LLVM 22.0.0git
SILowerI1Copies.cpp
Go to the documentation of this file.
1//===-- SILowerI1Copies.cpp - Lower I1 Copies -----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass lowers all occurrences of i1 values (with a vreg_1 register class)
10// to lane masks (32 / 64-bit scalar registers). The pass assumes machine SSA
11// form and a wave-level control flow graph.
12//
13// Before this pass, values that are semantically i1 and are defined and used
14// within the same basic block are already represented as lane masks in scalar
15// registers. However, values that cross basic blocks are always transferred
16// between basic blocks in vreg_1 virtual registers and are lowered by this
17// pass.
18//
19// The only instructions that use or define vreg_1 virtual registers are COPY,
20// PHI, and IMPLICIT_DEF.
21//
22//===----------------------------------------------------------------------===//
23
24#include "SILowerI1Copies.h"
25#include "AMDGPU.h"
28
29#define DEBUG_TYPE "si-i1-copies"
30
31using namespace llvm;
32
33static Register
35 MachineRegisterInfo::VRegAttrs LaneMaskRegAttrs);
36
37namespace {
38
39class Vreg1LoweringHelper : public PhiLoweringHelper {
40public:
41 Vreg1LoweringHelper(MachineFunction *MF, MachineDominatorTree *DT,
43
44private:
45 DenseSet<Register> ConstrainRegs;
46
47public:
48 void markAsLaneMask(Register DstReg) const override;
50 SmallVectorImpl<MachineInstr *> &Vreg1Phis) const override;
52 const MachineInstr *MI,
53 SmallVectorImpl<Incoming> &Incomings) const override;
54 void replaceDstReg(Register NewReg, Register OldReg,
55 MachineBasicBlock *MBB) override;
58 Register DstReg, Register PrevReg,
59 Register CurReg) override;
60 void constrainAsLaneMask(Incoming &In) override;
61
62 bool lowerCopiesFromI1();
63 bool lowerCopiesToI1();
64 bool cleanConstrainRegs(bool Changed);
65 bool isVreg1(Register Reg) const {
66 return Reg.isVirtual() && MRI->getRegClass(Reg) == &AMDGPU::VReg_1RegClass;
67 }
68};
69
70Vreg1LoweringHelper::Vreg1LoweringHelper(MachineFunction *MF,
73 : PhiLoweringHelper(MF, DT, PDT) {}
74
75bool Vreg1LoweringHelper::cleanConstrainRegs(bool Changed) {
76 assert(Changed || ConstrainRegs.empty());
77 for (Register Reg : ConstrainRegs)
78 MRI->constrainRegClass(Reg, &AMDGPU::SReg_1_XEXECRegClass);
79 ConstrainRegs.clear();
80
81 return Changed;
82}
83
84/// Helper class that determines the relationship between incoming values of a
85/// phi in the control flow graph to determine where an incoming value can
86/// simply be taken as a scalar lane mask as-is, and where it needs to be
87/// merged with another, previously defined lane mask.
88///
89/// The approach is as follows:
90/// - Determine all basic blocks which, starting from the incoming blocks,
91/// a wave may reach before entering the def block (the block containing the
92/// phi).
93/// - If an incoming block has no predecessors in this set, we can take the
94/// incoming value as a scalar lane mask as-is.
95/// -- A special case of this is when the def block has a self-loop.
96/// - Otherwise, the incoming value needs to be merged with a previously
97/// defined lane mask.
98/// - If there is a path into the set of reachable blocks that does _not_ go
99/// through an incoming block where we can take the scalar lane mask as-is,
100/// we need to invent an available value for the SSAUpdater. Choices are
101/// 0 and undef, with differing consequences for how to merge values etc.
102///
103/// TODO: We could use region analysis to quickly skip over SESE regions during
104/// the traversal.
105///
106class PhiIncomingAnalysis {
108 const SIInstrInfo *TII;
109
110 // For each reachable basic block, whether it is a source in the induced
111 // subgraph of the CFG.
115
116public:
117 PhiIncomingAnalysis(MachinePostDominatorTree &PDT, const SIInstrInfo *TII)
118 : PDT(PDT), TII(TII) {}
119
120 /// Returns whether \p MBB is a source in the induced subgraph of reachable
121 /// blocks.
122 bool isSource(MachineBasicBlock &MBB) const {
123 return ReachableMap.find(&MBB)->second;
124 }
125
126 ArrayRef<MachineBasicBlock *> predecessors() const { return Predecessors; }
127
128 void analyze(MachineBasicBlock &DefBlock, ArrayRef<Incoming> Incomings) {
129 assert(Stack.empty());
130 ReachableMap.clear();
131 Predecessors.clear();
132
133 // Insert the def block first, so that it acts as an end point for the
134 // traversal.
135 ReachableMap.try_emplace(&DefBlock, false);
136
137 for (auto Incoming : Incomings) {
139 if (MBB == &DefBlock) {
140 ReachableMap[&DefBlock] = true; // self-loop on DefBlock
141 continue;
142 }
143
144 ReachableMap.try_emplace(MBB, false);
145
146 // If this block has a divergent terminator and the def block is its
147 // post-dominator, the wave may first visit the other successors.
148 if (TII->hasDivergentBranch(MBB) && PDT.dominates(&DefBlock, MBB))
149 append_range(Stack, MBB->successors());
150 }
151
152 while (!Stack.empty()) {
153 MachineBasicBlock *MBB = Stack.pop_back_val();
154 if (ReachableMap.try_emplace(MBB, false).second)
155 append_range(Stack, MBB->successors());
156 }
157
158 for (auto &[MBB, Reachable] : ReachableMap) {
159 bool HaveReachablePred = false;
160 for (MachineBasicBlock *Pred : MBB->predecessors()) {
161 if (ReachableMap.count(Pred)) {
162 HaveReachablePred = true;
163 } else {
164 Stack.push_back(Pred);
165 }
166 }
167 if (!HaveReachablePred)
168 Reachable = true;
169 if (HaveReachablePred) {
170 for (MachineBasicBlock *UnreachablePred : Stack) {
171 if (!llvm::is_contained(Predecessors, UnreachablePred))
172 Predecessors.push_back(UnreachablePred);
173 }
174 }
175 Stack.clear();
176 }
177 }
178};
179
180/// Helper class that detects loops which require us to lower an i1 COPY into
181/// bitwise manipulation.
182///
183/// Unfortunately, we cannot use LoopInfo because LoopInfo does not distinguish
184/// between loops with the same header. Consider this example:
185///
186/// A-+-+
187/// | | |
188/// B-+ |
189/// | |
190/// C---+
191///
192/// A is the header of a loop containing A, B, and C as far as LoopInfo is
193/// concerned. However, an i1 COPY in B that is used in C must be lowered to
194/// bitwise operations to combine results from different loop iterations when
195/// B has a divergent branch (since by default we will compile this code such
196/// that threads in a wave are merged at the entry of C).
197///
198/// The following rule is implemented to determine whether bitwise operations
199/// are required: use the bitwise lowering for a def in block B if a backward
200/// edge to B is reachable without going through the nearest common
201/// post-dominator of B and all uses of the def.
202///
203/// TODO: This rule is conservative because it does not check whether the
204/// relevant branches are actually divergent.
205///
206/// The class is designed to cache the CFG traversal so that it can be re-used
207/// for multiple defs within the same basic block.
208///
209/// TODO: We could use region analysis to quickly skip over SESE regions during
210/// the traversal.
211///
212class LoopFinder {
215
216 // All visited / reachable block, tagged by level (level 0 is the def block,
217 // level 1 are all blocks reachable including but not going through the def
218 // block's IPDOM, etc.).
220
221 // Nearest common dominator of all visited blocks by level (level 0 is the
222 // def block). Used for seeding the SSAUpdater.
224
225 // Post-dominator of all visited blocks.
226 MachineBasicBlock *VisitedPostDom = nullptr;
227
228 // Level at which a loop was found: 0 is not possible; 1 = a backward edge is
229 // reachable without going through the IPDOM of the def block (if the IPDOM
230 // itself has an edge to the def block, the loop level is 2), etc.
231 unsigned FoundLoopLevel = ~0u;
232
233 MachineBasicBlock *DefBlock = nullptr;
236
237public:
239 : DT(DT), PDT(PDT) {}
240
242 Visited.clear();
243 CommonDominators.clear();
244 Stack.clear();
245 NextLevel.clear();
246 VisitedPostDom = nullptr;
247 FoundLoopLevel = ~0u;
248
249 DefBlock = &MBB;
250 }
251
252 /// Check whether a backward edge can be reached without going through the
253 /// given \p PostDom of the def block.
254 ///
255 /// Return the level of \p PostDom if a loop was found, or 0 otherwise.
256 unsigned findLoop(MachineBasicBlock *PostDom) {
257 MachineDomTreeNode *PDNode = PDT.getNode(DefBlock);
258
259 if (!VisitedPostDom)
260 advanceLevel();
261
262 unsigned Level = 0;
263 while (PDNode->getBlock() != PostDom) {
264 if (PDNode->getBlock() == VisitedPostDom)
265 advanceLevel();
266 PDNode = PDNode->getIDom();
267 Level++;
268 if (FoundLoopLevel == Level)
269 return Level;
270 }
271
272 return 0;
273 }
274
275 /// Add undef values dominating the loop and the optionally given additional
276 /// blocks, so that the SSA updater doesn't have to search all the way to the
277 /// function entry.
278 void addLoopEntries(unsigned LoopLevel, MachineSSAUpdater &SSAUpdater,
280 MachineRegisterInfo::VRegAttrs LaneMaskRegAttrs,
281 ArrayRef<Incoming> Incomings = {}) {
282 assert(LoopLevel < CommonDominators.size());
283
284 MachineBasicBlock *Dom = CommonDominators[LoopLevel];
285 for (auto &Incoming : Incomings)
287
288 if (!inLoopLevel(*Dom, LoopLevel, Incomings)) {
290 Dom, insertUndefLaneMask(Dom, &MRI, LaneMaskRegAttrs));
291 } else {
292 // The dominator is part of the loop or the given blocks, so add the
293 // undef value to unreachable predecessors instead.
294 for (MachineBasicBlock *Pred : Dom->predecessors()) {
295 if (!inLoopLevel(*Pred, LoopLevel, Incomings))
297 Pred, insertUndefLaneMask(Pred, &MRI, LaneMaskRegAttrs));
298 }
299 }
300 }
301
302private:
303 bool inLoopLevel(MachineBasicBlock &MBB, unsigned LoopLevel,
304 ArrayRef<Incoming> Incomings) const {
305 auto DomIt = Visited.find(&MBB);
306 if (DomIt != Visited.end() && DomIt->second <= LoopLevel)
307 return true;
308
309 for (auto &Incoming : Incomings)
310 if (Incoming.Block == &MBB)
311 return true;
312
313 return false;
314 }
315
316 void advanceLevel() {
317 MachineBasicBlock *VisitedDom;
318
319 if (!VisitedPostDom) {
320 VisitedPostDom = DefBlock;
321 VisitedDom = DefBlock;
322 Stack.push_back(DefBlock);
323 } else {
324 VisitedPostDom = PDT.getNode(VisitedPostDom)->getIDom()->getBlock();
325 VisitedDom = CommonDominators.back();
326
327 for (unsigned i = 0; i < NextLevel.size();) {
328 if (PDT.dominates(VisitedPostDom, NextLevel[i])) {
329 Stack.push_back(NextLevel[i]);
330
331 NextLevel[i] = NextLevel.back();
332 NextLevel.pop_back();
333 } else {
334 i++;
335 }
336 }
337 }
338
339 unsigned Level = CommonDominators.size();
340 while (!Stack.empty()) {
341 MachineBasicBlock *MBB = Stack.pop_back_val();
342 if (!PDT.dominates(VisitedPostDom, MBB))
343 NextLevel.push_back(MBB);
344
345 Visited[MBB] = Level;
346 VisitedDom = DT.findNearestCommonDominator(VisitedDom, MBB);
347
348 for (MachineBasicBlock *Succ : MBB->successors()) {
349 if (Succ == DefBlock) {
350 if (MBB == VisitedPostDom)
351 FoundLoopLevel = std::min(FoundLoopLevel, Level + 1);
352 else
353 FoundLoopLevel = std::min(FoundLoopLevel, Level);
354 continue;
355 }
356
357 if (Visited.try_emplace(Succ, ~0u).second) {
358 if (MBB == VisitedPostDom)
359 NextLevel.push_back(Succ);
360 else
361 Stack.push_back(Succ);
362 }
363 }
364 }
365
366 CommonDominators.push_back(VisitedDom);
367 }
368};
369
370} // End anonymous namespace.
371
374 MachineRegisterInfo::VRegAttrs LaneMaskRegAttrs) {
375 return MRI->createVirtualRegister(LaneMaskRegAttrs);
376}
377
378static Register
380 MachineRegisterInfo::VRegAttrs LaneMaskRegAttrs) {
381 MachineFunction &MF = *MBB->getParent();
382 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
383 const SIInstrInfo *TII = ST.getInstrInfo();
384 Register UndefReg = createLaneMaskReg(MRI, LaneMaskRegAttrs);
385 BuildMI(*MBB, MBB->getFirstTerminator(), {}, TII->get(AMDGPU::IMPLICIT_DEF),
386 UndefReg);
387 return UndefReg;
388}
389
390#ifndef NDEBUG
393 Register Reg) {
394 unsigned Size = TRI.getRegSizeInBits(Reg, MRI);
395 return Size == 1 || Size == 32;
396}
397#endif
398
399bool Vreg1LoweringHelper::lowerCopiesFromI1() {
400 bool Changed = false;
402
403 for (MachineBasicBlock &MBB : *MF) {
404 for (MachineInstr &MI : MBB) {
405 if (MI.getOpcode() != AMDGPU::COPY)
406 continue;
407
408 Register DstReg = MI.getOperand(0).getReg();
409 Register SrcReg = MI.getOperand(1).getReg();
410 if (!isVreg1(SrcReg))
411 continue;
412
413 if (isLaneMaskReg(DstReg) || isVreg1(DstReg))
414 continue;
415
416 Changed = true;
417
418 // Copy into a 32-bit vector register.
419 LLVM_DEBUG(dbgs() << "Lower copy from i1: " << MI);
420 DebugLoc DL = MI.getDebugLoc();
421
422 assert(isVRegCompatibleReg(TII->getRegisterInfo(), *MRI, DstReg));
423 assert(!MI.getOperand(0).getSubReg());
424
425 ConstrainRegs.insert(SrcReg);
426 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
427 .addImm(0)
428 .addImm(0)
429 .addImm(0)
430 .addImm(-1)
431 .addReg(SrcReg);
432 DeadCopies.push_back(&MI);
433 }
434
435 for (MachineInstr *MI : DeadCopies)
436 MI->eraseFromParent();
437 DeadCopies.clear();
438 }
439 return Changed;
440}
441
445 : MF(MF), DT(DT), PDT(PDT) {
446 MRI = &MF->getRegInfo();
447
449 TII = ST->getInstrInfo();
450 IsWave32 = ST->isWave32();
451
452 if (IsWave32) {
453 ExecReg = AMDGPU::EXEC_LO;
454 MovOp = AMDGPU::S_MOV_B32;
455 AndOp = AMDGPU::S_AND_B32;
456 OrOp = AMDGPU::S_OR_B32;
457 XorOp = AMDGPU::S_XOR_B32;
458 AndN2Op = AMDGPU::S_ANDN2_B32;
459 OrN2Op = AMDGPU::S_ORN2_B32;
460 } else {
461 ExecReg = AMDGPU::EXEC;
462 MovOp = AMDGPU::S_MOV_B64;
463 AndOp = AMDGPU::S_AND_B64;
464 OrOp = AMDGPU::S_OR_B64;
465 XorOp = AMDGPU::S_XOR_B64;
466 AndN2Op = AMDGPU::S_ANDN2_B64;
467 OrN2Op = AMDGPU::S_ORN2_B64;
468 }
469}
470
473 LoopFinder LF(*DT, *PDT);
474 PhiIncomingAnalysis PIA(*PDT, TII);
476 SmallVector<Incoming, 4> Incomings;
477
478 getCandidatesForLowering(Vreg1Phis);
479 if (Vreg1Phis.empty())
480 return false;
481
483 MachineBasicBlock *PrevMBB = nullptr;
484 for (MachineInstr *MI : Vreg1Phis) {
485 MachineBasicBlock &MBB = *MI->getParent();
486 if (&MBB != PrevMBB) {
487 LF.initialize(MBB);
488 PrevMBB = &MBB;
489 }
490
491 LLVM_DEBUG(dbgs() << "Lower PHI: " << *MI);
492
493 Register DstReg = MI->getOperand(0).getReg();
494 markAsLaneMask(DstReg);
496
498
499 // Sort the incomings such that incoming values that dominate other incoming
500 // values are sorted earlier. This allows us to do some amount of on-the-fly
501 // constant folding.
502 // Incoming with smaller DFSNumIn goes first, DFSNumIn is 0 for entry block.
503 llvm::sort(Incomings, [this](Incoming LHS, Incoming RHS) {
504 return DT->getNode(LHS.Block)->getDFSNumIn() <
505 DT->getNode(RHS.Block)->getDFSNumIn();
506 });
507
508#ifndef NDEBUG
509 PhiRegisters.insert(DstReg);
510#endif
511
512 // Phis in a loop that are observed outside the loop receive a simple but
513 // conservatively correct treatment.
514 std::vector<MachineBasicBlock *> DomBlocks = {&MBB};
515 for (MachineInstr &Use : MRI->use_instructions(DstReg))
516 DomBlocks.push_back(Use.getParent());
517
518 MachineBasicBlock *PostDomBound =
520
521 // FIXME: This fails to find irreducible cycles. If we have a def (other
522 // than a constant) in a pair of blocks that end up looping back to each
523 // other, it will be mishandle. Due to structurization this shouldn't occur
524 // in practice.
525 unsigned FoundLoopLevel = LF.findLoop(PostDomBound);
526
527 SSAUpdater.Initialize(DstReg);
528
529 if (FoundLoopLevel) {
530 LF.addLoopEntries(FoundLoopLevel, SSAUpdater, *MRI, LaneMaskRegAttrs,
531 Incomings);
532
533 for (auto &Incoming : Incomings) {
536 }
537
538 for (auto &Incoming : Incomings) {
543 }
544 } else {
545 // The phi is not observed from outside a loop. Use a more accurate
546 // lowering.
547 PIA.analyze(MBB, Incomings);
548
549 for (MachineBasicBlock *MBB : PIA.predecessors())
552
553 for (auto &Incoming : Incomings) {
555 if (PIA.isSource(IMBB)) {
558 } else {
561 }
562 }
563
564 for (auto &Incoming : Incomings) {
566 continue;
567
572 }
573 }
574
576 if (NewReg != DstReg) {
577 replaceDstReg(NewReg, DstReg, &MBB);
578 MI->eraseFromParent();
579 }
580
581 Incomings.clear();
582 }
583 return true;
584}
585
586bool Vreg1LoweringHelper::lowerCopiesToI1() {
587 bool Changed = false;
589 LoopFinder LF(*DT, *PDT);
591
592 for (MachineBasicBlock &MBB : *MF) {
593 LF.initialize(MBB);
594
595 for (MachineInstr &MI : MBB) {
596 if (MI.getOpcode() != AMDGPU::IMPLICIT_DEF &&
597 MI.getOpcode() != AMDGPU::COPY)
598 continue;
599
600 Register DstReg = MI.getOperand(0).getReg();
601 if (!isVreg1(DstReg))
602 continue;
603
604 Changed = true;
605
606 if (MRI->use_empty(DstReg)) {
607 DeadCopies.push_back(&MI);
608 continue;
609 }
610
611 LLVM_DEBUG(dbgs() << "Lower Other: " << MI);
612
613 markAsLaneMask(DstReg);
614 initializeLaneMaskRegisterAttributes(DstReg);
615
616 if (MI.getOpcode() == AMDGPU::IMPLICIT_DEF)
617 continue;
618
619 DebugLoc DL = MI.getDebugLoc();
620 Register SrcReg = MI.getOperand(1).getReg();
621 assert(!MI.getOperand(1).getSubReg());
622
623 if (!SrcReg.isVirtual() || (!isLaneMaskReg(SrcReg) && !isVreg1(SrcReg))) {
624 assert(TII->getRegisterInfo().getRegSizeInBits(SrcReg, *MRI) == 32);
625 Register TmpReg = createLaneMaskReg(MRI, LaneMaskRegAttrs);
626 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_CMP_NE_U32_e64), TmpReg)
627 .addReg(SrcReg)
628 .addImm(0);
629 MI.getOperand(1).setReg(TmpReg);
630 SrcReg = TmpReg;
631 } else {
632 // SrcReg needs to be live beyond copy.
633 MI.getOperand(1).setIsKill(false);
634 }
635
636 // Defs in a loop that are observed outside the loop must be transformed
637 // into appropriate bit manipulation.
638 std::vector<MachineBasicBlock *> DomBlocks = {&MBB};
639 for (MachineInstr &Use : MRI->use_instructions(DstReg))
640 DomBlocks.push_back(Use.getParent());
641
642 MachineBasicBlock *PostDomBound =
643 PDT->findNearestCommonDominator(DomBlocks);
644 unsigned FoundLoopLevel = LF.findLoop(PostDomBound);
645 if (FoundLoopLevel) {
646 SSAUpdater.Initialize(DstReg);
648 LF.addLoopEntries(FoundLoopLevel, SSAUpdater, *MRI, LaneMaskRegAttrs);
649
650 buildMergeLaneMasks(MBB, MI, DL, DstReg,
652 DeadCopies.push_back(&MI);
653 }
654 }
655
656 for (MachineInstr *MI : DeadCopies)
657 MI->eraseFromParent();
658 DeadCopies.clear();
659 }
660 return Changed;
661}
662
664 const MachineInstr *MI;
665 for (;;) {
666 MI = MRI->getUniqueVRegDef(Reg);
667 if (MI->getOpcode() == AMDGPU::IMPLICIT_DEF)
668 return true;
669
670 if (MI->getOpcode() != AMDGPU::COPY)
671 break;
672
673 Reg = MI->getOperand(1).getReg();
674 if (!Reg.isVirtual())
675 return false;
676 if (!isLaneMaskReg(Reg))
677 return false;
678 }
679
680 if (MI->getOpcode() != MovOp)
681 return false;
682
683 if (!MI->getOperand(1).isImm())
684 return false;
685
686 int64_t Imm = MI->getOperand(1).getImm();
687 if (Imm == 0) {
688 Val = false;
689 return true;
690 }
691 if (Imm == -1) {
692 Val = true;
693 return true;
694 }
695
696 return false;
697}
698
699static void instrDefsUsesSCC(const MachineInstr &MI, bool &Def, bool &Use) {
700 Def = false;
701 Use = false;
702
703 for (const MachineOperand &MO : MI.operands()) {
704 if (MO.isReg() && MO.getReg() == AMDGPU::SCC) {
705 if (MO.isUse())
706 Use = true;
707 else
708 Def = true;
709 }
710 }
711}
712
713/// Return a point at the end of the given \p MBB to insert SALU instructions
714/// for lane mask calculation. Take terminators and SCC into account.
717 auto InsertionPt = MBB.getFirstTerminator();
718 bool TerminatorsUseSCC = false;
719 for (auto I = InsertionPt, E = MBB.end(); I != E; ++I) {
720 bool DefsSCC;
721 instrDefsUsesSCC(*I, DefsSCC, TerminatorsUseSCC);
722 if (TerminatorsUseSCC || DefsSCC)
723 break;
724 }
725
726 if (!TerminatorsUseSCC)
727 return InsertionPt;
728
729 while (InsertionPt != MBB.begin()) {
730 InsertionPt--;
731
732 bool DefSCC, UseSCC;
733 instrDefsUsesSCC(*InsertionPt, DefSCC, UseSCC);
734 if (DefSCC)
735 return InsertionPt;
736 }
737
738 // We should have at least seen an IMPLICIT_DEF or COPY
739 llvm_unreachable("SCC used by terminator but no def in block");
740}
741
742// VReg_1 -> SReg_32 or SReg_64
743void Vreg1LoweringHelper::markAsLaneMask(Register DstReg) const {
744 MRI->setRegClass(DstReg, ST->getBoolRC());
745}
746
747void Vreg1LoweringHelper::getCandidatesForLowering(
748 SmallVectorImpl<MachineInstr *> &Vreg1Phis) const {
749 for (MachineBasicBlock &MBB : *MF) {
750 for (MachineInstr &MI : MBB.phis()) {
751 if (isVreg1(MI.getOperand(0).getReg()))
752 Vreg1Phis.push_back(&MI);
753 }
754 }
755}
756
757void Vreg1LoweringHelper::collectIncomingValuesFromPhi(
758 const MachineInstr *MI, SmallVectorImpl<Incoming> &Incomings) const {
759 for (unsigned i = 1; i < MI->getNumOperands(); i += 2) {
760 assert(i + 1 < MI->getNumOperands());
761 Register IncomingReg = MI->getOperand(i).getReg();
762 MachineBasicBlock *IncomingMBB = MI->getOperand(i + 1).getMBB();
763 MachineInstr *IncomingDef = MRI->getUniqueVRegDef(IncomingReg);
764
765 if (IncomingDef->getOpcode() == AMDGPU::COPY) {
766 IncomingReg = IncomingDef->getOperand(1).getReg();
767 assert(isLaneMaskReg(IncomingReg) || isVreg1(IncomingReg));
768 assert(!IncomingDef->getOperand(1).getSubReg());
769 } else if (IncomingDef->getOpcode() == AMDGPU::IMPLICIT_DEF) {
770 continue;
771 } else {
772 assert(IncomingDef->isPHI() || PhiRegisters.count(IncomingReg));
773 }
774
775 Incomings.emplace_back(IncomingReg, IncomingMBB, Register());
776 }
777}
778
779void Vreg1LoweringHelper::replaceDstReg(Register NewReg, Register OldReg,
781 MRI->replaceRegWith(NewReg, OldReg);
782}
783
784void Vreg1LoweringHelper::buildMergeLaneMasks(MachineBasicBlock &MBB,
786 const DebugLoc &DL,
787 Register DstReg, Register PrevReg,
788 Register CurReg) {
789 bool PrevVal = false;
790 bool PrevConstant = isConstantLaneMask(PrevReg, PrevVal);
791 bool CurVal = false;
792 bool CurConstant = isConstantLaneMask(CurReg, CurVal);
793
794 if (PrevConstant && CurConstant) {
795 if (PrevVal == CurVal) {
796 BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg).addReg(CurReg);
797 } else if (CurVal) {
798 BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg).addReg(ExecReg);
799 } else {
800 BuildMI(MBB, I, DL, TII->get(XorOp), DstReg)
801 .addReg(ExecReg)
802 .addImm(-1);
803 }
804 return;
805 }
806
807 Register PrevMaskedReg;
808 Register CurMaskedReg;
809 if (!PrevConstant) {
810 if (CurConstant && CurVal) {
811 PrevMaskedReg = PrevReg;
812 } else {
813 PrevMaskedReg = createLaneMaskReg(MRI, LaneMaskRegAttrs);
814 BuildMI(MBB, I, DL, TII->get(AndN2Op), PrevMaskedReg)
815 .addReg(PrevReg)
816 .addReg(ExecReg);
817 }
818 }
819 if (!CurConstant) {
820 // TODO: check whether CurReg is already masked by EXEC
821 if (PrevConstant && PrevVal) {
822 CurMaskedReg = CurReg;
823 } else {
824 CurMaskedReg = createLaneMaskReg(MRI, LaneMaskRegAttrs);
825 BuildMI(MBB, I, DL, TII->get(AndOp), CurMaskedReg)
826 .addReg(CurReg)
827 .addReg(ExecReg);
828 }
829 }
830
831 if (PrevConstant && !PrevVal) {
832 BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg)
833 .addReg(CurMaskedReg);
834 } else if (CurConstant && !CurVal) {
835 BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), DstReg)
836 .addReg(PrevMaskedReg);
837 } else if (PrevConstant && PrevVal) {
838 BuildMI(MBB, I, DL, TII->get(OrN2Op), DstReg)
839 .addReg(CurMaskedReg)
840 .addReg(ExecReg);
841 } else {
842 BuildMI(MBB, I, DL, TII->get(OrOp), DstReg)
843 .addReg(PrevMaskedReg)
844 .addReg(CurMaskedReg ? CurMaskedReg : ExecReg);
845 }
846}
847
848void Vreg1LoweringHelper::constrainAsLaneMask(Incoming &In) {}
849
850/// Lower all instructions that def or use vreg_1 registers.
851///
852/// In a first pass, we lower COPYs from vreg_1 to vector registers, as can
853/// occur around inline assembly. We do this first, before vreg_1 registers
854/// are changed to scalar mask registers.
855///
856/// Then we lower all defs of vreg_1 registers. Phi nodes are lowered before
857/// all others, because phi lowering looks through copies and can therefore
858/// often make copy lowering unnecessary.
861 // Only need to run this in SelectionDAG path.
862 if (MF.getProperties().hasSelected())
863 return false;
864
865 Vreg1LoweringHelper Helper(&MF, &MDT, &MPDT);
866 bool Changed = false;
867 Changed |= Helper.lowerCopiesFromI1();
868 Changed |= Helper.lowerPhis();
869 Changed |= Helper.lowerCopiesToI1();
870 return Helper.cleanConstrainRegs(Changed);
871}
872
879 bool Changed = runFixI1Copies(MF, MDT, MPDT);
880 if (!Changed)
881 return PreservedAnalyses::all();
882
883 // TODO: Probably preserves most.
886 return PA;
887}
888
890public:
891 static char ID;
892
895 }
896
897 bool runOnMachineFunction(MachineFunction &MF) override;
898
899 StringRef getPassName() const override { return "SI Lower i1 Copies"; }
900
901 void getAnalysisUsage(AnalysisUsage &AU) const override {
902 AU.setPreservesCFG();
906 }
907};
908
911 getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
913 getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree();
914 return runFixI1Copies(MF, MDT, MPDT);
915}
916
918 false, false)
923
924char SILowerI1CopiesLegacy::ID = 0;
925
927
929 return new SILowerI1CopiesLegacy();
930}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
uint64_t Size
#define DEBUG_TYPE
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
Register const TargetRegisterInfo * TRI
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:42
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:44
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:39
static void instrDefsUsesSCC(const MachineInstr &MI, bool &Def, bool &Use)
static Register insertUndefLaneMask(MachineBasicBlock *MBB, MachineRegisterInfo *MRI, MachineRegisterInfo::VRegAttrs LaneMaskRegAttrs)
SI Lower i1 Copies
static bool runFixI1Copies(MachineFunction &MF, MachineDominatorTree &MDT, MachinePostDominatorTree &MPDT)
Lower all instructions that def or use vreg_1 registers.
static bool isVRegCompatibleReg(const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI, Register Reg)
Interface definition of the PhiLoweringHelper class that implements lane mask merging algorithm for d...
#define LLVM_DEBUG(...)
Definition: Debug.h:119
static void initialize(TargetLibraryInfoImpl &TLI, const Triple &T, ArrayRef< StringLiteral > StandardNames)
Initialize the set of available library functions based on the specified target triple.
Value * RHS
Value * LHS
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
StringRef getPassName() const override
getPassName - Return a nice clean name for a pass.
bool runOnMachineFunction(MachineFunction &MF) override
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:255
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:412
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
LLVM_ABI void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:270
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:73
A debug info location.
Definition: DebugLoc.h:124
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:177
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition: DenseMap.h:245
iterator end()
Definition: DenseMap.h:87
Implements a dense probed hash-table based set.
Definition: DenseSet.h:263
Base class for the actual dominator tree node.
DomTreeNodeBase * getIDom() const
NodeT * getBlock() const
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
void updateDFSNumbers() const
updateDFSNumbers - Assign In and Out numbers to the nodes while walking dominator tree in dfs order.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
LLVM_ABI Instruction * findNearestCommonDominator(Instruction *I1, Instruction *I2) const
Find the nearest instruction I that dominates both I1 and I2, in the sense that a result produced bef...
Definition: Dominators.cpp:357
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
const SIInstrInfo * getInstrInfo() const override
Definition: GCNSubtarget.h:308
bool isWave32() const
iterator_range< iterator > phis()
Returns a range that iterates over the phis in the basic block.
void push_back(MachineInstr *MI)
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator_range< succ_iterator > successors()
iterator_range< pred_iterator > predecessors()
Analysis pass which computes a MachineDominatorTree.
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const MachineFunctionProperties & getProperties() const
Get the function properties.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
Definition: MachineInstr.h:72
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:587
bool isPHI() const
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:595
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
Register getReg() const
getReg - Returns the register number.
MachinePostDominatorTree - an analysis pass wrapper for DominatorTree used to compute the post-domina...
LLVM_ABI MachineBasicBlock * findNearestCommonDominator(ArrayRef< MachineBasicBlock * > Blocks) const
Returns the nearest common dominator of the given blocks.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
iterator_range< use_instr_iterator > use_instructions(Register Reg) const
LLVM_ABI MachineInstr * getUniqueVRegDef(Register Reg) const
getUniqueVRegDef - Return the unique machine instr that defines the specified virtual register or nul...
MachineSSAUpdater - This class updates SSA form for a set of virtual registers defined in multiple bl...
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
iterator find(const KeyT &Key)
Definition: MapVector.h:141
std::pair< iterator, bool > try_emplace(const KeyT &Key, Ts &&...Args)
Definition: MapVector.h:107
void clear()
Definition: MapVector.h:84
static LLVM_ABI PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
PhiLoweringHelper(MachineFunction *MF, MachineDominatorTree *DT, MachinePostDominatorTree *PDT)
bool isLaneMaskReg(Register Reg) const
MachineRegisterInfo * MRI
MachineDominatorTree * DT
DenseSet< Register > PhiRegisters
virtual void getCandidatesForLowering(SmallVectorImpl< MachineInstr * > &Vreg1Phis) const =0
MachineFunction * MF
virtual void constrainAsLaneMask(Incoming &In)=0
virtual void collectIncomingValuesFromPhi(const MachineInstr *MI, SmallVectorImpl< Incoming > &Incomings) const =0
virtual void markAsLaneMask(Register DstReg) const =0
MachinePostDominatorTree * PDT
const GCNSubtarget * ST
const SIInstrInfo * TII
MachineRegisterInfo::VRegAttrs LaneMaskRegAttrs
MachineBasicBlock::iterator getSaluInsertionAtEnd(MachineBasicBlock &MBB) const
Return a point at the end of the given MBB to insert SALU instructions for lane mask calculation.
void initializeLaneMaskRegisterAttributes(Register LaneMask)
bool isConstantLaneMask(Register Reg, bool &Val) const
virtual void buildMergeLaneMasks(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DstReg, Register PrevReg, Register CurReg)=0
virtual void replaceDstReg(Register NewReg, Register OldReg, MachineBasicBlock *MBB)=0
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:112
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition: Analysis.h:151
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isValid() const
Definition: Register.h:107
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:74
PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:39
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Definition: SSAUpdater.cpp:52
Value * GetValueInMiddleOfBlock(BasicBlock *BB)
Construct SSA form, materializing a value that is live in the middle of the specified block.
Definition: SSAUpdater.cpp:97
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
Definition: SSAUpdater.cpp:69
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:938
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
A Use represents the edge between a Value definition and its users.
Definition: Use.h:35
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:194
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2155
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1669
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
Register createLaneMaskReg(MachineRegisterInfo *MRI, MachineRegisterInfo::VRegAttrs LaneMaskRegAttrs)
void initializeSILowerI1CopiesLegacyPass(PassRegistry &)
FunctionPass * createSILowerI1CopiesLegacyPass()
char & SILowerI1CopiesLegacyID
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1916
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
MachineBasicBlock * Block
Register UpdatedReg
All attributes(register class or bank and low-level type) a virtual register can have.