector where operands for this operand bundle ends.
uint32_t Begin
The index in the Use& vector where operands for this operand bundle starts.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
A MapVector that performs no allocations if smaller than a certain size.
Indicates this User has operands co-allocated.
Indicates this User has operands and a descriptor co-allocated .