LLVM 22.0.0git
NVPTXLowerArgs.cpp
Go to the documentation of this file.
1//===-- NVPTXLowerArgs.cpp - Lower arguments ------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//
10// Arguments to kernel and device functions are passed via param space,
11// which imposes certain restrictions:
12// http://docs.nvidia.com/cuda/parallel-thread-execution/#state-spaces
13//
14// Kernel parameters are read-only and accessible only via ld.param
15// instruction, directly or via a pointer.
16//
17// Device function parameters are directly accessible via
18// ld.param/st.param, but taking the address of one returns a pointer
19// to a copy created in local space which *can't* be used with
20// ld.param/st.param.
21//
22// Copying a byval struct into local memory in IR allows us to enforce
23// the param space restrictions, gives the rest of IR a pointer w/o
24// param space restrictions, and gives us an opportunity to eliminate
25// the copy.
26//
27// Pointer arguments to kernel functions need more work to be lowered:
28//
29// 1. Convert non-byval pointer arguments of CUDA kernels to pointers in the
30// global address space. This allows later optimizations to emit
31// ld.global.*/st.global.* for accessing these pointer arguments. For
32// example,
33//
34// define void @foo(float* %input) {
35// %v = load float, float* %input, align 4
36// ...
37// }
38//
39// becomes
40//
41// define void @foo(float* %input) {
42// %input2 = addrspacecast float* %input to float addrspace(1)*
43// %input3 = addrspacecast float addrspace(1)* %input2 to float*
44// %v = load float, float* %input3, align 4
45// ...
46// }
47//
48// Later, NVPTXInferAddressSpaces will optimize it to
49//
50// define void @foo(float* %input) {
51// %input2 = addrspacecast float* %input to float addrspace(1)*
52// %v = load float, float addrspace(1)* %input2, align 4
53// ...
54// }
55//
56// 2. Convert byval kernel parameters to pointers in the param address space
57// (so that NVPTX emits ld/st.param). Convert pointers *within* a byval
58// kernel parameter to pointers in the global address space. This allows
59// NVPTX to emit ld/st.global.
60//
61// struct S {
62// int *x;
63// int *y;
64// };
65// __global__ void foo(S s) {
66// int *b = s.y;
67// // use b
68// }
69//
70// "b" points to the global address space. In the IR level,
71//
72// define void @foo(ptr byval %input) {
73// %b_ptr = getelementptr {ptr, ptr}, ptr %input, i64 0, i32 1
74// %b = load ptr, ptr %b_ptr
75// ; use %b
76// }
77//
78// becomes
79//
80// define void @foo({i32*, i32*}* byval %input) {
81// %b_param = addrspacecat ptr %input to ptr addrspace(101)
82// %b_ptr = getelementptr {ptr, ptr}, ptr addrspace(101) %b_param, i64 0, i32 1
83// %b = load ptr, ptr addrspace(101) %b_ptr
84// %b_global = addrspacecast ptr %b to ptr addrspace(1)
85// ; use %b_generic
86// }
87//
88// Create a local copy of kernel byval parameters used in a way that *might* mutate
89// the parameter, by storing it in an alloca. Mutations to "grid_constant" parameters
90// are undefined behaviour, and don't require local copies.
91//
92// define void @foo(ptr byval(%struct.s) align 4 %input) {
93// store i32 42, ptr %input
94// ret void
95// }
96//
97// becomes
98//
99// define void @foo(ptr byval(%struct.s) align 4 %input) #1 {
100// %input1 = alloca %struct.s, align 4
101// %input2 = addrspacecast ptr %input to ptr addrspace(101)
102// %input3 = load %struct.s, ptr addrspace(101) %input2, align 4
103// store %struct.s %input3, ptr %input1, align 4
104// store i32 42, ptr %input1, align 4
105// ret void
106// }
107//
108// If %input were passed to a device function, or written to memory,
109// conservatively assume that %input gets mutated, and create a local copy.
110//
111// Convert param pointers to grid_constant byval kernel parameters that are
112// passed into calls (device functions, intrinsics, inline asm), or otherwise
113// "escape" (into stores/ptrtoints) to the generic address space, using the
114// `nvvm.ptr.param.to.gen` intrinsic, so that NVPTX emits cvta.param
115// (available for sm70+)
116//
117// define void @foo(ptr byval(%struct.s) %input) {
118// ; %input is a grid_constant
119// %call = call i32 @escape(ptr %input)
120// ret void
121// }
122//
123// becomes
124//
125// define void @foo(ptr byval(%struct.s) %input) {
126// %input1 = addrspacecast ptr %input to ptr addrspace(101)
127// ; the following intrinsic converts pointer to generic. We don't use an addrspacecast
128// ; to prevent generic -> param -> generic from getting cancelled out
129// %input1.gen = call ptr @llvm.nvvm.ptr.param.to.gen.p0.p101(ptr addrspace(101) %input1)
130// %call = call i32 @escape(ptr %input1.gen)
131// ret void
132// }
133//
134// TODO: merge this pass with NVPTXInferAddressSpaces so that other passes don't
135// cancel the addrspacecast pair this pass emits.
136//===----------------------------------------------------------------------===//
137
139#include "NVPTX.h"
140#include "NVPTXTargetMachine.h"
141#include "NVPTXUtilities.h"
142#include "llvm/ADT/STLExtras.h"
146#include "llvm/IR/Function.h"
147#include "llvm/IR/IRBuilder.h"
148#include "llvm/IR/Instructions.h"
150#include "llvm/IR/IntrinsicsNVPTX.h"
151#include "llvm/IR/Type.h"
153#include "llvm/Pass.h"
154#include "llvm/Support/Debug.h"
157#include <numeric>
158#include <queue>
159
160#define DEBUG_TYPE "nvptx-lower-args"
161
162using namespace llvm;
163
164namespace {
165class NVPTXLowerArgsLegacyPass : public FunctionPass {
166 bool runOnFunction(Function &F) override;
167
168public:
169 static char ID; // Pass identification, replacement for typeid
170 NVPTXLowerArgsLegacyPass() : FunctionPass(ID) {}
171 StringRef getPassName() const override {
172 return "Lower pointer arguments of CUDA kernels";
173 }
174 void getAnalysisUsage(AnalysisUsage &AU) const override {
176 }
177};
178} // namespace
179
180char NVPTXLowerArgsLegacyPass::ID = 1;
181
182INITIALIZE_PASS_BEGIN(NVPTXLowerArgsLegacyPass, "nvptx-lower-args",
183 "Lower arguments (NVPTX)", false, false)
185INITIALIZE_PASS_END(NVPTXLowerArgsLegacyPass, "nvptx-lower-args",
187
188// =============================================================================
189// If the function had a byval struct ptr arg, say foo(%struct.x* byval %d),
190// and we can't guarantee that the only accesses are loads,
191// then add the following instructions to the first basic block:
192//
193// %temp = alloca %struct.x, align 8
194// %tempd = addrspacecast %struct.x* %d to %struct.x addrspace(101)*
195// %tv = load %struct.x addrspace(101)* %tempd
196// store %struct.x %tv, %struct.x* %temp, align 8
197//
198// The above code allocates some space in the stack and copies the incoming
199// struct from param space to local space.
200// Then replace all occurrences of %d by %temp.
201//
202// In case we know that all users are GEPs or Loads, replace them with the same
203// ones in parameter AS, so we can access them using ld.param.
204// =============================================================================
205
206// For Loads, replaces the \p OldUse of the pointer with a Use of the same
207// pointer in parameter AS.
208// For "escapes" (to memory, a function call, or a ptrtoint), cast the OldUse to
209// generic using cvta.param.
210static void convertToParamAS(Use *OldUse, Value *Param, bool HasCvtaParam,
211 bool IsGridConstant) {
212 Instruction *I = dyn_cast<Instruction>(OldUse->getUser());
213 assert(I && "OldUse must be in an instruction");
214 struct IP {
215 Use *OldUse;
216 Instruction *OldInstruction;
217 Value *NewParam;
218 };
219 SmallVector<IP> ItemsToConvert = {{OldUse, I, Param}};
220 SmallVector<Instruction *> InstructionsToDelete;
221
222 auto CloneInstInParamAS = [HasCvtaParam,
223 IsGridConstant](const IP &I) -> Value * {
224 if (auto *LI = dyn_cast<LoadInst>(I.OldInstruction)) {
225 LI->setOperand(0, I.NewParam);
226 return LI;
227 }
228 if (auto *GEP = dyn_cast<GetElementPtrInst>(I.OldInstruction)) {
229 SmallVector<Value *, 4> Indices(GEP->indices());
230 auto *NewGEP = GetElementPtrInst::Create(
231 GEP->getSourceElementType(), I.NewParam, Indices, GEP->getName(),
232 GEP->getIterator());
233 NewGEP->setIsInBounds(GEP->isInBounds());
234 return NewGEP;
235 }
236 if (auto *BC = dyn_cast<BitCastInst>(I.OldInstruction)) {
237 auto *NewBCType = PointerType::get(BC->getContext(), ADDRESS_SPACE_PARAM);
238 return BitCastInst::Create(BC->getOpcode(), I.NewParam, NewBCType,
239 BC->getName(), BC->getIterator());
240 }
241 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(I.OldInstruction)) {
242 assert(ASC->getDestAddressSpace() == ADDRESS_SPACE_PARAM);
243 (void)ASC;
244 // Just pass through the argument, the old ASC is no longer needed.
245 return I.NewParam;
246 }
247 if (auto *MI = dyn_cast<MemTransferInst>(I.OldInstruction)) {
248 if (MI->getRawSource() == I.OldUse->get()) {
249 // convert to memcpy/memmove from param space.
250 IRBuilder<> Builder(I.OldInstruction);
251 Intrinsic::ID ID = MI->getIntrinsicID();
252
254 ID, MI->getRawDest(), MI->getDestAlign(), I.NewParam,
255 MI->getSourceAlign(), MI->getLength(), MI->isVolatile());
256 for (unsigned I : {0, 1})
257 if (uint64_t Bytes = MI->getParamDereferenceableBytes(I))
258 B->addDereferenceableParamAttr(I, Bytes);
259 return B;
260 }
261 // We may be able to handle other cases if the argument is
262 // __grid_constant__
263 }
264
265 if (HasCvtaParam) {
266 auto GetParamAddrCastToGeneric =
267 [](Value *Addr, Instruction *OriginalUser) -> Value * {
268 IRBuilder<> IRB(OriginalUser);
269 Type *GenTy = IRB.getPtrTy(ADDRESS_SPACE_GENERIC);
270 return IRB.CreateAddrSpaceCast(Addr, GenTy, Addr->getName() + ".gen");
271 };
272 auto *ParamInGenericAS =
273 GetParamAddrCastToGeneric(I.NewParam, I.OldInstruction);
274
275 // phi/select could use generic arg pointers w/o __grid_constant__
276 if (auto *PHI = dyn_cast<PHINode>(I.OldInstruction)) {
277 for (auto [Idx, V] : enumerate(PHI->incoming_values())) {
278 if (V.get() == I.OldUse->get())
279 PHI->setIncomingValue(Idx, ParamInGenericAS);
280 }
281 }
282 if (auto *SI = dyn_cast<SelectInst>(I.OldInstruction)) {
283 if (SI->getTrueValue() == I.OldUse->get())
284 SI->setTrueValue(ParamInGenericAS);
285 if (SI->getFalseValue() == I.OldUse->get())
286 SI->setFalseValue(ParamInGenericAS);
287 }
288
289 // Escapes or writes can only use generic param pointers if
290 // __grid_constant__ is in effect.
291 if (IsGridConstant) {
292 if (auto *CI = dyn_cast<CallInst>(I.OldInstruction)) {
293 I.OldUse->set(ParamInGenericAS);
294 return CI;
295 }
296 if (auto *SI = dyn_cast<StoreInst>(I.OldInstruction)) {
297 // byval address is being stored, cast it to generic
298 if (SI->getValueOperand() == I.OldUse->get())
299 SI->setOperand(0, ParamInGenericAS);
300 return SI;
301 }
302 if (auto *PI = dyn_cast<PtrToIntInst>(I.OldInstruction)) {
303 if (PI->getPointerOperand() == I.OldUse->get())
304 PI->setOperand(0, ParamInGenericAS);
305 return PI;
306 }
307 // TODO: iIf we allow stores, we should allow memcpy/memset to
308 // parameter, too.
309 }
310 }
311
312 llvm_unreachable("Unsupported instruction");
313 };
314
315 while (!ItemsToConvert.empty()) {
316 IP I = ItemsToConvert.pop_back_val();
317 Value *NewInst = CloneInstInParamAS(I);
318
319 if (NewInst && NewInst != I.OldInstruction) {
320 // We've created a new instruction. Queue users of the old instruction to
321 // be converted and the instruction itself to be deleted. We can't delete
322 // the old instruction yet, because it's still in use by a load somewhere.
323 for (Use &U : I.OldInstruction->uses())
324 ItemsToConvert.push_back({&U, cast<Instruction>(U.getUser()), NewInst});
325
326 InstructionsToDelete.push_back(I.OldInstruction);
327 }
328 }
329
330 // Now we know that all argument loads are using addresses in parameter space
331 // and we can finally remove the old instructions in generic AS. Instructions
332 // scheduled for removal should be processed in reverse order so the ones
333 // closest to the load are deleted first. Otherwise they may still be in use.
334 // E.g if we have Value = Load(BitCast(GEP(arg))), InstructionsToDelete will
335 // have {GEP,BitCast}. GEP can't be deleted first, because it's still used by
336 // the BitCast.
337 for (Instruction *I : llvm::reverse(InstructionsToDelete))
338 I->eraseFromParent();
339}
340
341// Adjust alignment of arguments passed byval in .param address space. We can
342// increase alignment of such arguments in a way that ensures that we can
343// effectively vectorize their loads. We should also traverse all loads from
344// byval pointer and adjust their alignment, if those were using known offset.
345// Such alignment changes must be conformed with parameter store and load in
346// NVPTXTargetLowering::LowerCall.
347static void adjustByValArgAlignment(Argument *Arg, Value *ArgInParamAS,
348 const NVPTXTargetLowering *TLI) {
349 Function *Func = Arg->getParent();
351 const DataLayout &DL = Func->getDataLayout();
352
353 const Align NewArgAlign =
355 const Align CurArgAlign = Arg->getParamAlign().valueOrOne();
356
357 if (CurArgAlign >= NewArgAlign)
358 return;
359
360 LLVM_DEBUG(dbgs() << "Try to use alignment " << NewArgAlign.value()
361 << " instead of " << CurArgAlign.value() << " for " << *Arg
362 << '\n');
363
364 auto NewAlignAttr =
365 Attribute::getWithAlignment(Func->getContext(), NewArgAlign);
366 Arg->removeAttr(Attribute::Alignment);
367 Arg->addAttr(NewAlignAttr);
368
369 struct Load {
370 LoadInst *Inst;
372 };
373
374 struct LoadContext {
375 Value *InitialVal;
377 };
378
379 SmallVector<Load> Loads;
380 std::queue<LoadContext> Worklist;
381 Worklist.push({ArgInParamAS, 0});
382
383 while (!Worklist.empty()) {
384 LoadContext Ctx = Worklist.front();
385 Worklist.pop();
386
387 for (User *CurUser : Ctx.InitialVal->users()) {
388 if (auto *I = dyn_cast<LoadInst>(CurUser))
389 Loads.push_back({I, Ctx.Offset});
390 else if (isa<BitCastInst>(CurUser) || isa<AddrSpaceCastInst>(CurUser))
391 Worklist.push({cast<Instruction>(CurUser), Ctx.Offset});
392 else if (auto *I = dyn_cast<GetElementPtrInst>(CurUser)) {
393 APInt OffsetAccumulated =
394 APInt::getZero(DL.getIndexSizeInBits(ADDRESS_SPACE_PARAM));
395
396 if (!I->accumulateConstantOffset(DL, OffsetAccumulated))
397 continue;
398
399 uint64_t OffsetLimit = -1;
400 uint64_t Offset = OffsetAccumulated.getLimitedValue(OffsetLimit);
401 assert(Offset != OffsetLimit && "Expect Offset less than UINT64_MAX");
402
403 Worklist.push({I, Ctx.Offset + Offset});
404 }
405 }
406 }
407
408 for (Load &CurLoad : Loads) {
409 Align NewLoadAlign(std::gcd(NewArgAlign.value(), CurLoad.Offset));
410 Align CurLoadAlign = CurLoad.Inst->getAlign();
411 CurLoad.Inst->setAlignment(std::max(NewLoadAlign, CurLoadAlign));
412 }
413}
414
415// Create a call to the nvvm_internal_addrspace_wrap intrinsic and set the
416// alignment of the return value based on the alignment of the argument.
418 Argument &Arg) {
419 CallInst *ArgInParam =
420 IRB.CreateIntrinsic(Intrinsic::nvvm_internal_addrspace_wrap,
422 &Arg, {}, Arg.getName() + ".param");
423
424 if (MaybeAlign ParamAlign = Arg.getParamAlign())
425 ArgInParam->addRetAttr(
426 Attribute::getWithAlignment(ArgInParam->getContext(), *ParamAlign));
427
428 return ArgInParam;
429}
430
431namespace {
432struct ArgUseChecker : PtrUseVisitor<ArgUseChecker> {
434
435 bool IsGridConstant;
436 // Set of phi/select instructions using the Arg
438
439 ArgUseChecker(const DataLayout &DL, bool IsGridConstant)
440 : PtrUseVisitor(DL), IsGridConstant(IsGridConstant) {}
441
442 PtrInfo visitArgPtr(Argument &A) {
443 assert(A.getType()->isPointerTy());
444 IntegerType *IntIdxTy = cast<IntegerType>(DL.getIndexType(A.getType()));
445 IsOffsetKnown = false;
446 Offset = APInt(IntIdxTy->getBitWidth(), 0);
447 PI.reset();
448 Conditionals.clear();
449
450 LLVM_DEBUG(dbgs() << "Checking Argument " << A << "\n");
451 // Enqueue the uses of this pointer.
453
454 // Visit all the uses off the worklist until it is empty.
455 // Note that unlike PtrUseVisitor we intentionally do not track offsets.
456 // We're only interested in how we use the pointer.
457 while (!(Worklist.empty() || PI.isAborted())) {
458 UseToVisit ToVisit = Worklist.pop_back_val();
459 U = ToVisit.UseAndIsOffsetKnown.getPointer();
460 Instruction *I = cast<Instruction>(U->getUser());
461 if (isa<PHINode>(I) || isa<SelectInst>(I))
462 Conditionals.insert(I);
463 LLVM_DEBUG(dbgs() << "Processing " << *I << "\n");
464 Base::visit(I);
465 }
466 if (PI.isEscaped())
467 LLVM_DEBUG(dbgs() << "Argument pointer escaped: " << *PI.getEscapingInst()
468 << "\n");
469 else if (PI.isAborted())
470 LLVM_DEBUG(dbgs() << "Pointer use needs a copy: " << *PI.getAbortingInst()
471 << "\n");
472 LLVM_DEBUG(dbgs() << "Traversed " << Conditionals.size()
473 << " conditionals\n");
474 return PI;
475 }
476
477 void visitStoreInst(StoreInst &SI) {
478 // Storing the pointer escapes it.
479 if (U->get() == SI.getValueOperand())
480 return PI.setEscapedAndAborted(&SI);
481 // Writes to the pointer are UB w/ __grid_constant__, but do not force a
482 // copy.
483 if (!IsGridConstant)
484 return PI.setAborted(&SI);
485 }
486
488 // ASC to param space are no-ops and do not need a copy
490 return PI.setEscapedAndAborted(&ASC);
492 }
493
495 if (IsGridConstant)
496 return;
498 }
499 void visitPHINodeOrSelectInst(Instruction &I) {
500 assert(isa<PHINode>(I) || isa<SelectInst>(I));
501 }
502 // PHI and select just pass through the pointers.
503 void visitPHINode(PHINode &PN) { enqueueUsers(PN); }
504 void visitSelectInst(SelectInst &SI) { enqueueUsers(SI); }
505
507 if (*U == II.getRawDest() && !IsGridConstant)
508 PI.setAborted(&II);
509 // memcpy/memmove are OK when the pointer is source. We can convert them to
510 // AS-specific memcpy.
511 }
512
514 if (!IsGridConstant)
515 PI.setAborted(&II);
516 }
517}; // struct ArgUseChecker
518
519void copyByValParam(Function &F, Argument &Arg) {
520 LLVM_DEBUG(dbgs() << "Creating a local copy of " << Arg << "\n");
521 // Otherwise we have to create a temporary copy.
522 BasicBlock::iterator FirstInst = F.getEntryBlock().begin();
524 const DataLayout &DL = F.getDataLayout();
525 IRBuilder<> IRB(&*FirstInst);
526 AllocaInst *AllocA = IRB.CreateAlloca(StructType, nullptr, Arg.getName());
527 // Set the alignment to alignment of the byval parameter. This is because,
528 // later load/stores assume that alignment, and we are going to replace
529 // the use of the byval parameter with this alloca instruction.
530 AllocA->setAlignment(
531 Arg.getParamAlign().value_or(DL.getPrefTypeAlign(StructType)));
532 Arg.replaceAllUsesWith(AllocA);
533
534 CallInst *ArgInParam = createNVVMInternalAddrspaceWrap(IRB, Arg);
535
536 // Be sure to propagate alignment to this load; LLVM doesn't know that NVPTX
537 // addrspacecast preserves alignment. Since params are constant, this load
538 // is definitely not volatile.
539 const auto ArgSize = *AllocA->getAllocationSize(DL);
540 IRB.CreateMemCpy(AllocA, AllocA->getAlign(), ArgInParam, AllocA->getAlign(),
541 ArgSize);
542}
543} // namespace
544
545static void handleByValParam(const NVPTXTargetMachine &TM, Argument *Arg) {
546 Function *Func = Arg->getParent();
547 assert(isKernelFunction(*Func));
548 const bool HasCvtaParam = TM.getSubtargetImpl(*Func)->hasCvtaParam();
549 const bool IsGridConstant = HasCvtaParam && isParamGridConstant(*Arg);
550 const DataLayout &DL = Func->getDataLayout();
551 BasicBlock::iterator FirstInst = Func->getEntryBlock().begin();
552 [[maybe_unused]] Type *StructType = Arg->getParamByValType();
553 assert(StructType && "Missing byval type");
554
555 ArgUseChecker AUC(DL, IsGridConstant);
556 ArgUseChecker::PtrInfo PI = AUC.visitArgPtr(*Arg);
557 bool ArgUseIsReadOnly = !(PI.isEscaped() || PI.isAborted());
558 // Easy case, accessing parameter directly is fine.
559 if (ArgUseIsReadOnly && AUC.Conditionals.empty()) {
560 // Convert all loads and intermediate operations to use parameter AS and
561 // skip creation of a local copy of the argument.
563
564 IRBuilder<> IRB(&*FirstInst);
565 CallInst *ArgInParamAS = createNVVMInternalAddrspaceWrap(IRB, *Arg);
566
567 for (Use *U : UsesToUpdate)
568 convertToParamAS(U, ArgInParamAS, HasCvtaParam, IsGridConstant);
569 LLVM_DEBUG(dbgs() << "No need to copy or cast " << *Arg << "\n");
570
571 const auto *TLI =
572 cast<NVPTXTargetLowering>(TM.getSubtargetImpl()->getTargetLowering());
573
574 adjustByValArgAlignment(Arg, ArgInParamAS, TLI);
575
576 return;
577 }
578
579 // We can't access byval arg directly and need a pointer. on sm_70+ we have
580 // ability to take a pointer to the argument without making a local copy.
581 // However, we're still not allowed to write to it. If the user specified
582 // `__grid_constant__` for the argument, we'll consider escaped pointer as
583 // read-only.
584 if (IsGridConstant || (HasCvtaParam && ArgUseIsReadOnly)) {
585 LLVM_DEBUG(dbgs() << "Using non-copy pointer to " << *Arg << "\n");
586 // Replace all argument pointer uses (which might include a device function
587 // call) with a cast to the generic address space using cvta.param
588 // instruction, which avoids a local copy.
589 IRBuilder<> IRB(&Func->getEntryBlock().front());
590
591 // Cast argument to param address space. Because the backend will emit the
592 // argument already in the param address space, we need to use the noop
593 // intrinsic, this had the added benefit of preventing other optimizations
594 // from folding away this pair of addrspacecasts.
595 auto *ParamSpaceArg = createNVVMInternalAddrspaceWrap(IRB, *Arg);
596
597 // Cast param address to generic address space.
598 Value *GenericArg = IRB.CreateAddrSpaceCast(
599 ParamSpaceArg, IRB.getPtrTy(ADDRESS_SPACE_GENERIC),
600 Arg->getName() + ".gen");
601
602 Arg->replaceAllUsesWith(GenericArg);
603
604 // Do not replace Arg in the cast to param space
605 ParamSpaceArg->setOperand(0, Arg);
606 } else
607 copyByValParam(*Func, *Arg);
608}
609
610static void markPointerAsAS(Value *Ptr, const unsigned AS) {
611 if (Ptr->getType()->getPointerAddressSpace() != ADDRESS_SPACE_GENERIC)
612 return;
613
614 // Deciding where to emit the addrspacecast pair.
615 BasicBlock::iterator InsertPt;
616 if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
617 // Insert at the functon entry if Ptr is an argument.
618 InsertPt = Arg->getParent()->getEntryBlock().begin();
619 } else {
620 // Insert right after Ptr if Ptr is an instruction.
621 InsertPt = ++cast<Instruction>(Ptr)->getIterator();
622 assert(InsertPt != InsertPt->getParent()->end() &&
623 "We don't call this function with Ptr being a terminator.");
624 }
625
626 Instruction *PtrInGlobal = new AddrSpaceCastInst(
627 Ptr, PointerType::get(Ptr->getContext(), AS), Ptr->getName(), InsertPt);
628 Value *PtrInGeneric = new AddrSpaceCastInst(PtrInGlobal, Ptr->getType(),
629 Ptr->getName(), InsertPt);
630 // Replace with PtrInGeneric all uses of Ptr except PtrInGlobal.
631 Ptr->replaceAllUsesWith(PtrInGeneric);
632 PtrInGlobal->setOperand(0, Ptr);
633}
634
637}
638
639// =============================================================================
640// Main function for this pass.
641// =============================================================================
643 // Copying of byval aggregates + SROA may result in pointers being loaded as
644 // integers, followed by intotoptr. We may want to mark those as global, too,
645 // but only if the loaded integer is used exclusively for conversion to a
646 // pointer with inttoptr.
647 auto HandleIntToPtr = [](Value &V) {
648 if (llvm::all_of(V.users(), [](User *U) { return isa<IntToPtrInst>(U); })) {
649 SmallVector<User *, 16> UsersToUpdate(V.users());
650 for (User *U : UsersToUpdate)
652 }
653 };
654 if (TM.getDrvInterface() == NVPTX::CUDA) {
655 // Mark pointers in byval structs as global.
656 for (auto &B : F) {
657 for (auto &I : B) {
658 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
659 if (LI->getType()->isPointerTy() || LI->getType()->isIntegerTy()) {
660 Value *UO = getUnderlyingObject(LI->getPointerOperand());
661 if (Argument *Arg = dyn_cast<Argument>(UO)) {
662 if (Arg->hasByValAttr()) {
663 // LI is a load from a pointer within a byval kernel parameter.
664 if (LI->getType()->isPointerTy())
666 else
667 HandleIntToPtr(*LI);
668 }
669 }
670 }
671 }
672 }
673 }
674 }
675
676 LLVM_DEBUG(dbgs() << "Lowering kernel args of " << F.getName() << "\n");
677 for (Argument &Arg : F.args()) {
678 if (Arg.getType()->isPointerTy() && Arg.hasByValAttr()) {
679 handleByValParam(TM, &Arg);
680 } else if (Arg.getType()->isIntegerTy() &&
681 TM.getDrvInterface() == NVPTX::CUDA) {
682 HandleIntToPtr(Arg);
683 }
684 }
685 return true;
686}
687
688// Device functions only need to copy byval args into local memory.
690 LLVM_DEBUG(dbgs() << "Lowering function args of " << F.getName() << "\n");
691
692 const auto *TLI =
693 cast<NVPTXTargetLowering>(TM.getSubtargetImpl()->getTargetLowering());
694
695 for (Argument &Arg : F.args())
696 if (Arg.getType()->isPointerTy() && Arg.hasByValAttr())
697 adjustByValArgAlignment(&Arg, &Arg, TLI);
698
699 return true;
700}
701
704 : runOnDeviceFunction(TM, F);
705}
706
707bool NVPTXLowerArgsLegacyPass::runOnFunction(Function &F) {
708 auto &TM = getAnalysis<TargetPassConfig>().getTM<NVPTXTargetMachine>();
709 return processFunction(F, TM);
710}
712 return new NVPTXLowerArgsLegacyPass();
713}
714
716 LLVM_DEBUG(dbgs() << "Creating a copy of byval args of " << F.getName()
717 << "\n");
718 bool Changed = false;
719 if (isKernelFunction(F)) {
720 for (Argument &Arg : F.args())
721 if (Arg.getType()->isPointerTy() && Arg.hasByValAttr() &&
722 !isParamGridConstant(Arg)) {
723 copyByValParam(F, Arg);
724 Changed = true;
725 }
726 }
727 return Changed;
728}
729
734}
735
738 auto &NTM = static_cast<NVPTXTargetMachine &>(TM);
739 bool Changed = processFunction(F, NTM);
740 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
741}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Rewrite undef for PHI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Addr
Hexagon Common GEP
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
NVPTX address space definition.
static bool runOnDeviceFunction(const NVPTXTargetMachine &TM, Function &F)
nvptx lower Lower arguments(NVPTX)"
static CallInst * createNVVMInternalAddrspaceWrap(IRBuilder<> &IRB, Argument &Arg)
nvptx lower args
static void adjustByValArgAlignment(Argument *Arg, Value *ArgInParamAS, const NVPTXTargetLowering *TLI)
static bool copyFunctionByValArgs(Function &F)
static void markPointerAsAS(Value *Ptr, const unsigned AS)
nvptx lower Lower static false void convertToParamAS(Use *OldUse, Value *Param, bool HasCvtaParam, bool IsGridConstant)
static bool processFunction(Function &F, NVPTXTargetMachine &TM)
static bool runOnKernelFunction(const NVPTXTargetMachine &TM, Function &F)
static void markPointerAsGlobal(Value *Ptr)
static void handleByValParam(const NVPTXTargetMachine &TM, Argument *Arg)
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:39
This file provides a collection of visitors which walk the (instruction) uses of a pointer.
This file contains some templates that are useful if you are working with the STL at all.
#define LLVM_DEBUG(...)
Definition: Debug.h:119
Target-Independent Code Generator Pass Configuration Options pass.
Class for arbitrary precision integers.
Definition: APInt.h:78
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition: APInt.h:475
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition: APInt.h:200
This class represents a conversion between pointers from one address space to another.
unsigned getDestAddressSpace() const
Returns the address space of the result.
an instruction to allocate memory on the stack
Definition: Instructions.h:64
Align getAlign() const
Return the alignment of the memory that is being allocated by the instruction.
Definition: Instructions.h:128
LLVM_ABI std::optional< TypeSize > getAllocationSize(const DataLayout &DL) const
Get allocation size in bytes.
void setAlignment(Align Align)
Definition: Instructions.h:132
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
This class represents an incoming formal argument to a Function.
Definition: Argument.h:32
LLVM_ABI void addAttr(Attribute::AttrKind Kind)
Definition: Function.cpp:321
LLVM_ABI bool hasByValAttr() const
Return true if this argument has the byval attribute.
Definition: Function.cpp:128
LLVM_ABI void removeAttr(Attribute::AttrKind Kind)
Remove attributes from an argument.
Definition: Function.cpp:329
const Function * getParent() const
Definition: Argument.h:44
LLVM_ABI Type * getParamByValType() const
If this is a byval argument, return its type.
Definition: Function.cpp:225
LLVM_ABI MaybeAlign getParamAlign() const
If this is a byval or inalloca argument, return its alignment.
Definition: Function.cpp:216
static LLVM_ABI Attribute getWithAlignment(LLVMContext &Context, Align Alignment)
Return a uniquified Attribute object that has the specific alignment set.
Definition: Attributes.cpp:234
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:459
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:170
void addRetAttr(Attribute::AttrKind Kind)
Adds the attribute to the return value.
Definition: InstrTypes.h:1491
This class represents a function call, abstracting a target machine's calling convention.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
const BasicBlock & getEntryBlock() const
Definition: Function.h:807
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition: Instructions.h:973
LLVM_ABI CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:834
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Definition: IRBuilder.h:605
LLVM_ABI CallInst * CreateMemTransferInst(Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src, MaybeAlign SrcAlign, Value *Size, bool isVolatile=false, const AAMDNodes &AAInfo=AAMDNodes())
Definition: IRBuilder.cpp:209
Value * CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2209
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2780
void visitPtrToIntInst(PtrToIntInst &I)
Definition: InstVisitor.h:185
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:87
void visitPHINode(PHINode &I)
Definition: InstVisitor.h:175
void visitAddrSpaceCastInst(AddrSpaceCastInst &I)
Definition: InstVisitor.h:189
void visitMemTransferInst(MemTransferInst &I)
Definition: InstVisitor.h:209
void visitMemSetInst(MemSetInst &I)
Definition: InstVisitor.h:203
void visitSelectInst(SelectInst &I)
Definition: InstVisitor.h:190
Class to represent integer types.
Definition: DerivedTypes.h:42
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:74
An instruction for reading from memory.
Definition: Instructions.h:180
This class wraps the llvm.memset and llvm.memset.inline intrinsics.
This class wraps the llvm.memcpy/memmove intrinsics.
Align getFunctionParamOptimizedAlign(const Function *F, Type *ArgTy, const DataLayout &DL) const
getFunctionParamOptimizedAlign - since function arguments are passed via .param space,...
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:112
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:85
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: Analysis.h:115
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:118
This class represents a cast from a pointer to an integer.
A base class for visitors over the uses of a pointer value.
void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC)
void visitStoreInst(StoreInst &SI)
void visitPtrToIntInst(PtrToIntInst &I)
This class represents the LLVM 'select' instruction.
size_type size() const
Definition: SmallPtrSet.h:99
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
bool empty() const
Definition: SmallVector.h:82
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
An instruction for storing to memory.
Definition: Instructions.h:296
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
Class to represent struct types.
Definition: DerivedTypes.h:218
Target-Independent Code Generator Pass Configuration Options.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:267
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:240
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
void setOperand(unsigned i, Value *Val)
Definition: User.h:237
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:546
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1098
iterator_range< use_iterator > uses()
Definition: Value.h:380
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
void enqueueUsers(Value &I)
Enqueue the users of this instruction in the visit worklist.
PtrInfo PI
The info collected about the pointer being visited thus far.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:477
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1744
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition: STLExtras.h:2491
FunctionPass * createNVPTXLowerArgsPass()
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:428
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
bool isParamGridConstant(const Argument &Arg)
bool isKernelFunction(const Function &F)
iterator_range< pointer_iterator< WrappedIteratorT > > make_pointer_range(RangeT &&Range)
Definition: iterator.h:363
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
Definition: Alignment.h:141
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)