30#include "llvm/IR/IntrinsicsLoongArch.h"
40#define DEBUG_TYPE "loongarch-isel-lowering"
45 cl::desc(
"Trap on integer division by zero."),
52 MVT GRLenVT = Subtarget.getGRLenVT();
57 if (Subtarget.hasBasicF())
59 if (Subtarget.hasBasicD())
63 MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, MVT::v2f64};
65 MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64, MVT::v8f32, MVT::v4f64};
67 if (Subtarget.hasExtLSX())
71 if (Subtarget.hasExtLASX())
72 for (
MVT VT : LASXVTs)
140 if (Subtarget.is64Bit()) {
168 if (!Subtarget.is64Bit()) {
174 if (Subtarget.hasBasicD())
186 if (Subtarget.hasBasicF()) {
217 if (Subtarget.is64Bit())
220 if (!Subtarget.hasBasicD()) {
222 if (Subtarget.is64Bit()) {
231 if (Subtarget.hasBasicD()) {
263 if (Subtarget.is64Bit())
269 if (Subtarget.hasExtLSX()) {
284 for (
MVT VT : LSXVTs) {
298 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64}) {
319 for (
MVT VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
321 for (
MVT VT : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
323 for (
MVT VT : {MVT::v4i32, MVT::v2i64}) {
327 for (
MVT VT : {MVT::v4f32, MVT::v2f64}) {
345 {MVT::v16i8, MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v8i16, MVT::v4i16,
346 MVT::v2i16, MVT::v4i32, MVT::v2i32, MVT::v2i64}) {
361 if (Subtarget.hasExtLASX()) {
362 for (
MVT VT : LASXVTs) {
377 for (
MVT VT : {MVT::v4i64, MVT::v8i32, MVT::v16i16, MVT::v32i8}) {
399 for (
MVT VT : {MVT::v32i8, MVT::v16i16, MVT::v8i32})
401 for (
MVT VT : {MVT::v16i16, MVT::v8i32, MVT::v4i64})
403 for (
MVT VT : {MVT::v8i32, MVT::v4i32, MVT::v4i64}) {
407 for (
MVT VT : {MVT::v8f32, MVT::v4f64}) {
429 if (Subtarget.hasExtLSX()) {
436 if (Subtarget.hasExtLASX())
459 if (Subtarget.hasLAMCAS())
462 if (Subtarget.hasSCQ()) {
479 switch (
Op.getOpcode()) {
480 case ISD::ATOMIC_FENCE:
481 return lowerATOMIC_FENCE(
Op, DAG);
483 return lowerEH_DWARF_CFA(
Op, DAG);
485 return lowerGlobalAddress(
Op, DAG);
487 return lowerGlobalTLSAddress(
Op, DAG);
489 return lowerINTRINSIC_WO_CHAIN(
Op, DAG);
491 return lowerINTRINSIC_W_CHAIN(
Op, DAG);
493 return lowerINTRINSIC_VOID(
Op, DAG);
495 return lowerBlockAddress(
Op, DAG);
497 return lowerJumpTable(
Op, DAG);
499 return lowerShiftLeftParts(
Op, DAG);
501 return lowerShiftRightParts(
Op, DAG,
true);
503 return lowerShiftRightParts(
Op, DAG,
false);
505 return lowerConstantPool(
Op, DAG);
507 return lowerFP_TO_SINT(
Op, DAG);
509 return lowerBITCAST(
Op, DAG);
511 return lowerUINT_TO_FP(
Op, DAG);
513 return lowerSINT_TO_FP(
Op, DAG);
515 return lowerVASTART(
Op, DAG);
517 return lowerFRAMEADDR(
Op, DAG);
519 return lowerRETURNADDR(
Op, DAG);
521 return lowerWRITE_REGISTER(
Op, DAG);
523 return lowerINSERT_VECTOR_ELT(
Op, DAG);
525 return lowerEXTRACT_VECTOR_ELT(
Op, DAG);
527 return lowerBUILD_VECTOR(
Op, DAG);
529 return lowerCONCAT_VECTORS(
Op, DAG);
531 return lowerVECTOR_SHUFFLE(
Op, DAG);
533 return lowerBITREVERSE(
Op, DAG);
535 return lowerSCALAR_TO_VECTOR(
Op, DAG);
537 return lowerPREFETCH(
Op, DAG);
539 return lowerSELECT(
Op, DAG);
541 return lowerBRCOND(
Op, DAG);
542 case ISD::FP_TO_FP16:
543 return lowerFP_TO_FP16(
Op, DAG);
544 case ISD::FP16_TO_FP:
545 return lowerFP16_TO_FP(
Op, DAG);
546 case ISD::FP_TO_BF16:
547 return lowerFP_TO_BF16(
Op, DAG);
548 case ISD::BF16_TO_FP:
549 return lowerBF16_TO_FP(
Op, DAG);
550 case ISD::VECREDUCE_ADD:
551 return lowerVECREDUCE_ADD(
Op, DAG);
552 case ISD::VECREDUCE_AND:
553 case ISD::VECREDUCE_OR:
554 case ISD::VECREDUCE_XOR:
555 case ISD::VECREDUCE_SMAX:
556 case ISD::VECREDUCE_SMIN:
557 case ISD::VECREDUCE_UMAX:
558 case ISD::VECREDUCE_UMIN:
559 return lowerVECREDUCE(
Op, DAG);
576 MVT OpVT =
Op.getSimpleValueType();
582 unsigned LegalVecSize = 128;
583 bool isLASX256Vector =
593 if (isLASX256Vector) {
598 for (
unsigned i = 1; i < NumEles; i *= 2, EleBits *= 2) {
604 if (isLASX256Vector) {
629 MVT OpVT =
Op.getSimpleValueType();
643 for (
int i = NumEles; i > 1; i /= 2) {
646 Val = DAG.
getNode(Opcode,
DL, VecTy, Tmp, Val);
655 unsigned IsData =
Op.getConstantOperandVal(4);
660 return Op.getOperand(0);
675 if (
LHS == LHS2 &&
RHS == RHS2) {
680 }
else if (
LHS == RHS2 &&
RHS == LHS2) {
696 MVT VT =
N->getSimpleValueType(0);
727 if (~TrueVal == FalseVal) {
767 unsigned SelOpNo = 0;
777 unsigned ConstSelOpNo = 1;
778 unsigned OtherSelOpNo = 2;
785 if (!ConstSelOpNode || ConstSelOpNode->
isOpaque())
790 if (!ConstBinOpNode || ConstBinOpNode->
isOpaque())
796 SDValue NewConstOps[2] = {ConstSelOp, ConstBinOp};
798 std::swap(NewConstOps[0], NewConstOps[1]);
810 SDValue NewNonConstOps[2] = {OtherSelOp, ConstBinOp};
812 std::swap(NewNonConstOps[0], NewNonConstOps[1]);
815 SDValue NewT = (ConstSelOpNo == 1) ? NewConstOp : NewNonConstOp;
816 SDValue NewF = (ConstSelOpNo == 1) ? NewNonConstOp : NewConstOp;
836 ShAmt =
LHS.getValueSizeInBits() - 1 -
Log2_64(Mask);
850 int64_t
C = RHSC->getSExtValue();
893 MVT VT =
Op.getSimpleValueType();
894 MVT GRLenVT = Subtarget.getGRLenVT();
899 if (
Op.hasOneUse()) {
900 unsigned UseOpc =
Op->user_begin()->getOpcode();
902 SDNode *BinOp = *
Op->user_begin();
909 return lowerSELECT(NewSel, DAG);
949 if (TrueVal - 1 == FalseVal)
951 if (TrueVal + 1 == FalseVal)
958 RHS == TrueV &&
LHS == FalseV) {
990 MVT GRLenVT = Subtarget.getGRLenVT();
1002 Op.getOperand(0),
LHS,
RHS, TargetCC,
1006 Op.getOperand(0), CondV,
Op.getOperand(2));
1016LoongArchTargetLowering::lowerSCALAR_TO_VECTOR(
SDValue Op,
1019 MVT OpVT =
Op.getSimpleValueType();
1030 EVT ResTy =
Op->getValueType(0);
1041 for (
unsigned int i = 0; i < NewEltNum; i++) {
1044 unsigned RevOp = (ResTy == MVT::v16i8 || ResTy == MVT::v32i8)
1063 for (
unsigned int i = 0; i < NewEltNum; i++)
1064 for (
int j = OrigEltNum / NewEltNum - 1;
j >= 0;
j--)
1065 Mask.push_back(j + (OrigEltNum / NewEltNum) * i);
1083 if (EltBits > 32 || EltBits == 1)
1111 int MaskOffset,
const APInt &Zeroable) {
1112 int Size = Mask.size();
1113 unsigned SizeInBits =
Size * ScalarSizeInBits;
1115 auto CheckZeros = [&](
int Shift,
int Scale,
bool Left) {
1116 for (
int i = 0; i <
Size; i += Scale)
1117 for (
int j = 0; j < Shift; ++j)
1118 if (!Zeroable[i + j + (
Left ? 0 : (Scale - Shift))])
1126 for (
unsigned i = Pos, e = Pos +
Size; i != e; ++i,
Low += Step)
1127 if (!(Mask[i] == -1 || Mask[i] ==
Low))
1132 auto MatchShift = [&](
int Shift,
int Scale,
bool Left) {
1133 for (
int i = 0; i !=
Size; i += Scale) {
1134 unsigned Pos =
Left ? i + Shift : i;
1135 unsigned Low =
Left ? i : i + Shift;
1136 unsigned Len = Scale - Shift;
1141 int ShiftEltBits = ScalarSizeInBits * Scale;
1142 bool ByteShift = ShiftEltBits > 64;
1145 int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1);
1149 Scale = ByteShift ? Scale / 2 : Scale;
1155 return (
int)ShiftAmt;
1158 unsigned MaxWidth = 128;
1159 for (
int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2)
1160 for (
int Shift = 1; Shift != Scale; ++Shift)
1161 for (
bool Left : {
true,
false})
1162 if (CheckZeros(Shift, Scale,
Left)) {
1163 int ShiftAmt = MatchShift(Shift, Scale,
Left);
1188 const APInt &Zeroable) {
1189 int Size = Mask.size();
1203 Mask,
Size, Zeroable);
1211 "Illegal integer vector type");
1220template <
typename ValType>
1223 unsigned CheckStride,
1225 ValType ExpectedIndex,
unsigned ExpectedIndexStride) {
1229 if (*
I != -1 && *
I != ExpectedIndex)
1231 ExpectedIndex += ExpectedIndexStride;
1235 for (
unsigned n = 0; n < CheckStride &&
I != End; ++n, ++
I)
1247 int Size = Mask.size();
1257 int ScalarSizeInBits = VectorSizeInBits /
Size;
1258 assert(!(VectorSizeInBits % ScalarSizeInBits) &&
"Illegal shuffle mask size");
1259 (void)ScalarSizeInBits;
1261 for (
int i = 0; i <
Size; ++i) {
1267 if ((M >= 0 && M <
Size && V1IsZero) || (M >=
Size && V2IsZero)) {
1284 RepeatedMask.
assign(LaneSize, -1);
1285 int Size = Mask.size();
1286 for (
int i = 0; i <
Size; ++i) {
1287 assert(Mask[i] == -1 || Mask[i] >= 0);
1290 if ((Mask[i] %
Size) / LaneSize != i / LaneSize)
1297 Mask[i] <
Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize;
1298 if (RepeatedMask[i % LaneSize] < 0)
1300 RepeatedMask[i % LaneSize] = LocalM;
1301 else if (RepeatedMask[i % LaneSize] != LocalM)
1318 int NumElts = RepeatedMask.
size();
1320 int Scale = 16 / NumElts;
1322 for (
int i = 0; i < NumElts; ++i) {
1323 int M = RepeatedMask[i];
1324 assert((M == -1 || (0 <= M && M < (2 * NumElts))) &&
1325 "Unexpected mask index.");
1330 int StartIdx = i - (M % NumElts);
1337 int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx;
1340 Rotation = CandidateRotation;
1341 else if (Rotation != CandidateRotation)
1345 SDValue MaskV = M < NumElts ? V1 : V2;
1356 else if (TargetV != MaskV)
1361 assert(Rotation != 0 &&
"Failed to locate a viable rotation!");
1362 assert((
Lo ||
Hi) &&
"Failed to find a rotated input vector!");
1371 return Rotation * Scale;
1390 if (ByteRotation <= 0)
1397 int LoByteShift = 16 - ByteRotation;
1398 int HiByteShift = ByteRotation;
1421 const APInt &Zeroable) {
1435 for (
int i = 0; i < NumElements; i++) {
1439 if (i % Scale != 0) {
1450 SDValue V = M < NumElements ? V1 : V2;
1451 M = M % NumElements;
1454 Offset = M - (i / Scale);
1457 if (
Offset % (NumElements / Scale))
1459 }
else if (InputV != V)
1462 if (M != (
Offset + (i / Scale)))
1473 if (
Offset >= (NumElements / 2)) {
1475 Offset -= (NumElements / 2);
1482 InputV = DAG.
getNode(VilVLoHi,
DL, InputVT, Ext, InputV);
1486 }
while (Scale > 1);
1492 for (
int NumExtElements = Bits / 64; NumExtElements < NumElements;
1493 NumExtElements *= 2) {
1513 int SplatIndex = -1;
1514 for (
const auto &M : Mask) {
1521 if (SplatIndex == -1)
1524 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
1526 APInt Imm(64, SplatIndex);
1557 unsigned SubVecSize = 4;
1558 if (VT == MVT::v2f64 || VT == MVT::v2i64)
1561 int SubMask[4] = {-1, -1, -1, -1};
1562 for (
unsigned i = 0; i < SubVecSize; ++i) {
1563 for (
unsigned j = i; j < Mask.size(); j += SubVecSize) {
1569 M -= 4 * (j / SubVecSize);
1570 if (M < 0 || M >= 4)
1576 if (SubMask[i] == -1)
1580 else if (M != -1 && M != SubMask[i])
1587 for (
int i = SubVecSize - 1; i >= 0; --i) {
1600 if (VT == MVT::v2f64 || VT == MVT::v2i64)
1627 const auto &Begin = Mask.begin();
1628 const auto &End = Mask.end();
1629 SDValue OriV1 = V1, OriV2 = V2;
1667 const auto &Begin = Mask.begin();
1668 const auto &End = Mask.end();
1669 SDValue OriV1 = V1, OriV2 = V2;
1708 const auto &Begin = Mask.begin();
1709 const auto &End = Mask.end();
1710 unsigned HalfSize = Mask.size() / 2;
1711 SDValue OriV1 = V1, OriV2 = V2;
1751 const auto &Begin = Mask.begin();
1752 const auto &End = Mask.end();
1753 SDValue OriV1 = V1, OriV2 = V2;
1791 const auto &Begin = Mask.begin();
1792 const auto &Mid = Mask.begin() + Mask.size() / 2;
1793 const auto &End = Mask.end();
1794 SDValue OriV1 = V1, OriV2 = V2;
1833 const auto &Begin = Mask.begin();
1834 const auto &Mid = Mask.begin() + Mask.size() / 2;
1835 const auto &End = Mask.end();
1836 SDValue OriV1 = V1, OriV2 = V2;
1890 "Vector type is unsupported for lsx!");
1892 "Two operands have different types!");
1894 "Unexpected mask size for shuffle!");
1895 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
1897 APInt KnownUndef, KnownZero;
1899 APInt Zeroable = KnownUndef | KnownZero;
1962 int SplatIndex = -1;
1963 for (
const auto &M : Mask) {
1970 if (SplatIndex == -1)
1973 const auto &Begin = Mask.begin();
1974 const auto &End = Mask.end();
1975 unsigned HalfSize = Mask.size() / 2;
1977 assert(SplatIndex < (
int)Mask.size() &&
"Out of bounds mask index");
1981 APInt Imm(64, SplatIndex);
1996 if (Mask.size() <= 4)
2006 if (Mask.size() != 8 || (VT != MVT::v8i32 && VT != MVT::v8f32))
2010 unsigned HalfSize = NumElts / 2;
2011 bool FrontLo =
true, FrontHi =
true;
2012 bool BackLo =
true, BackHi =
true;
2014 auto inRange = [](
int val,
int low,
int high) {
2015 return (val == -1) || (val >= low && val < high);
2018 for (
unsigned i = 0; i < HalfSize; ++i) {
2019 int Fronti = Mask[i];
2020 int Backi = Mask[i + HalfSize];
2022 FrontLo &=
inRange(Fronti, 0, HalfSize);
2023 FrontHi &=
inRange(Fronti, HalfSize, NumElts);
2024 BackLo &=
inRange(Backi, 0, HalfSize);
2025 BackHi &=
inRange(Backi, HalfSize, NumElts);
2031 if ((FrontLo || FrontHi) && (BackLo || BackHi))
2035 for (
unsigned i = 0; i < NumElts; ++i)
2062 const auto &Begin = Mask.begin();
2063 const auto &End = Mask.end();
2064 unsigned HalfSize = Mask.size() / 2;
2065 unsigned LeftSize = HalfSize / 2;
2066 SDValue OriV1 = V1, OriV2 = V2;
2073 Mask.size() + HalfSize - LeftSize, 1) &&
2075 Mask.size() + HalfSize + LeftSize, 1))
2086 Mask.size() + HalfSize - LeftSize, 1) &&
2088 Mask.size() + HalfSize + LeftSize, 1))
2101 const auto &Begin = Mask.begin();
2102 const auto &End = Mask.end();
2103 unsigned HalfSize = Mask.size() / 2;
2104 SDValue OriV1 = V1, OriV2 = V2;
2111 Mask.size() + HalfSize, 1))
2122 Mask.size() + HalfSize, 1))
2135 const auto &Begin = Mask.begin();
2136 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
2137 const auto &Mid = Mask.begin() + Mask.size() / 2;
2138 const auto &RightMid = Mask.end() - Mask.size() / 4;
2139 const auto &End = Mask.end();
2140 unsigned HalfSize = Mask.size() / 2;
2141 SDValue OriV1 = V1, OriV2 = V2;
2170 const auto &Begin = Mask.begin();
2171 const auto &LeftMid = Mask.begin() + Mask.size() / 4;
2172 const auto &Mid = Mask.begin() + Mask.size() / 2;
2173 const auto &RightMid = Mask.end() - Mask.size() / 4;
2174 const auto &End = Mask.end();
2175 unsigned HalfSize = Mask.size() / 2;
2176 SDValue OriV1 = V1, OriV2 = V2;
2206 int MaskSize = Mask.size();
2207 int HalfSize = Mask.size() / 2;
2208 const auto &Begin = Mask.begin();
2209 const auto &Mid = Mask.begin() + HalfSize;
2210 const auto &End = Mask.end();
2222 for (
auto it = Begin; it < Mid; it++) {
2225 else if ((*it >= 0 && *it < HalfSize) ||
2226 (*it >= MaskSize && *it < MaskSize + HalfSize)) {
2227 int M = *it < HalfSize ? *it : *it - HalfSize;
2232 assert((
int)MaskAlloc.
size() == HalfSize &&
"xvshuf convert failed!");
2234 for (
auto it = Mid; it < End; it++) {
2237 else if ((*it >= HalfSize && *it < MaskSize) ||
2238 (*it >= MaskSize + HalfSize && *it < MaskSize * 2)) {
2239 int M = *it < MaskSize ? *it - HalfSize : *it - MaskSize;
2244 assert((
int)MaskAlloc.
size() == MaskSize &&
"xvshuf convert failed!");
2274 enum HalfMaskType { HighLaneTy, LowLaneTy,
None };
2276 int MaskSize = Mask.size();
2277 int HalfSize = Mask.size() / 2;
2280 HalfMaskType preMask =
None, postMask =
None;
2282 if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
2283 return M < 0 || (M >= 0 && M < HalfSize) ||
2284 (M >= MaskSize && M < MaskSize + HalfSize);
2286 preMask = HighLaneTy;
2287 else if (std::all_of(Mask.begin(), Mask.begin() + HalfSize, [&](
int M) {
2288 return M < 0 || (M >= HalfSize && M < MaskSize) ||
2289 (M >= MaskSize + HalfSize && M < MaskSize * 2);
2291 preMask = LowLaneTy;
2293 if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
2294 return M < 0 || (M >= 0 && M < HalfSize) ||
2295 (M >= MaskSize && M < MaskSize + HalfSize);
2297 postMask = HighLaneTy;
2298 else if (std::all_of(Mask.begin() + HalfSize, Mask.end(), [&](
int M) {
2299 return M < 0 || (M >= HalfSize && M < MaskSize) ||
2300 (M >= MaskSize + HalfSize && M < MaskSize * 2);
2302 postMask = LowLaneTy;
2310 if (preMask == HighLaneTy && postMask == LowLaneTy) {
2313 if (preMask == LowLaneTy && postMask == HighLaneTy) {
2326 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
2327 *it = *it < 0 ? *it : *it - HalfSize;
2329 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
2330 *it = *it < 0 ? *it : *it + HalfSize;
2332 }
else if (preMask == LowLaneTy && postMask == LowLaneTy) {
2345 for (
auto it = Mask.begin(); it < Mask.begin() + HalfSize; it++) {
2346 *it = *it < 0 ? *it : *it - HalfSize;
2348 }
else if (preMask == HighLaneTy && postMask == HighLaneTy) {
2361 for (
auto it = Mask.begin() + HalfSize; it < Mask.end(); it++) {
2362 *it = *it < 0 ? *it : *it + HalfSize;
2385 int Size = Mask.size();
2386 int LaneSize =
Size / 2;
2388 bool LaneCrossing[2] = {
false,
false};
2389 for (
int i = 0; i <
Size; ++i)
2390 if (Mask[i] >= 0 && ((Mask[i] %
Size) / LaneSize) != (i / LaneSize))
2391 LaneCrossing[(Mask[i] %
Size) / LaneSize] =
true;
2394 if (!LaneCrossing[0] && !LaneCrossing[1])
2398 InLaneMask.
assign(Mask.begin(), Mask.end());
2399 for (
int i = 0; i <
Size; ++i) {
2400 int &M = InLaneMask[i];
2403 if (((M %
Size) / LaneSize) != (i / LaneSize))
2404 M = (M % LaneSize) + ((i / LaneSize) * LaneSize) +
Size;
2409 DAG.
getUNDEF(MVT::v4i64), {2, 3, 0, 1});
2424 "Vector type is unsupported for lasx!");
2426 "Two operands have different types!");
2428 "Unexpected mask size for shuffle!");
2429 assert(Mask.size() % 2 == 0 &&
"Expected even mask size.");
2430 assert(Mask.size() >= 4 &&
"Mask size is less than 4.");
2436 APInt KnownUndef, KnownZero;
2438 APInt Zeroable = KnownUndef | KnownZero;
2475 Subtarget, Zeroable)))
2491 ArrayRef<int> OrigMask = SVOp->
getMask();
2494 MVT VT =
Op.getSimpleValueType();
2498 bool V1IsUndef = V1.
isUndef();
2499 bool V2IsUndef = V2.
isUndef();
2500 if (V1IsUndef && V2IsUndef)
2513 any_of(OrigMask, [NumElements](
int M) {
return M >= NumElements; })) {
2514 SmallVector<int, 8> NewMask(OrigMask);
2515 for (
int &M : NewMask)
2516 if (M >= NumElements)
2522 int MaskUpperLimit = OrigMask.
size() * (V2IsUndef ? 1 : 2);
2523 (void)MaskUpperLimit;
2525 [&](
int M) {
return -1 <=
M &&
M < MaskUpperLimit; }) &&
2526 "Out of bounds shuffle index");
2548 std::tie(Res, Chain) =
2549 makeLibCall(DAG, LC, MVT::f32, Op0, CallOptions,
DL, Chain);
2550 if (Subtarget.is64Bit())
2567 std::tie(Res, Chain) =
makeLibCall(DAG, RTLIB::FPEXT_F16_F32, MVT::f32, Arg,
2568 CallOptions,
DL, Chain);
2574 assert(Subtarget.hasBasicF() &&
"Unexpected custom legalization");
2580 makeLibCall(DAG, LC, MVT::f32,
Op.getOperand(0), CallOptions,
DL).first;
2581 if (Subtarget.is64Bit())
2588 assert(Subtarget.hasBasicF() &&
"Unexpected custom legalization");
2589 MVT VT =
Op.getSimpleValueType();
2598 return DAG.
getNode(ISD::FP_EXTEND,
DL, VT, Res);
2615 "Unsupported vector type for broadcast.");
2618 bool IsIdeneity =
true;
2620 for (
int i = 0; i !=
NumOps; i++) {
2622 if (
Op.getOpcode() != ISD::LOAD || (IdentitySrc &&
Op != IdentitySrc)) {
2634 auto ExtType = LN->getExtensionType();
2640 ? DAG.
getVTList(VT, LN->getBasePtr().getValueType(), MVT::Other)
2642 SDValue Ops[] = {LN->getChain(), LN->getBasePtr(), LN->getOffset()};
2653 EVT ResTy =
Op->getValueType(0);
2656 APInt SplatValue, SplatUndef;
2657 unsigned SplatBitSize;
2660 bool UseSameConstant =
true;
2665 if ((!Subtarget.hasExtLSX() || !Is128Vec) &&
2666 (!Subtarget.hasExtLASX() || !Is256Vec))
2672 if (
Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
2674 SplatBitSize <= 64) {
2676 if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2680 if (SplatBitSize == 64 && !Subtarget.is64Bit()) {
2686 if ((Is128Vec && ResTy == MVT::v4i32) ||
2687 (Is256Vec && ResTy == MVT::v8i32))
2693 switch (SplatBitSize) {
2697 ViaVecTy = Is128Vec ? MVT::v16i8 : MVT::v32i8;
2700 ViaVecTy = Is128Vec ? MVT::v8i16 : MVT::v16i16;
2703 ViaVecTy = Is128Vec ? MVT::v4i32 : MVT::v8i32;
2706 ViaVecTy = Is128Vec ? MVT::v2i64 : MVT::v4i64;
2714 if (ViaVecTy != ResTy)
2715 Result = DAG.
getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2723 for (
unsigned i = 0; i < NumElts; ++i) {
2728 ConstantValue = Opi;
2729 else if (ConstantValue != Opi)
2730 UseSameConstant =
false;
2735 if (IsConstant && UseSameConstant && ResTy != MVT::v2f64) {
2737 for (
unsigned i = 0; i < NumElts; ++i) {
2757 for (
unsigned i = 1; i < NumElts; ++i) {
2773 MVT ResVT =
Op.getSimpleValueType();
2777 unsigned NumFreezeUndef = 0;
2778 unsigned NumZero = 0;
2779 unsigned NumNonZero = 0;
2780 unsigned NonZeros = 0;
2781 SmallSet<SDValue, 4> Undefs;
2782 for (
unsigned i = 0; i != NumOperands; ++i) {
2797 assert(i <
sizeof(NonZeros) * CHAR_BIT);
2804 if (NumNonZero > 2) {
2808 Ops.slice(0, NumOperands / 2));
2810 Ops.slice(NumOperands / 2));
2823 MVT SubVT =
Op.getOperand(0).getSimpleValueType();
2825 for (
unsigned i = 0; i != NumOperands; ++i) {
2826 if ((NonZeros & (1 << i)) == 0)
2837LoongArchTargetLowering::lowerEXTRACT_VECTOR_ELT(
SDValue Op,
2839 MVT EltVT =
Op.getSimpleValueType();
2844 MVT GRLenVT = Subtarget.getGRLenVT();
2876 DAG.
getBitcast((VecTy == MVT::v4f64) ? MVT::v4i64 : VecTy, IdxVec);
2896LoongArchTargetLowering::lowerINSERT_VECTOR_ELT(
SDValue Op,
2898 MVT VT =
Op.getSimpleValueType();
2920 for (
unsigned i = 0; i < NumElts; ++i)
2943 return DAG.
getNode(ISD::MEMBARRIER,
DL, MVT::Other,
Op.getOperand(0));
2951 if (Subtarget.is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i32) {
2953 "On LA64, only 64-bit registers can be written.");
2954 return Op.getOperand(0);
2957 if (!Subtarget.is64Bit() &&
Op.getOperand(2).getValueType() == MVT::i64) {
2959 "On LA32, only 32-bit registers can be written.");
2960 return Op.getOperand(0);
2970 "be a constant integer");
2976 Register FrameReg = Subtarget.getRegisterInfo()->getFrameRegister(MF);
2977 EVT VT =
Op.getValueType();
2980 unsigned Depth =
Op.getConstantOperandVal(0);
2981 int GRLenInBytes = Subtarget.getGRLen() / 8;
2984 int Offset = -(GRLenInBytes * 2);
2996 if (
Op.getConstantOperandVal(0) != 0) {
2998 "return address can only be determined for the current frame");
3004 MVT GRLenVT = Subtarget.getGRLenVT();
3016 auto Size = Subtarget.getGRLen() / 8;
3024 auto *FuncInfo = MF.
getInfo<LoongArchMachineFunctionInfo>();
3034 MachinePointerInfo(SV));
3039 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
3040 !Subtarget.hasBasicD() &&
"unexpected target features");
3046 if (
C &&
C->getZExtValue() < UINT64_C(0xFFFFFFFF))
3060 EVT RetVT =
Op.getValueType();
3066 std::tie(Result, Chain) =
3073 assert(Subtarget.is64Bit() && Subtarget.hasBasicF() &&
3074 !Subtarget.hasBasicD() &&
"unexpected target features");
3085 EVT RetVT =
Op.getValueType();
3091 std::tie(Result, Chain) =
3100 EVT VT =
Op.getValueType();
3104 if (
Op.getValueType() == MVT::f32 && Op0VT == MVT::i32 &&
3105 Subtarget.is64Bit() && Subtarget.hasBasicF()) {
3109 if (VT == MVT::f64 && Op0VT == MVT::i64 && !Subtarget.is64Bit()) {
3124 Op0 = DAG.
getNode(ISD::FP_EXTEND,
DL, MVT::f32, Op0);
3126 if (
Op.getValueSizeInBits() > 32 && Subtarget.hasBasicF() &&
3127 !Subtarget.hasBasicD()) {
3134 return DAG.
getNode(ISD::BITCAST,
DL,
Op.getValueType(), Trunc);
3151 N->getOffset(), Flags);
3159template <
class NodeTy>
3162 bool IsLocal)
const {
3173 assert(Subtarget.is64Bit() &&
"Large code model requires LA64");
3244 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
3246 const GlobalValue *GV =
N->getGlobal();
3258 unsigned Opc,
bool UseGOT,
3262 MVT GRLenVT = Subtarget.getGRLenVT();
3276 if (
Opc == LoongArch::PseudoLA_TLS_LE && !Large)
3314 Args.emplace_back(Load, CallTy);
3317 TargetLowering::CallLoweringInfo CLI(DAG);
3332 const GlobalValue *GV =
N->getGlobal();
3346LoongArchTargetLowering::lowerGlobalTLSAddress(
SDValue Op,
3353 assert((!Large || Subtarget.is64Bit()) &&
"Large code model requires LA64");
3356 assert(
N->getOffset() == 0 &&
"unexpected offset in global node");
3369 return getDynamicTLSAddr(
N, DAG,
3370 Large ? LoongArch::PseudoLA_TLS_GD_LARGE
3371 : LoongArch::PseudoLA_TLS_GD,
3378 return getDynamicTLSAddr(
N, DAG,
3379 Large ? LoongArch::PseudoLA_TLS_LD_LARGE
3380 : LoongArch::PseudoLA_TLS_LD,
3385 return getStaticTLSAddr(
N, DAG,
3386 Large ? LoongArch::PseudoLA_TLS_IE_LARGE
3387 : LoongArch::PseudoLA_TLS_IE,
3394 return getStaticTLSAddr(
N, DAG, LoongArch::PseudoLA_TLS_LE,
3398 return getTLSDescAddr(
N, DAG,
3399 Large ? LoongArch::PseudoLA_TLS_DESC_LARGE
3400 : LoongArch::PseudoLA_TLS_DESC,
3404template <
unsigned N>
3409 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
3410 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
3412 ": argument out of range.");
3419LoongArchTargetLowering::lowerINTRINSIC_WO_CHAIN(
SDValue Op,
3421 switch (
Op.getConstantOperandVal(0)) {
3424 case Intrinsic::thread_pointer: {
3428 case Intrinsic::loongarch_lsx_vpickve2gr_d:
3429 case Intrinsic::loongarch_lsx_vpickve2gr_du:
3430 case Intrinsic::loongarch_lsx_vreplvei_d:
3431 case Intrinsic::loongarch_lasx_xvrepl128vei_d:
3433 case Intrinsic::loongarch_lsx_vreplvei_w:
3434 case Intrinsic::loongarch_lasx_xvrepl128vei_w:
3435 case Intrinsic::loongarch_lasx_xvpickve2gr_d:
3436 case Intrinsic::loongarch_lasx_xvpickve2gr_du:
3437 case Intrinsic::loongarch_lasx_xvpickve_d:
3438 case Intrinsic::loongarch_lasx_xvpickve_d_f:
3440 case Intrinsic::loongarch_lasx_xvinsve0_d:
3442 case Intrinsic::loongarch_lsx_vsat_b:
3443 case Intrinsic::loongarch_lsx_vsat_bu:
3444 case Intrinsic::loongarch_lsx_vrotri_b:
3445 case Intrinsic::loongarch_lsx_vsllwil_h_b:
3446 case Intrinsic::loongarch_lsx_vsllwil_hu_bu:
3447 case Intrinsic::loongarch_lsx_vsrlri_b:
3448 case Intrinsic::loongarch_lsx_vsrari_b:
3449 case Intrinsic::loongarch_lsx_vreplvei_h:
3450 case Intrinsic::loongarch_lasx_xvsat_b:
3451 case Intrinsic::loongarch_lasx_xvsat_bu:
3452 case Intrinsic::loongarch_lasx_xvrotri_b:
3453 case Intrinsic::loongarch_lasx_xvsllwil_h_b:
3454 case Intrinsic::loongarch_lasx_xvsllwil_hu_bu:
3455 case Intrinsic::loongarch_lasx_xvsrlri_b:
3456 case Intrinsic::loongarch_lasx_xvsrari_b:
3457 case Intrinsic::loongarch_lasx_xvrepl128vei_h:
3458 case Intrinsic::loongarch_lasx_xvpickve_w:
3459 case Intrinsic::loongarch_lasx_xvpickve_w_f:
3461 case Intrinsic::loongarch_lasx_xvinsve0_w:
3463 case Intrinsic::loongarch_lsx_vsat_h:
3464 case Intrinsic::loongarch_lsx_vsat_hu:
3465 case Intrinsic::loongarch_lsx_vrotri_h:
3466 case Intrinsic::loongarch_lsx_vsllwil_w_h:
3467 case Intrinsic::loongarch_lsx_vsllwil_wu_hu:
3468 case Intrinsic::loongarch_lsx_vsrlri_h:
3469 case Intrinsic::loongarch_lsx_vsrari_h:
3470 case Intrinsic::loongarch_lsx_vreplvei_b:
3471 case Intrinsic::loongarch_lasx_xvsat_h:
3472 case Intrinsic::loongarch_lasx_xvsat_hu:
3473 case Intrinsic::loongarch_lasx_xvrotri_h:
3474 case Intrinsic::loongarch_lasx_xvsllwil_w_h:
3475 case Intrinsic::loongarch_lasx_xvsllwil_wu_hu:
3476 case Intrinsic::loongarch_lasx_xvsrlri_h:
3477 case Intrinsic::loongarch_lasx_xvsrari_h:
3478 case Intrinsic::loongarch_lasx_xvrepl128vei_b:
3480 case Intrinsic::loongarch_lsx_vsrlni_b_h:
3481 case Intrinsic::loongarch_lsx_vsrani_b_h:
3482 case Intrinsic::loongarch_lsx_vsrlrni_b_h:
3483 case Intrinsic::loongarch_lsx_vsrarni_b_h:
3484 case Intrinsic::loongarch_lsx_vssrlni_b_h:
3485 case Intrinsic::loongarch_lsx_vssrani_b_h:
3486 case Intrinsic::loongarch_lsx_vssrlni_bu_h:
3487 case Intrinsic::loongarch_lsx_vssrani_bu_h:
3488 case Intrinsic::loongarch_lsx_vssrlrni_b_h:
3489 case Intrinsic::loongarch_lsx_vssrarni_b_h:
3490 case Intrinsic::loongarch_lsx_vssrlrni_bu_h:
3491 case Intrinsic::loongarch_lsx_vssrarni_bu_h:
3492 case Intrinsic::loongarch_lasx_xvsrlni_b_h:
3493 case Intrinsic::loongarch_lasx_xvsrani_b_h:
3494 case Intrinsic::loongarch_lasx_xvsrlrni_b_h:
3495 case Intrinsic::loongarch_lasx_xvsrarni_b_h:
3496 case Intrinsic::loongarch_lasx_xvssrlni_b_h:
3497 case Intrinsic::loongarch_lasx_xvssrani_b_h:
3498 case Intrinsic::loongarch_lasx_xvssrlni_bu_h:
3499 case Intrinsic::loongarch_lasx_xvssrani_bu_h:
3500 case Intrinsic::loongarch_lasx_xvssrlrni_b_h:
3501 case Intrinsic::loongarch_lasx_xvssrarni_b_h:
3502 case Intrinsic::loongarch_lasx_xvssrlrni_bu_h:
3503 case Intrinsic::loongarch_lasx_xvssrarni_bu_h:
3505 case Intrinsic::loongarch_lsx_vsat_w:
3506 case Intrinsic::loongarch_lsx_vsat_wu:
3507 case Intrinsic::loongarch_lsx_vrotri_w:
3508 case Intrinsic::loongarch_lsx_vsllwil_d_w:
3509 case Intrinsic::loongarch_lsx_vsllwil_du_wu:
3510 case Intrinsic::loongarch_lsx_vsrlri_w:
3511 case Intrinsic::loongarch_lsx_vsrari_w:
3512 case Intrinsic::loongarch_lsx_vslei_bu:
3513 case Intrinsic::loongarch_lsx_vslei_hu:
3514 case Intrinsic::loongarch_lsx_vslei_wu:
3515 case Intrinsic::loongarch_lsx_vslei_du:
3516 case Intrinsic::loongarch_lsx_vslti_bu:
3517 case Intrinsic::loongarch_lsx_vslti_hu:
3518 case Intrinsic::loongarch_lsx_vslti_wu:
3519 case Intrinsic::loongarch_lsx_vslti_du:
3520 case Intrinsic::loongarch_lsx_vbsll_v:
3521 case Intrinsic::loongarch_lsx_vbsrl_v:
3522 case Intrinsic::loongarch_lasx_xvsat_w:
3523 case Intrinsic::loongarch_lasx_xvsat_wu:
3524 case Intrinsic::loongarch_lasx_xvrotri_w:
3525 case Intrinsic::loongarch_lasx_xvsllwil_d_w:
3526 case Intrinsic::loongarch_lasx_xvsllwil_du_wu:
3527 case Intrinsic::loongarch_lasx_xvsrlri_w:
3528 case Intrinsic::loongarch_lasx_xvsrari_w:
3529 case Intrinsic::loongarch_lasx_xvslei_bu:
3530 case Intrinsic::loongarch_lasx_xvslei_hu:
3531 case Intrinsic::loongarch_lasx_xvslei_wu:
3532 case Intrinsic::loongarch_lasx_xvslei_du:
3533 case Intrinsic::loongarch_lasx_xvslti_bu:
3534 case Intrinsic::loongarch_lasx_xvslti_hu:
3535 case Intrinsic::loongarch_lasx_xvslti_wu:
3536 case Intrinsic::loongarch_lasx_xvslti_du:
3537 case Intrinsic::loongarch_lasx_xvbsll_v:
3538 case Intrinsic::loongarch_lasx_xvbsrl_v:
3540 case Intrinsic::loongarch_lsx_vseqi_b:
3541 case Intrinsic::loongarch_lsx_vseqi_h:
3542 case Intrinsic::loongarch_lsx_vseqi_w:
3543 case Intrinsic::loongarch_lsx_vseqi_d:
3544 case Intrinsic::loongarch_lsx_vslei_b:
3545 case Intrinsic::loongarch_lsx_vslei_h:
3546 case Intrinsic::loongarch_lsx_vslei_w:
3547 case Intrinsic::loongarch_lsx_vslei_d:
3548 case Intrinsic::loongarch_lsx_vslti_b:
3549 case Intrinsic::loongarch_lsx_vslti_h:
3550 case Intrinsic::loongarch_lsx_vslti_w:
3551 case Intrinsic::loongarch_lsx_vslti_d:
3552 case Intrinsic::loongarch_lasx_xvseqi_b:
3553 case Intrinsic::loongarch_lasx_xvseqi_h:
3554 case Intrinsic::loongarch_lasx_xvseqi_w:
3555 case Intrinsic::loongarch_lasx_xvseqi_d:
3556 case Intrinsic::loongarch_lasx_xvslei_b:
3557 case Intrinsic::loongarch_lasx_xvslei_h:
3558 case Intrinsic::loongarch_lasx_xvslei_w:
3559 case Intrinsic::loongarch_lasx_xvslei_d:
3560 case Intrinsic::loongarch_lasx_xvslti_b:
3561 case Intrinsic::loongarch_lasx_xvslti_h:
3562 case Intrinsic::loongarch_lasx_xvslti_w:
3563 case Intrinsic::loongarch_lasx_xvslti_d:
3565 case Intrinsic::loongarch_lsx_vsrlni_h_w:
3566 case Intrinsic::loongarch_lsx_vsrani_h_w:
3567 case Intrinsic::loongarch_lsx_vsrlrni_h_w:
3568 case Intrinsic::loongarch_lsx_vsrarni_h_w:
3569 case Intrinsic::loongarch_lsx_vssrlni_h_w:
3570 case Intrinsic::loongarch_lsx_vssrani_h_w:
3571 case Intrinsic::loongarch_lsx_vssrlni_hu_w:
3572 case Intrinsic::loongarch_lsx_vssrani_hu_w:
3573 case Intrinsic::loongarch_lsx_vssrlrni_h_w:
3574 case Intrinsic::loongarch_lsx_vssrarni_h_w:
3575 case Intrinsic::loongarch_lsx_vssrlrni_hu_w:
3576 case Intrinsic::loongarch_lsx_vssrarni_hu_w:
3577 case Intrinsic::loongarch_lsx_vfrstpi_b:
3578 case Intrinsic::loongarch_lsx_vfrstpi_h:
3579 case Intrinsic::loongarch_lasx_xvsrlni_h_w:
3580 case Intrinsic::loongarch_lasx_xvsrani_h_w:
3581 case Intrinsic::loongarch_lasx_xvsrlrni_h_w:
3582 case Intrinsic::loongarch_lasx_xvsrarni_h_w:
3583 case Intrinsic::loongarch_lasx_xvssrlni_h_w:
3584 case Intrinsic::loongarch_lasx_xvssrani_h_w:
3585 case Intrinsic::loongarch_lasx_xvssrlni_hu_w:
3586 case Intrinsic::loongarch_lasx_xvssrani_hu_w:
3587 case Intrinsic::loongarch_lasx_xvssrlrni_h_w:
3588 case Intrinsic::loongarch_lasx_xvssrarni_h_w:
3589 case Intrinsic::loongarch_lasx_xvssrlrni_hu_w:
3590 case Intrinsic::loongarch_lasx_xvssrarni_hu_w:
3591 case Intrinsic::loongarch_lasx_xvfrstpi_b:
3592 case Intrinsic::loongarch_lasx_xvfrstpi_h:
3594 case Intrinsic::loongarch_lsx_vsat_d:
3595 case Intrinsic::loongarch_lsx_vsat_du:
3596 case Intrinsic::loongarch_lsx_vrotri_d:
3597 case Intrinsic::loongarch_lsx_vsrlri_d:
3598 case Intrinsic::loongarch_lsx_vsrari_d:
3599 case Intrinsic::loongarch_lasx_xvsat_d:
3600 case Intrinsic::loongarch_lasx_xvsat_du:
3601 case Intrinsic::loongarch_lasx_xvrotri_d:
3602 case Intrinsic::loongarch_lasx_xvsrlri_d:
3603 case Intrinsic::loongarch_lasx_xvsrari_d:
3605 case Intrinsic::loongarch_lsx_vsrlni_w_d:
3606 case Intrinsic::loongarch_lsx_vsrani_w_d:
3607 case Intrinsic::loongarch_lsx_vsrlrni_w_d:
3608 case Intrinsic::loongarch_lsx_vsrarni_w_d:
3609 case Intrinsic::loongarch_lsx_vssrlni_w_d:
3610 case Intrinsic::loongarch_lsx_vssrani_w_d:
3611 case Intrinsic::loongarch_lsx_vssrlni_wu_d:
3612 case Intrinsic::loongarch_lsx_vssrani_wu_d:
3613 case Intrinsic::loongarch_lsx_vssrlrni_w_d:
3614 case Intrinsic::loongarch_lsx_vssrarni_w_d:
3615 case Intrinsic::loongarch_lsx_vssrlrni_wu_d:
3616 case Intrinsic::loongarch_lsx_vssrarni_wu_d:
3617 case Intrinsic::loongarch_lasx_xvsrlni_w_d:
3618 case Intrinsic::loongarch_lasx_xvsrani_w_d:
3619 case Intrinsic::loongarch_lasx_xvsrlrni_w_d:
3620 case Intrinsic::loongarch_lasx_xvsrarni_w_d:
3621 case Intrinsic::loongarch_lasx_xvssrlni_w_d:
3622 case Intrinsic::loongarch_lasx_xvssrani_w_d:
3623 case Intrinsic::loongarch_lasx_xvssrlni_wu_d:
3624 case Intrinsic::loongarch_lasx_xvssrani_wu_d:
3625 case Intrinsic::loongarch_lasx_xvssrlrni_w_d:
3626 case Intrinsic::loongarch_lasx_xvssrarni_w_d:
3627 case Intrinsic::loongarch_lasx_xvssrlrni_wu_d:
3628 case Intrinsic::loongarch_lasx_xvssrarni_wu_d:
3630 case Intrinsic::loongarch_lsx_vsrlni_d_q:
3631 case Intrinsic::loongarch_lsx_vsrani_d_q:
3632 case Intrinsic::loongarch_lsx_vsrlrni_d_q:
3633 case Intrinsic::loongarch_lsx_vsrarni_d_q:
3634 case Intrinsic::loongarch_lsx_vssrlni_d_q:
3635 case Intrinsic::loongarch_lsx_vssrani_d_q:
3636 case Intrinsic::loongarch_lsx_vssrlni_du_q:
3637 case Intrinsic::loongarch_lsx_vssrani_du_q:
3638 case Intrinsic::loongarch_lsx_vssrlrni_d_q:
3639 case Intrinsic::loongarch_lsx_vssrarni_d_q:
3640 case Intrinsic::loongarch_lsx_vssrlrni_du_q:
3641 case Intrinsic::loongarch_lsx_vssrarni_du_q:
3642 case Intrinsic::loongarch_lasx_xvsrlni_d_q:
3643 case Intrinsic::loongarch_lasx_xvsrani_d_q:
3644 case Intrinsic::loongarch_lasx_xvsrlrni_d_q:
3645 case Intrinsic::loongarch_lasx_xvsrarni_d_q:
3646 case Intrinsic::loongarch_lasx_xvssrlni_d_q:
3647 case Intrinsic::loongarch_lasx_xvssrani_d_q:
3648 case Intrinsic::loongarch_lasx_xvssrlni_du_q:
3649 case Intrinsic::loongarch_lasx_xvssrani_du_q:
3650 case Intrinsic::loongarch_lasx_xvssrlrni_d_q:
3651 case Intrinsic::loongarch_lasx_xvssrarni_d_q:
3652 case Intrinsic::loongarch_lasx_xvssrlrni_du_q:
3653 case Intrinsic::loongarch_lasx_xvssrarni_du_q:
3655 case Intrinsic::loongarch_lsx_vnori_b:
3656 case Intrinsic::loongarch_lsx_vshuf4i_b:
3657 case Intrinsic::loongarch_lsx_vshuf4i_h:
3658 case Intrinsic::loongarch_lsx_vshuf4i_w:
3659 case Intrinsic::loongarch_lasx_xvnori_b:
3660 case Intrinsic::loongarch_lasx_xvshuf4i_b:
3661 case Intrinsic::loongarch_lasx_xvshuf4i_h:
3662 case Intrinsic::loongarch_lasx_xvshuf4i_w:
3663 case Intrinsic::loongarch_lasx_xvpermi_d:
3665 case Intrinsic::loongarch_lsx_vshuf4i_d:
3666 case Intrinsic::loongarch_lsx_vpermi_w:
3667 case Intrinsic::loongarch_lsx_vbitseli_b:
3668 case Intrinsic::loongarch_lsx_vextrins_b:
3669 case Intrinsic::loongarch_lsx_vextrins_h:
3670 case Intrinsic::loongarch_lsx_vextrins_w:
3671 case Intrinsic::loongarch_lsx_vextrins_d:
3672 case Intrinsic::loongarch_lasx_xvshuf4i_d:
3673 case Intrinsic::loongarch_lasx_xvpermi_w:
3674 case Intrinsic::loongarch_lasx_xvpermi_q:
3675 case Intrinsic::loongarch_lasx_xvbitseli_b:
3676 case Intrinsic::loongarch_lasx_xvextrins_b:
3677 case Intrinsic::loongarch_lasx_xvextrins_h:
3678 case Intrinsic::loongarch_lasx_xvextrins_w:
3679 case Intrinsic::loongarch_lasx_xvextrins_d:
3681 case Intrinsic::loongarch_lsx_vrepli_b:
3682 case Intrinsic::loongarch_lsx_vrepli_h:
3683 case Intrinsic::loongarch_lsx_vrepli_w:
3684 case Intrinsic::loongarch_lsx_vrepli_d:
3685 case Intrinsic::loongarch_lasx_xvrepli_b:
3686 case Intrinsic::loongarch_lasx_xvrepli_h:
3687 case Intrinsic::loongarch_lasx_xvrepli_w:
3688 case Intrinsic::loongarch_lasx_xvrepli_d:
3690 case Intrinsic::loongarch_lsx_vldi:
3691 case Intrinsic::loongarch_lasx_xvldi:
3707LoongArchTargetLowering::lowerINTRINSIC_W_CHAIN(
SDValue Op,
3710 MVT GRLenVT = Subtarget.getGRLenVT();
3711 EVT VT =
Op.getValueType();
3713 const StringRef ErrorMsgOOR =
"argument out of range";
3714 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
3715 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
3717 switch (
Op.getConstantOperandVal(1)) {
3720 case Intrinsic::loongarch_crc_w_b_w:
3721 case Intrinsic::loongarch_crc_w_h_w:
3722 case Intrinsic::loongarch_crc_w_w_w:
3723 case Intrinsic::loongarch_crc_w_d_w:
3724 case Intrinsic::loongarch_crcc_w_b_w:
3725 case Intrinsic::loongarch_crcc_w_h_w:
3726 case Intrinsic::loongarch_crcc_w_w_w:
3727 case Intrinsic::loongarch_crcc_w_d_w:
3729 case Intrinsic::loongarch_csrrd_w:
3730 case Intrinsic::loongarch_csrrd_d: {
3731 unsigned Imm =
Op.getConstantOperandVal(2);
3737 case Intrinsic::loongarch_csrwr_w:
3738 case Intrinsic::loongarch_csrwr_d: {
3739 unsigned Imm =
Op.getConstantOperandVal(3);
3743 {Chain,
Op.getOperand(2),
3746 case Intrinsic::loongarch_csrxchg_w:
3747 case Intrinsic::loongarch_csrxchg_d: {
3748 unsigned Imm =
Op.getConstantOperandVal(4);
3752 {Chain,
Op.getOperand(2),
Op.getOperand(3),
3755 case Intrinsic::loongarch_iocsrrd_d: {
3760#define IOCSRRD_CASE(NAME, NODE) \
3761 case Intrinsic::loongarch_##NAME: { \
3762 return DAG.getNode(LoongArchISD::NODE, DL, {GRLenVT, MVT::Other}, \
3763 {Chain, Op.getOperand(2)}); \
3769 case Intrinsic::loongarch_cpucfg: {
3771 {Chain,
Op.getOperand(2)});
3773 case Intrinsic::loongarch_lddir_d: {
3774 unsigned Imm =
Op.getConstantOperandVal(3);
3779 case Intrinsic::loongarch_movfcsr2gr: {
3780 if (!Subtarget.hasBasicF())
3782 unsigned Imm =
Op.getConstantOperandVal(2);
3788 case Intrinsic::loongarch_lsx_vld:
3789 case Intrinsic::loongarch_lsx_vldrepl_b:
3790 case Intrinsic::loongarch_lasx_xvld:
3791 case Intrinsic::loongarch_lasx_xvldrepl_b:
3795 case Intrinsic::loongarch_lsx_vldrepl_h:
3796 case Intrinsic::loongarch_lasx_xvldrepl_h:
3800 Op,
"argument out of range or not a multiple of 2", DAG)
3802 case Intrinsic::loongarch_lsx_vldrepl_w:
3803 case Intrinsic::loongarch_lasx_xvldrepl_w:
3807 Op,
"argument out of range or not a multiple of 4", DAG)
3809 case Intrinsic::loongarch_lsx_vldrepl_d:
3810 case Intrinsic::loongarch_lasx_xvldrepl_d:
3814 Op,
"argument out of range or not a multiple of 8", DAG)
3825 return Op.getOperand(0);
3831 MVT GRLenVT = Subtarget.getGRLenVT();
3833 uint64_t IntrinsicEnum =
Op.getConstantOperandVal(1);
3835 const StringRef ErrorMsgOOR =
"argument out of range";
3836 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
3837 const StringRef ErrorMsgReqLA32 =
"requires loongarch32";
3838 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
3840 switch (IntrinsicEnum) {
3844 case Intrinsic::loongarch_cacop_d:
3845 case Intrinsic::loongarch_cacop_w: {
3846 if (IntrinsicEnum == Intrinsic::loongarch_cacop_d && !Subtarget.is64Bit())
3848 if (IntrinsicEnum == Intrinsic::loongarch_cacop_w && Subtarget.is64Bit())
3857 case Intrinsic::loongarch_dbar: {
3864 case Intrinsic::loongarch_ibar: {
3871 case Intrinsic::loongarch_break: {
3878 case Intrinsic::loongarch_movgr2fcsr: {
3879 if (!Subtarget.hasBasicF())
3889 case Intrinsic::loongarch_syscall: {
3896#define IOCSRWR_CASE(NAME, NODE) \
3897 case Intrinsic::loongarch_##NAME: { \
3898 SDValue Op3 = Op.getOperand(3); \
3899 return Subtarget.is64Bit() \
3900 ? DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, \
3901 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
3902 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op3)) \
3903 : DAG.getNode(LoongArchISD::NODE, DL, MVT::Other, Chain, Op2, \
3910 case Intrinsic::loongarch_iocsrwr_d: {
3911 return !Subtarget.is64Bit()
3918#define ASRT_LE_GT_CASE(NAME) \
3919 case Intrinsic::loongarch_##NAME: { \
3920 return !Subtarget.is64Bit() \
3921 ? emitIntrinsicErrorMessage(Op, ErrorMsgReqLA64, DAG) \
3926#undef ASRT_LE_GT_CASE
3927 case Intrinsic::loongarch_ldpte_d: {
3928 unsigned Imm =
Op.getConstantOperandVal(3);
3929 return !Subtarget.is64Bit()
3934 case Intrinsic::loongarch_lsx_vst:
3935 case Intrinsic::loongarch_lasx_xvst:
3939 case Intrinsic::loongarch_lasx_xvstelm_b:
3944 case Intrinsic::loongarch_lsx_vstelm_b:
3949 case Intrinsic::loongarch_lasx_xvstelm_h:
3954 Op,
"argument out of range or not a multiple of 2", DAG)
3956 case Intrinsic::loongarch_lsx_vstelm_h:
3961 Op,
"argument out of range or not a multiple of 2", DAG)
3963 case Intrinsic::loongarch_lasx_xvstelm_w:
3968 Op,
"argument out of range or not a multiple of 4", DAG)
3970 case Intrinsic::loongarch_lsx_vstelm_w:
3975 Op,
"argument out of range or not a multiple of 4", DAG)
3977 case Intrinsic::loongarch_lasx_xvstelm_d:
3982 Op,
"argument out of range or not a multiple of 8", DAG)
3984 case Intrinsic::loongarch_lsx_vstelm_d:
3989 Op,
"argument out of range or not a multiple of 8", DAG)
4000 EVT VT =
Lo.getValueType();
4041 EVT VT =
Lo.getValueType();
4133 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
4134 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0);
4138 NewOp0 = DAG.
getNode(ExtOpc,
DL, MVT::i64,
N->getOperand(0));
4144 NewRes = DAG.
getNode(WOpcode,
DL, MVT::i64, NewOp0, NewOp1);
4171 StringRef ErrorMsg,
bool WithChain =
true) {
4176 Results.push_back(
N->getOperand(0));
4179template <
unsigned N>
4184 const StringRef ErrorMsgOOR =
"argument out of range";
4185 unsigned Imm =
Node->getConstantOperandVal(2);
4219 switch (
N->getConstantOperandVal(0)) {
4222 case Intrinsic::loongarch_lsx_vpickve2gr_b:
4226 case Intrinsic::loongarch_lsx_vpickve2gr_h:
4227 case Intrinsic::loongarch_lasx_xvpickve2gr_w:
4231 case Intrinsic::loongarch_lsx_vpickve2gr_w:
4235 case Intrinsic::loongarch_lsx_vpickve2gr_bu:
4239 case Intrinsic::loongarch_lsx_vpickve2gr_hu:
4240 case Intrinsic::loongarch_lasx_xvpickve2gr_wu:
4244 case Intrinsic::loongarch_lsx_vpickve2gr_wu:
4248 case Intrinsic::loongarch_lsx_bz_b:
4249 case Intrinsic::loongarch_lsx_bz_h:
4250 case Intrinsic::loongarch_lsx_bz_w:
4251 case Intrinsic::loongarch_lsx_bz_d:
4252 case Intrinsic::loongarch_lasx_xbz_b:
4253 case Intrinsic::loongarch_lasx_xbz_h:
4254 case Intrinsic::loongarch_lasx_xbz_w:
4255 case Intrinsic::loongarch_lasx_xbz_d:
4259 case Intrinsic::loongarch_lsx_bz_v:
4260 case Intrinsic::loongarch_lasx_xbz_v:
4264 case Intrinsic::loongarch_lsx_bnz_b:
4265 case Intrinsic::loongarch_lsx_bnz_h:
4266 case Intrinsic::loongarch_lsx_bnz_w:
4267 case Intrinsic::loongarch_lsx_bnz_d:
4268 case Intrinsic::loongarch_lasx_xbnz_b:
4269 case Intrinsic::loongarch_lasx_xbnz_h:
4270 case Intrinsic::loongarch_lasx_xbnz_w:
4271 case Intrinsic::loongarch_lasx_xbnz_d:
4275 case Intrinsic::loongarch_lsx_bnz_v:
4276 case Intrinsic::loongarch_lasx_xbnz_v:
4286 assert(
N->getValueType(0) == MVT::i128 &&
4287 "AtomicCmpSwap on types less than 128 should be legal");
4291 switch (
MemOp->getMergedOrdering()) {
4295 Opcode = LoongArch::PseudoCmpXchg128Acquire;
4299 Opcode = LoongArch::PseudoCmpXchg128;
4306 auto CmpVal = DAG.
SplitScalar(
N->getOperand(2),
DL, MVT::i64, MVT::i64);
4307 auto NewVal = DAG.
SplitScalar(
N->getOperand(3),
DL, MVT::i64, MVT::i64);
4308 SDValue Ops[] = {
N->getOperand(1), CmpVal.first, CmpVal.second,
4309 NewVal.first, NewVal.second,
N->getOperand(0)};
4312 Opcode,
SDLoc(
N), DAG.
getVTList(MVT::i64, MVT::i64, MVT::i64, MVT::Other),
4323 EVT VT =
N->getValueType(0);
4324 switch (
N->getOpcode()) {
4329 assert(
N->getValueType(0) == MVT::i32 && Subtarget.is64Bit() &&
4330 "Unexpected custom legalisation");
4337 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4338 "Unexpected custom legalisation");
4340 Subtarget.hasDiv32() && VT == MVT::i32
4347 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4348 "Unexpected custom legalisation");
4356 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4357 "Unexpected custom legalisation");
4361 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4362 "Unexpected custom legalisation");
4369 if (Src.getValueType() == MVT::f16)
4370 Src = DAG.
getNode(ISD::FP_EXTEND,
DL, MVT::f32, Src);
4380 EVT OpVT = Src.getValueType();
4384 std::tie(Result, Chain) =
4389 case ISD::BITCAST: {
4391 EVT SrcVT = Src.getValueType();
4392 if (VT == MVT::i32 && SrcVT == MVT::f32 && Subtarget.is64Bit() &&
4393 Subtarget.hasBasicF()) {
4397 }
else if (VT == MVT::i64 && SrcVT == MVT::f64 && !Subtarget.is64Bit()) {
4399 DAG.
getVTList(MVT::i32, MVT::i32), Src);
4407 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4408 "Unexpected custom legalisation");
4411 TLI.expandFP_TO_UINT(
N, Tmp1, Tmp2, DAG);
4417 assert((VT == MVT::i16 || VT == MVT::i32) &&
4418 "Unexpected custom legalization");
4419 MVT GRLenVT = Subtarget.getGRLenVT();
4439 assert((VT == MVT::i8 || (VT == MVT::i32 && Subtarget.is64Bit())) &&
4440 "Unexpected custom legalization");
4441 MVT GRLenVT = Subtarget.getGRLenVT();
4459 assert(VT == MVT::i32 && Subtarget.is64Bit() &&
4460 "Unexpected custom legalisation");
4467 MVT GRLenVT = Subtarget.getGRLenVT();
4468 const StringRef ErrorMsgOOR =
"argument out of range";
4469 const StringRef ErrorMsgReqLA64 =
"requires loongarch64";
4470 const StringRef ErrorMsgReqF =
"requires basic 'f' target feature";
4472 switch (
N->getConstantOperandVal(1)) {
4475 case Intrinsic::loongarch_movfcsr2gr: {
4476 if (!Subtarget.hasBasicF()) {
4493#define CRC_CASE_EXT_BINARYOP(NAME, NODE) \
4494 case Intrinsic::loongarch_##NAME: { \
4495 SDValue NODE = DAG.getNode( \
4496 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4497 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2), \
4498 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
4499 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
4500 Results.push_back(NODE.getValue(1)); \
4509#undef CRC_CASE_EXT_BINARYOP
4511#define CRC_CASE_EXT_UNARYOP(NAME, NODE) \
4512 case Intrinsic::loongarch_##NAME: { \
4513 SDValue NODE = DAG.getNode( \
4514 LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4516 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, N->getOperand(3))}); \
4517 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, NODE.getValue(0))); \
4518 Results.push_back(NODE.getValue(1)); \
4523#undef CRC_CASE_EXT_UNARYOP
4524#define CSR_CASE(ID) \
4525 case Intrinsic::loongarch_##ID: { \
4526 if (!Subtarget.is64Bit()) \
4527 emitErrorAndReplaceIntrinsicResults(N, Results, DAG, ErrorMsgReqLA64); \
4535 case Intrinsic::loongarch_csrrd_w: {
4549 case Intrinsic::loongarch_csrwr_w: {
4550 unsigned Imm =
N->getConstantOperandVal(3);
4564 case Intrinsic::loongarch_csrxchg_w: {
4565 unsigned Imm =
N->getConstantOperandVal(4);
4580#define IOCSRRD_CASE(NAME, NODE) \
4581 case Intrinsic::loongarch_##NAME: { \
4582 SDValue IOCSRRDResults = \
4583 DAG.getNode(LoongArchISD::NODE, DL, {MVT::i64, MVT::Other}, \
4584 {Chain, DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op2)}); \
4585 Results.push_back( \
4586 DAG.getNode(ISD::TRUNCATE, DL, VT, IOCSRRDResults.getValue(0))); \
4587 Results.push_back(IOCSRRDResults.getValue(1)); \
4594 case Intrinsic::loongarch_cpucfg: {
4603 case Intrinsic::loongarch_lddir_d: {
4604 if (!Subtarget.is64Bit()) {
4614 if (Subtarget.is64Bit())
4616 "On LA64, only 64-bit registers can be read.");
4619 "On LA32, only 32-bit registers can be read.");
4621 Results.push_back(
N->getOperand(0));
4632 OpVT == MVT::f64 ? RTLIB::LROUND_F64 : RTLIB::LROUND_F32;
4640 case ISD::ATOMIC_CMP_SWAP: {
4645 MVT VT =
N->getSimpleValueType(0);
4651 EVT InVT = In.getValueType();
4662 for (
unsigned I = 0;
I < MinElts; ++
I)
4663 TruncMask[
I] = Scale *
I;
4665 unsigned WidenNumElts = 128 / In.getScalarValueSizeInBits();
4666 MVT SVT = In.getSimpleValueType().getScalarType();
4672 "Illegal vector type in truncation");
4691 SDValue FirstOperand =
N->getOperand(0);
4692 SDValue SecondOperand =
N->getOperand(1);
4693 unsigned FirstOperandOpc = FirstOperand.
getOpcode();
4694 EVT ValTy =
N->getValueType(0);
4697 unsigned SMIdx, SMLen;
4703 if (!Subtarget.has32S())
4725 if (SMIdx != 0 || lsb + SMLen > ValTy.getSizeInBits())
4740 if (SMIdx + SMLen > ValTy.getSizeInBits())
4759 NewOperand = FirstOperand;
4762 msb = lsb + SMLen - 1;
4766 if (FirstOperandOpc ==
ISD::SRA || FirstOperandOpc ==
ISD::SRL || lsb == 0)
4779 if (!Subtarget.has32S())
4791 SDValue FirstOperand =
N->getOperand(0);
4793 EVT ValTy =
N->getValueType(0);
4796 unsigned MaskIdx, MaskLen;
4811 if (MaskIdx <= Shamt && Shamt <= MaskIdx + MaskLen - 1)
4827 switch (Src.getOpcode()) {
4830 return Src.getOperand(0).getValueSizeInBits() ==
Size;
4840 return Src.getOperand(0).getScalarValueSizeInBits() == 1 &&
4853 switch (Src.getOpcode()) {
4863 Src.getOpcode(),
DL, SExtVT,
4869 DL, SExtVT, Src.getOperand(0),
4881 EVT VT =
N->getValueType(0);
4883 EVT SrcVT = Src.getValueType();
4885 if (Src.getOpcode() !=
ISD::SETCC || !Src.hasOneUse())
4890 EVT CmpVT = Src.getOperand(0).getValueType();
4895 else if (Subtarget.has32S() && Subtarget.hasExtLASX() &&
4923 (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
4930 (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
4954 EVT VT =
N->getValueType(0);
4956 EVT SrcVT = Src.getValueType();
4972 bool UseLASX =
false;
4973 bool PropagateSExt =
false;
4975 if (Src.getOpcode() ==
ISD::SETCC && Src.hasOneUse()) {
4976 EVT CmpVT = Src.getOperand(0).getValueType();
4985 SExtVT = MVT::v2i64;
4988 SExtVT = MVT::v4i32;
4990 SExtVT = MVT::v4i64;
4992 PropagateSExt =
true;
4996 SExtVT = MVT::v8i16;
4998 SExtVT = MVT::v8i32;
5000 PropagateSExt =
true;
5004 SExtVT = MVT::v16i8;
5006 SExtVT = MVT::v16i16;
5008 PropagateSExt =
true;
5012 SExtVT = MVT::v32i8;
5020 if (!Subtarget.has32S() || !Subtarget.hasExtLASX()) {
5021 if (Src.getSimpleValueType() == MVT::v32i8) {
5029 }
else if (UseLASX) {
5048 EVT ValTy =
N->getValueType(0);
5049 SDValue N0 =
N->getOperand(0), N1 =
N->getOperand(1);
5052 unsigned ValBits = ValTy.getSizeInBits();
5053 unsigned MaskIdx0, MaskLen0, MaskIdx1, MaskLen1;
5055 bool SwapAndRetried =
false;
5058 if (!Subtarget.has32S())
5064 if (ValBits != 32 && ValBits != 64)
5079 MaskIdx0 == MaskIdx1 && MaskLen0 == MaskLen1 &&
5082 (MaskIdx0 + MaskLen0 <= ValBits)) {
5103 MaskLen0 == MaskLen1 && MaskIdx1 == 0 &&
5104 (MaskIdx0 + MaskLen0 <= ValBits)) {
5121 (MaskIdx0 + MaskLen0 <= 64) &&
5129 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
5130 : (MaskIdx0 + MaskLen0 - 1),
5146 (MaskIdx0 + MaskLen0 <= ValBits)) {
5169 DAG.
getConstant(ValBits == 32 ? (MaskIdx0 + (MaskLen0 & 31) - 1)
5170 : (MaskIdx0 + MaskLen0 - 1),
5185 unsigned MaskIdx, MaskLen;
5186 if (N1.getOpcode() ==
ISD::SHL && N1.getOperand(0).getOpcode() ==
ISD::AND &&
5213 N1.getOperand(0).getOpcode() ==
ISD::SHL &&
5227 if (!SwapAndRetried) {
5229 SwapAndRetried =
true;
5233 SwapAndRetried =
false;
5259 if (!SwapAndRetried) {
5261 SwapAndRetried =
true;
5271 switch (V.getNode()->getOpcode()) {
5283 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
5291 if ((TypeNode->
getVT() == MVT::i8) || (TypeNode->
getVT() == MVT::i16)) {
5368 SDNode *AndNode =
N->getOperand(0).getNode();
5376 SDValue CmpInputValue =
N->getOperand(1);
5387 AndInputValue1 = AndInputValue1.
getOperand(0);
5391 if (AndInputValue2 != CmpInputValue)
5424 TruncInputValue1, TruncInputValue2);
5426 DAG.
getSetCC(
SDLoc(
N),
N->getValueType(0), NewAnd, TruncInputValue2, CC);
5467 LHS.getOperand(0).getValueType() == Subtarget.
getGRLenVT()) {
5495 ShAmt =
LHS.getValueSizeInBits() - 1 - ShAmt;
5529 N->getOperand(0),
LHS,
RHS, CC,
N->getOperand(4));
5545 EVT VT =
N->getValueType(0);
5548 if (TrueV == FalseV)
5580 {LHS, RHS, CC, TrueV, FalseV});
5585template <
unsigned N>
5589 bool IsSigned =
false) {
5593 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
5594 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
5596 ": argument out of range.");
5602template <
unsigned N>
5606 EVT ResTy =
Node->getValueType(0);
5610 if ((IsSigned && !
isInt<N>(CImm->getSExtValue())) ||
5611 (!IsSigned && !
isUInt<N>(CImm->getZExtValue()))) {
5613 ": argument out of range.");
5618 IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
5624 EVT ResTy =
Node->getValueType(0);
5632 EVT ResTy =
Node->getValueType(0);
5641template <
unsigned N>
5644 EVT ResTy =
Node->getValueType(0);
5649 ": argument out of range.");
5659template <
unsigned N>
5662 EVT ResTy =
Node->getValueType(0);
5667 ": argument out of range.");
5676template <
unsigned N>
5679 EVT ResTy =
Node->getValueType(0);
5684 ": argument out of range.");
5698 switch (
N->getConstantOperandVal(0)) {
5701 case Intrinsic::loongarch_lsx_vadd_b:
5702 case Intrinsic::loongarch_lsx_vadd_h:
5703 case Intrinsic::loongarch_lsx_vadd_w:
5704 case Intrinsic::loongarch_lsx_vadd_d:
5705 case Intrinsic::loongarch_lasx_xvadd_b:
5706 case Intrinsic::loongarch_lasx_xvadd_h:
5707 case Intrinsic::loongarch_lasx_xvadd_w:
5708 case Intrinsic::loongarch_lasx_xvadd_d:
5711 case Intrinsic::loongarch_lsx_vaddi_bu:
5712 case Intrinsic::loongarch_lsx_vaddi_hu:
5713 case Intrinsic::loongarch_lsx_vaddi_wu:
5714 case Intrinsic::loongarch_lsx_vaddi_du:
5715 case Intrinsic::loongarch_lasx_xvaddi_bu:
5716 case Intrinsic::loongarch_lasx_xvaddi_hu:
5717 case Intrinsic::loongarch_lasx_xvaddi_wu:
5718 case Intrinsic::loongarch_lasx_xvaddi_du:
5721 case Intrinsic::loongarch_lsx_vsub_b:
5722 case Intrinsic::loongarch_lsx_vsub_h:
5723 case Intrinsic::loongarch_lsx_vsub_w:
5724 case Intrinsic::loongarch_lsx_vsub_d:
5725 case Intrinsic::loongarch_lasx_xvsub_b:
5726 case Intrinsic::loongarch_lasx_xvsub_h:
5727 case Intrinsic::loongarch_lasx_xvsub_w:
5728 case Intrinsic::loongarch_lasx_xvsub_d:
5731 case Intrinsic::loongarch_lsx_vsubi_bu:
5732 case Intrinsic::loongarch_lsx_vsubi_hu:
5733 case Intrinsic::loongarch_lsx_vsubi_wu:
5734 case Intrinsic::loongarch_lsx_vsubi_du:
5735 case Intrinsic::loongarch_lasx_xvsubi_bu:
5736 case Intrinsic::loongarch_lasx_xvsubi_hu:
5737 case Intrinsic::loongarch_lasx_xvsubi_wu:
5738 case Intrinsic::loongarch_lasx_xvsubi_du:
5741 case Intrinsic::loongarch_lsx_vneg_b:
5742 case Intrinsic::loongarch_lsx_vneg_h:
5743 case Intrinsic::loongarch_lsx_vneg_w:
5744 case Intrinsic::loongarch_lsx_vneg_d:
5745 case Intrinsic::loongarch_lasx_xvneg_b:
5746 case Intrinsic::loongarch_lasx_xvneg_h:
5747 case Intrinsic::loongarch_lasx_xvneg_w:
5748 case Intrinsic::loongarch_lasx_xvneg_d:
5752 APInt(
N->getValueType(0).getScalarType().getSizeInBits(), 0,
5754 SDLoc(
N),
N->getValueType(0)),
5756 case Intrinsic::loongarch_lsx_vmax_b:
5757 case Intrinsic::loongarch_lsx_vmax_h:
5758 case Intrinsic::loongarch_lsx_vmax_w:
5759 case Intrinsic::loongarch_lsx_vmax_d:
5760 case Intrinsic::loongarch_lasx_xvmax_b:
5761 case Intrinsic::loongarch_lasx_xvmax_h:
5762 case Intrinsic::loongarch_lasx_xvmax_w:
5763 case Intrinsic::loongarch_lasx_xvmax_d:
5766 case Intrinsic::loongarch_lsx_vmax_bu:
5767 case Intrinsic::loongarch_lsx_vmax_hu:
5768 case Intrinsic::loongarch_lsx_vmax_wu:
5769 case Intrinsic::loongarch_lsx_vmax_du:
5770 case Intrinsic::loongarch_lasx_xvmax_bu:
5771 case Intrinsic::loongarch_lasx_xvmax_hu:
5772 case Intrinsic::loongarch_lasx_xvmax_wu:
5773 case Intrinsic::loongarch_lasx_xvmax_du:
5776 case Intrinsic::loongarch_lsx_vmaxi_b:
5777 case Intrinsic::loongarch_lsx_vmaxi_h:
5778 case Intrinsic::loongarch_lsx_vmaxi_w:
5779 case Intrinsic::loongarch_lsx_vmaxi_d:
5780 case Intrinsic::loongarch_lasx_xvmaxi_b:
5781 case Intrinsic::loongarch_lasx_xvmaxi_h:
5782 case Intrinsic::loongarch_lasx_xvmaxi_w:
5783 case Intrinsic::loongarch_lasx_xvmaxi_d:
5786 case Intrinsic::loongarch_lsx_vmaxi_bu:
5787 case Intrinsic::loongarch_lsx_vmaxi_hu:
5788 case Intrinsic::loongarch_lsx_vmaxi_wu:
5789 case Intrinsic::loongarch_lsx_vmaxi_du:
5790 case Intrinsic::loongarch_lasx_xvmaxi_bu:
5791 case Intrinsic::loongarch_lasx_xvmaxi_hu:
5792 case Intrinsic::loongarch_lasx_xvmaxi_wu:
5793 case Intrinsic::loongarch_lasx_xvmaxi_du:
5796 case Intrinsic::loongarch_lsx_vmin_b:
5797 case Intrinsic::loongarch_lsx_vmin_h:
5798 case Intrinsic::loongarch_lsx_vmin_w:
5799 case Intrinsic::loongarch_lsx_vmin_d:
5800 case Intrinsic::loongarch_lasx_xvmin_b:
5801 case Intrinsic::loongarch_lasx_xvmin_h:
5802 case Intrinsic::loongarch_lasx_xvmin_w:
5803 case Intrinsic::loongarch_lasx_xvmin_d:
5806 case Intrinsic::loongarch_lsx_vmin_bu:
5807 case Intrinsic::loongarch_lsx_vmin_hu:
5808 case Intrinsic::loongarch_lsx_vmin_wu:
5809 case Intrinsic::loongarch_lsx_vmin_du:
5810 case Intrinsic::loongarch_lasx_xvmin_bu:
5811 case Intrinsic::loongarch_lasx_xvmin_hu:
5812 case Intrinsic::loongarch_lasx_xvmin_wu:
5813 case Intrinsic::loongarch_lasx_xvmin_du:
5816 case Intrinsic::loongarch_lsx_vmini_b:
5817 case Intrinsic::loongarch_lsx_vmini_h:
5818 case Intrinsic::loongarch_lsx_vmini_w:
5819 case Intrinsic::loongarch_lsx_vmini_d:
5820 case Intrinsic::loongarch_lasx_xvmini_b:
5821 case Intrinsic::loongarch_lasx_xvmini_h:
5822 case Intrinsic::loongarch_lasx_xvmini_w:
5823 case Intrinsic::loongarch_lasx_xvmini_d:
5826 case Intrinsic::loongarch_lsx_vmini_bu:
5827 case Intrinsic::loongarch_lsx_vmini_hu:
5828 case Intrinsic::loongarch_lsx_vmini_wu:
5829 case Intrinsic::loongarch_lsx_vmini_du:
5830 case Intrinsic::loongarch_lasx_xvmini_bu:
5831 case Intrinsic::loongarch_lasx_xvmini_hu:
5832 case Intrinsic::loongarch_lasx_xvmini_wu:
5833 case Intrinsic::loongarch_lasx_xvmini_du:
5836 case Intrinsic::loongarch_lsx_vmul_b:
5837 case Intrinsic::loongarch_lsx_vmul_h:
5838 case Intrinsic::loongarch_lsx_vmul_w:
5839 case Intrinsic::loongarch_lsx_vmul_d:
5840 case Intrinsic::loongarch_lasx_xvmul_b:
5841 case Intrinsic::loongarch_lasx_xvmul_h:
5842 case Intrinsic::loongarch_lasx_xvmul_w:
5843 case Intrinsic::loongarch_lasx_xvmul_d:
5846 case Intrinsic::loongarch_lsx_vmadd_b:
5847 case Intrinsic::loongarch_lsx_vmadd_h:
5848 case Intrinsic::loongarch_lsx_vmadd_w:
5849 case Intrinsic::loongarch_lsx_vmadd_d:
5850 case Intrinsic::loongarch_lasx_xvmadd_b:
5851 case Intrinsic::loongarch_lasx_xvmadd_h:
5852 case Intrinsic::loongarch_lasx_xvmadd_w:
5853 case Intrinsic::loongarch_lasx_xvmadd_d: {
5854 EVT ResTy =
N->getValueType(0);
5859 case Intrinsic::loongarch_lsx_vmsub_b:
5860 case Intrinsic::loongarch_lsx_vmsub_h:
5861 case Intrinsic::loongarch_lsx_vmsub_w:
5862 case Intrinsic::loongarch_lsx_vmsub_d:
5863 case Intrinsic::loongarch_lasx_xvmsub_b:
5864 case Intrinsic::loongarch_lasx_xvmsub_h:
5865 case Intrinsic::loongarch_lasx_xvmsub_w:
5866 case Intrinsic::loongarch_lasx_xvmsub_d: {
5867 EVT ResTy =
N->getValueType(0);
5872 case Intrinsic::loongarch_lsx_vdiv_b:
5873 case Intrinsic::loongarch_lsx_vdiv_h:
5874 case Intrinsic::loongarch_lsx_vdiv_w:
5875 case Intrinsic::loongarch_lsx_vdiv_d:
5876 case Intrinsic::loongarch_lasx_xvdiv_b:
5877 case Intrinsic::loongarch_lasx_xvdiv_h:
5878 case Intrinsic::loongarch_lasx_xvdiv_w:
5879 case Intrinsic::loongarch_lasx_xvdiv_d:
5882 case Intrinsic::loongarch_lsx_vdiv_bu:
5883 case Intrinsic::loongarch_lsx_vdiv_hu:
5884 case Intrinsic::loongarch_lsx_vdiv_wu:
5885 case Intrinsic::loongarch_lsx_vdiv_du:
5886 case Intrinsic::loongarch_lasx_xvdiv_bu:
5887 case Intrinsic::loongarch_lasx_xvdiv_hu:
5888 case Intrinsic::loongarch_lasx_xvdiv_wu:
5889 case Intrinsic::loongarch_lasx_xvdiv_du:
5892 case Intrinsic::loongarch_lsx_vmod_b:
5893 case Intrinsic::loongarch_lsx_vmod_h:
5894 case Intrinsic::loongarch_lsx_vmod_w:
5895 case Intrinsic::loongarch_lsx_vmod_d:
5896 case Intrinsic::loongarch_lasx_xvmod_b:
5897 case Intrinsic::loongarch_lasx_xvmod_h:
5898 case Intrinsic::loongarch_lasx_xvmod_w:
5899 case Intrinsic::loongarch_lasx_xvmod_d:
5902 case Intrinsic::loongarch_lsx_vmod_bu:
5903 case Intrinsic::loongarch_lsx_vmod_hu:
5904 case Intrinsic::loongarch_lsx_vmod_wu:
5905 case Intrinsic::loongarch_lsx_vmod_du:
5906 case Intrinsic::loongarch_lasx_xvmod_bu:
5907 case Intrinsic::loongarch_lasx_xvmod_hu:
5908 case Intrinsic::loongarch_lasx_xvmod_wu:
5909 case Intrinsic::loongarch_lasx_xvmod_du:
5912 case Intrinsic::loongarch_lsx_vand_v:
5913 case Intrinsic::loongarch_lasx_xvand_v:
5916 case Intrinsic::loongarch_lsx_vor_v:
5917 case Intrinsic::loongarch_lasx_xvor_v:
5920 case Intrinsic::loongarch_lsx_vxor_v:
5921 case Intrinsic::loongarch_lasx_xvxor_v:
5924 case Intrinsic::loongarch_lsx_vnor_v:
5925 case Intrinsic::loongarch_lasx_xvnor_v: {
5930 case Intrinsic::loongarch_lsx_vandi_b:
5931 case Intrinsic::loongarch_lasx_xvandi_b:
5934 case Intrinsic::loongarch_lsx_vori_b:
5935 case Intrinsic::loongarch_lasx_xvori_b:
5938 case Intrinsic::loongarch_lsx_vxori_b:
5939 case Intrinsic::loongarch_lasx_xvxori_b:
5942 case Intrinsic::loongarch_lsx_vsll_b:
5943 case Intrinsic::loongarch_lsx_vsll_h:
5944 case Intrinsic::loongarch_lsx_vsll_w:
5945 case Intrinsic::loongarch_lsx_vsll_d:
5946 case Intrinsic::loongarch_lasx_xvsll_b:
5947 case Intrinsic::loongarch_lasx_xvsll_h:
5948 case Intrinsic::loongarch_lasx_xvsll_w:
5949 case Intrinsic::loongarch_lasx_xvsll_d:
5952 case Intrinsic::loongarch_lsx_vslli_b:
5953 case Intrinsic::loongarch_lasx_xvslli_b:
5956 case Intrinsic::loongarch_lsx_vslli_h:
5957 case Intrinsic::loongarch_lasx_xvslli_h:
5960 case Intrinsic::loongarch_lsx_vslli_w:
5961 case Intrinsic::loongarch_lasx_xvslli_w:
5964 case Intrinsic::loongarch_lsx_vslli_d:
5965 case Intrinsic::loongarch_lasx_xvslli_d:
5968 case Intrinsic::loongarch_lsx_vsrl_b:
5969 case Intrinsic::loongarch_lsx_vsrl_h:
5970 case Intrinsic::loongarch_lsx_vsrl_w:
5971 case Intrinsic::loongarch_lsx_vsrl_d:
5972 case Intrinsic::loongarch_lasx_xvsrl_b:
5973 case Intrinsic::loongarch_lasx_xvsrl_h:
5974 case Intrinsic::loongarch_lasx_xvsrl_w:
5975 case Intrinsic::loongarch_lasx_xvsrl_d:
5978 case Intrinsic::loongarch_lsx_vsrli_b:
5979 case Intrinsic::loongarch_lasx_xvsrli_b:
5982 case Intrinsic::loongarch_lsx_vsrli_h:
5983 case Intrinsic::loongarch_lasx_xvsrli_h:
5986 case Intrinsic::loongarch_lsx_vsrli_w:
5987 case Intrinsic::loongarch_lasx_xvsrli_w:
5990 case Intrinsic::loongarch_lsx_vsrli_d:
5991 case Intrinsic::loongarch_lasx_xvsrli_d:
5994 case Intrinsic::loongarch_lsx_vsra_b:
5995 case Intrinsic::loongarch_lsx_vsra_h:
5996 case Intrinsic::loongarch_lsx_vsra_w:
5997 case Intrinsic::loongarch_lsx_vsra_d:
5998 case Intrinsic::loongarch_lasx_xvsra_b:
5999 case Intrinsic::loongarch_lasx_xvsra_h:
6000 case Intrinsic::loongarch_lasx_xvsra_w:
6001 case Intrinsic::loongarch_lasx_xvsra_d:
6004 case Intrinsic::loongarch_lsx_vsrai_b:
6005 case Intrinsic::loongarch_lasx_xvsrai_b:
6008 case Intrinsic::loongarch_lsx_vsrai_h:
6009 case Intrinsic::loongarch_lasx_xvsrai_h:
6012 case Intrinsic::loongarch_lsx_vsrai_w:
6013 case Intrinsic::loongarch_lasx_xvsrai_w:
6016 case Intrinsic::loongarch_lsx_vsrai_d:
6017 case Intrinsic::loongarch_lasx_xvsrai_d:
6020 case Intrinsic::loongarch_lsx_vclz_b:
6021 case Intrinsic::loongarch_lsx_vclz_h:
6022 case Intrinsic::loongarch_lsx_vclz_w:
6023 case Intrinsic::loongarch_lsx_vclz_d:
6024 case Intrinsic::loongarch_lasx_xvclz_b:
6025 case Intrinsic::loongarch_lasx_xvclz_h:
6026 case Intrinsic::loongarch_lasx_xvclz_w:
6027 case Intrinsic::loongarch_lasx_xvclz_d:
6029 case Intrinsic::loongarch_lsx_vpcnt_b:
6030 case Intrinsic::loongarch_lsx_vpcnt_h:
6031 case Intrinsic::loongarch_lsx_vpcnt_w:
6032 case Intrinsic::loongarch_lsx_vpcnt_d:
6033 case Intrinsic::loongarch_lasx_xvpcnt_b:
6034 case Intrinsic::loongarch_lasx_xvpcnt_h:
6035 case Intrinsic::loongarch_lasx_xvpcnt_w:
6036 case Intrinsic::loongarch_lasx_xvpcnt_d:
6038 case Intrinsic::loongarch_lsx_vbitclr_b:
6039 case Intrinsic::loongarch_lsx_vbitclr_h:
6040 case Intrinsic::loongarch_lsx_vbitclr_w:
6041 case Intrinsic::loongarch_lsx_vbitclr_d:
6042 case Intrinsic::loongarch_lasx_xvbitclr_b:
6043 case Intrinsic::loongarch_lasx_xvbitclr_h:
6044 case Intrinsic::loongarch_lasx_xvbitclr_w:
6045 case Intrinsic::loongarch_lasx_xvbitclr_d:
6047 case Intrinsic::loongarch_lsx_vbitclri_b:
6048 case Intrinsic::loongarch_lasx_xvbitclri_b:
6050 case Intrinsic::loongarch_lsx_vbitclri_h:
6051 case Intrinsic::loongarch_lasx_xvbitclri_h:
6053 case Intrinsic::loongarch_lsx_vbitclri_w:
6054 case Intrinsic::loongarch_lasx_xvbitclri_w:
6056 case Intrinsic::loongarch_lsx_vbitclri_d:
6057 case Intrinsic::loongarch_lasx_xvbitclri_d:
6059 case Intrinsic::loongarch_lsx_vbitset_b:
6060 case Intrinsic::loongarch_lsx_vbitset_h:
6061 case Intrinsic::loongarch_lsx_vbitset_w:
6062 case Intrinsic::loongarch_lsx_vbitset_d:
6063 case Intrinsic::loongarch_lasx_xvbitset_b:
6064 case Intrinsic::loongarch_lasx_xvbitset_h:
6065 case Intrinsic::loongarch_lasx_xvbitset_w:
6066 case Intrinsic::loongarch_lasx_xvbitset_d: {
6067 EVT VecTy =
N->getValueType(0);
6073 case Intrinsic::loongarch_lsx_vbitseti_b:
6074 case Intrinsic::loongarch_lasx_xvbitseti_b:
6076 case Intrinsic::loongarch_lsx_vbitseti_h:
6077 case Intrinsic::loongarch_lasx_xvbitseti_h:
6079 case Intrinsic::loongarch_lsx_vbitseti_w:
6080 case Intrinsic::loongarch_lasx_xvbitseti_w:
6082 case Intrinsic::loongarch_lsx_vbitseti_d:
6083 case Intrinsic::loongarch_lasx_xvbitseti_d:
6085 case Intrinsic::loongarch_lsx_vbitrev_b:
6086 case Intrinsic::loongarch_lsx_vbitrev_h:
6087 case Intrinsic::loongarch_lsx_vbitrev_w:
6088 case Intrinsic::loongarch_lsx_vbitrev_d:
6089 case Intrinsic::loongarch_lasx_xvbitrev_b:
6090 case Intrinsic::loongarch_lasx_xvbitrev_h:
6091 case Intrinsic::loongarch_lasx_xvbitrev_w:
6092 case Intrinsic::loongarch_lasx_xvbitrev_d: {
6093 EVT VecTy =
N->getValueType(0);
6099 case Intrinsic::loongarch_lsx_vbitrevi_b:
6100 case Intrinsic::loongarch_lasx_xvbitrevi_b:
6102 case Intrinsic::loongarch_lsx_vbitrevi_h:
6103 case Intrinsic::loongarch_lasx_xvbitrevi_h:
6105 case Intrinsic::loongarch_lsx_vbitrevi_w:
6106 case Intrinsic::loongarch_lasx_xvbitrevi_w:
6108 case Intrinsic::loongarch_lsx_vbitrevi_d:
6109 case Intrinsic::loongarch_lasx_xvbitrevi_d:
6111 case Intrinsic::loongarch_lsx_vfadd_s:
6112 case Intrinsic::loongarch_lsx_vfadd_d:
6113 case Intrinsic::loongarch_lasx_xvfadd_s:
6114 case Intrinsic::loongarch_lasx_xvfadd_d:
6117 case Intrinsic::loongarch_lsx_vfsub_s:
6118 case Intrinsic::loongarch_lsx_vfsub_d:
6119 case Intrinsic::loongarch_lasx_xvfsub_s:
6120 case Intrinsic::loongarch_lasx_xvfsub_d:
6123 case Intrinsic::loongarch_lsx_vfmul_s:
6124 case Intrinsic::loongarch_lsx_vfmul_d:
6125 case Intrinsic::loongarch_lasx_xvfmul_s:
6126 case Intrinsic::loongarch_lasx_xvfmul_d:
6129 case Intrinsic::loongarch_lsx_vfdiv_s:
6130 case Intrinsic::loongarch_lsx_vfdiv_d:
6131 case Intrinsic::loongarch_lasx_xvfdiv_s:
6132 case Intrinsic::loongarch_lasx_xvfdiv_d:
6135 case Intrinsic::loongarch_lsx_vfmadd_s:
6136 case Intrinsic::loongarch_lsx_vfmadd_d:
6137 case Intrinsic::loongarch_lasx_xvfmadd_s:
6138 case Intrinsic::loongarch_lasx_xvfmadd_d:
6140 N->getOperand(2),
N->getOperand(3));
6141 case Intrinsic::loongarch_lsx_vinsgr2vr_b:
6143 N->getOperand(1),
N->getOperand(2),
6145 case Intrinsic::loongarch_lsx_vinsgr2vr_h:
6146 case Intrinsic::loongarch_lasx_xvinsgr2vr_w:
6148 N->getOperand(1),
N->getOperand(2),
6150 case Intrinsic::loongarch_lsx_vinsgr2vr_w:
6151 case Intrinsic::loongarch_lasx_xvinsgr2vr_d:
6153 N->getOperand(1),
N->getOperand(2),
6155 case Intrinsic::loongarch_lsx_vinsgr2vr_d:
6157 N->getOperand(1),
N->getOperand(2),
6159 case Intrinsic::loongarch_lsx_vreplgr2vr_b:
6160 case Intrinsic::loongarch_lsx_vreplgr2vr_h:
6161 case Intrinsic::loongarch_lsx_vreplgr2vr_w:
6162 case Intrinsic::loongarch_lsx_vreplgr2vr_d:
6163 case Intrinsic::loongarch_lasx_xvreplgr2vr_b:
6164 case Intrinsic::loongarch_lasx_xvreplgr2vr_h:
6165 case Intrinsic::loongarch_lasx_xvreplgr2vr_w:
6166 case Intrinsic::loongarch_lasx_xvreplgr2vr_d:
6170 case Intrinsic::loongarch_lsx_vreplve_b:
6171 case Intrinsic::loongarch_lsx_vreplve_h:
6172 case Intrinsic::loongarch_lsx_vreplve_w:
6173 case Intrinsic::loongarch_lsx_vreplve_d:
6174 case Intrinsic::loongarch_lasx_xvreplve_b:
6175 case Intrinsic::loongarch_lasx_xvreplve_h:
6176 case Intrinsic::loongarch_lasx_xvreplve_w:
6177 case Intrinsic::loongarch_lasx_xvreplve_d:
6207 "Unexpected value type!");
6216 MVT VT =
N->getSimpleValueType(0);
6250 APInt V =
C->getValueAPF().bitcastToAPInt();
6266 MVT EltVT =
N->getSimpleValueType(0);
6298 switch (
N->getOpcode()) {
6352 MF->
insert(It, BreakMBB);
6356 SinkMBB->splice(SinkMBB->end(),
MBB, std::next(
MI.getIterator()),
MBB->end());
6357 SinkMBB->transferSuccessorsAndUpdatePHIs(
MBB);
6369 MBB->addSuccessor(BreakMBB);
6370 MBB->addSuccessor(SinkMBB);
6376 BreakMBB->addSuccessor(SinkMBB);
6388 switch (
MI.getOpcode()) {
6391 case LoongArch::PseudoVBZ:
6392 CondOpc = LoongArch::VSETEQZ_V;
6394 case LoongArch::PseudoVBZ_B:
6395 CondOpc = LoongArch::VSETANYEQZ_B;
6397 case LoongArch::PseudoVBZ_H:
6398 CondOpc = LoongArch::VSETANYEQZ_H;
6400 case LoongArch::PseudoVBZ_W:
6401 CondOpc = LoongArch::VSETANYEQZ_W;
6403 case LoongArch::PseudoVBZ_D:
6404 CondOpc = LoongArch::VSETANYEQZ_D;
6406 case LoongArch::PseudoVBNZ:
6407 CondOpc = LoongArch::VSETNEZ_V;
6409 case LoongArch::PseudoVBNZ_B:
6410 CondOpc = LoongArch::VSETALLNEZ_B;
6412 case LoongArch::PseudoVBNZ_H:
6413 CondOpc = LoongArch::VSETALLNEZ_H;
6415 case LoongArch::PseudoVBNZ_W:
6416 CondOpc = LoongArch::VSETALLNEZ_W;
6418 case LoongArch::PseudoVBNZ_D:
6419 CondOpc = LoongArch::VSETALLNEZ_D;
6421 case LoongArch::PseudoXVBZ:
6422 CondOpc = LoongArch::XVSETEQZ_V;
6424 case LoongArch::PseudoXVBZ_B:
6425 CondOpc = LoongArch::XVSETANYEQZ_B;
6427 case LoongArch::PseudoXVBZ_H:
6428 CondOpc = LoongArch::XVSETANYEQZ_H;
6430 case LoongArch::PseudoXVBZ_W:
6431 CondOpc = LoongArch::XVSETANYEQZ_W;
6433 case LoongArch::PseudoXVBZ_D:
6434 CondOpc = LoongArch::XVSETANYEQZ_D;
6436 case LoongArch::PseudoXVBNZ:
6437 CondOpc = LoongArch::XVSETNEZ_V;
6439 case LoongArch::PseudoXVBNZ_B:
6440 CondOpc = LoongArch::XVSETALLNEZ_B;
6442 case LoongArch::PseudoXVBNZ_H:
6443 CondOpc = LoongArch::XVSETALLNEZ_H;
6445 case LoongArch::PseudoXVBNZ_W:
6446 CondOpc = LoongArch::XVSETALLNEZ_W;
6448 case LoongArch::PseudoXVBNZ_D:
6449 CondOpc = LoongArch::XVSETALLNEZ_D;
6464 F->insert(It, FalseBB);
6465 F->insert(It, TrueBB);
6466 F->insert(It, SinkBB);
6469 SinkBB->
splice(SinkBB->
end(), BB, std::next(
MI.getIterator()), BB->
end());
6473 Register FCC =
MRI.createVirtualRegister(&LoongArch::CFRRegClass);
6482 Register RD1 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
6490 Register RD2 =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
6498 MI.getOperand(0).getReg())
6505 MI.eraseFromParent();
6513 unsigned BroadcastOp;
6515 switch (
MI.getOpcode()) {
6518 case LoongArch::PseudoXVINSGR2VR_B:
6520 BroadcastOp = LoongArch::XVREPLGR2VR_B;
6521 InsOp = LoongArch::XVEXTRINS_B;
6523 case LoongArch::PseudoXVINSGR2VR_H:
6525 BroadcastOp = LoongArch::XVREPLGR2VR_H;
6526 InsOp = LoongArch::XVEXTRINS_H;
6538 unsigned Idx =
MI.getOperand(3).getImm();
6540 if (XSrc.
isVirtual() &&
MRI.getVRegDef(XSrc)->isImplicitDef() &&
6542 Register ScratchSubReg1 =
MRI.createVirtualRegister(SubRC);
6543 Register ScratchSubReg2 =
MRI.createVirtualRegister(SubRC);
6546 .
addReg(XSrc, 0, LoongArch::sub_128);
6548 TII->get(HalfSize == 8 ? LoongArch::VINSGR2VR_H
6549 : LoongArch::VINSGR2VR_B),
6558 .
addImm(LoongArch::sub_128);
6560 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
6561 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
6565 BuildMI(*BB,
MI,
DL,
TII->get(LoongArch::XVPERMI_Q), ScratchReg2)
6568 .
addImm(Idx >= HalfSize ? 48 : 18);
6573 .
addImm((Idx >= HalfSize ? Idx - HalfSize : Idx) * 17);
6576 MI.eraseFromParent();
6583 assert(Subtarget.hasExtLSX());
6590 Register ScratchReg1 =
MRI.createVirtualRegister(RC);
6591 Register ScratchReg2 =
MRI.createVirtualRegister(RC);
6592 Register ScratchReg3 =
MRI.createVirtualRegister(RC);
6596 TII->get(Subtarget.
is64Bit() ? LoongArch::VINSGR2VR_D
6597 : LoongArch::VINSGR2VR_W),
6604 TII->get(Subtarget.
is64Bit() ? LoongArch::VPCNT_D : LoongArch::VPCNT_W),
6608 TII->get(Subtarget.
is64Bit() ? LoongArch::VPICKVE2GR_D
6609 : LoongArch::VPICKVE2GR_W),
6614 MI.eraseFromParent();
6628 unsigned EleBits = 8;
6629 unsigned NotOpc = 0;
6632 switch (
MI.getOpcode()) {
6635 case LoongArch::PseudoVMSKLTZ_B:
6636 MskOpc = LoongArch::VMSKLTZ_B;
6638 case LoongArch::PseudoVMSKLTZ_H:
6639 MskOpc = LoongArch::VMSKLTZ_H;
6642 case LoongArch::PseudoVMSKLTZ_W:
6643 MskOpc = LoongArch::VMSKLTZ_W;
6646 case LoongArch::PseudoVMSKLTZ_D:
6647 MskOpc = LoongArch::VMSKLTZ_D;
6650 case LoongArch::PseudoVMSKGEZ_B:
6651 MskOpc = LoongArch::VMSKGEZ_B;
6653 case LoongArch::PseudoVMSKEQZ_B:
6654 MskOpc = LoongArch::VMSKNZ_B;
6655 NotOpc = LoongArch::VNOR_V;
6657 case LoongArch::PseudoVMSKNEZ_B:
6658 MskOpc = LoongArch::VMSKNZ_B;
6660 case LoongArch::PseudoXVMSKLTZ_B:
6661 MskOpc = LoongArch::XVMSKLTZ_B;
6662 RC = &LoongArch::LASX256RegClass;
6664 case LoongArch::PseudoXVMSKLTZ_H:
6665 MskOpc = LoongArch::XVMSKLTZ_H;
6666 RC = &LoongArch::LASX256RegClass;
6669 case LoongArch::PseudoXVMSKLTZ_W:
6670 MskOpc = LoongArch::XVMSKLTZ_W;
6671 RC = &LoongArch::LASX256RegClass;
6674 case LoongArch::PseudoXVMSKLTZ_D:
6675 MskOpc = LoongArch::XVMSKLTZ_D;
6676 RC = &LoongArch::LASX256RegClass;
6679 case LoongArch::PseudoXVMSKGEZ_B:
6680 MskOpc = LoongArch::XVMSKGEZ_B;
6681 RC = &LoongArch::LASX256RegClass;
6683 case LoongArch::PseudoXVMSKEQZ_B:
6684 MskOpc = LoongArch::XVMSKNZ_B;
6685 NotOpc = LoongArch::XVNOR_V;
6686 RC = &LoongArch::LASX256RegClass;
6688 case LoongArch::PseudoXVMSKNEZ_B:
6689 MskOpc = LoongArch::XVMSKNZ_B;
6690 RC = &LoongArch::LASX256RegClass;
6705 if (
TRI->getRegSizeInBits(*RC) > 128) {
6706 Register Lo =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
6707 Register Hi =
MRI.createVirtualRegister(&LoongArch::GPRRegClass);
6715 TII->get(Subtarget.
is64Bit() ? LoongArch::BSTRINS_D
6716 : LoongArch::BSTRINS_W),
6720 .
addImm(256 / EleBits - 1)
6728 MI.eraseFromParent();
6735 assert(
MI.getOpcode() == LoongArch::SplitPairF64Pseudo &&
6736 "Unexpected instruction");
6748 MI.eraseFromParent();
6755 assert(
MI.getOpcode() == LoongArch::BuildPairF64Pseudo &&
6756 "Unexpected instruction");
6762 Register TmpReg =
MRI.createVirtualRegister(&LoongArch::FPR64RegClass);
6772 MI.eraseFromParent();
6777 switch (
MI.getOpcode()) {
6780 case LoongArch::Select_GPR_Using_CC_GPR:
6816 if (
MI.getOperand(2).isReg())
6817 RHS =
MI.getOperand(2).getReg();
6818 auto CC =
static_cast<unsigned>(
MI.getOperand(3).
getImm());
6822 SelectDests.
insert(
MI.getOperand(0).getReg());
6826 SequenceMBBI !=
E; ++SequenceMBBI) {
6827 if (SequenceMBBI->isDebugInstr())
6830 if (SequenceMBBI->getOperand(1).getReg() !=
LHS ||
6831 !SequenceMBBI->getOperand(2).isReg() ||
6832 SequenceMBBI->getOperand(2).getReg() !=
RHS ||
6833 SequenceMBBI->getOperand(3).getImm() != CC ||
6834 SelectDests.
count(SequenceMBBI->getOperand(4).getReg()) ||
6835 SelectDests.
count(SequenceMBBI->getOperand(5).getReg()))
6837 LastSelectPseudo = &*SequenceMBBI;
6839 SelectDests.
insert(SequenceMBBI->getOperand(0).getReg());
6842 if (SequenceMBBI->hasUnmodeledSideEffects() ||
6843 SequenceMBBI->mayLoadOrStore() ||
6844 SequenceMBBI->usesCustomInsertionHook())
6847 return MO.isReg() && MO.isUse() && SelectDests.count(MO.getReg());
6862 F->insert(
I, IfFalseMBB);
6863 F->insert(
I, TailMBB);
6866 unsigned CallFrameSize =
TII.getCallFrameSizeAt(*LastSelectPseudo);
6872 TailMBB->
push_back(DebugInstr->removeFromParent());
6876 TailMBB->
splice(TailMBB->
end(), HeadMBB,
6886 if (
MI.getOperand(2).isImm())
6898 auto SelectMBBI =
MI.getIterator();
6899 auto SelectEnd = std::next(LastSelectPseudo->
getIterator());
6901 while (SelectMBBI != SelectEnd) {
6902 auto Next = std::next(SelectMBBI);
6906 TII.get(LoongArch::PHI), SelectMBBI->getOperand(0).getReg())
6907 .
addReg(SelectMBBI->getOperand(4).getReg())
6909 .
addReg(SelectMBBI->getOperand(5).getReg())
6916 F->getProperties().resetNoPHIs();
6922 const TargetInstrInfo *
TII = Subtarget.getInstrInfo();
6925 switch (
MI.getOpcode()) {
6928 case LoongArch::DIV_W:
6929 case LoongArch::DIV_WU:
6930 case LoongArch::MOD_W:
6931 case LoongArch::MOD_WU:
6932 case LoongArch::DIV_D:
6933 case LoongArch::DIV_DU:
6934 case LoongArch::MOD_D:
6935 case LoongArch::MOD_DU:
6938 case LoongArch::WRFCSR: {
6940 LoongArch::FCSR0 +
MI.getOperand(0).getImm())
6941 .
addReg(
MI.getOperand(1).getReg());
6942 MI.eraseFromParent();
6945 case LoongArch::RDFCSR: {
6946 MachineInstr *ReadFCSR =
6948 MI.getOperand(0).getReg())
6949 .
addReg(LoongArch::FCSR0 +
MI.getOperand(1).getImm());
6951 MI.eraseFromParent();
6954 case LoongArch::Select_GPR_Using_CC_GPR:
6956 case LoongArch::BuildPairF64Pseudo:
6958 case LoongArch::SplitPairF64Pseudo:
6960 case LoongArch::PseudoVBZ:
6961 case LoongArch::PseudoVBZ_B:
6962 case LoongArch::PseudoVBZ_H:
6963 case LoongArch::PseudoVBZ_W:
6964 case LoongArch::PseudoVBZ_D:
6965 case LoongArch::PseudoVBNZ:
6966 case LoongArch::PseudoVBNZ_B:
6967 case LoongArch::PseudoVBNZ_H:
6968 case LoongArch::PseudoVBNZ_W:
6969 case LoongArch::PseudoVBNZ_D:
6970 case LoongArch::PseudoXVBZ:
6971 case LoongArch::PseudoXVBZ_B:
6972 case LoongArch::PseudoXVBZ_H:
6973 case LoongArch::PseudoXVBZ_W:
6974 case LoongArch::PseudoXVBZ_D:
6975 case LoongArch::PseudoXVBNZ:
6976 case LoongArch::PseudoXVBNZ_B:
6977 case LoongArch::PseudoXVBNZ_H:
6978 case LoongArch::PseudoXVBNZ_W:
6979 case LoongArch::PseudoXVBNZ_D:
6981 case LoongArch::PseudoXVINSGR2VR_B:
6982 case LoongArch::PseudoXVINSGR2VR_H:
6984 case LoongArch::PseudoCTPOP:
6986 case LoongArch::PseudoVMSKLTZ_B:
6987 case LoongArch::PseudoVMSKLTZ_H:
6988 case LoongArch::PseudoVMSKLTZ_W:
6989 case LoongArch::PseudoVMSKLTZ_D:
6990 case LoongArch::PseudoVMSKGEZ_B:
6991 case LoongArch::PseudoVMSKEQZ_B:
6992 case LoongArch::PseudoVMSKNEZ_B:
6993 case LoongArch::PseudoXVMSKLTZ_B:
6994 case LoongArch::PseudoXVMSKLTZ_H:
6995 case LoongArch::PseudoXVMSKLTZ_W:
6996 case LoongArch::PseudoXVMSKLTZ_D:
6997 case LoongArch::PseudoXVMSKGEZ_B:
6998 case LoongArch::PseudoXVMSKEQZ_B:
6999 case LoongArch::PseudoXVMSKNEZ_B:
7001 case TargetOpcode::STATEPOINT:
7007 MI.addOperand(*
MI.getMF(),
7009 LoongArch::R1,
true,
7012 if (!Subtarget.is64Bit())
7020 unsigned *
Fast)
const {
7021 if (!Subtarget.hasUAL())
7035#define NODE_NAME_CASE(node) \
7036 case LoongArchISD::node: \
7037 return "LoongArchISD::" #node;
7137#undef NODE_NAME_CASE
7150 LoongArch::R7, LoongArch::R8, LoongArch::R9,
7151 LoongArch::R10, LoongArch::R11};
7155 LoongArch::F3, LoongArch::F4, LoongArch::F5,
7156 LoongArch::F6, LoongArch::F7};
7159 LoongArch::F0_64, LoongArch::F1_64, LoongArch::F2_64, LoongArch::F3_64,
7160 LoongArch::F4_64, LoongArch::F5_64, LoongArch::F6_64, LoongArch::F7_64};
7163 LoongArch::VR3, LoongArch::VR4, LoongArch::VR5,
7164 LoongArch::VR6, LoongArch::VR7};
7167 LoongArch::XR3, LoongArch::XR4, LoongArch::XR5,
7168 LoongArch::XR6, LoongArch::XR7};
7174 unsigned ValNo2,
MVT ValVT2,
MVT LocVT2,
7176 unsigned GRLenInBytes = GRLen / 8;
7187 State.AllocateStack(GRLenInBytes, StackAlign),
7190 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes,
Align(GRLenInBytes)),
7201 ValNo2, ValVT2, State.AllocateStack(GRLenInBytes,
Align(GRLenInBytes)),
7209 unsigned ValNo,
MVT ValVT,
7212 unsigned GRLen =
DL.getLargestLegalIntTypeSizeInBits();
7213 assert((GRLen == 32 || GRLen == 64) &&
"Unspport GRLen");
7214 MVT GRLenVT = GRLen == 32 ? MVT::i32 : MVT::i64;
7219 if (IsRet && ValNo > 1)
7223 bool UseGPRForFloat =
true;
7233 UseGPRForFloat = ArgFlags.
isVarArg();
7246 unsigned TwoGRLenInBytes = (2 * GRLen) / 8;
7249 DL.getTypeAllocSize(OrigTy) == TwoGRLenInBytes) {
7250 unsigned RegIdx = State.getFirstUnallocated(
ArgGPRs);
7252 if (RegIdx != std::size(
ArgGPRs) && RegIdx % 2 == 1)
7258 State.getPendingArgFlags();
7261 "PendingLocs and PendingArgFlags out of sync");
7265 UseGPRForFloat =
true;
7267 if (UseGPRForFloat && ValVT == MVT::f32) {
7270 }
else if (UseGPRForFloat && GRLen == 64 && ValVT == MVT::f64) {
7273 }
else if (UseGPRForFloat && GRLen == 32 && ValVT == MVT::f64) {
7276 assert(PendingLocs.
empty() &&
"Can't lower f64 if it is split");
7318 PendingLocs.
size() <= 2) {
7319 assert(PendingLocs.
size() == 2 &&
"Unexpected PendingLocs.size()");
7324 PendingLocs.
clear();
7325 PendingArgFlags.
clear();
7332 unsigned StoreSizeBytes = GRLen / 8;
7335 if (ValVT == MVT::f32 && !UseGPRForFloat)
7337 else if (ValVT == MVT::f64 && !UseGPRForFloat)
7347 Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
7351 if (!PendingLocs.
empty()) {
7353 assert(PendingLocs.
size() > 2 &&
"Unexpected PendingLocs.size()");
7354 for (
auto &It : PendingLocs) {
7356 It.convertToReg(
Reg);
7361 PendingLocs.clear();
7362 PendingArgFlags.
clear();
7365 assert((!UseGPRForFloat || LocVT == GRLenVT) &&
7366 "Expected an GRLenVT at this stage");
7383void LoongArchTargetLowering::analyzeInputArgs(
7386 LoongArchCCAssignFn Fn)
const {
7388 for (
unsigned i = 0, e =
Ins.size(); i != e; ++i) {
7389 MVT ArgVT =
Ins[i].VT;
7390 Type *ArgTy =
nullptr;
7392 ArgTy = FType->getReturnType();
7393 else if (Ins[i].isOrigArg())
7394 ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
7398 CCInfo, IsRet, ArgTy)) {
7399 LLVM_DEBUG(
dbgs() <<
"InputArg #" << i <<
" has unhandled type " << ArgVT
7406void LoongArchTargetLowering::analyzeOutputArgs(
7409 CallLoweringInfo *CLI, LoongArchCCAssignFn Fn)
const {
7410 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
7411 MVT ArgVT = Outs[i].VT;
7412 Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty :
nullptr;
7416 CCInfo, IsRet, OrigTy)) {
7417 LLVM_DEBUG(
dbgs() <<
"OutputArg #" << i <<
" has unhandled type " << ArgVT
7458 if (In.isOrigArg()) {
7463 if ((
BitWidth <= 32 && In.Flags.isSExt()) ||
7464 (
BitWidth < 32 && In.Flags.isZExt())) {
7514 Register LoVReg =
RegInfo.createVirtualRegister(&LoongArch::GPRRegClass);
7527 Register HiVReg =
RegInfo.createVirtualRegister(&LoongArch::GPRRegClass);
7547 Val = DAG.
getNode(ISD::BITCAST,
DL, LocVT, Val);
7557 if (LocVT == MVT::i32 || LocVT == MVT::i64) {
7561 LoongArch::R23, LoongArch::R24, LoongArch::R25,
7562 LoongArch::R26, LoongArch::R27, LoongArch::R28,
7563 LoongArch::R29, LoongArch::R30, LoongArch::R31};
7570 if (LocVT == MVT::f32) {
7573 static const MCPhysReg FPR32List[] = {LoongArch::F24, LoongArch::F25,
7574 LoongArch::F26, LoongArch::F27};
7581 if (LocVT == MVT::f64) {
7584 static const MCPhysReg FPR64List[] = {LoongArch::F28_64, LoongArch::F29_64,
7585 LoongArch::F30_64, LoongArch::F31_64};
7615 "GHC calling convention requires the F and D extensions");
7619 MVT GRLenVT = Subtarget.getGRLenVT();
7620 unsigned GRLenInBytes = Subtarget.getGRLen() / 8;
7622 std::vector<SDValue> OutChains;
7631 analyzeInputArgs(MF, CCInfo, Ins,
false,
CC_LoongArch);
7633 for (
unsigned i = 0, e = ArgLocs.
size(), InsIdx = 0; i != e; ++i, ++InsIdx) {
7650 unsigned ArgIndex = Ins[InsIdx].OrigArgIndex;
7651 unsigned ArgPartOffset = Ins[InsIdx].PartOffset;
7652 assert(ArgPartOffset == 0);
7653 while (i + 1 != e && Ins[InsIdx + 1].OrigArgIndex == ArgIndex) {
7655 unsigned PartOffset = Ins[InsIdx + 1].PartOffset - ArgPartOffset;
7679 int VaArgOffset, VarArgsSaveSize;
7683 if (ArgRegs.
size() == Idx) {
7685 VarArgsSaveSize = 0;
7687 VarArgsSaveSize = GRLenInBytes * (ArgRegs.
size() - Idx);
7688 VaArgOffset = -VarArgsSaveSize;
7694 LoongArchFI->setVarArgsFrameIndex(FI);
7702 VarArgsSaveSize += GRLenInBytes;
7707 for (
unsigned I = Idx;
I < ArgRegs.
size();
7708 ++
I, VaArgOffset += GRLenInBytes) {
7709 const Register Reg = RegInfo.createVirtualRegister(RC);
7710 RegInfo.addLiveIn(ArgRegs[
I], Reg);
7718 ->setValue((
Value *)
nullptr);
7719 OutChains.push_back(Store);
7721 LoongArchFI->setVarArgsSaveSize(VarArgsSaveSize);
7726 if (!OutChains.empty()) {
7727 OutChains.push_back(Chain);
7742 if (
N->getNumValues() != 1)
7744 if (!
N->hasNUsesOfValue(1, 0))
7747 SDNode *Copy = *
N->user_begin();
7753 if (Copy->getGluedNode())
7757 bool HasRet =
false;
7767 Chain = Copy->getOperand(0);
7772bool LoongArchTargetLowering::isEligibleForTailCallOptimization(
7776 auto CalleeCC = CLI.CallConv;
7777 auto &Outs = CLI.Outs;
7779 auto CallerCC = Caller.getCallingConv();
7786 for (
auto &VA : ArgLocs)
7792 auto IsCallerStructRet = Caller.hasStructRetAttr();
7793 auto IsCalleeStructRet = Outs.
empty() ?
false : Outs[0].Flags.isSRet();
7794 if (IsCallerStructRet || IsCalleeStructRet)
7798 for (
auto &Arg : Outs)
7799 if (Arg.Flags.isByVal())
7804 const uint32_t *CallerPreserved =
TRI->getCallPreservedMask(MF, CallerCC);
7805 if (CalleeCC != CallerCC) {
7806 const uint32_t *CalleePreserved =
TRI->getCallPreservedMask(MF, CalleeCC);
7807 if (!
TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
7833 MVT GRLenVT = Subtarget.getGRLenVT();
7845 analyzeOutputArgs(MF, ArgCCInfo, Outs,
false, &CLI,
CC_LoongArch);
7849 IsTailCall = isEligibleForTailCallOptimization(ArgCCInfo, CLI, MF, ArgLocs);
7855 "site marked musttail");
7862 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
7864 if (!Flags.isByVal())
7868 unsigned Size = Flags.getByValSize();
7869 Align Alignment = Flags.getNonZeroByValAlign();
7876 Chain = DAG.
getMemcpy(Chain,
DL, FIPtr, Arg, SizeNode, Alignment,
7878 false,
nullptr, std::nullopt,
7890 for (
unsigned i = 0, j = 0, e = ArgLocs.
size(), OutIdx = 0; i != e;
7893 SDValue ArgValue = OutVals[OutIdx];
7902 DAG.
getVTList(MVT::i32, MVT::i32), ArgValue);
7914 if (!StackPtr.getNode())
7926 RegsToPass.
push_back(std::make_pair(RegHigh,
Hi));
7941 unsigned ArgIndex = Outs[OutIdx].OrigArgIndex;
7942 unsigned ArgPartOffset = Outs[OutIdx].PartOffset;
7943 assert(ArgPartOffset == 0);
7948 while (i + 1 != e && Outs[OutIdx + 1].OrigArgIndex == ArgIndex) {
7949 SDValue PartValue = OutVals[OutIdx + 1];
7950 unsigned PartOffset = Outs[OutIdx + 1].PartOffset - ArgPartOffset;
7965 for (
const auto &Part : Parts) {
7966 SDValue PartValue = Part.first;
7967 SDValue PartOffset = Part.second;
7974 ArgValue = SpillSlot;
7980 if (Flags.isByVal())
7981 ArgValue = ByValArgs[j++];
7988 assert(!IsTailCall &&
"Tail call not allowed if stack is used "
7989 "for passing parameters");
7992 if (!StackPtr.getNode())
8005 if (!MemOpChains.
empty())
8011 for (
auto &Reg : RegsToPass) {
8012 Chain = DAG.
getCopyToReg(Chain,
DL, Reg.first, Reg.second, Glue);
8034 Ops.push_back(Chain);
8035 Ops.push_back(Callee);
8039 for (
auto &Reg : RegsToPass)
8040 Ops.push_back(DAG.
getRegister(Reg.first, Reg.second.getValueType()));
8045 const uint32_t *Mask =
TRI->getCallPreservedMask(MF, CallConv);
8046 assert(Mask &&
"Missing call preserved mask for calling convention");
8052 Ops.push_back(Glue);
8064 assert(Subtarget.is64Bit() &&
"Medium code model requires LA64");
8068 assert(Subtarget.is64Bit() &&
"Large code model requires LA64");
8091 analyzeInputArgs(MF, RetCCInfo, Ins,
true,
CC_LoongArch);
8094 for (
unsigned i = 0, e = RVLocs.
size(); i != e; ++i) {
8095 auto &VA = RVLocs[i];
8103 if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
8104 assert(VA.needsCustom());
8110 RetValue, RetValue2);
8123 const Type *RetTy)
const {
8125 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
8127 for (
unsigned i = 0, e = Outs.
size(); i != e; ++i) {
8131 Outs[i].Flags, CCInfo,
true,
nullptr))
8157 for (
unsigned i = 0, e = RVLocs.
size(), OutIdx = 0; i < e; ++i, ++OutIdx) {
8158 SDValue Val = OutVals[OutIdx];
8167 DAG.
getVTList(MVT::i32, MVT::i32), Val);
8171 Register RegHi = RVLocs[++i].getLocReg();
8201 if (!Subtarget.hasExtLSX())
8204 if (VT == MVT::f32) {
8205 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7e07ffff;
8206 return (masked == 0x3e000000 || masked == 0x40000000);
8209 if (VT == MVT::f64) {
8210 uint64_t masked = Imm.bitcastToAPInt().getZExtValue() & 0x7fc0ffffffffffff;
8211 return (masked == 0x3fc0000000000000 || masked == 0x4000000000000000);
8217bool LoongArchTargetLowering::isFPImmLegal(
const APFloat &Imm,
EVT VT,
8218 bool ForCodeSize)
const {
8220 if (VT == MVT::f32 && !Subtarget.hasBasicF())
8222 if (VT == MVT::f64 && !Subtarget.hasBasicD())
8224 return (Imm.isZero() || Imm.isExactlyValue(1.0) ||
isFPImmVLDILegal(Imm, VT));
8235bool LoongArchTargetLowering::shouldInsertFencesForAtomic(
8245 Type *Ty =
I->getOperand(0)->getType();
8247 unsigned Size = Ty->getIntegerBitWidth();
8274 case Intrinsic::loongarch_masked_atomicrmw_xchg_i32:
8275 case Intrinsic::loongarch_masked_atomicrmw_add_i32:
8276 case Intrinsic::loongarch_masked_atomicrmw_sub_i32:
8277 case Intrinsic::loongarch_masked_atomicrmw_nand_i32:
8279 Info.memVT = MVT::i32;
8280 Info.ptrVal =
I.getArgOperand(0);
8282 Info.align =
Align(4);
8299 "Unable to expand");
8300 unsigned MinWordSize = 4;
8312 Value *AlignedAddr = Builder.CreateIntrinsic(
8313 Intrinsic::ptrmask, {PtrTy, IntTy},
8314 {Addr, ConstantInt::get(IntTy, ~(
uint64_t)(MinWordSize - 1))},
nullptr,
8317 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
8318 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1,
"PtrLSB");
8319 Value *ShiftAmt = Builder.CreateShl(PtrLSB, 3);
8320 ShiftAmt = Builder.CreateTrunc(ShiftAmt, WordType,
"ShiftAmt");
8321 Value *Mask = Builder.CreateShl(
8322 ConstantInt::get(WordType,
8325 Value *Inv_Mask = Builder.CreateNot(Mask,
"Inv_Mask");
8326 Value *ValOperand_Shifted =
8327 Builder.CreateShl(Builder.CreateZExt(AI->
getValOperand(), WordType),
8328 ShiftAmt,
"ValOperand_Shifted");
8331 NewOperand = Builder.CreateOr(ValOperand_Shifted, Inv_Mask,
"AndOperand");
8333 NewOperand = ValOperand_Shifted;
8336 Builder.CreateAtomicRMW(
Op, AlignedAddr, NewOperand,
Align(MinWordSize),
8339 Value *Shift = Builder.CreateLShr(NewAI, ShiftAmt,
"shifted");
8340 Value *Trunc = Builder.CreateTrunc(Shift,
ValueType,
"extracted");
8359 if (Subtarget.hasLAM_BH() && Subtarget.is64Bit() &&
8367 if (Subtarget.hasLAMCAS()) {
8389 return Intrinsic::loongarch_masked_atomicrmw_xchg_i64;
8391 return Intrinsic::loongarch_masked_atomicrmw_add_i64;
8393 return Intrinsic::loongarch_masked_atomicrmw_sub_i64;
8395 return Intrinsic::loongarch_masked_atomicrmw_nand_i64;
8397 return Intrinsic::loongarch_masked_atomicrmw_umax_i64;
8399 return Intrinsic::loongarch_masked_atomicrmw_umin_i64;
8401 return Intrinsic::loongarch_masked_atomicrmw_max_i64;
8403 return Intrinsic::loongarch_masked_atomicrmw_min_i64;
8413 return Intrinsic::loongarch_masked_atomicrmw_xchg_i32;
8415 return Intrinsic::loongarch_masked_atomicrmw_add_i32;
8417 return Intrinsic::loongarch_masked_atomicrmw_sub_i32;
8419 return Intrinsic::loongarch_masked_atomicrmw_nand_i32;
8421 return Intrinsic::loongarch_masked_atomicrmw_umax_i32;
8423 return Intrinsic::loongarch_masked_atomicrmw_umin_i32;
8425 return Intrinsic::loongarch_masked_atomicrmw_max_i32;
8427 return Intrinsic::loongarch_masked_atomicrmw_min_i32;
8439 if (Subtarget.hasLAMCAS())
8451 unsigned GRLen = Subtarget.getGRLen();
8453 Value *FailureOrdering =
8454 Builder.getIntN(Subtarget.getGRLen(),
static_cast<uint64_t>(FailOrd));
8455 Intrinsic::ID CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i32;
8457 CmpXchgIntrID = Intrinsic::loongarch_masked_cmpxchg_i64;
8458 CmpVal = Builder.CreateSExt(CmpVal, Builder.getInt64Ty());
8459 NewVal = Builder.CreateSExt(NewVal, Builder.getInt64Ty());
8460 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8463 Value *Result = Builder.CreateIntrinsic(
8464 CmpXchgIntrID, Tys, {AlignedAddr, CmpVal, NewVal, Mask, FailureOrdering});
8466 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8482 Builder.CreateNot(Mask,
"Inv_Mask"),
8489 unsigned GRLen = Subtarget.getGRLen();
8498 Incr = Builder.CreateSExt(Incr, Builder.getInt64Ty());
8499 Mask = Builder.CreateSExt(Mask, Builder.getInt64Ty());
8500 ShiftAmt = Builder.CreateSExt(ShiftAmt, Builder.getInt64Ty());
8516 Builder.CreateSub(Builder.getIntN(GRLen, GRLen - ValWidth), ShiftAmt);
8517 Result = Builder.CreateCall(LlwOpScwLoop,
8518 {AlignedAddr, Incr, Mask, SextShamt, Ordering});
8521 Builder.CreateCall(LlwOpScwLoop, {AlignedAddr, Incr, Mask, Ordering});
8525 Result = Builder.CreateTrunc(Result, Builder.getInt32Ty());
8548 const Constant *PersonalityFn)
const {
8549 return LoongArch::R4;
8553 const Constant *PersonalityFn)
const {
8554 return LoongArch::R5;
8565 int RefinementSteps = VT.
getScalarType() == MVT::f64 ? 2 : 1;
8566 return RefinementSteps;
8571 int &RefinementSteps,
8572 bool &UseOneConstNR,
8573 bool Reciprocal)
const {
8574 if (Subtarget.hasFrecipe()) {
8578 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
8579 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
8580 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
8581 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
8582 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
8601 int &RefinementSteps)
const {
8602 if (Subtarget.hasFrecipe()) {
8606 if (VT == MVT::f32 || (VT == MVT::f64 && Subtarget.hasBasicD()) ||
8607 (VT == MVT::v4f32 && Subtarget.hasExtLSX()) ||
8608 (VT == MVT::v2f64 && Subtarget.hasExtLSX()) ||
8609 (VT == MVT::v8f32 && Subtarget.hasExtLASX()) ||
8610 (VT == MVT::v4f64 && Subtarget.hasExtLASX())) {
8627LoongArchTargetLowering::getConstraintType(
StringRef Constraint)
const {
8647 if (Constraint.
size() == 1) {
8648 switch (Constraint[0]) {
8664 if (Constraint ==
"ZC" || Constraint ==
"ZB")
8673 return StringSwitch<InlineAsm::ConstraintCode>(ConstraintCode)
8680std::pair<unsigned, const TargetRegisterClass *>
8681LoongArchTargetLowering::getRegForInlineAsmConstraint(
8685 if (Constraint.
size() == 1) {
8686 switch (Constraint[0]) {
8691 return std::make_pair(0U, &LoongArch::GPRRegClass);
8693 return std::make_pair(0U, &LoongArch::GPRNoR0R1RegClass);
8695 if (Subtarget.hasBasicF() && VT == MVT::f32)
8696 return std::make_pair(0U, &LoongArch::FPR32RegClass);
8697 if (Subtarget.hasBasicD() && VT == MVT::f64)
8698 return std::make_pair(0U, &LoongArch::FPR64RegClass);
8699 if (Subtarget.hasExtLSX() &&
8700 TRI->isTypeLegalForClass(LoongArch::LSX128RegClass, VT))
8701 return std::make_pair(0U, &LoongArch::LSX128RegClass);
8702 if (Subtarget.hasExtLASX() &&
8703 TRI->isTypeLegalForClass(LoongArch::LASX256RegClass, VT))
8704 return std::make_pair(0U, &LoongArch::LASX256RegClass);
8724 bool IsFP = Constraint[2] ==
'f';
8725 std::pair<StringRef, StringRef> Temp = Constraint.
split(
'$');
8726 std::pair<unsigned, const TargetRegisterClass *>
R;
8731 unsigned RegNo =
R.first;
8732 if (LoongArch::F0 <= RegNo && RegNo <= LoongArch::F31) {
8733 if (Subtarget.hasBasicD() && (VT == MVT::f64 || VT == MVT::Other)) {
8734 unsigned DReg = RegNo - LoongArch::F0 + LoongArch::F0_64;
8735 return std::make_pair(DReg, &LoongArch::FPR64RegClass);
8745void LoongArchTargetLowering::LowerAsmOperandForConstraint(
8749 if (Constraint.
size() == 1) {
8750 switch (Constraint[0]) {
8754 uint64_t CVal =
C->getSExtValue();
8757 Subtarget.getGRLenVT()));
8763 uint64_t CVal =
C->getSExtValue();
8766 Subtarget.getGRLenVT()));
8772 if (
C->getZExtValue() == 0)
8779 uint64_t CVal =
C->getZExtValue();
8792#define GET_REGISTER_MATCHER
8793#include "LoongArchGenAsmMatcher.inc"
8799 std::string NewRegName = Name.second.str();
8805 BitVector ReservedRegs = Subtarget.getRegisterInfo()->getReservedRegs(MF);
8806 if (!ReservedRegs.
test(Reg))
8823 const APInt &Imm = ConstNode->getAPIntValue();
8825 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2() ||
8826 (1 - Imm).isPowerOf2() || (-1 - Imm).isPowerOf2())
8829 if (ConstNode->hasOneUse() &&
8830 ((Imm - 2).isPowerOf2() || (Imm - 4).isPowerOf2() ||
8831 (Imm - 8).isPowerOf2() || (Imm - 16).isPowerOf2()))
8837 if (ConstNode->hasOneUse() && !(Imm.sge(-2048) && Imm.sle(4095))) {
8838 unsigned Shifts = Imm.countr_zero();
8844 APInt ImmPop = Imm.ashr(Shifts);
8845 if (ImmPop == 3 || ImmPop == 5 || ImmPop == 9 || ImmPop == 17)
8849 APInt ImmSmall =
APInt(Imm.getBitWidth(), 1ULL << Shifts,
true);
8850 if ((Imm - ImmSmall).isPowerOf2() || (Imm + ImmSmall).isPowerOf2() ||
8851 (ImmSmall - Imm).isPowerOf2())
8861 Type *Ty,
unsigned AS,
8916 EVT MemVT = LD->getMemoryVT();
8917 if ((MemVT == MVT::i8 || MemVT == MVT::i16) &&
8928 return Subtarget.is64Bit() && SrcVT == MVT::i32 && DstVT == MVT::i64;
8937 if (
Y.getValueType().isVector())
8949 Type *Ty,
bool IsSigned)
const {
8950 if (Subtarget.is64Bit() && Ty->isIntegerTy(32))
8959 if (Subtarget.isSoftFPABI() && (
Type.isFloatingPoint() && !
Type.isVector() &&
8960 Type.getSizeInBits() < Subtarget.getGRLen()))
8970 Align &PrefAlign)
const {
8974 if (Subtarget.is64Bit()) {
8976 PrefAlign =
Align(8);
8979 PrefAlign =
Align(4);
8994bool LoongArchTargetLowering::splitValueIntoRegisterParts(
8996 unsigned NumParts,
MVT PartVT, std::optional<CallingConv::ID> CC)
const {
8997 bool IsABIRegCopy = CC.has_value();
9000 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
9001 PartVT == MVT::f32) {
9004 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i16, Val);
9008 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::f32, Val);
9016SDValue LoongArchTargetLowering::joinRegisterPartsIntoValue(
9018 MVT PartVT,
EVT ValueVT, std::optional<CallingConv::ID> CC)
const {
9019 bool IsABIRegCopy = CC.has_value();
9021 if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
9022 PartVT == MVT::f32) {
9026 Val = DAG.
getNode(ISD::BITCAST,
DL, MVT::i32, Val);
9028 Val = DAG.
getNode(ISD::BITCAST,
DL, ValueVT, Val);
9039 if (VT == MVT::f16 && Subtarget.hasBasicF())
9045unsigned LoongArchTargetLowering::getNumRegistersForCallingConv(
9048 if (VT == MVT::f16 && Subtarget.hasBasicF())
9057 unsigned Depth)
const {
9058 EVT VT =
Op.getValueType();
9060 unsigned Opc =
Op.getOpcode();
9067 MVT SrcVT = Src.getSimpleValueType();
9072 if (OriginalDemandedBits.
countr_zero() >= NumElts)
9076 APInt KnownUndef, KnownZero;
9092 if (KnownSrc.
One[SrcBits - 1])
9094 else if (KnownSrc.
Zero[SrcBits - 1])
9099 Src, DemandedSrcBits, DemandedElts, TLO.
DAG,
Depth + 1))
9106 Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO,
Depth);
unsigned const MachineRegisterInfo * MRI
static MCRegister MatchRegisterName(StringRef Name)
static bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType)
static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget, const AArch64TargetLowering &TLI)
static SDValue performANDCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static msgpack::DocNode getNode(msgpack::DocNode DN, msgpack::Type Type, MCValue Val)
#define NODE_NAME_CASE(node)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static MCRegister MatchRegisterAltName(StringRef Name)
Maps from the set of all alternative registernames to a register number.
Function Alias Analysis Results
static uint64_t getConstant(const Value *IndexValue)
static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags)
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDValue Val, const CCValAssign &VA, const SDLoc &DL)
static MachineBasicBlock * emitSelectPseudo(MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode)
static SDValue unpackFromRegLoc(const CSKYSubtarget &Subtarget, SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const SDLoc &DL)
const HexagonInstrInfo * TII
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static SDValue performINTRINSIC_WO_CHAINCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
const MCPhysReg ArgFPR32s[]
static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Dispatching routine to lower various 128-bit LoongArch vector shuffles.
static SDValue lowerVECTOR_SHUFFLE_XVSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVSHUF4I (if possible).
static SDValue lowerVECTOR_SHUFFLE_VPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKEV (if possible).
static SDValue combineSelectToBinOp(SDNode *N, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKOD (if possible).
static SDValue unpackF64OnLA32DSoftABI(SelectionDAG &DAG, SDValue Chain, const CCValAssign &VA, const CCValAssign &HiVA, const SDLoc &DL)
static bool fitsRegularPattern(typename SmallVectorImpl< ValType >::const_iterator Begin, unsigned CheckStride, typename SmallVectorImpl< ValType >::const_iterator End, ValType ExpectedIndex, unsigned ExpectedIndexStride)
Determine whether a range fits a regular pattern of values.
static SDValue lowerVECTOR_SHUFFLE_XVREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into XVREPLVEI (if possible).
static SDValue emitIntrinsicErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static cl::opt< bool > ZeroDivCheck("loongarch-check-zero-division", cl::Hidden, cl::desc("Trap on integer division by zero."), cl::init(false))
static int getEstimateRefinementSteps(EVT VT, const LoongArchSubtarget &Subtarget)
static void emitErrorAndReplaceIntrinsicResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, StringRef ErrorMsg, bool WithChain=true)
static SDValue lowerVECTOR_SHUFFLEAsByteRotate(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE as byte rotate (if possible).
static SDValue checkIntrinsicImmArg(SDValue Op, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
static SDValue performMOVFR2GR_SCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVH (if possible).
static bool CC_LoongArch(const DataLayout &DL, LoongArchABI::ABI ABI, unsigned ValNo, MVT ValVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, bool IsRet, Type *OrigTy)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
static SDValue performSPLIT_PAIR_F64Combine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performBITCASTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static MachineBasicBlock * emitSplitPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorBitSetImm(SDNode *Node, SelectionDAG &DAG)
static SDValue performSETCC_BITCASTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKOD (if possible).
static std::optional< bool > matchSetCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue Val)
static SDValue lowerBUILD_VECTORAsBroadCastLoad(BuildVectorSDNode *BVOp, const SDLoc &DL, SelectionDAG &DAG)
#define CRC_CASE_EXT_BINARYOP(NAME, NODE)
static SDValue lowerVectorBitRevImm(SDNode *Node, SelectionDAG &DAG)
static bool checkBitcastSrcVectorSize(SDValue Src, unsigned Size, unsigned Depth)
static SDValue lowerVECTOR_SHUFFLEAsShift(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, const APInt &Zeroable)
Lower VECTOR_SHUFFLE as shift (if possible).
static SDValue lowerVECTOR_SHUFFLE_VSHUF4I(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VSHUF4I (if possible).
static SDValue truncateVecElts(SDNode *Node, SelectionDAG &DAG)
static bool CC_LoongArch_GHC(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
static MachineBasicBlock * insertDivByZeroTrap(MachineInstr &MI, MachineBasicBlock *MBB)
static SDValue customLegalizeToWOpWithSExt(SDNode *N, SelectionDAG &DAG)
static SDValue lowerVectorBitClear(SDNode *Node, SelectionDAG &DAG)
static SDValue lowerVECTOR_SHUFFLE_XVPERM(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPERM (if possible).
static SDValue lowerVECTOR_SHUFFLE_VPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKEV (if possible).
static MachineBasicBlock * emitPseudoVMSKCOND(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void replaceVPICKVE2GRResults(SDNode *Node, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
static SDValue lowerVECTOR_SHUFFLEAsZeroOrAnyExtend(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const APInt &Zeroable)
Lower VECTOR_SHUFFLE as ZERO_EXTEND Or ANY_EXTEND (if possible).
static SDValue legalizeIntrinsicImmArg(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, bool IsSigned=false)
static SDValue emitIntrinsicWithChainErrorMessage(SDValue Op, StringRef ErrorMsg, SelectionDAG &DAG)
static bool CC_LoongArchAssign2GRLen(unsigned GRLen, CCState &State, CCValAssign VA1, ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2, MVT ValVT2, MVT LocVT2, ISD::ArgFlagsTy ArgFlags2)
const MCPhysReg ArgFPR64s[]
static MachineBasicBlock * emitPseudoCTPOP(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performMOVGR2FR_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
#define IOCSRWR_CASE(NAME, NODE)
#define CRC_CASE_EXT_UNARYOP(NAME, NODE)
static SDValue lowerVECTOR_SHUFFLE_VPACKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPACKOD (if possible).
static SDValue signExtendBitcastSrcVector(SelectionDAG &DAG, EVT SExtVT, SDValue Src, const SDLoc &DL)
static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Dispatching routine to lower various 256-bit LoongArch vector shuffles.
static MachineBasicBlock * emitPseudoXVINSGR2VR(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue performEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static bool isSelectPseudo(MachineInstr &MI)
static SDValue foldBinOpIntoSelectIfProfitable(SDNode *BO, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVectorSplatImm(SDNode *Node, unsigned ImmOp, SelectionDAG &DAG, bool IsSigned=false)
const MCPhysReg ArgGPRs[]
static SDValue lowerVECTOR_SHUFFLE_XVILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVL (if possible).
static SDValue customLegalizeToWOp(SDNode *N, SelectionDAG &DAG, int NumOp, unsigned ExtOpc=ISD::ANY_EXTEND)
static void replaceVecCondBranchResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget, unsigned ResOp)
#define ASRT_LE_GT_CASE(NAME)
static SDValue lowerVECTOR_SHUFFLE_XVPACKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPACKEV (if possible).
static SDValue performBR_CCCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void computeZeroableShuffleElements(ArrayRef< int > Mask, SDValue V1, SDValue V2, APInt &KnownUndef, APInt &KnownZero)
Compute whether each element of a shuffle is zeroable.
static bool combine_CC(SDValue &LHS, SDValue &RHS, SDValue &CC, const SDLoc &DL, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue widenShuffleMask(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
static MachineBasicBlock * emitVecCondBranchPseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_XVILVH(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVILVH (if possible).
static SDValue lowerVECTOR_SHUFFLE_XVSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVSHUF (if possible).
static SDValue lowerVECTOR_SHUFFLE_VREPLVEI(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Lower VECTOR_SHUFFLE into VREPLVEI (if possible).
static void replaceCMP_XCHG_128Results(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG)
static SDValue performBITREV_WCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void canonicalizeShuffleVectorByLane(const SDLoc &DL, MutableArrayRef< int > Mask, MVT VT, SDValue &V1, SDValue &V2, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
Shuffle vectors by lane to generate more optimized instructions.
#define IOCSRRD_CASE(NAME, NODE)
static int matchShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2, ArrayRef< int > Mask)
Attempts to match vector shuffle as byte rotation.
static SDValue lowerVECTOR_SHUFFLE_XVPICKEV(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into XVPICKEV (if possible).
static int matchShuffleAsShift(MVT &ShiftVT, unsigned &Opcode, unsigned ScalarSizeInBits, ArrayRef< int > Mask, int MaskOffset, const APInt &Zeroable)
Attempts to match a shuffle mask against the VBSLL, VBSRL, VSLLI and VSRLI instruction.
static SDValue lowerVECTOR_SHUFFLE_VILVL(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VILVL (if possible).
static SDValue lowerVectorBitClearImm(SDNode *Node, SelectionDAG &DAG)
static MachineBasicBlock * emitBuildPairF64Pseudo(MachineInstr &MI, MachineBasicBlock *BB, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLEAsLanePermuteAndShuffle(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE as lane permute and then shuffle (if possible).
static SDValue performVMSKLTZCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const LoongArchSubtarget &Subtarget)
static void replaceINTRINSIC_WO_CHAINResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG, const LoongArchSubtarget &Subtarget)
static SDValue lowerVECTOR_SHUFFLE_VPICKOD(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VPICKOD (if possible).
static Intrinsic::ID getIntrinsicForMaskedAtomicRMWBinOp(unsigned GRLen, AtomicRMWInst::BinOp BinOp)
static void translateSetCCForBranch(const SDLoc &DL, SDValue &LHS, SDValue &RHS, ISD::CondCode &CC, SelectionDAG &DAG)
static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT, ArrayRef< int > Mask, SmallVectorImpl< int > &RepeatedMask)
Test whether a shuffle mask is equivalent within each sub-lane.
static SDValue lowerVECTOR_SHUFFLE_VSHUF(const SDLoc &DL, ArrayRef< int > Mask, MVT VT, SDValue V1, SDValue V2, SelectionDAG &DAG)
Lower VECTOR_SHUFFLE into VSHUF.
static LoongArchISD::NodeType getLoongArchWOpcode(unsigned Opcode)
Register const TargetRegisterInfo * TRI
Promote Memory to Register
static CodeModel::Model getCodeModel(const PPCSubtarget &S, const TargetMachine &TM, const MachineOperand &MO)
This file defines the SmallSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, bool AllowSymbol=false)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static bool isSequentialOrUndefInRange(ArrayRef< int > Mask, unsigned Pos, unsigned Size, int Low, int Step=1)
Return true if every element in Mask, beginning from position Pos and ending in Pos + Size,...
Class for arbitrary precision integers.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
unsigned getBitWidth() const
Return the number of bits in the APInt.
unsigned countr_zero() const
Count the number of trailing zero bits.
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
An instruction that atomically checks whether a specified value is in a memory location,...
Value * getCompareOperand()
AtomicOrdering getFailureOrdering() const
Returns the failure ordering constraint of this cmpxchg instruction.
an instruction that atomically reads a memory location, combines it with another value,...
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
BinOp
This enumeration lists the possible modifications atomicrmw can make.
@ USubCond
Subtract only if no unsigned overflow.
@ Min
*p = old <signed v ? old : v
@ USubSat
*p = usub.sat(old, v) usub.sat matches the behavior of llvm.usub.sat.
@ UIncWrap
Increment one up to a maximum value.
@ Max
*p = old >signed v ? old : v
@ UMin
*p = old <unsigned v ? old : v
@ UMax
*p = old >unsigned v ? old : v
@ UDecWrap
Decrement one until a minimum value or zero.
Value * getPointerOperand()
bool isFloatingPointOperation() const
BinOp getOperation() const
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this rmw instruction.
AtomicOrdering getOrdering() const
Returns the ordering constraint of this rmw instruction.
LLVM Basic Block Representation.
bool test(unsigned Idx) const
A "pseudo-class" with methods for operating on BUILD_VECTORs.
CCState - This class holds information needed while lowering arguments and return values.
unsigned getFirstUnallocated(ArrayRef< MCPhysReg > Regs) const
getFirstUnallocated - Return the index of the first unallocated register in the set,...
LLVM_ABI void AnalyzeCallOperands(const SmallVectorImpl< ISD::OutputArg > &Outs, CCAssignFn Fn)
AnalyzeCallOperands - Analyze the outgoing arguments to a call, incorporating info about the passed v...
uint64_t getStackSize() const
Returns the size of the currently allocated portion of the stack.
LLVM_ABI void AnalyzeFormalArguments(const SmallVectorImpl< ISD::InputArg > &Ins, CCAssignFn Fn)
AnalyzeFormalArguments - Analyze an array of argument values, incorporating info about the formals in...
CCValAssign - Represent assignment of one arg/retval to a location.
static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT, LocInfo HTP, unsigned ExtraInfo=0)
Register getLocReg() const
LocInfo getLocInfo() const
static CCValAssign getReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP, bool IsCustom=false)
static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT, MCRegister Reg, MVT LocVT, LocInfo HTP)
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
int64_t getLocMemOffset() const
unsigned getValNo() const
static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP)
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
bool isMinusOne() const
This function will return true iff every bit in this constant is set to true.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
uint64_t getZExtValue() const
int64_t getSExtValue() const
This is an important base class in LLVM.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
unsigned getPointerSizeInBits(unsigned AS=0) const
The size in bits of the pointer representation in a given address space.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
FunctionType * getFunctionType() const
Returns the FunctionType for me.
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Argument * getArg(unsigned i) const
Common base class shared among various IRBuilders.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
LLVM_ABI const Module * getModule() const
Return the module owning the function this instruction belongs to or nullptr it the function does not...
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Class to represent integer types.
This is an important class for using LLVM in a threaded context.
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This class is used to represent ISD::LOAD nodes.
ISD::LoadExtType getExtensionType() const
Return whether this is a plain node, or one of the varieties of value-extending loads.
LoongArchMachineFunctionInfo - This class is derived from MachineFunctionInfo and contains private Lo...
void addSExt32Register(Register Reg)
const LoongArchRegisterInfo * getRegisterInfo() const override
const LoongArchInstrInfo * getInstrInfo() const override
unsigned getGRLen() const
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override
Return true if result of the specified node is used by a return node only.
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const override
Hooks for building estimates in place of slower divisions and square roots.
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
TargetLowering::AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CI) const override
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const override
Perform a masked cmpxchg using a target-specific intrinsic.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower calls into the specified DAG.
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Return the preferred vector type legalization action.
bool isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const override
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
TargetLowering::AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
Determine if the target supports unaligned memory accesses.
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, Align &PrefAlign) const override
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const override
Perform a masked atomicrmw using a target-specific intrinsic.
bool isZExtFree(SDValue Val, EVT VT2) const override
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
bool signExtendConstant(const ConstantInt *CI) const override
Return true if this constant should be sign extended when promoting to a larger type.
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const override
Returns true if arguments should be sign-extended in lib calls.
bool isFPImmVLDILegal(const APFloat &Imm, EVT VT) const
bool shouldExtendTypeInLibCall(EVT Type) const override
Returns true if arguments should be extended in lib calls.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool hasAndNot(SDValue Y) const override
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
void emitExpandAtomicRMW(AtomicRMWInst *AI) const override
Perform a atomicrmw expansion using a target-specific way.
ISD::NodeType getExtendForAtomicCmpSwapArg() const override
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
LoongArchTargetLowering(const TargetMachine &TM, const LoongArchSubtarget &STI)
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, const SmallVectorImpl< SDValue > &OutVals, const SDLoc &DL, SelectionDAG &DAG) const override
This hook must be implemented to lower outgoing return values, described by the Outs array,...
bool hasAndNotCompare(SDValue Y) const override
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const override
Return a reciprocal estimate value for the input operand.
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl< ISD::OutputArg > &Outs, LLVMContext &Context, const Type *RetTy) const override
This hook should be implemented to check whether the return values described by the Outs array can fi...
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl< ISD::InputArg > &Ins, const SDLoc &DL, SelectionDAG &DAG, SmallVectorImpl< SDValue > &InVals) const override
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
bool mayBeEmittedAsTailCall(const CallInst *CI) const override
Return true if the target may be able emit the call instruction as a tail call.
Wrapper class representing physical registers. Should be passed by value.
bool hasFeature(unsigned Feature) const
static MVT getFloatingPointVT(unsigned BitWidth)
bool is128BitVector() const
Return true if this is a 128-bit vector type.
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isScalableVector() const
Return true if this is a vector value type where the runtime length is machine dependent.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
bool is256BitVector() const
Return true if this is a 256-bit vector type.
bool isScalarInteger() const
Return true if this is an integer, not including vectors.
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
MVT getHalfNumVectorElementsVT() const
Return a VT for a vector type with the same element type but half the number of elements.
MVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
void push_back(MachineInstr *MI)
void setCallFrameSize(unsigned N)
Set the call frame size on entry to this basic block.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setHasTailCall(bool V=true)
void setReturnAddressIsTaken(bool s)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC)
addLiveIn - Add the specified physical register as a live-in value and create a corresponding virtual...
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
LLVM_ABI void collectDebugValues(SmallVectorImpl< MachineInstr * > &DbgValues)
Scan instructions immediately following MI and collect any matching DBG_VALUEs.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
void setIsKill(bool Val=true)
void setIsUndef(bool Val=true)
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
EVT getMemoryVT() const
Return the type of the in-memory value.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Wrapper class representing virtual and physical registers.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
size_t use_size() const
Return the number of uses of this node.
MVT getSimpleValueType(unsigned ResNo) const
Return the type of a specified result as a simple type.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
bool isSafeToSpeculativelyExecute(unsigned Opcode) const
Some opcodes may create immediate undefined behavior when used with some values (integer division-by-...
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getSignedTargetConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
ArrayRef< int > getMask() const
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
typename SuperClass::const_iterator const_iterator
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
TargetInstrInfo - Interface to description of machine instruction set.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setMaxBytesForAlignment(unsigned MaxBytes)
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
std::vector< ArgListEntry > ArgListTy
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
TargetLowering(const TargetLowering &)=delete
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
Primary interface to the complete machine description for the target machine.
bool useTLSDESC() const
Returns true if this target uses TLS Descriptors.
bool useEmulatedTLS() const
Returns true if this target uses emulated TLS.
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
CodeModel::Model getCodeModel() const
Returns the code model.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getIntegerBitWidth() const
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
This class is used to represent EVT's, which are used to parameterize some operations.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ READ_REGISTER
READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on the DAG, which implements the n...
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ EH_DWARF_CFA
EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical Frame Address (CFA),...
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isIntEqualitySetCC(CondCode Code)
Return true if this is a setcc instruction that performs an equality comparison when used with intege...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
ABI getTargetABI(StringRef ABIName)
LLVM_ABI Libcall getSINTTOFP(EVT OpVT, EVT RetVT)
getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getUINTTOFP(EVT OpVT, EVT RetVT)
getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPTOSINT(EVT OpVT, EVT RetVT)
getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
LLVM_ABI Libcall getFPROUND(EVT OpVT, EVT RetVT)
getFPROUND - Return the FPROUND_*_* value for the given types, or UNKNOWN_LIBCALL if there is none.
@ Kill
The last use of a register.
@ SingleThread
Synchronized with respect to signal handlers executing in the same thread.
initializer< Ty > init(const Ty &Val)
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
FunctionAddr VTableAddr Value
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
LLVM_ABI bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
AtomicOrdering
Atomic ordering for LLVM's memory model.
unsigned getKillRegState(bool B)
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr bool isShiftedInt(int64_t x)
Checks if a signed integer is an N bit number shifted left by S.
constexpr unsigned BitWidth
std::string join_items(Sep Separator, Args &&... Items)
Joins the strings in the parameter pack Items, adding Separator between the elements....
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
PointerUnion< const Value *, const PseudoSourceValue * > ValueType
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
static EVT getFloatingPointVT(unsigned BitWidth)
Returns the EVT that represents a floating-point type with the given number of bits.
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Align getNonZeroOrigAlign() const
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
static LLVM_ABI MachinePointerInfo getGOT(MachineFunction &MF)
Return a MachinePointerInfo record that refers to a GOT entry.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
bool isBeforeLegalizeOps() const
bool isBeforeLegalize() const
LLVM_ABI SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)