31#include "llvm/IR/IntrinsicsLoongArch.h"
41#define DEBUG_TYPE "loongarch-isel-lowering"
56 cl::desc(
"Maximum number of instructions used (including code sequence "
57 "to generate the value and moving the value to FPR) when "
58 "materializing floating-point immediates (default = 3)"),
62 "Materialize FP immediate within 2 instructions"),
64 "Materialize FP immediate within 3 instructions"),
66 "Materialize FP immediate within 4 instructions"),
68 "Materialize FP immediate within 5 instructions"),
70 "Materialize FP immediate within 6 instructions "
71 "(behaves same as 5 on loongarch64)")));
74 cl::desc(
"Trap on integer division by zero."),
81 MVT GRLenVT = Subtarget.getGRLenVT();
86 if (Subtarget.hasBasicF())
88 if (Subtarget.hasBasicD())
92 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, MVT::v2f64};
94 MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, MVT::v8f32, MVT::v4f64};
96 if (Subtarget.hasExtLSX())
100 if (Subtarget.hasExtLASX())
101 for (
MVT VT : LASXVTs)
169 if (Subtarget.is64Bit()) {
197 if (!Subtarget.is64Bit()) {
203 if (Subtarget.hasBasicD())
215 if (Subtarget.hasBasicF()) {
247 if (Subtarget.is64Bit())
250 if (!Subtarget.hasBasicD()) {
252 if (Subtarget.is64Bit()) {
261 if (Subtarget.hasBasicD()) {
294 if (Subtarget.is64Bit())
300 if (Subtarget.hasExtLSX()) {
315 for (
MVT VT : LSXVTs) {
329 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) {
351 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
353 for (
MVT VT : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
355 for (
MVT VT : {MVT::v4i32, MVT::v2i64}) {
359 for (
MVT VT : {MVT::v4f32, MVT::v2f64}) {
377 {MVT::v16i8, MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v8i16, MVT::v4i16,
378 MVT::v2i16, MVT::v4i32, MVT::v2i32, MVT::v2i64}) {
393 if (Subtarget.hasExtLASX()) {
394 for (
MVT VT : LASXVTs) {
409 for (
MVT VT : {MVT::v4i64, MVT::v8i32, MVT::v16i16, MVT::v32i8}) {
432 for (
MVT VT : {MVT::v32i8, MVT::v16i16, MVT::v8i32})
434 for (
MVT VT : {MVT::v16i16, MVT::v8i32, MVT::v4i64})
436 for (
MVT VT : {MVT::v8i32, MVT::v4i32, MVT::v4i64}) {
440 for (
MVT VT : {MVT::v8f32, MVT::v4f64}) {
462 if (Subtarget.hasExtLSX()) {
469 if (Subtarget.hasExtLASX())
492 if (Subtarget.hasLAMCAS())
495 if (Subtarget.hasSCQ()) {
512 switch (
Op.getOpcode()) {
513 case ISD::ATOMIC_FENCE:
514 return lowerATOMIC_FENCE(
Op, DAG);
516 return lowerEH_DWARF_CFA(
Op, DAG);
518 return lowerGlobalAddress(
Op, DAG);
520 return lowerGlobalTLSAddress(
Op, DAG);
522 return lowerINTRINSIC_WO_CHAIN(
Op, DAG);
524 return lowerINTRINSIC_W_CHAIN(
Op, DAG);
526 return lowerINTRINSIC_VOID(
Op, DAG);
528 return lowerBlockAddress(
Op, DAG);
530 return lowerJumpTable(
Op, DAG);
532 return lowerShiftLeftParts(
Op, DAG);
534 return lowerShiftRightParts(
Op, DAG,
true);
536 return lowerShiftRightParts(
Op, DAG,
false);
538 return lowerConstantPool(
Op, DAG);
540 return lowerFP_TO_SINT(
Op, DAG);
542 return lowerBITCAST(
Op, DAG);
544 return lowerUINT_TO_FP(
Op, DAG);
546 return lowerSINT_TO_FP(
Op, DAG);
548 return lowerVASTART(
Op, DAG);
550 return lowerFRAMEADDR(
Op, DAG);
552 return lowerRETURNADDR(
Op, DAG);
554 return lowerWRITE_REGISTER(
Op, DAG);
556 return lowerINSERT_VECTOR_ELT(
Op, DAG);
558 return lowerEXTRACT_VECTOR_ELT(
Op, DAG);
560 return lowerBUILD_VECTOR(
Op, DAG);
562 return lowerCONCAT_VECTORS(
Op, DAG);
564 return lowerVECTOR_SHUFFLE(
Op, DAG);
566 return lowerBITREVERSE(
Op, DAG);
568 return lowerSCALAR_TO_VECTOR(
Op, DAG);
570 return lowerPREFETCH(
Op, DAG);
572 return lowerSELECT(
Op, DAG);
574 return lowerBRCOND(
Op, DAG);
575 case ISD::FP_TO_FP16:
576 return lowerFP_TO_FP16(
Op, DAG);
577 case ISD::FP16_TO_FP:
578 return lowerFP16_TO_FP(
Op, DAG);
579 case ISD::FP_TO_BF16:
580 return lowerFP_TO_BF16(
Op, DAG);
581 case ISD::BF16_TO_FP:
582 return lowerBF16_TO_FP(
Op, DAG);
583 case ISD::VECREDUCE_ADD:
584 return lowerVECREDUCE_ADD(
Op, DAG);
585 case ISD::VECREDUCE_AND:
586 case ISD::VECREDUCE_OR:
587 case ISD::VECREDUCE_XOR:
588 case ISD::VECREDUCE_SMAX:
589 case ISD::VECREDUCE_SMIN:
590 case ISD::VECREDUCE_UMAX:
591 case ISD::VECREDUCE_UMIN:
592 return lowerVECREDUCE(
Op, DAG);
594 return lowerConstantFP(
Op, DAG);
601 EVT VT =
Op.getValueType();
606 assert((VT == MVT::f32 && Subtarget.hasBasicF()) ||
607 (VT == MVT::f64 && Subtarget.hasBasicD()));
624 int InsNum = Seq.size() + ((VT == MVT::f64 && !Subtarget.
is64Bit()) ? 2 : 1);
666 MVT OpVT =
Op.getSimpleValueType();
673 unsigned LegalVecSize = 128;
674 bool isLASX256Vector =
684 if (isLASX256Vector) {
689 for (
unsigned i = 1; i < NumEles; i *= 2, EleBits *= 2) {
695 if (isLASX256Vector) {
721 MVT OpVT =
Op.getSimpleValueType();
734 MVT GRLenVT = Subtarget.getGRLenVT();
736 for (
int i = NumEles; i > 1; i /= 2) {
739 Val = DAG.
getNode(Opcode,
DL, VecTy, Tmp, Val);
748 unsigned IsData =
Op.getConstantOperandVal(4);
753 return Op.getOperand(0);
768 if (
LHS == LHS2 &&
RHS == RHS2) {
773 }
else if (
LHS == RHS2 &&
RHS == LHS2) {
789 MVT VT =
N->getSimpleValueType(0);
820 if (~TrueVal == FalseVal) {
860 unsigned SelOpNo = 0;
870 unsigned ConstSelOpNo = 1;
871 unsigned OtherSelOpNo = 2;
878 if (!ConstSelOpNode || ConstSelOpNode->
isOpaque())
883 if (!ConstBinOpNode || ConstBinOpNode->
isOpaque())
889 SDValue NewConstOps[2] = {ConstSelOp, ConstBinOp};
891 std::swap(NewConstOps[0], NewConstOps[1]);
903 SDValue NewNonConstOps[2] = {OtherSelOp, ConstBinOp};
905 std::swap(NewNonConstOps[0], NewNonConstOps[1]);
908 SDValue NewT = (ConstSelOpNo == 1) ? NewConstOp : NewNonConstOp;
909 SDValue NewF = (ConstSelOpNo == 1) ? NewNonConstOp : NewConstOp;
929 ShAmt =
LHS.getValueSizeInBits() - 1 -
Log2_64(Mask);
943 int64_t
C = RHSC->getSExtValue();
986 MVT VT =
Op.getSimpleValueType();
987 MVT GRLenVT = Subtarget.getGRLenVT();
992 if (
Op.hasOneUse()) {
993 unsigned UseOpc =
Op->user_begin()->getOpcode();
995 SDNode *BinOp = *
Op->user_begin();
1002 return lowerSELECT(NewSel, DAG);
1042 if (TrueVal - 1 == FalseVal)
1044 if (TrueVal + 1 == FalseVal)
1051 RHS == TrueV &&
LHS == FalseV) {
1083 MVT GRLenVT = Subtarget.getGRLenVT();
1095 Op.getOperand(0),
LHS,
RHS, TargetCC,
1099 Op.getOperand(0), CondV,
Op.getOperand(2));
1109LoongArchTargetLowering::lowerSCALAR_TO_VECTOR(
SDValue Op,
1112 MVT OpVT =
Op.getSimpleValueType();
1123 EVT ResTy =
Op->getValueType(0);
1128 if (!Subtarget.is64Bit() && (ResTy == MVT::v16i8 || ResTy == MVT::v32i8))
1138 for (
unsigned int i = 0; i < NewEltNum; i++) {
1141 unsigned RevOp = (ResTy == MVT::v16i8 || ResTy == MVT::v32i8)
1160 for (
unsigned int i = 0; i < NewEltNum; i++)
1161 for (
int j = OrigEltNum / NewEltNum - 1;
j >= 0;
j--)
1162 Mask.push_back(j + (OrigEltNum / NewEltNum) * i);
1180 if (EltBits > 32 || EltBits == 1)
1208 int MaskOffset,
const APInt &Zeroable) {
1209 int Size = Mask.size();
1210 unsigned SizeInBits =
Size * ScalarSizeInBits;
1212 auto CheckZeros = [&](
int Shift,
int Scale,
bool Left) {
1213 for (
int i = 0; i <
Size; i += Scale)
1214 for (
int j = 0; j < Shift; ++j)
1215 if (!Zeroable[i + j + (
Left ? 0 : (Scale - Shift))])
1223 for (
unsigned i = Pos, e = Pos +
Size; i != e; ++i,
Low += Step)
1224 if (!(Mask[i] == -1 || Mask[i] ==
Low))
1229 auto MatchShift = [&](
int Shift,
int Scale,
bool Left) {
1230 for (
int i = 0; i !=
Size; i += Scale) {
1231 unsigned Pos =
Left ? i + Shift : i;
1232 unsigned Low =
Left ? i : i + Shift;
1233 unsigned Len = Scale - Shift;
1238 int ShiftEltBits = ScalarSizeInBits * Scale;
1239 bool ByteShift = ShiftEltBits > 64;
1242 int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1);
1246 Scale = ByteShift ? Scale / 2 : Scale;
1252 return (
int)ShiftAmt;
1255 unsigned MaxWidth = 128;
1256 for (
int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2)
1257 for (
int Shift = 1; Shift != Scale; ++Shift)
1258 for (
bool Left : {
true,
false})
1259 if (CheckZeros(Shift, Scale,
Left)) {
1260 int ShiftAmt = MatchShift(Shift, Scale,
Left);
1285 const APInt &Zeroable) {
1286 int Size = Mask.size();
1300 Mask,
Size, Zeroable);
1308 "Illegal integer vector type");
1317template <
typename ValType>
1320 unsigned CheckStride,
1322 ValType ExpectedIndex,
unsigned ExpectedIndexStride) {
1326 if (*
I != -1 && *
I != ExpectedIndex)
1328 ExpectedIndex += ExpectedIndexStride;
1332 for (
unsigned n = 0; n < CheckStride &&
I != End; ++n, ++
I)
1344 int Size = Mask.size();
1354 int ScalarSizeInBits = VectorSizeInBits /
Size;
1355 assert(!(VectorSizeInBits % ScalarSizeInBits) &&
"Illegal shuffle mask size");
1356 (void)ScalarSizeInBits;
1358 for (
int i = 0; i <
Size; ++i) {
1364 if ((M >= 0 && M <
Size && V1IsZero) || (M >=
Size && V2IsZero)) {
1381 RepeatedMask.
assign(LaneSize, -1);
1382 int Size = Mask.size();
1383 for (
int i = 0; i <
Size; ++i) {
1384 assert(Mask[i] == -1 || Mask[i] >= 0);
1387 if ((Mask[i] %
Size) / LaneSize != i / LaneSize)
1394 Mask[i] <
Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize;
1395 if (RepeatedMask[i % LaneSize] < 0)
1397 RepeatedMask[i % LaneSize] = LocalM;
1398 else if (RepeatedMask[i % LaneSize] != LocalM)
1415 int NumElts = RepeatedMask.
size();
1417 int Scale = 16 / NumElts;
1419 for (
int i = 0; i < NumElts; ++i) {
1420 int M = RepeatedMask[i];
1421 assert((M == -1 || (0 <= M && M < (2 * NumElts))) &&
1422 "Unexpected mask index.");
1427 int StartIdx = i - (M % NumElts);
1434 int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx;
1437 Rotation = CandidateRotation;
1438 else if (Rotation != CandidateRotation)
1442 SDValue MaskV = M < NumElts ? V1 : V2;
1453 else if (TargetV != MaskV)
1458 assert(Rotation != 0 &&
"Failed to locate a viable rotation!");
1459 assert((
Lo ||
Hi) &&
"Failed to find a rotated input vector!");
1468 return Rotation * Scale;
1487 if (ByteRotation <= 0)
1494 int LoByteShift = 16 - ByteRotation;
1495 int HiByteShift = ByteRotation;
1518 const APInt &Zeroable) {
1532 for (
int i = 0; i < NumElements; i++) {
1536 if (i % Scale != 0) {
1547 SDValue V = M < NumElements ? V1 : V2;
1548 M = M % NumElements;
1551 Offset = M - (i / Scale);
1554 if (
Offset % (NumElements / Scale))
1556 }
else if (InputV != V)
1559 if (M != (
Offset + (i / Scale)))
1570 if (
Offset >= (NumElements / 2)) {
1572 Offset -= (NumElements / 2);
1579 InputV = DAG.
getNode(VilVLoHi,
DL, InputVT, Ext, InputV);
1583 }
while (Scale > 1);
1589 for (
int NumExtElements = Bits / 64; NumExtElements < NumElements;
1590 NumExtElements *= 2) {
1610 int SplatIndex = -1;
1611 for (
const auto &M : Mask) {
1618 if (SplatIndex == -1)
1621 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
1653 unsigned SubVecSize = 4;
1654 if (VT == MVT::v2f64 || VT == MVT::v2i64)
1657 int SubMask[4] = {-1, -1, -1, -1};
1658 for (
unsigned i = 0; i < SubVecSize; ++i) {
1659 for (
unsigned j = i; j < Mask.size(); j += SubVecSize) {
1665 M -= 4 * (j / SubVecSize);
1666 if (M < 0 || M >= 4)
1672 if (SubMask[i] == -1)
1676 else if (M != -1 && M != SubMask[i])
1683 for (
int i = SubVecSize - 1; i >= 0; --i) {
1696 if (VT == MVT::v2f64 || VT == MVT::v2i64)
1723 const auto &Begin = Mask.begin();
1724 const auto &End = Mask.end();
1725 SDValue OriV1 = V1, OriV2 = V2;
1763 const auto &Begin = Mask.begin();
1764 const auto &End = Mask.end();
1765 SDValue OriV1 = V1, OriV2 = V2;
1804 const auto &Begin = Mask.begin();
1805 const auto &End = Mask.end();
1806 unsigned HalfSize = Mask.size() / 2;
1807 SDValue OriV1 = V1, OriV2 = V2;
1847 const auto &Begin = Mask.begin();
1848 const auto &End = Mask.end();
1849 SDValue OriV1 = V1, OriV2 = V2;
1887 const auto &Begin = Mask.begin();
1888 const auto &Mid = Mask.begin() + Mask.size() / 2;
1889 const auto &End = Mask.end();
1890 SDValue OriV1 = V1, OriV2 = V2;
1929 const auto &Begin = Mask.begin();
1930 const auto &Mid = Mask.begin() + Mask.size() / 2;
1931 const auto &End = Mask.end();
1932 SDValue OriV1 = V1, OriV2 = V2;
1987 "Vector type is unsupported for lsx!");
1989 "Two operands have different types!");
1991 "Unexpected mask size for shuffle!");
1992 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
1994 APInt KnownUndef, KnownZero;
1996 APInt Zeroable = KnownUndef | KnownZero;
2060 int SplatIndex = -1;
2061 for (
const auto &M : Mask) {
2068 if (SplatIndex == -1)
2071 const auto &Begin = Mask.begin();
2072 const auto &End = Mask.end();
2073 int HalfSize = Mask.size() / 2;
2075 if (SplatIndex >= HalfSize)
2078 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
2096 if (Mask.size() <= 4)
2107 if (Mask.size() != 4 || (VT != MVT::v4i64 && VT != MVT::v4f64))
2110 unsigned MaskImm = 0;
2111 for (
unsigned i = 0; i < Mask.size(); ++i) {
2114 MaskImm |= Mask[i] << (i * 2);
2126 if (Mask.size() != 8 || (VT != MVT::v8i32 && VT != MVT::v8f32))
2130 unsigned HalfSize = NumElts / 2;
2131 bool FrontLo =
true, FrontHi =
true;
2132 bool BackLo =
true, BackHi =
true;
2134 auto inRange = [](
int val,
int low,
int high) {
2135 return (val == -1) || (val >= low && val < high);
2138 for (
unsigned i = 0; i < HalfSize; ++i) {
2139 int Fronti = Mask[i];
2140 int Backi = Mask[i + HalfSize];
2142 FrontLo &=
inRange(Fronti, 0, HalfSize);
2143 FrontHi &=
inRange(Fronti, HalfSize, NumElts);
2144 BackLo &=
inRange(Backi, 0, HalfSize);
2145 BackHi &=
inRange(Backi, HalfSize, NumElts);
2151 if ((FrontLo || FrontHi) && (BackLo || BackHi))
2156 for (
unsigned i = 0; i < NumElts; ++i)
2183 const auto &Begin = Mask.begin();
2184 const auto &End = Mask.end();
2185 unsigned HalfSize = Mask.size() / 2;
2186 unsigned LeftSize = HalfSize / 2;
2187 SDValue OriV1 = V1, OriV2 = V2;
2194 Mask.size() + HalfSize - LeftSize, 1) &&
2196 Mask.size() + HalfSize + LeftSize, 1))
2207 Mask.size() + HalfSize - LeftSize, 1) &&
2209 Mask.size() + HalfSize + LeftSize, 1))
2222 const auto &Begin = Mask.begin();
2223 const auto &End = Mask.end();
2224 unsigned HalfSize = Mask.size() / 2;
2225 SDValue OriV1 = V1, OriV2 = V2;
2232 Mask.size() + HalfSize, 1))
2243 Mask.size() + HalfSize, 1))
2256 const auto &Begin = Mask.begin();
2257 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
2258 const auto &Mid = Mask.begin() + Mask.size() / 2;
2259 const auto &RightMid = Mask.end() - Mask.size() / 4;
2260 const auto &End = Mask.end();
2261 unsigned HalfSize = Mask.size() / 2;
2262 SDValue OriV1 = V1, OriV2 = V2;
2291 const auto &Begin = Mask.begin();
2292 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
2293 const auto &Mid = Mask.begin() + Mask.size() / 2;
2294 const auto &RightMid = Mask.end() - Mask.size() / 4;
2295 const auto &End = Mask.end();
2296 unsigned HalfSize = Mask.size() / 2;
2297 SDValue OriV1 = V1, OriV2 = V2;
2328 if (VT != MVT::v8i32 && VT != MVT::v8f32 && VT != MVT::v4i64 &&
2333 int MaskSize = Mask.size();
2339 auto checkReplaceOne = [&](
int Base,
int Replaced) ->
int {
2341 for (
int i = 0; i < MaskSize; ++i) {
2342 if (Mask[i] ==
Base + i || Mask[i] == -1)
2344 if (Mask[i] != Replaced)
2355 int Idx = checkReplaceOne(0, MaskSize);
2361 Idx = checkReplaceOne(MaskSize, 0);
2374 int MaskSize = Mask.size();
2375 int HalfSize = Mask.size() / 2;
2376 const auto &Begin = Mask.begin();
2377 const auto &Mid = Mask.begin() + HalfSize;
2378 const auto &End = Mask.end();
2390 for (
auto it = Begin; it < Mid; it++) {
2393 else if ((*it >= 0 && *it < HalfSize) ||
2394 (*it >= MaskSize && *it < MaskSize + HalfSize)) {
2395 int M = *it < HalfSize ? *it : *it - HalfSize;
2400 assert((
int)MaskAlloc.
size() == HalfSize &&
"xvshuf convert failed!");
2402 for (
auto it = Mid; it < End; it++) {
2405 else if ((*it >= HalfSize && *it < MaskSize) ||
2406 (*it >= MaskSize + HalfSize && *it < MaskSize * 2)) {
2407 int M = *it < MaskSize ? *it - HalfSize : *it - MaskSize;
2412 assert((
int)MaskAlloc.
size() == MaskSize &&
"xvshuf convert failed!");
2444 enum HalfMaskType { HighLaneTy, LowLaneTy,
None };
2446 int MaskSize = Mask.size();
2447 int HalfSize = Mask.size() / 2;
2450 HalfMaskType preMask =
None, postMask =
None;
2452 if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
2453 return M < 0 || (M >= 0 && M < HalfSize) ||
2454 (M >= MaskSize && M < MaskSize + HalfSize);
2456 preMask = HighLaneTy;
2457 else if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
2458 return M < 0 || (M >= HalfSize && M < MaskSize) ||
2459 (M >= MaskSize + HalfSize && M < MaskSize * 2);
2461 preMask = LowLaneTy;
2463 if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
2464 return M < 0 || (M >= HalfSize && M < MaskSize) ||
2465 (M >= MaskSize + HalfSize && M < MaskSize * 2);
2467 postMask = LowLaneTy;
2468 else if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
2469 return M < 0 || (M >= 0 && M < HalfSize) ||
2470 (M >= MaskSize && M < MaskSize + HalfSize);
2472 postMask = HighLaneTy;
2480 if (preMask == HighLaneTy && postMask == LowLaneTy) {
2483 if (preMask == LowLaneTy && postMask == HighLaneTy) {
2496 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
2497 *it = *it < 0 ? *it : *it - HalfSize;
2499 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
2500 *it = *it < 0 ? *it : *it + HalfSize;
2502 }
else if (preMask == LowLaneTy && postMask == LowLaneTy) {
2515 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
2516 *it = *it < 0 ? *it : *it - HalfSize;
2518 }
else if (preMask == HighLaneTy && postMask == HighLaneTy) {
2531 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
2532 *it = *it < 0 ? *it : *it + HalfSize;
2557 int Size = Mask.size();
2558 int LaneSize =
Size / 2;
2560 bool LaneCrossing[2] = {
false,
false};
2561 for (
int i = 0; i <
Size; ++i)
2562 if (Mask[i] >= 0 && ((Mask[i] %
Size) / LaneSize) != (i / LaneSize))
2563 LaneCrossing[(Mask[i] %
Size) / LaneSize] =
true;
2566 if (!LaneCrossing[0] && !LaneCrossing[1])
2570 InLaneMask.
assign(Mask.begin(), Mask.end());
2571 for (
int i = 0; i <
Size; ++i) {
2572 int &M = InLaneMask[i];
2575 if (((M %
Size) / LaneSize) != (i / LaneSize))
2576 M = (M % LaneSize) + ((i / LaneSize) * LaneSize) +
Size;
2581 DAG.
getUNDEF(MVT::v4i64), {2, 3, 0, 1});
2596 "Vector type is unsupported for lasx!");
2598 "Two operands have different types!");
2600 "Unexpected mask size for shuffle!");
2601 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
2602 assert(Mask.size() >= 4 &&
"Mask size is less than 4.");
2604 APInt KnownUndef, KnownZero;
2606 APInt Zeroable = KnownUndef | KnownZero;
2677 ArrayRef<int> OrigMask = SVOp->
getMask();
2680 MVT VT =
Op.getSimpleValueType();
2684 bool V1IsUndef = V1.
isUndef();
2685 bool V2IsUndef = V2.
isUndef();
2686 if (V1IsUndef && V2IsUndef)
2699 any_of(OrigMask, [NumElements](
int M) {
return M >= NumElements; })) {
2700 SmallVector<int, 8> NewMask(OrigMask);
2701 for (
int &M : NewMask)
2702 if (M >= NumElements)
2708 int MaskUpperLimit = OrigMask.
size() * (V2IsUndef ? 1 : 2);
2709 (void)MaskUpperLimit;
2711 [&](
int M) {
return -1 <=
M &&
M < MaskUpperLimit; }) &&
2712 "Out of bounds shuffle index");
2734 std::tie(Res, Chain) =
2735 makeLibCall(DAG, LC, MVT::f32, Op0, CallOptions,
DL, Chain);
2736 if (Subtarget.is64Bit())
2753 std::tie(Res, Chain) =
makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Arg,
2754 CallOptions,
DL, Chain);
2760 assert(Subtarget.hasBasicF() &&
"Unexpected custom legalization");
2766 makeLibCall(DAG, LC, MVT::f32,
Op.getOperand(0), CallOptions,
DL).first;
2767 if (Subtarget.is64Bit())
2774 assert(Subtarget.hasBasicF() &&
"Unexpected custom legalization");
2775 MVT VT =
Op.getSimpleValueType();
2784 return DAG.
getNode(ISD::FP_EXTEND,
DL, VT, Res);
2801 "Unsupported vector type for broadcast.");
2804 bool IsIdeneity =
true;
2806 for (
int i = 0; i !=
NumOps; i++) {
2808 if (
Op.getOpcode() != ISD::LOAD || (IdentitySrc &&
Op != IdentitySrc)) {
2820 auto ExtType = LN->getExtensionType();
2826 ? DAG.
getVTList(VT, LN->getBasePtr().getValueType(), MVT::Other)
2828 SDValue Ops[] = {LN->getChain(), LN->getBasePtr(), LN->getOffset()};
2846 for (
unsigned i = 1; i <
Ops.size(); ++i) {
2860 EVT ResTy,
unsigned first) {
2864 first + NumElts <= Node->getSimpleValueType(0).getVectorNumElements());
2867 Node->op_begin() + first + NumElts);
2876 MVT VT =
Node->getSimpleValueType(0);
2877 EVT ResTy =
Op->getValueType(0);
2880 APInt SplatValue, SplatUndef;
2881 unsigned SplatBitSize;
2884 bool UseSameConstant =
true;
2889 if ((!Subtarget.hasExtLSX() || !Is128Vec) &&
2890 (!Subtarget.hasExtLASX() || !Is256Vec))
2896 if (
Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
2898 SplatBitSize <= 64) {
2900 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2904 if (SplatBitSize == 64 && !Subtarget.is64Bit()) {
2911 if ((Is128Vec && ResTy == MVT::v4i32) ||
2912 (Is256Vec && ResTy == MVT::v8i32))
2918 switch (SplatBitSize) {
2922 ViaVecTy = Is128Vec ? MVT::v16i8 : MVT::v32i8;
2925 ViaVecTy = Is128Vec ? MVT::v8i16 : MVT::v16i16;
2928 ViaVecTy = Is128Vec ? MVT::v4i32 : MVT::v8i32;
2931 ViaVecTy = Is128Vec ? MVT::v2i64 : MVT::v4i64;
2939 if (ViaVecTy != ResTy)
2940 Result = DAG.
getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2948 for (
unsigned i = 0; i < NumElts; ++i) {
2953 ConstantValue = Opi;
2954 else if (ConstantValue != Opi)
2955 UseSameConstant =
false;
2960 if (IsConstant && UseSameConstant && ResTy != MVT::v2f64) {
2962 for (
unsigned i = 0; i < NumElts; ++i) {
2980 BitVector UndefElements;
2981 if (
Node->getRepeatedSequence(Sequence, &UndefElements) &&
2982 UndefElements.
count() == 0) {
2986 EVT FillTy = Is256Vec
2992 fillVector(Sequence, DAG,
DL, Subtarget, FillVec, FillTy);
2995 unsigned SplatLen = NumElts / SeqLen;
3001 if (SplatEltTy == MVT::i128)
3002 SplatTy = MVT::v4i64;
3012 DL, SplatTy, SrcVec);
3027 if (ResTy == MVT::v8i32 || ResTy == MVT::v8f32 || ResTy == MVT::v4i64 ||
3028 ResTy == MVT::v4f64) {
3029 unsigned NonUndefCount = 0;
3030 for (
unsigned i = NumElts / 2; i < NumElts; ++i) {
3031 if (!
Node->getOperand(i).isUndef()) {
3033 if (NonUndefCount > 1)
3037 if (NonUndefCount == 1)
3050 VecTy, NumElts / 2);
3061 MVT ResVT =
Op.getSimpleValueType();
3065 unsigned NumFreezeUndef = 0;
3066 unsigned NumZero = 0;
3067 unsigned NumNonZero = 0;
3068 unsigned NonZeros = 0;
3069 SmallSet<SDValue, 4> Undefs;
3070 for (
unsigned i = 0; i != NumOperands; ++i) {
3085 assert(i <
sizeof(NonZeros) * CHAR_BIT);
3092 if (NumNonZero > 2) {
3096 Ops.slice(0, NumOperands / 2));
3098 Ops.slice(NumOperands / 2));
3111 MVT SubVT =
Op.getOperand(0).getSimpleValueType();
3113 for (
unsigned i = 0; i != NumOperands; ++i) {
3114 if ((NonZeros & (1 << i)) == 0)
3125LoongArchTargetLowering::lowerEXTRACT_VECTOR_ELT(
SDValue Op,
3127 MVT EltVT =
Op.getSimpleValueType();
3132 MVT GRLenVT = Subtarget.getGRLenVT();
3164 DAG.
getBitcast((VecTy == MVT::v4f64) ? MVT::v4i64 : VecTy, IdxVec);
3184LoongArchTargetLowering::lowerINSERT_VECTOR_ELT(
SDValue Op,
3186 MVT VT =
Op.getSimpleValueType();
3209 if (!Subtarget.is64Bit() && IdxTy == MVT::i64) {
3211 for (
unsigned i = 0; i < NumElts; ++i) {
3219 for (
unsigned i = 0; i < NumElts; ++i) {
3228 for (
unsigned i = 0; i < NumElts; ++i)
3252 return DAG.
getNode(ISD::MEMBARRIER,
DL, MVT::Other,
Op.getOperand(0));
3260 if (Subtarget.is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i32) {
3262 "On LA64, only 64-bit registers can be written.");
3263 return Op.getOperand(0);
3266 if (!Subtarget.is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i64) {
3268 "On LA32, only 32-bit registers can be written.");
3269 return Op.getOperand(0);
3279 "be a constant integer");
3285 Register FrameReg = Subtarget.getRegisterInfo()->getFrameRegister(MF);
3286 EVT VT =
Op.getValueType();
3289 unsigned Depth =
Op.getConstantOperandVal(0);
3290 int GRLenInBytes = Subtarget.getGRLen() / 8;
3293 int Offset = -(GRLenInBytes * 2);
3305 if (
Op.getConstantOperandVal(0) != 0) {
3307 "return address can only be determined for the current frame");
3313 MVT GRLenVT = Subtarget.getGRLenVT();
3325 auto Size = Subtarget.getGRLen() / 8;
3333 auto *FuncInfo = MF.
getInfo<LoongArchMachineFunctionInfo>();
3343 MachinePointerInfo(SV));
3348 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
3349 !Subtarget.hasBasicD() &&
"unexpected target features");
3355 if (
C &&
C->getZExtValue() < UINT64_C(0xFFFFFFFF))
3369 EVT RetVT =
Op.getValueType();
3375 std::tie(Result, Chain) =
3382 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
3383 !Subtarget.hasBasicD() &&
"unexpected target features");
3394 EVT RetVT =
Op.getValueType();
3400 std::tie(Result, Chain) =
3409 EVT VT =
Op.getValueType();
3413 if (
Op.getValueType() == MVT::f32 && Op0VT == MVT::i32 &&
3414 Subtarget.is64Bit() && Subtarget.hasBasicF()) {
3418 if (VT == MVT::f64 && Op0VT == MVT::i64 && !Subtarget.is64Bit()) {
3433 Op0 = DAG.
getNode(ISD::FP_EXTEND,
DL, MVT::f32, Op0);
3435 if (
Op.getValueSizeInBits() > 32 && Subtarget.hasBasicF() &&
3436 !Subtarget.hasBasicD()) {
3443 return DAG.
getNode(ISD::BITCAST,
DL,
Op.getValueType(), Trunc);
3460 N->getOffset(), Flags);
3468template <
class NodeTy>
3471 bool IsLocal)
const {
3482 assert(Subtarget.is64Bit() &&
"Large code model requires LA64");
3553 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
3555 const GlobalValue *GV =
N->getGlobal();
3567 unsigned Opc,
bool UseGOT,
3571 MVT GRLenVT = Subtarget.getGRLenVT();
3585 if (
Opc == LoongArch::PseudoLA_TLS_LE && !Large)
3623 Args.emplace_back(Load, CallTy);
3626 TargetLowering::CallLoweringInfo CLI(DAG);
3641 const GlobalValue *GV =
N->getGlobal();
3655LoongArchTargetLowering::lowerGlobalTLSAddress(
SDValue Op,
3662 assert((!Large || Subtarget.is64Bit()) &&
"Large code model requires LA64");
3665 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
3678 return getDynamicTLSAddr(
N, DAG,
3679 Large ? LoongArch::PseudoLA_TLS_GD_LARGE
3680 : LoongArch::PseudoLA_TLS_GD,
3687 return getDynamicTLSAddr(
N, DAG,
3688 Large ? LoongArch::PseudoLA_TLS_LD_LARGE
3689 : LoongArch::PseudoLA_TLS_LD,
3694 return getStaticTLSAddr(
N, DAG,
3695 Large ? LoongArch::PseudoLA_TLS_IE_LARGE
3696 : LoongArch::PseudoLA_TLS_IE,
3703 return getStaticTLSAddr(
N, DAG, LoongArch::PseudoLA_TLS_LE,
3707 return getTLSDescAddr(
N, DAG,
3708 Large ? LoongArch::PseudoLA_TLS_DESC_LARGE
3709 : LoongArch::PseudoLA_TLS_DESC,
3713template <
unsigned N>
3718 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
3719 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
3721 ": argument out of range.");
3728LoongArchTargetLowering::lowerINTRINSIC_WO_CHAIN(
SDValue Op,
3730 switch (
Op.getConstantOperandVal(0)) {
3733 case Intrinsic::thread_pointer: {
3737 case Intrinsic::loongarch_lsx_vpickve2gr_d:
3738 case Intrinsic::loongarch_lsx_vpickve2gr_du:
3739 case Intrinsic::loongarch_lsx_vreplvei_d:
3740 case Intrinsic::loongarch_lasx_xvrepl128vei_d:
3742 case Intrinsic::loongarch_lsx_vreplvei_w:
3743 case Intrinsic::loongarch_lasx_xvrepl128vei_w:
3744 case Intrinsic::loongarch_lasx_xvpickve2gr_d:
3745 case Intrinsic::loongarch_lasx_xvpickve2gr_du:
3746 case Intrinsic::loongarch_lasx_xvpickve_d:
3747 case Intrinsic::loongarch_lasx_xvpickve_d_f:
3749 case Intrinsic::loongarch_lasx_xvinsve0_d:
3751 case Intrinsic::loongarch_lsx_vsat_b:
3752 case Intrinsic::loongarch_lsx_vsat_bu:
3753 case Intrinsic::loongarch_lsx_vrotri_b:
3754 case Intrinsic::loongarch_lsx_vsllwil_h_b:
3755 case Intrinsic::loongarch_lsx_vsllwil_hu_bu:
3756 case Intrinsic::loongarch_lsx_vsrlri_b:
3757 case Intrinsic::loongarch_lsx_vsrari_b:
3758 case Intrinsic::loongarch_lsx_vreplvei_h:
3759 case Intrinsic::loongarch_lasx_xvsat_b:
3760 case Intrinsic::loongarch_lasx_xvsat_bu:
3761 case Intrinsic::loongarch_lasx_xvrotri_b:
3762 case Intrinsic::loongarch_lasx_xvsllwil_h_b:
3763 case Intrinsic::loongarch_lasx_xvsllwil_hu_bu:
3764 case Intrinsic::loongarch_lasx_xvsrlri_b:
3765 case Intrinsic::loongarch_lasx_xvsrari_b:
3766 case Intrinsic::loongarch_lasx_xvrepl128vei_h:
3767 case Intrinsic::loongarch_lasx_xvpickve_w:
3768 case Intrinsic::loongarch_lasx_xvpickve_w_f:
3770 case Intrinsic::loongarch_lasx_xvinsve0_w:
3772 case Intrinsic::loongarch_lsx_vsat_h:
3773 case Intrinsic::loongarch_lsx_vsat_hu:
3774 case Intrinsic::loongarch_lsx_vrotri_h:
3775 case Intrinsic::loongarch_lsx_vsllwil_w_h:
3776 case Intrinsic::loongarch_lsx_vsllwil_wu_hu:
3777 case Intrinsic::loongarch_lsx_vsrlri_h:
3778 case Intrinsic::loongarch_lsx_vsrari_h:
3779 case Intrinsic::loongarch_lsx_vreplvei_b:
3780 case Intrinsic::loongarch_lasx_xvsat_h:
3781 case Intrinsic::loongarch_lasx_xvsat_hu:
3782 case Intrinsic::loongarch_lasx_xvrotri_h:
3783 case Intrinsic::loongarch_lasx_xvsllwil_w_h:
3784 case Intrinsic::loongarch_lasx_xvsllwil_wu_hu:
3785 case Intrinsic::loongarch_lasx_xvsrlri_h:
3786 case Intrinsic::loongarch_lasx_xvsrari_h:
3787 case Intrinsic::loongarch_lasx_xvrepl128vei_b:
3789 case Intrinsic::loongarch_lsx_vsrlni_b_h:
3790 case Intrinsic::loongarch_lsx_vsrani_b_h:
3791 case Intrinsic::loongarch_lsx_vsrlrni_b_h:
3792 case Intrinsic::loongarch_lsx_vsrarni_b_h:
3793 case Intrinsic::loongarch_lsx_vssrlni_b_h:
3794 case Intrinsic::loongarch_lsx_vssrani_b_h:
3795 case Intrinsic::loongarch_lsx_vssrlni_bu_h:
3796 case Intrinsic::loongarch_lsx_vssrani_bu_h:
3797 case Intrinsic::loongarch_lsx_vssrlrni_b_h:
3798 case Intrinsic::loongarch_lsx_vssrarni_b_h:
3799 case Intrinsic::loongarch_lsx_vssrlrni_bu_h:
3800 case Intrinsic::loongarch_lsx_vssrarni_bu_h:
3801 case Intrinsic::loongarch_lasx_xvsrlni_b_h:
3802 case Intrinsic::loongarch_lasx_xvsrani_b_h:
3803 case Intrinsic::loongarch_lasx_xvsrlrni_b_h:
3804 case Intrinsic::loongarch_lasx_xvsrarni_b_h:
3805 case Intrinsic::loongarch_lasx_xvssrlni_b_h:
3806 case Intrinsic::loongarch_lasx_xvssrani_b_h:
3807 case Intrinsic::loongarch_lasx_xvssrlni_bu_h:
3808 case Intrinsic::loongarch_lasx_xvssrani_bu_h:
3809 case Intrinsic::loongarch_lasx_xvssrlrni_b_h:
3810 case Intrinsic::loongarch_lasx_xvssrarni_b_h:
3811 case Intrinsic::loongarch_lasx_xvssrlrni_bu_h:
3812 case Intrinsic::loongarch_lasx_xvssrarni_bu_h:
3814 case Intrinsic::loongarch_lsx_vsat_w:
3815 case Intrinsic::loongarch_lsx_vsat_wu:
3816 case Intrinsic::loongarch_lsx_vrotri_w:
3817 case Intrinsic::loongarch_lsx_vsllwil_d_w:
3818 case Intrinsic::loongarch_lsx_vsllwil_du_wu:
3819 case Intrinsic::loongarch_lsx_vsrlri_w:
3820 case Intrinsic::loongarch_lsx_vsrari_w:
3821 case Intrinsic::loongarch_lsx_vslei_bu:
3822 case Intrinsic::loongarch_lsx_vslei_hu:
3823 case Intrinsic::loongarch_lsx_vslei_wu:
3824 case Intrinsic::loongarch_lsx_vslei_du:
3825 case Intrinsic::loongarch_lsx_vslti_bu:
3826 case Intrinsic::loongarch_lsx_vslti_hu:
3827 case Intrinsic::loongarch_lsx_vslti_wu:
3828 case Intrinsic::loongarch_lsx_vslti_du:
3829 case Intrinsic::loongarch_lsx_vbsll_v:
3830 case Intrinsic::loongarch_lsx_vbsrl_v:
3831 case Intrinsic::loongarch_lasx_xvsat_w:
3832 case Intrinsic::loongarch_lasx_xvsat_wu:
3833 case Intrinsic::loongarch_lasx_xvrotri_w:
3834 case Intrinsic::loongarch_lasx_xvsllwil_d_w:
3835 case Intrinsic::loongarch_lasx_xvsllwil_du_wu:
3836 case Intrinsic::loongarch_lasx_xvsrlri_w:
3837 case Intrinsic::loongarch_lasx_xvsrari_w:
3838 case Intrinsic::loongarch_lasx_xvslei_bu:
3839 case Intrinsic::loongarch_lasx_xvslei_hu:
3840 case Intrinsic::loongarch_lasx_xvslei_wu:
3841 case Intrinsic::loongarch_lasx_xvslei_du:
3842 case Intrinsic::loongarch_lasx_xvslti_bu:
3843 case Intrinsic::loongarch_lasx_xvslti_hu:
3844 case Intrinsic::loongarch_lasx_xvslti_wu:
3845 case Intrinsic::loongarch_lasx_xvslti_du:
3846 case Intrinsic::loongarch_lasx_xvbsll_v:
3847 case Intrinsic::loongarch_lasx_xvbsrl_v:
3849 case Intrinsic::loongarch_lsx_vseqi_b:
3850 case Intrinsic::loongarch_lsx_vseqi_h:
3851 case Intrinsic::loongarch_lsx_vseqi_w:
3852 case Intrinsic::loongarch_lsx_vseqi_d:
3853 case Intrinsic::loongarch_lsx_vslei_b:
3854 case Intrinsic::loongarch_lsx_vslei_h:
3855 case Intrinsic::loongarch_lsx_vslei_w:
3856 case Intrinsic::loongarch_lsx_vslei_d:
3857 case Intrinsic::loongarch_lsx_vslti_b:
3858 case Intrinsic::loongarch_lsx_vslti_h:
3859 case Intrinsic::loongarch_lsx_vslti_w:
3860 case Intrinsic::loongarch_lsx_vslti_d:
3861 case Intrinsic::loongarch_lasx_xvseqi_b:
3862 case Intrinsic::loongarch_lasx_xvseqi_h:
3863 case Intrinsic::loongarch_lasx_xvseqi_w:
3864 case Intrinsic::loongarch_lasx_xvseqi_d:
3865 case Intrinsic::loongarch_lasx_xvslei_b:
3866 case Intrinsic::loongarch_lasx_xvslei_h:
3867 case Intrinsic::loongarch_lasx_xvslei_w:
3868 case Intrinsic::loongarch_lasx_xvslei_d:
3869 case Intrinsic::loongarch_lasx_xvslti_b:
3870 case Intrinsic::loongarch_lasx_xvslti_h:
3871 case Intrinsic::loongarch_lasx_xvslti_w:
3872 case Intrinsic::loongarch_lasx_xvslti_d:
3874 case Intrinsic::loongarch_lsx_vsrlni_h_w:
3875 case Intrinsic::loongarch_lsx_vsrani_h_w:
3876 case Intrinsic::loongarch_lsx_vsrlrni_h_w:
3877 case Intrinsic::loongarch_lsx_vsrarni_h_w:
3878 case Intrinsic::loongarch_lsx_vssrlni_h_w:
3879 case Intrinsic::loongarch_lsx_vssrani_h_w:
3880 case Intrinsic::loongarch_lsx_vssrlni_hu_w:
3881 case Intrinsic::loongarch_lsx_vssrani_hu_w:
3882 case Intrinsic::loongarch_lsx_vssrlrni_h_w:
3883 case Intrinsic::loongarch_lsx_vssrarni_h_w:
3884 case Intrinsic::loongarch_lsx_vssrlrni_hu_w:
3885 case Intrinsic::loongarch_lsx_vssrarni_hu_w:
3886 case Intrinsic::loongarch_lsx_vfrstpi_b:
3887 case Intrinsic::loongarch_lsx_vfrstpi_h:
3888 case Intrinsic::loongarch_lasx_xvsrlni_h_w:
3889 case Intrinsic::loongarch_lasx_xvsrani_h_w:
3890 case Intrinsic::loongarch_lasx_xvsrlrni_h_w:
3891 case Intrinsic::loongarch_lasx_xvsrarni_h_w:
3892 case Intrinsic::loongarch_lasx_xvssrlni_h_w:
3893 case Intrinsic::loongarch_lasx_xvssrani_h_w:
3894 case Intrinsic::loongarch_lasx_xvssrlni_hu_w:
3895 case Intrinsic::loongarch_lasx_xvssrani_hu_w:
3896 case Intrinsic::loongarch_lasx_xvssrlrni_h_w:
3897 case Intrinsic::loongarch_lasx_xvssrarni_h_w:
3898 case Intrinsic::loongarch_lasx_xvssrlrni_hu_w:
3899 case Intrinsic::loongarch_lasx_xvssrarni_hu_w:
3900 case Intrinsic::loongarch_lasx_xvfrstpi_b:
3901 case Intrinsic::loongarch_lasx_xvfrstpi_h:
3903 case Intrinsic::loongarch_lsx_vsat_d:
3904 case Intrinsic::loongarch_lsx_vsat_du:
3905 case Intrinsic::loongarch_lsx_vrotri_d:
3906 case Intrinsic::loongarch_lsx_vsrlri_d:
3907 case Intrinsic::loongarch_lsx_vsrari_d:
3908 case Intrinsic::loongarch_lasx_xvsat_d:
3909 case Intrinsic::loongarch_lasx_xvsat_du:
3910 case Intrinsic::loongarch_lasx_xvrotri_d:
3911 case Intrinsic::loongarch_lasx_xvsrlri_d:
3912 case Intrinsic::loongarch_lasx_xvsrari_d:
3914 case Intrinsic::loongarch_lsx_vsrlni_w_d:
3915 case Intrinsic::loongarch_lsx_vsrani_w_d:
3916 case Intrinsic::loongarch_lsx_vsrlrni_w_d:
3917 case Intrinsic::loongarch_lsx_vsrarni_w_d:
3918 case Intrinsic::loongarch_lsx_vssrlni_w_d:
3919 case Intrinsic::loongarch_lsx_vssrani_w_d:
3920 case Intrinsic::loongarch_lsx_vssrlni_wu_d:
3921 case Intrinsic::loongarch_lsx_vssrani_wu_d:
3922 case Intrinsic::loongarch_lsx_vssrlrni_w_d:
3923 case Intrinsic::loongarch_lsx_vssrarni_w_d:
3924 case Intrinsic::loongarch_lsx_vssrlrni_wu_d:
3925 case Intrinsic::loongarch_lsx_vssrarni_wu_d:
3926 case Intrinsic::loongarch_lasx_xvsrlni_w_d:
3927 case Intrinsic::loongarch_lasx_xvsrani_w_d:
3928 case Intrinsic::loongarch_lasx_xvsrlrni_w_d:
3929 case Intrinsic::loongarch_lasx_xvsrarni_w_d:
3930 case Intrinsic::loongarch_lasx_xvssrlni_w_d:
3931 case Intrinsic::loongarch_lasx_xvssrani_w_d:
3932 case Intrinsic::loongarch_lasx_xvssrlni_wu_d:
3933 case Intrinsic::loongarch_lasx_xvssrani_wu_d:
3934 case Intrinsic::loongarch_lasx_xvssrlrni_w_d:
3935 case Intrinsic::loongarch_lasx_xvssrarni_w_d:
3936 case Intrinsic::loongarch_lasx_xvssrlrni_wu_d:
3937 case Intrinsic::loongarch_lasx_xvssrarni_wu_d:
3939 case Intrinsic::loongarch_lsx_vsrlni_d_q:
3940 case Intrinsic::loongarch_lsx_vsrani_d_q:
3941 case Intrinsic::loongarch_lsx_vsrlrni_d_q:
3942 case Intrinsic::loongarch_lsx_vsrarni_d_q:
3943 case Intrinsic::loongarch_lsx_vssrlni_d_q:
3944 case Intrinsic::loongarch_lsx_vssrani_d_q:
3945 case Intrinsic::loongarch_lsx_vssrlni_du_q:
3946 case Intrinsic::loongarch_lsx_vssrani_du_q:
3947 case Intrinsic::loongarch_lsx_vssrlrni_d_q:
3948 case Intrinsic::loongarch_lsx_vssrarni_d_q:
3949 case Intrinsic::loongarch_lsx_vssrlrni_du_q:
3950 case Intrinsic::loongarch_lsx_vssrarni_du_q:
3951 case Intrinsic::loongarch_lasx_xvsrlni_d_q:
3952 case Intrinsic::loongarch_lasx_xvsrani_d_q:
3953 case Intrinsic::loongarch_lasx_xvsrlrni_d_q:
3954 case Intrinsic::loongarch_lasx_xvsrarni_d_q:
3955 case Intrinsic::loongarch_lasx_xvssrlni_d_q:
3956 case Intrinsic::loongarch_lasx_xvssrani_d_q:
3957 case Intrinsic::loongarch_lasx_xvssrlni_du_q:
3958 case Intrinsic::loongarch_lasx_xvssrani_du_q:
3959 case Intrinsic::loongarch_lasx_xvssrlrni_d_q:
3960 case Intrinsic::loongarch_lasx_xvssrarni_d_q:
3961 case Intrinsic::loongarch_lasx_xvssrlrni_du_q:
3962 case Intrinsic::loongarch_lasx_xvssrarni_du_q:
3964 case Intrinsic::loongarch_lsx_vnori_b:
3965 case Intrinsic::loongarch_lsx_vshuf4i_b:
3966 case Intrinsic::loongarch_lsx_vshuf4i_h:
3967 case Intrinsic::loongarch_lsx_vshuf4i_w:
3968 case Intrinsic::loongarch_lasx_xvnori_b:
3969 case Intrinsic::loongarch_lasx_xvshuf4i_b:
3970 case Intrinsic::loongarch_lasx_xvshuf4i_h:
3971 case Intrinsic::loongarch_lasx_xvshuf4i_w:
3972 case Intrinsic::loongarch_lasx_xvpermi_d:
3974 case Intrinsic::loongarch_lsx_vshuf4i_d:
3975 case Intrinsic::loongarch_lsx_vpermi_w:
3976 case Intrinsic::loongarch_lsx_vbitseli_b:
3977 case Intrinsic::loongarch_lsx_vextrins_b:
3978 case Intrinsic::loongarch_lsx_vextrins_h:
3979 case Intrinsic::loongarch_lsx_vextrins_w:
3980 case Intrinsic::loongarch_lsx_vextrins_d:
3981 case Intrinsic::loongarch_lasx_xvshuf4i_d:
3982 case Intrinsic::loongarch_lasx_xvpermi_w:
3983 case Intrinsic::loongarch_lasx_xvpermi_q:
3984 case Intrinsic::loongarch_lasx_xvbitseli_b:
3985 case Intrinsic::loongarch_lasx_xvextrins_b:
3986 case Intrinsic::loongarch_lasx_xvextrins_h:
3987 case Intrinsic::loongarch_lasx_xvextrins_w:
3988 case Intrinsic::loongarch_lasx_xvextrins_d:
3990 case Intrinsic::loongarch_lsx_vrepli_b:
3991 case Intrinsic::loongarch_lsx_vrepli_h:
3992 case Intrinsic::loongarch_lsx_vrepli_w:
3993 case Intrinsic::loongarch_lsx_vrepli_d:
3994 case Intrinsic::loongarch_lasx_xvrepli_b:
3995 case Intrinsic::loongarch_lasx_xvrepli_h:
3996 case Intrinsic::loongarch_lasx_xvrepli_w:
3997 case Intrinsic::loongarch_lasx_xvrepli_d:
3999 case Intrinsic::loongarch_lsx_vldi:
4000 case Intrinsic::loongarch_lasx_xvldi:
4016LoongArchTargetLowering::lowerINTRINSIC_W_CHAIN(
SDValue Op,
4019 MVT GRLenVT = Subtarget.getGRLenVT();
4020 EVT VT =
Op.getValueType();
4022 const StringRef ErrorMsgOOR =
"argument out of range";
4023 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4024 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4026 switch (
Op.getConstantOperandVal(1)) {
4029 case Intrinsic::loongarch_crc_w_b_w:
4030 case Intrinsic::loongarch_crc_w_h_w:
4031 case Intrinsic::loongarch_crc_w_w_w:
4032 case Intrinsic::loongarch_crc_w_d_w:
4033 case Intrinsic::loongarch_crcc_w_b_w:
4034 case Intrinsic::loongarch_crcc_w_h_w:
4035 case Intrinsic::loongarch_crcc_w_w_w:
4036 case Intrinsic::loongarch_crcc_w_d_w:
4038 case Intrinsic::loongarch_csrrd_w:
4039 case Intrinsic::loongarch_csrrd_d: {
4040 unsigned Imm =
Op.getConstantOperandVal(2);
4046 case Intrinsic::loongarch_csrwr_w:
4047 case Intrinsic::loongarch_csrwr_d: {
4048 unsigned Imm =
Op.getConstantOperandVal(3);
4052 {Chain,
Op.getOperand(2),
4055 case Intrinsic::loongarch_csrxchg_w:
4056 case Intrinsic::loongarch_csrxchg_d: {
4057 unsigned Imm =
Op.getConstantOperandVal(4);
4061 {Chain,
Op.getOperand(2),
Op.getOperand(3),
4064 case Intrinsic::loongarch_iocsrrd_d: {
4069#define IOCSRRD_CASE(NAME, NODE) \
4070 case Intrinsic::loongarch_##NAME: { \
4071 return DAG.getNode(LoongArchISD::NODE, DL, {GRLenVT, MVT::Other}, \
4072 {Chain, Op.getOperand(2)}); \
4078 case Intrinsic::loongarch_cpucfg: {
4080 {Chain,
Op.getOperand(2)});
4082 case Intrinsic::loongarch_lddir_d: {
4083 unsigned Imm =
Op.getConstantOperandVal(3);
4088 case Intrinsic::loongarch_movfcsr2gr: {
4089 if (!Subtarget.hasBasicF())
4091 unsigned Imm =
Op.getConstantOperandVal(2);
4097 case Intrinsic::loongarch_lsx_vld:
4098 case Intrinsic::loongarch_lsx_vldrepl_b:
4099 case Intrinsic::loongarch_lasx_xvld:
4100 case Intrinsic::loongarch_lasx_xvldrepl_b:
4104 case Intrinsic::loongarch_lsx_vldrepl_h:
4105 case Intrinsic::loongarch_lasx_xvldrepl_h:
4109 Op,
"argument out of range or not a multiple of 2", DAG)
4111 case Intrinsic::loongarch_lsx_vldrepl_w:
4112 case Intrinsic::loongarch_lasx_xvldrepl_w:
4116 Op,
"argument out of range or not a multiple of 4", DAG)
4118 case Intrinsic::loongarch_lsx_vldrepl_d:
4119 case Intrinsic::loongarch_lasx_xvldrepl_d:
4123 Op,
"argument out of range or not a multiple of 8", DAG)
4134 return Op.getOperand(0);
4140 MVT GRLenVT = Subtarget.getGRLenVT();
4142 uint64_t IntrinsicEnum =
Op.getConstantOperandVal(1);
4144 const StringRef ErrorMsgOOR =
"argument out of range";
4145 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4146 const StringRef ErrorMsgReqLA32 =
"requires loongarch32";
4147 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4149 switch (IntrinsicEnum) {
4153 case Intrinsic::loongarch_cacop_d:
4154 case Intrinsic::loongarch_cacop_w: {
4155 if (IntrinsicEnum == Intrinsic::loongarch_cacop_d && !Subtarget.is64Bit())
4157 if (IntrinsicEnum == Intrinsic::loongarch_cacop_w && Subtarget.is64Bit())
4166 case Intrinsic::loongarch_dbar: {
4173 case Intrinsic::loongarch_ibar: {
4180 case Intrinsic::loongarch_break: {
4187 case Intrinsic::loongarch_movgr2fcsr: {
4188 if (!Subtarget.hasBasicF())
4198 case Intrinsic::loongarch_syscall: {
4205#define IOCSRWR_CASE(NAME, NODE) \
4206 case Intrinsic::loongarch_##NAME: { \
4207 SDValue Op3 = Op.getOperand(3); \
4208 return Subtarget.is64Bit() \
4209 ? DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, \
4210 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
4211 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op3)) \
4212 : DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, Op2, \
4219 case Intrinsic::loongarch_iocsrwr_d: {
4220 return !Subtarget.is64Bit()
4227#define ASRT_LE_GT_CASE(NAME) \
4228 case Intrinsic::loongarch_##NAME: { \
4229 return !Subtarget.is64Bit() \
4230 ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG) \
4235#undef ASRT_LE_GT_CASE
4236 case Intrinsic::loongarch_ldpte_d: {
4237 unsigned Imm =
Op.getConstantOperandVal(3);
4238 return !Subtarget.is64Bit()
4243 case Intrinsic::loongarch_lsx_vst:
4244 case Intrinsic::loongarch_lasx_xvst:
4248 case Intrinsic::loongarch_lasx_xvstelm_b:
4253 case Intrinsic::loongarch_lsx_vstelm_b:
4258 case Intrinsic::loongarch_lasx_xvstelm_h:
4263 Op,
"argument out of range or not a multiple of 2", DAG)
4265 case Intrinsic::loongarch_lsx_vstelm_h:
4270 Op,
"argument out of range or not a multiple of 2", DAG)
4272 case Intrinsic::loongarch_lasx_xvstelm_w:
4277 Op,
"argument out of range or not a multiple of 4", DAG)
4279 case Intrinsic::loongarch_lsx_vstelm_w:
4284 Op,
"argument out of range or not a multiple of 4", DAG)
4286 case Intrinsic::loongarch_lasx_xvstelm_d:
4291 Op,
"argument out of range or not a multiple of 8", DAG)
4293 case Intrinsic::loongarch_lsx_vstelm_d:
4298 Op,
"argument out of range or not a multiple of 8", DAG)
4309 EVT VT =
Lo.getValueType();
4350 EVT VT =
Lo.getValueType();
4442 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
4443 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0);
4447 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
4453 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0, NewOp1);
4480 StringRef ErrorMsg,
bool WithChain =
true) {
4485 Results.push_back(
N->getOperand(0));
4488template <
unsigned N>
4493 const StringRef ErrorMsgOOR =
"argument out of range";
4494 unsigned Imm =
Node->getConstantOperandVal(2);
4528 switch (
N->getConstantOperandVal(0)) {
4531 case Intrinsic::loongarch_lsx_vpickve2gr_b:
4535 case Intrinsic::loongarch_lsx_vpickve2gr_h:
4536 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
4540 case Intrinsic::loongarch_lsx_vpickve2gr_w:
4544 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
4548 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
4549 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
4553 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
4557 case Intrinsic::loongarch_lsx_bz_b:
4558 case Intrinsic::loongarch_lsx_bz_h:
4559 case Intrinsic::loongarch_lsx_bz_w:
4560 case Intrinsic::loongarch_lsx_bz_d:
4561 case Intrinsic::loongarch_lasx_xbz_b:
4562 case Intrinsic::loongarch_lasx_xbz_h:
4563 case Intrinsic::loongarch_lasx_xbz_w:
4564 case Intrinsic::loongarch_lasx_xbz_d:
4568 case Intrinsic::loongarch_lsx_bz_v:
4569 case Intrinsic::loongarch_lasx_xbz_v:
4573 case Intrinsic::loongarch_lsx_bnz_b:
4574 case Intrinsic::loongarch_lsx_bnz_h:
4575 case Intrinsic::loongarch_lsx_bnz_w:
4576 case Intrinsic::loongarch_lsx_bnz_d:
4577 case Intrinsic::loongarch_lasx_xbnz_b:
4578 case Intrinsic::loongarch_lasx_xbnz_h:
4579 case Intrinsic::loongarch_lasx_xbnz_w:
4580 case Intrinsic::loongarch_lasx_xbnz_d:
4584 case Intrinsic::loongarch_lsx_bnz_v:
4585 case Intrinsic::loongarch_lasx_xbnz_v:
4595 assert(
N->getValueType(0) == MVT::i128 &&
4596 "AtomicCmpSwap on types less than 128 should be legal");
4600 switch (
MemOp->getMergedOrdering()) {
4604 Opcode = LoongArch::PseudoCmpXchg128Acquire;
4608 Opcode = LoongArch::PseudoCmpXchg128;
4615 auto CmpVal = DAG.
SplitScalar(
N->getOperand(2),
DL, MVT::i64, MVT::i64);
4616 auto NewVal = DAG.
SplitScalar(
N->getOperand(3),
DL, MVT::i64, MVT::i64);
4617 SDValue Ops[] = {
N->getOperand(1), CmpVal.first, CmpVal.second,
4618 NewVal.first, NewVal.second,
N->getOperand(0)};
4621 Opcode,
SDLoc(
N), DAG.
getVTList(MVT::i64, MVT::i64, MVT::i64, MVT::Other),
4632 EVT VT =
N->getValueType(0);
4633 switch (
N->getOpcode()) {
4638 assert(
N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4639 "Unexpected custom legalisation");
4646 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4647 "Unexpected custom legalisation");
4649 Subtarget.hasDiv32() && VT == MVT::i32
4656 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4657 "Unexpected custom legalisation");
4665 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4666 "Unexpected custom legalisation");
4670 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4671 "Unexpected custom legalisation");
4678 if (Src.getValueType() == MVT::f16)
4679 Src = DAG.
getNode(ISD::FP_EXTEND,
DL, MVT::f32, Src);
4689 EVT OpVT = Src.getValueType();
4693 std::tie(Result, Chain) =
4698 case ISD::BITCAST: {
4700 EVT SrcVT = Src.getValueType();
4701 if (VT == MVT::i32 && SrcVT == MVT::f32 && Subtarget.is64Bit() &&
4702 Subtarget.hasBasicF()) {
4706 }
else if (VT == MVT::i64 && SrcVT == MVT::f64 && !Subtarget.is64Bit()) {
4708 DAG.
getVTList(MVT::i32, MVT::i32), Src);
4716 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4717 "Unexpected custom legalisation");
4720 TLI.expandFP_TO_UINT(
N, Tmp1, Tmp2, DAG);
4726 assert((VT == MVT::i16 || VT == MVT::i32) &&
4727 "Unexpected custom legalization");
4728 MVT GRLenVT = Subtarget.getGRLenVT();
4748 assert((VT == MVT::i8 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
4749 "Unexpected custom legalization");
4750 MVT GRLenVT = Subtarget.getGRLenVT();
4768 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4769 "Unexpected custom legalisation");
4776 MVT GRLenVT = Subtarget.getGRLenVT();
4777 const StringRef ErrorMsgOOR =
"argument out of range";
4778 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4779 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4781 switch (
N->getConstantOperandVal(1)) {
4784 case Intrinsic::loongarch_movfcsr2gr: {
4785 if (!Subtarget.hasBasicF()) {
4802#define CRC_CASE_EXT_BINARYOP(NAME, NODE) \
4803 case Intrinsic::loongarch_##NAME: { \
4804 SDValue NODE = DAG.getNode( \
4805 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4806 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
4807 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
4808 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
4809 Results.push_back(NODE.getValue(1)); \
4818#undef CRC_CASE_EXT_BINARYOP
4820#define CRC_CASE_EXT_UNARYOP(NAME, NODE) \
4821 case Intrinsic::loongarch_##NAME: { \
4822 SDValue NODE = DAG.getNode( \
4823 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4825 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
4826 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
4827 Results.push_back(NODE.getValue(1)); \
4832#undef CRC_CASE_EXT_UNARYOP
4833#define CSR_CASE(ID) \
4834 case Intrinsic::loongarch_##ID: { \
4835 if (!Subtarget.is64Bit()) \
4836 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqLA64); \
4844 case Intrinsic::loongarch_csrrd_w: {
4858 case Intrinsic::loongarch_csrwr_w: {
4859 unsigned Imm =
N->getConstantOperandVal(3);
4873 case Intrinsic::loongarch_csrxchg_w: {
4874 unsigned Imm =
N->getConstantOperandVal(4);
4889#define IOCSRRD_CASE(NAME, NODE) \
4890 case Intrinsic::loongarch_##NAME: { \
4891 SDValue IOCSRRDResults = \
4892 DAG.getNode(LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4893 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)}); \
4894 Results.push_back( \
4895 DAG.getNode(ISD::TRUNCATE, DL, VT, IOCSRRDResults.getValue(0))); \
4896 Results.push_back(IOCSRRDResults.getValue(1)); \
4903 case Intrinsic::loongarch_cpucfg: {
4912 case Intrinsic::loongarch_lddir_d: {
4913 if (!Subtarget.is64Bit()) {
4923 if (Subtarget.is64Bit())
4925 "On LA64, only 64-bit registers can be read.");
4928 "On LA32, only 32-bit registers can be read.");
4930 Results.push_back(
N->getOperand(0));
4941 OpVT == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32;
4949 case ISD::ATOMIC_CMP_SWAP: {
4954 MVT VT =
N->getSimpleValueType(0);
4960 EVT InVT = In.getValueType();
4971 for (
unsigned I = 0;
I < MinElts; ++
I)
4972 TruncMask[
I] = Scale *
I;
4974 unsigned WidenNumElts = 128 / In.getScalarValueSizeInBits();
4975 MVT SVT = In.getSimpleValueType().getScalarType();
4981 "Illegal vector type in truncation");
5000 SDValue FirstOperand =
N->getOperand(0);
5001 SDValue SecondOperand =
N->getOperand(1);
5002 unsigned FirstOperandOpc = FirstOperand.
getOpcode();
5003 EVT ValTy =
N->getValueType(0);
5006 unsigned SMIdx, SMLen;
5012 if (!Subtarget.has32S())
5034 if (SMIdx != 0 || lsb + SMLen > ValTy.getSizeInBits())
5049 if (SMIdx + SMLen > ValTy.getSizeInBits())
5068 NewOperand = FirstOperand;
5071 msb = lsb + SMLen - 1;
5075 if (FirstOperandOpc ==
ISD::SRA || FirstOperandOpc ==
ISD::SRL || lsb == 0)
5088 if (!Subtarget.has32S())
5100 SDValue FirstOperand =
N->getOperand(0);
5102 EVT ValTy =
N->getValueType(0);
5105 unsigned MaskIdx, MaskLen;
5120 if (MaskIdx <= Shamt && Shamt <= MaskIdx + MaskLen - 1)
5136 switch (Src.getOpcode()) {
5139 return Src.getOperand(0).getValueSizeInBits() ==
Size;
5149 return Src.getOperand(0).getScalarValueSizeInBits() == 1 &&
5162 switch (Src.getOpcode()) {
5172 Src.getOpcode(),
DL, SExtVT,
5178 DL, SExtVT, Src.getOperand(0),
5190 EVT VT =
N->getValueType(0);
5192 EVT SrcVT = Src.getValueType();
5194 if (Src.getOpcode() !=
ISD::SETCC || !Src.hasOneUse())
5199 EVT CmpVT = Src.getOperand(0).getValueType();
5204 else if (Subtarget.has32S() && Subtarget.hasExtLASX() &&
5232 (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
5239 (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
5263 EVT VT =
N->getValueType(0);
5265 EVT SrcVT = Src.getValueType();
5282 bool UseLASX =
false;
5283 bool PropagateSExt =
false;
5285 if (Src.getOpcode() ==
ISD::SETCC && Src.hasOneUse()) {
5286 EVT CmpVT = Src.getOperand(0).getValueType();
5295 SExtVT = MVT::v2i64;
5298 SExtVT = MVT::v4i32;
5300 SExtVT = MVT::v4i64;
5302 PropagateSExt =
true;
5306 SExtVT = MVT::v8i16;
5308 SExtVT = MVT::v8i32;
5310 PropagateSExt =
true;
5314 SExtVT = MVT::v16i8;
5316 SExtVT = MVT::v16i16;
5318 PropagateSExt =
true;
5322 SExtVT = MVT::v32i8;
5330 if (!Subtarget.has32S() || !Subtarget.hasExtLASX()) {
5331 if (Src.getSimpleValueType() == MVT::v32i8) {
5339 }
else if (UseLASX) {
5358 EVT ValTy =
N->getValueType(0);
5359 SDValue N0 =
N->getOperand(0), N1 =
N->getOperand(1);
5362 unsigned ValBits = ValTy.getSizeInBits();
5363 unsigned MaskIdx0, MaskLen0, MaskIdx1, MaskLen1;
5365 bool SwapAndRetried =
false;
5368 if (!Subtarget.has32S())
5374 if (ValBits != 32 && ValBits != 64)
5389 MaskIdx0 == MaskIdx1 && MaskLen0 == MaskLen1 &&
5392 (MaskIdx0 + MaskLen0 <= ValBits)) {
5413 MaskLen0 == MaskLen1 && MaskIdx1 == 0 &&
5414 (MaskIdx0 + MaskLen0 <= ValBits)) {
5431 (MaskIdx0 + MaskLen0 <= 64) &&
5439 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
5440 : (MaskIdx0 + MaskLen0 - 1),
5456 (MaskIdx0 + MaskLen0 <= ValBits)) {
5479 DAG.
getConstant(ValBits == 32 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
5480 : (MaskIdx0 + MaskLen0 - 1),
5495 unsigned MaskIdx, MaskLen;
5496 if (N1.getOpcode() ==
ISD::SHL && N1.getOperand(0).getOpcode() ==
ISD::AND &&
5523 N1.getOperand(0).getOpcode() ==
ISD::SHL &&
5537 if (!SwapAndRetried) {
5539 SwapAndRetried =
true;
5543 SwapAndRetried =
false;
5569 if (!SwapAndRetried) {
5571 SwapAndRetried =
true;
5581 switch (V.getNode()->getOpcode()) {
5593 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
5601 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
5678 SDNode *AndNode =
N->getOperand(0).getNode();
5686 SDValue CmpInputValue =
N->getOperand(1);
5697 AndInputValue1 = AndInputValue1.
getOperand(0);
5701 if (AndInputValue2 != CmpInputValue)
5734 TruncInputValue1, TruncInputValue2);
5736 DAG.
getSetCC(
SDLoc(
N),
N->getValueType(0), NewAnd, TruncInputValue2, CC);
5777 LHS.getOperand(0).getValueType() == Subtarget.
getGRLenVT()) {
5805 ShAmt =
LHS.getValueSizeInBits() - 1 - ShAmt;
5839 N->getOperand(0),
LHS,
RHS, CC,
N->getOperand(4));
5855 EVT VT =
N->getValueType(0);
5858 if (TrueV == FalseV)
5890 {LHS, RHS, CC, TrueV, FalseV});
5895template <
unsigned N>
5899 bool IsSigned =
false) {
5903 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
5904 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
5906 ": argument out of range.");
5912template <
unsigned N>
5916 EVT ResTy =
Node->getValueType(0);
5920 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
5921 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
5923 ": argument out of range.");
5928 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
5934 EVT ResTy =
Node->getValueType(0);
5942 EVT ResTy =
Node->getValueType(0);
5951template <
unsigned N>
5954 EVT ResTy =
Node->getValueType(0);
5959 ": argument out of range.");
5969template <
unsigned N>
5972 EVT ResTy =
Node->getValueType(0);
5977 ": argument out of range.");
5986template <
unsigned N>
5989 EVT ResTy =
Node->getValueType(0);
5994 ": argument out of range.");
6003template <
unsigned W>
6006 unsigned Imm =
N->getConstantOperandVal(2);
6008 const StringRef ErrorMsg =
"argument out of range";
6010 return DAG.
getUNDEF(
N->getValueType(0));
6016 return DAG.
getNode(ResOp,
DL,
N->getValueType(0), Vec, Idx, EltVT);
6024 switch (
N->getConstantOperandVal(0)) {
6027 case Intrinsic::loongarch_lsx_vadd_b:
6028 case Intrinsic::loongarch_lsx_vadd_h:
6029 case Intrinsic::loongarch_lsx_vadd_w:
6030 case Intrinsic::loongarch_lsx_vadd_d:
6031 case Intrinsic::loongarch_lasx_xvadd_b:
6032 case Intrinsic::loongarch_lasx_xvadd_h:
6033 case Intrinsic::loongarch_lasx_xvadd_w:
6034 case Intrinsic::loongarch_lasx_xvadd_d:
6037 case Intrinsic::loongarch_lsx_vaddi_bu:
6038 case Intrinsic::loongarch_lsx_vaddi_hu:
6039 case Intrinsic::loongarch_lsx_vaddi_wu:
6040 case Intrinsic::loongarch_lsx_vaddi_du:
6041 case Intrinsic::loongarch_lasx_xvaddi_bu:
6042 case Intrinsic::loongarch_lasx_xvaddi_hu:
6043 case Intrinsic::loongarch_lasx_xvaddi_wu:
6044 case Intrinsic::loongarch_lasx_xvaddi_du:
6047 case Intrinsic::loongarch_lsx_vsub_b:
6048 case Intrinsic::loongarch_lsx_vsub_h:
6049 case Intrinsic::loongarch_lsx_vsub_w:
6050 case Intrinsic::loongarch_lsx_vsub_d:
6051 case Intrinsic::loongarch_lasx_xvsub_b:
6052 case Intrinsic::loongarch_lasx_xvsub_h:
6053 case Intrinsic::loongarch_lasx_xvsub_w:
6054 case Intrinsic::loongarch_lasx_xvsub_d:
6057 case Intrinsic::loongarch_lsx_vsubi_bu:
6058 case Intrinsic::loongarch_lsx_vsubi_hu:
6059 case Intrinsic::loongarch_lsx_vsubi_wu:
6060 case Intrinsic::loongarch_lsx_vsubi_du:
6061 case Intrinsic::loongarch_lasx_xvsubi_bu:
6062 case Intrinsic::loongarch_lasx_xvsubi_hu:
6063 case Intrinsic::loongarch_lasx_xvsubi_wu:
6064 case Intrinsic::loongarch_lasx_xvsubi_du:
6067 case Intrinsic::loongarch_lsx_vneg_b:
6068 case Intrinsic::loongarch_lsx_vneg_h:
6069 case Intrinsic::loongarch_lsx_vneg_w:
6070 case Intrinsic::loongarch_lsx_vneg_d:
6071 case Intrinsic::loongarch_lasx_xvneg_b:
6072 case Intrinsic::loongarch_lasx_xvneg_h:
6073 case Intrinsic::loongarch_lasx_xvneg_w:
6074 case Intrinsic::loongarch_lasx_xvneg_d:
6078 APInt(
N->getValueType(0).getScalarType().getSizeInBits(), 0,
6080 SDLoc(
N),
N->getValueType(0)),
6082 case Intrinsic::loongarch_lsx_vmax_b:
6083 case Intrinsic::loongarch_lsx_vmax_h:
6084 case Intrinsic::loongarch_lsx_vmax_w:
6085 case Intrinsic::loongarch_lsx_vmax_d:
6086 case Intrinsic::loongarch_lasx_xvmax_b:
6087 case Intrinsic::loongarch_lasx_xvmax_h:
6088 case Intrinsic::loongarch_lasx_xvmax_w:
6089 case Intrinsic::loongarch_lasx_xvmax_d:
6092 case Intrinsic::loongarch_lsx_vmax_bu:
6093 case Intrinsic::loongarch_lsx_vmax_hu:
6094 case Intrinsic::loongarch_lsx_vmax_wu:
6095 case Intrinsic::loongarch_lsx_vmax_du:
6096 case Intrinsic::loongarch_lasx_xvmax_bu:
6097 case Intrinsic::loongarch_lasx_xvmax_hu:
6098 case Intrinsic::loongarch_lasx_xvmax_wu:
6099 case Intrinsic::loongarch_lasx_xvmax_du:
6102 case Intrinsic::loongarch_lsx_vmaxi_b:
6103 case Intrinsic::loongarch_lsx_vmaxi_h:
6104 case Intrinsic::loongarch_lsx_vmaxi_w:
6105 case Intrinsic::loongarch_lsx_vmaxi_d:
6106 case Intrinsic::loongarch_lasx_xvmaxi_b:
6107 case Intrinsic::loongarch_lasx_xvmaxi_h:
6108 case Intrinsic::loongarch_lasx_xvmaxi_w:
6109 case Intrinsic::loongarch_lasx_xvmaxi_d:
6112 case Intrinsic::loongarch_lsx_vmaxi_bu:
6113 case Intrinsic::loongarch_lsx_vmaxi_hu:
6114 case Intrinsic::loongarch_lsx_vmaxi_wu:
6115 case Intrinsic::loongarch_lsx_vmaxi_du:
6116 case Intrinsic::loongarch_lasx_xvmaxi_bu:
6117 case Intrinsic::loongarch_lasx_xvmaxi_hu:
6118 case Intrinsic::loongarch_lasx_xvmaxi_wu:
6119 case Intrinsic::loongarch_lasx_xvmaxi_du:
6122 case Intrinsic::loongarch_lsx_vmin_b:
6123 case Intrinsic::loongarch_lsx_vmin_h:
6124 case Intrinsic::loongarch_lsx_vmin_w:
6125 case Intrinsic::loongarch_lsx_vmin_d:
6126 case Intrinsic::loongarch_lasx_xvmin_b:
6127 case Intrinsic::loongarch_lasx_xvmin_h:
6128 case Intrinsic::loongarch_lasx_xvmin_w:
6129 case Intrinsic::loongarch_lasx_xvmin_d:
6132 case Intrinsic::loongarch_lsx_vmin_bu:
6133 case Intrinsic::loongarch_lsx_vmin_hu:
6134 case Intrinsic::loongarch_lsx_vmin_wu:
6135 case Intrinsic::loongarch_lsx_vmin_du:
6136 case Intrinsic::loongarch_lasx_xvmin_bu:
6137 case Intrinsic::loongarch_lasx_xvmin_hu:
6138 case Intrinsic::loongarch_lasx_xvmin_wu:
6139 case Intrinsic::loongarch_lasx_xvmin_du:
6142 case Intrinsic::loongarch_lsx_vmini_b:
6143 case Intrinsic::loongarch_lsx_vmini_h:
6144 case Intrinsic::loongarch_lsx_vmini_w:
6145 case Intrinsic::loongarch_lsx_vmini_d:
6146 case Intrinsic::loongarch_lasx_xvmini_b:
6147 case Intrinsic::loongarch_lasx_xvmini_h:
6148 case Intrinsic::loongarch_lasx_xvmini_w:
6149 case Intrinsic::loongarch_lasx_xvmini_d:
6152 case Intrinsic::loongarch_lsx_vmini_bu:
6153 case Intrinsic::loongarch_lsx_vmini_hu:
6154 case Intrinsic::loongarch_lsx_vmini_wu:
6155 case Intrinsic::loongarch_lsx_vmini_du:
6156 case Intrinsic::loongarch_lasx_xvmini_bu:
6157 case Intrinsic::loongarch_lasx_xvmini_hu:
6158 case Intrinsic::loongarch_lasx_xvmini_wu:
6159 case Intrinsic::loongarch_lasx_xvmini_du:
6162 case Intrinsic::loongarch_lsx_vmul_b:
6163 case Intrinsic::loongarch_lsx_vmul_h:
6164 case Intrinsic::loongarch_lsx_vmul_w:
6165 case Intrinsic::loongarch_lsx_vmul_d:
6166 case Intrinsic::loongarch_lasx_xvmul_b:
6167 case Intrinsic::loongarch_lasx_xvmul_h:
6168 case Intrinsic::loongarch_lasx_xvmul_w:
6169 case Intrinsic::loongarch_lasx_xvmul_d:
6172 case Intrinsic::loongarch_lsx_vmadd_b:
6173 case Intrinsic::loongarch_lsx_vmadd_h:
6174 case Intrinsic::loongarch_lsx_vmadd_w:
6175 case Intrinsic::loongarch_lsx_vmadd_d:
6176 case Intrinsic::loongarch_lasx_xvmadd_b:
6177 case Intrinsic::loongarch_lasx_xvmadd_h:
6178 case Intrinsic::loongarch_lasx_xvmadd_w:
6179 case Intrinsic::loongarch_lasx_xvmadd_d: {
6180 EVT ResTy =
N->getValueType(0);
6185 case Intrinsic::loongarch_lsx_vmsub_b:
6186 case Intrinsic::loongarch_lsx_vmsub_h:
6187 case Intrinsic::loongarch_lsx_vmsub_w:
6188 case Intrinsic::loongarch_lsx_vmsub_d:
6189 case Intrinsic::loongarch_lasx_xvmsub_b:
6190 case Intrinsic::loongarch_lasx_xvmsub_h:
6191 case Intrinsic::loongarch_lasx_xvmsub_w:
6192 case Intrinsic::loongarch_lasx_xvmsub_d: {
6193 EVT ResTy =
N->getValueType(0);
6198 case Intrinsic::loongarch_lsx_vdiv_b:
6199 case Intrinsic::loongarch_lsx_vdiv_h:
6200 case Intrinsic::loongarch_lsx_vdiv_w:
6201 case Intrinsic::loongarch_lsx_vdiv_d:
6202 case Intrinsic::loongarch_lasx_xvdiv_b:
6203 case Intrinsic::loongarch_lasx_xvdiv_h:
6204 case Intrinsic::loongarch_lasx_xvdiv_w:
6205 case Intrinsic::loongarch_lasx_xvdiv_d:
6208 case Intrinsic::loongarch_lsx_vdiv_bu:
6209 case Intrinsic::loongarch_lsx_vdiv_hu:
6210 case Intrinsic::loongarch_lsx_vdiv_wu:
6211 case Intrinsic::loongarch_lsx_vdiv_du:
6212 case Intrinsic::loongarch_lasx_xvdiv_bu:
6213 case Intrinsic::loongarch_lasx_xvdiv_hu:
6214 case Intrinsic::loongarch_lasx_xvdiv_wu:
6215 case Intrinsic::loongarch_lasx_xvdiv_du:
6218 case Intrinsic::loongarch_lsx_vmod_b:
6219 case Intrinsic::loongarch_lsx_vmod_h:
6220 case Intrinsic::loongarch_lsx_vmod_w:
6221 case Intrinsic::loongarch_lsx_vmod_d:
6222 case Intrinsic::loongarch_lasx_xvmod_b:
6223 case Intrinsic::loongarch_lasx_xvmod_h:
6224 case Intrinsic::loongarch_lasx_xvmod_w:
6225 case Intrinsic::loongarch_lasx_xvmod_d:
6228 case Intrinsic::loongarch_lsx_vmod_bu:
6229 case Intrinsic::loongarch_lsx_vmod_hu:
6230 case Intrinsic::loongarch_lsx_vmod_wu:
6231 case Intrinsic::loongarch_lsx_vmod_du:
6232 case Intrinsic::loongarch_lasx_xvmod_bu:
6233 case Intrinsic::loongarch_lasx_xvmod_hu:
6234 case Intrinsic::loongarch_lasx_xvmod_wu:
6235 case Intrinsic::loongarch_lasx_xvmod_du:
6238 case Intrinsic::loongarch_lsx_vand_v:
6239 case Intrinsic::loongarch_lasx_xvand_v:
6242 case Intrinsic::loongarch_lsx_vor_v:
6243 case Intrinsic::loongarch_lasx_xvor_v:
6246 case Intrinsic::loongarch_lsx_vxor_v:
6247 case Intrinsic::loongarch_lasx_xvxor_v:
6250 case Intrinsic::loongarch_lsx_vnor_v:
6251 case Intrinsic::loongarch_lasx_xvnor_v: {
6256 case Intrinsic::loongarch_lsx_vandi_b:
6257 case Intrinsic::loongarch_lasx_xvandi_b:
6260 case Intrinsic::loongarch_lsx_vori_b:
6261 case Intrinsic::loongarch_lasx_xvori_b:
6264 case Intrinsic::loongarch_lsx_vxori_b:
6265 case Intrinsic::loongarch_lasx_xvxori_b:
6268 case Intrinsic::loongarch_lsx_vsll_b:
6269 case Intrinsic::loongarch_lsx_vsll_h:
6270 case Intrinsic::loongarch_lsx_vsll_w:
6271 case Intrinsic::loongarch_lsx_vsll_d:
6272 case Intrinsic::loongarch_lasx_xvsll_b:
6273 case Intrinsic::loongarch_lasx_xvsll_h:
6274 case Intrinsic::loongarch_lasx_xvsll_w:
6275 case Intrinsic::loongarch_lasx_xvsll_d:
6278 case Intrinsic::loongarch_lsx_vslli_b:
6279 case Intrinsic::loongarch_lasx_xvslli_b:
6282 case Intrinsic::loongarch_lsx_vslli_h:
6283 case Intrinsic::loongarch_lasx_xvslli_h:
6286 case Intrinsic::loongarch_lsx_vslli_w:
6287 case Intrinsic::loongarch_lasx_xvslli_w:
6290 case Intrinsic::loongarch_lsx_vslli_d:
6291 case Intrinsic::loongarch_lasx_xvslli_d:
6294 case Intrinsic::loongarch_lsx_vsrl_b:
6295 case Intrinsic::loongarch_lsx_vsrl_h:
6296 case Intrinsic::loongarch_lsx_vsrl_w:
6297 case Intrinsic::loongarch_lsx_vsrl_d:
6298 case Intrinsic::loongarch_lasx_xvsrl_b:
6299 case Intrinsic::loongarch_lasx_xvsrl_h:
6300 case Intrinsic::loongarch_lasx_xvsrl_w:
6301 case Intrinsic::loongarch_lasx_xvsrl_d:
6304 case Intrinsic::loongarch_lsx_vsrli_b:
6305 case Intrinsic::loongarch_lasx_xvsrli_b:
6308 case Intrinsic::loongarch_lsx_vsrli_h:
6309 case Intrinsic::loongarch_lasx_xvsrli_h:
6312 case Intrinsic::loongarch_lsx_vsrli_w:
6313 case Intrinsic::loongarch_lasx_xvsrli_w:
6316 case Intrinsic::loongarch_lsx_vsrli_d:
6317 case Intrinsic::loongarch_lasx_xvsrli_d:
6320 case Intrinsic::loongarch_lsx_vsra_b:
6321 case Intrinsic::loongarch_lsx_vsra_h:
6322 case Intrinsic::loongarch_lsx_vsra_w:
6323 case Intrinsic::loongarch_lsx_vsra_d:
6324 case Intrinsic::loongarch_lasx_xvsra_b:
6325 case Intrinsic::loongarch_lasx_xvsra_h:
6326 case Intrinsic::loongarch_lasx_xvsra_w:
6327 case Intrinsic::loongarch_lasx_xvsra_d:
6330 case Intrinsic::loongarch_lsx_vsrai_b:
6331 case Intrinsic::loongarch_lasx_xvsrai_b:
6334 case Intrinsic::loongarch_lsx_vsrai_h:
6335 case Intrinsic::loongarch_lasx_xvsrai_h:
6338 case Intrinsic::loongarch_lsx_vsrai_w:
6339 case Intrinsic::loongarch_lasx_xvsrai_w:
6342 case Intrinsic::loongarch_lsx_vsrai_d:
6343 case Intrinsic::loongarch_lasx_xvsrai_d:
6346 case Intrinsic::loongarch_lsx_vclz_b:
6347 case Intrinsic::loongarch_lsx_vclz_h:
6348 case Intrinsic::loongarch_lsx_vclz_w:
6349 case Intrinsic::loongarch_lsx_vclz_d:
6350 case Intrinsic::loongarch_lasx_xvclz_b:
6351 case Intrinsic::loongarch_lasx_xvclz_h:
6352 case Intrinsic::loongarch_lasx_xvclz_w:
6353 case Intrinsic::loongarch_lasx_xvclz_d:
6355 case Intrinsic::loongarch_lsx_vpcnt_b:
6356 case Intrinsic::loongarch_lsx_vpcnt_h:
6357 case Intrinsic::loongarch_lsx_vpcnt_w:
6358 case Intrinsic::loongarch_lsx_vpcnt_d:
6359 case Intrinsic::loongarch_lasx_xvpcnt_b:
6360 case Intrinsic::loongarch_lasx_xvpcnt_h:
6361 case Intrinsic::loongarch_lasx_xvpcnt_w:
6362 case Intrinsic::loongarch_lasx_xvpcnt_d:
6364 case Intrinsic::loongarch_lsx_vbitclr_b:
6365 case Intrinsic::loongarch_lsx_vbitclr_h:
6366 case Intrinsic::loongarch_lsx_vbitclr_w:
6367 case Intrinsic::loongarch_lsx_vbitclr_d:
6368 case Intrinsic::loongarch_lasx_xvbitclr_b:
6369 case Intrinsic::loongarch_lasx_xvbitclr_h:
6370 case Intrinsic::loongarch_lasx_xvbitclr_w:
6371 case Intrinsic::loongarch_lasx_xvbitclr_d:
6373 case Intrinsic::loongarch_lsx_vbitclri_b:
6374 case Intrinsic::loongarch_lasx_xvbitclri_b:
6376 case Intrinsic::loongarch_lsx_vbitclri_h:
6377 case Intrinsic::loongarch_lasx_xvbitclri_h:
6379 case Intrinsic::loongarch_lsx_vbitclri_w:
6380 case Intrinsic::loongarch_lasx_xvbitclri_w:
6382 case Intrinsic::loongarch_lsx_vbitclri_d:
6383 case Intrinsic::loongarch_lasx_xvbitclri_d:
6385 case Intrinsic::loongarch_lsx_vbitset_b:
6386 case Intrinsic::loongarch_lsx_vbitset_h:
6387 case Intrinsic::loongarch_lsx_vbitset_w:
6388 case Intrinsic::loongarch_lsx_vbitset_d:
6389 case Intrinsic::loongarch_lasx_xvbitset_b:
6390 case Intrinsic::loongarch_lasx_xvbitset_h:
6391 case Intrinsic::loongarch_lasx_xvbitset_w:
6392 case Intrinsic::loongarch_lasx_xvbitset_d: {
6393 EVT VecTy =
N->getValueType(0);
6399 case Intrinsic::loongarch_lsx_vbitseti_b:
6400 case Intrinsic::loongarch_lasx_xvbitseti_b:
6402 case Intrinsic::loongarch_lsx_vbitseti_h:
6403 case Intrinsic::loongarch_lasx_xvbitseti_h:
6405 case Intrinsic::loongarch_lsx_vbitseti_w:
6406 case Intrinsic::loongarch_lasx_xvbitseti_w:
6408 case Intrinsic::loongarch_lsx_vbitseti_d:
6409 case Intrinsic::loongarch_lasx_xvbitseti_d:
6411 case Intrinsic::loongarch_lsx_vbitrev_b:
6412 case Intrinsic::loongarch_lsx_vbitrev_h:
6413 case Intrinsic::loongarch_lsx_vbitrev_w:
6414 case Intrinsic::loongarch_lsx_vbitrev_d:
6415 case Intrinsic::loongarch_lasx_xvbitrev_b:
6416 case Intrinsic::loongarch_lasx_xvbitrev_h:
6417 case Intrinsic::loongarch_lasx_xvbitrev_w:
6418 case Intrinsic::loongarch_lasx_xvbitrev_d: {
6419 EVT VecTy =
N->getValueType(0);
6425 case Intrinsic::loongarch_lsx_vbitrevi_b:
6426 case Intrinsic::loongarch_lasx_xvbitrevi_b:
6428 case Intrinsic::loongarch_lsx_vbitrevi_h:
6429 case Intrinsic::loongarch_lasx_xvbitrevi_h:
6431 case Intrinsic::loongarch_lsx_vbitrevi_w:
6432 case Intrinsic::loongarch_lasx_xvbitrevi_w:
6434 case Intrinsic::loongarch_lsx_vbitrevi_d:
6435 case Intrinsic::loongarch_lasx_xvbitrevi_d:
6437 case Intrinsic::loongarch_lsx_vfadd_s:
6438 case Intrinsic::loongarch_lsx_vfadd_d:
6439 case Intrinsic::loongarch_lasx_xvfadd_s:
6440 case Intrinsic::loongarch_lasx_xvfadd_d:
6443 case Intrinsic::loongarch_lsx_vfsub_s:
6444 case Intrinsic::loongarch_lsx_vfsub_d:
6445 case Intrinsic::loongarch_lasx_xvfsub_s:
6446 case Intrinsic::loongarch_lasx_xvfsub_d:
6449 case Intrinsic::loongarch_lsx_vfmul_s:
6450 case Intrinsic::loongarch_lsx_vfmul_d:
6451 case Intrinsic::loongarch_lasx_xvfmul_s:
6452 case Intrinsic::loongarch_lasx_xvfmul_d:
6455 case Intrinsic::loongarch_lsx_vfdiv_s:
6456 case Intrinsic::loongarch_lsx_vfdiv_d:
6457 case Intrinsic::loongarch_lasx_xvfdiv_s:
6458 case Intrinsic::loongarch_lasx_xvfdiv_d:
6461 case Intrinsic::loongarch_lsx_vfmadd_s:
6462 case Intrinsic::loongarch_lsx_vfmadd_d:
6463 case Intrinsic::loongarch_lasx_xvfmadd_s:
6464 case Intrinsic::loongarch_lasx_xvfmadd_d:
6466 N->getOperand(2),
N->getOperand(3));
6467 case Intrinsic::loongarch_lsx_vinsgr2vr_b:
6469 N->getOperand(1),
N->getOperand(2),
6471 case Intrinsic::loongarch_lsx_vinsgr2vr_h:
6472 case Intrinsic::loongarch_lasx_xvinsgr2vr_w:
6474 N->getOperand(1),
N->getOperand(2),
6476 case Intrinsic::loongarch_lsx_vinsgr2vr_w:
6477 case Intrinsic::loongarch_lasx_xvinsgr2vr_d:
6479 N->getOperand(1),
N->getOperand(2),
6481 case Intrinsic::loongarch_lsx_vinsgr2vr_d:
6483 N->getOperand(1),
N->getOperand(2),
6485 case Intrinsic::loongarch_lsx_vreplgr2vr_b:
6486 case Intrinsic::loongarch_lsx_vreplgr2vr_h:
6487 case Intrinsic::loongarch_lsx_vreplgr2vr_w:
6488 case Intrinsic::loongarch_lsx_vreplgr2vr_d:
6489 case Intrinsic::loongarch_lasx_xvreplgr2vr_b:
6490 case Intrinsic::loongarch_lasx_xvreplgr2vr_h:
6491 case Intrinsic::loongarch_lasx_xvreplgr2vr_w:
6492 case Intrinsic::loongarch_lasx_xvreplgr2vr_d:
6496 case Intrinsic::loongarch_lsx_vreplve_b:
6497 case Intrinsic::loongarch_lsx_vreplve_h:
6498 case Intrinsic::loongarch_lsx_vreplve_w:
6499 case Intrinsic::loongarch_lsx_vreplve_d:
6500 case Intrinsic::loongarch_lasx_xvreplve_b:
6501 case Intrinsic::loongarch_lasx_xvreplve_h:
6502 case Intrinsic::loongarch_lasx_xvreplve_w:
6503 case Intrinsic::loongarch_lasx_xvreplve_d:
6508 case Intrinsic::loongarch_lsx_vpickve2gr_b:
6512 case Intrinsic::loongarch_lsx_vpickve2gr_h:
6513 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
6517 case Intrinsic::loongarch_lsx_vpickve2gr_w:
6521 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
6525 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
6526 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
6530 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
6534 case Intrinsic::loongarch_lsx_bz_b:
6535 case Intrinsic::loongarch_lsx_bz_h:
6536 case Intrinsic::loongarch_lsx_bz_w:
6537 case Intrinsic::loongarch_lsx_bz_d:
6538 case Intrinsic::loongarch_lasx_xbz_b:
6539 case Intrinsic::loongarch_lasx_xbz_h:
6540 case Intrinsic::loongarch_lasx_xbz_w:
6541 case Intrinsic::loongarch_lasx_xbz_d:
6546 case Intrinsic::loongarch_lsx_bz_v:
6547 case Intrinsic::loongarch_lasx_xbz_v:
6552 case Intrinsic::loongarch_lsx_bnz_b:
6553 case Intrinsic::loongarch_lsx_bnz_h:
6554 case Intrinsic::loongarch_lsx_bnz_w:
6555 case Intrinsic::loongarch_lsx_bnz_d:
6556 case Intrinsic::loongarch_lasx_xbnz_b:
6557 case Intrinsic::loongarch_lasx_xbnz_h:
6558 case Intrinsic::loongarch_lasx_xbnz_w:
6559 case Intrinsic::loongarch_lasx_xbnz_d:
6564 case Intrinsic::loongarch_lsx_bnz_v:
6565 case Intrinsic::loongarch_lasx_xbnz_v:
6595 "Unexpected value type!");
6604 MVT VT =
N->getSimpleValueType(0);
6638 APInt V =
C->getValueAPF().bitcastToAPInt();
6654 MVT EltVT =
N->getSimpleValueType(0);
6686 switch (
N->getOpcode()) {
6740 MF->
insert(It, BreakMBB);
6744 SinkMBB->splice(SinkMBB->end(),
MBB, std::next(
MI.getIterator()),
MBB->end());
6745 SinkMBB->transferSuccessorsAndUpdatePHIs(
MBB);
6757 MBB->addSuccessor(BreakMBB);
6758 MBB->addSuccessor(SinkMBB);
6764 BreakMBB->addSuccessor(SinkMBB);
6776 switch (
MI.getOpcode()) {
6779 case LoongArch::PseudoVBZ:
6780 CondOpc = LoongArch::VSETEQZ_V;
6782 case LoongArch::PseudoVBZ_B:
6783 CondOpc = LoongArch::VSETANYEQZ_B;
6785 case LoongArch::PseudoVBZ_H:
6786 CondOpc = LoongArch::VSETANYEQZ_H;
6788 case LoongArch::PseudoVBZ_W:
6789 CondOpc = LoongArch::VSETANYEQZ_W;
6791 case LoongArch::PseudoVBZ_D:
6792 CondOpc = LoongArch::VSETANYEQZ_D;
6794 case LoongArch::PseudoVBNZ:
6795 CondOpc = LoongArch::VSETNEZ_V;
6797 case LoongArch::PseudoVBNZ_B:
6798 CondOpc = LoongArch::VSETALLNEZ_B;
6800 case LoongArch::PseudoVBNZ_H:
6801 CondOpc = LoongArch::VSETALLNEZ_H;
6803 case LoongArch::PseudoVBNZ_W:
6804 CondOpc = LoongArch::VSETALLNEZ_W;
6806 case LoongArch::PseudoVBNZ_D:
6807 CondOpc = LoongArch::VSETALLNEZ_D;
6809 case LoongArch::PseudoXVBZ:
6810 CondOpc = LoongArch::XVSETEQZ_V;
6812 case LoongArch::PseudoXVBZ_B:
6813 CondOpc = LoongArch::XVSETANYEQZ_B;
6815 case LoongArch::PseudoXVBZ_H:
6816 CondOpc = LoongArch::XVSETANYEQZ_H;
6818 case LoongArch::PseudoXVBZ_W:
6819 CondOpc = LoongArch::XVSETANYEQZ_W;
6821 case LoongArch::PseudoXVBZ_D:
6822 CondOpc = LoongArch::XVSETANYEQZ_D;
6824 case LoongArch::PseudoXVBNZ:
6825 CondOpc = LoongArch::XVSETNEZ_V;
6827 case LoongArch::PseudoXVBNZ_B:
6828 CondOpc = LoongArch::XVSETALLNEZ_B;
6830 case LoongArch::PseudoXVBNZ_H:
6831 CondOpc = LoongArch::XVSETALLNEZ_H;
6833 case LoongArch::PseudoXVBNZ_W:
6834 CondOpc = LoongArch::XVSETALLNEZ_W;
6836 case LoongArch::PseudoXVBNZ_D:
6837 CondOpc = LoongArch::XVSETALLNEZ_D;
6852 F->insert(It, FalseBB);
6853 F->insert(It, TrueBB);
6854 F->insert(It, SinkBB);
6857 SinkBB->
splice(SinkBB->
end(), BB, std::next(
MI.getIterator()), BB->
end());
6861 Register FCC =
MRI.createVirtualRegister(&LoongArch::CFRRegClass);
6870 Register RD1 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
6878 Register RD2 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
6886 MI.getOperand(0).getReg())
6893 MI.eraseFromParent();
6901 unsigned BroadcastOp;
6903 switch (
MI.getOpcode()) {
6906 case LoongArch::PseudoXVINSGR2VR_B:
6908 BroadcastOp = LoongArch::XVREPLGR2VR_B;
6909 InsOp = LoongArch::XVEXTRINS_B;
6911 case LoongArch::PseudoXVINSGR2VR_H:
6913 BroadcastOp = LoongArch::XVREPLGR2VR_H;
6914 InsOp = LoongArch::XVEXTRINS_H;
6926 unsigned Idx =
MI.getOperand(3).getImm();
6928 if (XSrc.
isVirtual() &&
MRI.getVRegDef(XSrc)->isImplicitDef() &&
6930 Register ScratchSubReg1 =
MRI.createVirtualRegister(SubRC);
6931 Register ScratchSubReg2 =
MRI.createVirtualRegister(SubRC);
6934 .
addReg(XSrc, 0, LoongArch::sub_128);
6936 TII->get(HalfSize == 8 ? LoongArch::VINSGR2VR_H
6937 : LoongArch::VINSGR2VR_B),
6946 .
addImm(LoongArch::sub_128);
6948 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
6949 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
6953 BuildMI(*BB,
MI,
DL,
TII->get(LoongArch::XVPERMI_Q), ScratchReg2)
6956 .
addImm(Idx >= HalfSize ? 48 : 18);
6961 .
addImm((Idx >= HalfSize ? Idx - HalfSize : Idx) * 17);
6964 MI.eraseFromParent();
6971 assert(Subtarget.hasExtLSX());
6978 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
6979 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
6980 Register ScratchReg3 =
MRI.createVirtualRegister(RC);
6984 TII->get(Subtarget.
is64Bit() ? LoongArch::VINSGR2VR_D
6985 : LoongArch::VINSGR2VR_W),
6992 TII->get(Subtarget.
is64Bit() ? LoongArch::VPCNT_D : LoongArch::VPCNT_W),
6996 TII->get(Subtarget.
is64Bit() ? LoongArch::VPICKVE2GR_D
6997 : LoongArch::VPICKVE2GR_W),
7002 MI.eraseFromParent();
7016 unsigned EleBits = 8;
7017 unsigned NotOpc = 0;
7020 switch (
MI.getOpcode()) {
7023 case LoongArch::PseudoVMSKLTZ_B:
7024 MskOpc = LoongArch::VMSKLTZ_B;
7026 case LoongArch::PseudoVMSKLTZ_H:
7027 MskOpc = LoongArch::VMSKLTZ_H;
7030 case LoongArch::PseudoVMSKLTZ_W:
7031 MskOpc = LoongArch::VMSKLTZ_W;
7034 case LoongArch::PseudoVMSKLTZ_D:
7035 MskOpc = LoongArch::VMSKLTZ_D;
7038 case LoongArch::PseudoVMSKGEZ_B:
7039 MskOpc = LoongArch::VMSKGEZ_B;
7041 case LoongArch::PseudoVMSKEQZ_B:
7042 MskOpc = LoongArch::VMSKNZ_B;
7043 NotOpc = LoongArch::VNOR_V;
7045 case LoongArch::PseudoVMSKNEZ_B:
7046 MskOpc = LoongArch::VMSKNZ_B;
7048 case LoongArch::PseudoXVMSKLTZ_B:
7049 MskOpc = LoongArch::XVMSKLTZ_B;
7050 RC = &LoongArch::LASX256RegClass;
7052 case LoongArch::PseudoXVMSKLTZ_H:
7053 MskOpc = LoongArch::XVMSKLTZ_H;
7054 RC = &LoongArch::LASX256RegClass;
7057 case LoongArch::PseudoXVMSKLTZ_W:
7058 MskOpc = LoongArch::XVMSKLTZ_W;
7059 RC = &LoongArch::LASX256RegClass;
7062 case LoongArch::PseudoXVMSKLTZ_D:
7063 MskOpc = LoongArch::XVMSKLTZ_D;
7064 RC = &LoongArch::LASX256RegClass;
7067 case LoongArch::PseudoXVMSKGEZ_B:
7068 MskOpc = LoongArch::XVMSKGEZ_B;
7069 RC = &LoongArch::LASX256RegClass;
7071 case LoongArch::PseudoXVMSKEQZ_B:
7072 MskOpc = LoongArch::XVMSKNZ_B;
7073 NotOpc = LoongArch::XVNOR_V;
7074 RC = &LoongArch::LASX256RegClass;
7076 case LoongArch::PseudoXVMSKNEZ_B:
7077 MskOpc = LoongArch::XVMSKNZ_B;
7078 RC = &LoongArch::LASX256RegClass;
7093 if (
TRI->getRegSizeInBits(*RC) > 128) {
7094 Register Lo =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
7095 Register Hi =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
7103 TII->get(Subtarget.
is64Bit() ? LoongArch::BSTRINS_D
7104 : LoongArch::BSTRINS_W),
7108 .
addImm(256 / EleBits - 1)
7116 MI.eraseFromParent();
7123 assert(
MI.getOpcode() == LoongArch::SplitPairF64Pseudo &&
7124 "Unexpected instruction");
7136 MI.eraseFromParent();
7143 assert(
MI.getOpcode() == LoongArch::BuildPairF64Pseudo &&
7144 "Unexpected instruction");
7150 Register TmpReg =
MRI.createVirtualRegister(&LoongArch::FPR64RegClass);
7160 MI.eraseFromParent();
7165 switch (
MI.getOpcode()) {
7168 case LoongArch::Select_GPR_Using_CC_GPR:
7204 if (
MI.getOperand(2).isReg())
7205 RHS =
MI.getOperand(2).getReg();
7206 auto CC =
static_cast<unsigned>(
MI.getOperand(3).
getImm());
7210 SelectDests.
insert(
MI.getOperand(0).getReg());
7214 SequenceMBBI !=
E; ++SequenceMBBI) {
7215 if (SequenceMBBI->isDebugInstr())
7218 if (SequenceMBBI->getOperand(1).getReg() !=
LHS ||
7219 !SequenceMBBI->getOperand(2).isReg() ||
7220 SequenceMBBI->getOperand(2).getReg() !=
RHS ||
7221 SequenceMBBI->getOperand(3).getImm() != CC ||
7222 SelectDests.
count(SequenceMBBI->getOperand(4).getReg()) ||
7223 SelectDests.
count(SequenceMBBI->getOperand(5).getReg()))
7225 LastSelectPseudo = &*SequenceMBBI;
7227 SelectDests.
insert(SequenceMBBI->getOperand(0).getReg());
7230 if (SequenceMBBI->hasUnmodeledSideEffects() ||
7231 SequenceMBBI->mayLoadOrStore() ||
7232 SequenceMBBI->usesCustomInsertionHook())
7235 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
7250 F->insert(
I, IfFalseMBB);
7251 F->insert(
I, TailMBB);
7254 unsigned CallFrameSize =
TII.getCallFrameSizeAt(*LastSelectPseudo);
7260 TailMBB->
push_back(DebugInstr->removeFromParent());
7264 TailMBB->
splice(TailMBB->
end(), HeadMBB,
7274 if (
MI.getOperand(2).isImm())
7286 auto SelectMBBI =
MI.getIterator();
7287 auto SelectEnd = std::next(LastSelectPseudo->
getIterator());
7289 while (SelectMBBI != SelectEnd) {
7290 auto Next = std::next(SelectMBBI);
7294 TII.get(LoongArch::PHI), SelectMBBI->getOperand(0).getReg())
7295 .
addReg(SelectMBBI->getOperand(4).getReg())
7297 .
addReg(SelectMBBI->getOperand(5).getReg())
7304 F->getProperties().resetNoPHIs();
7310 const TargetInstrInfo *
TII = Subtarget.getInstrInfo();
7313 switch (
MI.getOpcode()) {
7316 case LoongArch::DIV_W:
7317 case LoongArch::DIV_WU:
7318 case LoongArch::MOD_W:
7319 case LoongArch::MOD_WU:
7320 case LoongArch::DIV_D:
7321 case LoongArch::DIV_DU:
7322 case LoongArch::MOD_D:
7323 case LoongArch::MOD_DU:
7326 case LoongArch::WRFCSR: {
7328 LoongArch::FCSR0 +
MI.getOperand(0).getImm())
7329 .
addReg(
MI.getOperand(1).getReg());
7330 MI.eraseFromParent();
7333 case LoongArch::RDFCSR: {
7334 MachineInstr *ReadFCSR =
7336 MI.getOperand(0).getReg())
7337 .
addReg(LoongArch::FCSR0 +
MI.getOperand(1).getImm());
7339 MI.eraseFromParent();
7342 case LoongArch::Select_GPR_Using_CC_GPR:
7344 case LoongArch::BuildPairF64Pseudo:
7346 case LoongArch::SplitPairF64Pseudo:
7348 case LoongArch::PseudoVBZ:
7349 case LoongArch::PseudoVBZ_B:
7350 case LoongArch::PseudoVBZ_H:
7351 case LoongArch::PseudoVBZ_W:
7352 case LoongArch::PseudoVBZ_D:
7353 case LoongArch::PseudoVBNZ:
7354 case LoongArch::PseudoVBNZ_B:
7355 case LoongArch::PseudoVBNZ_H:
7356 case LoongArch::PseudoVBNZ_W:
7357 case LoongArch::PseudoVBNZ_D:
7358 case LoongArch::PseudoXVBZ:
7359 case LoongArch::PseudoXVBZ_B:
7360 case LoongArch::PseudoXVBZ_H:
7361 case LoongArch::PseudoXVBZ_W:
7362 case LoongArch::PseudoXVBZ_D:
7363 case LoongArch::PseudoXVBNZ:
7364 case LoongArch::PseudoXVBNZ_B:
7365 case LoongArch::PseudoXVBNZ_H:
7366 case LoongArch::PseudoXVBNZ_W:
7367 case LoongArch::PseudoXVBNZ_D:
7369 case LoongArch::PseudoXVINSGR2VR_B:
7370 case LoongArch::PseudoXVINSGR2VR_H:
7372 case LoongArch::PseudoCTPOP:
7374 case LoongArch::PseudoVMSKLTZ_B:
7375 case LoongArch::PseudoVMSKLTZ_H:
7376 case LoongArch::PseudoVMSKLTZ_W:
7377 case LoongArch::PseudoVMSKLTZ_D:
7378 case LoongArch::PseudoVMSKGEZ_B:
7379 case LoongArch::PseudoVMSKEQZ_B:
7380 case LoongArch::PseudoVMSKNEZ_B:
7381 case LoongArch::PseudoXVMSKLTZ_B:
7382 case LoongArch::PseudoXVMSKLTZ_H:
7383 case LoongArch::PseudoXVMSKLTZ_W:
7384 case LoongArch::PseudoXVMSKLTZ_D:
7385 case LoongArch::PseudoXVMSKGEZ_B:
7386 case LoongArch::PseudoXVMSKEQZ_B:
7387 case LoongArch::PseudoXVMSKNEZ_B:
7389 case TargetOpcode::STATEPOINT:
7395 MI.addOperand(*
MI.getMF(),
7397 LoongArch::R1,
true,
7400 if (!Subtarget.is64Bit())
7408 unsigned *
Fast)
const {
7409 if (!Subtarget.hasUAL())
7423#define NODE_NAME_CASE(node) \
7424 case LoongArchISD::node: \
7425 return "LoongArchISD::" #node;
7531#undef NODE_NAME_CASE
7544 LoongArch::R7, LoongArch::R8, LoongArch::R9,
7545 LoongArch::R10, LoongArch::R11};
7549 LoongArch::F3, LoongArch::F4, LoongArch::F5,
7550 LoongArch::F6, LoongArch::F7};
7553 LoongArch::F0_64, LoongArch::F1_64, LoongArch::F2_64, LoongArch::F3_64,
7554 LoongArch::F4_64, LoongArch::F5_64, LoongArch::F6_64, LoongArch::F7_64};
7557 LoongArch::VR3, LoongArch::VR4, LoongArch::VR5,
7558 LoongArch::VR6, LoongArch::VR7};
7561 LoongArch::XR3, LoongArch::XR4, LoongArch::XR5,
7562 LoongArch::XR6, LoongArch::XR7};
7568 unsigned ValNo2,
MVT ValVT2,
MVT LocVT2,
7570 unsigned GRLenInBytes = GRLen / 8;
7581 State.AllocateStack(GRLenInBytes, StackAlign),
7584 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes,
Align(GRLenInBytes)),
7595 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes,
Align(GRLenInBytes)),
7603 unsigned ValNo,
MVT ValVT,
7606 unsigned GRLen =
DL.getLargestLegalIntTypeSizeInBits();
7607 assert((GRLen == 32 || GRLen == 64) &&
"Unspport GRLen");
7608 MVT GRLenVT = GRLen == 32 ? MVT::i32 : MVT::i64;
7613 if (IsRet && ValNo > 1)
7617 bool UseGPRForFloat =
true;
7627 UseGPRForFloat = ArgFlags.
isVarArg();
7640 unsigned TwoGRLenInBytes = (2 * GRLen) / 8;
7643 DL.getTypeAllocSize(OrigTy) == TwoGRLenInBytes) {
7644 unsigned RegIdx = State.getFirstUnallocated(
ArgGPRs);
7646 if (RegIdx != std::size(
ArgGPRs) && RegIdx % 2 == 1)
7652 State.getPendingArgFlags();
7655 "PendingLocs and PendingArgFlags out of sync");
7659 UseGPRForFloat =
true;
7661 if (UseGPRForFloat && ValVT == MVT::f32) {
7664 }
else if (UseGPRForFloat && GRLen == 64 && ValVT == MVT::f64) {
7667 }
else if (UseGPRForFloat && GRLen == 32 && ValVT == MVT::f64) {
7670 assert(PendingLocs.
empty() &&
"Can't lower f64 if it is split");
7712 PendingLocs.
size() <= 2) {
7713 assert(PendingLocs.
size() == 2 &&
"Unexpected PendingLocs.size()");
7718 PendingLocs.
clear();
7719 PendingArgFlags.
clear();
7726 unsigned StoreSizeBytes = GRLen / 8;
7729 if (ValVT == MVT::f32 && !UseGPRForFloat) {
7731 }
else if (ValVT == MVT::f64 && !UseGPRForFloat) {
7735 UseGPRForFloat =
false;
7736 StoreSizeBytes = 16;
7737 StackAlign =
Align(16);
7740 UseGPRForFloat =
false;
7741 StoreSizeBytes = 32;
7742 StackAlign =
Align(32);
7748 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
7752 if (!PendingLocs.
empty()) {
7754 assert(PendingLocs.
size() > 2 &&
"Unexpected PendingLocs.size()");
7755 for (
auto &It : PendingLocs) {
7757 It.convertToReg(
Reg);
7762 PendingLocs.clear();
7763 PendingArgFlags.
clear();
7766 assert((!UseGPRForFloat || LocVT == GRLenVT) &&
7767 "Expected an GRLenVT at this stage");
7784void LoongArchTargetLowering::analyzeInputArgs(
7787 LoongArchCCAssignFn Fn)
const {
7789 for (
unsigned i = 0, e =
Ins.size(); i != e; ++i) {
7790 MVT ArgVT =
Ins[i].VT;
7791 Type *ArgTy =
nullptr;
7793 ArgTy = FType->getReturnType();
7794 else if (Ins[i].isOrigArg())
7795 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
7799 CCInfo, IsRet, ArgTy)) {
7800 LLVM_DEBUG(
dbgs() <<
"InputArg #" << i <<
" has unhandled type " << ArgVT
7807void LoongArchTargetLowering::analyzeOutputArgs(
7810 CallLoweringInfo *CLI, LoongArchCCAssignFn Fn)
const {
7811 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
7812 MVT ArgVT = Outs[i].VT;
7813 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty :
nullptr;
7817 CCInfo, IsRet, OrigTy)) {
7818 LLVM_DEBUG(
dbgs() <<
"OutputArg #" << i <<
" has unhandled type " << ArgVT
7859 if (In.isOrigArg()) {
7864 if ((
BitWidth <= 32 && In.Flags.isSExt()) ||
7865 (
BitWidth < 32 && In.Flags.isZExt())) {
7915 Register LoVReg =
RegInfo.createVirtualRegister(&LoongArch::GPRRegClass);
7928 Register HiVReg =
RegInfo.createVirtualRegister(&LoongArch::GPRRegClass);
7948 Val = DAG.
getNode(ISD::BITCAST,
DL, LocVT, Val);
7958 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7962 LoongArch::R23, LoongArch::R24, LoongArch::R25,
7963 LoongArch::R26, LoongArch::R27, LoongArch::R28,
7964 LoongArch::R29, LoongArch::R30, LoongArch::R31};
7971 if (LocVT == MVT::f32) {
7974 static const MCPhysReg FPR32List[] = {LoongArch::F24, LoongArch::F25,
7975 LoongArch::F26, LoongArch::F27};
7982 if (LocVT == MVT::f64) {
7985 static const MCPhysReg FPR64List[] = {LoongArch::F28_64, LoongArch::F29_64,
7986 LoongArch::F30_64, LoongArch::F31_64};
8016 "GHC calling convention requires the F and D extensions");
8020 MVT GRLenVT = Subtarget.getGRLenVT();
8021 unsigned GRLenInBytes = Subtarget.getGRLen() / 8;
8023 std::vector<SDValue> OutChains;
8032 analyzeInputArgs(MF, CCInfo, Ins,
false,
CC_LoongArch);
8034 for (
unsigned i = 0, e = ArgLocs.
size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
8051 unsigned ArgIndex = Ins[InsIdx].OrigArgIndex;
8052 unsigned ArgPartOffset = Ins[InsIdx].PartOffset;
8053 assert(ArgPartOffset == 0);
8054 while (i + 1 != e && Ins[InsIdx + 1].OrigArgIndex == ArgIndex) {
8056 unsigned PartOffset = Ins[InsIdx + 1].PartOffset - ArgPartOffset;
8080 int VaArgOffset, VarArgsSaveSize;
8084 if (ArgRegs.
size() == Idx) {
8086 VarArgsSaveSize = 0;
8088 VarArgsSaveSize = GRLenInBytes * (ArgRegs.
size() - Idx);
8089 VaArgOffset = -VarArgsSaveSize;
8095 LoongArchFI->setVarArgsFrameIndex(FI);
8103 VarArgsSaveSize += GRLenInBytes;
8108 for (
unsigned I = Idx;
I < ArgRegs.
size();
8109 ++
I, VaArgOffset += GRLenInBytes) {
8110 const Register Reg = RegInfo.createVirtualRegister(RC);
8111 RegInfo.addLiveIn(ArgRegs[
I], Reg);
8119 ->setValue((
Value *)
nullptr);
8120 OutChains.push_back(Store);
8122 LoongArchFI->setVarArgsSaveSize(VarArgsSaveSize);
8127 if (!OutChains.empty()) {
8128 OutChains.push_back(Chain);
8143 if (
N->getNumValues() != 1)
8145 if (!
N->hasNUsesOfValue(1, 0))
8148 SDNode *Copy = *
N->user_begin();
8154 if (Copy->getGluedNode())
8158 bool HasRet =
false;
8168 Chain = Copy->getOperand(0);
8173bool LoongArchTargetLowering::isEligibleForTailCallOptimization(
8177 auto CalleeCC = CLI.CallConv;
8178 auto &Outs = CLI.Outs;
8180 auto CallerCC = Caller.getCallingConv();
8187 for (
auto &VA : ArgLocs)
8193 auto IsCallerStructRet = Caller.hasStructRetAttr();
8194 auto IsCalleeStructRet = Outs.
empty() ?
false : Outs[0].Flags.isSRet();
8195 if (IsCallerStructRet || IsCalleeStructRet)
8199 for (
auto &Arg : Outs)
8200 if (Arg.Flags.isByVal())
8205 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
8206 if (CalleeCC != CallerCC) {
8207 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
8208 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
8234 MVT GRLenVT = Subtarget.getGRLenVT();
8246 analyzeOutputArgs(MF, ArgCCInfo, Outs,
false, &CLI,
CC_LoongArch);
8250 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
8256 "site marked musttail");
8263 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
8265 if (!Flags.isByVal())
8269 unsigned Size = Flags.getByValSize();
8270 Align Alignment = Flags.getNonZeroByValAlign();
8277 Chain = DAG.
getMemcpy(Chain,
DL, FIPtr, Arg, SizeNode, Alignment,
8279 false,
nullptr, std::nullopt,
8291 for (
unsigned i = 0, j = 0, e = ArgLocs.
size(), OutIdx = 0; i != e;
8294 SDValue ArgValue = OutVals[OutIdx];
8303 DAG.
getVTList(MVT::i32, MVT::i32), ArgValue);
8315 if (!StackPtr.getNode())
8327 RegsToPass.
push_back(std::make_pair(RegHigh,
Hi));
8342 unsigned ArgIndex = Outs[OutIdx].OrigArgIndex;
8343 unsigned ArgPartOffset = Outs[OutIdx].PartOffset;
8344 assert(ArgPartOffset == 0);
8349 while (i + 1 != e && Outs[OutIdx + 1].OrigArgIndex == ArgIndex) {
8350 SDValue PartValue = OutVals[OutIdx + 1];
8351 unsigned PartOffset = Outs[OutIdx + 1].PartOffset - ArgPartOffset;
8366 for (
const auto &Part : Parts) {
8367 SDValue PartValue = Part.first;
8368 SDValue PartOffset = Part.second;
8375 ArgValue = SpillSlot;
8381 if (Flags.isByVal())
8382 ArgValue = ByValArgs[j++];
8389 assert(!IsTailCall &&
"Tail call not allowed if stack is used "
8390 "for passing parameters");
8393 if (!StackPtr.getNode())
8406 if (!MemOpChains.
empty())
8412 for (
auto &Reg : RegsToPass) {
8413 Chain = DAG.
getCopyToReg(Chain,
DL, Reg.first, Reg.second, Glue);
8435 Ops.push_back(Chain);
8436 Ops.push_back(Callee);
8440 for (
auto &Reg : RegsToPass)
8441 Ops.push_back(DAG.
getRegister(Reg.first, Reg.second.getValueType()));
8446 const uint32_t *Mask =
TRI->getCallPreservedMask(MF, CallConv);
8447 assert(Mask &&
"Missing call preserved mask for calling convention");
8453 Ops.push_back(Glue);
8465 assert(Subtarget.is64Bit() &&
"Medium code model requires LA64");
8469 assert(Subtarget.is64Bit() &&
"Large code model requires LA64");
8492 analyzeInputArgs(MF, RetCCInfo, Ins,
true,
CC_LoongArch);
8495 for (
unsigned i = 0, e = RVLocs.
size(); i != e; ++i) {
8496 auto &VA = RVLocs[i];
8504 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8505 assert(VA.needsCustom());
8511 RetValue, RetValue2);
8524 const Type *RetTy)
const {
8526 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8528 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
8532 Outs[i].Flags, CCInfo,
true,
nullptr))
8558 for (
unsigned i = 0, e = RVLocs.
size(), OutIdx = 0; i < e; ++i, ++OutIdx) {
8559 SDValue Val = OutVals[OutIdx];
8568 DAG.
getVTList(MVT::i32, MVT::i32), Val);
8572 Register RegHi = RVLocs[++i].getLocReg();
8605 const APInt &SplatValue,
const unsigned SplatBitSize)
const {
8608 if (SplatBitSize == 16 && !(V & 0x00FF)) {
8610 RequiredImm = (0b10101 << 8) | (V >> 8);
8611 return {
true, RequiredImm};
8612 }
else if (SplatBitSize == 32) {
8614 if (!(V & 0xFFFF00FF)) {
8615 RequiredImm = (0b10001 << 8) | (V >> 8);
8616 return {
true, RequiredImm};
8619 if (!(V & 0xFF00FFFF)) {
8620 RequiredImm = (0b10010 << 8) | (V >> 16);
8621 return {
true, RequiredImm};
8624 if (!(V & 0x00FFFFFF)) {
8625 RequiredImm = (0b10011 << 8) | (V >> 24);
8626 return {
true, RequiredImm};
8629 if ((V & 0xFFFF00FF) == 0xFF) {
8630 RequiredImm = (0b10110 << 8) | (V >> 8);
8631 return {
true, RequiredImm};
8634 if ((V & 0xFF00FFFF) == 0xFFFF) {
8635 RequiredImm = (0b10111 << 8) | (V >> 16);
8636 return {
true, RequiredImm};
8639 if ((V & 0x7E07FFFF) == 0x3E000000 || (V & 0x7E07FFFF) == 0x40000000) {
8641 (0b11010 << 8) | (((V >> 24) & 0xC0) ^ 0x40) | ((V >> 19) & 0x3F);
8642 return {
true, RequiredImm};
8644 }
else if (SplatBitSize == 64) {
8646 if ((V & 0xFFFFFFFF7E07FFFFULL) == 0x3E000000ULL ||
8647 (V & 0xFFFFFFFF7E07FFFFULL) == 0x40000000ULL) {
8649 (0b11011 << 8) | (((V >> 24) & 0xC0) ^ 0x40) | ((V >> 19) & 0x3F);
8650 return {
true, RequiredImm};
8653 if ((V & 0x7FC0FFFFFFFFFFFFULL) == 0x4000000000000000ULL ||
8654 (V & 0x7FC0FFFFFFFFFFFFULL) == 0x3FC0000000000000ULL) {
8656 (0b11100 << 8) | (((V >> 56) & 0xC0) ^ 0x40) | ((V >> 48) & 0x3F);
8657 return {
true, RequiredImm};
8660 auto sameBitsPreByte = [](
uint64_t x) -> std::pair<bool, uint8_t> {
8662 for (
int i = 0; i < 8; ++i) {
8664 if (
byte == 0 ||
byte == 0xFF)
8665 res |= ((
byte & 1) << i);
8672 auto [IsSame, Suffix] = sameBitsPreByte(V);
8674 RequiredImm = (0b11001 << 8) | Suffix;
8675 return {
true, RequiredImm};
8678 return {
false, RequiredImm};
8683 if (!Subtarget.hasExtLSX())
8686 if (VT == MVT::f32) {
8687 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7e07ffff;
8688 return (masked == 0x3e000000 || masked == 0x40000000);
8691 if (VT == MVT::f64) {
8692 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7fc0ffffffffffff;
8693 return (masked == 0x3fc0000000000000 || masked == 0x4000000000000000);
8699bool LoongArchTargetLowering::isFPImmLegal(
const APFloat &Imm,
EVT VT,
8700 bool ForCodeSize)
const {
8702 if (VT == MVT::f32 && !Subtarget.hasBasicF())
8704 if (VT == MVT::f64 && !Subtarget.hasBasicD())
8706 return (Imm.isZero() || Imm.isExactlyValue(1.0) ||
isFPImmVLDILegal(Imm, VT));
8717bool LoongArchTargetLowering::shouldInsertFencesForAtomic(
8727 Type *Ty =
I->getOperand(0)->getType();
8729 unsigned Size = Ty->getIntegerBitWidth();
8745 EVT VT =
Y.getValueType();
8748 return Subtarget.hasExtLSX() && VT.
isInteger();
8760 case Intrinsic::loongarch_masked_atomicrmw_xchg_i32:
8761 case Intrinsic::loongarch_masked_atomicrmw_add_i32:
8762 case Intrinsic::loongarch_masked_atomicrmw_sub_i32:
8763 case Intrinsic::loongarch_masked_atomicrmw_nand_i32:
8765 Info.memVT = MVT::i32;
8766 Info.ptrVal =
I.getArgOperand(0);
8768 Info.align =
Align(4);
8785 "Unable to expand");
8786 unsigned MinWordSize = 4;
8798 Value *AlignedAddr = Builder.CreateIntrinsic(
8799 Intrinsic::ptrmask, {PtrTy, IntTy},
8800 {Addr, ConstantInt::get(IntTy, ~(
uint64_t)(MinWordSize - 1))},
nullptr,
8803 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
8804 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1,
"PtrLSB");
8805 Value *ShiftAmt = Builder.CreateShl(PtrLSB, 3);
8806 ShiftAmt = Builder.CreateTrunc(ShiftAmt, WordType,
"ShiftAmt");
8807 Value *Mask = Builder.CreateShl(
8808 ConstantInt::get(WordType,
8811 Value *Inv_Mask = Builder.CreateNot(Mask,
"Inv_Mask");
8812 Value *ValOperand_Shifted =
8813 Builder.CreateShl(Builder.CreateZExt(AI->
getValOperand(), WordType),
8814 ShiftAmt,
"ValOperand_Shifted");
8817 NewOperand = Builder.CreateOr(ValOperand_Shifted, Inv_Mask,
"AndOperand");
8819 NewOperand = ValOperand_Shifted;
8822 Builder.CreateAtomicRMW(
Op, AlignedAddr, NewOperand,
Align(MinWordSize),
8825 Value *Shift = Builder.CreateLShr(NewAI, ShiftAmt,
"shifted");
8826 Value *Trunc = Builder.CreateTrunc(Shift,
ValueType,
"extracted");
8845 if (Subtarget.hasLAM_BH() && Subtarget.is64Bit() &&
8853 if (Subtarget.hasLAMCAS()) {
8875 return Intrinsic::loongarch_masked_atomicrmw_xchg_i64;
8877 return Intrinsic::loongarch_masked_atomicrmw_add_i64;
8879 return Intrinsic::loongarch_masked_atomicrmw_sub_i64;
8881 return Intrinsic::loongarch_masked_atomicrmw_nand_i64;
8883 return Intrinsic::loongarch_masked_atomicrmw_umax_i64;
8885 return Intrinsic::loongarch_masked_atomicrmw_umin_i64;
8887 return Intrinsic::loongarch_masked_atomicrmw_max_i64;
8889 return Intrinsic::loongarch_masked_atomicrmw_min_i64;
8899 return Intrinsic::loongarch_masked_atomicrmw_xchg_i32;
8901 return Intrinsic::loongarch_masked_atomicrmw_add_i32;
8903 return Intrinsic::loongarch_masked_atomicrmw_sub_i32;
8905 return Intrinsic::loongarch_masked_atomicrmw_nand_i32;
8907 return Intrinsic::loongarch_masked_atomicrmw_umax_i32;
8909 return Intrinsic::loongarch_masked_atomicrmw_umin_i32;
8911 return Intrinsic::loongarch_masked_atomicrmw_max_i32;
8913 return Intrinsic::loongarch_masked_atomicrmw_min_i32;
8925 if (Subtarget.hasLAMCAS())
8937 unsigned GRLen = Subtarget.getGRLen();
8939 Value *FailureOrdering =
8940 Builder.getIntN(Subtarget.getGRLen(),
static_cast<uint64_t>(FailOrd));
8941 Intrinsic::ID CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i32;
8943 CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i64;
8944 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8945 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8946 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8949 Value *Result = Builder.CreateIntrinsic(
8950 CmpXchgIntrID, Tys, {AlignedAddr, CmpVal, NewVal, Mask, FailureOrdering});
8952 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8968 Builder.CreateNot(Mask,
"Inv_Mask"),
8975 unsigned GRLen = Subtarget.getGRLen();
8984 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8985 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8986 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
9002 Builder.CreateSub(Builder.getIntN(GRLen, GRLen - ValWidth), ShiftAmt);
9003 Result = Builder.CreateCall(LlwOpScwLoop,
9004 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
9007 Builder.CreateCall(LlwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
9011 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
9034 const Constant *PersonalityFn)
const {
9035 return LoongArch::R4;
9039 const Constant *PersonalityFn)
const {
9040 return LoongArch::R5;
9051 int RefinementSteps = VT.
getScalarType() == MVT::f64 ? 2 : 1;
9052 return RefinementSteps;
9057 int &RefinementSteps,
9058 bool &UseOneConstNR,
9059 bool Reciprocal)
const {
9060 if (Subtarget.hasFrecipe()) {
9064 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
9065 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
9066 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
9067 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
9068 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
9087 int &RefinementSteps)
const {
9088 if (Subtarget.hasFrecipe()) {
9092 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
9093 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
9094 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
9095 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
9096 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
9113LoongArchTargetLowering::getConstraintType(
StringRef Constraint)
const {
9133 if (Constraint.
size() == 1) {
9134 switch (Constraint[0]) {
9150 if (Constraint ==
"ZC" || Constraint ==
"ZB")
9159 return StringSwitch<InlineAsm::ConstraintCode>(ConstraintCode)
9166std::pair<unsigned, const TargetRegisterClass *>
9167LoongArchTargetLowering::getRegForInlineAsmConstraint(
9171 if (Constraint.
size() == 1) {
9172 switch (Constraint[0]) {
9177 return std::make_pair(0U, &LoongArch::GPRRegClass);
9179 return std::make_pair(0U, &LoongArch::GPRNoR0R1RegClass);
9181 if (Subtarget.hasBasicF() && VT == MVT::f32)
9182 return std::make_pair(0U, &LoongArch::FPR32RegClass);
9183 if (Subtarget.hasBasicD() && VT == MVT::f64)
9184 return std::make_pair(0U, &LoongArch::FPR64RegClass);
9185 if (Subtarget.hasExtLSX() &&
9186 TRI->isTypeLegalForClass(LoongArch::LSX128RegClass, VT))
9187 return std::make_pair(0U, &LoongArch::LSX128RegClass);
9188 if (Subtarget.hasExtLASX() &&
9189 TRI->isTypeLegalForClass(LoongArch::LASX256RegClass, VT))
9190 return std::make_pair(0U, &LoongArch::LASX256RegClass);
9210 bool IsFP = Constraint[2] ==
'f';
9211 std::pair<StringRef, StringRef> Temp = Constraint.
split(
'$');
9212 std::pair<unsigned, const TargetRegisterClass *>
R;
9217 unsigned RegNo =
R.first;
9218 if (LoongArch::F0 <= RegNo && RegNo <= LoongArch::F31) {
9219 if (Subtarget.hasBasicD() && (VT == MVT::f64 || VT == MVT::Other)) {
9220 unsigned DReg = RegNo - LoongArch::F0 + LoongArch::F0_64;
9221 return std::make_pair(DReg, &LoongArch::FPR64RegClass);
9231void LoongArchTargetLowering::LowerAsmOperandForConstraint(
9235 if (Constraint.
size() == 1) {
9236 switch (Constraint[0]) {
9240 uint64_t CVal =
C->getSExtValue();
9243 Subtarget.getGRLenVT()));
9249 uint64_t CVal =
C->getSExtValue();
9252 Subtarget.getGRLenVT()));
9258 if (
C->getZExtValue() == 0)
9265 uint64_t CVal =
C->getZExtValue();
9278#define GET_REGISTER_MATCHER
9279#include "LoongArchGenAsmMatcher.inc"
9285 std::string NewRegName = Name.second.str();
9291 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
9292 if (!ReservedRegs.
test(Reg))
9309 const APInt &Imm = ConstNode->getAPIntValue();
9311 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
9312 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
9315 if (ConstNode->hasOneUse() &&
9316 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
9317 (Imm - 8).isPowerOf2() || (Imm - 16).isPowerOf2()))
9323 if (ConstNode->hasOneUse() && !(Imm.sge(-2048) && Imm.sle(4095))) {
9324 unsigned Shifts = Imm.countr_zero();
9330 APInt ImmPop = Imm.ashr(Shifts);
9331 if (ImmPop == 3 || ImmPop == 5 || ImmPop == 9 || ImmPop == 17)
9335 APInt ImmSmall =
APInt(Imm.getBitWidth(), 1ULL << Shifts,
true);
9336 if ((Imm - ImmSmall).isPowerOf2() || (Imm + ImmSmall).isPowerOf2() ||
9337 (ImmSmall - Imm).isPowerOf2())
9347 Type *Ty,
unsigned AS,
9402 EVT MemVT = LD->getMemoryVT();
9403 if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
9414 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
9423 if (
Y.getValueType().isVector())
9435 Type *Ty,
bool IsSigned)
const {
9436 if (Subtarget.is64Bit() && Ty->isIntegerTy(32))
9445 if (Subtarget.isSoftFPABI() && (
Type.isFloatingPoint() && !
Type.isVector() &&
9446 Type.getSizeInBits() < Subtarget.getGRLen()))
9456 Align &PrefAlign)
const {
9460 if (Subtarget.is64Bit()) {
9462 PrefAlign =
Align(8);
9465 PrefAlign =
Align(4);
9480bool LoongArchTargetLowering::splitValueIntoRegisterParts(
9482 unsigned NumParts,
MVT PartVT, std::optional<CallingConv::ID> CC)
const {
9483 bool IsABIRegCopy = CC.has_value();
9486 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
9487 PartVT == MVT::f32) {
9490 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i16, Val);
9494 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::f32, Val);
9502SDValue LoongArchTargetLowering::joinRegisterPartsIntoValue(
9504 MVT PartVT,
EVT ValueVT, std::optional<CallingConv::ID> CC)
const {
9505 bool IsABIRegCopy = CC.has_value();
9507 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
9508 PartVT == MVT::f32) {
9512 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i32, Val);
9514 Val = DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
9525 if (VT == MVT::f16 && Subtarget.hasBasicF())
9531unsigned LoongArchTargetLowering::getNumRegistersForCallingConv(
9534 if (VT == MVT::f16 && Subtarget.hasBasicF())
9543 unsigned Depth)
const {
9544 EVT VT =
Op.getValueType();
9546 unsigned Opc =
Op.getOpcode();
9553 MVT SrcVT = Src.getSimpleValueType();
9558 if (OriginalDemandedBits.
countr_zero() >= NumElts)
9562 APInt KnownUndef, KnownZero;
9578 if (KnownSrc.
One[SrcBits - 1])
9580 else if (KnownSrc.
Zero[SrcBits - 1])
9585 Src, DemandedSrcBits, DemandedElts, TLO.
DAG,
Depth + 1))
9592 Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO,
Depth);
9615 unsigned Index)
const {
9624 unsigned Index)
const {
9628 return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
unsigned const MachineRegisterInfo * MRI
static MCRegister MatchRegisterName(StringRef Name)
static bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType)
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget, const AArch64TargetLowering &TLI)
static SDValue performANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
#define NODE_NAME_CASE(node)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static MCRegister MatchRegisterAltName(StringRef Name)
Maps from the set of all alternative registernames to a register number.
Function Alias Analysis Results
static uint64_t getConstant(const Value *IndexValue)
static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static MachineBasicBlock * emitSelectPseudo(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode)
static SDValue unpackFromRegLoc(const CSKYSubtarget &Subtarget, SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
const HexagonInstrInfo * TII
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static SDValue performINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
const MCPhysReg ArgFPR32s[]
static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Dispatching routine to lower various 128-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_XVSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVSHUF4I (if possible).
static SDValue lowerVECTOR_SHUFFLE_VPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKEV (if possible).
static SDValue combineSelectToBinOp(SDNode *N, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKOD (if possible).
static SDValue unpackF64OnLA32DSoftABI(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const CCValAssign &HiVA, const SDLoc &DL)
static bool fitsRegularPattern(typename SmallVectorImpl< ValType >::const_iterator Begin, unsigned CheckStride, typename SmallVectorImpl< ValType >::const_iterator End, ValType ExpectedIndex, unsigned ExpectedIndexStride)
Determine whether a range fits a regular pattern of values.
static SDValue emitIntrinsicErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static cl::opt< bool > ZeroDivCheck("loongarch-check-zero-division", cl::Hidden, cl::desc("Trap on integer division by zero."), cl::init(false))
static SDValue lowerVECTOR_SHUFFLE_VSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VSHUF.
static int getEstimateRefinementSteps(EVT VT, const LoongArchSubtarget &Subtarget)
static void emitErrorAndReplaceIntrinsicResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, StringRef ErrorMsg, bool WithChain=true)
static SDValue lowerVECTOR_SHUFFLEAsByteRotate(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE as byte rotate (if possible).
static SDValue checkIntrinsicImmArg(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
static SDValue lowerVECTOR_SHUFFLE_XVINSVE0(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVINSVE0 (if possible).
static SDValue performMOVFR2GR_SCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVH (if possible).
static bool CC_LoongArch(const DataLayout &DL, LoongArchABI::ABI ABI, unsigned ValNo, MVT ValVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsRet, Type *OrigTy)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
static SDValue performSPLIT_PAIR_F64Combine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performBITCASTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static MachineBasicBlock * emitSplitPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorBitSetImm(SDNode *Node, SelectionDAG &DAG)
static SDValue performSETCC_BITCASTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKOD (if possible).
static std::optional< bool > matchSetCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue Val)
static SDValue lowerBUILD_VECTORAsBroadCastLoad(BuildVectorSDNode *BVOp, const SDLoc &DL, SelectionDAG &DAG)
#define CRC_CASE_EXT_BINARYOP(NAME, NODE)
static SDValue lowerVectorBitRevImm(SDNode *Node, SelectionDAG &DAG)
static bool checkBitcastSrcVectorSize(SDValue Src, unsigned Size, unsigned Depth)
static SDValue lowerVECTOR_SHUFFLEAsShift(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, const APInt &Zeroable)
Lower VECTOR_SHUFFLE as shift (if possible).
static SDValue lowerVECTOR_SHUFFLE_VSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VSHUF4I (if possible).
static SDValue truncateVecElts(SDNode *Node, SelectionDAG &DAG)
static bool CC_LoongArch_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
static MachineBasicBlock * insertDivByZeroTrap(MachineInstr &MI, MachineBasicBlock *MBB)
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG)
static SDValue lowerVectorBitClear(SDNode *Node, SelectionDAG &DAG)
static SDValue lowerVECTOR_SHUFFLE_VPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKEV (if possible).
static MachineBasicBlock * emitPseudoVMSKCOND(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void replaceVPICKVE2GRResults(SDNode *Node, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
static SDValue lowerVECTOR_SHUFFLEAsZeroOrAnyExtend(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const APInt &Zeroable)
Lower VECTOR_SHUFFLE as ZERO_EXTEND Or ANY_EXTEND (if possible).
static SDValue legalizeIntrinsicImmArg(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, bool IsSigned=false)
static cl::opt< MaterializeFPImm > MaterializeFPImmInsNum("loongarch-materialize-float-imm", cl::Hidden, cl::desc("Maximum number of instructions used (including code sequence " "to generate the value and moving the value to FPR) when " "materializing floating-point immediates (default = 3)"), cl::init(MaterializeFPImm3Ins), cl::values(clEnumValN(NoMaterializeFPImm, "0", "Use constant pool"), clEnumValN(MaterializeFPImm2Ins, "2", "Materialize FP immediate within 2 instructions"), clEnumValN(MaterializeFPImm3Ins, "3", "Materialize FP immediate within 3 instructions"), clEnumValN(MaterializeFPImm4Ins, "4", "Materialize FP immediate within 4 instructions"), clEnumValN(MaterializeFPImm5Ins, "5", "Materialize FP immediate within 5 instructions"), clEnumValN(MaterializeFPImm6Ins, "6", "Materialize FP immediate within 6 instructions " "(behaves same as 5 on loongarch64)")))
static SDValue lowerVECTOR_SHUFFLE_XVPERMI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVPERMI (if possible).
static SDValue emitIntrinsicWithChainErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static bool CC_LoongArchAssign2GRLen(unsigned GRLen, CCState &State, CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, MVT ValVT2, MVT LocVT2, ISD::ArgFlagsTy ArgFlags2)
const MCPhysReg ArgFPR64s[]
static MachineBasicBlock * emitPseudoCTPOP(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performMOVGR2FR_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRWR_CASE(NAME, NODE)
#define CRC_CASE_EXT_UNARYOP(NAME, NODE)
static SDValue lowerVECTOR_SHUFFLE_VPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKOD (if possible).
static SDValue signExtendBitcastSrcVector(SelectionDAG &DAG, EVT SExtVT, SDValue Src, const SDLoc &DL)
static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Dispatching routine to lower various 256-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_VREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VREPLVEI (if possible).
static MachineBasicBlock * emitPseudoXVINSGR2VR(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static void fillVector(ArrayRef< SDValue > Ops, SelectionDAG &DAG, SDLoc DL, const LoongArchSubtarget &Subtarget, SDValue &Vector, EVT ResTy)
static SDValue performEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue fillSubVectorFromBuildVector(BuildVectorSDNode *Node, SelectionDAG &DAG, SDLoc DL, const LoongArchSubtarget &Subtarget, EVT ResTy, unsigned first)
static bool isSelectPseudo(MachineInstr &MI)
static SDValue foldBinOpIntoSelectIfProfitable(SDNode *BO, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorSplatImm(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
const MCPhysReg ArgGPRs[]
static SDValue lowerVECTOR_SHUFFLE_XVPERM(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVPERM (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVL (if possible).
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, int NumOp, unsigned ExtOpc=ISD::ANY_EXTEND)
static void replaceVecCondBranchResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
#define ASRT_LE_GT_CASE(NAME)
static SDValue lowerVECTOR_SHUFFLE_XVPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKEV (if possible).
static SDValue performBR_CCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void computeZeroableShuffleElements(ArrayRef< int > Mask, SDValue V1, SDValue V2, APInt &KnownUndef, APInt &KnownZero)
Compute whether each element of a shuffle is zeroable.
static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue widenShuffleMask(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
static MachineBasicBlock * emitVecCondBranchPseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static bool canonicalizeShuffleVectorByLane(const SDLoc &DL, MutableArrayRef< int > Mask, MVT VT, SDValue &V1, SDValue &V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Shuffle vectors by lane to generate more optimized instructions.
static SDValue lowerVECTOR_SHUFFLE_XVILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVH (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVSHUF (if possible).
static void replaceCMP_XCHG_128Results(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG)
static SDValue lowerVectorPickVE2GR(SDNode *N, SelectionDAG &DAG, unsigned ResOp)
static SDValue performBITREV_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRRD_CASE(NAME, NODE)
static int matchShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2, ArrayRef< int > Mask)
Attempts to match vector shuffle as byte rotation.
static SDValue lowerVECTOR_SHUFFLE_XVPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKEV (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVREPLVEI (if possible).
static int matchShuffleAsShift(MVT &ShiftVT, unsigned &Opcode, unsigned ScalarSizeInBits, ArrayRef< int > Mask, int MaskOffset, const APInt &Zeroable)
Attempts to match a shuffle mask against the VBSLL, VBSRL, VSLLI and VSRLI instruction.
static SDValue lowerVECTOR_SHUFFLE_VILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVL (if possible).
static SDValue lowerVectorBitClearImm(SDNode *Node, SelectionDAG &DAG)
static MachineBasicBlock * emitBuildPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLEAsLanePermuteAndShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE as lane permute and then shuffle (if possible).
static SDValue performVMSKLTZCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void replaceINTRINSIC_WO_CHAINResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKOD (if possible).
static Intrinsic::ID getIntrinsicForMaskedAtomicRMWBinOp(unsigned GRLen, AtomicRMWInst::BinOp BinOp)
static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, ISD::CondCode &CC, SelectionDAG &DAG)
static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT, ArrayRef< int > Mask, SmallVectorImpl< int > &RepeatedMask)
Test whether a shuffle mask is equivalent within each sub-lane.
static LoongArchISD::NodeType getLoongArchWOpcode(unsigned Opcode)
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static CodeModel::Model getCodeModel(const PPCSubtarget &S, const TargetMachine &TM, const MachineOperand &MO)
This file defines the SmallSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, bool AllowSymbol=false)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static bool isSequentialOrUndefInRange(ArrayRef< int > Mask, unsigned Pos, unsigned Size, int Low, int Step=1)
Return true if every element in Mask, beginning from position Pos and ending in Pos + Size,...
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
APInt bitcastToAPInt() const
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
int64_t getSExtValue() const
Get sign extended value.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getCompareOperand()
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
Value * getPointerOperand()
bool isFloatingPointOperation() const
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM Basic Block Representation.
bool test(unsigned Idx) const
size_type count() const
count - Returns the number of bits which are set.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
CCState - This class holds information needed while lowering arguments and return values.
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
LLVM_ABI void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT, LocInfo HTP, unsigned ExtraInfo=0)
Register getLocReg() const
LocInfo getLocInfo() const
static CCValAssign getReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP, bool IsCustom=false)
static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP)
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
int64_t getLocMemOffset() const
unsigned getValNo() const
static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP)
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
This class represents a function call, abstracting a target machine's calling convention.
const APFloat & getValueAPF() const
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
uint64_t getZExtValue() const
int64_t getSExtValue() const
This is an important base class in LLVM.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSizeInBits(unsigned AS=0) const
The size in bits of the pointer representation in a given address space.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Argument * getArg(unsigned i) const
Common base class shared among various IRBuilders.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
This is an important class for using LLVM in a threaded context.
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This class is used to represent ISD::LOAD nodes.
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
LoongArchMachineFunctionInfo - This class is derived from MachineFunctionInfo and contains private Lo...
void addSExt32Register(Register Reg)
const LoongArchRegisterInfo * getRegisterInfo() const override
const LoongArchInstrInfo * getInstrInfo() const override
unsigned getGRLen() const
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override
Return true if result of the specified node is used by a return node only.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
std::pair< bool, uint64_t > isImmVLDILegalForMode1(const APInt &SplatValue, const unsigned SplatBitSize) const
Check if a constant splat can be generated using [x]vldi, where imm[12] is 1.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
bool isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const override
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Determine if the target supports unaligned memory accesses.
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, Align &PrefAlign) const override
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
bool signExtendConstant(const ConstantInt *CI) const override
Return true if this constant should be sign extended when promoting to a larger type.
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const override
Returns true if arguments should be sign-extended in lib calls.
bool shouldScalarizeBinop(SDValue VecOp) const override
Try to convert an extract element of a vector binary operation into an extract element followed by a ...
bool isFPImmVLDILegal(const APFloat &Imm, EVT VT) const
bool shouldExtendTypeInLibCall(EVT Type) const override
Returns true if arguments should be extended in lib calls.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool hasAndNot(SDValue Y) const override
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
ISD::NodeType getExtendForAtomicCmpSwapArg() const override
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
LoongArchTargetLowering(const TargetMachine &TM, const LoongArchSubtarget &STI)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
bool hasAndNotCompare(SDValue Y) const override
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const override
Return a reciprocal estimate value for the input operand.
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context, const Type *RetTy) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
bool mayBeEmittedAsTailCall(const CallInst *CI) const override
Return true if the target may be able emit the call instruction as a tail call.
Wrapper class representing physical registers. Should be passed by value.
bool hasFeature(unsigned Feature) const
static MVT getFloatingPointVT(unsigned BitWidth)
bool is128BitVector() const
Return true if this is a 128-bit vector type.
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
bool is256BitVector() const
Return true if this is a 256-bit vector type.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
MVT getHalfNumVectorElementsVT() const
Return a VT for a vector type with the same element type but half the number of elements.
MVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
void push_back(MachineInstr *MI)
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
LLVM_ABI void collectDebugValues(SmallVectorImpl< MachineInstr * > &DbgValues)
Scan instructions immediately following MI and collect any matching DBG_VALUEs.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
void setIsKill(bool Val=true)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
EVT getMemoryVT() const
Return the type of the in-memory value.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
size_t use_size() const
Return the number of uses of this node.
MVT getSimpleValueType(unsigned ResNo) const
Return the type of a specified result as a simple type.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
bool isSafeToSpeculativelyExecute(unsigned Opcode) const
Some opcodes may create immediate undefined behavior when used with some values (integer division-by-...
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
ArrayRef< int > getMask() const
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
typename SuperClass::const_iterator const_iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
TargetInstrInfo - Interface to description of machine instruction set.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setMaxBytesForAlignment(unsigned MaxBytes)
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
std::vector< ArgListEntry > ArgListTy
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
TargetLowering(const TargetLowering &)=delete
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
bool useTLSDESC() const
Returns true if this target uses TLS Descriptors.
bool useEmulatedTLS() const
Returns true if this target uses emulated TLS.
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
CodeModel::Model getCodeModel() const
Returns the code model.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
This class is used to represent EVT's, which are used to parameterize some operations.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isIntEqualitySetCC(CondCode Code)
Return true if this is a setcc instruction that performs an equality comparison when used with intege...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
ABI getTargetABI(StringRef ABIName)
InstSeq generateInstSeq(int64_t Val)
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
@ Kill
The last use of a register.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
Sequence
A sequence of states that a pointer may go through in which an objc_retain and objc_release are actua...
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
AtomicOrdering
Atomic ordering for LLVM's memory model.
unsigned getKillRegState(bool B)
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
constexpr unsigned BitWidth
std::string join_items(Sep Separator, Args &&... Items)
Joins the strings in the parameter pack Items, adding Separator between the elements....
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
PointerUnion< const Value *, const PseudoSourceValue * > ValueType
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
static EVT getFloatingPointVT(unsigned BitWidth)
Returns the EVT that represents a floating-point type with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
Align getNonZeroOrigAlign() const
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalizeOps() const
bool isBeforeLegalize() const
LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)