31#include "llvm/IR/IntrinsicsLoongArch.h"
41#define DEBUG_TYPE "loongarch-isel-lowering"
56 cl::desc(
"Maximum number of instructions used (including code sequence "
57 "to generate the value and moving the value to FPR) when "
58 "materializing floating-point immediates (default = 3)"),
62 "Materialize FP immediate within 2 instructions"),
64 "Materialize FP immediate within 3 instructions"),
66 "Materialize FP immediate within 4 instructions"),
68 "Materialize FP immediate within 5 instructions"),
70 "Materialize FP immediate within 6 instructions "
71 "(behaves same as 5 on loongarch64)")));
74 cl::desc(
"Trap on integer division by zero."),
81 MVT GRLenVT = Subtarget.getGRLenVT();
86 if (Subtarget.hasBasicF())
88 if (Subtarget.hasBasicD())
92 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, MVT::v2f64};
94 MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, MVT::v8f32, MVT::v4f64};
96 if (Subtarget.hasExtLSX())
100 if (Subtarget.hasExtLASX())
101 for (
MVT VT : LASXVTs)
169 if (Subtarget.is64Bit()) {
197 if (!Subtarget.is64Bit()) {
203 if (Subtarget.hasBasicD())
215 if (Subtarget.hasBasicF()) {
247 if (Subtarget.is64Bit())
250 if (!Subtarget.hasBasicD()) {
252 if (Subtarget.is64Bit()) {
261 if (Subtarget.hasBasicD()) {
294 if (Subtarget.is64Bit())
300 if (Subtarget.hasExtLSX()) {
315 for (
MVT VT : LSXVTs) {
329 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) {
351 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
353 for (
MVT VT : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
355 for (
MVT VT : {MVT::v4i32, MVT::v2i64}) {
359 for (
MVT VT : {MVT::v4f32, MVT::v2f64}) {
377 {MVT::v16i8, MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v8i16, MVT::v4i16,
378 MVT::v2i16, MVT::v4i32, MVT::v2i32, MVT::v2i64}) {
393 if (Subtarget.hasExtLASX()) {
394 for (
MVT VT : LASXVTs) {
409 for (
MVT VT : {MVT::v4i64, MVT::v8i32, MVT::v16i16, MVT::v32i8}) {
432 for (
MVT VT : {MVT::v32i8, MVT::v16i16, MVT::v8i32})
434 for (
MVT VT : {MVT::v16i16, MVT::v8i32, MVT::v4i64})
436 for (
MVT VT : {MVT::v8i32, MVT::v4i32, MVT::v4i64}) {
440 for (
MVT VT : {MVT::v8f32, MVT::v4f64}) {
462 if (Subtarget.hasExtLSX()) {
469 if (Subtarget.hasExtLASX())
492 if (Subtarget.hasLAMCAS())
495 if (Subtarget.hasSCQ()) {
512 switch (
Op.getOpcode()) {
513 case ISD::ATOMIC_FENCE:
514 return lowerATOMIC_FENCE(
Op, DAG);
516 return lowerEH_DWARF_CFA(
Op, DAG);
518 return lowerGlobalAddress(
Op, DAG);
520 return lowerGlobalTLSAddress(
Op, DAG);
522 return lowerINTRINSIC_WO_CHAIN(
Op, DAG);
524 return lowerINTRINSIC_W_CHAIN(
Op, DAG);
526 return lowerINTRINSIC_VOID(
Op, DAG);
528 return lowerBlockAddress(
Op, DAG);
530 return lowerJumpTable(
Op, DAG);
532 return lowerShiftLeftParts(
Op, DAG);
534 return lowerShiftRightParts(
Op, DAG,
true);
536 return lowerShiftRightParts(
Op, DAG,
false);
538 return lowerConstantPool(
Op, DAG);
540 return lowerFP_TO_SINT(
Op, DAG);
542 return lowerBITCAST(
Op, DAG);
544 return lowerUINT_TO_FP(
Op, DAG);
546 return lowerSINT_TO_FP(
Op, DAG);
548 return lowerVASTART(
Op, DAG);
550 return lowerFRAMEADDR(
Op, DAG);
552 return lowerRETURNADDR(
Op, DAG);
554 return lowerWRITE_REGISTER(
Op, DAG);
556 return lowerINSERT_VECTOR_ELT(
Op, DAG);
558 return lowerEXTRACT_VECTOR_ELT(
Op, DAG);
560 return lowerBUILD_VECTOR(
Op, DAG);
562 return lowerCONCAT_VECTORS(
Op, DAG);
564 return lowerVECTOR_SHUFFLE(
Op, DAG);
566 return lowerBITREVERSE(
Op, DAG);
568 return lowerSCALAR_TO_VECTOR(
Op, DAG);
570 return lowerPREFETCH(
Op, DAG);
572 return lowerSELECT(
Op, DAG);
574 return lowerBRCOND(
Op, DAG);
575 case ISD::FP_TO_FP16:
576 return lowerFP_TO_FP16(
Op, DAG);
577 case ISD::FP16_TO_FP:
578 return lowerFP16_TO_FP(
Op, DAG);
579 case ISD::FP_TO_BF16:
580 return lowerFP_TO_BF16(
Op, DAG);
581 case ISD::BF16_TO_FP:
582 return lowerBF16_TO_FP(
Op, DAG);
583 case ISD::VECREDUCE_ADD:
584 return lowerVECREDUCE_ADD(
Op, DAG);
585 case ISD::VECREDUCE_AND:
586 case ISD::VECREDUCE_OR:
587 case ISD::VECREDUCE_XOR:
588 case ISD::VECREDUCE_SMAX:
589 case ISD::VECREDUCE_SMIN:
590 case ISD::VECREDUCE_UMAX:
591 case ISD::VECREDUCE_UMIN:
592 return lowerVECREDUCE(
Op, DAG);
594 return lowerConstantFP(
Op, DAG);
601 EVT VT =
Op.getValueType();
606 assert((VT == MVT::f32 && Subtarget.hasBasicF()) ||
607 (VT == MVT::f64 && Subtarget.hasBasicD()));
624 int InsNum = Seq.size() + ((VT == MVT::f64 && !Subtarget.
is64Bit()) ? 2 : 1);
666 MVT OpVT =
Op.getSimpleValueType();
673 unsigned LegalVecSize = 128;
674 bool isLASX256Vector =
684 if (isLASX256Vector) {
689 for (
unsigned i = 1; i < NumEles; i *= 2, EleBits *= 2) {
695 if (isLASX256Vector) {
721 MVT OpVT =
Op.getSimpleValueType();
734 MVT GRLenVT = Subtarget.getGRLenVT();
736 for (
int i = NumEles; i > 1; i /= 2) {
739 Val = DAG.
getNode(Opcode,
DL, VecTy, Tmp, Val);
748 unsigned IsData =
Op.getConstantOperandVal(4);
753 return Op.getOperand(0);
768 if (
LHS == LHS2 &&
RHS == RHS2) {
773 }
else if (
LHS == RHS2 &&
RHS == LHS2) {
789 MVT VT =
N->getSimpleValueType(0);
820 if (~TrueVal == FalseVal) {
860 unsigned SelOpNo = 0;
870 unsigned ConstSelOpNo = 1;
871 unsigned OtherSelOpNo = 2;
878 if (!ConstSelOpNode || ConstSelOpNode->
isOpaque())
883 if (!ConstBinOpNode || ConstBinOpNode->
isOpaque())
889 SDValue NewConstOps[2] = {ConstSelOp, ConstBinOp};
891 std::swap(NewConstOps[0], NewConstOps[1]);
903 SDValue NewNonConstOps[2] = {OtherSelOp, ConstBinOp};
905 std::swap(NewNonConstOps[0], NewNonConstOps[1]);
908 SDValue NewT = (ConstSelOpNo == 1) ? NewConstOp : NewNonConstOp;
909 SDValue NewF = (ConstSelOpNo == 1) ? NewNonConstOp : NewConstOp;
929 ShAmt =
LHS.getValueSizeInBits() - 1 -
Log2_64(Mask);
943 int64_t
C = RHSC->getSExtValue();
986 MVT VT =
Op.getSimpleValueType();
987 MVT GRLenVT = Subtarget.getGRLenVT();
992 if (
Op.hasOneUse()) {
993 unsigned UseOpc =
Op->user_begin()->getOpcode();
995 SDNode *BinOp = *
Op->user_begin();
1002 return lowerSELECT(NewSel, DAG);
1042 if (TrueVal - 1 == FalseVal)
1044 if (TrueVal + 1 == FalseVal)
1051 RHS == TrueV &&
LHS == FalseV) {
1083 MVT GRLenVT = Subtarget.getGRLenVT();
1095 Op.getOperand(0),
LHS,
RHS, TargetCC,
1099 Op.getOperand(0), CondV,
Op.getOperand(2));
1109LoongArchTargetLowering::lowerSCALAR_TO_VECTOR(
SDValue Op,
1112 MVT OpVT =
Op.getSimpleValueType();
1123 EVT ResTy =
Op->getValueType(0);
1128 if (!Subtarget.is64Bit() && (ResTy == MVT::v16i8 || ResTy == MVT::v32i8))
1138 for (
unsigned int i = 0; i < NewEltNum; i++) {
1141 unsigned RevOp = (ResTy == MVT::v16i8 || ResTy == MVT::v32i8)
1160 for (
unsigned int i = 0; i < NewEltNum; i++)
1161 for (
int j = OrigEltNum / NewEltNum - 1;
j >= 0;
j--)
1162 Mask.push_back(j + (OrigEltNum / NewEltNum) * i);
1180 if (EltBits > 32 || EltBits == 1)
1208 int MaskOffset,
const APInt &Zeroable) {
1209 int Size = Mask.size();
1210 unsigned SizeInBits =
Size * ScalarSizeInBits;
1212 auto CheckZeros = [&](
int Shift,
int Scale,
bool Left) {
1213 for (
int i = 0; i <
Size; i += Scale)
1214 for (
int j = 0; j < Shift; ++j)
1215 if (!Zeroable[i + j + (
Left ? 0 : (Scale - Shift))])
1223 for (
unsigned i = Pos, e = Pos +
Size; i != e; ++i,
Low += Step)
1224 if (!(Mask[i] == -1 || Mask[i] ==
Low))
1229 auto MatchShift = [&](
int Shift,
int Scale,
bool Left) {
1230 for (
int i = 0; i !=
Size; i += Scale) {
1231 unsigned Pos =
Left ? i + Shift : i;
1232 unsigned Low =
Left ? i : i + Shift;
1233 unsigned Len = Scale - Shift;
1238 int ShiftEltBits = ScalarSizeInBits * Scale;
1239 bool ByteShift = ShiftEltBits > 64;
1242 int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1);
1246 Scale = ByteShift ? Scale / 2 : Scale;
1252 return (
int)ShiftAmt;
1255 unsigned MaxWidth = 128;
1256 for (
int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2)
1257 for (
int Shift = 1; Shift != Scale; ++Shift)
1258 for (
bool Left : {
true,
false})
1259 if (CheckZeros(Shift, Scale,
Left)) {
1260 int ShiftAmt = MatchShift(Shift, Scale,
Left);
1285 const APInt &Zeroable) {
1286 int Size = Mask.size();
1300 Mask,
Size, Zeroable);
1308 "Illegal integer vector type");
1317template <
typename ValType>
1320 unsigned CheckStride,
1322 ValType ExpectedIndex,
unsigned ExpectedIndexStride) {
1326 if (*
I != -1 && *
I != ExpectedIndex)
1328 ExpectedIndex += ExpectedIndexStride;
1332 for (
unsigned n = 0; n < CheckStride &&
I != End; ++n, ++
I)
1344 int Size = Mask.size();
1354 int ScalarSizeInBits = VectorSizeInBits /
Size;
1355 assert(!(VectorSizeInBits % ScalarSizeInBits) &&
"Illegal shuffle mask size");
1356 (void)ScalarSizeInBits;
1358 for (
int i = 0; i <
Size; ++i) {
1364 if ((M >= 0 && M <
Size && V1IsZero) || (M >=
Size && V2IsZero)) {
1381 RepeatedMask.
assign(LaneSize, -1);
1382 int Size = Mask.size();
1383 for (
int i = 0; i <
Size; ++i) {
1384 assert(Mask[i] == -1 || Mask[i] >= 0);
1387 if ((Mask[i] %
Size) / LaneSize != i / LaneSize)
1394 Mask[i] <
Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize;
1395 if (RepeatedMask[i % LaneSize] < 0)
1397 RepeatedMask[i % LaneSize] = LocalM;
1398 else if (RepeatedMask[i % LaneSize] != LocalM)
1415 int NumElts = RepeatedMask.
size();
1417 int Scale = 16 / NumElts;
1419 for (
int i = 0; i < NumElts; ++i) {
1420 int M = RepeatedMask[i];
1421 assert((M == -1 || (0 <= M && M < (2 * NumElts))) &&
1422 "Unexpected mask index.");
1427 int StartIdx = i - (M % NumElts);
1434 int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx;
1437 Rotation = CandidateRotation;
1438 else if (Rotation != CandidateRotation)
1442 SDValue MaskV = M < NumElts ? V1 : V2;
1453 else if (TargetV != MaskV)
1458 assert(Rotation != 0 &&
"Failed to locate a viable rotation!");
1459 assert((
Lo ||
Hi) &&
"Failed to find a rotated input vector!");
1468 return Rotation * Scale;
1487 if (ByteRotation <= 0)
1494 int LoByteShift = 16 - ByteRotation;
1495 int HiByteShift = ByteRotation;
1518 const APInt &Zeroable) {
1532 for (
int i = 0; i < NumElements; i++) {
1536 if (i % Scale != 0) {
1547 SDValue V = M < NumElements ? V1 : V2;
1548 M = M % NumElements;
1551 Offset = M - (i / Scale);
1554 if (
Offset % (NumElements / Scale))
1556 }
else if (InputV != V)
1559 if (M != (
Offset + (i / Scale)))
1570 if (
Offset >= (NumElements / 2)) {
1572 Offset -= (NumElements / 2);
1579 InputV = DAG.
getNode(VilVLoHi,
DL, InputVT, Ext, InputV);
1583 }
while (Scale > 1);
1589 for (
int NumExtElements = Bits / 64; NumExtElements < NumElements;
1590 NumExtElements *= 2) {
1610 int SplatIndex = -1;
1611 for (
const auto &M : Mask) {
1618 if (SplatIndex == -1)
1621 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
1653 unsigned SubVecSize = 4;
1654 if (VT == MVT::v2f64 || VT == MVT::v2i64)
1657 int SubMask[4] = {-1, -1, -1, -1};
1658 for (
unsigned i = 0; i < SubVecSize; ++i) {
1659 for (
unsigned j = i; j < Mask.size(); j += SubVecSize) {
1665 M -= 4 * (j / SubVecSize);
1666 if (M < 0 || M >= 4)
1672 if (SubMask[i] == -1)
1676 else if (M != -1 && M != SubMask[i])
1683 for (
int i = SubVecSize - 1; i >= 0; --i) {
1696 if (VT == MVT::v2f64 || VT == MVT::v2i64)
1723 const auto &Begin = Mask.begin();
1724 const auto &End = Mask.end();
1725 SDValue OriV1 = V1, OriV2 = V2;
1763 const auto &Begin = Mask.begin();
1764 const auto &End = Mask.end();
1765 SDValue OriV1 = V1, OriV2 = V2;
1804 const auto &Begin = Mask.begin();
1805 const auto &End = Mask.end();
1806 unsigned HalfSize = Mask.size() / 2;
1807 SDValue OriV1 = V1, OriV2 = V2;
1847 const auto &Begin = Mask.begin();
1848 const auto &End = Mask.end();
1849 SDValue OriV1 = V1, OriV2 = V2;
1887 const auto &Begin = Mask.begin();
1888 const auto &Mid = Mask.begin() + Mask.size() / 2;
1889 const auto &End = Mask.end();
1890 SDValue OriV1 = V1, OriV2 = V2;
1929 const auto &Begin = Mask.begin();
1930 const auto &Mid = Mask.begin() + Mask.size() / 2;
1931 const auto &End = Mask.end();
1932 SDValue OriV1 = V1, OriV2 = V2;
1987 "Vector type is unsupported for lsx!");
1989 "Two operands have different types!");
1991 "Unexpected mask size for shuffle!");
1992 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
1994 APInt KnownUndef, KnownZero;
1996 APInt Zeroable = KnownUndef | KnownZero;
2060 int SplatIndex = -1;
2061 for (
const auto &M : Mask) {
2068 if (SplatIndex == -1)
2071 const auto &Begin = Mask.begin();
2072 const auto &End = Mask.end();
2073 int HalfSize = Mask.size() / 2;
2075 if (SplatIndex >= HalfSize)
2078 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
2096 if (Mask.size() <= 4)
2107 if (Mask.size() != 4 || (VT != MVT::v4i64 && VT != MVT::v4f64))
2110 unsigned MaskImm = 0;
2111 for (
unsigned i = 0; i < Mask.size(); ++i) {
2114 MaskImm |= Mask[i] << (i * 2);
2126 if (Mask.size() != 8 || (VT != MVT::v8i32 && VT != MVT::v8f32))
2130 unsigned HalfSize = NumElts / 2;
2131 bool FrontLo =
true, FrontHi =
true;
2132 bool BackLo =
true, BackHi =
true;
2134 auto inRange = [](
int val,
int low,
int high) {
2135 return (val == -1) || (val >= low && val < high);
2138 for (
unsigned i = 0; i < HalfSize; ++i) {
2139 int Fronti = Mask[i];
2140 int Backi = Mask[i + HalfSize];
2142 FrontLo &=
inRange(Fronti, 0, HalfSize);
2143 FrontHi &=
inRange(Fronti, HalfSize, NumElts);
2144 BackLo &=
inRange(Backi, 0, HalfSize);
2145 BackHi &=
inRange(Backi, HalfSize, NumElts);
2151 if ((FrontLo || FrontHi) && (BackLo || BackHi))
2156 for (
unsigned i = 0; i < NumElts; ++i)
2183 const auto &Begin = Mask.begin();
2184 const auto &End = Mask.end();
2185 unsigned HalfSize = Mask.size() / 2;
2186 unsigned LeftSize = HalfSize / 2;
2187 SDValue OriV1 = V1, OriV2 = V2;
2194 Mask.size() + HalfSize - LeftSize, 1) &&
2196 Mask.size() + HalfSize + LeftSize, 1))
2207 Mask.size() + HalfSize - LeftSize, 1) &&
2209 Mask.size() + HalfSize + LeftSize, 1))
2222 const auto &Begin = Mask.begin();
2223 const auto &End = Mask.end();
2224 unsigned HalfSize = Mask.size() / 2;
2225 SDValue OriV1 = V1, OriV2 = V2;
2232 Mask.size() + HalfSize, 1))
2243 Mask.size() + HalfSize, 1))
2256 const auto &Begin = Mask.begin();
2257 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
2258 const auto &Mid = Mask.begin() + Mask.size() / 2;
2259 const auto &RightMid = Mask.end() - Mask.size() / 4;
2260 const auto &End = Mask.end();
2261 unsigned HalfSize = Mask.size() / 2;
2262 SDValue OriV1 = V1, OriV2 = V2;
2291 const auto &Begin = Mask.begin();
2292 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
2293 const auto &Mid = Mask.begin() + Mask.size() / 2;
2294 const auto &RightMid = Mask.end() - Mask.size() / 4;
2295 const auto &End = Mask.end();
2296 unsigned HalfSize = Mask.size() / 2;
2297 SDValue OriV1 = V1, OriV2 = V2;
2328 if (VT != MVT::v8i32 && VT != MVT::v8f32 && VT != MVT::v4i64 &&
2333 int MaskSize = Mask.size();
2339 auto checkReplaceOne = [&](
int Base,
int Replaced) ->
int {
2341 for (
int i = 0; i < MaskSize; ++i) {
2342 if (Mask[i] ==
Base + i || Mask[i] == -1)
2344 if (Mask[i] != Replaced)
2355 int Idx = checkReplaceOne(0, MaskSize);
2361 Idx = checkReplaceOne(MaskSize, 0);
2374 int MaskSize = Mask.size();
2375 int HalfSize = Mask.size() / 2;
2376 const auto &Begin = Mask.begin();
2377 const auto &Mid = Mask.begin() + HalfSize;
2378 const auto &End = Mask.end();
2390 for (
auto it = Begin; it < Mid; it++) {
2393 else if ((*it >= 0 && *it < HalfSize) ||
2394 (*it >= MaskSize && *it < MaskSize + HalfSize)) {
2395 int M = *it < HalfSize ? *it : *it - HalfSize;
2400 assert((
int)MaskAlloc.
size() == HalfSize &&
"xvshuf convert failed!");
2402 for (
auto it = Mid; it < End; it++) {
2405 else if ((*it >= HalfSize && *it < MaskSize) ||
2406 (*it >= MaskSize + HalfSize && *it < MaskSize * 2)) {
2407 int M = *it < MaskSize ? *it - HalfSize : *it - MaskSize;
2412 assert((
int)MaskAlloc.
size() == MaskSize &&
"xvshuf convert failed!");
2444 enum HalfMaskType { HighLaneTy, LowLaneTy,
None };
2446 int MaskSize = Mask.size();
2447 int HalfSize = Mask.size() / 2;
2450 HalfMaskType preMask =
None, postMask =
None;
2452 if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
2453 return M < 0 || (M >= 0 && M < HalfSize) ||
2454 (M >= MaskSize && M < MaskSize + HalfSize);
2456 preMask = HighLaneTy;
2457 else if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
2458 return M < 0 || (M >= HalfSize && M < MaskSize) ||
2459 (M >= MaskSize + HalfSize && M < MaskSize * 2);
2461 preMask = LowLaneTy;
2463 if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
2464 return M < 0 || (M >= HalfSize && M < MaskSize) ||
2465 (M >= MaskSize + HalfSize && M < MaskSize * 2);
2467 postMask = LowLaneTy;
2468 else if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
2469 return M < 0 || (M >= 0 && M < HalfSize) ||
2470 (M >= MaskSize && M < MaskSize + HalfSize);
2472 postMask = HighLaneTy;
2480 if (preMask == HighLaneTy && postMask == LowLaneTy) {
2483 if (preMask == LowLaneTy && postMask == HighLaneTy) {
2496 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
2497 *it = *it < 0 ? *it : *it - HalfSize;
2499 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
2500 *it = *it < 0 ? *it : *it + HalfSize;
2502 }
else if (preMask == LowLaneTy && postMask == LowLaneTy) {
2515 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
2516 *it = *it < 0 ? *it : *it - HalfSize;
2518 }
else if (preMask == HighLaneTy && postMask == HighLaneTy) {
2531 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
2532 *it = *it < 0 ? *it : *it + HalfSize;
2557 int Size = Mask.size();
2558 int LaneSize =
Size / 2;
2560 bool LaneCrossing[2] = {
false,
false};
2561 for (
int i = 0; i <
Size; ++i)
2562 if (Mask[i] >= 0 && ((Mask[i] %
Size) / LaneSize) != (i / LaneSize))
2563 LaneCrossing[(Mask[i] %
Size) / LaneSize] =
true;
2566 if (!LaneCrossing[0] && !LaneCrossing[1])
2570 InLaneMask.
assign(Mask.begin(), Mask.end());
2571 for (
int i = 0; i <
Size; ++i) {
2572 int &M = InLaneMask[i];
2575 if (((M %
Size) / LaneSize) != (i / LaneSize))
2576 M = (M % LaneSize) + ((i / LaneSize) * LaneSize) +
Size;
2581 DAG.
getUNDEF(MVT::v4i64), {2, 3, 0, 1});
2596 "Vector type is unsupported for lasx!");
2598 "Two operands have different types!");
2600 "Unexpected mask size for shuffle!");
2601 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
2602 assert(Mask.size() >= 4 &&
"Mask size is less than 4.");
2604 APInt KnownUndef, KnownZero;
2606 APInt Zeroable = KnownUndef | KnownZero;
2677 ArrayRef<int> OrigMask = SVOp->
getMask();
2680 MVT VT =
Op.getSimpleValueType();
2684 bool V1IsUndef = V1.
isUndef();
2685 bool V2IsUndef = V2.
isUndef();
2686 if (V1IsUndef && V2IsUndef)
2699 any_of(OrigMask, [NumElements](
int M) {
return M >= NumElements; })) {
2700 SmallVector<int, 8> NewMask(OrigMask);
2701 for (
int &M : NewMask)
2702 if (M >= NumElements)
2708 int MaskUpperLimit = OrigMask.
size() * (V2IsUndef ? 1 : 2);
2709 (void)MaskUpperLimit;
2711 [&](
int M) {
return -1 <=
M &&
M < MaskUpperLimit; }) &&
2712 "Out of bounds shuffle index");
2734 std::tie(Res, Chain) =
2735 makeLibCall(DAG, LC, MVT::f32, Op0, CallOptions,
DL, Chain);
2736 if (Subtarget.is64Bit())
2753 std::tie(Res, Chain) =
makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Arg,
2754 CallOptions,
DL, Chain);
2760 assert(Subtarget.hasBasicF() &&
"Unexpected custom legalization");
2766 makeLibCall(DAG, LC, MVT::f32,
Op.getOperand(0), CallOptions,
DL).first;
2767 if (Subtarget.is64Bit())
2774 assert(Subtarget.hasBasicF() &&
"Unexpected custom legalization");
2775 MVT VT =
Op.getSimpleValueType();
2784 return DAG.
getNode(ISD::FP_EXTEND,
DL, VT, Res);
2801 "Unsupported vector type for broadcast.");
2804 bool IsIdeneity =
true;
2806 for (
int i = 0; i !=
NumOps; i++) {
2808 if (
Op.getOpcode() != ISD::LOAD || (IdentitySrc &&
Op != IdentitySrc)) {
2820 auto ExtType = LN->getExtensionType();
2826 ? DAG.
getVTList(VT, LN->getBasePtr().getValueType(), MVT::Other)
2828 SDValue Ops[] = {LN->getChain(), LN->getBasePtr(), LN->getOffset()};
2846 for (
unsigned i = 1; i <
Ops.size(); ++i) {
2860 EVT ResTy,
unsigned first) {
2863 assert(first + NumElts <= Node->getSimpleValueType(0).getVectorNumElements());
2866 Node->op_begin() + first + NumElts);
2875 MVT VT =
Node->getSimpleValueType(0);
2876 EVT ResTy =
Op->getValueType(0);
2879 APInt SplatValue, SplatUndef;
2880 unsigned SplatBitSize;
2883 bool UseSameConstant =
true;
2888 if ((!Subtarget.hasExtLSX() || !Is128Vec) &&
2889 (!Subtarget.hasExtLASX() || !Is256Vec))
2895 if (
Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
2897 SplatBitSize <= 64) {
2899 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2903 if (SplatBitSize == 64 && !Subtarget.is64Bit()) {
2910 if ((Is128Vec && ResTy == MVT::v4i32) ||
2911 (Is256Vec && ResTy == MVT::v8i32))
2917 switch (SplatBitSize) {
2921 ViaVecTy = Is128Vec ? MVT::v16i8 : MVT::v32i8;
2924 ViaVecTy = Is128Vec ? MVT::v8i16 : MVT::v16i16;
2927 ViaVecTy = Is128Vec ? MVT::v4i32 : MVT::v8i32;
2930 ViaVecTy = Is128Vec ? MVT::v2i64 : MVT::v4i64;
2938 if (ViaVecTy != ResTy)
2939 Result = DAG.
getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2947 for (
unsigned i = 0; i < NumElts; ++i) {
2952 ConstantValue = Opi;
2953 else if (ConstantValue != Opi)
2954 UseSameConstant =
false;
2959 if (IsConstant && UseSameConstant && ResTy != MVT::v2f64) {
2961 for (
unsigned i = 0; i < NumElts; ++i) {
2979 BitVector UndefElements;
2980 if (
Node->getRepeatedSequence(Sequence, &UndefElements) &&
2981 UndefElements.
count() == 0) {
2985 EVT FillTy = Is256Vec
2991 fillVector(Sequence, DAG,
DL, Subtarget, FillVec, FillTy);
2994 unsigned SplatLen = NumElts / SeqLen;
3000 if (SplatEltTy == MVT::i128)
3001 SplatTy = MVT::v4i64;
3011 DL, SplatTy, SrcVec);
3026 if (ResTy == MVT::v8i32 || ResTy == MVT::v8f32 || ResTy == MVT::v4i64 ||
3027 ResTy == MVT::v4f64) {
3028 unsigned NonUndefCount = 0;
3029 for (
unsigned i = NumElts / 2; i < NumElts; ++i) {
3030 if (!
Node->getOperand(i).isUndef()) {
3032 if (NonUndefCount > 1)
3036 if (NonUndefCount == 1)
3049 VecTy, NumElts / 2);
3060 MVT ResVT =
Op.getSimpleValueType();
3064 unsigned NumFreezeUndef = 0;
3065 unsigned NumZero = 0;
3066 unsigned NumNonZero = 0;
3067 unsigned NonZeros = 0;
3068 SmallSet<SDValue, 4> Undefs;
3069 for (
unsigned i = 0; i != NumOperands; ++i) {
3084 assert(i <
sizeof(NonZeros) * CHAR_BIT);
3091 if (NumNonZero > 2) {
3095 Ops.slice(0, NumOperands / 2));
3097 Ops.slice(NumOperands / 2));
3110 MVT SubVT =
Op.getOperand(0).getSimpleValueType();
3112 for (
unsigned i = 0; i != NumOperands; ++i) {
3113 if ((NonZeros & (1 << i)) == 0)
3124LoongArchTargetLowering::lowerEXTRACT_VECTOR_ELT(
SDValue Op,
3126 MVT EltVT =
Op.getSimpleValueType();
3131 MVT GRLenVT = Subtarget.getGRLenVT();
3163 DAG.
getBitcast((VecTy == MVT::v4f64) ? MVT::v4i64 : VecTy, IdxVec);
3183LoongArchTargetLowering::lowerINSERT_VECTOR_ELT(
SDValue Op,
3185 MVT VT =
Op.getSimpleValueType();
3208 if (!Subtarget.is64Bit() && IdxTy == MVT::i64) {
3210 for (
unsigned i = 0; i < NumElts; ++i) {
3218 for (
unsigned i = 0; i < NumElts; ++i) {
3227 for (
unsigned i = 0; i < NumElts; ++i)
3251 return DAG.
getNode(ISD::MEMBARRIER,
DL, MVT::Other,
Op.getOperand(0));
3259 if (Subtarget.is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i32) {
3261 "On LA64, only 64-bit registers can be written.");
3262 return Op.getOperand(0);
3265 if (!Subtarget.is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i64) {
3267 "On LA32, only 32-bit registers can be written.");
3268 return Op.getOperand(0);
3278 "be a constant integer");
3284 Register FrameReg = Subtarget.getRegisterInfo()->getFrameRegister(MF);
3285 EVT VT =
Op.getValueType();
3288 unsigned Depth =
Op.getConstantOperandVal(0);
3289 int GRLenInBytes = Subtarget.getGRLen() / 8;
3292 int Offset = -(GRLenInBytes * 2);
3304 if (
Op.getConstantOperandVal(0) != 0) {
3306 "return address can only be determined for the current frame");
3312 MVT GRLenVT = Subtarget.getGRLenVT();
3324 auto Size = Subtarget.getGRLen() / 8;
3332 auto *FuncInfo = MF.
getInfo<LoongArchMachineFunctionInfo>();
3342 MachinePointerInfo(SV));
3347 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
3348 !Subtarget.hasBasicD() &&
"unexpected target features");
3354 if (
C &&
C->getZExtValue() < UINT64_C(0xFFFFFFFF))
3368 EVT RetVT =
Op.getValueType();
3374 std::tie(Result, Chain) =
3381 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
3382 !Subtarget.hasBasicD() &&
"unexpected target features");
3393 EVT RetVT =
Op.getValueType();
3399 std::tie(Result, Chain) =
3408 EVT VT =
Op.getValueType();
3412 if (
Op.getValueType() == MVT::f32 && Op0VT == MVT::i32 &&
3413 Subtarget.is64Bit() && Subtarget.hasBasicF()) {
3417 if (VT == MVT::f64 && Op0VT == MVT::i64 && !Subtarget.is64Bit()) {
3432 Op0 = DAG.
getNode(ISD::FP_EXTEND,
DL, MVT::f32, Op0);
3434 if (
Op.getValueSizeInBits() > 32 && Subtarget.hasBasicF() &&
3435 !Subtarget.hasBasicD()) {
3442 return DAG.
getNode(ISD::BITCAST,
DL,
Op.getValueType(), Trunc);
3459 N->getOffset(), Flags);
3467template <
class NodeTy>
3470 bool IsLocal)
const {
3481 assert(Subtarget.is64Bit() &&
"Large code model requires LA64");
3552 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
3554 const GlobalValue *GV =
N->getGlobal();
3566 unsigned Opc,
bool UseGOT,
3570 MVT GRLenVT = Subtarget.getGRLenVT();
3584 if (
Opc == LoongArch::PseudoLA_TLS_LE && !Large)
3622 Args.emplace_back(Load, CallTy);
3625 TargetLowering::CallLoweringInfo CLI(DAG);
3640 const GlobalValue *GV =
N->getGlobal();
3654LoongArchTargetLowering::lowerGlobalTLSAddress(
SDValue Op,
3661 assert((!Large || Subtarget.is64Bit()) &&
"Large code model requires LA64");
3664 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
3677 return getDynamicTLSAddr(
N, DAG,
3678 Large ? LoongArch::PseudoLA_TLS_GD_LARGE
3679 : LoongArch::PseudoLA_TLS_GD,
3686 return getDynamicTLSAddr(
N, DAG,
3687 Large ? LoongArch::PseudoLA_TLS_LD_LARGE
3688 : LoongArch::PseudoLA_TLS_LD,
3693 return getStaticTLSAddr(
N, DAG,
3694 Large ? LoongArch::PseudoLA_TLS_IE_LARGE
3695 : LoongArch::PseudoLA_TLS_IE,
3702 return getStaticTLSAddr(
N, DAG, LoongArch::PseudoLA_TLS_LE,
3706 return getTLSDescAddr(
N, DAG,
3707 Large ? LoongArch::PseudoLA_TLS_DESC_LARGE
3708 : LoongArch::PseudoLA_TLS_DESC,
3712template <
unsigned N>
3717 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
3718 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
3720 ": argument out of range.");
3727LoongArchTargetLowering::lowerINTRINSIC_WO_CHAIN(
SDValue Op,
3729 switch (
Op.getConstantOperandVal(0)) {
3732 case Intrinsic::thread_pointer: {
3736 case Intrinsic::loongarch_lsx_vpickve2gr_d:
3737 case Intrinsic::loongarch_lsx_vpickve2gr_du:
3738 case Intrinsic::loongarch_lsx_vreplvei_d:
3739 case Intrinsic::loongarch_lasx_xvrepl128vei_d:
3741 case Intrinsic::loongarch_lsx_vreplvei_w:
3742 case Intrinsic::loongarch_lasx_xvrepl128vei_w:
3743 case Intrinsic::loongarch_lasx_xvpickve2gr_d:
3744 case Intrinsic::loongarch_lasx_xvpickve2gr_du:
3745 case Intrinsic::loongarch_lasx_xvpickve_d:
3746 case Intrinsic::loongarch_lasx_xvpickve_d_f:
3748 case Intrinsic::loongarch_lasx_xvinsve0_d:
3750 case Intrinsic::loongarch_lsx_vsat_b:
3751 case Intrinsic::loongarch_lsx_vsat_bu:
3752 case Intrinsic::loongarch_lsx_vrotri_b:
3753 case Intrinsic::loongarch_lsx_vsllwil_h_b:
3754 case Intrinsic::loongarch_lsx_vsllwil_hu_bu:
3755 case Intrinsic::loongarch_lsx_vsrlri_b:
3756 case Intrinsic::loongarch_lsx_vsrari_b:
3757 case Intrinsic::loongarch_lsx_vreplvei_h:
3758 case Intrinsic::loongarch_lasx_xvsat_b:
3759 case Intrinsic::loongarch_lasx_xvsat_bu:
3760 case Intrinsic::loongarch_lasx_xvrotri_b:
3761 case Intrinsic::loongarch_lasx_xvsllwil_h_b:
3762 case Intrinsic::loongarch_lasx_xvsllwil_hu_bu:
3763 case Intrinsic::loongarch_lasx_xvsrlri_b:
3764 case Intrinsic::loongarch_lasx_xvsrari_b:
3765 case Intrinsic::loongarch_lasx_xvrepl128vei_h:
3766 case Intrinsic::loongarch_lasx_xvpickve_w:
3767 case Intrinsic::loongarch_lasx_xvpickve_w_f:
3769 case Intrinsic::loongarch_lasx_xvinsve0_w:
3771 case Intrinsic::loongarch_lsx_vsat_h:
3772 case Intrinsic::loongarch_lsx_vsat_hu:
3773 case Intrinsic::loongarch_lsx_vrotri_h:
3774 case Intrinsic::loongarch_lsx_vsllwil_w_h:
3775 case Intrinsic::loongarch_lsx_vsllwil_wu_hu:
3776 case Intrinsic::loongarch_lsx_vsrlri_h:
3777 case Intrinsic::loongarch_lsx_vsrari_h:
3778 case Intrinsic::loongarch_lsx_vreplvei_b:
3779 case Intrinsic::loongarch_lasx_xvsat_h:
3780 case Intrinsic::loongarch_lasx_xvsat_hu:
3781 case Intrinsic::loongarch_lasx_xvrotri_h:
3782 case Intrinsic::loongarch_lasx_xvsllwil_w_h:
3783 case Intrinsic::loongarch_lasx_xvsllwil_wu_hu:
3784 case Intrinsic::loongarch_lasx_xvsrlri_h:
3785 case Intrinsic::loongarch_lasx_xvsrari_h:
3786 case Intrinsic::loongarch_lasx_xvrepl128vei_b:
3788 case Intrinsic::loongarch_lsx_vsrlni_b_h:
3789 case Intrinsic::loongarch_lsx_vsrani_b_h:
3790 case Intrinsic::loongarch_lsx_vsrlrni_b_h:
3791 case Intrinsic::loongarch_lsx_vsrarni_b_h:
3792 case Intrinsic::loongarch_lsx_vssrlni_b_h:
3793 case Intrinsic::loongarch_lsx_vssrani_b_h:
3794 case Intrinsic::loongarch_lsx_vssrlni_bu_h:
3795 case Intrinsic::loongarch_lsx_vssrani_bu_h:
3796 case Intrinsic::loongarch_lsx_vssrlrni_b_h:
3797 case Intrinsic::loongarch_lsx_vssrarni_b_h:
3798 case Intrinsic::loongarch_lsx_vssrlrni_bu_h:
3799 case Intrinsic::loongarch_lsx_vssrarni_bu_h:
3800 case Intrinsic::loongarch_lasx_xvsrlni_b_h:
3801 case Intrinsic::loongarch_lasx_xvsrani_b_h:
3802 case Intrinsic::loongarch_lasx_xvsrlrni_b_h:
3803 case Intrinsic::loongarch_lasx_xvsrarni_b_h:
3804 case Intrinsic::loongarch_lasx_xvssrlni_b_h:
3805 case Intrinsic::loongarch_lasx_xvssrani_b_h:
3806 case Intrinsic::loongarch_lasx_xvssrlni_bu_h:
3807 case Intrinsic::loongarch_lasx_xvssrani_bu_h:
3808 case Intrinsic::loongarch_lasx_xvssrlrni_b_h:
3809 case Intrinsic::loongarch_lasx_xvssrarni_b_h:
3810 case Intrinsic::loongarch_lasx_xvssrlrni_bu_h:
3811 case Intrinsic::loongarch_lasx_xvssrarni_bu_h:
3813 case Intrinsic::loongarch_lsx_vsat_w:
3814 case Intrinsic::loongarch_lsx_vsat_wu:
3815 case Intrinsic::loongarch_lsx_vrotri_w:
3816 case Intrinsic::loongarch_lsx_vsllwil_d_w:
3817 case Intrinsic::loongarch_lsx_vsllwil_du_wu:
3818 case Intrinsic::loongarch_lsx_vsrlri_w:
3819 case Intrinsic::loongarch_lsx_vsrari_w:
3820 case Intrinsic::loongarch_lsx_vslei_bu:
3821 case Intrinsic::loongarch_lsx_vslei_hu:
3822 case Intrinsic::loongarch_lsx_vslei_wu:
3823 case Intrinsic::loongarch_lsx_vslei_du:
3824 case Intrinsic::loongarch_lsx_vslti_bu:
3825 case Intrinsic::loongarch_lsx_vslti_hu:
3826 case Intrinsic::loongarch_lsx_vslti_wu:
3827 case Intrinsic::loongarch_lsx_vslti_du:
3828 case Intrinsic::loongarch_lsx_vbsll_v:
3829 case Intrinsic::loongarch_lsx_vbsrl_v:
3830 case Intrinsic::loongarch_lasx_xvsat_w:
3831 case Intrinsic::loongarch_lasx_xvsat_wu:
3832 case Intrinsic::loongarch_lasx_xvrotri_w:
3833 case Intrinsic::loongarch_lasx_xvsllwil_d_w:
3834 case Intrinsic::loongarch_lasx_xvsllwil_du_wu:
3835 case Intrinsic::loongarch_lasx_xvsrlri_w:
3836 case Intrinsic::loongarch_lasx_xvsrari_w:
3837 case Intrinsic::loongarch_lasx_xvslei_bu:
3838 case Intrinsic::loongarch_lasx_xvslei_hu:
3839 case Intrinsic::loongarch_lasx_xvslei_wu:
3840 case Intrinsic::loongarch_lasx_xvslei_du:
3841 case Intrinsic::loongarch_lasx_xvslti_bu:
3842 case Intrinsic::loongarch_lasx_xvslti_hu:
3843 case Intrinsic::loongarch_lasx_xvslti_wu:
3844 case Intrinsic::loongarch_lasx_xvslti_du:
3845 case Intrinsic::loongarch_lasx_xvbsll_v:
3846 case Intrinsic::loongarch_lasx_xvbsrl_v:
3848 case Intrinsic::loongarch_lsx_vseqi_b:
3849 case Intrinsic::loongarch_lsx_vseqi_h:
3850 case Intrinsic::loongarch_lsx_vseqi_w:
3851 case Intrinsic::loongarch_lsx_vseqi_d:
3852 case Intrinsic::loongarch_lsx_vslei_b:
3853 case Intrinsic::loongarch_lsx_vslei_h:
3854 case Intrinsic::loongarch_lsx_vslei_w:
3855 case Intrinsic::loongarch_lsx_vslei_d:
3856 case Intrinsic::loongarch_lsx_vslti_b:
3857 case Intrinsic::loongarch_lsx_vslti_h:
3858 case Intrinsic::loongarch_lsx_vslti_w:
3859 case Intrinsic::loongarch_lsx_vslti_d:
3860 case Intrinsic::loongarch_lasx_xvseqi_b:
3861 case Intrinsic::loongarch_lasx_xvseqi_h:
3862 case Intrinsic::loongarch_lasx_xvseqi_w:
3863 case Intrinsic::loongarch_lasx_xvseqi_d:
3864 case Intrinsic::loongarch_lasx_xvslei_b:
3865 case Intrinsic::loongarch_lasx_xvslei_h:
3866 case Intrinsic::loongarch_lasx_xvslei_w:
3867 case Intrinsic::loongarch_lasx_xvslei_d:
3868 case Intrinsic::loongarch_lasx_xvslti_b:
3869 case Intrinsic::loongarch_lasx_xvslti_h:
3870 case Intrinsic::loongarch_lasx_xvslti_w:
3871 case Intrinsic::loongarch_lasx_xvslti_d:
3873 case Intrinsic::loongarch_lsx_vsrlni_h_w:
3874 case Intrinsic::loongarch_lsx_vsrani_h_w:
3875 case Intrinsic::loongarch_lsx_vsrlrni_h_w:
3876 case Intrinsic::loongarch_lsx_vsrarni_h_w:
3877 case Intrinsic::loongarch_lsx_vssrlni_h_w:
3878 case Intrinsic::loongarch_lsx_vssrani_h_w:
3879 case Intrinsic::loongarch_lsx_vssrlni_hu_w:
3880 case Intrinsic::loongarch_lsx_vssrani_hu_w:
3881 case Intrinsic::loongarch_lsx_vssrlrni_h_w:
3882 case Intrinsic::loongarch_lsx_vssrarni_h_w:
3883 case Intrinsic::loongarch_lsx_vssrlrni_hu_w:
3884 case Intrinsic::loongarch_lsx_vssrarni_hu_w:
3885 case Intrinsic::loongarch_lsx_vfrstpi_b:
3886 case Intrinsic::loongarch_lsx_vfrstpi_h:
3887 case Intrinsic::loongarch_lasx_xvsrlni_h_w:
3888 case Intrinsic::loongarch_lasx_xvsrani_h_w:
3889 case Intrinsic::loongarch_lasx_xvsrlrni_h_w:
3890 case Intrinsic::loongarch_lasx_xvsrarni_h_w:
3891 case Intrinsic::loongarch_lasx_xvssrlni_h_w:
3892 case Intrinsic::loongarch_lasx_xvssrani_h_w:
3893 case Intrinsic::loongarch_lasx_xvssrlni_hu_w:
3894 case Intrinsic::loongarch_lasx_xvssrani_hu_w:
3895 case Intrinsic::loongarch_lasx_xvssrlrni_h_w:
3896 case Intrinsic::loongarch_lasx_xvssrarni_h_w:
3897 case Intrinsic::loongarch_lasx_xvssrlrni_hu_w:
3898 case Intrinsic::loongarch_lasx_xvssrarni_hu_w:
3899 case Intrinsic::loongarch_lasx_xvfrstpi_b:
3900 case Intrinsic::loongarch_lasx_xvfrstpi_h:
3902 case Intrinsic::loongarch_lsx_vsat_d:
3903 case Intrinsic::loongarch_lsx_vsat_du:
3904 case Intrinsic::loongarch_lsx_vrotri_d:
3905 case Intrinsic::loongarch_lsx_vsrlri_d:
3906 case Intrinsic::loongarch_lsx_vsrari_d:
3907 case Intrinsic::loongarch_lasx_xvsat_d:
3908 case Intrinsic::loongarch_lasx_xvsat_du:
3909 case Intrinsic::loongarch_lasx_xvrotri_d:
3910 case Intrinsic::loongarch_lasx_xvsrlri_d:
3911 case Intrinsic::loongarch_lasx_xvsrari_d:
3913 case Intrinsic::loongarch_lsx_vsrlni_w_d:
3914 case Intrinsic::loongarch_lsx_vsrani_w_d:
3915 case Intrinsic::loongarch_lsx_vsrlrni_w_d:
3916 case Intrinsic::loongarch_lsx_vsrarni_w_d:
3917 case Intrinsic::loongarch_lsx_vssrlni_w_d:
3918 case Intrinsic::loongarch_lsx_vssrani_w_d:
3919 case Intrinsic::loongarch_lsx_vssrlni_wu_d:
3920 case Intrinsic::loongarch_lsx_vssrani_wu_d:
3921 case Intrinsic::loongarch_lsx_vssrlrni_w_d:
3922 case Intrinsic::loongarch_lsx_vssrarni_w_d:
3923 case Intrinsic::loongarch_lsx_vssrlrni_wu_d:
3924 case Intrinsic::loongarch_lsx_vssrarni_wu_d:
3925 case Intrinsic::loongarch_lasx_xvsrlni_w_d:
3926 case Intrinsic::loongarch_lasx_xvsrani_w_d:
3927 case Intrinsic::loongarch_lasx_xvsrlrni_w_d:
3928 case Intrinsic::loongarch_lasx_xvsrarni_w_d:
3929 case Intrinsic::loongarch_lasx_xvssrlni_w_d:
3930 case Intrinsic::loongarch_lasx_xvssrani_w_d:
3931 case Intrinsic::loongarch_lasx_xvssrlni_wu_d:
3932 case Intrinsic::loongarch_lasx_xvssrani_wu_d:
3933 case Intrinsic::loongarch_lasx_xvssrlrni_w_d:
3934 case Intrinsic::loongarch_lasx_xvssrarni_w_d:
3935 case Intrinsic::loongarch_lasx_xvssrlrni_wu_d:
3936 case Intrinsic::loongarch_lasx_xvssrarni_wu_d:
3938 case Intrinsic::loongarch_lsx_vsrlni_d_q:
3939 case Intrinsic::loongarch_lsx_vsrani_d_q:
3940 case Intrinsic::loongarch_lsx_vsrlrni_d_q:
3941 case Intrinsic::loongarch_lsx_vsrarni_d_q:
3942 case Intrinsic::loongarch_lsx_vssrlni_d_q:
3943 case Intrinsic::loongarch_lsx_vssrani_d_q:
3944 case Intrinsic::loongarch_lsx_vssrlni_du_q:
3945 case Intrinsic::loongarch_lsx_vssrani_du_q:
3946 case Intrinsic::loongarch_lsx_vssrlrni_d_q:
3947 case Intrinsic::loongarch_lsx_vssrarni_d_q:
3948 case Intrinsic::loongarch_lsx_vssrlrni_du_q:
3949 case Intrinsic::loongarch_lsx_vssrarni_du_q:
3950 case Intrinsic::loongarch_lasx_xvsrlni_d_q:
3951 case Intrinsic::loongarch_lasx_xvsrani_d_q:
3952 case Intrinsic::loongarch_lasx_xvsrlrni_d_q:
3953 case Intrinsic::loongarch_lasx_xvsrarni_d_q:
3954 case Intrinsic::loongarch_lasx_xvssrlni_d_q:
3955 case Intrinsic::loongarch_lasx_xvssrani_d_q:
3956 case Intrinsic::loongarch_lasx_xvssrlni_du_q:
3957 case Intrinsic::loongarch_lasx_xvssrani_du_q:
3958 case Intrinsic::loongarch_lasx_xvssrlrni_d_q:
3959 case Intrinsic::loongarch_lasx_xvssrarni_d_q:
3960 case Intrinsic::loongarch_lasx_xvssrlrni_du_q:
3961 case Intrinsic::loongarch_lasx_xvssrarni_du_q:
3963 case Intrinsic::loongarch_lsx_vnori_b:
3964 case Intrinsic::loongarch_lsx_vshuf4i_b:
3965 case Intrinsic::loongarch_lsx_vshuf4i_h:
3966 case Intrinsic::loongarch_lsx_vshuf4i_w:
3967 case Intrinsic::loongarch_lasx_xvnori_b:
3968 case Intrinsic::loongarch_lasx_xvshuf4i_b:
3969 case Intrinsic::loongarch_lasx_xvshuf4i_h:
3970 case Intrinsic::loongarch_lasx_xvshuf4i_w:
3971 case Intrinsic::loongarch_lasx_xvpermi_d:
3973 case Intrinsic::loongarch_lsx_vshuf4i_d:
3974 case Intrinsic::loongarch_lsx_vpermi_w:
3975 case Intrinsic::loongarch_lsx_vbitseli_b:
3976 case Intrinsic::loongarch_lsx_vextrins_b:
3977 case Intrinsic::loongarch_lsx_vextrins_h:
3978 case Intrinsic::loongarch_lsx_vextrins_w:
3979 case Intrinsic::loongarch_lsx_vextrins_d:
3980 case Intrinsic::loongarch_lasx_xvshuf4i_d:
3981 case Intrinsic::loongarch_lasx_xvpermi_w:
3982 case Intrinsic::loongarch_lasx_xvpermi_q:
3983 case Intrinsic::loongarch_lasx_xvbitseli_b:
3984 case Intrinsic::loongarch_lasx_xvextrins_b:
3985 case Intrinsic::loongarch_lasx_xvextrins_h:
3986 case Intrinsic::loongarch_lasx_xvextrins_w:
3987 case Intrinsic::loongarch_lasx_xvextrins_d:
3989 case Intrinsic::loongarch_lsx_vrepli_b:
3990 case Intrinsic::loongarch_lsx_vrepli_h:
3991 case Intrinsic::loongarch_lsx_vrepli_w:
3992 case Intrinsic::loongarch_lsx_vrepli_d:
3993 case Intrinsic::loongarch_lasx_xvrepli_b:
3994 case Intrinsic::loongarch_lasx_xvrepli_h:
3995 case Intrinsic::loongarch_lasx_xvrepli_w:
3996 case Intrinsic::loongarch_lasx_xvrepli_d:
3998 case Intrinsic::loongarch_lsx_vldi:
3999 case Intrinsic::loongarch_lasx_xvldi:
4015LoongArchTargetLowering::lowerINTRINSIC_W_CHAIN(
SDValue Op,
4018 MVT GRLenVT = Subtarget.getGRLenVT();
4019 EVT VT =
Op.getValueType();
4021 const StringRef ErrorMsgOOR =
"argument out of range";
4022 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4023 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4025 switch (
Op.getConstantOperandVal(1)) {
4028 case Intrinsic::loongarch_crc_w_b_w:
4029 case Intrinsic::loongarch_crc_w_h_w:
4030 case Intrinsic::loongarch_crc_w_w_w:
4031 case Intrinsic::loongarch_crc_w_d_w:
4032 case Intrinsic::loongarch_crcc_w_b_w:
4033 case Intrinsic::loongarch_crcc_w_h_w:
4034 case Intrinsic::loongarch_crcc_w_w_w:
4035 case Intrinsic::loongarch_crcc_w_d_w:
4037 case Intrinsic::loongarch_csrrd_w:
4038 case Intrinsic::loongarch_csrrd_d: {
4039 unsigned Imm =
Op.getConstantOperandVal(2);
4045 case Intrinsic::loongarch_csrwr_w:
4046 case Intrinsic::loongarch_csrwr_d: {
4047 unsigned Imm =
Op.getConstantOperandVal(3);
4051 {Chain,
Op.getOperand(2),
4054 case Intrinsic::loongarch_csrxchg_w:
4055 case Intrinsic::loongarch_csrxchg_d: {
4056 unsigned Imm =
Op.getConstantOperandVal(4);
4060 {Chain,
Op.getOperand(2),
Op.getOperand(3),
4063 case Intrinsic::loongarch_iocsrrd_d: {
4068#define IOCSRRD_CASE(NAME, NODE) \
4069 case Intrinsic::loongarch_##NAME: { \
4070 return DAG.getNode(LoongArchISD::NODE, DL, {GRLenVT, MVT::Other}, \
4071 {Chain, Op.getOperand(2)}); \
4077 case Intrinsic::loongarch_cpucfg: {
4079 {Chain,
Op.getOperand(2)});
4081 case Intrinsic::loongarch_lddir_d: {
4082 unsigned Imm =
Op.getConstantOperandVal(3);
4087 case Intrinsic::loongarch_movfcsr2gr: {
4088 if (!Subtarget.hasBasicF())
4090 unsigned Imm =
Op.getConstantOperandVal(2);
4096 case Intrinsic::loongarch_lsx_vld:
4097 case Intrinsic::loongarch_lsx_vldrepl_b:
4098 case Intrinsic::loongarch_lasx_xvld:
4099 case Intrinsic::loongarch_lasx_xvldrepl_b:
4103 case Intrinsic::loongarch_lsx_vldrepl_h:
4104 case Intrinsic::loongarch_lasx_xvldrepl_h:
4108 Op,
"argument out of range or not a multiple of 2", DAG)
4110 case Intrinsic::loongarch_lsx_vldrepl_w:
4111 case Intrinsic::loongarch_lasx_xvldrepl_w:
4115 Op,
"argument out of range or not a multiple of 4", DAG)
4117 case Intrinsic::loongarch_lsx_vldrepl_d:
4118 case Intrinsic::loongarch_lasx_xvldrepl_d:
4122 Op,
"argument out of range or not a multiple of 8", DAG)
4133 return Op.getOperand(0);
4139 MVT GRLenVT = Subtarget.getGRLenVT();
4141 uint64_t IntrinsicEnum =
Op.getConstantOperandVal(1);
4143 const StringRef ErrorMsgOOR =
"argument out of range";
4144 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4145 const StringRef ErrorMsgReqLA32 =
"requires loongarch32";
4146 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4148 switch (IntrinsicEnum) {
4152 case Intrinsic::loongarch_cacop_d:
4153 case Intrinsic::loongarch_cacop_w: {
4154 if (IntrinsicEnum == Intrinsic::loongarch_cacop_d && !Subtarget.is64Bit())
4156 if (IntrinsicEnum == Intrinsic::loongarch_cacop_w && Subtarget.is64Bit())
4165 case Intrinsic::loongarch_dbar: {
4172 case Intrinsic::loongarch_ibar: {
4179 case Intrinsic::loongarch_break: {
4186 case Intrinsic::loongarch_movgr2fcsr: {
4187 if (!Subtarget.hasBasicF())
4197 case Intrinsic::loongarch_syscall: {
4204#define IOCSRWR_CASE(NAME, NODE) \
4205 case Intrinsic::loongarch_##NAME: { \
4206 SDValue Op3 = Op.getOperand(3); \
4207 return Subtarget.is64Bit() \
4208 ? DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, \
4209 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
4210 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op3)) \
4211 : DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, Op2, \
4218 case Intrinsic::loongarch_iocsrwr_d: {
4219 return !Subtarget.is64Bit()
4226#define ASRT_LE_GT_CASE(NAME) \
4227 case Intrinsic::loongarch_##NAME: { \
4228 return !Subtarget.is64Bit() \
4229 ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG) \
4234#undef ASRT_LE_GT_CASE
4235 case Intrinsic::loongarch_ldpte_d: {
4236 unsigned Imm =
Op.getConstantOperandVal(3);
4237 return !Subtarget.is64Bit()
4242 case Intrinsic::loongarch_lsx_vst:
4243 case Intrinsic::loongarch_lasx_xvst:
4247 case Intrinsic::loongarch_lasx_xvstelm_b:
4252 case Intrinsic::loongarch_lsx_vstelm_b:
4257 case Intrinsic::loongarch_lasx_xvstelm_h:
4262 Op,
"argument out of range or not a multiple of 2", DAG)
4264 case Intrinsic::loongarch_lsx_vstelm_h:
4269 Op,
"argument out of range or not a multiple of 2", DAG)
4271 case Intrinsic::loongarch_lasx_xvstelm_w:
4276 Op,
"argument out of range or not a multiple of 4", DAG)
4278 case Intrinsic::loongarch_lsx_vstelm_w:
4283 Op,
"argument out of range or not a multiple of 4", DAG)
4285 case Intrinsic::loongarch_lasx_xvstelm_d:
4290 Op,
"argument out of range or not a multiple of 8", DAG)
4292 case Intrinsic::loongarch_lsx_vstelm_d:
4297 Op,
"argument out of range or not a multiple of 8", DAG)
4308 EVT VT =
Lo.getValueType();
4349 EVT VT =
Lo.getValueType();
4441 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
4442 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0);
4446 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
4452 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0, NewOp1);
4479 StringRef ErrorMsg,
bool WithChain =
true) {
4484 Results.push_back(
N->getOperand(0));
4487template <
unsigned N>
4492 const StringRef ErrorMsgOOR =
"argument out of range";
4493 unsigned Imm =
Node->getConstantOperandVal(2);
4527 switch (
N->getConstantOperandVal(0)) {
4530 case Intrinsic::loongarch_lsx_vpickve2gr_b:
4534 case Intrinsic::loongarch_lsx_vpickve2gr_h:
4535 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
4539 case Intrinsic::loongarch_lsx_vpickve2gr_w:
4543 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
4547 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
4548 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
4552 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
4556 case Intrinsic::loongarch_lsx_bz_b:
4557 case Intrinsic::loongarch_lsx_bz_h:
4558 case Intrinsic::loongarch_lsx_bz_w:
4559 case Intrinsic::loongarch_lsx_bz_d:
4560 case Intrinsic::loongarch_lasx_xbz_b:
4561 case Intrinsic::loongarch_lasx_xbz_h:
4562 case Intrinsic::loongarch_lasx_xbz_w:
4563 case Intrinsic::loongarch_lasx_xbz_d:
4567 case Intrinsic::loongarch_lsx_bz_v:
4568 case Intrinsic::loongarch_lasx_xbz_v:
4572 case Intrinsic::loongarch_lsx_bnz_b:
4573 case Intrinsic::loongarch_lsx_bnz_h:
4574 case Intrinsic::loongarch_lsx_bnz_w:
4575 case Intrinsic::loongarch_lsx_bnz_d:
4576 case Intrinsic::loongarch_lasx_xbnz_b:
4577 case Intrinsic::loongarch_lasx_xbnz_h:
4578 case Intrinsic::loongarch_lasx_xbnz_w:
4579 case Intrinsic::loongarch_lasx_xbnz_d:
4583 case Intrinsic::loongarch_lsx_bnz_v:
4584 case Intrinsic::loongarch_lasx_xbnz_v:
4594 assert(
N->getValueType(0) == MVT::i128 &&
4595 "AtomicCmpSwap on types less than 128 should be legal");
4599 switch (
MemOp->getMergedOrdering()) {
4603 Opcode = LoongArch::PseudoCmpXchg128Acquire;
4607 Opcode = LoongArch::PseudoCmpXchg128;
4614 auto CmpVal = DAG.
SplitScalar(
N->getOperand(2),
DL, MVT::i64, MVT::i64);
4615 auto NewVal = DAG.
SplitScalar(
N->getOperand(3),
DL, MVT::i64, MVT::i64);
4616 SDValue Ops[] = {
N->getOperand(1), CmpVal.first, CmpVal.second,
4617 NewVal.first, NewVal.second,
N->getOperand(0)};
4620 Opcode,
SDLoc(
N), DAG.
getVTList(MVT::i64, MVT::i64, MVT::i64, MVT::Other),
4631 EVT VT =
N->getValueType(0);
4632 switch (
N->getOpcode()) {
4637 assert(
N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4638 "Unexpected custom legalisation");
4645 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4646 "Unexpected custom legalisation");
4648 Subtarget.hasDiv32() && VT == MVT::i32
4655 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4656 "Unexpected custom legalisation");
4664 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4665 "Unexpected custom legalisation");
4669 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4670 "Unexpected custom legalisation");
4677 if (Src.getValueType() == MVT::f16)
4678 Src = DAG.
getNode(ISD::FP_EXTEND,
DL, MVT::f32, Src);
4688 EVT OpVT = Src.getValueType();
4692 std::tie(Result, Chain) =
4697 case ISD::BITCAST: {
4699 EVT SrcVT = Src.getValueType();
4700 if (VT == MVT::i32 && SrcVT == MVT::f32 && Subtarget.is64Bit() &&
4701 Subtarget.hasBasicF()) {
4705 }
else if (VT == MVT::i64 && SrcVT == MVT::f64 && !Subtarget.is64Bit()) {
4707 DAG.
getVTList(MVT::i32, MVT::i32), Src);
4715 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4716 "Unexpected custom legalisation");
4719 TLI.expandFP_TO_UINT(
N, Tmp1, Tmp2, DAG);
4725 assert((VT == MVT::i16 || VT == MVT::i32) &&
4726 "Unexpected custom legalization");
4727 MVT GRLenVT = Subtarget.getGRLenVT();
4747 assert((VT == MVT::i8 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
4748 "Unexpected custom legalization");
4749 MVT GRLenVT = Subtarget.getGRLenVT();
4767 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4768 "Unexpected custom legalisation");
4775 MVT GRLenVT = Subtarget.getGRLenVT();
4776 const StringRef ErrorMsgOOR =
"argument out of range";
4777 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4778 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4780 switch (
N->getConstantOperandVal(1)) {
4783 case Intrinsic::loongarch_movfcsr2gr: {
4784 if (!Subtarget.hasBasicF()) {
4801#define CRC_CASE_EXT_BINARYOP(NAME, NODE) \
4802 case Intrinsic::loongarch_##NAME: { \
4803 SDValue NODE = DAG.getNode( \
4804 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4805 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
4806 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
4807 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
4808 Results.push_back(NODE.getValue(1)); \
4817#undef CRC_CASE_EXT_BINARYOP
4819#define CRC_CASE_EXT_UNARYOP(NAME, NODE) \
4820 case Intrinsic::loongarch_##NAME: { \
4821 SDValue NODE = DAG.getNode( \
4822 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4824 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
4825 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
4826 Results.push_back(NODE.getValue(1)); \
4831#undef CRC_CASE_EXT_UNARYOP
4832#define CSR_CASE(ID) \
4833 case Intrinsic::loongarch_##ID: { \
4834 if (!Subtarget.is64Bit()) \
4835 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqLA64); \
4843 case Intrinsic::loongarch_csrrd_w: {
4857 case Intrinsic::loongarch_csrwr_w: {
4858 unsigned Imm =
N->getConstantOperandVal(3);
4872 case Intrinsic::loongarch_csrxchg_w: {
4873 unsigned Imm =
N->getConstantOperandVal(4);
4888#define IOCSRRD_CASE(NAME, NODE) \
4889 case Intrinsic::loongarch_##NAME: { \
4890 SDValue IOCSRRDResults = \
4891 DAG.getNode(LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4892 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)}); \
4893 Results.push_back( \
4894 DAG.getNode(ISD::TRUNCATE, DL, VT, IOCSRRDResults.getValue(0))); \
4895 Results.push_back(IOCSRRDResults.getValue(1)); \
4902 case Intrinsic::loongarch_cpucfg: {
4911 case Intrinsic::loongarch_lddir_d: {
4912 if (!Subtarget.is64Bit()) {
4922 if (Subtarget.is64Bit())
4924 "On LA64, only 64-bit registers can be read.");
4927 "On LA32, only 32-bit registers can be read.");
4929 Results.push_back(
N->getOperand(0));
4940 OpVT == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32;
4948 case ISD::ATOMIC_CMP_SWAP: {
4953 MVT VT =
N->getSimpleValueType(0);
4959 EVT InVT = In.getValueType();
4970 for (
unsigned I = 0;
I < MinElts; ++
I)
4971 TruncMask[
I] = Scale *
I;
4973 unsigned WidenNumElts = 128 / In.getScalarValueSizeInBits();
4974 MVT SVT = In.getSimpleValueType().getScalarType();
4980 "Illegal vector type in truncation");
4999 SDValue FirstOperand =
N->getOperand(0);
5000 SDValue SecondOperand =
N->getOperand(1);
5001 unsigned FirstOperandOpc = FirstOperand.
getOpcode();
5002 EVT ValTy =
N->getValueType(0);
5005 unsigned SMIdx, SMLen;
5011 if (!Subtarget.has32S())
5033 if (SMIdx != 0 || lsb + SMLen > ValTy.getSizeInBits())
5048 if (SMIdx + SMLen > ValTy.getSizeInBits())
5067 NewOperand = FirstOperand;
5070 msb = lsb + SMLen - 1;
5074 if (FirstOperandOpc ==
ISD::SRA || FirstOperandOpc ==
ISD::SRL || lsb == 0)
5087 if (!Subtarget.has32S())
5099 SDValue FirstOperand =
N->getOperand(0);
5101 EVT ValTy =
N->getValueType(0);
5104 unsigned MaskIdx, MaskLen;
5119 if (MaskIdx <= Shamt && Shamt <= MaskIdx + MaskLen - 1)
5135 switch (Src.getOpcode()) {
5138 return Src.getOperand(0).getValueSizeInBits() ==
Size;
5148 return Src.getOperand(0).getScalarValueSizeInBits() == 1 &&
5161 switch (Src.getOpcode()) {
5171 Src.getOpcode(),
DL, SExtVT,
5177 DL, SExtVT, Src.getOperand(0),
5189 EVT VT =
N->getValueType(0);
5191 EVT SrcVT = Src.getValueType();
5193 if (Src.getOpcode() !=
ISD::SETCC || !Src.hasOneUse())
5198 EVT CmpVT = Src.getOperand(0).getValueType();
5203 else if (Subtarget.has32S() && Subtarget.hasExtLASX() &&
5231 (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
5238 (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
5262 EVT VT =
N->getValueType(0);
5264 EVT SrcVT = Src.getValueType();
5281 bool UseLASX =
false;
5282 bool PropagateSExt =
false;
5284 if (Src.getOpcode() ==
ISD::SETCC && Src.hasOneUse()) {
5285 EVT CmpVT = Src.getOperand(0).getValueType();
5294 SExtVT = MVT::v2i64;
5297 SExtVT = MVT::v4i32;
5299 SExtVT = MVT::v4i64;
5301 PropagateSExt =
true;
5305 SExtVT = MVT::v8i16;
5307 SExtVT = MVT::v8i32;
5309 PropagateSExt =
true;
5313 SExtVT = MVT::v16i8;
5315 SExtVT = MVT::v16i16;
5317 PropagateSExt =
true;
5321 SExtVT = MVT::v32i8;
5329 if (!Subtarget.has32S() || !Subtarget.hasExtLASX()) {
5330 if (Src.getSimpleValueType() == MVT::v32i8) {
5338 }
else if (UseLASX) {
5357 EVT ValTy =
N->getValueType(0);
5358 SDValue N0 =
N->getOperand(0), N1 =
N->getOperand(1);
5361 unsigned ValBits = ValTy.getSizeInBits();
5362 unsigned MaskIdx0, MaskLen0, MaskIdx1, MaskLen1;
5364 bool SwapAndRetried =
false;
5367 if (!Subtarget.has32S())
5373 if (ValBits != 32 && ValBits != 64)
5388 MaskIdx0 == MaskIdx1 && MaskLen0 == MaskLen1 &&
5391 (MaskIdx0 + MaskLen0 <= ValBits)) {
5412 MaskLen0 == MaskLen1 && MaskIdx1 == 0 &&
5413 (MaskIdx0 + MaskLen0 <= ValBits)) {
5430 (MaskIdx0 + MaskLen0 <= 64) &&
5438 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
5439 : (MaskIdx0 + MaskLen0 - 1),
5455 (MaskIdx0 + MaskLen0 <= ValBits)) {
5478 DAG.
getConstant(ValBits == 32 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
5479 : (MaskIdx0 + MaskLen0 - 1),
5494 unsigned MaskIdx, MaskLen;
5495 if (N1.getOpcode() ==
ISD::SHL && N1.getOperand(0).getOpcode() ==
ISD::AND &&
5522 N1.getOperand(0).getOpcode() ==
ISD::SHL &&
5536 if (!SwapAndRetried) {
5538 SwapAndRetried =
true;
5542 SwapAndRetried =
false;
5568 if (!SwapAndRetried) {
5570 SwapAndRetried =
true;
5580 switch (V.getNode()->getOpcode()) {
5592 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
5600 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
5677 SDNode *AndNode =
N->getOperand(0).getNode();
5685 SDValue CmpInputValue =
N->getOperand(1);
5696 AndInputValue1 = AndInputValue1.
getOperand(0);
5700 if (AndInputValue2 != CmpInputValue)
5733 TruncInputValue1, TruncInputValue2);
5735 DAG.
getSetCC(
SDLoc(
N),
N->getValueType(0), NewAnd, TruncInputValue2, CC);
5776 LHS.getOperand(0).getValueType() == Subtarget.
getGRLenVT()) {
5804 ShAmt =
LHS.getValueSizeInBits() - 1 - ShAmt;
5838 N->getOperand(0),
LHS,
RHS, CC,
N->getOperand(4));
5854 EVT VT =
N->getValueType(0);
5857 if (TrueV == FalseV)
5889 {LHS, RHS, CC, TrueV, FalseV});
5894template <
unsigned N>
5898 bool IsSigned =
false) {
5902 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
5903 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
5905 ": argument out of range.");
5911template <
unsigned N>
5915 EVT ResTy =
Node->getValueType(0);
5919 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
5920 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
5922 ": argument out of range.");
5927 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
5933 EVT ResTy =
Node->getValueType(0);
5941 EVT ResTy =
Node->getValueType(0);
5950template <
unsigned N>
5953 EVT ResTy =
Node->getValueType(0);
5958 ": argument out of range.");
5968template <
unsigned N>
5971 EVT ResTy =
Node->getValueType(0);
5976 ": argument out of range.");
5985template <
unsigned N>
5988 EVT ResTy =
Node->getValueType(0);
5993 ": argument out of range.");
6002template <
unsigned W>
6005 unsigned Imm =
N->getConstantOperandVal(2);
6007 const StringRef ErrorMsg =
"argument out of range";
6009 return DAG.
getUNDEF(
N->getValueType(0));
6015 return DAG.
getNode(ResOp,
DL,
N->getValueType(0), Vec, Idx, EltVT);
6023 switch (
N->getConstantOperandVal(0)) {
6026 case Intrinsic::loongarch_lsx_vadd_b:
6027 case Intrinsic::loongarch_lsx_vadd_h:
6028 case Intrinsic::loongarch_lsx_vadd_w:
6029 case Intrinsic::loongarch_lsx_vadd_d:
6030 case Intrinsic::loongarch_lasx_xvadd_b:
6031 case Intrinsic::loongarch_lasx_xvadd_h:
6032 case Intrinsic::loongarch_lasx_xvadd_w:
6033 case Intrinsic::loongarch_lasx_xvadd_d:
6036 case Intrinsic::loongarch_lsx_vaddi_bu:
6037 case Intrinsic::loongarch_lsx_vaddi_hu:
6038 case Intrinsic::loongarch_lsx_vaddi_wu:
6039 case Intrinsic::loongarch_lsx_vaddi_du:
6040 case Intrinsic::loongarch_lasx_xvaddi_bu:
6041 case Intrinsic::loongarch_lasx_xvaddi_hu:
6042 case Intrinsic::loongarch_lasx_xvaddi_wu:
6043 case Intrinsic::loongarch_lasx_xvaddi_du:
6046 case Intrinsic::loongarch_lsx_vsub_b:
6047 case Intrinsic::loongarch_lsx_vsub_h:
6048 case Intrinsic::loongarch_lsx_vsub_w:
6049 case Intrinsic::loongarch_lsx_vsub_d:
6050 case Intrinsic::loongarch_lasx_xvsub_b:
6051 case Intrinsic::loongarch_lasx_xvsub_h:
6052 case Intrinsic::loongarch_lasx_xvsub_w:
6053 case Intrinsic::loongarch_lasx_xvsub_d:
6056 case Intrinsic::loongarch_lsx_vsubi_bu:
6057 case Intrinsic::loongarch_lsx_vsubi_hu:
6058 case Intrinsic::loongarch_lsx_vsubi_wu:
6059 case Intrinsic::loongarch_lsx_vsubi_du:
6060 case Intrinsic::loongarch_lasx_xvsubi_bu:
6061 case Intrinsic::loongarch_lasx_xvsubi_hu:
6062 case Intrinsic::loongarch_lasx_xvsubi_wu:
6063 case Intrinsic::loongarch_lasx_xvsubi_du:
6066 case Intrinsic::loongarch_lsx_vneg_b:
6067 case Intrinsic::loongarch_lsx_vneg_h:
6068 case Intrinsic::loongarch_lsx_vneg_w:
6069 case Intrinsic::loongarch_lsx_vneg_d:
6070 case Intrinsic::loongarch_lasx_xvneg_b:
6071 case Intrinsic::loongarch_lasx_xvneg_h:
6072 case Intrinsic::loongarch_lasx_xvneg_w:
6073 case Intrinsic::loongarch_lasx_xvneg_d:
6077 APInt(
N->getValueType(0).getScalarType().getSizeInBits(), 0,
6079 SDLoc(
N),
N->getValueType(0)),
6081 case Intrinsic::loongarch_lsx_vmax_b:
6082 case Intrinsic::loongarch_lsx_vmax_h:
6083 case Intrinsic::loongarch_lsx_vmax_w:
6084 case Intrinsic::loongarch_lsx_vmax_d:
6085 case Intrinsic::loongarch_lasx_xvmax_b:
6086 case Intrinsic::loongarch_lasx_xvmax_h:
6087 case Intrinsic::loongarch_lasx_xvmax_w:
6088 case Intrinsic::loongarch_lasx_xvmax_d:
6091 case Intrinsic::loongarch_lsx_vmax_bu:
6092 case Intrinsic::loongarch_lsx_vmax_hu:
6093 case Intrinsic::loongarch_lsx_vmax_wu:
6094 case Intrinsic::loongarch_lsx_vmax_du:
6095 case Intrinsic::loongarch_lasx_xvmax_bu:
6096 case Intrinsic::loongarch_lasx_xvmax_hu:
6097 case Intrinsic::loongarch_lasx_xvmax_wu:
6098 case Intrinsic::loongarch_lasx_xvmax_du:
6101 case Intrinsic::loongarch_lsx_vmaxi_b:
6102 case Intrinsic::loongarch_lsx_vmaxi_h:
6103 case Intrinsic::loongarch_lsx_vmaxi_w:
6104 case Intrinsic::loongarch_lsx_vmaxi_d:
6105 case Intrinsic::loongarch_lasx_xvmaxi_b:
6106 case Intrinsic::loongarch_lasx_xvmaxi_h:
6107 case Intrinsic::loongarch_lasx_xvmaxi_w:
6108 case Intrinsic::loongarch_lasx_xvmaxi_d:
6111 case Intrinsic::loongarch_lsx_vmaxi_bu:
6112 case Intrinsic::loongarch_lsx_vmaxi_hu:
6113 case Intrinsic::loongarch_lsx_vmaxi_wu:
6114 case Intrinsic::loongarch_lsx_vmaxi_du:
6115 case Intrinsic::loongarch_lasx_xvmaxi_bu:
6116 case Intrinsic::loongarch_lasx_xvmaxi_hu:
6117 case Intrinsic::loongarch_lasx_xvmaxi_wu:
6118 case Intrinsic::loongarch_lasx_xvmaxi_du:
6121 case Intrinsic::loongarch_lsx_vmin_b:
6122 case Intrinsic::loongarch_lsx_vmin_h:
6123 case Intrinsic::loongarch_lsx_vmin_w:
6124 case Intrinsic::loongarch_lsx_vmin_d:
6125 case Intrinsic::loongarch_lasx_xvmin_b:
6126 case Intrinsic::loongarch_lasx_xvmin_h:
6127 case Intrinsic::loongarch_lasx_xvmin_w:
6128 case Intrinsic::loongarch_lasx_xvmin_d:
6131 case Intrinsic::loongarch_lsx_vmin_bu:
6132 case Intrinsic::loongarch_lsx_vmin_hu:
6133 case Intrinsic::loongarch_lsx_vmin_wu:
6134 case Intrinsic::loongarch_lsx_vmin_du:
6135 case Intrinsic::loongarch_lasx_xvmin_bu:
6136 case Intrinsic::loongarch_lasx_xvmin_hu:
6137 case Intrinsic::loongarch_lasx_xvmin_wu:
6138 case Intrinsic::loongarch_lasx_xvmin_du:
6141 case Intrinsic::loongarch_lsx_vmini_b:
6142 case Intrinsic::loongarch_lsx_vmini_h:
6143 case Intrinsic::loongarch_lsx_vmini_w:
6144 case Intrinsic::loongarch_lsx_vmini_d:
6145 case Intrinsic::loongarch_lasx_xvmini_b:
6146 case Intrinsic::loongarch_lasx_xvmini_h:
6147 case Intrinsic::loongarch_lasx_xvmini_w:
6148 case Intrinsic::loongarch_lasx_xvmini_d:
6151 case Intrinsic::loongarch_lsx_vmini_bu:
6152 case Intrinsic::loongarch_lsx_vmini_hu:
6153 case Intrinsic::loongarch_lsx_vmini_wu:
6154 case Intrinsic::loongarch_lsx_vmini_du:
6155 case Intrinsic::loongarch_lasx_xvmini_bu:
6156 case Intrinsic::loongarch_lasx_xvmini_hu:
6157 case Intrinsic::loongarch_lasx_xvmini_wu:
6158 case Intrinsic::loongarch_lasx_xvmini_du:
6161 case Intrinsic::loongarch_lsx_vmul_b:
6162 case Intrinsic::loongarch_lsx_vmul_h:
6163 case Intrinsic::loongarch_lsx_vmul_w:
6164 case Intrinsic::loongarch_lsx_vmul_d:
6165 case Intrinsic::loongarch_lasx_xvmul_b:
6166 case Intrinsic::loongarch_lasx_xvmul_h:
6167 case Intrinsic::loongarch_lasx_xvmul_w:
6168 case Intrinsic::loongarch_lasx_xvmul_d:
6171 case Intrinsic::loongarch_lsx_vmadd_b:
6172 case Intrinsic::loongarch_lsx_vmadd_h:
6173 case Intrinsic::loongarch_lsx_vmadd_w:
6174 case Intrinsic::loongarch_lsx_vmadd_d:
6175 case Intrinsic::loongarch_lasx_xvmadd_b:
6176 case Intrinsic::loongarch_lasx_xvmadd_h:
6177 case Intrinsic::loongarch_lasx_xvmadd_w:
6178 case Intrinsic::loongarch_lasx_xvmadd_d: {
6179 EVT ResTy =
N->getValueType(0);
6184 case Intrinsic::loongarch_lsx_vmsub_b:
6185 case Intrinsic::loongarch_lsx_vmsub_h:
6186 case Intrinsic::loongarch_lsx_vmsub_w:
6187 case Intrinsic::loongarch_lsx_vmsub_d:
6188 case Intrinsic::loongarch_lasx_xvmsub_b:
6189 case Intrinsic::loongarch_lasx_xvmsub_h:
6190 case Intrinsic::loongarch_lasx_xvmsub_w:
6191 case Intrinsic::loongarch_lasx_xvmsub_d: {
6192 EVT ResTy =
N->getValueType(0);
6197 case Intrinsic::loongarch_lsx_vdiv_b:
6198 case Intrinsic::loongarch_lsx_vdiv_h:
6199 case Intrinsic::loongarch_lsx_vdiv_w:
6200 case Intrinsic::loongarch_lsx_vdiv_d:
6201 case Intrinsic::loongarch_lasx_xvdiv_b:
6202 case Intrinsic::loongarch_lasx_xvdiv_h:
6203 case Intrinsic::loongarch_lasx_xvdiv_w:
6204 case Intrinsic::loongarch_lasx_xvdiv_d:
6207 case Intrinsic::loongarch_lsx_vdiv_bu:
6208 case Intrinsic::loongarch_lsx_vdiv_hu:
6209 case Intrinsic::loongarch_lsx_vdiv_wu:
6210 case Intrinsic::loongarch_lsx_vdiv_du:
6211 case Intrinsic::loongarch_lasx_xvdiv_bu:
6212 case Intrinsic::loongarch_lasx_xvdiv_hu:
6213 case Intrinsic::loongarch_lasx_xvdiv_wu:
6214 case Intrinsic::loongarch_lasx_xvdiv_du:
6217 case Intrinsic::loongarch_lsx_vmod_b:
6218 case Intrinsic::loongarch_lsx_vmod_h:
6219 case Intrinsic::loongarch_lsx_vmod_w:
6220 case Intrinsic::loongarch_lsx_vmod_d:
6221 case Intrinsic::loongarch_lasx_xvmod_b:
6222 case Intrinsic::loongarch_lasx_xvmod_h:
6223 case Intrinsic::loongarch_lasx_xvmod_w:
6224 case Intrinsic::loongarch_lasx_xvmod_d:
6227 case Intrinsic::loongarch_lsx_vmod_bu:
6228 case Intrinsic::loongarch_lsx_vmod_hu:
6229 case Intrinsic::loongarch_lsx_vmod_wu:
6230 case Intrinsic::loongarch_lsx_vmod_du:
6231 case Intrinsic::loongarch_lasx_xvmod_bu:
6232 case Intrinsic::loongarch_lasx_xvmod_hu:
6233 case Intrinsic::loongarch_lasx_xvmod_wu:
6234 case Intrinsic::loongarch_lasx_xvmod_du:
6237 case Intrinsic::loongarch_lsx_vand_v:
6238 case Intrinsic::loongarch_lasx_xvand_v:
6241 case Intrinsic::loongarch_lsx_vor_v:
6242 case Intrinsic::loongarch_lasx_xvor_v:
6245 case Intrinsic::loongarch_lsx_vxor_v:
6246 case Intrinsic::loongarch_lasx_xvxor_v:
6249 case Intrinsic::loongarch_lsx_vnor_v:
6250 case Intrinsic::loongarch_lasx_xvnor_v: {
6255 case Intrinsic::loongarch_lsx_vandi_b:
6256 case Intrinsic::loongarch_lasx_xvandi_b:
6259 case Intrinsic::loongarch_lsx_vori_b:
6260 case Intrinsic::loongarch_lasx_xvori_b:
6263 case Intrinsic::loongarch_lsx_vxori_b:
6264 case Intrinsic::loongarch_lasx_xvxori_b:
6267 case Intrinsic::loongarch_lsx_vsll_b:
6268 case Intrinsic::loongarch_lsx_vsll_h:
6269 case Intrinsic::loongarch_lsx_vsll_w:
6270 case Intrinsic::loongarch_lsx_vsll_d:
6271 case Intrinsic::loongarch_lasx_xvsll_b:
6272 case Intrinsic::loongarch_lasx_xvsll_h:
6273 case Intrinsic::loongarch_lasx_xvsll_w:
6274 case Intrinsic::loongarch_lasx_xvsll_d:
6277 case Intrinsic::loongarch_lsx_vslli_b:
6278 case Intrinsic::loongarch_lasx_xvslli_b:
6281 case Intrinsic::loongarch_lsx_vslli_h:
6282 case Intrinsic::loongarch_lasx_xvslli_h:
6285 case Intrinsic::loongarch_lsx_vslli_w:
6286 case Intrinsic::loongarch_lasx_xvslli_w:
6289 case Intrinsic::loongarch_lsx_vslli_d:
6290 case Intrinsic::loongarch_lasx_xvslli_d:
6293 case Intrinsic::loongarch_lsx_vsrl_b:
6294 case Intrinsic::loongarch_lsx_vsrl_h:
6295 case Intrinsic::loongarch_lsx_vsrl_w:
6296 case Intrinsic::loongarch_lsx_vsrl_d:
6297 case Intrinsic::loongarch_lasx_xvsrl_b:
6298 case Intrinsic::loongarch_lasx_xvsrl_h:
6299 case Intrinsic::loongarch_lasx_xvsrl_w:
6300 case Intrinsic::loongarch_lasx_xvsrl_d:
6303 case Intrinsic::loongarch_lsx_vsrli_b:
6304 case Intrinsic::loongarch_lasx_xvsrli_b:
6307 case Intrinsic::loongarch_lsx_vsrli_h:
6308 case Intrinsic::loongarch_lasx_xvsrli_h:
6311 case Intrinsic::loongarch_lsx_vsrli_w:
6312 case Intrinsic::loongarch_lasx_xvsrli_w:
6315 case Intrinsic::loongarch_lsx_vsrli_d:
6316 case Intrinsic::loongarch_lasx_xvsrli_d:
6319 case Intrinsic::loongarch_lsx_vsra_b:
6320 case Intrinsic::loongarch_lsx_vsra_h:
6321 case Intrinsic::loongarch_lsx_vsra_w:
6322 case Intrinsic::loongarch_lsx_vsra_d:
6323 case Intrinsic::loongarch_lasx_xvsra_b:
6324 case Intrinsic::loongarch_lasx_xvsra_h:
6325 case Intrinsic::loongarch_lasx_xvsra_w:
6326 case Intrinsic::loongarch_lasx_xvsra_d:
6329 case Intrinsic::loongarch_lsx_vsrai_b:
6330 case Intrinsic::loongarch_lasx_xvsrai_b:
6333 case Intrinsic::loongarch_lsx_vsrai_h:
6334 case Intrinsic::loongarch_lasx_xvsrai_h:
6337 case Intrinsic::loongarch_lsx_vsrai_w:
6338 case Intrinsic::loongarch_lasx_xvsrai_w:
6341 case Intrinsic::loongarch_lsx_vsrai_d:
6342 case Intrinsic::loongarch_lasx_xvsrai_d:
6345 case Intrinsic::loongarch_lsx_vclz_b:
6346 case Intrinsic::loongarch_lsx_vclz_h:
6347 case Intrinsic::loongarch_lsx_vclz_w:
6348 case Intrinsic::loongarch_lsx_vclz_d:
6349 case Intrinsic::loongarch_lasx_xvclz_b:
6350 case Intrinsic::loongarch_lasx_xvclz_h:
6351 case Intrinsic::loongarch_lasx_xvclz_w:
6352 case Intrinsic::loongarch_lasx_xvclz_d:
6354 case Intrinsic::loongarch_lsx_vpcnt_b:
6355 case Intrinsic::loongarch_lsx_vpcnt_h:
6356 case Intrinsic::loongarch_lsx_vpcnt_w:
6357 case Intrinsic::loongarch_lsx_vpcnt_d:
6358 case Intrinsic::loongarch_lasx_xvpcnt_b:
6359 case Intrinsic::loongarch_lasx_xvpcnt_h:
6360 case Intrinsic::loongarch_lasx_xvpcnt_w:
6361 case Intrinsic::loongarch_lasx_xvpcnt_d:
6363 case Intrinsic::loongarch_lsx_vbitclr_b:
6364 case Intrinsic::loongarch_lsx_vbitclr_h:
6365 case Intrinsic::loongarch_lsx_vbitclr_w:
6366 case Intrinsic::loongarch_lsx_vbitclr_d:
6367 case Intrinsic::loongarch_lasx_xvbitclr_b:
6368 case Intrinsic::loongarch_lasx_xvbitclr_h:
6369 case Intrinsic::loongarch_lasx_xvbitclr_w:
6370 case Intrinsic::loongarch_lasx_xvbitclr_d:
6372 case Intrinsic::loongarch_lsx_vbitclri_b:
6373 case Intrinsic::loongarch_lasx_xvbitclri_b:
6375 case Intrinsic::loongarch_lsx_vbitclri_h:
6376 case Intrinsic::loongarch_lasx_xvbitclri_h:
6378 case Intrinsic::loongarch_lsx_vbitclri_w:
6379 case Intrinsic::loongarch_lasx_xvbitclri_w:
6381 case Intrinsic::loongarch_lsx_vbitclri_d:
6382 case Intrinsic::loongarch_lasx_xvbitclri_d:
6384 case Intrinsic::loongarch_lsx_vbitset_b:
6385 case Intrinsic::loongarch_lsx_vbitset_h:
6386 case Intrinsic::loongarch_lsx_vbitset_w:
6387 case Intrinsic::loongarch_lsx_vbitset_d:
6388 case Intrinsic::loongarch_lasx_xvbitset_b:
6389 case Intrinsic::loongarch_lasx_xvbitset_h:
6390 case Intrinsic::loongarch_lasx_xvbitset_w:
6391 case Intrinsic::loongarch_lasx_xvbitset_d: {
6392 EVT VecTy =
N->getValueType(0);
6398 case Intrinsic::loongarch_lsx_vbitseti_b:
6399 case Intrinsic::loongarch_lasx_xvbitseti_b:
6401 case Intrinsic::loongarch_lsx_vbitseti_h:
6402 case Intrinsic::loongarch_lasx_xvbitseti_h:
6404 case Intrinsic::loongarch_lsx_vbitseti_w:
6405 case Intrinsic::loongarch_lasx_xvbitseti_w:
6407 case Intrinsic::loongarch_lsx_vbitseti_d:
6408 case Intrinsic::loongarch_lasx_xvbitseti_d:
6410 case Intrinsic::loongarch_lsx_vbitrev_b:
6411 case Intrinsic::loongarch_lsx_vbitrev_h:
6412 case Intrinsic::loongarch_lsx_vbitrev_w:
6413 case Intrinsic::loongarch_lsx_vbitrev_d:
6414 case Intrinsic::loongarch_lasx_xvbitrev_b:
6415 case Intrinsic::loongarch_lasx_xvbitrev_h:
6416 case Intrinsic::loongarch_lasx_xvbitrev_w:
6417 case Intrinsic::loongarch_lasx_xvbitrev_d: {
6418 EVT VecTy =
N->getValueType(0);
6424 case Intrinsic::loongarch_lsx_vbitrevi_b:
6425 case Intrinsic::loongarch_lasx_xvbitrevi_b:
6427 case Intrinsic::loongarch_lsx_vbitrevi_h:
6428 case Intrinsic::loongarch_lasx_xvbitrevi_h:
6430 case Intrinsic::loongarch_lsx_vbitrevi_w:
6431 case Intrinsic::loongarch_lasx_xvbitrevi_w:
6433 case Intrinsic::loongarch_lsx_vbitrevi_d:
6434 case Intrinsic::loongarch_lasx_xvbitrevi_d:
6436 case Intrinsic::loongarch_lsx_vfadd_s:
6437 case Intrinsic::loongarch_lsx_vfadd_d:
6438 case Intrinsic::loongarch_lasx_xvfadd_s:
6439 case Intrinsic::loongarch_lasx_xvfadd_d:
6442 case Intrinsic::loongarch_lsx_vfsub_s:
6443 case Intrinsic::loongarch_lsx_vfsub_d:
6444 case Intrinsic::loongarch_lasx_xvfsub_s:
6445 case Intrinsic::loongarch_lasx_xvfsub_d:
6448 case Intrinsic::loongarch_lsx_vfmul_s:
6449 case Intrinsic::loongarch_lsx_vfmul_d:
6450 case Intrinsic::loongarch_lasx_xvfmul_s:
6451 case Intrinsic::loongarch_lasx_xvfmul_d:
6454 case Intrinsic::loongarch_lsx_vfdiv_s:
6455 case Intrinsic::loongarch_lsx_vfdiv_d:
6456 case Intrinsic::loongarch_lasx_xvfdiv_s:
6457 case Intrinsic::loongarch_lasx_xvfdiv_d:
6460 case Intrinsic::loongarch_lsx_vfmadd_s:
6461 case Intrinsic::loongarch_lsx_vfmadd_d:
6462 case Intrinsic::loongarch_lasx_xvfmadd_s:
6463 case Intrinsic::loongarch_lasx_xvfmadd_d:
6465 N->getOperand(2),
N->getOperand(3));
6466 case Intrinsic::loongarch_lsx_vinsgr2vr_b:
6468 N->getOperand(1),
N->getOperand(2),
6470 case Intrinsic::loongarch_lsx_vinsgr2vr_h:
6471 case Intrinsic::loongarch_lasx_xvinsgr2vr_w:
6473 N->getOperand(1),
N->getOperand(2),
6475 case Intrinsic::loongarch_lsx_vinsgr2vr_w:
6476 case Intrinsic::loongarch_lasx_xvinsgr2vr_d:
6478 N->getOperand(1),
N->getOperand(2),
6480 case Intrinsic::loongarch_lsx_vinsgr2vr_d:
6482 N->getOperand(1),
N->getOperand(2),
6484 case Intrinsic::loongarch_lsx_vreplgr2vr_b:
6485 case Intrinsic::loongarch_lsx_vreplgr2vr_h:
6486 case Intrinsic::loongarch_lsx_vreplgr2vr_w:
6487 case Intrinsic::loongarch_lsx_vreplgr2vr_d:
6488 case Intrinsic::loongarch_lasx_xvreplgr2vr_b:
6489 case Intrinsic::loongarch_lasx_xvreplgr2vr_h:
6490 case Intrinsic::loongarch_lasx_xvreplgr2vr_w:
6491 case Intrinsic::loongarch_lasx_xvreplgr2vr_d:
6495 case Intrinsic::loongarch_lsx_vreplve_b:
6496 case Intrinsic::loongarch_lsx_vreplve_h:
6497 case Intrinsic::loongarch_lsx_vreplve_w:
6498 case Intrinsic::loongarch_lsx_vreplve_d:
6499 case Intrinsic::loongarch_lasx_xvreplve_b:
6500 case Intrinsic::loongarch_lasx_xvreplve_h:
6501 case Intrinsic::loongarch_lasx_xvreplve_w:
6502 case Intrinsic::loongarch_lasx_xvreplve_d:
6507 case Intrinsic::loongarch_lsx_vpickve2gr_b:
6511 case Intrinsic::loongarch_lsx_vpickve2gr_h:
6512 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
6516 case Intrinsic::loongarch_lsx_vpickve2gr_w:
6520 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
6524 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
6525 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
6529 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
6533 case Intrinsic::loongarch_lsx_bz_b:
6534 case Intrinsic::loongarch_lsx_bz_h:
6535 case Intrinsic::loongarch_lsx_bz_w:
6536 case Intrinsic::loongarch_lsx_bz_d:
6537 case Intrinsic::loongarch_lasx_xbz_b:
6538 case Intrinsic::loongarch_lasx_xbz_h:
6539 case Intrinsic::loongarch_lasx_xbz_w:
6540 case Intrinsic::loongarch_lasx_xbz_d:
6545 case Intrinsic::loongarch_lsx_bz_v:
6546 case Intrinsic::loongarch_lasx_xbz_v:
6551 case Intrinsic::loongarch_lsx_bnz_b:
6552 case Intrinsic::loongarch_lsx_bnz_h:
6553 case Intrinsic::loongarch_lsx_bnz_w:
6554 case Intrinsic::loongarch_lsx_bnz_d:
6555 case Intrinsic::loongarch_lasx_xbnz_b:
6556 case Intrinsic::loongarch_lasx_xbnz_h:
6557 case Intrinsic::loongarch_lasx_xbnz_w:
6558 case Intrinsic::loongarch_lasx_xbnz_d:
6563 case Intrinsic::loongarch_lsx_bnz_v:
6564 case Intrinsic::loongarch_lasx_xbnz_v:
6594 "Unexpected value type!");
6603 MVT VT =
N->getSimpleValueType(0);
6637 APInt V =
C->getValueAPF().bitcastToAPInt();
6653 MVT EltVT =
N->getSimpleValueType(0);
6685 switch (
N->getOpcode()) {
6739 MF->
insert(It, BreakMBB);
6743 SinkMBB->splice(SinkMBB->end(),
MBB, std::next(
MI.getIterator()),
MBB->end());
6744 SinkMBB->transferSuccessorsAndUpdatePHIs(
MBB);
6756 MBB->addSuccessor(BreakMBB);
6757 MBB->addSuccessor(SinkMBB);
6763 BreakMBB->addSuccessor(SinkMBB);
6775 switch (
MI.getOpcode()) {
6778 case LoongArch::PseudoVBZ:
6779 CondOpc = LoongArch::VSETEQZ_V;
6781 case LoongArch::PseudoVBZ_B:
6782 CondOpc = LoongArch::VSETANYEQZ_B;
6784 case LoongArch::PseudoVBZ_H:
6785 CondOpc = LoongArch::VSETANYEQZ_H;
6787 case LoongArch::PseudoVBZ_W:
6788 CondOpc = LoongArch::VSETANYEQZ_W;
6790 case LoongArch::PseudoVBZ_D:
6791 CondOpc = LoongArch::VSETANYEQZ_D;
6793 case LoongArch::PseudoVBNZ:
6794 CondOpc = LoongArch::VSETNEZ_V;
6796 case LoongArch::PseudoVBNZ_B:
6797 CondOpc = LoongArch::VSETALLNEZ_B;
6799 case LoongArch::PseudoVBNZ_H:
6800 CondOpc = LoongArch::VSETALLNEZ_H;
6802 case LoongArch::PseudoVBNZ_W:
6803 CondOpc = LoongArch::VSETALLNEZ_W;
6805 case LoongArch::PseudoVBNZ_D:
6806 CondOpc = LoongArch::VSETALLNEZ_D;
6808 case LoongArch::PseudoXVBZ:
6809 CondOpc = LoongArch::XVSETEQZ_V;
6811 case LoongArch::PseudoXVBZ_B:
6812 CondOpc = LoongArch::XVSETANYEQZ_B;
6814 case LoongArch::PseudoXVBZ_H:
6815 CondOpc = LoongArch::XVSETANYEQZ_H;
6817 case LoongArch::PseudoXVBZ_W:
6818 CondOpc = LoongArch::XVSETANYEQZ_W;
6820 case LoongArch::PseudoXVBZ_D:
6821 CondOpc = LoongArch::XVSETANYEQZ_D;
6823 case LoongArch::PseudoXVBNZ:
6824 CondOpc = LoongArch::XVSETNEZ_V;
6826 case LoongArch::PseudoXVBNZ_B:
6827 CondOpc = LoongArch::XVSETALLNEZ_B;
6829 case LoongArch::PseudoXVBNZ_H:
6830 CondOpc = LoongArch::XVSETALLNEZ_H;
6832 case LoongArch::PseudoXVBNZ_W:
6833 CondOpc = LoongArch::XVSETALLNEZ_W;
6835 case LoongArch::PseudoXVBNZ_D:
6836 CondOpc = LoongArch::XVSETALLNEZ_D;
6851 F->insert(It, FalseBB);
6852 F->insert(It, TrueBB);
6853 F->insert(It, SinkBB);
6856 SinkBB->
splice(SinkBB->
end(), BB, std::next(
MI.getIterator()), BB->
end());
6860 Register FCC =
MRI.createVirtualRegister(&LoongArch::CFRRegClass);
6869 Register RD1 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
6877 Register RD2 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
6885 MI.getOperand(0).getReg())
6892 MI.eraseFromParent();
6900 unsigned BroadcastOp;
6902 switch (
MI.getOpcode()) {
6905 case LoongArch::PseudoXVINSGR2VR_B:
6907 BroadcastOp = LoongArch::XVREPLGR2VR_B;
6908 InsOp = LoongArch::XVEXTRINS_B;
6910 case LoongArch::PseudoXVINSGR2VR_H:
6912 BroadcastOp = LoongArch::XVREPLGR2VR_H;
6913 InsOp = LoongArch::XVEXTRINS_H;
6925 unsigned Idx =
MI.getOperand(3).getImm();
6927 if (XSrc.
isVirtual() &&
MRI.getVRegDef(XSrc)->isImplicitDef() &&
6929 Register ScratchSubReg1 =
MRI.createVirtualRegister(SubRC);
6930 Register ScratchSubReg2 =
MRI.createVirtualRegister(SubRC);
6933 .
addReg(XSrc, 0, LoongArch::sub_128);
6935 TII->get(HalfSize == 8 ? LoongArch::VINSGR2VR_H
6936 : LoongArch::VINSGR2VR_B),
6945 .
addImm(LoongArch::sub_128);
6947 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
6948 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
6952 BuildMI(*BB,
MI,
DL,
TII->get(LoongArch::XVPERMI_Q), ScratchReg2)
6955 .
addImm(Idx >= HalfSize ? 48 : 18);
6960 .
addImm((Idx >= HalfSize ? Idx - HalfSize : Idx) * 17);
6963 MI.eraseFromParent();
6970 assert(Subtarget.hasExtLSX());
6977 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
6978 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
6979 Register ScratchReg3 =
MRI.createVirtualRegister(RC);
6983 TII->get(Subtarget.
is64Bit() ? LoongArch::VINSGR2VR_D
6984 : LoongArch::VINSGR2VR_W),
6991 TII->get(Subtarget.
is64Bit() ? LoongArch::VPCNT_D : LoongArch::VPCNT_W),
6995 TII->get(Subtarget.
is64Bit() ? LoongArch::VPICKVE2GR_D
6996 : LoongArch::VPICKVE2GR_W),
7001 MI.eraseFromParent();
7015 unsigned EleBits = 8;
7016 unsigned NotOpc = 0;
7019 switch (
MI.getOpcode()) {
7022 case LoongArch::PseudoVMSKLTZ_B:
7023 MskOpc = LoongArch::VMSKLTZ_B;
7025 case LoongArch::PseudoVMSKLTZ_H:
7026 MskOpc = LoongArch::VMSKLTZ_H;
7029 case LoongArch::PseudoVMSKLTZ_W:
7030 MskOpc = LoongArch::VMSKLTZ_W;
7033 case LoongArch::PseudoVMSKLTZ_D:
7034 MskOpc = LoongArch::VMSKLTZ_D;
7037 case LoongArch::PseudoVMSKGEZ_B:
7038 MskOpc = LoongArch::VMSKGEZ_B;
7040 case LoongArch::PseudoVMSKEQZ_B:
7041 MskOpc = LoongArch::VMSKNZ_B;
7042 NotOpc = LoongArch::VNOR_V;
7044 case LoongArch::PseudoVMSKNEZ_B:
7045 MskOpc = LoongArch::VMSKNZ_B;
7047 case LoongArch::PseudoXVMSKLTZ_B:
7048 MskOpc = LoongArch::XVMSKLTZ_B;
7049 RC = &LoongArch::LASX256RegClass;
7051 case LoongArch::PseudoXVMSKLTZ_H:
7052 MskOpc = LoongArch::XVMSKLTZ_H;
7053 RC = &LoongArch::LASX256RegClass;
7056 case LoongArch::PseudoXVMSKLTZ_W:
7057 MskOpc = LoongArch::XVMSKLTZ_W;
7058 RC = &LoongArch::LASX256RegClass;
7061 case LoongArch::PseudoXVMSKLTZ_D:
7062 MskOpc = LoongArch::XVMSKLTZ_D;
7063 RC = &LoongArch::LASX256RegClass;
7066 case LoongArch::PseudoXVMSKGEZ_B:
7067 MskOpc = LoongArch::XVMSKGEZ_B;
7068 RC = &LoongArch::LASX256RegClass;
7070 case LoongArch::PseudoXVMSKEQZ_B:
7071 MskOpc = LoongArch::XVMSKNZ_B;
7072 NotOpc = LoongArch::XVNOR_V;
7073 RC = &LoongArch::LASX256RegClass;
7075 case LoongArch::PseudoXVMSKNEZ_B:
7076 MskOpc = LoongArch::XVMSKNZ_B;
7077 RC = &LoongArch::LASX256RegClass;
7092 if (
TRI->getRegSizeInBits(*RC) > 128) {
7093 Register Lo =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
7094 Register Hi =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
7102 TII->get(Subtarget.
is64Bit() ? LoongArch::BSTRINS_D
7103 : LoongArch::BSTRINS_W),
7107 .
addImm(256 / EleBits - 1)
7115 MI.eraseFromParent();
7122 assert(
MI.getOpcode() == LoongArch::SplitPairF64Pseudo &&
7123 "Unexpected instruction");
7135 MI.eraseFromParent();
7142 assert(
MI.getOpcode() == LoongArch::BuildPairF64Pseudo &&
7143 "Unexpected instruction");
7149 Register TmpReg =
MRI.createVirtualRegister(&LoongArch::FPR64RegClass);
7159 MI.eraseFromParent();
7164 switch (
MI.getOpcode()) {
7167 case LoongArch::Select_GPR_Using_CC_GPR:
7203 if (
MI.getOperand(2).isReg())
7204 RHS =
MI.getOperand(2).getReg();
7205 auto CC =
static_cast<unsigned>(
MI.getOperand(3).
getImm());
7209 SelectDests.
insert(
MI.getOperand(0).getReg());
7213 SequenceMBBI !=
E; ++SequenceMBBI) {
7214 if (SequenceMBBI->isDebugInstr())
7217 if (SequenceMBBI->getOperand(1).getReg() !=
LHS ||
7218 !SequenceMBBI->getOperand(2).isReg() ||
7219 SequenceMBBI->getOperand(2).getReg() !=
RHS ||
7220 SequenceMBBI->getOperand(3).getImm() != CC ||
7221 SelectDests.
count(SequenceMBBI->getOperand(4).getReg()) ||
7222 SelectDests.
count(SequenceMBBI->getOperand(5).getReg()))
7224 LastSelectPseudo = &*SequenceMBBI;
7226 SelectDests.
insert(SequenceMBBI->getOperand(0).getReg());
7229 if (SequenceMBBI->hasUnmodeledSideEffects() ||
7230 SequenceMBBI->mayLoadOrStore() ||
7231 SequenceMBBI->usesCustomInsertionHook())
7234 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
7249 F->insert(
I, IfFalseMBB);
7250 F->insert(
I, TailMBB);
7253 unsigned CallFrameSize =
TII.getCallFrameSizeAt(*LastSelectPseudo);
7259 TailMBB->
push_back(DebugInstr->removeFromParent());
7263 TailMBB->
splice(TailMBB->
end(), HeadMBB,
7273 if (
MI.getOperand(2).isImm())
7285 auto SelectMBBI =
MI.getIterator();
7286 auto SelectEnd = std::next(LastSelectPseudo->
getIterator());
7288 while (SelectMBBI != SelectEnd) {
7289 auto Next = std::next(SelectMBBI);
7293 TII.get(LoongArch::PHI), SelectMBBI->getOperand(0).getReg())
7294 .
addReg(SelectMBBI->getOperand(4).getReg())
7296 .
addReg(SelectMBBI->getOperand(5).getReg())
7303 F->getProperties().resetNoPHIs();
7309 const TargetInstrInfo *
TII = Subtarget.getInstrInfo();
7312 switch (
MI.getOpcode()) {
7315 case LoongArch::DIV_W:
7316 case LoongArch::DIV_WU:
7317 case LoongArch::MOD_W:
7318 case LoongArch::MOD_WU:
7319 case LoongArch::DIV_D:
7320 case LoongArch::DIV_DU:
7321 case LoongArch::MOD_D:
7322 case LoongArch::MOD_DU:
7325 case LoongArch::WRFCSR: {
7327 LoongArch::FCSR0 +
MI.getOperand(0).getImm())
7328 .
addReg(
MI.getOperand(1).getReg());
7329 MI.eraseFromParent();
7332 case LoongArch::RDFCSR: {
7333 MachineInstr *ReadFCSR =
7335 MI.getOperand(0).getReg())
7336 .
addReg(LoongArch::FCSR0 +
MI.getOperand(1).getImm());
7338 MI.eraseFromParent();
7341 case LoongArch::Select_GPR_Using_CC_GPR:
7343 case LoongArch::BuildPairF64Pseudo:
7345 case LoongArch::SplitPairF64Pseudo:
7347 case LoongArch::PseudoVBZ:
7348 case LoongArch::PseudoVBZ_B:
7349 case LoongArch::PseudoVBZ_H:
7350 case LoongArch::PseudoVBZ_W:
7351 case LoongArch::PseudoVBZ_D:
7352 case LoongArch::PseudoVBNZ:
7353 case LoongArch::PseudoVBNZ_B:
7354 case LoongArch::PseudoVBNZ_H:
7355 case LoongArch::PseudoVBNZ_W:
7356 case LoongArch::PseudoVBNZ_D:
7357 case LoongArch::PseudoXVBZ:
7358 case LoongArch::PseudoXVBZ_B:
7359 case LoongArch::PseudoXVBZ_H:
7360 case LoongArch::PseudoXVBZ_W:
7361 case LoongArch::PseudoXVBZ_D:
7362 case LoongArch::PseudoXVBNZ:
7363 case LoongArch::PseudoXVBNZ_B:
7364 case LoongArch::PseudoXVBNZ_H:
7365 case LoongArch::PseudoXVBNZ_W:
7366 case LoongArch::PseudoXVBNZ_D:
7368 case LoongArch::PseudoXVINSGR2VR_B:
7369 case LoongArch::PseudoXVINSGR2VR_H:
7371 case LoongArch::PseudoCTPOP:
7373 case LoongArch::PseudoVMSKLTZ_B:
7374 case LoongArch::PseudoVMSKLTZ_H:
7375 case LoongArch::PseudoVMSKLTZ_W:
7376 case LoongArch::PseudoVMSKLTZ_D:
7377 case LoongArch::PseudoVMSKGEZ_B:
7378 case LoongArch::PseudoVMSKEQZ_B:
7379 case LoongArch::PseudoVMSKNEZ_B:
7380 case LoongArch::PseudoXVMSKLTZ_B:
7381 case LoongArch::PseudoXVMSKLTZ_H:
7382 case LoongArch::PseudoXVMSKLTZ_W:
7383 case LoongArch::PseudoXVMSKLTZ_D:
7384 case LoongArch::PseudoXVMSKGEZ_B:
7385 case LoongArch::PseudoXVMSKEQZ_B:
7386 case LoongArch::PseudoXVMSKNEZ_B:
7388 case TargetOpcode::STATEPOINT:
7394 MI.addOperand(*
MI.getMF(),
7396 LoongArch::R1,
true,
7399 if (!Subtarget.is64Bit())
7407 unsigned *
Fast)
const {
7408 if (!Subtarget.hasUAL())
7422#define NODE_NAME_CASE(node) \
7423 case LoongArchISD::node: \
7424 return "LoongArchISD::" #node;
7530#undef NODE_NAME_CASE
7543 LoongArch::R7, LoongArch::R8, LoongArch::R9,
7544 LoongArch::R10, LoongArch::R11};
7548 LoongArch::F3, LoongArch::F4, LoongArch::F5,
7549 LoongArch::F6, LoongArch::F7};
7552 LoongArch::F0_64, LoongArch::F1_64, LoongArch::F2_64, LoongArch::F3_64,
7553 LoongArch::F4_64, LoongArch::F5_64, LoongArch::F6_64, LoongArch::F7_64};
7556 LoongArch::VR3, LoongArch::VR4, LoongArch::VR5,
7557 LoongArch::VR6, LoongArch::VR7};
7560 LoongArch::XR3, LoongArch::XR4, LoongArch::XR5,
7561 LoongArch::XR6, LoongArch::XR7};
7567 unsigned ValNo2,
MVT ValVT2,
MVT LocVT2,
7569 unsigned GRLenInBytes = GRLen / 8;
7580 State.AllocateStack(GRLenInBytes, StackAlign),
7583 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes,
Align(GRLenInBytes)),
7594 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes,
Align(GRLenInBytes)),
7602 unsigned ValNo,
MVT ValVT,
7605 unsigned GRLen =
DL.getLargestLegalIntTypeSizeInBits();
7606 assert((GRLen == 32 || GRLen == 64) &&
"Unspport GRLen");
7607 MVT GRLenVT = GRLen == 32 ? MVT::i32 : MVT::i64;
7612 if (IsRet && ValNo > 1)
7616 bool UseGPRForFloat =
true;
7626 UseGPRForFloat = ArgFlags.
isVarArg();
7639 unsigned TwoGRLenInBytes = (2 * GRLen) / 8;
7642 DL.getTypeAllocSize(OrigTy) == TwoGRLenInBytes) {
7643 unsigned RegIdx = State.getFirstUnallocated(
ArgGPRs);
7645 if (RegIdx != std::size(
ArgGPRs) && RegIdx % 2 == 1)
7651 State.getPendingArgFlags();
7654 "PendingLocs and PendingArgFlags out of sync");
7658 UseGPRForFloat =
true;
7660 if (UseGPRForFloat && ValVT == MVT::f32) {
7663 }
else if (UseGPRForFloat && GRLen == 64 && ValVT == MVT::f64) {
7666 }
else if (UseGPRForFloat && GRLen == 32 && ValVT == MVT::f64) {
7669 assert(PendingLocs.
empty() &&
"Can't lower f64 if it is split");
7711 PendingLocs.
size() <= 2) {
7712 assert(PendingLocs.
size() == 2 &&
"Unexpected PendingLocs.size()");
7717 PendingLocs.
clear();
7718 PendingArgFlags.
clear();
7725 unsigned StoreSizeBytes = GRLen / 8;
7728 if (ValVT == MVT::f32 && !UseGPRForFloat) {
7730 }
else if (ValVT == MVT::f64 && !UseGPRForFloat) {
7734 UseGPRForFloat =
false;
7735 StoreSizeBytes = 16;
7736 StackAlign =
Align(16);
7739 UseGPRForFloat =
false;
7740 StoreSizeBytes = 32;
7741 StackAlign =
Align(32);
7747 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
7751 if (!PendingLocs.
empty()) {
7753 assert(PendingLocs.
size() > 2 &&
"Unexpected PendingLocs.size()");
7754 for (
auto &It : PendingLocs) {
7756 It.convertToReg(
Reg);
7761 PendingLocs.clear();
7762 PendingArgFlags.
clear();
7765 assert((!UseGPRForFloat || LocVT == GRLenVT) &&
7766 "Expected an GRLenVT at this stage");
7783void LoongArchTargetLowering::analyzeInputArgs(
7786 LoongArchCCAssignFn Fn)
const {
7788 for (
unsigned i = 0, e =
Ins.size(); i != e; ++i) {
7789 MVT ArgVT =
Ins[i].VT;
7790 Type *ArgTy =
nullptr;
7792 ArgTy = FType->getReturnType();
7793 else if (Ins[i].isOrigArg())
7794 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
7798 CCInfo, IsRet, ArgTy)) {
7799 LLVM_DEBUG(
dbgs() <<
"InputArg #" << i <<
" has unhandled type " << ArgVT
7806void LoongArchTargetLowering::analyzeOutputArgs(
7809 CallLoweringInfo *CLI, LoongArchCCAssignFn Fn)
const {
7810 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
7811 MVT ArgVT = Outs[i].VT;
7812 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty :
nullptr;
7816 CCInfo, IsRet, OrigTy)) {
7817 LLVM_DEBUG(
dbgs() <<
"OutputArg #" << i <<
" has unhandled type " << ArgVT
7858 if (In.isOrigArg()) {
7863 if ((
BitWidth <= 32 && In.Flags.isSExt()) ||
7864 (
BitWidth < 32 && In.Flags.isZExt())) {
7914 Register LoVReg =
RegInfo.createVirtualRegister(&LoongArch::GPRRegClass);
7927 Register HiVReg =
RegInfo.createVirtualRegister(&LoongArch::GPRRegClass);
7947 Val = DAG.
getNode(ISD::BITCAST,
DL, LocVT, Val);
7957 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7961 LoongArch::R23, LoongArch::R24, LoongArch::R25,
7962 LoongArch::R26, LoongArch::R27, LoongArch::R28,
7963 LoongArch::R29, LoongArch::R30, LoongArch::R31};
7970 if (LocVT == MVT::f32) {
7973 static const MCPhysReg FPR32List[] = {LoongArch::F24, LoongArch::F25,
7974 LoongArch::F26, LoongArch::F27};
7981 if (LocVT == MVT::f64) {
7984 static const MCPhysReg FPR64List[] = {LoongArch::F28_64, LoongArch::F29_64,
7985 LoongArch::F30_64, LoongArch::F31_64};
8015 "GHC calling convention requires the F and D extensions");
8019 MVT GRLenVT = Subtarget.getGRLenVT();
8020 unsigned GRLenInBytes = Subtarget.getGRLen() / 8;
8022 std::vector<SDValue> OutChains;
8031 analyzeInputArgs(MF, CCInfo, Ins,
false,
CC_LoongArch);
8033 for (
unsigned i = 0, e = ArgLocs.
size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
8050 unsigned ArgIndex = Ins[InsIdx].OrigArgIndex;
8051 unsigned ArgPartOffset = Ins[InsIdx].PartOffset;
8052 assert(ArgPartOffset == 0);
8053 while (i + 1 != e && Ins[InsIdx + 1].OrigArgIndex == ArgIndex) {
8055 unsigned PartOffset = Ins[InsIdx + 1].PartOffset - ArgPartOffset;
8079 int VaArgOffset, VarArgsSaveSize;
8083 if (ArgRegs.
size() == Idx) {
8085 VarArgsSaveSize = 0;
8087 VarArgsSaveSize = GRLenInBytes * (ArgRegs.
size() - Idx);
8088 VaArgOffset = -VarArgsSaveSize;
8094 LoongArchFI->setVarArgsFrameIndex(FI);
8102 VarArgsSaveSize += GRLenInBytes;
8107 for (
unsigned I = Idx;
I < ArgRegs.
size();
8108 ++
I, VaArgOffset += GRLenInBytes) {
8109 const Register Reg = RegInfo.createVirtualRegister(RC);
8110 RegInfo.addLiveIn(ArgRegs[
I], Reg);
8118 ->setValue((
Value *)
nullptr);
8119 OutChains.push_back(Store);
8121 LoongArchFI->setVarArgsSaveSize(VarArgsSaveSize);
8126 if (!OutChains.empty()) {
8127 OutChains.push_back(Chain);
8142 if (
N->getNumValues() != 1)
8144 if (!
N->hasNUsesOfValue(1, 0))
8147 SDNode *Copy = *
N->user_begin();
8153 if (Copy->getGluedNode())
8157 bool HasRet =
false;
8167 Chain = Copy->getOperand(0);
8172bool LoongArchTargetLowering::isEligibleForTailCallOptimization(
8176 auto CalleeCC = CLI.CallConv;
8177 auto &Outs = CLI.Outs;
8179 auto CallerCC = Caller.getCallingConv();
8186 for (
auto &VA : ArgLocs)
8192 auto IsCallerStructRet = Caller.hasStructRetAttr();
8193 auto IsCalleeStructRet = Outs.
empty() ?
false : Outs[0].Flags.isSRet();
8194 if (IsCallerStructRet || IsCalleeStructRet)
8198 for (
auto &Arg : Outs)
8199 if (Arg.Flags.isByVal())
8204 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
8205 if (CalleeCC != CallerCC) {
8206 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
8207 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
8233 MVT GRLenVT = Subtarget.getGRLenVT();
8245 analyzeOutputArgs(MF, ArgCCInfo, Outs,
false, &CLI,
CC_LoongArch);
8249 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
8255 "site marked musttail");
8262 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
8264 if (!Flags.isByVal())
8268 unsigned Size = Flags.getByValSize();
8269 Align Alignment = Flags.getNonZeroByValAlign();
8276 Chain = DAG.
getMemcpy(Chain,
DL, FIPtr, Arg, SizeNode, Alignment,
8278 false,
nullptr, std::nullopt,
8290 for (
unsigned i = 0, j = 0, e = ArgLocs.
size(), OutIdx = 0; i != e;
8293 SDValue ArgValue = OutVals[OutIdx];
8302 DAG.
getVTList(MVT::i32, MVT::i32), ArgValue);
8314 if (!StackPtr.getNode())
8326 RegsToPass.
push_back(std::make_pair(RegHigh,
Hi));
8341 unsigned ArgIndex = Outs[OutIdx].OrigArgIndex;
8342 unsigned ArgPartOffset = Outs[OutIdx].PartOffset;
8343 assert(ArgPartOffset == 0);
8348 while (i + 1 != e && Outs[OutIdx + 1].OrigArgIndex == ArgIndex) {
8349 SDValue PartValue = OutVals[OutIdx + 1];
8350 unsigned PartOffset = Outs[OutIdx + 1].PartOffset - ArgPartOffset;
8365 for (
const auto &Part : Parts) {
8366 SDValue PartValue = Part.first;
8367 SDValue PartOffset = Part.second;
8374 ArgValue = SpillSlot;
8380 if (Flags.isByVal())
8381 ArgValue = ByValArgs[j++];
8388 assert(!IsTailCall &&
"Tail call not allowed if stack is used "
8389 "for passing parameters");
8392 if (!StackPtr.getNode())
8405 if (!MemOpChains.
empty())
8411 for (
auto &Reg : RegsToPass) {
8412 Chain = DAG.
getCopyToReg(Chain,
DL, Reg.first, Reg.second, Glue);
8434 Ops.push_back(Chain);
8435 Ops.push_back(Callee);
8439 for (
auto &Reg : RegsToPass)
8440 Ops.push_back(DAG.
getRegister(Reg.first, Reg.second.getValueType()));
8445 const uint32_t *Mask =
TRI->getCallPreservedMask(MF, CallConv);
8446 assert(Mask &&
"Missing call preserved mask for calling convention");
8452 Ops.push_back(Glue);
8464 assert(Subtarget.is64Bit() &&
"Medium code model requires LA64");
8468 assert(Subtarget.is64Bit() &&
"Large code model requires LA64");
8491 analyzeInputArgs(MF, RetCCInfo, Ins,
true,
CC_LoongArch);
8494 for (
unsigned i = 0, e = RVLocs.
size(); i != e; ++i) {
8495 auto &VA = RVLocs[i];
8503 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8504 assert(VA.needsCustom());
8510 RetValue, RetValue2);
8523 const Type *RetTy)
const {
8525 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8527 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
8531 Outs[i].Flags, CCInfo,
true,
nullptr))
8557 for (
unsigned i = 0, e = RVLocs.
size(), OutIdx = 0; i < e; ++i, ++OutIdx) {
8558 SDValue Val = OutVals[OutIdx];
8567 DAG.
getVTList(MVT::i32, MVT::i32), Val);
8571 Register RegHi = RVLocs[++i].getLocReg();
8604 const APInt &SplatValue,
const unsigned SplatBitSize)
const {
8607 if (SplatBitSize == 16 && !(V & 0x00FF)) {
8609 RequiredImm = (0b10101 << 8) | (V >> 8);
8610 return {
true, RequiredImm};
8611 }
else if (SplatBitSize == 32) {
8613 if (!(V & 0xFFFF00FF)) {
8614 RequiredImm = (0b10001 << 8) | (V >> 8);
8615 return {
true, RequiredImm};
8618 if (!(V & 0xFF00FFFF)) {
8619 RequiredImm = (0b10010 << 8) | (V >> 16);
8620 return {
true, RequiredImm};
8623 if (!(V & 0x00FFFFFF)) {
8624 RequiredImm = (0b10011 << 8) | (V >> 24);
8625 return {
true, RequiredImm};
8628 if ((V & 0xFFFF00FF) == 0xFF) {
8629 RequiredImm = (0b10110 << 8) | (V >> 8);
8630 return {
true, RequiredImm};
8633 if ((V & 0xFF00FFFF) == 0xFFFF) {
8634 RequiredImm = (0b10111 << 8) | (V >> 16);
8635 return {
true, RequiredImm};
8638 if ((V & 0x7E07FFFF) == 0x3E000000 || (V & 0x7E07FFFF) == 0x40000000) {
8640 (0b11010 << 8) | (((V >> 24) & 0xC0) ^ 0x40) | ((V >> 19) & 0x3F);
8641 return {
true, RequiredImm};
8643 }
else if (SplatBitSize == 64) {
8645 if ((V & 0xFFFFFFFF7E07FFFFULL) == 0x3E000000ULL ||
8646 (V & 0xFFFFFFFF7E07FFFFULL) == 0x40000000ULL) {
8648 (0b11011 << 8) | (((V >> 24) & 0xC0) ^ 0x40) | ((V >> 19) & 0x3F);
8649 return {
true, RequiredImm};
8652 if ((V & 0x7FC0FFFFFFFFFFFFULL) == 0x4000000000000000ULL ||
8653 (V & 0x7FC0FFFFFFFFFFFFULL) == 0x3FC0000000000000ULL) {
8655 (0b11100 << 8) | (((V >> 56) & 0xC0) ^ 0x40) | ((V >> 48) & 0x3F);
8656 return {
true, RequiredImm};
8659 auto sameBitsPreByte = [](
uint64_t x) -> std::pair<bool, uint8_t> {
8661 for (
int i = 0; i < 8; ++i) {
8663 if (
byte == 0 ||
byte == 0xFF)
8664 res |= ((
byte & 1) << i);
8671 auto [IsSame, Suffix] = sameBitsPreByte(V);
8673 RequiredImm = (0b11001 << 8) | Suffix;
8674 return {
true, RequiredImm};
8677 return {
false, RequiredImm};
8682 if (!Subtarget.hasExtLSX())
8685 if (VT == MVT::f32) {
8686 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7e07ffff;
8687 return (masked == 0x3e000000 || masked == 0x40000000);
8690 if (VT == MVT::f64) {
8691 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7fc0ffffffffffff;
8692 return (masked == 0x3fc0000000000000 || masked == 0x4000000000000000);
8698bool LoongArchTargetLowering::isFPImmLegal(
const APFloat &Imm,
EVT VT,
8699 bool ForCodeSize)
const {
8701 if (VT == MVT::f32 && !Subtarget.hasBasicF())
8703 if (VT == MVT::f64 && !Subtarget.hasBasicD())
8705 return (Imm.isZero() || Imm.isExactlyValue(1.0) ||
isFPImmVLDILegal(Imm, VT));
8716bool LoongArchTargetLowering::shouldInsertFencesForAtomic(
8726 Type *Ty =
I->getOperand(0)->getType();
8728 unsigned Size = Ty->getIntegerBitWidth();
8744 EVT VT =
Y.getValueType();
8747 return Subtarget.hasExtLSX() && VT.
isInteger();
8759 case Intrinsic::loongarch_masked_atomicrmw_xchg_i32:
8760 case Intrinsic::loongarch_masked_atomicrmw_add_i32:
8761 case Intrinsic::loongarch_masked_atomicrmw_sub_i32:
8762 case Intrinsic::loongarch_masked_atomicrmw_nand_i32:
8764 Info.memVT = MVT::i32;
8765 Info.ptrVal =
I.getArgOperand(0);
8767 Info.align =
Align(4);
8784 "Unable to expand");
8785 unsigned MinWordSize = 4;
8797 Value *AlignedAddr = Builder.CreateIntrinsic(
8798 Intrinsic::ptrmask, {PtrTy, IntTy},
8799 {Addr, ConstantInt::get(IntTy, ~(
uint64_t)(MinWordSize - 1))},
nullptr,
8802 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
8803 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1,
"PtrLSB");
8804 Value *ShiftAmt = Builder.CreateShl(PtrLSB, 3);
8805 ShiftAmt = Builder.CreateTrunc(ShiftAmt, WordType,
"ShiftAmt");
8806 Value *Mask = Builder.CreateShl(
8807 ConstantInt::get(WordType,
8810 Value *Inv_Mask = Builder.CreateNot(Mask,
"Inv_Mask");
8811 Value *ValOperand_Shifted =
8812 Builder.CreateShl(Builder.CreateZExt(AI->
getValOperand(), WordType),
8813 ShiftAmt,
"ValOperand_Shifted");
8816 NewOperand = Builder.CreateOr(ValOperand_Shifted, Inv_Mask,
"AndOperand");
8818 NewOperand = ValOperand_Shifted;
8821 Builder.CreateAtomicRMW(
Op, AlignedAddr, NewOperand,
Align(MinWordSize),
8824 Value *Shift = Builder.CreateLShr(NewAI, ShiftAmt,
"shifted");
8825 Value *Trunc = Builder.CreateTrunc(Shift,
ValueType,
"extracted");
8844 if (Subtarget.hasLAM_BH() && Subtarget.is64Bit() &&
8852 if (Subtarget.hasLAMCAS()) {
8874 return Intrinsic::loongarch_masked_atomicrmw_xchg_i64;
8876 return Intrinsic::loongarch_masked_atomicrmw_add_i64;
8878 return Intrinsic::loongarch_masked_atomicrmw_sub_i64;
8880 return Intrinsic::loongarch_masked_atomicrmw_nand_i64;
8882 return Intrinsic::loongarch_masked_atomicrmw_umax_i64;
8884 return Intrinsic::loongarch_masked_atomicrmw_umin_i64;
8886 return Intrinsic::loongarch_masked_atomicrmw_max_i64;
8888 return Intrinsic::loongarch_masked_atomicrmw_min_i64;
8898 return Intrinsic::loongarch_masked_atomicrmw_xchg_i32;
8900 return Intrinsic::loongarch_masked_atomicrmw_add_i32;
8902 return Intrinsic::loongarch_masked_atomicrmw_sub_i32;
8904 return Intrinsic::loongarch_masked_atomicrmw_nand_i32;
8906 return Intrinsic::loongarch_masked_atomicrmw_umax_i32;
8908 return Intrinsic::loongarch_masked_atomicrmw_umin_i32;
8910 return Intrinsic::loongarch_masked_atomicrmw_max_i32;
8912 return Intrinsic::loongarch_masked_atomicrmw_min_i32;
8924 if (Subtarget.hasLAMCAS())
8936 unsigned GRLen = Subtarget.getGRLen();
8938 Value *FailureOrdering =
8939 Builder.getIntN(Subtarget.getGRLen(),
static_cast<uint64_t>(FailOrd));
8940 Intrinsic::ID CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i32;
8942 CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i64;
8943 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8944 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8945 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8948 Value *Result = Builder.CreateIntrinsic(
8949 CmpXchgIntrID, Tys, {AlignedAddr, CmpVal, NewVal, Mask, FailureOrdering});
8951 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8967 Builder.CreateNot(Mask,
"Inv_Mask"),
8974 unsigned GRLen = Subtarget.getGRLen();
8983 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8984 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8985 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
9001 Builder.CreateSub(Builder.getIntN(GRLen, GRLen - ValWidth), ShiftAmt);
9002 Result = Builder.CreateCall(LlwOpScwLoop,
9003 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
9006 Builder.CreateCall(LlwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
9010 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9033 const Constant *PersonalityFn)
const {
9034 return LoongArch::R4;
9038 const Constant *PersonalityFn)
const {
9039 return LoongArch::R5;
9050 int RefinementSteps = VT.
getScalarType() == MVT::f64 ? 2 : 1;
9051 return RefinementSteps;
9056 int &RefinementSteps,
9057 bool &UseOneConstNR,
9058 bool Reciprocal)
const {
9059 if (Subtarget.hasFrecipe()) {
9063 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
9064 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
9065 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
9066 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
9067 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
9086 int &RefinementSteps)
const {
9087 if (Subtarget.hasFrecipe()) {
9091 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
9092 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
9093 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
9094 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
9095 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
9112LoongArchTargetLowering::getConstraintType(
StringRef Constraint)
const {
9132 if (Constraint.
size() == 1) {
9133 switch (Constraint[0]) {
9149 if (Constraint ==
"ZC" || Constraint ==
"ZB")
9158 return StringSwitch<InlineAsm::ConstraintCode>(ConstraintCode)
9165std::pair<unsigned, const TargetRegisterClass *>
9166LoongArchTargetLowering::getRegForInlineAsmConstraint(
9170 if (Constraint.
size() == 1) {
9171 switch (Constraint[0]) {
9176 return std::make_pair(0U, &LoongArch::GPRRegClass);
9178 return std::make_pair(0U, &LoongArch::GPRNoR0R1RegClass);
9180 if (Subtarget.hasBasicF() && VT == MVT::f32)
9181 return std::make_pair(0U, &LoongArch::FPR32RegClass);
9182 if (Subtarget.hasBasicD() && VT == MVT::f64)
9183 return std::make_pair(0U, &LoongArch::FPR64RegClass);
9184 if (Subtarget.hasExtLSX() &&
9185 TRI->isTypeLegalForClass(LoongArch::LSX128RegClass, VT))
9186 return std::make_pair(0U, &LoongArch::LSX128RegClass);
9187 if (Subtarget.hasExtLASX() &&
9188 TRI->isTypeLegalForClass(LoongArch::LASX256RegClass, VT))
9189 return std::make_pair(0U, &LoongArch::LASX256RegClass);
9209 bool IsFP = Constraint[2] ==
'f';
9210 std::pair<StringRef, StringRef> Temp = Constraint.
split(
'$');
9211 std::pair<unsigned, const TargetRegisterClass *>
R;
9216 unsigned RegNo =
R.first;
9217 if (LoongArch::F0 <= RegNo && RegNo <= LoongArch::F31) {
9218 if (Subtarget.hasBasicD() && (VT == MVT::f64 || VT == MVT::Other)) {
9219 unsigned DReg = RegNo - LoongArch::F0 + LoongArch::F0_64;
9220 return std::make_pair(DReg, &LoongArch::FPR64RegClass);
9230void LoongArchTargetLowering::LowerAsmOperandForConstraint(
9234 if (Constraint.
size() == 1) {
9235 switch (Constraint[0]) {
9239 uint64_t CVal =
C->getSExtValue();
9242 Subtarget.getGRLenVT()));
9248 uint64_t CVal =
C->getSExtValue();
9251 Subtarget.getGRLenVT()));
9257 if (
C->getZExtValue() == 0)
9264 uint64_t CVal =
C->getZExtValue();
9277#define GET_REGISTER_MATCHER
9278#include "LoongArchGenAsmMatcher.inc"
9284 std::string NewRegName = Name.second.str();
9290 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9291 if (!ReservedRegs.
test(Reg))
9308 const APInt &Imm = ConstNode->getAPIntValue();
9310 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9311 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9314 if (ConstNode->hasOneUse() &&
9315 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9316 (Imm - 8).isPowerOf2() || (Imm - 16).isPowerOf2()))
9322 if (ConstNode->hasOneUse() && !(Imm.sge(-2048) && Imm.sle(4095))) {
9323 unsigned Shifts = Imm.countr_zero();
9329 APInt ImmPop = Imm.ashr(Shifts);
9330 if (ImmPop == 3 || ImmPop == 5 || ImmPop == 9 || ImmPop == 17)
9334 APInt ImmSmall =
APInt(Imm.getBitWidth(), 1ULL << Shifts,
true);
9335 if ((Imm - ImmSmall).isPowerOf2() || (Imm + ImmSmall).isPowerOf2() ||
9336 (ImmSmall - Imm).isPowerOf2())
9346 Type *Ty,
unsigned AS,
9401 EVT MemVT = LD->getMemoryVT();
9402 if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
9413 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
9422 if (
Y.getValueType().isVector())
9434 Type *Ty,
bool IsSigned)
const {
9435 if (Subtarget.is64Bit() && Ty->isIntegerTy(32))
9444 if (Subtarget.isSoftFPABI() && (
Type.isFloatingPoint() && !
Type.isVector() &&
9445 Type.getSizeInBits() < Subtarget.getGRLen()))
9455 Align &PrefAlign)
const {
9459 if (Subtarget.is64Bit()) {
9461 PrefAlign =
Align(8);
9464 PrefAlign =
Align(4);
9479bool LoongArchTargetLowering::splitValueIntoRegisterParts(
9481 unsigned NumParts,
MVT PartVT, std::optional<CallingConv::ID> CC)
const {
9482 bool IsABIRegCopy = CC.has_value();
9485 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
9486 PartVT == MVT::f32) {
9489 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i16, Val);
9493 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::f32, Val);
9501SDValue LoongArchTargetLowering::joinRegisterPartsIntoValue(
9503 MVT PartVT,
EVT ValueVT, std::optional<CallingConv::ID> CC)
const {
9504 bool IsABIRegCopy = CC.has_value();
9506 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
9507 PartVT == MVT::f32) {
9511 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i32, Val);
9513 Val = DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
9524 if (VT == MVT::f16 && Subtarget.hasBasicF())
9530unsigned LoongArchTargetLowering::getNumRegistersForCallingConv(
9533 if (VT == MVT::f16 && Subtarget.hasBasicF())
9542 unsigned Depth)
const {
9543 EVT VT =
Op.getValueType();
9545 unsigned Opc =
Op.getOpcode();
9552 MVT SrcVT = Src.getSimpleValueType();
9557 if (OriginalDemandedBits.
countr_zero() >= NumElts)
9561 APInt KnownUndef, KnownZero;
9577 if (KnownSrc.
One[SrcBits - 1])
9579 else if (KnownSrc.
Zero[SrcBits - 1])
9584 Src, DemandedSrcBits, DemandedElts, TLO.
DAG,
Depth + 1))
9591 Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO,
Depth);
9614 unsigned Index)
const {
9623 unsigned Index)
const {
9627 return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
unsigned const MachineRegisterInfo * MRI
static MCRegister MatchRegisterName(StringRef Name)
static bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType)
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget, const AArch64TargetLowering &TLI)
static SDValue performANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
#define NODE_NAME_CASE(node)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static MCRegister MatchRegisterAltName(StringRef Name)
Maps from the set of all alternative registernames to a register number.
Function Alias Analysis Results
static uint64_t getConstant(const Value *IndexValue)
static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static MachineBasicBlock * emitSelectPseudo(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode)
static SDValue unpackFromRegLoc(const CSKYSubtarget &Subtarget, SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
const HexagonInstrInfo * TII
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static SDValue performINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
const MCPhysReg ArgFPR32s[]
static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Dispatching routine to lower various 128-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_XVSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVSHUF4I (if possible).
static SDValue lowerVECTOR_SHUFFLE_VPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKEV (if possible).
static SDValue combineSelectToBinOp(SDNode *N, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKOD (if possible).
static SDValue unpackF64OnLA32DSoftABI(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const CCValAssign &HiVA, const SDLoc &DL)
static bool fitsRegularPattern(typename SmallVectorImpl< ValType >::const_iterator Begin, unsigned CheckStride, typename SmallVectorImpl< ValType >::const_iterator End, ValType ExpectedIndex, unsigned ExpectedIndexStride)
Determine whether a range fits a regular pattern of values.
static SDValue emitIntrinsicErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static cl::opt< bool > ZeroDivCheck("loongarch-check-zero-division", cl::Hidden, cl::desc("Trap on integer division by zero."), cl::init(false))
static SDValue lowerVECTOR_SHUFFLE_VSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VSHUF.
static int getEstimateRefinementSteps(EVT VT, const LoongArchSubtarget &Subtarget)
static void emitErrorAndReplaceIntrinsicResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, StringRef ErrorMsg, bool WithChain=true)
static SDValue lowerVECTOR_SHUFFLEAsByteRotate(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE as byte rotate (if possible).
static SDValue checkIntrinsicImmArg(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
static SDValue lowerVECTOR_SHUFFLE_XVINSVE0(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVINSVE0 (if possible).
static SDValue performMOVFR2GR_SCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVH (if possible).
static bool CC_LoongArch(const DataLayout &DL, LoongArchABI::ABI ABI, unsigned ValNo, MVT ValVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsRet, Type *OrigTy)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
static SDValue performSPLIT_PAIR_F64Combine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performBITCASTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static MachineBasicBlock * emitSplitPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorBitSetImm(SDNode *Node, SelectionDAG &DAG)
static SDValue performSETCC_BITCASTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKOD (if possible).
static std::optional< bool > matchSetCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue Val)
static SDValue lowerBUILD_VECTORAsBroadCastLoad(BuildVectorSDNode *BVOp, const SDLoc &DL, SelectionDAG &DAG)
#define CRC_CASE_EXT_BINARYOP(NAME, NODE)
static SDValue lowerVectorBitRevImm(SDNode *Node, SelectionDAG &DAG)
static bool checkBitcastSrcVectorSize(SDValue Src, unsigned Size, unsigned Depth)
static SDValue lowerVECTOR_SHUFFLEAsShift(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, const APInt &Zeroable)
Lower VECTOR_SHUFFLE as shift (if possible).
static SDValue lowerVECTOR_SHUFFLE_VSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VSHUF4I (if possible).
static SDValue truncateVecElts(SDNode *Node, SelectionDAG &DAG)
static bool CC_LoongArch_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
static MachineBasicBlock * insertDivByZeroTrap(MachineInstr &MI, MachineBasicBlock *MBB)
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG)
static SDValue lowerVectorBitClear(SDNode *Node, SelectionDAG &DAG)
static SDValue lowerVECTOR_SHUFFLE_VPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKEV (if possible).
static MachineBasicBlock * emitPseudoVMSKCOND(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void replaceVPICKVE2GRResults(SDNode *Node, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
static SDValue lowerVECTOR_SHUFFLEAsZeroOrAnyExtend(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const APInt &Zeroable)
Lower VECTOR_SHUFFLE as ZERO_EXTEND Or ANY_EXTEND (if possible).
static SDValue legalizeIntrinsicImmArg(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, bool IsSigned=false)
static cl::opt< MaterializeFPImm > MaterializeFPImmInsNum("loongarch-materialize-float-imm", cl::Hidden, cl::desc("Maximum number of instructions used (including code sequence " "to generate the value and moving the value to FPR) when " "materializing floating-point immediates (default = 3)"), cl::init(MaterializeFPImm3Ins), cl::values(clEnumValN(NoMaterializeFPImm, "0", "Use constant pool"), clEnumValN(MaterializeFPImm2Ins, "2", "Materialize FP immediate within 2 instructions"), clEnumValN(MaterializeFPImm3Ins, "3", "Materialize FP immediate within 3 instructions"), clEnumValN(MaterializeFPImm4Ins, "4", "Materialize FP immediate within 4 instructions"), clEnumValN(MaterializeFPImm5Ins, "5", "Materialize FP immediate within 5 instructions"), clEnumValN(MaterializeFPImm6Ins, "6", "Materialize FP immediate within 6 instructions " "(behaves same as 5 on loongarch64)")))
static SDValue lowerVECTOR_SHUFFLE_XVPERMI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVPERMI (if possible).
static SDValue emitIntrinsicWithChainErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static bool CC_LoongArchAssign2GRLen(unsigned GRLen, CCState &State, CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, MVT ValVT2, MVT LocVT2, ISD::ArgFlagsTy ArgFlags2)
const MCPhysReg ArgFPR64s[]
static MachineBasicBlock * emitPseudoCTPOP(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performMOVGR2FR_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRWR_CASE(NAME, NODE)
#define CRC_CASE_EXT_UNARYOP(NAME, NODE)
static SDValue lowerVECTOR_SHUFFLE_VPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKOD (if possible).
static SDValue signExtendBitcastSrcVector(SelectionDAG &DAG, EVT SExtVT, SDValue Src, const SDLoc &DL)
static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Dispatching routine to lower various 256-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_VREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VREPLVEI (if possible).
static MachineBasicBlock * emitPseudoXVINSGR2VR(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static void fillVector(ArrayRef< SDValue > Ops, SelectionDAG &DAG, SDLoc DL, const LoongArchSubtarget &Subtarget, SDValue &Vector, EVT ResTy)
static SDValue performEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue fillSubVectorFromBuildVector(BuildVectorSDNode *Node, SelectionDAG &DAG, SDLoc DL, const LoongArchSubtarget &Subtarget, EVT ResTy, unsigned first)
static bool isSelectPseudo(MachineInstr &MI)
static SDValue foldBinOpIntoSelectIfProfitable(SDNode *BO, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorSplatImm(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
const MCPhysReg ArgGPRs[]
static SDValue lowerVECTOR_SHUFFLE_XVPERM(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVPERM (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVL (if possible).
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, int NumOp, unsigned ExtOpc=ISD::ANY_EXTEND)
static void replaceVecCondBranchResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
#define ASRT_LE_GT_CASE(NAME)
static SDValue lowerVECTOR_SHUFFLE_XVPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKEV (if possible).
static SDValue performBR_CCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void computeZeroableShuffleElements(ArrayRef< int > Mask, SDValue V1, SDValue V2, APInt &KnownUndef, APInt &KnownZero)
Compute whether each element of a shuffle is zeroable.
static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue widenShuffleMask(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
static MachineBasicBlock * emitVecCondBranchPseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static bool canonicalizeShuffleVectorByLane(const SDLoc &DL, MutableArrayRef< int > Mask, MVT VT, SDValue &V1, SDValue &V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Shuffle vectors by lane to generate more optimized instructions.
static SDValue lowerVECTOR_SHUFFLE_XVILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVH (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVSHUF (if possible).
static void replaceCMP_XCHG_128Results(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG)
static SDValue lowerVectorPickVE2GR(SDNode *N, SelectionDAG &DAG, unsigned ResOp)
static SDValue performBITREV_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRRD_CASE(NAME, NODE)
static int matchShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2, ArrayRef< int > Mask)
Attempts to match vector shuffle as byte rotation.
static SDValue lowerVECTOR_SHUFFLE_XVPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKEV (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVREPLVEI (if possible).
static int matchShuffleAsShift(MVT &ShiftVT, unsigned &Opcode, unsigned ScalarSizeInBits, ArrayRef< int > Mask, int MaskOffset, const APInt &Zeroable)
Attempts to match a shuffle mask against the VBSLL, VBSRL, VSLLI and VSRLI instruction.
static SDValue lowerVECTOR_SHUFFLE_VILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVL (if possible).
static SDValue lowerVectorBitClearImm(SDNode *Node, SelectionDAG &DAG)
static MachineBasicBlock * emitBuildPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLEAsLanePermuteAndShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE as lane permute and then shuffle (if possible).
static SDValue performVMSKLTZCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void replaceINTRINSIC_WO_CHAINResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKOD (if possible).
static Intrinsic::ID getIntrinsicForMaskedAtomicRMWBinOp(unsigned GRLen, AtomicRMWInst::BinOp BinOp)
static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, ISD::CondCode &CC, SelectionDAG &DAG)
static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT, ArrayRef< int > Mask, SmallVectorImpl< int > &RepeatedMask)
Test whether a shuffle mask is equivalent within each sub-lane.
static LoongArchISD::NodeType getLoongArchWOpcode(unsigned Opcode)
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static CodeModel::Model getCodeModel(const PPCSubtarget &S, const TargetMachine &TM, const MachineOperand &MO)
This file defines the SmallSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, bool AllowSymbol=false)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static bool isSequentialOrUndefInRange(ArrayRef< int > Mask, unsigned Pos, unsigned Size, int Low, int Step=1)
Return true if every element in Mask, beginning from position Pos and ending in Pos + Size,...
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
int64_t getSExtValue() const
Get sign extended value.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getCompareOperand()
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
Value * getPointerOperand()
bool isFloatingPointOperation() const
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM Basic Block Representation.
bool test(unsigned Idx) const
size_type count() const
count - Returns the number of bits which are set.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
CCState - This class holds information needed while lowering arguments and return values.
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
LLVM_ABI void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT, LocInfo HTP, unsigned ExtraInfo=0)
Register getLocReg() const
LocInfo getLocInfo() const
static CCValAssign getReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP, bool IsCustom=false)
static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP)
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
int64_t getLocMemOffset() const
unsigned getValNo() const
static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP)
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
This class represents a function call, abstracting a target machine's calling convention.
const APFloat & getValueAPF() const
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
uint64_t getZExtValue() const
int64_t getSExtValue() const
This is an important base class in LLVM.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSizeInBits(unsigned AS=0) const
The size in bits of the pointer representation in a given address space.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Argument * getArg(unsigned i) const
Common base class shared among various IRBuilders.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
This is an important class for using LLVM in a threaded context.
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This class is used to represent ISD::LOAD nodes.
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
LoongArchMachineFunctionInfo - This class is derived from MachineFunctionInfo and contains private Lo...
void addSExt32Register(Register Reg)
const LoongArchRegisterInfo * getRegisterInfo() const override
const LoongArchInstrInfo * getInstrInfo() const override
unsigned getGRLen() const
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override
Return true if result of the specified node is used by a return node only.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
std::pair< bool, uint64_t > isImmVLDILegalForMode1(const APInt &SplatValue, const unsigned SplatBitSize) const
Check if a constant splat can be generated using [x]vldi, where imm[12] is 1.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
bool isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const override
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Determine if the target supports unaligned memory accesses.
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, Align &PrefAlign) const override
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
bool signExtendConstant(const ConstantInt *CI) const override
Return true if this constant should be sign extended when promoting to a larger type.
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const override
Returns true if arguments should be sign-extended in lib calls.
bool shouldScalarizeBinop(SDValue VecOp) const override
Try to convert an extract element of a vector binary operation into an extract element followed by a ...
bool isFPImmVLDILegal(const APFloat &Imm, EVT VT) const
bool shouldExtendTypeInLibCall(EVT Type) const override
Returns true if arguments should be extended in lib calls.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool hasAndNot(SDValue Y) const override
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
ISD::NodeType getExtendForAtomicCmpSwapArg() const override
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
LoongArchTargetLowering(const TargetMachine &TM, const LoongArchSubtarget &STI)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
bool hasAndNotCompare(SDValue Y) const override
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const override
Return a reciprocal estimate value for the input operand.
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context, const Type *RetTy) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
bool mayBeEmittedAsTailCall(const CallInst *CI) const override
Return true if the target may be able emit the call instruction as a tail call.
Wrapper class representing physical registers. Should be passed by value.
bool hasFeature(unsigned Feature) const
static MVT getFloatingPointVT(unsigned BitWidth)
bool is128BitVector() const
Return true if this is a 128-bit vector type.
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
bool is256BitVector() const
Return true if this is a 256-bit vector type.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
MVT getHalfNumVectorElementsVT() const
Return a VT for a vector type with the same element type but half the number of elements.
MVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
void push_back(MachineInstr *MI)
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
LLVM_ABI void collectDebugValues(SmallVectorImpl< MachineInstr * > &DbgValues)
Scan instructions immediately following MI and collect any matching DBG_VALUEs.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
void setIsKill(bool Val=true)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
EVT getMemoryVT() const
Return the type of the in-memory value.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
size_t use_size() const
Return the number of uses of this node.
MVT getSimpleValueType(unsigned ResNo) const
Return the type of a specified result as a simple type.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
bool isSafeToSpeculativelyExecute(unsigned Opcode) const
Some opcodes may create immediate undefined behavior when used with some values (integer division-by-...
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
ArrayRef< int > getMask() const
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
typename SuperClass::const_iterator const_iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
TargetInstrInfo - Interface to description of machine instruction set.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setMaxBytesForAlignment(unsigned MaxBytes)
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
std::vector< ArgListEntry > ArgListTy
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
TargetLowering(const TargetLowering &)=delete
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
bool useTLSDESC() const
Returns true if this target uses TLS Descriptors.
bool useEmulatedTLS() const
Returns true if this target uses emulated TLS.
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
CodeModel::Model getCodeModel() const
Returns the code model.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
This class is used to represent EVT's, which are used to parameterize some operations.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isIntEqualitySetCC(CondCode Code)
Return true if this is a setcc instruction that performs an equality comparison when used with intege...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
ABI getTargetABI(StringRef ABIName)
InstSeq generateInstSeq(int64_t Val)
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
@ Kill
The last use of a register.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Sequence
A sequence of states that a pointer may go through in which an objc_retain and objc_release are actua...
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
AtomicOrdering
Atomic ordering for LLVM's memory model.
unsigned getKillRegState(bool B)
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
constexpr unsigned BitWidth
std::string join_items(Sep Separator, Args &&... Items)
Joins the strings in the parameter pack Items, adding Separator between the elements....
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
PointerUnion< const Value *, const PseudoSourceValue * > ValueType
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
static EVT getFloatingPointVT(unsigned BitWidth)
Returns the EVT that represents a floating-point type with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
Align getNonZeroOrigAlign() const
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalizeOps() const
bool isBeforeLegalize() const
LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)