LLVM 22.0.0git
PredicateInfo.cpp
Go to the documentation of this file.
1//===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------===//
8//
9// This file implements the PredicateInfo class.
10//
11//===----------------------------------------------------------------===//
12
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/STLExtras.h"
19#include "llvm/IR/Dominators.h"
20#include "llvm/IR/IRBuilder.h"
25#include "llvm/Support/Debug.h"
28#define DEBUG_TYPE "predicateinfo"
29using namespace llvm;
30using namespace PatternMatch;
31
33 "verify-predicateinfo", cl::init(false), cl::Hidden,
34 cl::desc("Verify PredicateInfo in legacy printer pass."));
35DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
36 "Controls which variables are renamed with predicateinfo");
37
38// Maximum number of conditions considered for renaming for each branch/assume.
39// This limits renaming of deep and/or chains.
40static const unsigned MaxCondsPerBranch = 8;
41
42namespace {
43// Given a predicate info that is a type of branching terminator, get the
44// branching block.
45const BasicBlock *getBranchBlock(const PredicateBase *PB) {
46 assert(isa<PredicateWithEdge>(PB) &&
47 "Only branches and switches should have PHIOnly defs that "
48 "require branch blocks.");
49 return cast<PredicateWithEdge>(PB)->From;
50}
51
52// Given a predicate info that is a type of branching terminator, get the
53// branching terminator.
54static Instruction *getBranchTerminator(const PredicateBase *PB) {
55 assert(isa<PredicateWithEdge>(PB) &&
56 "Not a predicate info type we know how to get a terminator from.");
57 return cast<PredicateWithEdge>(PB)->From->getTerminator();
58}
59
60// Given a predicate info that is a type of branching terminator, get the
61// edge this predicate info represents
62std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const PredicateBase *PB) {
63 assert(isa<PredicateWithEdge>(PB) &&
64 "Not a predicate info type we know how to get an edge from.");
65 const auto *PEdge = cast<PredicateWithEdge>(PB);
66 return std::make_pair(PEdge->From, PEdge->To);
67}
68}
69
70namespace llvm {
72 // Operations that must appear first in the block.
74 // Operations that are somewhere in the middle of the block, and are sorted on
75 // demand.
77 // Operations that must appear last in a block, like successor phi node uses.
79};
80
81// Associate global and local DFS info with defs (PInfo set) and uses (U set),
82// so we can sort them into a global domination ordering.
83struct ValueDFS {
84 int DFSIn = 0;
85 int DFSOut = 0;
86 unsigned int LocalNum = LN_Middle;
87 // Only one of U or PInfo will be set.
88 Use *U = nullptr;
89 PredicateBase *PInfo = nullptr;
90};
91
92// This compares ValueDFS structures. Doing so allows us to walk the minimum
93// number of instructions necessary to compute our def/use ordering.
97
98 bool operator()(const ValueDFS &A, const ValueDFS &B) const {
99 if (&A == &B)
100 return false;
101
102 // Order by block first.
103 if (A.DFSIn != B.DFSIn)
104 return A.DFSIn < B.DFSIn;
105 assert(A.DFSOut == B.DFSOut &&
106 "Equal DFS-in numbers imply equal out numbers");
107
108 // Then order by first/middle/last.
109 if (A.LocalNum != B.LocalNum)
110 return A.LocalNum < B.LocalNum;
111
112 // We want to put the def that will get used for a given set of phi uses,
113 // before those phi uses.
114 // So we sort by edge, then by def.
115 // Note that only phi nodes uses and defs can come last.
116 if (A.LocalNum == LN_Last)
117 return comparePHIRelated(A, B);
118
119 // Use block-local ordering for instructions in the middle.
120 if (A.LocalNum == LN_Middle)
121 return localComesBefore(A, B);
122
123 // The order of PredicateInfo definitions at the start of the block does not
124 // matter.
125 assert(A.LocalNum == LN_First);
126 assert(A.PInfo && B.PInfo && "Must be predicate info def");
127 return false;
128 }
129
130 // For a phi use, or a non-materialized def, return the edge it represents.
131 std::pair<BasicBlock *, BasicBlock *> getBlockEdge(const ValueDFS &VD) const {
132 if (VD.U) {
133 auto *PHI = cast<PHINode>(VD.U->getUser());
134 return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
135 }
136 // This is really a non-materialized def.
137 return ::getBlockEdge(VD.PInfo);
138 }
139
140 // For two phi related values, return the ordering.
141 bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
142 BasicBlock *ASrc, *ADest, *BSrc, *BDest;
143 std::tie(ASrc, ADest) = getBlockEdge(A);
144 std::tie(BSrc, BDest) = getBlockEdge(B);
145
146#ifndef NDEBUG
147 // This function should only be used for values in the same BB, check that.
148 DomTreeNode *DomASrc = DT.getNode(ASrc);
149 DomTreeNode *DomBSrc = DT.getNode(BSrc);
150 assert(DomASrc->getDFSNumIn() == (unsigned)A.DFSIn &&
151 "DFS numbers for A should match the ones of the source block");
152 assert(DomBSrc->getDFSNumIn() == (unsigned)B.DFSIn &&
153 "DFS numbers for B should match the ones of the source block");
154 assert(A.DFSIn == B.DFSIn && "Values must be in the same block");
155#endif
156 (void)ASrc;
157 (void)BSrc;
158
159 // Use DFS numbers to compare destination blocks, to guarantee a
160 // deterministic order.
161 DomTreeNode *DomADest = DT.getNode(ADest);
162 DomTreeNode *DomBDest = DT.getNode(BDest);
163 unsigned AIn = DomADest->getDFSNumIn();
164 unsigned BIn = DomBDest->getDFSNumIn();
165 bool isAUse = A.U;
166 bool isBUse = B.U;
167 assert((!A.PInfo || !A.U) && (!B.PInfo || !B.U) &&
168 "Def and U cannot be set at the same time");
169 // Now sort by edge destination and then defs before uses.
170 return std::tie(AIn, isAUse) < std::tie(BIn, isBUse);
171 }
172
173 const Instruction *getDefOrUser(const ValueDFS &VD) const {
174 if (VD.U)
175 return cast<Instruction>(VD.U->getUser());
176
177 // For the purpose of ordering, we pretend the def is right after the
178 // assume, because that is where we will insert the info.
179 assert(VD.PInfo && "No use, and no predicateinfo should not occur");
180 assert(isa<PredicateAssume>(VD.PInfo) &&
181 "Middle of block should only occur for assumes");
182 return cast<PredicateAssume>(VD.PInfo)->AssumeInst->getNextNode();
183 }
184
185 // This performs the necessary local basic block ordering checks to tell
186 // whether A comes before B, where both are in the same basic block.
187 bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
188 const Instruction *AInst = getDefOrUser(A);
189 const Instruction *BInst = getDefOrUser(B);
190 return AInst->comesBefore(BInst);
191 }
192};
193
195 // Used to store information about each value we might rename.
196 struct ValueInfo {
198 };
199
200 PredicateInfo &PI;
201 Function &F;
202 DominatorTree &DT;
203 AssumptionCache &AC;
204
205 // This stores info about each operand or comparison result we make copies
206 // of. The real ValueInfos start at index 1, index 0 is unused so that we
207 // can more easily detect invalid indexing.
209
210 // This gives the index into the ValueInfos array for a given Value. Because
211 // 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
212 // whether it returned a valid result.
214
215 BumpPtrAllocator &Allocator;
216
217 ValueInfo &getOrCreateValueInfo(Value *);
218 const ValueInfo &getValueInfo(Value *) const;
219
220 void processAssume(IntrinsicInst *, BasicBlock *,
221 SmallVectorImpl<Value *> &OpsToRename);
222 void processBranch(BranchInst *, BasicBlock *,
223 SmallVectorImpl<Value *> &OpsToRename);
224 void processSwitch(SwitchInst *, BasicBlock *,
225 SmallVectorImpl<Value *> &OpsToRename);
226 void renameUses(SmallVectorImpl<Value *> &OpsToRename);
227 void addInfoFor(SmallVectorImpl<Value *> &OpsToRename, Value *Op,
229
230 struct StackEntry {
231 const ValueDFS *V;
232 Value *Def = nullptr;
233
234 StackEntry(const ValueDFS *V) : V(V) {}
235 };
236
238 void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
239 Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
240 bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
241 void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
242
243public:
245 AssumptionCache &AC, BumpPtrAllocator &Allocator)
246 : PI(PI), F(F), DT(DT), AC(AC), Allocator(Allocator) {
247 // Push an empty operand info so that we can detect 0 as not finding one
248 ValueInfos.resize(1);
249 }
250
251 void buildPredicateInfo();
252};
253
254bool PredicateInfoBuilder::stackIsInScope(const ValueDFSStack &Stack,
255 const ValueDFS &VDUse) const {
256 assert(!Stack.empty() && "Should not be called with empty stack");
257 // If it's a phi only use, make sure it's for this phi node edge, and that the
258 // use is in a phi node. If it's anything else, and the top of the stack is
259 // a LN_Last def, we need to pop the stack. We deliberately sort phi uses
260 // next to the defs they must go with so that we can know it's time to pop
261 // the stack when we hit the end of the phi uses for a given def.
262 const ValueDFS &Top = *Stack.back().V;
263 if (Top.LocalNum == LN_Last && Top.PInfo) {
264 if (!VDUse.U)
265 return false;
266 auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
267 if (!PHI)
268 return false;
269 // Check edge
270 BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
271 if (EdgePred != getBranchBlock(Top.PInfo))
272 return false;
273
274 // Use dominates, which knows how to handle edge dominance.
275 return DT.dominates(getBlockEdge(Top.PInfo), *VDUse.U);
276 }
277
278 return VDUse.DFSIn >= Top.DFSIn && VDUse.DFSOut <= Top.DFSOut;
279}
280
281void PredicateInfoBuilder::popStackUntilDFSScope(ValueDFSStack &Stack,
282 const ValueDFS &VD) {
283 while (!Stack.empty() && !stackIsInScope(Stack, VD))
284 Stack.pop_back();
285}
286
287// Convert the uses of Op into a vector of uses, associating global and local
288// DFS info with each one.
289void PredicateInfoBuilder::convertUsesToDFSOrdered(
290 Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
291 for (auto &U : Op->uses()) {
292 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
293 // Lifetime intrinsics must work directly on alloca, do not replace them
294 // with a predicated copy.
295 if (I->isLifetimeStartOrEnd())
296 continue;
297
298 ValueDFS VD;
299 // Put the phi node uses in the incoming block.
300 BasicBlock *IBlock;
301 if (auto *PN = dyn_cast<PHINode>(I)) {
302 IBlock = PN->getIncomingBlock(U);
303 // Make phi node users appear last in the incoming block
304 // they are from.
305 VD.LocalNum = LN_Last;
306 } else {
307 // If it's not a phi node use, it is somewhere in the middle of the
308 // block.
309 IBlock = I->getParent();
310 VD.LocalNum = LN_Middle;
311 }
312 DomTreeNode *DomNode = DT.getNode(IBlock);
313 // It's possible our use is in an unreachable block. Skip it if so.
314 if (!DomNode)
315 continue;
316 VD.DFSIn = DomNode->getDFSNumIn();
317 VD.DFSOut = DomNode->getDFSNumOut();
318 VD.U = &U;
319 DFSOrderedSet.push_back(VD);
320 }
321 }
322}
323
325 // Only want real values, not constants. Additionally, operands with one use
326 // are only being used in the comparison, which means they will not be useful
327 // for us to consider for predicateinfo.
328 return (isa<Instruction>(V) || isa<Argument>(V)) && !V->hasOneUse();
329}
330
331// Collect relevant operations from Comparison that we may want to insert copies
332// for.
333void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
334 auto *Op0 = Comparison->getOperand(0);
335 auto *Op1 = Comparison->getOperand(1);
336 if (Op0 == Op1)
337 return;
338
339 CmpOperands.push_back(Op0);
340 CmpOperands.push_back(Op1);
341}
342
343// Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
344void PredicateInfoBuilder::addInfoFor(SmallVectorImpl<Value *> &OpsToRename,
346 auto &OperandInfo = getOrCreateValueInfo(Op);
347 if (OperandInfo.Infos.empty())
348 OpsToRename.push_back(Op);
349 OperandInfo.Infos.push_back(PB);
350}
351
352// Process an assume instruction and place relevant operations we want to rename
353// into OpsToRename.
354void PredicateInfoBuilder::processAssume(
355 IntrinsicInst *II, BasicBlock *AssumeBB,
356 SmallVectorImpl<Value *> &OpsToRename) {
359 Worklist.push_back(II->getOperand(0));
360 while (!Worklist.empty()) {
361 Value *Cond = Worklist.pop_back_val();
362 if (!Visited.insert(Cond).second)
363 continue;
364 if (Visited.size() > MaxCondsPerBranch)
365 break;
366
367 Value *Op0, *Op1;
368 if (match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
369 Worklist.push_back(Op1);
370 Worklist.push_back(Op0);
371 }
372
374 Values.push_back(Cond);
375 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
376 collectCmpOps(Cmp, Values);
377 else if (match(Cond, m_NUWTrunc(m_Value(Op0))))
378 Values.push_back(Op0);
379
380 for (Value *V : Values) {
381 if (shouldRename(V)) {
382 auto *PA = new (Allocator) PredicateAssume(V, II, Cond);
383 addInfoFor(OpsToRename, V, PA);
384 }
385 }
386 }
387}
388
389// Process a block terminating branch, and place relevant operations to be
390// renamed into OpsToRename.
391void PredicateInfoBuilder::processBranch(
392 BranchInst *BI, BasicBlock *BranchBB,
393 SmallVectorImpl<Value *> &OpsToRename) {
394 BasicBlock *FirstBB = BI->getSuccessor(0);
395 BasicBlock *SecondBB = BI->getSuccessor(1);
396
397 for (BasicBlock *Succ : {FirstBB, SecondBB}) {
398 bool TakenEdge = Succ == FirstBB;
399 // Don't try to insert on a self-edge. This is mainly because we will
400 // eliminate during renaming anyway.
401 if (Succ == BranchBB)
402 continue;
403
406 Worklist.push_back(BI->getCondition());
407 while (!Worklist.empty()) {
408 Value *Cond = Worklist.pop_back_val();
409 if (!Visited.insert(Cond).second)
410 continue;
411 if (Visited.size() > MaxCondsPerBranch)
412 break;
413
414 Value *Op0, *Op1;
415 if (TakenEdge ? match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))
416 : match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
417 Worklist.push_back(Op1);
418 Worklist.push_back(Op0);
419 }
420
422 Values.push_back(Cond);
423 if (auto *Cmp = dyn_cast<CmpInst>(Cond))
424 collectCmpOps(Cmp, Values);
425 else if (match(Cond, m_NUWTrunc(m_Value(Op0))))
426 Values.push_back(Op0);
427
428 for (Value *V : Values) {
429 if (shouldRename(V)) {
430 PredicateBase *PB = new (Allocator)
431 PredicateBranch(V, BranchBB, Succ, Cond, TakenEdge);
432 addInfoFor(OpsToRename, V, PB);
433 }
434 }
435 }
436 }
437}
438// Process a block terminating switch, and place relevant operations to be
439// renamed into OpsToRename.
440void PredicateInfoBuilder::processSwitch(
441 SwitchInst *SI, BasicBlock *BranchBB,
442 SmallVectorImpl<Value *> &OpsToRename) {
443 Value *Op = SI->getCondition();
444 if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
445 return;
446
447 // Remember how many outgoing edges there are to every successor.
449 for (BasicBlock *TargetBlock : successors(BranchBB))
450 ++SwitchEdges[TargetBlock];
451
452 // Now propagate info for each case value
453 for (auto C : SI->cases()) {
454 BasicBlock *TargetBlock = C.getCaseSuccessor();
455 if (SwitchEdges.lookup(TargetBlock) == 1) {
456 PredicateSwitch *PS = new (Allocator) PredicateSwitch(
457 Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
458 addInfoFor(OpsToRename, Op, PS);
459 }
460 }
461}
462
463// Build predicate info for our function
465 DT.updateDFSNumbers();
466 // Collect operands to rename from all conditional branch terminators, as well
467 // as assume statements.
468 SmallVector<Value *, 8> OpsToRename;
469 for (BasicBlock &BB : F) {
470 if (!DT.isReachableFromEntry(&BB))
471 continue;
472
473 if (auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
474 if (!BI->isConditional())
475 continue;
476 // Can't insert conditional information if they all go to the same place.
477 if (BI->getSuccessor(0) == BI->getSuccessor(1))
478 continue;
479 processBranch(BI, &BB, OpsToRename);
480 } else if (auto *SI = dyn_cast<SwitchInst>(BB.getTerminator())) {
481 processSwitch(SI, &BB, OpsToRename);
482 }
483 }
484 for (auto &Assume : AC.assumptions()) {
485 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
486 if (DT.isReachableFromEntry(II->getParent()))
487 processAssume(II, II->getParent(), OpsToRename);
488 }
489 // Now rename all our operations.
490 renameUses(OpsToRename);
491}
492
493// Given the renaming stack, make all the operands currently on the stack real
494// by inserting them into the IR. Return the last operation's value.
495Value *PredicateInfoBuilder::materializeStack(unsigned int &Counter,
496 ValueDFSStack &RenameStack,
497 Value *OrigOp) {
498 // Find the first thing we have to materialize
499 auto RevIter = RenameStack.rbegin();
500 for (; RevIter != RenameStack.rend(); ++RevIter)
501 if (RevIter->Def)
502 break;
503
504 size_t Start = RevIter - RenameStack.rbegin();
505 // The maximum number of things we should be trying to materialize at once
506 // right now is 4, depending on if we had an assume, a branch, and both used
507 // and of conditions.
508 for (auto RenameIter = RenameStack.end() - Start;
509 RenameIter != RenameStack.end(); ++RenameIter) {
510 auto *Op =
511 RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
512 StackEntry &Result = *RenameIter;
513 auto *ValInfo = Result.V->PInfo;
514 ValInfo->RenamedOp = (RenameStack.end() - Start) == RenameStack.begin()
515 ? OrigOp
516 : (RenameStack.end() - Start - 1)->Def;
517 auto CreateSSACopy = [](Instruction *InsertPt, Value *Op,
518 const Twine &Name = "") {
519 // Use a no-op bitcast to represent ssa copy.
520 return new BitCastInst(Op, Op->getType(), Name, InsertPt->getIterator());
521 };
522 // For edge predicates, we can just place the operand in the block before
523 // the terminator. For assume, we have to place it right after the assume
524 // to ensure we dominate all uses except assume itself. Always insert
525 // right before the terminator or after the assume, so that we insert in
526 // proper order in the case of multiple predicateinfo in the same block.
527 if (isa<PredicateWithEdge>(ValInfo)) {
528 BitCastInst *PIC = CreateSSACopy(getBranchTerminator(ValInfo), Op,
529 Op->getName() + "." + Twine(Counter++));
530 PI.PredicateMap.insert({PIC, ValInfo});
531 Result.Def = PIC;
532 } else {
533 auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
534 assert(PAssume &&
535 "Should not have gotten here without it being an assume");
536 // Insert the predicate directly after the assume. While it also holds
537 // directly before it, assume(i1 true) is not a useful fact.
538 BitCastInst *PIC = CreateSSACopy(PAssume->AssumeInst->getNextNode(), Op);
539 PI.PredicateMap.insert({PIC, ValInfo});
540 Result.Def = PIC;
541 }
542 }
543 return RenameStack.back().Def;
544}
545
546// Instead of the standard SSA renaming algorithm, which is O(Number of
547// instructions), and walks the entire dominator tree, we walk only the defs +
548// uses. The standard SSA renaming algorithm does not really rely on the
549// dominator tree except to order the stack push/pops of the renaming stacks, so
550// that defs end up getting pushed before hitting the correct uses. This does
551// not require the dominator tree, only the *order* of the dominator tree. The
552// complete and correct ordering of the defs and uses, in dominator tree is
553// contained in the DFS numbering of the dominator tree. So we sort the defs and
554// uses into the DFS ordering, and then just use the renaming stack as per
555// normal, pushing when we hit a def (which is a predicateinfo instruction),
556// popping when we are out of the dfs scope for that def, and replacing any uses
557// with top of stack if it exists. In order to handle liveness without
558// propagating liveness info, we don't actually insert the predicateinfo
559// instruction def until we see a use that it would dominate. Once we see such
560// a use, we materialize the predicateinfo instruction in the right place and
561// use it.
562//
563// TODO: Use this algorithm to perform fast single-variable renaming in
564// promotememtoreg and memoryssa.
565void PredicateInfoBuilder::renameUses(SmallVectorImpl<Value *> &OpsToRename) {
567 // Compute liveness, and rename in O(uses) per Op.
568 for (auto *Op : OpsToRename) {
569 LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
570 unsigned Counter = 0;
571 SmallVector<ValueDFS, 16> OrderedUses;
572 const auto &ValueInfo = getValueInfo(Op);
573 // Insert the possible copies into the def/use list.
574 // They will become real copies if we find a real use for them, and never
575 // created otherwise.
576 for (const auto &PossibleCopy : ValueInfo.Infos) {
577 ValueDFS VD;
578 // Determine where we are going to place the copy by the copy type.
579 // The predicate info for branches always come first, they will get
580 // materialized in the split block at the top of the block.
581 // The predicate info for assumes will be somewhere in the middle,
582 // it will get materialized right after the assume.
583 if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
584 VD.LocalNum = LN_Middle;
585 DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
586 if (!DomNode)
587 continue;
588 VD.DFSIn = DomNode->getDFSNumIn();
589 VD.DFSOut = DomNode->getDFSNumOut();
590 VD.PInfo = PossibleCopy;
591 OrderedUses.push_back(VD);
592 } else if (isa<PredicateWithEdge>(PossibleCopy)) {
593 // If we can only do phi uses, we treat it like it's in the branch
594 // block, and handle it specially. We know that it goes last, and only
595 // dominate phi uses.
596 auto BlockEdge = getBlockEdge(PossibleCopy);
597 if (!BlockEdge.second->getSinglePredecessor()) {
598 VD.LocalNum = LN_Last;
599 auto *DomNode = DT.getNode(BlockEdge.first);
600 if (DomNode) {
601 VD.DFSIn = DomNode->getDFSNumIn();
602 VD.DFSOut = DomNode->getDFSNumOut();
603 VD.PInfo = PossibleCopy;
604 OrderedUses.push_back(VD);
605 }
606 } else {
607 // Otherwise, we are in the split block (even though we perform
608 // insertion in the branch block).
609 // Insert a possible copy at the split block and before the branch.
610 VD.LocalNum = LN_First;
611 auto *DomNode = DT.getNode(BlockEdge.second);
612 if (DomNode) {
613 VD.DFSIn = DomNode->getDFSNumIn();
614 VD.DFSOut = DomNode->getDFSNumOut();
615 VD.PInfo = PossibleCopy;
616 OrderedUses.push_back(VD);
617 }
618 }
619 }
620 }
621
622 convertUsesToDFSOrdered(Op, OrderedUses);
623 // Here we require a stable sort because we do not bother to try to
624 // assign an order to the operands the uses represent. Thus, two
625 // uses in the same instruction do not have a strict sort order
626 // currently and will be considered equal. We could get rid of the
627 // stable sort by creating one if we wanted.
628 llvm::stable_sort(OrderedUses, Compare);
629 SmallVector<StackEntry, 8> RenameStack;
630 // For each use, sorted into dfs order, push values and replaces uses with
631 // top of stack, which will represent the reaching def.
632 for (const ValueDFS &VD : OrderedUses) {
633 // We currently do not materialize copy over copy, but we should decide if
634 // we want to.
635 if (RenameStack.empty()) {
636 LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
637 } else {
638 LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
639 << RenameStack.back().V->DFSIn << ","
640 << RenameStack.back().V->DFSOut << ")\n");
641 }
642
643 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
644 << VD.DFSOut << ")\n");
645
646 // Sync to our current scope.
647 popStackUntilDFSScope(RenameStack, VD);
648
649 if (VD.PInfo) {
650 RenameStack.push_back(&VD);
651 continue;
652 }
653
654 // If we get to this point, and the stack is empty we must have a use
655 // with no renaming needed, just skip it.
656 if (RenameStack.empty())
657 continue;
658 if (!DebugCounter::shouldExecute(RenameCounter)) {
659 LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
660 continue;
661 }
662 StackEntry &Result = RenameStack.back();
663
664 // If the possible copy dominates something, materialize our stack up to
665 // this point. This ensures every comparison that affects our operation
666 // ends up with predicateinfo.
667 if (!Result.Def)
668 Result.Def = materializeStack(Counter, RenameStack, Op);
669
670 LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
671 << *VD.U->get() << " in " << *(VD.U->getUser())
672 << "\n");
673 assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
674 "Predicateinfo def should have dominated this use");
675 VD.U->set(Result.Def);
676 }
677 }
678}
679
680PredicateInfoBuilder::ValueInfo &
681PredicateInfoBuilder::getOrCreateValueInfo(Value *Operand) {
682 auto Res = ValueInfoNums.try_emplace(Operand, ValueInfos.size());
683 if (Res.second) {
684 // Allocate space for new ValueInfo.
685 ValueInfos.resize(ValueInfos.size() + 1);
686 }
687 return ValueInfos[Res.first->second];
688}
689
690const PredicateInfoBuilder::ValueInfo &
691PredicateInfoBuilder::getValueInfo(Value *Operand) const {
692 auto OINI = ValueInfoNums.lookup(Operand);
693 assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
694 assert(OINI < ValueInfos.size() &&
695 "Value Info Number greater than size of Value Info Table");
696 return ValueInfos[OINI];
697}
698
700 AssumptionCache &AC, BumpPtrAllocator &Allocator)
701 : F(F) {
702 PredicateInfoBuilder Builder(*this, F, DT, AC, Allocator);
703 Builder.buildPredicateInfo();
704}
705
706std::optional<PredicateConstraint> PredicateBase::getConstraint() const {
707 switch (Type) {
708 case PT_Assume:
709 case PT_Branch: {
710 bool TrueEdge = true;
711 if (auto *PBranch = dyn_cast<PredicateBranch>(this))
712 TrueEdge = PBranch->TrueEdge;
713
714 if (Condition == RenamedOp) {
715 return {{CmpInst::ICMP_EQ,
718 }
719
721 return {{TrueEdge ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ,
723 }
724
725 CmpInst *Cmp = dyn_cast<CmpInst>(Condition);
726 if (!Cmp) {
727 // TODO: Make this an assertion once RenamedOp is fully accurate.
728 return std::nullopt;
729 }
730
732 Value *OtherOp;
733 if (Cmp->getOperand(0) == RenamedOp) {
734 Pred = Cmp->getPredicate();
735 OtherOp = Cmp->getOperand(1);
736 } else if (Cmp->getOperand(1) == RenamedOp) {
737 Pred = Cmp->getSwappedPredicate();
738 OtherOp = Cmp->getOperand(0);
739 } else {
740 // TODO: Make this an assertion once RenamedOp is fully accurate.
741 return std::nullopt;
742 }
743
744 // Invert predicate along false edge.
745 if (!TrueEdge)
746 Pred = CmpInst::getInversePredicate(Pred);
747
748 return {{Pred, OtherOp}};
749 }
750 case PT_Switch:
751 if (Condition != RenamedOp) {
752 // TODO: Make this an assertion once RenamedOp is fully accurate.
753 return std::nullopt;
754 }
755
756 return {{CmpInst::ICMP_EQ, cast<PredicateSwitch>(this)->CaseValue}};
757 }
758 llvm_unreachable("Unknown predicate type");
759}
760
762
763// Replace bitcasts created by PredicateInfo with their operand.
766 const auto *PI = PredInfo.getPredicateInfoFor(&Inst);
767 if (!PI)
768 continue;
769
770 assert(isa<BitCastInst>(Inst) &&
771 Inst.getType() == Inst.getOperand(0)->getType());
772 Inst.replaceAllUsesWith(Inst.getOperand(0));
773 Inst.eraseFromParent();
774 }
775}
776
779 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
780 auto &AC = AM.getResult<AssumptionAnalysis>(F);
781 OS << "PredicateInfo for function: " << F.getName() << "\n";
783 auto PredInfo = std::make_unique<PredicateInfo>(F, DT, AC, Allocator);
784 PredInfo->print(OS);
785
786 replaceCreatedSSACopys(*PredInfo, F);
787 return PreservedAnalyses::all();
788}
789
790/// An assembly annotator class to print PredicateInfo information in
791/// comments.
793 friend class PredicateInfo;
794 const PredicateInfo *PredInfo;
795
796public:
798
800 formatted_raw_ostream &OS) override {}
801
803 formatted_raw_ostream &OS) override {
804 if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
805 OS << "; Has predicate info\n";
806 if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
807 OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
808 << " Comparison:" << *PB->Condition << " Edge: [";
809 PB->From->printAsOperand(OS);
810 OS << ",";
811 PB->To->printAsOperand(OS);
812 OS << "]";
813 } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
814 OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
815 << " Switch:" << *PS->Switch << " Edge: [";
816 PS->From->printAsOperand(OS);
817 OS << ",";
818 PS->To->printAsOperand(OS);
819 OS << "]";
820 } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
821 OS << "; assume predicate info {"
822 << " Comparison:" << *PA->Condition;
823 }
824 OS << ", RenamedOp: ";
825 PI->RenamedOp->printAsOperand(OS, false);
826 OS << " }\n";
827 }
828 }
829};
830
832 PredicateInfoAnnotatedWriter Writer(this);
833 F.print(OS, &Writer);
834}
835
837 PredicateInfoAnnotatedWriter Writer(this);
838 F.print(dbgs(), &Writer);
839}
840
843 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
844 auto &AC = AM.getResult<AssumptionAnalysis>(F);
846 std::make_unique<PredicateInfo>(F, DT, AC, Allocator)->verifyPredicateInfo();
847
848 return PreservedAnalyses::all();
849}
850}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
Rewrite undef for PHI
Expand Atomic instructions
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
Definition: DebugCounter.h:194
This file defines the DenseMap class.
std::string Name
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
PassInstrumentationCallbacks PIC
PassBuilder PB(Machine, PassOpts->PTO, std::nullopt, &PIC)
static cl::opt< bool > VerifyPredicateInfo("verify-predicateinfo", cl::init(false), cl::Hidden, cl::desc("Verify PredicateInfo in legacy printer pass."))
static const unsigned MaxCondsPerBranch
This file implements the PredicateInfo analysis, which creates an Extended SSA form for operations us...
const SmallVectorImpl< MachineOperand > & Cond
Basic Register Allocator
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallPtrSet class.
#define LLVM_DEBUG(...)
Definition: Debug.h:119
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:412
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptions()
Access the list of assumption handles currently tracked for this function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
This class represents a no-op cast from one type to another.
Conditional or Unconditional Branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:67
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:666
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:678
@ ICMP_EQ
equal
Definition: InstrTypes.h:699
@ ICMP_NE
not equal
Definition: InstrTypes.h:700
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:791
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:868
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:875
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
This class represents an Operation in the Expression.
static bool shouldExecute(unsigned CounterName)
Definition: DebugCounter.h:88
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:203
unsigned getDFSNumIn() const
getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes in the dominator tree.
unsigned getDFSNumOut() const
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:284
void updateDFSNumbers() const
updateDFSNumbers - Assign In and Out numbers to the nodes while walking dominator tree in dfs order.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:165
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:334
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:135
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:49
LLVM_ABI std::optional< PredicateConstraint > getConstraint() const
Fetch condition in the form of PredicateConstraint, if possible.
An assembly annotator class to print PredicateInfo information in comments.
PredicateInfoAnnotatedWriter(const PredicateInfo *M)
void emitInstructionAnnot(const Instruction *I, formatted_raw_ostream &OS) override
emitInstructionAnnot - This may be implemented to emit a string right before an instruction is emitte...
void emitBasicBlockStartAnnot(const BasicBlock *BB, formatted_raw_ostream &OS) override
emitBasicBlockStartAnnot - This may be implemented to emit a string right after the basic block label...
PredicateInfoBuilder(PredicateInfo &PI, Function &F, DominatorTree &DT, AssumptionCache &AC, BumpPtrAllocator &Allocator)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Encapsulates PredicateInfo, including all data associated with memory accesses.
LLVM_ABI void verifyPredicateInfo() const
LLVM_ABI void print(raw_ostream &) const
LLVM_ABI PredicateInfo(Function &, DominatorTree &, AssumptionCache &, BumpPtrAllocator &)
LLVM_ABI void dump() const
const PredicateBase * getPredicateInfoFor(const Value *V) const
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:118
size_type size() const
Definition: SmallPtrSet.h:99
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
void resize(size_type N)
Definition: SmallVector.h:639
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
Multiway switch.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
formatted_raw_ostream - A raw_ostream that wraps another one and keeps track of line and column posit...
self_iterator getIterator()
Definition: ilist_node.h:134
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:962
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void stable_sort(R &&Range)
Definition: STLExtras.h:2077
void collectCmpOps(CmpInst *Comparison, SmallVectorImpl< Value * > &CmpOperands)
auto successors(const MachineBasicBlock *BB)
static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:663
bool shouldRename(Value *V)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
@ PT_Switch
Definition: PredicateInfo.h:70
@ PT_Assume
Definition: PredicateInfo.h:70
@ PT_Branch
Definition: PredicateInfo.h:70
DWARFExpression::Operation Op
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
std::pair< BasicBlock *, BasicBlock * > getBlockEdge(const ValueDFS &VD) const
bool operator()(const ValueDFS &A, const ValueDFS &B) const
const Instruction * getDefOrUser(const ValueDFS &VD) const
bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const
ValueDFS_Compare(DominatorTree &DT)
bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const
PredicateBase * PInfo
unsigned int LocalNum
Struct that holds a reference to a particular GUID in a global value summary.