31 bool CarryZero,
bool CarryOne) {
33 APInt PossibleSumZero =
LHS.getMaxValue() +
RHS.getMaxValue() + !CarryZero;
34 APInt PossibleSumOne =
LHS.getMinValue() +
RHS.getMinValue() + CarryOne;
37 APInt CarryKnownZero = ~(PossibleSumZero ^
LHS.Zero ^
RHS.Zero);
38 APInt CarryKnownOne = PossibleSumOne ^
LHS.One ^
RHS.One;
43 APInt CarryKnownUnion = std::move(CarryKnownZero) | CarryKnownOne;
44 APInt Known = std::move(LHSKnownUnion) & RHSKnownUnion & CarryKnownUnion;
49 KnownOut.
One = std::move(PossibleSumOne) & Known;
56 return ::computeForAddCarry(
67 if (
LHS.isUnknown() &&
RHS.isUnknown())
70 if (!
LHS.isUnknown() && !
RHS.isUnknown()) {
88 APInt MinVal =
LHS.getMinValue().uadd_sat(
RHS.getMinValue());
100 APInt MaxVal =
LHS.getMaxValue().usub_sat(
RHS.getMinValue());
118 MinVal =
LHS.getSignedMinValue().sadd_sat(
RHS.getSignedMinValue());
119 MaxVal =
LHS.getSignedMaxValue().sadd_sat(
RHS.getSignedMaxValue());
122 MinVal =
LHS.getSignedMinValue().ssub_sat(
RHS.getSignedMaxValue());
123 MaxVal =
LHS.getSignedMaxValue().ssub_sat(
RHS.getSignedMinValue());
153 return ::computeForAddCarry(
LHS,
RHS,
161 "Illegal sext-in-register");
166 unsigned ExtBits =
BitWidth - SrcBitWidth;
168 Result.One =
One << ExtBits;
169 Result.Zero =
Zero << ExtBits;
170 Result.One.ashrInPlace(ExtBits);
171 Result.Zero.ashrInPlace(ExtBits);
182 APInt MaskedVal(Val);
192 if (
LHS.getMinValue().uge(
RHS.getMaxValue()))
194 if (
RHS.getMinValue().uge(
LHS.getMaxValue()))
202 return L.intersectWith(R);
212 return flipSignBit(
umax(flipSignBit(
LHS), flipSignBit(
RHS)));
231 if (
LHS.getMinValue().uge(
RHS.getMaxValue()))
234 if (
RHS.getMinValue().uge(
LHS.getMaxValue()))
250 if (
LHS.getSignedMinValue().sge(
RHS.getSignedMaxValue()))
253 if (
RHS.getSignedMinValue().sge(
LHS.getSignedMaxValue()))
263 unsigned SignBitPosition =
LHS.getBitWidth() - 1;
264 for (
auto Arg : {&
LHS, &
RHS}) {
265 bool Tmp = Arg->Zero[SignBitPosition];
266 Arg->Zero.setBitVal(SignBitPosition, Arg->One[SignBitPosition]);
267 Arg->One.setBitVal(SignBitPosition, Tmp);
286 bool NSW,
bool ShAmtNonZero) {
288 auto ShiftByConst = [&](
const KnownBits &
LHS,
unsigned ShiftAmt) {
290 bool ShiftedOutZero, ShiftedOutOne;
291 Known.
Zero =
LHS.Zero.ushl_ov(ShiftAmt, ShiftedOutZero);
293 Known.
One =
LHS.One.ushl_ov(ShiftAmt, ShiftedOutOne);
297 if (NUW && ShiftAmt != 0)
299 ShiftedOutZero =
true;
303 else if (ShiftedOutOne)
311 unsigned MinShiftAmount =
RHS.getMinValue().getLimitedValue(
BitWidth);
312 if (MinShiftAmount == 0 && ShAmtNonZero)
314 if (
LHS.isUnknown()) {
316 if (NUW && NSW && MinShiftAmount != 0)
325 MaxShiftAmount = std::min(MaxShiftAmount,
LHS.countMaxLeadingZeros() - 1);
327 MaxShiftAmount = std::min(MaxShiftAmount,
LHS.countMaxLeadingZeros());
329 MaxShiftAmount = std::min(
331 std::max(
LHS.countMaxLeadingZeros(),
LHS.countMaxLeadingOnes()) - 1);
334 if (MinShiftAmount == 0 && MaxShiftAmount ==
BitWidth - 1 &&
340 if (
LHS.isNonNegative())
342 if (
LHS.isNegative())
349 unsigned ShiftAmtZeroMask =
RHS.Zero.zextOrTrunc(32).getZExtValue();
350 unsigned ShiftAmtOneMask =
RHS.One.zextOrTrunc(32).getZExtValue();
353 for (
unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount;
356 if ((ShiftAmtZeroMask & ShiftAmt) != 0 ||
357 (ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
371 bool ShAmtNonZero,
bool Exact) {
373 auto ShiftByConst = [&](
const KnownBits &
LHS,
unsigned ShiftAmt) {
383 unsigned MinShiftAmount =
RHS.getMinValue().getLimitedValue(
BitWidth);
384 if (MinShiftAmount == 0 && ShAmtNonZero)
386 if (
LHS.isUnknown()) {
397 unsigned FirstOne =
LHS.countMaxTrailingZeros();
398 if (FirstOne < MinShiftAmount) {
403 MaxShiftAmount = std::min(MaxShiftAmount, FirstOne);
406 unsigned ShiftAmtZeroMask =
RHS.Zero.zextOrTrunc(32).getZExtValue();
407 unsigned ShiftAmtOneMask =
RHS.One.zextOrTrunc(32).getZExtValue();
410 for (
unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount;
413 if ((ShiftAmtZeroMask & ShiftAmt) != 0 ||
414 (ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
428 bool ShAmtNonZero,
bool Exact) {
430 auto ShiftByConst = [&](
const KnownBits &
LHS,
unsigned ShiftAmt) {
439 unsigned MinShiftAmount =
RHS.getMinValue().getLimitedValue(
BitWidth);
440 if (MinShiftAmount == 0 && ShAmtNonZero)
442 if (
LHS.isUnknown()) {
457 unsigned FirstOne =
LHS.countMaxTrailingZeros();
458 if (FirstOne < MinShiftAmount) {
463 MaxShiftAmount = std::min(MaxShiftAmount, FirstOne);
466 unsigned ShiftAmtZeroMask =
RHS.Zero.zextOrTrunc(32).getZExtValue();
467 unsigned ShiftAmtOneMask =
RHS.One.zextOrTrunc(32).getZExtValue();
470 for (
unsigned ShiftAmt = MinShiftAmount; ShiftAmt <= MaxShiftAmount;
473 if ((ShiftAmtZeroMask & ShiftAmt) != 0 ||
474 (ShiftAmtOneMask | ShiftAmt) != ShiftAmt)
488 if (
LHS.isConstant() &&
RHS.isConstant())
489 return std::optional<bool>(
LHS.getConstant() ==
RHS.getConstant());
490 if (
LHS.One.intersects(
RHS.Zero) ||
RHS.One.intersects(
LHS.Zero))
491 return std::optional<bool>(
false);
496 if (std::optional<bool> KnownEQ =
eq(
LHS,
RHS))
497 return std::optional<bool>(!*KnownEQ);
503 if (
LHS.getMaxValue().ule(
RHS.getMinValue()))
504 return std::optional<bool>(
false);
506 if (
LHS.getMinValue().ugt(
RHS.getMaxValue()))
507 return std::optional<bool>(
true);
512 if (std::optional<bool> IsUGT =
ugt(
RHS,
LHS))
513 return std::optional<bool>(!*IsUGT);
527 if (
LHS.getSignedMaxValue().sle(
RHS.getSignedMinValue()))
528 return std::optional<bool>(
false);
530 if (
LHS.getSignedMinValue().sgt(
RHS.getSignedMaxValue()))
531 return std::optional<bool>(
true);
536 if (std::optional<bool> KnownSGT =
sgt(
RHS,
LHS))
537 return std::optional<bool>(!*KnownSGT);
568 false, IntMinIsPoison,
false,
614 std::optional<bool> Overflow;
619 bool MayNegClamp =
true;
620 bool MayPosClamp =
true;
623 if (
Add && ((
LHS.isNegative() &&
RHS.isNonNegative()) ||
624 (
LHS.isNonNegative() &&
RHS.isNegative())))
626 else if (!
Add && (((
LHS.isNegative() &&
RHS.isNegative()) ||
627 (
LHS.isNonNegative() &&
RHS.isNonNegative()))))
644 false, UnsignedLHS, UnsignedRHS);
650 if (
LHS.isNonNegative() &&
RHS.isNonNegative())
656 if (
LHS.isNegative() &&
RHS.isNegative())
660 if (
LHS.isNegative() ||
RHS.isNegative())
662 if (
LHS.isNonNegative() ||
RHS.isNonNegative())
669 if (
LHS.isNegative() &&
RHS.isNonNegative())
675 if (
LHS.isNonNegative() &&
RHS.isNegative())
679 if (
LHS.isNegative() ||
RHS.isNonNegative())
681 if (
LHS.isNonNegative() ||
RHS.isNegative())
686 if (!MayNegClamp && !MayPosClamp)
691 (void)
LHS.getMaxValue().uadd_ov(
RHS.getMaxValue(), Of);
695 (void)
LHS.getMinValue().uadd_ov(
RHS.getMinValue(), Of);
702 (void)
LHS.getMinValue().usub_ov(
RHS.getMaxValue(), Of);
706 (void)
LHS.getMaxValue().usub_ov(
RHS.getMinValue(), Of);
727 "We somehow know overflow without knowing input sign");
804 bool NoUndefSelfMultiply) {
808 "Self multiplication knownbits mismatch");
821 APInt UMaxResult = UMaxLHS.
umul_ov(UMaxRHS, HasOverflow);
822 unsigned LeadZ = HasOverflow ? 0 : UMaxResult.
countl_zero();
873 unsigned TrailZero0 =
LHS.countMinTrailingZeros();
874 unsigned TrailZero1 =
RHS.countMinTrailingZeros();
875 unsigned TrailZ = TrailZero0 + TrailZero1;
878 unsigned SmallestOperand =
879 std::min(TrailBitsKnown0 - TrailZero0, TrailBitsKnown1 - TrailZero1);
880 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ,
BitWidth);
887 Res.
Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
890 if (NoUndefSelfMultiply) {
892 unsigned TwoTZP1 = 2 * TrailZero0 + 1;
898 if (TrailZero0 <
BitWidth &&
LHS.One[TrailZero0]) {
899 unsigned TwoTZP2 = TwoTZP1 + 1;
937 (int)
LHS.countMinTrailingZeros() - (int)
RHS.countMaxTrailingZeros();
939 (int)
LHS.countMaxTrailingZeros() - (int)
RHS.countMinTrailingZeros();
943 if (MinTZ == MaxTZ) {
947 }
else if (MaxTZ < 0) {
963 if (
LHS.isNonNegative() &&
RHS.isNonNegative())
969 if (
LHS.isZero() ||
RHS.isZero()) {
976 std::optional<APInt> Res;
977 if (
LHS.isNegative() &&
RHS.isNegative()) {
979 APInt Denom =
RHS.getSignedMaxValue();
980 APInt Num =
LHS.getSignedMinValue();
986 }
else if (
LHS.isNegative() &&
RHS.isNonNegative()) {
988 if (Exact || (-
LHS.getSignedMaxValue()).uge(
RHS.getSignedMaxValue())) {
989 APInt Denom =
RHS.getSignedMinValue();
990 APInt Num =
LHS.getSignedMinValue();
993 }
else if (
LHS.isStrictlyPositive() &&
RHS.isNegative()) {
995 if (Exact ||
LHS.getSignedMinValue().uge(-
RHS.getSignedMinValue())) {
996 APInt Denom =
RHS.getSignedMaxValue();
997 APInt Num =
LHS.getSignedMaxValue();
998 Res = Num.
sdiv(Denom);
1003 if (Res->isNonNegative()) {
1007 unsigned LeadO = Res->countLeadingOnes();
1021 if (
LHS.isZero() ||
RHS.isZero()) {
1031 APInt MinDenom =
RHS.getMinValue();
1045 if (!
RHS.isZero() &&
RHS.Zero[0]) {
1047 unsigned RHSZeros =
RHS.countMinTrailingZeros();
1058 if (
RHS.isConstant() &&
RHS.getConstant().isPowerOf2()) {
1060 APInt HighBits = ~(
RHS.getConstant() - 1);
1061 Known.
Zero |= HighBits;
1068 std::max(
LHS.countMinLeadingZeros(),
RHS.countMinLeadingZeros());
1075 if (
RHS.isConstant() &&
RHS.getConstant().isPowerOf2()) {
1077 APInt LowBits =
RHS.getConstant() - 1;
1081 Known.
Zero |= ~LowBits;
1086 Known.
One |= ~LowBits;
1095 std::max(
LHS.countMinLeadingOnes(),
RHS.countMinSignBits()));
1096 else if (
LHS.isNonNegative())
1098 std::max(
LHS.countMinLeadingZeros(),
RHS.countMinSignBits()));
1123 Zero = std::move(Z);
1163#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
static KnownBits avgComputeU(KnownBits LHS, KnownBits RHS, bool IsCeil)
static KnownBits computeForSatAddSub(bool Add, bool Signed, const KnownBits &LHS, const KnownBits &RHS)
static KnownBits divComputeLowBit(KnownBits Known, const KnownBits &LHS, const KnownBits &RHS, bool Exact)
static KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, bool CarryZero, bool CarryOne)
static unsigned getMaxShiftAmount(const APInt &MaxValue, unsigned BitWidth)
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
LLVM_ABI APInt getLoBits(unsigned numBits) const
Compute an APInt containing numBits lowbits from this APInt.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
void setSignBit()
Set the sign bit to 1.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned countLeadingZeros() const
unsigned countl_one() const
Count the number of leading one bits.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
void setAllBits()
Set every bit to 1.
bool getBoolValue() const
Convert APInt to a boolean value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
void clearSignBit()
Set the sign bit to 0.
This class implements an extremely fast bulk output stream that can only output to a stream.
@ C
The default llvm calling convention, compatible with C.
This is an optimization pass for GlobalISel generic memory operations.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
int countl_one(T Value)
Count the number of ones from the most significant bit to the first zero bit.
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
LLVM_ABI KnownBits makeGE(const APInt &Val) const
Return KnownBits based on this, but updated given that the underlying value is known to be greater th...
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
bool hasConflict() const
Returns true if there is conflicting information.
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
LLVM_ABI KnownBits & operator|=(const KnownBits &RHS)
Update known bits based on ORing with RHS.
LLVM_ABI void print(raw_ostream &OS) const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
LLVM_DUMP_METHOD void dump() const
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
LLVM_ABI KnownBits & operator&=(const KnownBits &RHS)
Update known bits based on ANDing with RHS.
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
LLVM_ABI KnownBits & operator^=(const KnownBits &RHS)
Update known bits based on XORing with RHS.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.