LLVM 22.0.0git
SPIRVBuiltins.cpp
Go to the documentation of this file.
1//===- SPIRVBuiltins.cpp - SPIR-V Built-in Functions ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements lowering builtin function calls and types using their
10// demangled names and TableGen records.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SPIRVBuiltins.h"
15#include "SPIRV.h"
16#include "SPIRVSubtarget.h"
17#include "SPIRVUtils.h"
20#include "llvm/IR/IntrinsicsSPIRV.h"
21#include <regex>
22#include <string>
23#include <tuple>
24
25#define DEBUG_TYPE "spirv-builtins"
26
27namespace llvm {
28namespace SPIRV {
29#define GET_BuiltinGroup_DECL
30#include "SPIRVGenTables.inc"
31
34 InstructionSet::InstructionSet Set;
35 BuiltinGroup Group;
38};
39
40#define GET_DemangledBuiltins_DECL
41#define GET_DemangledBuiltins_IMPL
42
60
63 InstructionSet::InstructionSet Set;
65};
66
67#define GET_NativeBuiltins_DECL
68#define GET_NativeBuiltins_IMPL
69
85
86#define GET_GroupBuiltins_DECL
87#define GET_GroupBuiltins_IMPL
88
96
97#define GET_IntelSubgroupsBuiltins_DECL
98#define GET_IntelSubgroupsBuiltins_IMPL
99
104
105#define GET_AtomicFloatingBuiltins_DECL
106#define GET_AtomicFloatingBuiltins_IMPL
112
113#define GET_GroupUniformBuiltins_DECL
114#define GET_GroupUniformBuiltins_IMPL
115
118 InstructionSet::InstructionSet Set;
119 BuiltIn::BuiltIn Value;
120};
121
122using namespace BuiltIn;
123#define GET_GetBuiltins_DECL
124#define GET_GetBuiltins_IMPL
125
128 InstructionSet::InstructionSet Set;
130};
131
132#define GET_ImageQueryBuiltins_DECL
133#define GET_ImageQueryBuiltins_IMPL
134
140
141#define GET_IntegerDotProductBuiltins_DECL
142#define GET_IntegerDotProductBuiltins_IMPL
143
146 InstructionSet::InstructionSet Set;
151 bool IsTF32;
152 FPRoundingMode::FPRoundingMode RoundingMode;
153};
154
157 InstructionSet::InstructionSet Set;
161 FPRoundingMode::FPRoundingMode RoundingMode;
162};
163
164using namespace FPRoundingMode;
165#define GET_ConvertBuiltins_DECL
166#define GET_ConvertBuiltins_IMPL
167
168using namespace InstructionSet;
169#define GET_VectorLoadStoreBuiltins_DECL
170#define GET_VectorLoadStoreBuiltins_IMPL
171
172#define GET_CLMemoryScope_DECL
173#define GET_CLSamplerAddressingMode_DECL
174#define GET_CLMemoryFenceFlags_DECL
175#define GET_ExtendedBuiltins_DECL
176#include "SPIRVGenTables.inc"
177} // namespace SPIRV
178
179//===----------------------------------------------------------------------===//
180// Misc functions for looking up builtins and veryfying requirements using
181// TableGen records
182//===----------------------------------------------------------------------===//
183
184namespace SPIRV {
185/// Parses the name part of the demangled builtin call.
186std::string lookupBuiltinNameHelper(StringRef DemangledCall,
187 FPDecorationId *DecorationId) {
188 StringRef PassPrefix = "(anonymous namespace)::";
189 std::string BuiltinName;
190 // Itanium Demangler result may have "(anonymous namespace)::" prefix
191 if (DemangledCall.starts_with(PassPrefix))
192 BuiltinName = DemangledCall.substr(PassPrefix.size());
193 else
194 BuiltinName = DemangledCall;
195 // Extract the builtin function name and types of arguments from the call
196 // skeleton.
197 BuiltinName = BuiltinName.substr(0, BuiltinName.find('('));
198
199 // Account for possible "__spirv_ocl_" prefix in SPIR-V friendly LLVM IR
200 if (BuiltinName.rfind("__spirv_ocl_", 0) == 0)
201 BuiltinName = BuiltinName.substr(12);
202
203 // Check if the extracted name contains type information between angle
204 // brackets. If so, the builtin is an instantiated template - needs to have
205 // the information after angle brackets and return type removed.
206 std::size_t Pos1 = BuiltinName.rfind('<');
207 if (Pos1 != std::string::npos && BuiltinName.back() == '>') {
208 std::size_t Pos2 = BuiltinName.rfind(' ', Pos1);
209 if (Pos2 == std::string::npos)
210 Pos2 = 0;
211 else
212 ++Pos2;
213 BuiltinName = BuiltinName.substr(Pos2, Pos1 - Pos2);
214 BuiltinName = BuiltinName.substr(BuiltinName.find_last_of(' ') + 1);
215 }
216
217 // Check if the extracted name begins with:
218 // - "__spirv_ImageSampleExplicitLod"
219 // - "__spirv_ImageRead"
220 // - "__spirv_ImageWrite"
221 // - "__spirv_ImageQuerySizeLod"
222 // - "__spirv_UDotKHR"
223 // - "__spirv_SDotKHR"
224 // - "__spirv_SUDotKHR"
225 // - "__spirv_SDotAccSatKHR"
226 // - "__spirv_UDotAccSatKHR"
227 // - "__spirv_SUDotAccSatKHR"
228 // - "__spirv_ReadClockKHR"
229 // - "__spirv_SubgroupBlockReadINTEL"
230 // - "__spirv_SubgroupImageBlockReadINTEL"
231 // - "__spirv_SubgroupImageMediaBlockReadINTEL"
232 // - "__spirv_SubgroupImageMediaBlockWriteINTEL"
233 // - "__spirv_Convert"
234 // - "__spirv_Round"
235 // - "__spirv_UConvert"
236 // - "__spirv_SConvert"
237 // - "__spirv_FConvert"
238 // - "__spirv_SatConvert"
239 // and maybe contains return type information at the end "_R<type>".
240 // If so, extract the plain builtin name without the type information.
241 static const std::regex SpvWithR(
242 "(__spirv_(ImageSampleExplicitLod|ImageRead|ImageWrite|ImageQuerySizeLod|"
243 "UDotKHR|"
244 "SDotKHR|SUDotKHR|SDotAccSatKHR|UDotAccSatKHR|SUDotAccSatKHR|"
245 "ReadClockKHR|SubgroupBlockReadINTEL|SubgroupImageBlockReadINTEL|"
246 "SubgroupImageMediaBlockReadINTEL|SubgroupImageMediaBlockWriteINTEL|"
247 "Convert|Round|"
248 "UConvert|SConvert|FConvert|SatConvert)[^_]*)(_R[^_]*_?(\\w+)?.*)?");
249 std::smatch Match;
250 if (std::regex_match(BuiltinName, Match, SpvWithR) && Match.size() > 1) {
251 std::ssub_match SubMatch;
252 if (DecorationId && Match.size() > 3) {
253 SubMatch = Match[4];
254 *DecorationId = demangledPostfixToDecorationId(SubMatch.str());
255 }
256 SubMatch = Match[1];
257 BuiltinName = SubMatch.str();
258 }
259
260 return BuiltinName;
261}
262} // namespace SPIRV
263
264/// Looks up the demangled builtin call in the SPIRVBuiltins.td records using
265/// the provided \p DemangledCall and specified \p Set.
266///
267/// The lookup follows the following algorithm, returning the first successful
268/// match:
269/// 1. Search with the plain demangled name (expecting a 1:1 match).
270/// 2. Search with the prefix before or suffix after the demangled name
271/// signyfying the type of the first argument.
272///
273/// \returns Wrapper around the demangled call and found builtin definition.
274static std::unique_ptr<const SPIRV::IncomingCall>
276 SPIRV::InstructionSet::InstructionSet Set,
277 Register ReturnRegister, const SPIRVType *ReturnType,
279 std::string BuiltinName = SPIRV::lookupBuiltinNameHelper(DemangledCall);
280
281 SmallVector<StringRef, 10> BuiltinArgumentTypes;
282 StringRef BuiltinArgs =
283 DemangledCall.slice(DemangledCall.find('(') + 1, DemangledCall.find(')'));
284 BuiltinArgs.split(BuiltinArgumentTypes, ',', -1, false);
285
286 // Look up the builtin in the defined set. Start with the plain demangled
287 // name, expecting a 1:1 match in the defined builtin set.
288 const SPIRV::DemangledBuiltin *Builtin;
289 if ((Builtin = SPIRV::lookupBuiltin(BuiltinName, Set)))
290 return std::make_unique<SPIRV::IncomingCall>(
291 BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
292
293 // If the initial look up was unsuccessful and the demangled call takes at
294 // least 1 argument, add a prefix or suffix signifying the type of the first
295 // argument and repeat the search.
296 if (BuiltinArgumentTypes.size() >= 1) {
297 char FirstArgumentType = BuiltinArgumentTypes[0][0];
298 // Prefix to be added to the builtin's name for lookup.
299 // For example, OpenCL "abs" taking an unsigned value has a prefix "u_".
300 std::string Prefix;
301
302 switch (FirstArgumentType) {
303 // Unsigned:
304 case 'u':
305 if (Set == SPIRV::InstructionSet::OpenCL_std)
306 Prefix = "u_";
307 else if (Set == SPIRV::InstructionSet::GLSL_std_450)
308 Prefix = "u";
309 break;
310 // Signed:
311 case 'c':
312 case 's':
313 case 'i':
314 case 'l':
315 if (Set == SPIRV::InstructionSet::OpenCL_std)
316 Prefix = "s_";
317 else if (Set == SPIRV::InstructionSet::GLSL_std_450)
318 Prefix = "s";
319 break;
320 // Floating-point:
321 case 'f':
322 case 'd':
323 case 'h':
324 if (Set == SPIRV::InstructionSet::OpenCL_std ||
325 Set == SPIRV::InstructionSet::GLSL_std_450)
326 Prefix = "f";
327 break;
328 }
329
330 // If argument-type name prefix was added, look up the builtin again.
331 if (!Prefix.empty() &&
332 (Builtin = SPIRV::lookupBuiltin(Prefix + BuiltinName, Set)))
333 return std::make_unique<SPIRV::IncomingCall>(
334 BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
335
336 // If lookup with a prefix failed, find a suffix to be added to the
337 // builtin's name for lookup. For example, OpenCL "group_reduce_max" taking
338 // an unsigned value has a suffix "u".
339 std::string Suffix;
340
341 switch (FirstArgumentType) {
342 // Unsigned:
343 case 'u':
344 Suffix = "u";
345 break;
346 // Signed:
347 case 'c':
348 case 's':
349 case 'i':
350 case 'l':
351 Suffix = "s";
352 break;
353 // Floating-point:
354 case 'f':
355 case 'd':
356 case 'h':
357 Suffix = "f";
358 break;
359 }
360
361 // If argument-type name suffix was added, look up the builtin again.
362 if (!Suffix.empty() &&
363 (Builtin = SPIRV::lookupBuiltin(BuiltinName + Suffix, Set)))
364 return std::make_unique<SPIRV::IncomingCall>(
365 BuiltinName, Builtin, ReturnRegister, ReturnType, Arguments);
366 }
367
368 // No builtin with such name was found in the set.
369 return nullptr;
370}
371
374 // We expect the following sequence of instructions:
375 // %0:_(pN) = G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.spv.alloca)
376 // or = G_GLOBAL_VALUE @block_literal_global
377 // %1:_(pN) = G_INTRINSIC_W_SIDE_EFFECTS intrinsic(@llvm.spv.bitcast), %0
378 // %2:_(p4) = G_ADDRSPACE_CAST %1:_(pN)
379 MachineInstr *MI = MRI->getUniqueVRegDef(ParamReg);
380 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST &&
381 MI->getOperand(1).isReg());
382 Register BitcastReg = MI->getOperand(1).getReg();
383 MachineInstr *BitcastMI = MRI->getUniqueVRegDef(BitcastReg);
384 assert(isSpvIntrinsic(*BitcastMI, Intrinsic::spv_bitcast) &&
385 BitcastMI->getOperand(2).isReg());
386 Register ValueReg = BitcastMI->getOperand(2).getReg();
387 MachineInstr *ValueMI = MRI->getUniqueVRegDef(ValueReg);
388 return ValueMI;
389}
390
391// Return an integer constant corresponding to the given register and
392// defined in spv_track_constant.
393// TODO: maybe unify with prelegalizer pass.
395 MachineInstr *DefMI = MRI->getUniqueVRegDef(Reg);
396 assert(DefMI->getOpcode() == TargetOpcode::G_CONSTANT &&
397 DefMI->getOperand(1).isCImm());
398 return DefMI->getOperand(1).getCImm()->getValue().getZExtValue();
399}
400
401// Return type of the instruction result from spv_assign_type intrinsic.
402// TODO: maybe unify with prelegalizer pass.
404 MachineInstr *NextMI = MI->getNextNode();
405 if (!NextMI)
406 return nullptr;
407 if (isSpvIntrinsic(*NextMI, Intrinsic::spv_assign_name))
408 if ((NextMI = NextMI->getNextNode()) == nullptr)
409 return nullptr;
410 Register ValueReg = MI->getOperand(0).getReg();
411 if ((!isSpvIntrinsic(*NextMI, Intrinsic::spv_assign_type) &&
412 !isSpvIntrinsic(*NextMI, Intrinsic::spv_assign_ptr_type)) ||
413 NextMI->getOperand(1).getReg() != ValueReg)
414 return nullptr;
415 Type *Ty = getMDOperandAsType(NextMI->getOperand(2).getMetadata(), 0);
416 assert(Ty && "Type is expected");
417 return Ty;
418}
419
420static const Type *getBlockStructType(Register ParamReg,
422 // In principle, this information should be passed to us from Clang via
423 // an elementtype attribute. However, said attribute requires that
424 // the function call be an intrinsic, which is not. Instead, we rely on being
425 // able to trace this to the declaration of a variable: OpenCL C specification
426 // section 6.12.5 should guarantee that we can do this.
428 if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE)
429 return MI->getOperand(1).getGlobal()->getType();
430 assert(isSpvIntrinsic(*MI, Intrinsic::spv_alloca) &&
431 "Blocks in OpenCL C must be traceable to allocation site");
432 return getMachineInstrType(MI);
433}
434
435//===----------------------------------------------------------------------===//
436// Helper functions for building misc instructions
437//===----------------------------------------------------------------------===//
438
439/// Helper function building either a resulting scalar or vector bool register
440/// depending on the expected \p ResultType.
441///
442/// \returns Tuple of the resulting register and its type.
443static std::tuple<Register, SPIRVType *>
444buildBoolRegister(MachineIRBuilder &MIRBuilder, const SPIRVType *ResultType,
446 LLT Type;
447 SPIRVType *BoolType = GR->getOrCreateSPIRVBoolType(MIRBuilder, true);
448
449 if (ResultType->getOpcode() == SPIRV::OpTypeVector) {
450 unsigned VectorElements = ResultType->getOperand(2).getImm();
451 BoolType = GR->getOrCreateSPIRVVectorType(BoolType, VectorElements,
452 MIRBuilder, true);
455 Type = LLT::vector(LLVMVectorType->getElementCount(), 1);
456 } else {
457 Type = LLT::scalar(1);
458 }
459
460 Register ResultRegister =
462 MIRBuilder.getMRI()->setRegClass(ResultRegister, GR->getRegClass(ResultType));
463 GR->assignSPIRVTypeToVReg(BoolType, ResultRegister, MIRBuilder.getMF());
464 return std::make_tuple(ResultRegister, BoolType);
465}
466
467/// Helper function for building either a vector or scalar select instruction
468/// depending on the expected \p ResultType.
469static bool buildSelectInst(MachineIRBuilder &MIRBuilder,
470 Register ReturnRegister, Register SourceRegister,
471 const SPIRVType *ReturnType,
473 Register TrueConst, FalseConst;
474
475 if (ReturnType->getOpcode() == SPIRV::OpTypeVector) {
476 unsigned Bits = GR->getScalarOrVectorBitWidth(ReturnType);
478 TrueConst =
479 GR->getOrCreateConsIntVector(AllOnes, MIRBuilder, ReturnType, true);
480 FalseConst = GR->getOrCreateConsIntVector(0, MIRBuilder, ReturnType, true);
481 } else {
482 TrueConst = GR->buildConstantInt(1, MIRBuilder, ReturnType, true);
483 FalseConst = GR->buildConstantInt(0, MIRBuilder, ReturnType, true);
484 }
485
486 return MIRBuilder.buildSelect(ReturnRegister, SourceRegister, TrueConst,
487 FalseConst);
488}
489
490/// Helper function for building a load instruction loading into the
491/// \p DestinationReg.
493 MachineIRBuilder &MIRBuilder,
494 SPIRVGlobalRegistry *GR, LLT LowLevelType,
495 Register DestinationReg = Register(0)) {
496 if (!DestinationReg.isValid())
497 DestinationReg = createVirtualRegister(BaseType, GR, MIRBuilder);
498 // TODO: consider using correct address space and alignment (p0 is canonical
499 // type for selection though).
501 MIRBuilder.buildLoad(DestinationReg, PtrRegister, PtrInfo, Align());
502 return DestinationReg;
503}
504
505/// Helper function for building a load instruction for loading a builtin global
506/// variable of \p BuiltinValue value.
508 MachineIRBuilder &MIRBuilder, SPIRVType *VariableType,
509 SPIRVGlobalRegistry *GR, SPIRV::BuiltIn::BuiltIn BuiltinValue, LLT LLType,
510 Register Reg = Register(0), bool isConst = true, bool hasLinkageTy = true) {
511 Register NewRegister =
512 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::pIDRegClass);
513 MIRBuilder.getMRI()->setType(
514 NewRegister,
515 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Function),
516 GR->getPointerSize()));
518 VariableType, MIRBuilder, SPIRV::StorageClass::Input);
519 GR->assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
520
521 // Set up the global OpVariable with the necessary builtin decorations.
522 Register Variable = GR->buildGlobalVariable(
523 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltinValue), nullptr,
524 SPIRV::StorageClass::Input, nullptr, /* isConst= */ isConst,
525 /* HasLinkageTy */ hasLinkageTy, SPIRV::LinkageType::Import, MIRBuilder,
526 false);
527
528 // Load the value from the global variable.
529 Register LoadedRegister =
530 buildLoadInst(VariableType, Variable, MIRBuilder, GR, LLType, Reg);
531 MIRBuilder.getMRI()->setType(LoadedRegister, LLType);
532 return LoadedRegister;
533}
534
535/// Helper external function for inserting ASSIGN_TYPE instuction between \p Reg
536/// and its definition, set the new register as a destination of the definition,
537/// assign SPIRVType to both registers. If SpirvTy is provided, use it as
538/// SPIRVType in ASSIGN_TYPE, otherwise create it from \p Ty. Defined in
539/// SPIRVPreLegalizer.cpp.
540extern void insertAssignInstr(Register Reg, Type *Ty, SPIRVType *SpirvTy,
541 SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB,
542 MachineRegisterInfo &MRI);
543
544// TODO: Move to TableGen.
545static SPIRV::MemorySemantics::MemorySemantics
546getSPIRVMemSemantics(std::memory_order MemOrder) {
547 switch (MemOrder) {
548 case std::memory_order_relaxed:
549 return SPIRV::MemorySemantics::None;
550 case std::memory_order_acquire:
551 return SPIRV::MemorySemantics::Acquire;
552 case std::memory_order_release:
553 return SPIRV::MemorySemantics::Release;
554 case std::memory_order_acq_rel:
555 return SPIRV::MemorySemantics::AcquireRelease;
556 case std::memory_order_seq_cst:
557 return SPIRV::MemorySemantics::SequentiallyConsistent;
558 default:
559 report_fatal_error("Unknown CL memory scope");
560 }
561}
562
563static SPIRV::Scope::Scope getSPIRVScope(SPIRV::CLMemoryScope ClScope) {
564 switch (ClScope) {
565 case SPIRV::CLMemoryScope::memory_scope_work_item:
566 return SPIRV::Scope::Invocation;
567 case SPIRV::CLMemoryScope::memory_scope_work_group:
568 return SPIRV::Scope::Workgroup;
569 case SPIRV::CLMemoryScope::memory_scope_device:
570 return SPIRV::Scope::Device;
571 case SPIRV::CLMemoryScope::memory_scope_all_svm_devices:
572 return SPIRV::Scope::CrossDevice;
573 case SPIRV::CLMemoryScope::memory_scope_sub_group:
574 return SPIRV::Scope::Subgroup;
575 }
576 report_fatal_error("Unknown CL memory scope");
577}
578
580 MachineIRBuilder &MIRBuilder,
582 return GR->buildConstantInt(
583 Val, MIRBuilder, GR->getOrCreateSPIRVIntegerType(32, MIRBuilder), true);
584}
585
586static Register buildScopeReg(Register CLScopeRegister,
587 SPIRV::Scope::Scope Scope,
588 MachineIRBuilder &MIRBuilder,
591 if (CLScopeRegister.isValid()) {
592 auto CLScope =
593 static_cast<SPIRV::CLMemoryScope>(getIConstVal(CLScopeRegister, MRI));
594 Scope = getSPIRVScope(CLScope);
595
596 if (CLScope == static_cast<unsigned>(Scope)) {
597 MRI->setRegClass(CLScopeRegister, &SPIRV::iIDRegClass);
598 return CLScopeRegister;
599 }
600 }
601 return buildConstantIntReg32(Scope, MIRBuilder, GR);
602}
603
606 if (MRI->getRegClassOrNull(Reg))
607 return;
608 SPIRVType *SpvType = GR->getSPIRVTypeForVReg(Reg);
609 MRI->setRegClass(Reg,
610 SpvType ? GR->getRegClass(SpvType) : &SPIRV::iIDRegClass);
611}
612
613static Register buildMemSemanticsReg(Register SemanticsRegister,
614 Register PtrRegister, unsigned &Semantics,
615 MachineIRBuilder &MIRBuilder,
617 if (SemanticsRegister.isValid()) {
618 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
619 std::memory_order Order =
620 static_cast<std::memory_order>(getIConstVal(SemanticsRegister, MRI));
621 Semantics =
622 getSPIRVMemSemantics(Order) |
624 if (static_cast<unsigned>(Order) == Semantics) {
625 MRI->setRegClass(SemanticsRegister, &SPIRV::iIDRegClass);
626 return SemanticsRegister;
627 }
628 }
629 return buildConstantIntReg32(Semantics, MIRBuilder, GR);
630}
631
632static bool buildOpFromWrapper(MachineIRBuilder &MIRBuilder, unsigned Opcode,
634 Register TypeReg,
635 ArrayRef<uint32_t> ImmArgs = {}) {
636 auto MIB = MIRBuilder.buildInstr(Opcode);
637 if (TypeReg.isValid())
638 MIB.addDef(Call->ReturnRegister).addUse(TypeReg);
639 unsigned Sz = Call->Arguments.size() - ImmArgs.size();
640 for (unsigned i = 0; i < Sz; ++i)
641 MIB.addUse(Call->Arguments[i]);
642 for (uint32_t ImmArg : ImmArgs)
643 MIB.addImm(ImmArg);
644 return true;
645}
646
647/// Helper function for translating atomic init to OpStore.
649 MachineIRBuilder &MIRBuilder) {
650 if (Call->isSpirvOp())
651 return buildOpFromWrapper(MIRBuilder, SPIRV::OpStore, Call, Register(0));
652
653 assert(Call->Arguments.size() == 2 &&
654 "Need 2 arguments for atomic init translation");
655 MIRBuilder.buildInstr(SPIRV::OpStore)
656 .addUse(Call->Arguments[0])
657 .addUse(Call->Arguments[1]);
658 return true;
659}
660
661/// Helper function for building an atomic load instruction.
663 MachineIRBuilder &MIRBuilder,
665 Register TypeReg = GR->getSPIRVTypeID(Call->ReturnType);
666 if (Call->isSpirvOp())
667 return buildOpFromWrapper(MIRBuilder, SPIRV::OpAtomicLoad, Call, TypeReg);
668
669 Register PtrRegister = Call->Arguments[0];
670 // TODO: if true insert call to __translate_ocl_memory_sccope before
671 // OpAtomicLoad and the function implementation. We can use Translator's
672 // output for transcoding/atomic_explicit_arguments.cl as an example.
673 Register ScopeRegister =
674 Call->Arguments.size() > 1
675 ? Call->Arguments[1]
676 : buildConstantIntReg32(SPIRV::Scope::Device, MIRBuilder, GR);
677 Register MemSemanticsReg;
678 if (Call->Arguments.size() > 2) {
679 // TODO: Insert call to __translate_ocl_memory_order before OpAtomicLoad.
680 MemSemanticsReg = Call->Arguments[2];
681 } else {
682 int Semantics =
683 SPIRV::MemorySemantics::SequentiallyConsistent |
685 MemSemanticsReg = buildConstantIntReg32(Semantics, MIRBuilder, GR);
686 }
687
688 MIRBuilder.buildInstr(SPIRV::OpAtomicLoad)
689 .addDef(Call->ReturnRegister)
690 .addUse(TypeReg)
691 .addUse(PtrRegister)
692 .addUse(ScopeRegister)
693 .addUse(MemSemanticsReg);
694 return true;
695}
696
697/// Helper function for building an atomic store instruction.
699 MachineIRBuilder &MIRBuilder,
701 if (Call->isSpirvOp())
702 return buildOpFromWrapper(MIRBuilder, SPIRV::OpAtomicStore, Call,
703 Register(0));
704
705 Register ScopeRegister =
706 buildConstantIntReg32(SPIRV::Scope::Device, MIRBuilder, GR);
707 Register PtrRegister = Call->Arguments[0];
708 int Semantics =
709 SPIRV::MemorySemantics::SequentiallyConsistent |
711 Register MemSemanticsReg = buildConstantIntReg32(Semantics, MIRBuilder, GR);
712 MIRBuilder.buildInstr(SPIRV::OpAtomicStore)
713 .addUse(PtrRegister)
714 .addUse(ScopeRegister)
715 .addUse(MemSemanticsReg)
716 .addUse(Call->Arguments[1]);
717 return true;
718}
719
720/// Helper function for building an atomic compare-exchange instruction.
722 const SPIRV::IncomingCall *Call, const SPIRV::DemangledBuiltin *Builtin,
723 unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR) {
724 if (Call->isSpirvOp())
725 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
726 GR->getSPIRVTypeID(Call->ReturnType));
727
728 bool IsCmpxchg = Call->Builtin->Name.contains("cmpxchg");
729 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
730
731 Register ObjectPtr = Call->Arguments[0]; // Pointer (volatile A *object.)
732 Register ExpectedArg = Call->Arguments[1]; // Comparator (C* expected).
733 Register Desired = Call->Arguments[2]; // Value (C Desired).
734 SPIRVType *SpvDesiredTy = GR->getSPIRVTypeForVReg(Desired);
735 LLT DesiredLLT = MRI->getType(Desired);
736
737 assert(GR->getSPIRVTypeForVReg(ObjectPtr)->getOpcode() ==
738 SPIRV::OpTypePointer);
739 unsigned ExpectedType = GR->getSPIRVTypeForVReg(ExpectedArg)->getOpcode();
740 (void)ExpectedType;
741 assert(IsCmpxchg ? ExpectedType == SPIRV::OpTypeInt
742 : ExpectedType == SPIRV::OpTypePointer);
743 assert(GR->isScalarOfType(Desired, SPIRV::OpTypeInt));
744
745 SPIRVType *SpvObjectPtrTy = GR->getSPIRVTypeForVReg(ObjectPtr);
746 assert(SpvObjectPtrTy->getOperand(2).isReg() && "SPIRV type is expected");
747 auto StorageClass = static_cast<SPIRV::StorageClass::StorageClass>(
748 SpvObjectPtrTy->getOperand(1).getImm());
749 auto MemSemStorage = getMemSemanticsForStorageClass(StorageClass);
750
751 Register MemSemEqualReg;
752 Register MemSemUnequalReg;
753 uint64_t MemSemEqual =
754 IsCmpxchg
755 ? SPIRV::MemorySemantics::None
756 : SPIRV::MemorySemantics::SequentiallyConsistent | MemSemStorage;
757 uint64_t MemSemUnequal =
758 IsCmpxchg
759 ? SPIRV::MemorySemantics::None
760 : SPIRV::MemorySemantics::SequentiallyConsistent | MemSemStorage;
761 if (Call->Arguments.size() >= 4) {
762 assert(Call->Arguments.size() >= 5 &&
763 "Need 5+ args for explicit atomic cmpxchg");
764 auto MemOrdEq =
765 static_cast<std::memory_order>(getIConstVal(Call->Arguments[3], MRI));
766 auto MemOrdNeq =
767 static_cast<std::memory_order>(getIConstVal(Call->Arguments[4], MRI));
768 MemSemEqual = getSPIRVMemSemantics(MemOrdEq) | MemSemStorage;
769 MemSemUnequal = getSPIRVMemSemantics(MemOrdNeq) | MemSemStorage;
770 if (static_cast<unsigned>(MemOrdEq) == MemSemEqual)
771 MemSemEqualReg = Call->Arguments[3];
772 if (static_cast<unsigned>(MemOrdNeq) == MemSemEqual)
773 MemSemUnequalReg = Call->Arguments[4];
774 }
775 if (!MemSemEqualReg.isValid())
776 MemSemEqualReg = buildConstantIntReg32(MemSemEqual, MIRBuilder, GR);
777 if (!MemSemUnequalReg.isValid())
778 MemSemUnequalReg = buildConstantIntReg32(MemSemUnequal, MIRBuilder, GR);
779
780 Register ScopeReg;
781 auto Scope = IsCmpxchg ? SPIRV::Scope::Workgroup : SPIRV::Scope::Device;
782 if (Call->Arguments.size() >= 6) {
783 assert(Call->Arguments.size() == 6 &&
784 "Extra args for explicit atomic cmpxchg");
785 auto ClScope = static_cast<SPIRV::CLMemoryScope>(
786 getIConstVal(Call->Arguments[5], MRI));
787 Scope = getSPIRVScope(ClScope);
788 if (ClScope == static_cast<unsigned>(Scope))
789 ScopeReg = Call->Arguments[5];
790 }
791 if (!ScopeReg.isValid())
792 ScopeReg = buildConstantIntReg32(Scope, MIRBuilder, GR);
793
794 Register Expected = IsCmpxchg
795 ? ExpectedArg
796 : buildLoadInst(SpvDesiredTy, ExpectedArg, MIRBuilder,
797 GR, LLT::scalar(64));
798 MRI->setType(Expected, DesiredLLT);
799 Register Tmp = !IsCmpxchg ? MRI->createGenericVirtualRegister(DesiredLLT)
800 : Call->ReturnRegister;
801 if (!MRI->getRegClassOrNull(Tmp))
802 MRI->setRegClass(Tmp, GR->getRegClass(SpvDesiredTy));
803 GR->assignSPIRVTypeToVReg(SpvDesiredTy, Tmp, MIRBuilder.getMF());
804
805 MIRBuilder.buildInstr(Opcode)
806 .addDef(Tmp)
807 .addUse(GR->getSPIRVTypeID(SpvDesiredTy))
808 .addUse(ObjectPtr)
809 .addUse(ScopeReg)
810 .addUse(MemSemEqualReg)
811 .addUse(MemSemUnequalReg)
812 .addUse(Desired)
814 if (!IsCmpxchg) {
815 MIRBuilder.buildInstr(SPIRV::OpStore).addUse(ExpectedArg).addUse(Tmp);
816 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, Call->ReturnRegister, Tmp, Expected);
817 }
818 return true;
819}
820
821/// Helper function for building atomic instructions.
822static bool buildAtomicRMWInst(const SPIRV::IncomingCall *Call, unsigned Opcode,
823 MachineIRBuilder &MIRBuilder,
825 if (Call->isSpirvOp())
826 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
827 GR->getSPIRVTypeID(Call->ReturnType));
828
829 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
830 Register ScopeRegister =
831 Call->Arguments.size() >= 4 ? Call->Arguments[3] : Register();
832
833 assert(Call->Arguments.size() <= 4 &&
834 "Too many args for explicit atomic RMW");
835 ScopeRegister = buildScopeReg(ScopeRegister, SPIRV::Scope::Workgroup,
836 MIRBuilder, GR, MRI);
837
838 Register PtrRegister = Call->Arguments[0];
839 unsigned Semantics = SPIRV::MemorySemantics::None;
840 Register MemSemanticsReg =
841 Call->Arguments.size() >= 3 ? Call->Arguments[2] : Register();
842 MemSemanticsReg = buildMemSemanticsReg(MemSemanticsReg, PtrRegister,
843 Semantics, MIRBuilder, GR);
844 Register ValueReg = Call->Arguments[1];
845 Register ValueTypeReg = GR->getSPIRVTypeID(Call->ReturnType);
846 // support cl_ext_float_atomics
847 if (Call->ReturnType->getOpcode() == SPIRV::OpTypeFloat) {
848 if (Opcode == SPIRV::OpAtomicIAdd) {
849 Opcode = SPIRV::OpAtomicFAddEXT;
850 } else if (Opcode == SPIRV::OpAtomicISub) {
851 // Translate OpAtomicISub applied to a floating type argument to
852 // OpAtomicFAddEXT with the negative value operand
853 Opcode = SPIRV::OpAtomicFAddEXT;
854 Register NegValueReg =
855 MRI->createGenericVirtualRegister(MRI->getType(ValueReg));
856 MRI->setRegClass(NegValueReg, GR->getRegClass(Call->ReturnType));
857 GR->assignSPIRVTypeToVReg(Call->ReturnType, NegValueReg,
858 MIRBuilder.getMF());
859 MIRBuilder.buildInstr(TargetOpcode::G_FNEG)
860 .addDef(NegValueReg)
861 .addUse(ValueReg);
862 insertAssignInstr(NegValueReg, nullptr, Call->ReturnType, GR, MIRBuilder,
863 MIRBuilder.getMF().getRegInfo());
864 ValueReg = NegValueReg;
865 }
866 }
867 MIRBuilder.buildInstr(Opcode)
868 .addDef(Call->ReturnRegister)
869 .addUse(ValueTypeReg)
870 .addUse(PtrRegister)
871 .addUse(ScopeRegister)
872 .addUse(MemSemanticsReg)
873 .addUse(ValueReg);
874 return true;
875}
876
877/// Helper function for building an atomic floating-type instruction.
879 unsigned Opcode,
880 MachineIRBuilder &MIRBuilder,
882 assert(Call->Arguments.size() == 4 &&
883 "Wrong number of atomic floating-type builtin");
884 Register PtrReg = Call->Arguments[0];
885 Register ScopeReg = Call->Arguments[1];
886 Register MemSemanticsReg = Call->Arguments[2];
887 Register ValueReg = Call->Arguments[3];
888 MIRBuilder.buildInstr(Opcode)
889 .addDef(Call->ReturnRegister)
890 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
891 .addUse(PtrReg)
892 .addUse(ScopeReg)
893 .addUse(MemSemanticsReg)
894 .addUse(ValueReg);
895 return true;
896}
897
898/// Helper function for building atomic flag instructions (e.g.
899/// OpAtomicFlagTestAndSet).
901 unsigned Opcode, MachineIRBuilder &MIRBuilder,
903 bool IsSet = Opcode == SPIRV::OpAtomicFlagTestAndSet;
904 Register TypeReg = GR->getSPIRVTypeID(Call->ReturnType);
905 if (Call->isSpirvOp())
906 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
907 IsSet ? TypeReg : Register(0));
908
909 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
910 Register PtrRegister = Call->Arguments[0];
911 unsigned Semantics = SPIRV::MemorySemantics::SequentiallyConsistent;
912 Register MemSemanticsReg =
913 Call->Arguments.size() >= 2 ? Call->Arguments[1] : Register();
914 MemSemanticsReg = buildMemSemanticsReg(MemSemanticsReg, PtrRegister,
915 Semantics, MIRBuilder, GR);
916
917 assert((Opcode != SPIRV::OpAtomicFlagClear ||
918 (Semantics != SPIRV::MemorySemantics::Acquire &&
919 Semantics != SPIRV::MemorySemantics::AcquireRelease)) &&
920 "Invalid memory order argument!");
921
922 Register ScopeRegister =
923 Call->Arguments.size() >= 3 ? Call->Arguments[2] : Register();
924 ScopeRegister =
925 buildScopeReg(ScopeRegister, SPIRV::Scope::Device, MIRBuilder, GR, MRI);
926
927 auto MIB = MIRBuilder.buildInstr(Opcode);
928 if (IsSet)
929 MIB.addDef(Call->ReturnRegister).addUse(TypeReg);
930
931 MIB.addUse(PtrRegister).addUse(ScopeRegister).addUse(MemSemanticsReg);
932 return true;
933}
934
935/// Helper function for building barriers, i.e., memory/control ordering
936/// operations.
937static bool buildBarrierInst(const SPIRV::IncomingCall *Call, unsigned Opcode,
938 MachineIRBuilder &MIRBuilder,
940 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
941 const auto *ST =
942 static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
943 if ((Opcode == SPIRV::OpControlBarrierArriveINTEL ||
944 Opcode == SPIRV::OpControlBarrierWaitINTEL) &&
945 !ST->canUseExtension(SPIRV::Extension::SPV_INTEL_split_barrier)) {
946 std::string DiagMsg = std::string(Builtin->Name) +
947 ": the builtin requires the following SPIR-V "
948 "extension: SPV_INTEL_split_barrier";
949 report_fatal_error(DiagMsg.c_str(), false);
950 }
951
952 if (Call->isSpirvOp())
953 return buildOpFromWrapper(MIRBuilder, Opcode, Call, Register(0));
954
955 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
956 unsigned MemFlags = getIConstVal(Call->Arguments[0], MRI);
957 unsigned MemSemantics = SPIRV::MemorySemantics::None;
958
959 if (MemFlags & SPIRV::CLK_LOCAL_MEM_FENCE)
960 MemSemantics |= SPIRV::MemorySemantics::WorkgroupMemory;
961
962 if (MemFlags & SPIRV::CLK_GLOBAL_MEM_FENCE)
963 MemSemantics |= SPIRV::MemorySemantics::CrossWorkgroupMemory;
964
965 if (MemFlags & SPIRV::CLK_IMAGE_MEM_FENCE)
966 MemSemantics |= SPIRV::MemorySemantics::ImageMemory;
967
968 if (Opcode == SPIRV::OpMemoryBarrier)
969 MemSemantics = getSPIRVMemSemantics(static_cast<std::memory_order>(
970 getIConstVal(Call->Arguments[1], MRI))) |
971 MemSemantics;
972 else if (Opcode == SPIRV::OpControlBarrierArriveINTEL)
973 MemSemantics |= SPIRV::MemorySemantics::Release;
974 else if (Opcode == SPIRV::OpControlBarrierWaitINTEL)
975 MemSemantics |= SPIRV::MemorySemantics::Acquire;
976 else
977 MemSemantics |= SPIRV::MemorySemantics::SequentiallyConsistent;
978
979 Register MemSemanticsReg =
980 MemFlags == MemSemantics
981 ? Call->Arguments[0]
982 : buildConstantIntReg32(MemSemantics, MIRBuilder, GR);
983 Register ScopeReg;
984 SPIRV::Scope::Scope Scope = SPIRV::Scope::Workgroup;
985 SPIRV::Scope::Scope MemScope = Scope;
986 if (Call->Arguments.size() >= 2) {
987 assert(
988 ((Opcode != SPIRV::OpMemoryBarrier && Call->Arguments.size() == 2) ||
989 (Opcode == SPIRV::OpMemoryBarrier && Call->Arguments.size() == 3)) &&
990 "Extra args for explicitly scoped barrier");
991 Register ScopeArg = (Opcode == SPIRV::OpMemoryBarrier) ? Call->Arguments[2]
992 : Call->Arguments[1];
993 SPIRV::CLMemoryScope CLScope =
994 static_cast<SPIRV::CLMemoryScope>(getIConstVal(ScopeArg, MRI));
995 MemScope = getSPIRVScope(CLScope);
996 if (!(MemFlags & SPIRV::CLK_LOCAL_MEM_FENCE) ||
997 (Opcode == SPIRV::OpMemoryBarrier))
998 Scope = MemScope;
999 if (CLScope == static_cast<unsigned>(Scope))
1000 ScopeReg = Call->Arguments[1];
1001 }
1002
1003 if (!ScopeReg.isValid())
1004 ScopeReg = buildConstantIntReg32(Scope, MIRBuilder, GR);
1005
1006 auto MIB = MIRBuilder.buildInstr(Opcode).addUse(ScopeReg);
1007 if (Opcode != SPIRV::OpMemoryBarrier)
1008 MIB.addUse(buildConstantIntReg32(MemScope, MIRBuilder, GR));
1009 MIB.addUse(MemSemanticsReg);
1010 return true;
1011}
1012
1013/// Helper function for building extended bit operations.
1015 unsigned Opcode,
1016 MachineIRBuilder &MIRBuilder,
1017 SPIRVGlobalRegistry *GR) {
1018 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1019 const auto *ST =
1020 static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
1021 if ((Opcode == SPIRV::OpBitFieldInsert ||
1022 Opcode == SPIRV::OpBitFieldSExtract ||
1023 Opcode == SPIRV::OpBitFieldUExtract || Opcode == SPIRV::OpBitReverse) &&
1024 !ST->canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) {
1025 std::string DiagMsg = std::string(Builtin->Name) +
1026 ": the builtin requires the following SPIR-V "
1027 "extension: SPV_KHR_bit_instructions";
1028 report_fatal_error(DiagMsg.c_str(), false);
1029 }
1030
1031 // Generate SPIRV instruction accordingly.
1032 if (Call->isSpirvOp())
1033 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
1034 GR->getSPIRVTypeID(Call->ReturnType));
1035
1036 auto MIB = MIRBuilder.buildInstr(Opcode)
1037 .addDef(Call->ReturnRegister)
1038 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1039 for (unsigned i = 0; i < Call->Arguments.size(); ++i)
1040 MIB.addUse(Call->Arguments[i]);
1041
1042 return true;
1043}
1044
1045/// Helper function for building Intel's bindless image instructions.
1047 unsigned Opcode,
1048 MachineIRBuilder &MIRBuilder,
1049 SPIRVGlobalRegistry *GR) {
1050 // Generate SPIRV instruction accordingly.
1051 if (Call->isSpirvOp())
1052 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
1053 GR->getSPIRVTypeID(Call->ReturnType));
1054
1055 MIRBuilder.buildInstr(Opcode)
1056 .addDef(Call->ReturnRegister)
1057 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1058 .addUse(Call->Arguments[0]);
1059
1060 return true;
1061}
1062
1063/// Helper function for building Intel's OpBitwiseFunctionINTEL instruction.
1065 const SPIRV::IncomingCall *Call, unsigned Opcode,
1066 MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR) {
1067 // Generate SPIRV instruction accordingly.
1068 if (Call->isSpirvOp())
1069 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
1070 GR->getSPIRVTypeID(Call->ReturnType));
1071
1072 auto MIB = MIRBuilder.buildInstr(Opcode)
1073 .addDef(Call->ReturnRegister)
1074 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1075 for (unsigned i = 0; i < Call->Arguments.size(); ++i)
1076 MIB.addUse(Call->Arguments[i]);
1077
1078 return true;
1079}
1080
1081/// Helper function for building Intel's 2d block io instructions.
1083 unsigned Opcode,
1084 MachineIRBuilder &MIRBuilder,
1085 SPIRVGlobalRegistry *GR) {
1086 // Generate SPIRV instruction accordingly.
1087 if (Call->isSpirvOp())
1088 return buildOpFromWrapper(MIRBuilder, Opcode, Call, Register(0));
1089
1090 auto MIB = MIRBuilder.buildInstr(Opcode)
1091 .addDef(Call->ReturnRegister)
1092 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1093 for (unsigned i = 0; i < Call->Arguments.size(); ++i)
1094 MIB.addUse(Call->Arguments[i]);
1095
1096 return true;
1097}
1098
1099static bool buildPipeInst(const SPIRV::IncomingCall *Call, unsigned Opcode,
1100 unsigned Scope, MachineIRBuilder &MIRBuilder,
1101 SPIRVGlobalRegistry *GR) {
1102 switch (Opcode) {
1103 case SPIRV::OpCommitReadPipe:
1104 case SPIRV::OpCommitWritePipe:
1105 return buildOpFromWrapper(MIRBuilder, Opcode, Call, Register(0));
1106 case SPIRV::OpGroupCommitReadPipe:
1107 case SPIRV::OpGroupCommitWritePipe:
1108 case SPIRV::OpGroupReserveReadPipePackets:
1109 case SPIRV::OpGroupReserveWritePipePackets: {
1110 Register ScopeConstReg =
1111 MIRBuilder.buildConstant(LLT::scalar(32), Scope).getReg(0);
1112 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1113 MRI->setRegClass(ScopeConstReg, &SPIRV::iIDRegClass);
1115 MIB = MIRBuilder.buildInstr(Opcode);
1116 // Add Return register and type.
1117 if (Opcode == SPIRV::OpGroupReserveReadPipePackets ||
1118 Opcode == SPIRV::OpGroupReserveWritePipePackets)
1119 MIB.addDef(Call->ReturnRegister)
1120 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1121
1122 MIB.addUse(ScopeConstReg);
1123 for (unsigned int i = 0; i < Call->Arguments.size(); ++i)
1124 MIB.addUse(Call->Arguments[i]);
1125
1126 return true;
1127 }
1128 default:
1129 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
1130 GR->getSPIRVTypeID(Call->ReturnType));
1131 }
1132}
1133
1134static unsigned getNumComponentsForDim(SPIRV::Dim::Dim dim) {
1135 switch (dim) {
1136 case SPIRV::Dim::DIM_1D:
1137 case SPIRV::Dim::DIM_Buffer:
1138 return 1;
1139 case SPIRV::Dim::DIM_2D:
1140 case SPIRV::Dim::DIM_Cube:
1141 case SPIRV::Dim::DIM_Rect:
1142 return 2;
1143 case SPIRV::Dim::DIM_3D:
1144 return 3;
1145 default:
1146 report_fatal_error("Cannot get num components for given Dim");
1147 }
1148}
1149
1150/// Helper function for obtaining the number of size components.
1151static unsigned getNumSizeComponents(SPIRVType *imgType) {
1152 assert(imgType->getOpcode() == SPIRV::OpTypeImage);
1153 auto dim = static_cast<SPIRV::Dim::Dim>(imgType->getOperand(2).getImm());
1154 unsigned numComps = getNumComponentsForDim(dim);
1155 bool arrayed = imgType->getOperand(4).getImm() == 1;
1156 return arrayed ? numComps + 1 : numComps;
1157}
1158
1159//===----------------------------------------------------------------------===//
1160// Implementation functions for each builtin group
1161//===----------------------------------------------------------------------===//
1162
1164 MachineIRBuilder &MIRBuilder,
1165 SPIRVGlobalRegistry *GR) {
1166 // Lookup the extended instruction number in the TableGen records.
1167 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1169 SPIRV::lookupExtendedBuiltin(Builtin->Name, Builtin->Set)->Number;
1170
1171 // Build extended instruction.
1172 auto MIB =
1173 MIRBuilder.buildInstr(SPIRV::OpExtInst)
1174 .addDef(Call->ReturnRegister)
1175 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1176 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
1177 .addImm(Number);
1178
1179 for (auto Argument : Call->Arguments)
1180 MIB.addUse(Argument);
1181 return true;
1182}
1183
1185 MachineIRBuilder &MIRBuilder,
1186 SPIRVGlobalRegistry *GR) {
1187 // Lookup the instruction opcode in the TableGen records.
1188 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1189 unsigned Opcode =
1190 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1191
1192 Register CompareRegister;
1193 SPIRVType *RelationType;
1194 std::tie(CompareRegister, RelationType) =
1195 buildBoolRegister(MIRBuilder, Call->ReturnType, GR);
1196
1197 // Build relational instruction.
1198 auto MIB = MIRBuilder.buildInstr(Opcode)
1199 .addDef(CompareRegister)
1200 .addUse(GR->getSPIRVTypeID(RelationType));
1201
1202 for (auto Argument : Call->Arguments)
1203 MIB.addUse(Argument);
1204
1205 // Build select instruction.
1206 return buildSelectInst(MIRBuilder, Call->ReturnRegister, CompareRegister,
1207 Call->ReturnType, GR);
1208}
1209
1211 MachineIRBuilder &MIRBuilder,
1212 SPIRVGlobalRegistry *GR) {
1213 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1214 const SPIRV::GroupBuiltin *GroupBuiltin =
1215 SPIRV::lookupGroupBuiltin(Builtin->Name);
1216
1217 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1218 if (Call->isSpirvOp()) {
1219 if (GroupBuiltin->NoGroupOperation) {
1221 if (GroupBuiltin->Opcode ==
1222 SPIRV::OpSubgroupMatrixMultiplyAccumulateINTEL &&
1223 Call->Arguments.size() > 4)
1224 ImmArgs.push_back(getConstFromIntrinsic(Call->Arguments[4], MRI));
1225 return buildOpFromWrapper(MIRBuilder, GroupBuiltin->Opcode, Call,
1226 GR->getSPIRVTypeID(Call->ReturnType), ImmArgs);
1227 }
1228
1229 // Group Operation is a literal
1230 Register GroupOpReg = Call->Arguments[1];
1231 const MachineInstr *MI = getDefInstrMaybeConstant(GroupOpReg, MRI);
1232 if (!MI || MI->getOpcode() != TargetOpcode::G_CONSTANT)
1234 "Group Operation parameter must be an integer constant");
1235 uint64_t GrpOp = MI->getOperand(1).getCImm()->getValue().getZExtValue();
1236 Register ScopeReg = Call->Arguments[0];
1237 auto MIB = MIRBuilder.buildInstr(GroupBuiltin->Opcode)
1238 .addDef(Call->ReturnRegister)
1239 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1240 .addUse(ScopeReg)
1241 .addImm(GrpOp);
1242 for (unsigned i = 2; i < Call->Arguments.size(); ++i)
1243 MIB.addUse(Call->Arguments[i]);
1244 return true;
1245 }
1246
1247 Register Arg0;
1248 if (GroupBuiltin->HasBoolArg) {
1249 SPIRVType *BoolType = GR->getOrCreateSPIRVBoolType(MIRBuilder, true);
1250 Register BoolReg = Call->Arguments[0];
1251 SPIRVType *BoolRegType = GR->getSPIRVTypeForVReg(BoolReg);
1252 if (!BoolRegType)
1253 report_fatal_error("Can't find a register's type definition");
1254 MachineInstr *ArgInstruction = getDefInstrMaybeConstant(BoolReg, MRI);
1255 if (ArgInstruction->getOpcode() == TargetOpcode::G_CONSTANT) {
1256 if (BoolRegType->getOpcode() != SPIRV::OpTypeBool)
1257 Arg0 = GR->buildConstantInt(getIConstVal(BoolReg, MRI), MIRBuilder,
1258 BoolType, true);
1259 } else {
1260 if (BoolRegType->getOpcode() == SPIRV::OpTypeInt) {
1261 Arg0 = MRI->createGenericVirtualRegister(LLT::scalar(1));
1262 MRI->setRegClass(Arg0, &SPIRV::iIDRegClass);
1263 GR->assignSPIRVTypeToVReg(BoolType, Arg0, MIRBuilder.getMF());
1264 MIRBuilder.buildICmp(
1265 CmpInst::ICMP_NE, Arg0, BoolReg,
1266 GR->buildConstantInt(0, MIRBuilder, BoolRegType, true));
1267 insertAssignInstr(Arg0, nullptr, BoolType, GR, MIRBuilder,
1268 MIRBuilder.getMF().getRegInfo());
1269 } else if (BoolRegType->getOpcode() != SPIRV::OpTypeBool) {
1270 report_fatal_error("Expect a boolean argument");
1271 }
1272 // if BoolReg is a boolean register, we don't need to do anything
1273 }
1274 }
1275
1276 Register GroupResultRegister = Call->ReturnRegister;
1277 SPIRVType *GroupResultType = Call->ReturnType;
1278
1279 // TODO: maybe we need to check whether the result type is already boolean
1280 // and in this case do not insert select instruction.
1281 const bool HasBoolReturnTy =
1282 GroupBuiltin->IsElect || GroupBuiltin->IsAllOrAny ||
1283 GroupBuiltin->IsAllEqual || GroupBuiltin->IsLogical ||
1284 GroupBuiltin->IsInverseBallot || GroupBuiltin->IsBallotBitExtract;
1285
1286 if (HasBoolReturnTy)
1287 std::tie(GroupResultRegister, GroupResultType) =
1288 buildBoolRegister(MIRBuilder, Call->ReturnType, GR);
1289
1290 auto Scope = Builtin->Name.starts_with("sub_group") ? SPIRV::Scope::Subgroup
1291 : SPIRV::Scope::Workgroup;
1292 Register ScopeRegister = buildConstantIntReg32(Scope, MIRBuilder, GR);
1293
1294 Register VecReg;
1295 if (GroupBuiltin->Opcode == SPIRV::OpGroupBroadcast &&
1296 Call->Arguments.size() > 2) {
1297 // For OpGroupBroadcast "LocalId must be an integer datatype. It must be a
1298 // scalar, a vector with 2 components, or a vector with 3 components.",
1299 // meaning that we must create a vector from the function arguments if
1300 // it's a work_group_broadcast(val, local_id_x, local_id_y) or
1301 // work_group_broadcast(val, local_id_x, local_id_y, local_id_z) call.
1302 Register ElemReg = Call->Arguments[1];
1303 SPIRVType *ElemType = GR->getSPIRVTypeForVReg(ElemReg);
1304 if (!ElemType || ElemType->getOpcode() != SPIRV::OpTypeInt)
1305 report_fatal_error("Expect an integer <LocalId> argument");
1306 unsigned VecLen = Call->Arguments.size() - 1;
1307 VecReg = MRI->createGenericVirtualRegister(
1308 LLT::fixed_vector(VecLen, MRI->getType(ElemReg)));
1309 MRI->setRegClass(VecReg, &SPIRV::vIDRegClass);
1310 SPIRVType *VecType =
1311 GR->getOrCreateSPIRVVectorType(ElemType, VecLen, MIRBuilder, true);
1312 GR->assignSPIRVTypeToVReg(VecType, VecReg, MIRBuilder.getMF());
1313 auto MIB =
1314 MIRBuilder.buildInstr(TargetOpcode::G_BUILD_VECTOR).addDef(VecReg);
1315 for (unsigned i = 1; i < Call->Arguments.size(); i++) {
1316 MIB.addUse(Call->Arguments[i]);
1317 setRegClassIfNull(Call->Arguments[i], MRI, GR);
1318 }
1319 insertAssignInstr(VecReg, nullptr, VecType, GR, MIRBuilder,
1320 MIRBuilder.getMF().getRegInfo());
1321 }
1322
1323 // Build work/sub group instruction.
1324 auto MIB = MIRBuilder.buildInstr(GroupBuiltin->Opcode)
1325 .addDef(GroupResultRegister)
1326 .addUse(GR->getSPIRVTypeID(GroupResultType))
1327 .addUse(ScopeRegister);
1328
1329 if (!GroupBuiltin->NoGroupOperation)
1330 MIB.addImm(GroupBuiltin->GroupOperation);
1331 if (Call->Arguments.size() > 0) {
1332 MIB.addUse(Arg0.isValid() ? Arg0 : Call->Arguments[0]);
1333 setRegClassIfNull(Call->Arguments[0], MRI, GR);
1334 if (VecReg.isValid())
1335 MIB.addUse(VecReg);
1336 else
1337 for (unsigned i = 1; i < Call->Arguments.size(); i++)
1338 MIB.addUse(Call->Arguments[i]);
1339 }
1340
1341 // Build select instruction.
1342 if (HasBoolReturnTy)
1343 buildSelectInst(MIRBuilder, Call->ReturnRegister, GroupResultRegister,
1344 Call->ReturnType, GR);
1345 return true;
1346}
1347
1349 MachineIRBuilder &MIRBuilder,
1350 SPIRVGlobalRegistry *GR) {
1351 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1352 MachineFunction &MF = MIRBuilder.getMF();
1353 const auto *ST = static_cast<const SPIRVSubtarget *>(&MF.getSubtarget());
1354 const SPIRV::IntelSubgroupsBuiltin *IntelSubgroups =
1355 SPIRV::lookupIntelSubgroupsBuiltin(Builtin->Name);
1356
1357 if (IntelSubgroups->IsMedia &&
1358 !ST->canUseExtension(SPIRV::Extension::SPV_INTEL_media_block_io)) {
1359 std::string DiagMsg = std::string(Builtin->Name) +
1360 ": the builtin requires the following SPIR-V "
1361 "extension: SPV_INTEL_media_block_io";
1362 report_fatal_error(DiagMsg.c_str(), false);
1363 } else if (!IntelSubgroups->IsMedia &&
1364 !ST->canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
1365 std::string DiagMsg = std::string(Builtin->Name) +
1366 ": the builtin requires the following SPIR-V "
1367 "extension: SPV_INTEL_subgroups";
1368 report_fatal_error(DiagMsg.c_str(), false);
1369 }
1370
1371 uint32_t OpCode = IntelSubgroups->Opcode;
1372 if (Call->isSpirvOp()) {
1373 bool IsSet = OpCode != SPIRV::OpSubgroupBlockWriteINTEL &&
1374 OpCode != SPIRV::OpSubgroupImageBlockWriteINTEL &&
1375 OpCode != SPIRV::OpSubgroupImageMediaBlockWriteINTEL;
1376 return buildOpFromWrapper(MIRBuilder, OpCode, Call,
1377 IsSet ? GR->getSPIRVTypeID(Call->ReturnType)
1378 : Register(0));
1379 }
1380
1381 if (IntelSubgroups->IsBlock) {
1382 // Minimal number or arguments set in TableGen records is 1
1383 if (SPIRVType *Arg0Type = GR->getSPIRVTypeForVReg(Call->Arguments[0])) {
1384 if (Arg0Type->getOpcode() == SPIRV::OpTypeImage) {
1385 // TODO: add required validation from the specification:
1386 // "'Image' must be an object whose type is OpTypeImage with a 'Sampled'
1387 // operand of 0 or 2. If the 'Sampled' operand is 2, then some
1388 // dimensions require a capability."
1389 switch (OpCode) {
1390 case SPIRV::OpSubgroupBlockReadINTEL:
1391 OpCode = SPIRV::OpSubgroupImageBlockReadINTEL;
1392 break;
1393 case SPIRV::OpSubgroupBlockWriteINTEL:
1394 OpCode = SPIRV::OpSubgroupImageBlockWriteINTEL;
1395 break;
1396 }
1397 }
1398 }
1399 }
1400
1401 // TODO: opaque pointers types should be eventually resolved in such a way
1402 // that validation of block read is enabled with respect to the following
1403 // specification requirement:
1404 // "'Result Type' may be a scalar or vector type, and its component type must
1405 // be equal to the type pointed to by 'Ptr'."
1406 // For example, function parameter type should not be default i8 pointer, but
1407 // depend on the result type of the instruction where it is used as a pointer
1408 // argument of OpSubgroupBlockReadINTEL
1409
1410 // Build Intel subgroups instruction
1412 IntelSubgroups->IsWrite
1413 ? MIRBuilder.buildInstr(OpCode)
1414 : MIRBuilder.buildInstr(OpCode)
1415 .addDef(Call->ReturnRegister)
1416 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1417 for (size_t i = 0; i < Call->Arguments.size(); ++i)
1418 MIB.addUse(Call->Arguments[i]);
1419 return true;
1420}
1421
1423 MachineIRBuilder &MIRBuilder,
1424 SPIRVGlobalRegistry *GR) {
1425 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1426 MachineFunction &MF = MIRBuilder.getMF();
1427 const auto *ST = static_cast<const SPIRVSubtarget *>(&MF.getSubtarget());
1428 if (!ST->canUseExtension(
1429 SPIRV::Extension::SPV_KHR_uniform_group_instructions)) {
1430 std::string DiagMsg = std::string(Builtin->Name) +
1431 ": the builtin requires the following SPIR-V "
1432 "extension: SPV_KHR_uniform_group_instructions";
1433 report_fatal_error(DiagMsg.c_str(), false);
1434 }
1435 const SPIRV::GroupUniformBuiltin *GroupUniform =
1436 SPIRV::lookupGroupUniformBuiltin(Builtin->Name);
1437 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1438
1439 Register GroupResultReg = Call->ReturnRegister;
1440 Register ScopeReg = Call->Arguments[0];
1441 Register ValueReg = Call->Arguments[2];
1442
1443 // Group Operation
1444 Register ConstGroupOpReg = Call->Arguments[1];
1445 const MachineInstr *Const = getDefInstrMaybeConstant(ConstGroupOpReg, MRI);
1446 if (!Const || Const->getOpcode() != TargetOpcode::G_CONSTANT)
1448 "expect a constant group operation for a uniform group instruction",
1449 false);
1450 const MachineOperand &ConstOperand = Const->getOperand(1);
1451 if (!ConstOperand.isCImm())
1452 report_fatal_error("uniform group instructions: group operation must be an "
1453 "integer constant",
1454 false);
1455
1456 auto MIB = MIRBuilder.buildInstr(GroupUniform->Opcode)
1457 .addDef(GroupResultReg)
1458 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1459 .addUse(ScopeReg);
1460 addNumImm(ConstOperand.getCImm()->getValue(), MIB);
1461 MIB.addUse(ValueReg);
1462
1463 return true;
1464}
1465
1467 MachineIRBuilder &MIRBuilder,
1468 SPIRVGlobalRegistry *GR) {
1469 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1470 MachineFunction &MF = MIRBuilder.getMF();
1471 const auto *ST = static_cast<const SPIRVSubtarget *>(&MF.getSubtarget());
1472 if (!ST->canUseExtension(SPIRV::Extension::SPV_KHR_shader_clock)) {
1473 std::string DiagMsg = std::string(Builtin->Name) +
1474 ": the builtin requires the following SPIR-V "
1475 "extension: SPV_KHR_shader_clock";
1476 report_fatal_error(DiagMsg.c_str(), false);
1477 }
1478
1479 Register ResultReg = Call->ReturnRegister;
1480
1481 // Deduce the `Scope` operand from the builtin function name.
1482 SPIRV::Scope::Scope ScopeArg =
1484 .EndsWith("device", SPIRV::Scope::Scope::Device)
1485 .EndsWith("work_group", SPIRV::Scope::Scope::Workgroup)
1486 .EndsWith("sub_group", SPIRV::Scope::Scope::Subgroup);
1487 Register ScopeReg = buildConstantIntReg32(ScopeArg, MIRBuilder, GR);
1488
1489 MIRBuilder.buildInstr(SPIRV::OpReadClockKHR)
1490 .addDef(ResultReg)
1491 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1492 .addUse(ScopeReg);
1493
1494 return true;
1495}
1496
1497// These queries ask for a single size_t result for a given dimension index,
1498// e.g. size_t get_global_id(uint dimindex). In SPIR-V, the builtins
1499// corresponding to these values are all vec3 types, so we need to extract the
1500// correct index or return DefaultValue (0 or 1 depending on the query). We also
1501// handle extending or truncating in case size_t does not match the expected
1502// result type's bitwidth.
1503//
1504// For a constant index >= 3 we generate:
1505// %res = OpConstant %SizeT DefaultValue
1506//
1507// For other indices we generate:
1508// %g = OpVariable %ptr_V3_SizeT Input
1509// OpDecorate %g BuiltIn XXX
1510// OpDecorate %g LinkageAttributes "__spirv_BuiltInXXX"
1511// OpDecorate %g Constant
1512// %loadedVec = OpLoad %V3_SizeT %g
1513//
1514// Then, if the index is constant < 3, we generate:
1515// %res = OpCompositeExtract %SizeT %loadedVec idx
1516// If the index is dynamic, we generate:
1517// %tmp = OpVectorExtractDynamic %SizeT %loadedVec %idx
1518// %cmp = OpULessThan %bool %idx %const_3
1519// %res = OpSelect %SizeT %cmp %tmp %const_<DefaultValue>
1520//
1521// If the bitwidth of %res does not match the expected return type, we add an
1522// extend or truncate.
1524 MachineIRBuilder &MIRBuilder,
1526 SPIRV::BuiltIn::BuiltIn BuiltinValue,
1527 uint64_t DefaultValue) {
1528 Register IndexRegister = Call->Arguments[0];
1529 const unsigned ResultWidth = Call->ReturnType->getOperand(1).getImm();
1530 const unsigned PointerSize = GR->getPointerSize();
1531 const SPIRVType *PointerSizeType =
1532 GR->getOrCreateSPIRVIntegerType(PointerSize, MIRBuilder);
1533 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1534 auto IndexInstruction = getDefInstrMaybeConstant(IndexRegister, MRI);
1535
1536 // Set up the final register to do truncation or extension on at the end.
1537 Register ToTruncate = Call->ReturnRegister;
1538
1539 // If the index is constant, we can statically determine if it is in range.
1540 bool IsConstantIndex =
1541 IndexInstruction->getOpcode() == TargetOpcode::G_CONSTANT;
1542
1543 // If it's out of range (max dimension is 3), we can just return the constant
1544 // default value (0 or 1 depending on which query function).
1545 if (IsConstantIndex && getIConstVal(IndexRegister, MRI) >= 3) {
1546 Register DefaultReg = Call->ReturnRegister;
1547 if (PointerSize != ResultWidth) {
1548 DefaultReg = MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
1549 MRI->setRegClass(DefaultReg, &SPIRV::iIDRegClass);
1550 GR->assignSPIRVTypeToVReg(PointerSizeType, DefaultReg,
1551 MIRBuilder.getMF());
1552 ToTruncate = DefaultReg;
1553 }
1554 auto NewRegister =
1555 GR->buildConstantInt(DefaultValue, MIRBuilder, PointerSizeType, true);
1556 MIRBuilder.buildCopy(DefaultReg, NewRegister);
1557 } else { // If it could be in range, we need to load from the given builtin.
1558 auto Vec3Ty =
1559 GR->getOrCreateSPIRVVectorType(PointerSizeType, 3, MIRBuilder, true);
1560 Register LoadedVector =
1561 buildBuiltinVariableLoad(MIRBuilder, Vec3Ty, GR, BuiltinValue,
1562 LLT::fixed_vector(3, PointerSize));
1563 // Set up the vreg to extract the result to (possibly a new temporary one).
1564 Register Extracted = Call->ReturnRegister;
1565 if (!IsConstantIndex || PointerSize != ResultWidth) {
1566 Extracted = MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
1567 MRI->setRegClass(Extracted, &SPIRV::iIDRegClass);
1568 GR->assignSPIRVTypeToVReg(PointerSizeType, Extracted, MIRBuilder.getMF());
1569 }
1570 // Use Intrinsic::spv_extractelt so dynamic vs static extraction is
1571 // handled later: extr = spv_extractelt LoadedVector, IndexRegister.
1572 MachineInstrBuilder ExtractInst = MIRBuilder.buildIntrinsic(
1573 Intrinsic::spv_extractelt, ArrayRef<Register>{Extracted}, true, false);
1574 ExtractInst.addUse(LoadedVector).addUse(IndexRegister);
1575
1576 // If the index is dynamic, need check if it's < 3, and then use a select.
1577 if (!IsConstantIndex) {
1578 insertAssignInstr(Extracted, nullptr, PointerSizeType, GR, MIRBuilder,
1579 *MRI);
1580
1581 auto IndexType = GR->getSPIRVTypeForVReg(IndexRegister);
1582 auto BoolType = GR->getOrCreateSPIRVBoolType(MIRBuilder, true);
1583
1584 Register CompareRegister =
1585 MRI->createGenericVirtualRegister(LLT::scalar(1));
1586 MRI->setRegClass(CompareRegister, &SPIRV::iIDRegClass);
1587 GR->assignSPIRVTypeToVReg(BoolType, CompareRegister, MIRBuilder.getMF());
1588
1589 // Use G_ICMP to check if idxVReg < 3.
1590 MIRBuilder.buildICmp(
1591 CmpInst::ICMP_ULT, CompareRegister, IndexRegister,
1592 GR->buildConstantInt(3, MIRBuilder, IndexType, true));
1593
1594 // Get constant for the default value (0 or 1 depending on which
1595 // function).
1596 Register DefaultRegister =
1597 GR->buildConstantInt(DefaultValue, MIRBuilder, PointerSizeType, true);
1598
1599 // Get a register for the selection result (possibly a new temporary one).
1600 Register SelectionResult = Call->ReturnRegister;
1601 if (PointerSize != ResultWidth) {
1602 SelectionResult =
1603 MRI->createGenericVirtualRegister(LLT::scalar(PointerSize));
1604 MRI->setRegClass(SelectionResult, &SPIRV::iIDRegClass);
1605 GR->assignSPIRVTypeToVReg(PointerSizeType, SelectionResult,
1606 MIRBuilder.getMF());
1607 }
1608 // Create the final G_SELECT to return the extracted value or the default.
1609 MIRBuilder.buildSelect(SelectionResult, CompareRegister, Extracted,
1610 DefaultRegister);
1611 ToTruncate = SelectionResult;
1612 } else {
1613 ToTruncate = Extracted;
1614 }
1615 }
1616 // Alter the result's bitwidth if it does not match the SizeT value extracted.
1617 if (PointerSize != ResultWidth)
1618 MIRBuilder.buildZExtOrTrunc(Call->ReturnRegister, ToTruncate);
1619 return true;
1620}
1621
1623 MachineIRBuilder &MIRBuilder,
1624 SPIRVGlobalRegistry *GR) {
1625 // Lookup the builtin variable record.
1626 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1627 SPIRV::BuiltIn::BuiltIn Value =
1628 SPIRV::lookupGetBuiltin(Builtin->Name, Builtin->Set)->Value;
1629
1630 if (Value == SPIRV::BuiltIn::GlobalInvocationId)
1631 return genWorkgroupQuery(Call, MIRBuilder, GR, Value, 0);
1632
1633 // Build a load instruction for the builtin variable.
1634 unsigned BitWidth = GR->getScalarOrVectorBitWidth(Call->ReturnType);
1635 LLT LLType;
1636 if (Call->ReturnType->getOpcode() == SPIRV::OpTypeVector)
1637 LLType =
1638 LLT::fixed_vector(Call->ReturnType->getOperand(2).getImm(), BitWidth);
1639 else
1640 LLType = LLT::scalar(BitWidth);
1641
1642 return buildBuiltinVariableLoad(MIRBuilder, Call->ReturnType, GR, Value,
1643 LLType, Call->ReturnRegister);
1644}
1645
1647 MachineIRBuilder &MIRBuilder,
1648 SPIRVGlobalRegistry *GR) {
1649 // Lookup the instruction opcode in the TableGen records.
1650 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1651 unsigned Opcode =
1652 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1653
1654 switch (Opcode) {
1655 case SPIRV::OpStore:
1656 return buildAtomicInitInst(Call, MIRBuilder);
1657 case SPIRV::OpAtomicLoad:
1658 return buildAtomicLoadInst(Call, MIRBuilder, GR);
1659 case SPIRV::OpAtomicStore:
1660 return buildAtomicStoreInst(Call, MIRBuilder, GR);
1661 case SPIRV::OpAtomicCompareExchange:
1662 case SPIRV::OpAtomicCompareExchangeWeak:
1663 return buildAtomicCompareExchangeInst(Call, Builtin, Opcode, MIRBuilder,
1664 GR);
1665 case SPIRV::OpAtomicIAdd:
1666 case SPIRV::OpAtomicISub:
1667 case SPIRV::OpAtomicOr:
1668 case SPIRV::OpAtomicXor:
1669 case SPIRV::OpAtomicAnd:
1670 case SPIRV::OpAtomicExchange:
1671 return buildAtomicRMWInst(Call, Opcode, MIRBuilder, GR);
1672 case SPIRV::OpMemoryBarrier:
1673 return buildBarrierInst(Call, SPIRV::OpMemoryBarrier, MIRBuilder, GR);
1674 case SPIRV::OpAtomicFlagTestAndSet:
1675 case SPIRV::OpAtomicFlagClear:
1676 return buildAtomicFlagInst(Call, Opcode, MIRBuilder, GR);
1677 default:
1678 if (Call->isSpirvOp())
1679 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
1680 GR->getSPIRVTypeID(Call->ReturnType));
1681 return false;
1682 }
1683}
1684
1686 MachineIRBuilder &MIRBuilder,
1687 SPIRVGlobalRegistry *GR) {
1688 // Lookup the instruction opcode in the TableGen records.
1689 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1690 unsigned Opcode = SPIRV::lookupAtomicFloatingBuiltin(Builtin->Name)->Opcode;
1691
1692 switch (Opcode) {
1693 case SPIRV::OpAtomicFAddEXT:
1694 case SPIRV::OpAtomicFMinEXT:
1695 case SPIRV::OpAtomicFMaxEXT:
1696 return buildAtomicFloatingRMWInst(Call, Opcode, MIRBuilder, GR);
1697 default:
1698 return false;
1699 }
1700}
1701
1703 MachineIRBuilder &MIRBuilder,
1704 SPIRVGlobalRegistry *GR) {
1705 // Lookup the instruction opcode in the TableGen records.
1706 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1707 unsigned Opcode =
1708 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1709
1710 return buildBarrierInst(Call, Opcode, MIRBuilder, GR);
1711}
1712
1714 MachineIRBuilder &MIRBuilder,
1715 SPIRVGlobalRegistry *GR) {
1716 // Lookup the instruction opcode in the TableGen records.
1717 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1718 unsigned Opcode =
1719 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1720
1721 if (Opcode == SPIRV::OpGenericCastToPtrExplicit) {
1722 SPIRV::StorageClass::StorageClass ResSC =
1723 GR->getPointerStorageClass(Call->ReturnRegister);
1724 if (!isGenericCastablePtr(ResSC))
1725 return false;
1726
1727 MIRBuilder.buildInstr(Opcode)
1728 .addDef(Call->ReturnRegister)
1729 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1730 .addUse(Call->Arguments[0])
1731 .addImm(ResSC);
1732 } else {
1733 MIRBuilder.buildInstr(TargetOpcode::G_ADDRSPACE_CAST)
1734 .addDef(Call->ReturnRegister)
1735 .addUse(Call->Arguments[0]);
1736 }
1737 return true;
1738}
1739
1740static bool generateDotOrFMulInst(const StringRef DemangledCall,
1742 MachineIRBuilder &MIRBuilder,
1743 SPIRVGlobalRegistry *GR) {
1744 if (Call->isSpirvOp())
1745 return buildOpFromWrapper(MIRBuilder, SPIRV::OpDot, Call,
1746 GR->getSPIRVTypeID(Call->ReturnType));
1747
1748 bool IsVec = GR->getSPIRVTypeForVReg(Call->Arguments[0])->getOpcode() ==
1749 SPIRV::OpTypeVector;
1750 // Use OpDot only in case of vector args and OpFMul in case of scalar args.
1751 uint32_t OC = IsVec ? SPIRV::OpDot : SPIRV::OpFMulS;
1752 bool IsSwapReq = false;
1753
1754 const auto *ST =
1755 static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
1756 if (GR->isScalarOrVectorOfType(Call->ReturnRegister, SPIRV::OpTypeInt) &&
1757 (ST->canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
1758 ST->isAtLeastSPIRVVer(VersionTuple(1, 6)))) {
1759 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1760 const SPIRV::IntegerDotProductBuiltin *IntDot =
1761 SPIRV::lookupIntegerDotProductBuiltin(Builtin->Name);
1762 if (IntDot) {
1763 OC = IntDot->Opcode;
1764 IsSwapReq = IntDot->IsSwapReq;
1765 } else if (IsVec) {
1766 // Handling "dot" and "dot_acc_sat" builtins which use vectors of
1767 // integers.
1768 LLVMContext &Ctx = MIRBuilder.getContext();
1770 SPIRV::parseBuiltinTypeStr(TypeStrs, DemangledCall, Ctx);
1771 bool IsFirstSigned = TypeStrs[0].trim()[0] != 'u';
1772 bool IsSecondSigned = TypeStrs[1].trim()[0] != 'u';
1773
1774 if (Call->BuiltinName == "dot") {
1775 if (IsFirstSigned && IsSecondSigned)
1776 OC = SPIRV::OpSDot;
1777 else if (!IsFirstSigned && !IsSecondSigned)
1778 OC = SPIRV::OpUDot;
1779 else {
1780 OC = SPIRV::OpSUDot;
1781 if (!IsFirstSigned)
1782 IsSwapReq = true;
1783 }
1784 } else if (Call->BuiltinName == "dot_acc_sat") {
1785 if (IsFirstSigned && IsSecondSigned)
1786 OC = SPIRV::OpSDotAccSat;
1787 else if (!IsFirstSigned && !IsSecondSigned)
1788 OC = SPIRV::OpUDotAccSat;
1789 else {
1790 OC = SPIRV::OpSUDotAccSat;
1791 if (!IsFirstSigned)
1792 IsSwapReq = true;
1793 }
1794 }
1795 }
1796 }
1797
1798 MachineInstrBuilder MIB = MIRBuilder.buildInstr(OC)
1799 .addDef(Call->ReturnRegister)
1800 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
1801
1802 if (IsSwapReq) {
1803 MIB.addUse(Call->Arguments[1]);
1804 MIB.addUse(Call->Arguments[0]);
1805 // needed for dot_acc_sat* builtins
1806 for (size_t i = 2; i < Call->Arguments.size(); ++i)
1807 MIB.addUse(Call->Arguments[i]);
1808 } else {
1809 for (size_t i = 0; i < Call->Arguments.size(); ++i)
1810 MIB.addUse(Call->Arguments[i]);
1811 }
1812
1813 // Add Packed Vector Format for Integer dot product builtins if arguments are
1814 // scalar
1815 if (!IsVec && OC != SPIRV::OpFMulS)
1816 MIB.addImm(SPIRV::PackedVectorFormat4x8Bit);
1817
1818 return true;
1819}
1820
1822 MachineIRBuilder &MIRBuilder,
1823 SPIRVGlobalRegistry *GR) {
1824 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1825 SPIRV::BuiltIn::BuiltIn Value =
1826 SPIRV::lookupGetBuiltin(Builtin->Name, Builtin->Set)->Value;
1827
1828 // For now, we only support a single Wave intrinsic with a single return type.
1829 assert(Call->ReturnType->getOpcode() == SPIRV::OpTypeInt);
1830 LLT LLType = LLT::scalar(GR->getScalarOrVectorBitWidth(Call->ReturnType));
1831
1833 MIRBuilder, Call->ReturnType, GR, Value, LLType, Call->ReturnRegister,
1834 /* isConst= */ false, /* hasLinkageTy= */ false);
1835}
1836
1837// We expect a builtin
1838// Name(ptr sret([RetType]) %result, Type %operand1, Type %operand1)
1839// where %result is a pointer to where the result of the builtin execution
1840// is to be stored, and generate the following instructions:
1841// Res = Opcode RetType Operand1 Operand1
1842// OpStore RetVariable Res
1844 MachineIRBuilder &MIRBuilder,
1845 SPIRVGlobalRegistry *GR) {
1846 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1847 unsigned Opcode =
1848 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1849
1850 Register SRetReg = Call->Arguments[0];
1851 SPIRVType *PtrRetType = GR->getSPIRVTypeForVReg(SRetReg);
1852 SPIRVType *RetType = GR->getPointeeType(PtrRetType);
1853 if (!RetType)
1854 report_fatal_error("The first parameter must be a pointer");
1855 if (RetType->getOpcode() != SPIRV::OpTypeStruct)
1856 report_fatal_error("Expected struct type result for the arithmetic with "
1857 "overflow builtins");
1858
1859 SPIRVType *OpType1 = GR->getSPIRVTypeForVReg(Call->Arguments[1]);
1860 SPIRVType *OpType2 = GR->getSPIRVTypeForVReg(Call->Arguments[2]);
1861 if (!OpType1 || !OpType2 || OpType1 != OpType2)
1862 report_fatal_error("Operands must have the same type");
1863 if (OpType1->getOpcode() == SPIRV::OpTypeVector)
1864 switch (Opcode) {
1865 case SPIRV::OpIAddCarryS:
1866 Opcode = SPIRV::OpIAddCarryV;
1867 break;
1868 case SPIRV::OpISubBorrowS:
1869 Opcode = SPIRV::OpISubBorrowV;
1870 break;
1871 }
1872
1873 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
1874 Register ResReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
1875 if (const TargetRegisterClass *DstRC =
1876 MRI->getRegClassOrNull(Call->Arguments[1])) {
1877 MRI->setRegClass(ResReg, DstRC);
1878 MRI->setType(ResReg, MRI->getType(Call->Arguments[1]));
1879 } else {
1880 MRI->setType(ResReg, LLT::scalar(64));
1881 }
1882 GR->assignSPIRVTypeToVReg(RetType, ResReg, MIRBuilder.getMF());
1883 MIRBuilder.buildInstr(Opcode)
1884 .addDef(ResReg)
1885 .addUse(GR->getSPIRVTypeID(RetType))
1886 .addUse(Call->Arguments[1])
1887 .addUse(Call->Arguments[2]);
1888 MIRBuilder.buildInstr(SPIRV::OpStore).addUse(SRetReg).addUse(ResReg);
1889 return true;
1890}
1891
1893 MachineIRBuilder &MIRBuilder,
1894 SPIRVGlobalRegistry *GR) {
1895 // Lookup the builtin record.
1896 SPIRV::BuiltIn::BuiltIn Value =
1897 SPIRV::lookupGetBuiltin(Call->Builtin->Name, Call->Builtin->Set)->Value;
1898 const bool IsDefaultOne = (Value == SPIRV::BuiltIn::GlobalSize ||
1899 Value == SPIRV::BuiltIn::NumWorkgroups ||
1900 Value == SPIRV::BuiltIn::WorkgroupSize ||
1901 Value == SPIRV::BuiltIn::EnqueuedWorkgroupSize);
1902 return genWorkgroupQuery(Call, MIRBuilder, GR, Value, IsDefaultOne ? 1 : 0);
1903}
1904
1906 MachineIRBuilder &MIRBuilder,
1907 SPIRVGlobalRegistry *GR) {
1908 // Lookup the image size query component number in the TableGen records.
1909 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1910 uint32_t Component =
1911 SPIRV::lookupImageQueryBuiltin(Builtin->Name, Builtin->Set)->Component;
1912 // Query result may either be a vector or a scalar. If return type is not a
1913 // vector, expect only a single size component. Otherwise get the number of
1914 // expected components.
1915 unsigned NumExpectedRetComponents =
1916 Call->ReturnType->getOpcode() == SPIRV::OpTypeVector
1917 ? Call->ReturnType->getOperand(2).getImm()
1918 : 1;
1919 // Get the actual number of query result/size components.
1920 SPIRVType *ImgType = GR->getSPIRVTypeForVReg(Call->Arguments[0]);
1921 unsigned NumActualRetComponents = getNumSizeComponents(ImgType);
1922 Register QueryResult = Call->ReturnRegister;
1923 SPIRVType *QueryResultType = Call->ReturnType;
1924 if (NumExpectedRetComponents != NumActualRetComponents) {
1925 unsigned Bitwidth = Call->ReturnType->getOpcode() == SPIRV::OpTypeInt
1926 ? Call->ReturnType->getOperand(1).getImm()
1927 : 32;
1928 QueryResult = MIRBuilder.getMRI()->createGenericVirtualRegister(
1929 LLT::fixed_vector(NumActualRetComponents, Bitwidth));
1930 MIRBuilder.getMRI()->setRegClass(QueryResult, &SPIRV::vIDRegClass);
1931 SPIRVType *IntTy = GR->getOrCreateSPIRVIntegerType(Bitwidth, MIRBuilder);
1932 QueryResultType = GR->getOrCreateSPIRVVectorType(
1933 IntTy, NumActualRetComponents, MIRBuilder, true);
1934 GR->assignSPIRVTypeToVReg(QueryResultType, QueryResult, MIRBuilder.getMF());
1935 }
1936 bool IsDimBuf = ImgType->getOperand(2).getImm() == SPIRV::Dim::DIM_Buffer;
1937 unsigned Opcode =
1938 IsDimBuf ? SPIRV::OpImageQuerySize : SPIRV::OpImageQuerySizeLod;
1939 auto MIB = MIRBuilder.buildInstr(Opcode)
1940 .addDef(QueryResult)
1941 .addUse(GR->getSPIRVTypeID(QueryResultType))
1942 .addUse(Call->Arguments[0]);
1943 if (!IsDimBuf)
1944 MIB.addUse(buildConstantIntReg32(0, MIRBuilder, GR)); // Lod id.
1945 if (NumExpectedRetComponents == NumActualRetComponents)
1946 return true;
1947 if (NumExpectedRetComponents == 1) {
1948 // Only 1 component is expected, build OpCompositeExtract instruction.
1949 unsigned ExtractedComposite =
1950 Component == 3 ? NumActualRetComponents - 1 : Component;
1951 assert(ExtractedComposite < NumActualRetComponents &&
1952 "Invalid composite index!");
1953 Register TypeReg = GR->getSPIRVTypeID(Call->ReturnType);
1954 SPIRVType *NewType = nullptr;
1955 if (QueryResultType->getOpcode() == SPIRV::OpTypeVector) {
1956 Register NewTypeReg = QueryResultType->getOperand(1).getReg();
1957 if (TypeReg != NewTypeReg &&
1958 (NewType = GR->getSPIRVTypeForVReg(NewTypeReg)) != nullptr)
1959 TypeReg = NewTypeReg;
1960 }
1961 MIRBuilder.buildInstr(SPIRV::OpCompositeExtract)
1962 .addDef(Call->ReturnRegister)
1963 .addUse(TypeReg)
1964 .addUse(QueryResult)
1965 .addImm(ExtractedComposite);
1966 if (NewType != nullptr)
1967 insertAssignInstr(Call->ReturnRegister, nullptr, NewType, GR, MIRBuilder,
1968 MIRBuilder.getMF().getRegInfo());
1969 } else {
1970 // More than 1 component is expected, fill a new vector.
1971 auto MIB = MIRBuilder.buildInstr(SPIRV::OpVectorShuffle)
1972 .addDef(Call->ReturnRegister)
1973 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
1974 .addUse(QueryResult)
1975 .addUse(QueryResult);
1976 for (unsigned i = 0; i < NumExpectedRetComponents; ++i)
1977 MIB.addImm(i < NumActualRetComponents ? i : 0xffffffff);
1978 }
1979 return true;
1980}
1981
1983 MachineIRBuilder &MIRBuilder,
1984 SPIRVGlobalRegistry *GR) {
1985 assert(Call->ReturnType->getOpcode() == SPIRV::OpTypeInt &&
1986 "Image samples query result must be of int type!");
1987
1988 // Lookup the instruction opcode in the TableGen records.
1989 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
1990 unsigned Opcode =
1991 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
1992
1993 Register Image = Call->Arguments[0];
1994 SPIRV::Dim::Dim ImageDimensionality = static_cast<SPIRV::Dim::Dim>(
1995 GR->getSPIRVTypeForVReg(Image)->getOperand(2).getImm());
1996 (void)ImageDimensionality;
1997
1998 switch (Opcode) {
1999 case SPIRV::OpImageQuerySamples:
2000 assert(ImageDimensionality == SPIRV::Dim::DIM_2D &&
2001 "Image must be of 2D dimensionality");
2002 break;
2003 case SPIRV::OpImageQueryLevels:
2004 assert((ImageDimensionality == SPIRV::Dim::DIM_1D ||
2005 ImageDimensionality == SPIRV::Dim::DIM_2D ||
2006 ImageDimensionality == SPIRV::Dim::DIM_3D ||
2007 ImageDimensionality == SPIRV::Dim::DIM_Cube) &&
2008 "Image must be of 1D/2D/3D/Cube dimensionality");
2009 break;
2010 }
2011
2012 MIRBuilder.buildInstr(Opcode)
2013 .addDef(Call->ReturnRegister)
2014 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2015 .addUse(Image);
2016 return true;
2017}
2018
2019// TODO: Move to TableGen.
2020static SPIRV::SamplerAddressingMode::SamplerAddressingMode
2022 switch (Bitmask & SPIRV::CLK_ADDRESS_MODE_MASK) {
2023 case SPIRV::CLK_ADDRESS_CLAMP:
2024 return SPIRV::SamplerAddressingMode::Clamp;
2025 case SPIRV::CLK_ADDRESS_CLAMP_TO_EDGE:
2026 return SPIRV::SamplerAddressingMode::ClampToEdge;
2027 case SPIRV::CLK_ADDRESS_REPEAT:
2028 return SPIRV::SamplerAddressingMode::Repeat;
2029 case SPIRV::CLK_ADDRESS_MIRRORED_REPEAT:
2030 return SPIRV::SamplerAddressingMode::RepeatMirrored;
2031 case SPIRV::CLK_ADDRESS_NONE:
2032 return SPIRV::SamplerAddressingMode::None;
2033 default:
2034 report_fatal_error("Unknown CL address mode");
2035 }
2036}
2037
2038static unsigned getSamplerParamFromBitmask(unsigned Bitmask) {
2039 return (Bitmask & SPIRV::CLK_NORMALIZED_COORDS_TRUE) ? 1 : 0;
2040}
2041
2042static SPIRV::SamplerFilterMode::SamplerFilterMode
2044 if (Bitmask & SPIRV::CLK_FILTER_LINEAR)
2045 return SPIRV::SamplerFilterMode::Linear;
2046 if (Bitmask & SPIRV::CLK_FILTER_NEAREST)
2047 return SPIRV::SamplerFilterMode::Nearest;
2048 return SPIRV::SamplerFilterMode::Nearest;
2049}
2050
2051static bool generateReadImageInst(const StringRef DemangledCall,
2053 MachineIRBuilder &MIRBuilder,
2054 SPIRVGlobalRegistry *GR) {
2055 if (Call->isSpirvOp())
2056 return buildOpFromWrapper(MIRBuilder, SPIRV::OpImageRead, Call,
2057 GR->getSPIRVTypeID(Call->ReturnType));
2058 Register Image = Call->Arguments[0];
2059 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2060 bool HasOclSampler = DemangledCall.contains_insensitive("ocl_sampler");
2061 bool HasMsaa = DemangledCall.contains_insensitive("msaa");
2062 if (HasOclSampler) {
2063 Register Sampler = Call->Arguments[1];
2064
2065 if (!GR->isScalarOfType(Sampler, SPIRV::OpTypeSampler) &&
2066 getDefInstrMaybeConstant(Sampler, MRI)->getOperand(1).isCImm()) {
2067 uint64_t SamplerMask = getIConstVal(Sampler, MRI);
2068 Sampler = GR->buildConstantSampler(
2070 getSamplerParamFromBitmask(SamplerMask),
2071 getSamplerFilterModeFromBitmask(SamplerMask), MIRBuilder);
2072 }
2073 SPIRVType *ImageType = GR->getSPIRVTypeForVReg(Image);
2074 SPIRVType *SampledImageType =
2075 GR->getOrCreateOpTypeSampledImage(ImageType, MIRBuilder);
2076 Register SampledImage = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
2077
2078 MIRBuilder.buildInstr(SPIRV::OpSampledImage)
2079 .addDef(SampledImage)
2080 .addUse(GR->getSPIRVTypeID(SampledImageType))
2081 .addUse(Image)
2082 .addUse(Sampler);
2083
2085 MIRBuilder);
2086
2087 if (Call->ReturnType->getOpcode() != SPIRV::OpTypeVector) {
2088 SPIRVType *TempType =
2089 GR->getOrCreateSPIRVVectorType(Call->ReturnType, 4, MIRBuilder, true);
2090 Register TempRegister =
2091 MRI->createGenericVirtualRegister(GR->getRegType(TempType));
2092 MRI->setRegClass(TempRegister, GR->getRegClass(TempType));
2093 GR->assignSPIRVTypeToVReg(TempType, TempRegister, MIRBuilder.getMF());
2094 MIRBuilder.buildInstr(SPIRV::OpImageSampleExplicitLod)
2095 .addDef(TempRegister)
2096 .addUse(GR->getSPIRVTypeID(TempType))
2097 .addUse(SampledImage)
2098 .addUse(Call->Arguments[2]) // Coordinate.
2099 .addImm(SPIRV::ImageOperand::Lod)
2100 .addUse(Lod);
2101 MIRBuilder.buildInstr(SPIRV::OpCompositeExtract)
2102 .addDef(Call->ReturnRegister)
2103 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2104 .addUse(TempRegister)
2105 .addImm(0);
2106 } else {
2107 MIRBuilder.buildInstr(SPIRV::OpImageSampleExplicitLod)
2108 .addDef(Call->ReturnRegister)
2109 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2110 .addUse(SampledImage)
2111 .addUse(Call->Arguments[2]) // Coordinate.
2112 .addImm(SPIRV::ImageOperand::Lod)
2113 .addUse(Lod);
2114 }
2115 } else if (HasMsaa) {
2116 MIRBuilder.buildInstr(SPIRV::OpImageRead)
2117 .addDef(Call->ReturnRegister)
2118 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2119 .addUse(Image)
2120 .addUse(Call->Arguments[1]) // Coordinate.
2121 .addImm(SPIRV::ImageOperand::Sample)
2122 .addUse(Call->Arguments[2]);
2123 } else {
2124 MIRBuilder.buildInstr(SPIRV::OpImageRead)
2125 .addDef(Call->ReturnRegister)
2126 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2127 .addUse(Image)
2128 .addUse(Call->Arguments[1]); // Coordinate.
2129 }
2130 return true;
2131}
2132
2134 MachineIRBuilder &MIRBuilder,
2135 SPIRVGlobalRegistry *GR) {
2136 if (Call->isSpirvOp())
2137 return buildOpFromWrapper(MIRBuilder, SPIRV::OpImageWrite, Call,
2138 Register(0));
2139 MIRBuilder.buildInstr(SPIRV::OpImageWrite)
2140 .addUse(Call->Arguments[0]) // Image.
2141 .addUse(Call->Arguments[1]) // Coordinate.
2142 .addUse(Call->Arguments[2]); // Texel.
2143 return true;
2144}
2145
2146static bool generateSampleImageInst(const StringRef DemangledCall,
2148 MachineIRBuilder &MIRBuilder,
2149 SPIRVGlobalRegistry *GR) {
2150 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2151 if (Call->Builtin->Name.contains_insensitive(
2152 "__translate_sampler_initializer")) {
2153 // Build sampler literal.
2154 uint64_t Bitmask = getIConstVal(Call->Arguments[0], MRI);
2155 Register Sampler = GR->buildConstantSampler(
2156 Call->ReturnRegister, getSamplerAddressingModeFromBitmask(Bitmask),
2158 getSamplerFilterModeFromBitmask(Bitmask), MIRBuilder);
2159 return Sampler.isValid();
2160 } else if (Call->Builtin->Name.contains_insensitive("__spirv_SampledImage")) {
2161 // Create OpSampledImage.
2162 Register Image = Call->Arguments[0];
2163 SPIRVType *ImageType = GR->getSPIRVTypeForVReg(Image);
2164 SPIRVType *SampledImageType =
2165 GR->getOrCreateOpTypeSampledImage(ImageType, MIRBuilder);
2166 Register SampledImage =
2167 Call->ReturnRegister.isValid()
2168 ? Call->ReturnRegister
2169 : MRI->createVirtualRegister(&SPIRV::iIDRegClass);
2170 MIRBuilder.buildInstr(SPIRV::OpSampledImage)
2171 .addDef(SampledImage)
2172 .addUse(GR->getSPIRVTypeID(SampledImageType))
2173 .addUse(Image)
2174 .addUse(Call->Arguments[1]); // Sampler.
2175 return true;
2176 } else if (Call->Builtin->Name.contains_insensitive(
2177 "__spirv_ImageSampleExplicitLod")) {
2178 // Sample an image using an explicit level of detail.
2179 std::string ReturnType = DemangledCall.str();
2180 if (DemangledCall.contains("_R")) {
2181 ReturnType = ReturnType.substr(ReturnType.find("_R") + 2);
2182 ReturnType = ReturnType.substr(0, ReturnType.find('('));
2183 }
2184 SPIRVType *Type =
2185 Call->ReturnType
2186 ? Call->ReturnType
2187 : GR->getOrCreateSPIRVTypeByName(ReturnType, MIRBuilder, true);
2188 if (!Type) {
2189 std::string DiagMsg =
2190 "Unable to recognize SPIRV type name: " + ReturnType;
2191 report_fatal_error(DiagMsg.c_str());
2192 }
2193 MIRBuilder.buildInstr(SPIRV::OpImageSampleExplicitLod)
2194 .addDef(Call->ReturnRegister)
2196 .addUse(Call->Arguments[0]) // Image.
2197 .addUse(Call->Arguments[1]) // Coordinate.
2198 .addImm(SPIRV::ImageOperand::Lod)
2199 .addUse(Call->Arguments[3]);
2200 return true;
2201 }
2202 return false;
2203}
2204
2206 MachineIRBuilder &MIRBuilder) {
2207 MIRBuilder.buildSelect(Call->ReturnRegister, Call->Arguments[0],
2208 Call->Arguments[1], Call->Arguments[2]);
2209 return true;
2210}
2211
2213 MachineIRBuilder &MIRBuilder,
2214 SPIRVGlobalRegistry *GR) {
2215 createContinuedInstructions(MIRBuilder, SPIRV::OpCompositeConstruct, 3,
2216 SPIRV::OpCompositeConstructContinuedINTEL,
2217 Call->Arguments, Call->ReturnRegister,
2218 GR->getSPIRVTypeID(Call->ReturnType));
2219 return true;
2220}
2221
2223 MachineIRBuilder &MIRBuilder,
2224 SPIRVGlobalRegistry *GR) {
2225 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2226 unsigned Opcode =
2227 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2228 bool IsSet = Opcode != SPIRV::OpCooperativeMatrixStoreKHR &&
2229 Opcode != SPIRV::OpCooperativeMatrixStoreCheckedINTEL &&
2230 Opcode != SPIRV::OpCooperativeMatrixPrefetchINTEL;
2231 unsigned ArgSz = Call->Arguments.size();
2232 unsigned LiteralIdx = 0;
2233 switch (Opcode) {
2234 // Memory operand is optional and is literal.
2235 case SPIRV::OpCooperativeMatrixLoadKHR:
2236 LiteralIdx = ArgSz > 3 ? 3 : 0;
2237 break;
2238 case SPIRV::OpCooperativeMatrixStoreKHR:
2239 LiteralIdx = ArgSz > 4 ? 4 : 0;
2240 break;
2241 case SPIRV::OpCooperativeMatrixLoadCheckedINTEL:
2242 LiteralIdx = ArgSz > 7 ? 7 : 0;
2243 break;
2244 case SPIRV::OpCooperativeMatrixStoreCheckedINTEL:
2245 LiteralIdx = ArgSz > 8 ? 8 : 0;
2246 break;
2247 // Cooperative Matrix Operands operand is optional and is literal.
2248 case SPIRV::OpCooperativeMatrixMulAddKHR:
2249 LiteralIdx = ArgSz > 3 ? 3 : 0;
2250 break;
2251 };
2252
2254 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2255 if (Opcode == SPIRV::OpCooperativeMatrixPrefetchINTEL) {
2256 const uint32_t CacheLevel = getConstFromIntrinsic(Call->Arguments[3], MRI);
2257 auto MIB = MIRBuilder.buildInstr(SPIRV::OpCooperativeMatrixPrefetchINTEL)
2258 .addUse(Call->Arguments[0]) // pointer
2259 .addUse(Call->Arguments[1]) // rows
2260 .addUse(Call->Arguments[2]) // columns
2261 .addImm(CacheLevel) // cache level
2262 .addUse(Call->Arguments[4]); // memory layout
2263 if (ArgSz > 5)
2264 MIB.addUse(Call->Arguments[5]); // stride
2265 if (ArgSz > 6) {
2266 const uint32_t MemOp = getConstFromIntrinsic(Call->Arguments[6], MRI);
2267 MIB.addImm(MemOp); // memory operand
2268 }
2269 return true;
2270 }
2271 if (LiteralIdx > 0)
2272 ImmArgs.push_back(getConstFromIntrinsic(Call->Arguments[LiteralIdx], MRI));
2273 Register TypeReg = GR->getSPIRVTypeID(Call->ReturnType);
2274 if (Opcode == SPIRV::OpCooperativeMatrixLengthKHR) {
2275 SPIRVType *CoopMatrType = GR->getSPIRVTypeForVReg(Call->Arguments[0]);
2276 if (!CoopMatrType)
2277 report_fatal_error("Can't find a register's type definition");
2278 MIRBuilder.buildInstr(Opcode)
2279 .addDef(Call->ReturnRegister)
2280 .addUse(TypeReg)
2281 .addUse(CoopMatrType->getOperand(0).getReg());
2282 return true;
2283 }
2284 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
2285 IsSet ? TypeReg : Register(0), ImmArgs);
2286}
2287
2289 MachineIRBuilder &MIRBuilder,
2290 SPIRVGlobalRegistry *GR) {
2291 // Lookup the instruction opcode in the TableGen records.
2292 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2293 unsigned Opcode =
2294 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2295 const MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2296
2297 switch (Opcode) {
2298 case SPIRV::OpSpecConstant: {
2299 // Build the SpecID decoration.
2300 unsigned SpecId =
2301 static_cast<unsigned>(getIConstVal(Call->Arguments[0], MRI));
2302 buildOpDecorate(Call->ReturnRegister, MIRBuilder, SPIRV::Decoration::SpecId,
2303 {SpecId});
2304 // Determine the constant MI.
2305 Register ConstRegister = Call->Arguments[1];
2306 const MachineInstr *Const = getDefInstrMaybeConstant(ConstRegister, MRI);
2307 assert(Const &&
2308 (Const->getOpcode() == TargetOpcode::G_CONSTANT ||
2309 Const->getOpcode() == TargetOpcode::G_FCONSTANT) &&
2310 "Argument should be either an int or floating-point constant");
2311 // Determine the opcode and built the OpSpec MI.
2312 const MachineOperand &ConstOperand = Const->getOperand(1);
2313 if (Call->ReturnType->getOpcode() == SPIRV::OpTypeBool) {
2314 assert(ConstOperand.isCImm() && "Int constant operand is expected");
2315 Opcode = ConstOperand.getCImm()->getValue().getZExtValue()
2316 ? SPIRV::OpSpecConstantTrue
2317 : SPIRV::OpSpecConstantFalse;
2318 }
2319 auto MIB = MIRBuilder.buildInstr(Opcode)
2320 .addDef(Call->ReturnRegister)
2321 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
2322
2323 if (Call->ReturnType->getOpcode() != SPIRV::OpTypeBool) {
2324 if (Const->getOpcode() == TargetOpcode::G_CONSTANT)
2325 addNumImm(ConstOperand.getCImm()->getValue(), MIB);
2326 else
2327 addNumImm(ConstOperand.getFPImm()->getValueAPF().bitcastToAPInt(), MIB);
2328 }
2329 return true;
2330 }
2331 case SPIRV::OpSpecConstantComposite: {
2332 createContinuedInstructions(MIRBuilder, Opcode, 3,
2333 SPIRV::OpSpecConstantCompositeContinuedINTEL,
2334 Call->Arguments, Call->ReturnRegister,
2335 GR->getSPIRVTypeID(Call->ReturnType));
2336 return true;
2337 }
2338 default:
2339 return false;
2340 }
2341}
2342
2344 MachineIRBuilder &MIRBuilder,
2345 SPIRVGlobalRegistry *GR) {
2346 // Lookup the instruction opcode in the TableGen records.
2347 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2348 unsigned Opcode =
2349 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2350
2351 return buildExtendedBitOpsInst(Call, Opcode, MIRBuilder, GR);
2352}
2353
2355 MachineIRBuilder &MIRBuilder,
2356 SPIRVGlobalRegistry *GR) {
2357 // Lookup the instruction opcode in the TableGen records.
2358 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2359 unsigned Opcode =
2360 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2361
2362 return buildBindlessImageINTELInst(Call, Opcode, MIRBuilder, GR);
2363}
2364
2365static bool
2367 MachineIRBuilder &MIRBuilder,
2368 SPIRVGlobalRegistry *GR) {
2369 // Lookup the instruction opcode in the TableGen records.
2370 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2371 unsigned Opcode =
2372 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2373
2374 return buildTernaryBitwiseFunctionINTELInst(Call, Opcode, MIRBuilder, GR);
2375}
2376
2378 MachineIRBuilder &MIRBuilder,
2379 SPIRVGlobalRegistry *GR) {
2380 // Lookup the instruction opcode in the TableGen records.
2381 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2382 unsigned Opcode =
2383 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2384
2385 return build2DBlockIOINTELInst(Call, Opcode, MIRBuilder, GR);
2386}
2387
2389 MachineIRBuilder &MIRBuilder,
2390 SPIRVGlobalRegistry *GR) {
2391 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2392 unsigned Opcode =
2393 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2394
2395 unsigned Scope = SPIRV::Scope::Workgroup;
2396 if (Builtin->Name.contains("sub_group"))
2397 Scope = SPIRV::Scope::Subgroup;
2398
2399 return buildPipeInst(Call, Opcode, Scope, MIRBuilder, GR);
2400}
2401
2403 MachineIRBuilder &MIRBuilder,
2404 SPIRVGlobalRegistry *GR) {
2405 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2406 SPIRVType *PtrType = GR->getSPIRVTypeForVReg(Call->Arguments[0]);
2407 assert(PtrType->getOpcode() == SPIRV::OpTypePointer &&
2408 PtrType->getOperand(2).isReg());
2409 Register TypeReg = PtrType->getOperand(2).getReg();
2411 MachineFunction &MF = MIRBuilder.getMF();
2412 Register TmpReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
2413 GR->assignSPIRVTypeToVReg(StructType, TmpReg, MF);
2414 // Skip the first arg, it's the destination pointer. OpBuildNDRange takes
2415 // three other arguments, so pass zero constant on absence.
2416 unsigned NumArgs = Call->Arguments.size();
2417 assert(NumArgs >= 2);
2418 Register GlobalWorkSize = Call->Arguments[NumArgs < 4 ? 1 : 2];
2419 Register LocalWorkSize =
2420 NumArgs == 2 ? Register(0) : Call->Arguments[NumArgs < 4 ? 2 : 3];
2421 Register GlobalWorkOffset = NumArgs <= 3 ? Register(0) : Call->Arguments[1];
2422 if (NumArgs < 4) {
2423 Register Const;
2424 SPIRVType *SpvTy = GR->getSPIRVTypeForVReg(GlobalWorkSize);
2425 if (SpvTy->getOpcode() == SPIRV::OpTypePointer) {
2426 MachineInstr *DefInstr = MRI->getUniqueVRegDef(GlobalWorkSize);
2427 assert(DefInstr && isSpvIntrinsic(*DefInstr, Intrinsic::spv_gep) &&
2428 DefInstr->getOperand(3).isReg());
2429 Register GWSPtr = DefInstr->getOperand(3).getReg();
2430 // TODO: Maybe simplify generation of the type of the fields.
2431 unsigned Size = Call->Builtin->Name == "ndrange_3D" ? 3 : 2;
2432 unsigned BitWidth = GR->getPointerSize() == 64 ? 64 : 32;
2434 Type *FieldTy = ArrayType::get(BaseTy, Size);
2435 SPIRVType *SpvFieldTy = GR->getOrCreateSPIRVType(
2436 FieldTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, true);
2437 GlobalWorkSize = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
2438 GR->assignSPIRVTypeToVReg(SpvFieldTy, GlobalWorkSize, MF);
2439 MIRBuilder.buildInstr(SPIRV::OpLoad)
2440 .addDef(GlobalWorkSize)
2441 .addUse(GR->getSPIRVTypeID(SpvFieldTy))
2442 .addUse(GWSPtr);
2443 const SPIRVSubtarget &ST =
2444 cast<SPIRVSubtarget>(MIRBuilder.getMF().getSubtarget());
2445 Const = GR->getOrCreateConstIntArray(0, Size, *MIRBuilder.getInsertPt(),
2446 SpvFieldTy, *ST.getInstrInfo());
2447 } else {
2448 Const = GR->buildConstantInt(0, MIRBuilder, SpvTy, true);
2449 }
2450 if (!LocalWorkSize.isValid())
2451 LocalWorkSize = Const;
2452 if (!GlobalWorkOffset.isValid())
2453 GlobalWorkOffset = Const;
2454 }
2455 assert(LocalWorkSize.isValid() && GlobalWorkOffset.isValid());
2456 MIRBuilder.buildInstr(SPIRV::OpBuildNDRange)
2457 .addDef(TmpReg)
2458 .addUse(TypeReg)
2459 .addUse(GlobalWorkSize)
2460 .addUse(LocalWorkSize)
2461 .addUse(GlobalWorkOffset);
2462 return MIRBuilder.buildInstr(SPIRV::OpStore)
2463 .addUse(Call->Arguments[0])
2464 .addUse(TmpReg);
2465}
2466
2467// TODO: maybe move to the global register.
2468static SPIRVType *
2470 SPIRVGlobalRegistry *GR) {
2471 LLVMContext &Context = MIRBuilder.getMF().getFunction().getContext();
2472 unsigned SC1 = storageClassToAddressSpace(SPIRV::StorageClass::Generic);
2473 Type *PtrType = PointerType::get(Context, SC1);
2474 return GR->getOrCreateSPIRVType(PtrType, MIRBuilder,
2475 SPIRV::AccessQualifier::ReadWrite, true);
2476}
2477
2479 MachineIRBuilder &MIRBuilder,
2480 SPIRVGlobalRegistry *GR) {
2481 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2482 const DataLayout &DL = MIRBuilder.getDataLayout();
2483 bool IsSpirvOp = Call->isSpirvOp();
2484 bool HasEvents = Call->Builtin->Name.contains("events") || IsSpirvOp;
2485 const SPIRVType *Int32Ty = GR->getOrCreateSPIRVIntegerType(32, MIRBuilder);
2486
2487 // Make vararg instructions before OpEnqueueKernel.
2488 // Local sizes arguments: Sizes of block invoke arguments. Clang generates
2489 // local size operands as an array, so we need to unpack them.
2490 SmallVector<Register, 16> LocalSizes;
2491 if (Call->Builtin->Name.contains("_varargs") || IsSpirvOp) {
2492 const unsigned LocalSizeArrayIdx = HasEvents ? 9 : 6;
2493 Register GepReg = Call->Arguments[LocalSizeArrayIdx];
2494 MachineInstr *GepMI = MRI->getUniqueVRegDef(GepReg);
2495 assert(isSpvIntrinsic(*GepMI, Intrinsic::spv_gep) &&
2496 GepMI->getOperand(3).isReg());
2497 Register ArrayReg = GepMI->getOperand(3).getReg();
2498 MachineInstr *ArrayMI = MRI->getUniqueVRegDef(ArrayReg);
2499 const Type *LocalSizeTy = getMachineInstrType(ArrayMI);
2500 assert(LocalSizeTy && "Local size type is expected");
2501 const uint64_t LocalSizeNum =
2502 cast<ArrayType>(LocalSizeTy)->getNumElements();
2503 unsigned SC = storageClassToAddressSpace(SPIRV::StorageClass::Generic);
2504 const LLT LLType = LLT::pointer(SC, GR->getPointerSize());
2505 const SPIRVType *PointerSizeTy = GR->getOrCreateSPIRVPointerType(
2506 Int32Ty, MIRBuilder, SPIRV::StorageClass::Function);
2507 for (unsigned I = 0; I < LocalSizeNum; ++I) {
2508 Register Reg = MRI->createVirtualRegister(&SPIRV::pIDRegClass);
2509 MRI->setType(Reg, LLType);
2510 GR->assignSPIRVTypeToVReg(PointerSizeTy, Reg, MIRBuilder.getMF());
2511 auto GEPInst = MIRBuilder.buildIntrinsic(
2512 Intrinsic::spv_gep, ArrayRef<Register>{Reg}, true, false);
2513 GEPInst
2514 .addImm(GepMI->getOperand(2).getImm()) // In bound.
2515 .addUse(ArrayMI->getOperand(0).getReg()) // Alloca.
2516 .addUse(buildConstantIntReg32(0, MIRBuilder, GR)) // Indices.
2517 .addUse(buildConstantIntReg32(I, MIRBuilder, GR));
2518 LocalSizes.push_back(Reg);
2519 }
2520 }
2521
2522 // SPIRV OpEnqueueKernel instruction has 10+ arguments.
2523 auto MIB = MIRBuilder.buildInstr(SPIRV::OpEnqueueKernel)
2524 .addDef(Call->ReturnRegister)
2526
2527 // Copy all arguments before block invoke function pointer.
2528 const unsigned BlockFIdx = HasEvents ? 6 : 3;
2529 for (unsigned i = 0; i < BlockFIdx; i++)
2530 MIB.addUse(Call->Arguments[i]);
2531
2532 // If there are no event arguments in the original call, add dummy ones.
2533 if (!HasEvents) {
2534 MIB.addUse(buildConstantIntReg32(0, MIRBuilder, GR)); // Dummy num events.
2535 Register NullPtr = GR->getOrCreateConstNullPtr(
2536 MIRBuilder, getOrCreateSPIRVDeviceEventPointer(MIRBuilder, GR));
2537 MIB.addUse(NullPtr); // Dummy wait events.
2538 MIB.addUse(NullPtr); // Dummy ret event.
2539 }
2540
2541 MachineInstr *BlockMI = getBlockStructInstr(Call->Arguments[BlockFIdx], MRI);
2542 assert(BlockMI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
2543 // Invoke: Pointer to invoke function.
2544 MIB.addGlobalAddress(BlockMI->getOperand(1).getGlobal());
2545
2546 Register BlockLiteralReg = Call->Arguments[BlockFIdx + 1];
2547 // Param: Pointer to block literal.
2548 MIB.addUse(BlockLiteralReg);
2549
2550 Type *PType = const_cast<Type *>(getBlockStructType(BlockLiteralReg, MRI));
2551 // TODO: these numbers should be obtained from block literal structure.
2552 // Param Size: Size of block literal structure.
2553 MIB.addUse(buildConstantIntReg32(DL.getTypeStoreSize(PType), MIRBuilder, GR));
2554 // Param Aligment: Aligment of block literal structure.
2555 MIB.addUse(buildConstantIntReg32(DL.getPrefTypeAlign(PType).value(),
2556 MIRBuilder, GR));
2557
2558 for (unsigned i = 0; i < LocalSizes.size(); i++)
2559 MIB.addUse(LocalSizes[i]);
2560 return true;
2561}
2562
2564 MachineIRBuilder &MIRBuilder,
2565 SPIRVGlobalRegistry *GR) {
2566 // Lookup the instruction opcode in the TableGen records.
2567 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2568 unsigned Opcode =
2569 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2570
2571 switch (Opcode) {
2572 case SPIRV::OpRetainEvent:
2573 case SPIRV::OpReleaseEvent:
2574 return MIRBuilder.buildInstr(Opcode).addUse(Call->Arguments[0]);
2575 case SPIRV::OpCreateUserEvent:
2576 case SPIRV::OpGetDefaultQueue:
2577 return MIRBuilder.buildInstr(Opcode)
2578 .addDef(Call->ReturnRegister)
2579 .addUse(GR->getSPIRVTypeID(Call->ReturnType));
2580 case SPIRV::OpIsValidEvent:
2581 return MIRBuilder.buildInstr(Opcode)
2582 .addDef(Call->ReturnRegister)
2583 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2584 .addUse(Call->Arguments[0]);
2585 case SPIRV::OpSetUserEventStatus:
2586 return MIRBuilder.buildInstr(Opcode)
2587 .addUse(Call->Arguments[0])
2588 .addUse(Call->Arguments[1]);
2589 case SPIRV::OpCaptureEventProfilingInfo:
2590 return MIRBuilder.buildInstr(Opcode)
2591 .addUse(Call->Arguments[0])
2592 .addUse(Call->Arguments[1])
2593 .addUse(Call->Arguments[2]);
2594 case SPIRV::OpBuildNDRange:
2595 return buildNDRange(Call, MIRBuilder, GR);
2596 case SPIRV::OpEnqueueKernel:
2597 return buildEnqueueKernel(Call, MIRBuilder, GR);
2598 default:
2599 return false;
2600 }
2601}
2602
2604 MachineIRBuilder &MIRBuilder,
2605 SPIRVGlobalRegistry *GR) {
2606 // Lookup the instruction opcode in the TableGen records.
2607 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2608 unsigned Opcode =
2609 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2610
2611 bool IsSet = Opcode == SPIRV::OpGroupAsyncCopy;
2612 Register TypeReg = GR->getSPIRVTypeID(Call->ReturnType);
2613 if (Call->isSpirvOp())
2614 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
2615 IsSet ? TypeReg : Register(0));
2616
2617 auto Scope = buildConstantIntReg32(SPIRV::Scope::Workgroup, MIRBuilder, GR);
2618
2619 switch (Opcode) {
2620 case SPIRV::OpGroupAsyncCopy: {
2621 SPIRVType *NewType =
2622 Call->ReturnType->getOpcode() == SPIRV::OpTypeEvent
2623 ? nullptr
2624 : GR->getOrCreateSPIRVTypeByName("spirv.Event", MIRBuilder, true);
2625 Register TypeReg = GR->getSPIRVTypeID(NewType ? NewType : Call->ReturnType);
2626 unsigned NumArgs = Call->Arguments.size();
2627 Register EventReg = Call->Arguments[NumArgs - 1];
2628 bool Res = MIRBuilder.buildInstr(Opcode)
2629 .addDef(Call->ReturnRegister)
2630 .addUse(TypeReg)
2631 .addUse(Scope)
2632 .addUse(Call->Arguments[0])
2633 .addUse(Call->Arguments[1])
2634 .addUse(Call->Arguments[2])
2635 .addUse(Call->Arguments.size() > 4
2636 ? Call->Arguments[3]
2637 : buildConstantIntReg32(1, MIRBuilder, GR))
2638 .addUse(EventReg);
2639 if (NewType != nullptr)
2640 insertAssignInstr(Call->ReturnRegister, nullptr, NewType, GR, MIRBuilder,
2641 MIRBuilder.getMF().getRegInfo());
2642 return Res;
2643 }
2644 case SPIRV::OpGroupWaitEvents:
2645 return MIRBuilder.buildInstr(Opcode)
2646 .addUse(Scope)
2647 .addUse(Call->Arguments[0])
2648 .addUse(Call->Arguments[1]);
2649 default:
2650 return false;
2651 }
2652}
2653
2654static bool generateConvertInst(const StringRef DemangledCall,
2656 MachineIRBuilder &MIRBuilder,
2657 SPIRVGlobalRegistry *GR) {
2658 // Lookup the conversion builtin in the TableGen records.
2659 const SPIRV::ConvertBuiltin *Builtin =
2660 SPIRV::lookupConvertBuiltin(Call->Builtin->Name, Call->Builtin->Set);
2661
2662 if (!Builtin && Call->isSpirvOp()) {
2663 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2664 unsigned Opcode =
2665 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2666 return buildOpFromWrapper(MIRBuilder, Opcode, Call,
2667 GR->getSPIRVTypeID(Call->ReturnType));
2668 }
2669
2670 assert(Builtin && "Conversion builtin not found.");
2671 if (Builtin->IsSaturated)
2672 buildOpDecorate(Call->ReturnRegister, MIRBuilder,
2673 SPIRV::Decoration::SaturatedConversion, {});
2674 if (Builtin->IsRounded)
2675 buildOpDecorate(Call->ReturnRegister, MIRBuilder,
2676 SPIRV::Decoration::FPRoundingMode,
2677 {(unsigned)Builtin->RoundingMode});
2678
2679 std::string NeedExtMsg; // no errors if empty
2680 bool IsRightComponentsNumber = true; // check if input/output accepts vectors
2681 unsigned Opcode = SPIRV::OpNop;
2682 if (GR->isScalarOrVectorOfType(Call->Arguments[0], SPIRV::OpTypeInt)) {
2683 // Int -> ...
2684 if (GR->isScalarOrVectorOfType(Call->ReturnRegister, SPIRV::OpTypeInt)) {
2685 // Int -> Int
2686 if (Builtin->IsSaturated)
2687 Opcode = Builtin->IsDestinationSigned ? SPIRV::OpSatConvertUToS
2688 : SPIRV::OpSatConvertSToU;
2689 else
2690 Opcode = Builtin->IsDestinationSigned ? SPIRV::OpUConvert
2691 : SPIRV::OpSConvert;
2692 } else if (GR->isScalarOrVectorOfType(Call->ReturnRegister,
2693 SPIRV::OpTypeFloat)) {
2694 // Int -> Float
2695 if (Builtin->IsBfloat16) {
2696 const auto *ST = static_cast<const SPIRVSubtarget *>(
2697 &MIRBuilder.getMF().getSubtarget());
2698 if (!ST->canUseExtension(
2699 SPIRV::Extension::SPV_INTEL_bfloat16_conversion))
2700 NeedExtMsg = "SPV_INTEL_bfloat16_conversion";
2701 IsRightComponentsNumber =
2702 GR->getScalarOrVectorComponentCount(Call->Arguments[0]) ==
2703 GR->getScalarOrVectorComponentCount(Call->ReturnRegister);
2704 Opcode = SPIRV::OpConvertBF16ToFINTEL;
2705 } else {
2706 bool IsSourceSigned =
2707 DemangledCall[DemangledCall.find_first_of('(') + 1] != 'u';
2708 Opcode = IsSourceSigned ? SPIRV::OpConvertSToF : SPIRV::OpConvertUToF;
2709 }
2710 }
2711 } else if (GR->isScalarOrVectorOfType(Call->Arguments[0],
2712 SPIRV::OpTypeFloat)) {
2713 // Float -> ...
2714 if (GR->isScalarOrVectorOfType(Call->ReturnRegister, SPIRV::OpTypeInt)) {
2715 // Float -> Int
2716 if (Builtin->IsBfloat16) {
2717 const auto *ST = static_cast<const SPIRVSubtarget *>(
2718 &MIRBuilder.getMF().getSubtarget());
2719 if (!ST->canUseExtension(
2720 SPIRV::Extension::SPV_INTEL_bfloat16_conversion))
2721 NeedExtMsg = "SPV_INTEL_bfloat16_conversion";
2722 IsRightComponentsNumber =
2723 GR->getScalarOrVectorComponentCount(Call->Arguments[0]) ==
2724 GR->getScalarOrVectorComponentCount(Call->ReturnRegister);
2725 Opcode = SPIRV::OpConvertFToBF16INTEL;
2726 } else {
2727 Opcode = Builtin->IsDestinationSigned ? SPIRV::OpConvertFToS
2728 : SPIRV::OpConvertFToU;
2729 }
2730 } else if (GR->isScalarOrVectorOfType(Call->ReturnRegister,
2731 SPIRV::OpTypeFloat)) {
2732 if (Builtin->IsTF32) {
2733 const auto *ST = static_cast<const SPIRVSubtarget *>(
2734 &MIRBuilder.getMF().getSubtarget());
2735 if (!ST->canUseExtension(
2736 SPIRV::Extension::SPV_INTEL_tensor_float32_conversion))
2737 NeedExtMsg = "SPV_INTEL_tensor_float32_conversion";
2738 IsRightComponentsNumber =
2739 GR->getScalarOrVectorComponentCount(Call->Arguments[0]) ==
2740 GR->getScalarOrVectorComponentCount(Call->ReturnRegister);
2741 Opcode = SPIRV::OpRoundFToTF32INTEL;
2742 } else {
2743 // Float -> Float
2744 Opcode = SPIRV::OpFConvert;
2745 }
2746 }
2747 }
2748
2749 if (!NeedExtMsg.empty()) {
2750 std::string DiagMsg = std::string(Builtin->Name) +
2751 ": the builtin requires the following SPIR-V "
2752 "extension: " +
2753 NeedExtMsg;
2754 report_fatal_error(DiagMsg.c_str(), false);
2755 }
2756 if (!IsRightComponentsNumber) {
2757 std::string DiagMsg =
2758 std::string(Builtin->Name) +
2759 ": result and argument must have the same number of components";
2760 report_fatal_error(DiagMsg.c_str(), false);
2761 }
2762 assert(Opcode != SPIRV::OpNop &&
2763 "Conversion between the types not implemented!");
2764
2765 MIRBuilder.buildInstr(Opcode)
2766 .addDef(Call->ReturnRegister)
2767 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2768 .addUse(Call->Arguments[0]);
2769 return true;
2770}
2771
2773 MachineIRBuilder &MIRBuilder,
2774 SPIRVGlobalRegistry *GR) {
2775 // Lookup the vector load/store builtin in the TableGen records.
2776 const SPIRV::VectorLoadStoreBuiltin *Builtin =
2777 SPIRV::lookupVectorLoadStoreBuiltin(Call->Builtin->Name,
2778 Call->Builtin->Set);
2779 // Build extended instruction.
2780 auto MIB =
2781 MIRBuilder.buildInstr(SPIRV::OpExtInst)
2782 .addDef(Call->ReturnRegister)
2783 .addUse(GR->getSPIRVTypeID(Call->ReturnType))
2784 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
2785 .addImm(Builtin->Number);
2786 for (auto Argument : Call->Arguments)
2787 MIB.addUse(Argument);
2788 if (Builtin->Name.contains("load") && Builtin->ElementCount > 1)
2789 MIB.addImm(Builtin->ElementCount);
2790
2791 // Rounding mode should be passed as a last argument in the MI for builtins
2792 // like "vstorea_halfn_r".
2793 if (Builtin->IsRounded)
2794 MIB.addImm(static_cast<uint32_t>(Builtin->RoundingMode));
2795 return true;
2796}
2797
2799 MachineIRBuilder &MIRBuilder,
2800 SPIRVGlobalRegistry *GR) {
2801 // Lookup the instruction opcode in the TableGen records.
2802 const SPIRV::DemangledBuiltin *Builtin = Call->Builtin;
2803 unsigned Opcode =
2804 SPIRV::lookupNativeBuiltin(Builtin->Name, Builtin->Set)->Opcode;
2805 bool IsLoad = Opcode == SPIRV::OpLoad;
2806 // Build the instruction.
2807 auto MIB = MIRBuilder.buildInstr(Opcode);
2808 if (IsLoad) {
2809 MIB.addDef(Call->ReturnRegister);
2810 MIB.addUse(GR->getSPIRVTypeID(Call->ReturnType));
2811 }
2812 // Add a pointer to the value to load/store.
2813 MIB.addUse(Call->Arguments[0]);
2814 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2815 // Add a value to store.
2816 if (!IsLoad)
2817 MIB.addUse(Call->Arguments[1]);
2818 // Add optional memory attributes and an alignment.
2819 unsigned NumArgs = Call->Arguments.size();
2820 if ((IsLoad && NumArgs >= 2) || NumArgs >= 3)
2821 MIB.addImm(getConstFromIntrinsic(Call->Arguments[IsLoad ? 1 : 2], MRI));
2822 if ((IsLoad && NumArgs >= 3) || NumArgs >= 4)
2823 MIB.addImm(getConstFromIntrinsic(Call->Arguments[IsLoad ? 2 : 3], MRI));
2824 return true;
2825}
2826
2827namespace SPIRV {
2828// Try to find a builtin function attributes by a demangled function name and
2829// return a tuple <builtin group, op code, ext instruction number>, or a special
2830// tuple value <-1, 0, 0> if the builtin function is not found.
2831// Not all builtin functions are supported, only those with a ready-to-use op
2832// code or instruction number defined in TableGen.
2833// TODO: consider a major rework of mapping demangled calls into a builtin
2834// functions to unify search and decrease number of individual cases.
2835std::tuple<int, unsigned, unsigned>
2836mapBuiltinToOpcode(const StringRef DemangledCall,
2837 SPIRV::InstructionSet::InstructionSet Set) {
2838 Register Reg;
2840 std::unique_ptr<const IncomingCall> Call =
2841 lookupBuiltin(DemangledCall, Set, Reg, nullptr, Args);
2842 if (!Call)
2843 return std::make_tuple(-1, 0, 0);
2844
2845 switch (Call->Builtin->Group) {
2846 case SPIRV::Relational:
2847 case SPIRV::Atomic:
2848 case SPIRV::Barrier:
2849 case SPIRV::CastToPtr:
2850 case SPIRV::ImageMiscQuery:
2851 case SPIRV::SpecConstant:
2852 case SPIRV::Enqueue:
2853 case SPIRV::AsyncCopy:
2854 case SPIRV::LoadStore:
2855 case SPIRV::CoopMatr:
2856 if (const auto *R =
2857 SPIRV::lookupNativeBuiltin(Call->Builtin->Name, Call->Builtin->Set))
2858 return std::make_tuple(Call->Builtin->Group, R->Opcode, 0);
2859 break;
2860 case SPIRV::Extended:
2861 if (const auto *R = SPIRV::lookupExtendedBuiltin(Call->Builtin->Name,
2862 Call->Builtin->Set))
2863 return std::make_tuple(Call->Builtin->Group, 0, R->Number);
2864 break;
2865 case SPIRV::VectorLoadStore:
2866 if (const auto *R = SPIRV::lookupVectorLoadStoreBuiltin(Call->Builtin->Name,
2867 Call->Builtin->Set))
2868 return std::make_tuple(SPIRV::Extended, 0, R->Number);
2869 break;
2870 case SPIRV::Group:
2871 if (const auto *R = SPIRV::lookupGroupBuiltin(Call->Builtin->Name))
2872 return std::make_tuple(Call->Builtin->Group, R->Opcode, 0);
2873 break;
2874 case SPIRV::AtomicFloating:
2875 if (const auto *R = SPIRV::lookupAtomicFloatingBuiltin(Call->Builtin->Name))
2876 return std::make_tuple(Call->Builtin->Group, R->Opcode, 0);
2877 break;
2878 case SPIRV::IntelSubgroups:
2879 if (const auto *R = SPIRV::lookupIntelSubgroupsBuiltin(Call->Builtin->Name))
2880 return std::make_tuple(Call->Builtin->Group, R->Opcode, 0);
2881 break;
2882 case SPIRV::GroupUniform:
2883 if (const auto *R = SPIRV::lookupGroupUniformBuiltin(Call->Builtin->Name))
2884 return std::make_tuple(Call->Builtin->Group, R->Opcode, 0);
2885 break;
2886 case SPIRV::IntegerDot:
2887 if (const auto *R =
2888 SPIRV::lookupIntegerDotProductBuiltin(Call->Builtin->Name))
2889 return std::make_tuple(Call->Builtin->Group, R->Opcode, 0);
2890 break;
2891 case SPIRV::WriteImage:
2892 return std::make_tuple(Call->Builtin->Group, SPIRV::OpImageWrite, 0);
2893 case SPIRV::Select:
2894 return std::make_tuple(Call->Builtin->Group, TargetOpcode::G_SELECT, 0);
2895 case SPIRV::Construct:
2896 return std::make_tuple(Call->Builtin->Group, SPIRV::OpCompositeConstruct,
2897 0);
2898 case SPIRV::KernelClock:
2899 return std::make_tuple(Call->Builtin->Group, SPIRV::OpReadClockKHR, 0);
2900 default:
2901 return std::make_tuple(-1, 0, 0);
2902 }
2903 return std::make_tuple(-1, 0, 0);
2904}
2905
2906std::optional<bool> lowerBuiltin(const StringRef DemangledCall,
2907 SPIRV::InstructionSet::InstructionSet Set,
2908 MachineIRBuilder &MIRBuilder,
2909 const Register OrigRet, const Type *OrigRetTy,
2910 const SmallVectorImpl<Register> &Args,
2911 SPIRVGlobalRegistry *GR) {
2912 LLVM_DEBUG(dbgs() << "Lowering builtin call: " << DemangledCall << "\n");
2913
2914 // Lookup the builtin in the TableGen records.
2915 SPIRVType *SpvType = GR->getSPIRVTypeForVReg(OrigRet);
2916 assert(SpvType && "Inconsistent return register: expected valid type info");
2917 std::unique_ptr<const IncomingCall> Call =
2918 lookupBuiltin(DemangledCall, Set, OrigRet, SpvType, Args);
2919
2920 if (!Call) {
2921 LLVM_DEBUG(dbgs() << "Builtin record was not found!\n");
2922 return std::nullopt;
2923 }
2924
2925 // TODO: check if the provided args meet the builtin requirments.
2926 assert(Args.size() >= Call->Builtin->MinNumArgs &&
2927 "Too few arguments to generate the builtin");
2928 if (Call->Builtin->MaxNumArgs && Args.size() > Call->Builtin->MaxNumArgs)
2929 LLVM_DEBUG(dbgs() << "More arguments provided than required!\n");
2930
2931 // Match the builtin with implementation based on the grouping.
2932 switch (Call->Builtin->Group) {
2933 case SPIRV::Extended:
2934 return generateExtInst(Call.get(), MIRBuilder, GR);
2935 case SPIRV::Relational:
2936 return generateRelationalInst(Call.get(), MIRBuilder, GR);
2937 case SPIRV::Group:
2938 return generateGroupInst(Call.get(), MIRBuilder, GR);
2939 case SPIRV::Variable:
2940 return generateBuiltinVar(Call.get(), MIRBuilder, GR);
2941 case SPIRV::Atomic:
2942 return generateAtomicInst(Call.get(), MIRBuilder, GR);
2943 case SPIRV::AtomicFloating:
2944 return generateAtomicFloatingInst(Call.get(), MIRBuilder, GR);
2945 case SPIRV::Barrier:
2946 return generateBarrierInst(Call.get(), MIRBuilder, GR);
2947 case SPIRV::CastToPtr:
2948 return generateCastToPtrInst(Call.get(), MIRBuilder, GR);
2949 case SPIRV::Dot:
2950 case SPIRV::IntegerDot:
2951 return generateDotOrFMulInst(DemangledCall, Call.get(), MIRBuilder, GR);
2952 case SPIRV::Wave:
2953 return generateWaveInst(Call.get(), MIRBuilder, GR);
2954 case SPIRV::ICarryBorrow:
2955 return generateICarryBorrowInst(Call.get(), MIRBuilder, GR);
2956 case SPIRV::GetQuery:
2957 return generateGetQueryInst(Call.get(), MIRBuilder, GR);
2958 case SPIRV::ImageSizeQuery:
2959 return generateImageSizeQueryInst(Call.get(), MIRBuilder, GR);
2960 case SPIRV::ImageMiscQuery:
2961 return generateImageMiscQueryInst(Call.get(), MIRBuilder, GR);
2962 case SPIRV::ReadImage:
2963 return generateReadImageInst(DemangledCall, Call.get(), MIRBuilder, GR);
2964 case SPIRV::WriteImage:
2965 return generateWriteImageInst(Call.get(), MIRBuilder, GR);
2966 case SPIRV::SampleImage:
2967 return generateSampleImageInst(DemangledCall, Call.get(), MIRBuilder, GR);
2968 case SPIRV::Select:
2969 return generateSelectInst(Call.get(), MIRBuilder);
2970 case SPIRV::Construct:
2971 return generateConstructInst(Call.get(), MIRBuilder, GR);
2972 case SPIRV::SpecConstant:
2973 return generateSpecConstantInst(Call.get(), MIRBuilder, GR);
2974 case SPIRV::Enqueue:
2975 return generateEnqueueInst(Call.get(), MIRBuilder, GR);
2976 case SPIRV::AsyncCopy:
2977 return generateAsyncCopy(Call.get(), MIRBuilder, GR);
2978 case SPIRV::Convert:
2979 return generateConvertInst(DemangledCall, Call.get(), MIRBuilder, GR);
2980 case SPIRV::VectorLoadStore:
2981 return generateVectorLoadStoreInst(Call.get(), MIRBuilder, GR);
2982 case SPIRV::LoadStore:
2983 return generateLoadStoreInst(Call.get(), MIRBuilder, GR);
2984 case SPIRV::IntelSubgroups:
2985 return generateIntelSubgroupsInst(Call.get(), MIRBuilder, GR);
2986 case SPIRV::GroupUniform:
2987 return generateGroupUniformInst(Call.get(), MIRBuilder, GR);
2988 case SPIRV::KernelClock:
2989 return generateKernelClockInst(Call.get(), MIRBuilder, GR);
2990 case SPIRV::CoopMatr:
2991 return generateCoopMatrInst(Call.get(), MIRBuilder, GR);
2992 case SPIRV::ExtendedBitOps:
2993 return generateExtendedBitOpsInst(Call.get(), MIRBuilder, GR);
2994 case SPIRV::BindlessINTEL:
2995 return generateBindlessImageINTELInst(Call.get(), MIRBuilder, GR);
2996 case SPIRV::TernaryBitwiseINTEL:
2997 return generateTernaryBitwiseFunctionINTELInst(Call.get(), MIRBuilder, GR);
2998 case SPIRV::Block2DLoadStore:
2999 return generate2DBlockIOINTELInst(Call.get(), MIRBuilder, GR);
3000 case SPIRV::Pipe:
3001 return generatePipeInst(Call.get(), MIRBuilder, GR);
3002 }
3003 return false;
3004}
3005
3007 // Parse strings representing OpenCL builtin types.
3008 if (hasBuiltinTypePrefix(TypeStr)) {
3009 // OpenCL builtin types in demangled call strings have the following format:
3010 // e.g. ocl_image2d_ro
3011 [[maybe_unused]] bool IsOCLBuiltinType = TypeStr.consume_front("ocl_");
3012 assert(IsOCLBuiltinType && "Invalid OpenCL builtin prefix");
3013
3014 // Check if this is pointer to a builtin type and not just pointer
3015 // representing a builtin type. In case it is a pointer to builtin type,
3016 // this will require additional handling in the method calling
3017 // parseBuiltinCallArgumentBaseType(...) as this function only retrieves the
3018 // base types.
3019 if (TypeStr.ends_with("*"))
3020 TypeStr = TypeStr.slice(0, TypeStr.find_first_of(" *"));
3021
3022 return parseBuiltinTypeNameToTargetExtType("opencl." + TypeStr.str() + "_t",
3023 Ctx);
3024 }
3025
3026 // Parse type name in either "typeN" or "type vector[N]" format, where
3027 // N is the number of elements of the vector.
3028 Type *BaseType;
3029 unsigned VecElts = 0;
3030
3031 BaseType = parseBasicTypeName(TypeStr, Ctx);
3032 if (!BaseType)
3033 // Unable to recognize SPIRV type name.
3034 return nullptr;
3035
3036 // Handle "typeN*" or "type vector[N]*".
3037 TypeStr.consume_back("*");
3038
3039 if (TypeStr.consume_front(" vector["))
3040 TypeStr = TypeStr.substr(0, TypeStr.find(']'));
3041
3042 TypeStr.getAsInteger(10, VecElts);
3043 if (VecElts > 0)
3045 BaseType->isVoidTy() ? Type::getInt8Ty(Ctx) : BaseType, VecElts, false);
3046
3047 return BaseType;
3048}
3049
3051 const StringRef DemangledCall, LLVMContext &Ctx) {
3052 auto Pos1 = DemangledCall.find('(');
3053 if (Pos1 == StringRef::npos)
3054 return false;
3055 auto Pos2 = DemangledCall.find(')');
3056 if (Pos2 == StringRef::npos || Pos1 > Pos2)
3057 return false;
3058 DemangledCall.slice(Pos1 + 1, Pos2)
3059 .split(BuiltinArgsTypeStrs, ',', -1, false);
3060 return true;
3061}
3062
3064 unsigned ArgIdx, LLVMContext &Ctx) {
3065 SmallVector<StringRef, 10> BuiltinArgsTypeStrs;
3066 parseBuiltinTypeStr(BuiltinArgsTypeStrs, DemangledCall, Ctx);
3067 if (ArgIdx >= BuiltinArgsTypeStrs.size())
3068 return nullptr;
3069 StringRef TypeStr = BuiltinArgsTypeStrs[ArgIdx].trim();
3070 return parseBuiltinCallArgumentType(TypeStr, Ctx);
3071}
3072
3077
3078#define GET_BuiltinTypes_DECL
3079#define GET_BuiltinTypes_IMPL
3080
3085
3086#define GET_OpenCLTypes_DECL
3087#define GET_OpenCLTypes_IMPL
3088
3089#include "SPIRVGenTables.inc"
3090} // namespace SPIRV
3091
3092//===----------------------------------------------------------------------===//
3093// Misc functions for parsing builtin types.
3094//===----------------------------------------------------------------------===//
3095
3096static Type *parseTypeString(const StringRef Name, LLVMContext &Context) {
3097 if (Name.starts_with("void"))
3098 return Type::getVoidTy(Context);
3099 else if (Name.starts_with("int") || Name.starts_with("uint"))
3100 return Type::getInt32Ty(Context);
3101 else if (Name.starts_with("float"))
3102 return Type::getFloatTy(Context);
3103 else if (Name.starts_with("half"))
3104 return Type::getHalfTy(Context);
3105 report_fatal_error("Unable to recognize type!");
3106}
3107
3108//===----------------------------------------------------------------------===//
3109// Implementation functions for builtin types.
3110//===----------------------------------------------------------------------===//
3111
3113 const SPIRV::BuiltinType *TypeRecord,
3114 MachineIRBuilder &MIRBuilder,
3115 SPIRVGlobalRegistry *GR) {
3116 unsigned Opcode = TypeRecord->Opcode;
3117 // Create or get an existing type from GlobalRegistry.
3118 return GR->getOrCreateOpTypeByOpcode(ExtensionType, MIRBuilder, Opcode);
3119}
3120
3122 SPIRVGlobalRegistry *GR) {
3123 // Create or get an existing type from GlobalRegistry.
3124 return GR->getOrCreateOpTypeSampler(MIRBuilder);
3125}
3126
3127static SPIRVType *getPipeType(const TargetExtType *ExtensionType,
3128 MachineIRBuilder &MIRBuilder,
3129 SPIRVGlobalRegistry *GR) {
3130 assert(ExtensionType->getNumIntParameters() == 1 &&
3131 "Invalid number of parameters for SPIR-V pipe builtin!");
3132 // Create or get an existing type from GlobalRegistry.
3133 return GR->getOrCreateOpTypePipe(MIRBuilder,
3134 SPIRV::AccessQualifier::AccessQualifier(
3135 ExtensionType->getIntParameter(0)));
3136}
3137
3138static SPIRVType *getCoopMatrType(const TargetExtType *ExtensionType,
3139 MachineIRBuilder &MIRBuilder,
3140 SPIRVGlobalRegistry *GR) {
3141 assert(ExtensionType->getNumIntParameters() == 4 &&
3142 "Invalid number of parameters for SPIR-V coop matrices builtin!");
3143 assert(ExtensionType->getNumTypeParameters() == 1 &&
3144 "SPIR-V coop matrices builtin type must have a type parameter!");
3145 const SPIRVType *ElemType =
3146 GR->getOrCreateSPIRVType(ExtensionType->getTypeParameter(0), MIRBuilder,
3147 SPIRV::AccessQualifier::ReadWrite, true);
3148 // Create or get an existing type from GlobalRegistry.
3149 return GR->getOrCreateOpTypeCoopMatr(
3150 MIRBuilder, ExtensionType, ElemType, ExtensionType->getIntParameter(0),
3151 ExtensionType->getIntParameter(1), ExtensionType->getIntParameter(2),
3152 ExtensionType->getIntParameter(3), true);
3153}
3154
3156 MachineIRBuilder &MIRBuilder,
3157 SPIRVGlobalRegistry *GR) {
3158 SPIRVType *OpaqueImageType = GR->getImageType(
3159 OpaqueType, SPIRV::AccessQualifier::ReadOnly, MIRBuilder);
3160 // Create or get an existing type from GlobalRegistry.
3161 return GR->getOrCreateOpTypeSampledImage(OpaqueImageType, MIRBuilder);
3162}
3163
3164static SPIRVType *getInlineSpirvType(const TargetExtType *ExtensionType,
3165 MachineIRBuilder &MIRBuilder,
3166 SPIRVGlobalRegistry *GR) {
3167 assert(ExtensionType->getNumIntParameters() == 3 &&
3168 "Inline SPIR-V type builtin takes an opcode, size, and alignment "
3169 "parameter");
3170 auto Opcode = ExtensionType->getIntParameter(0);
3171
3173 for (Type *Param : ExtensionType->type_params()) {
3174 if (const TargetExtType *ParamEType = dyn_cast<TargetExtType>(Param)) {
3175 if (ParamEType->getName() == "spirv.IntegralConstant") {
3176 assert(ParamEType->getNumTypeParameters() == 1 &&
3177 "Inline SPIR-V integral constant builtin must have a type "
3178 "parameter");
3179 assert(ParamEType->getNumIntParameters() == 1 &&
3180 "Inline SPIR-V integral constant builtin must have a "
3181 "value parameter");
3182
3183 auto OperandValue = ParamEType->getIntParameter(0);
3184 auto *OperandType = ParamEType->getTypeParameter(0);
3185
3186 const SPIRVType *OperandSPIRVType = GR->getOrCreateSPIRVType(
3187 OperandType, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, true);
3188
3190 OperandValue, MIRBuilder, OperandSPIRVType, true)));
3191 continue;
3192 } else if (ParamEType->getName() == "spirv.Literal") {
3193 assert(ParamEType->getNumTypeParameters() == 0 &&
3194 "Inline SPIR-V literal builtin does not take type "
3195 "parameters");
3196 assert(ParamEType->getNumIntParameters() == 1 &&
3197 "Inline SPIR-V literal builtin must have an integer "
3198 "parameter");
3199
3200 auto OperandValue = ParamEType->getIntParameter(0);
3201
3202 Operands.push_back(MCOperand::createImm(OperandValue));
3203 continue;
3204 }
3205 }
3206 const SPIRVType *TypeOperand = GR->getOrCreateSPIRVType(
3207 Param, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, true);
3208 Operands.push_back(MCOperand::createReg(GR->getSPIRVTypeID(TypeOperand)));
3209 }
3210
3211 return GR->getOrCreateUnknownType(ExtensionType, MIRBuilder, Opcode,
3212 Operands);
3213}
3214
3215static SPIRVType *getVulkanBufferType(const TargetExtType *ExtensionType,
3216 MachineIRBuilder &MIRBuilder,
3217 SPIRVGlobalRegistry *GR) {
3218 assert(ExtensionType->getNumTypeParameters() == 1 &&
3219 "Vulkan buffers have exactly one type for the type of the buffer.");
3220 assert(ExtensionType->getNumIntParameters() == 2 &&
3221 "Vulkan buffer have 2 integer parameters: storage class and is "
3222 "writable.");
3223
3224 auto *T = ExtensionType->getTypeParameter(0);
3225 auto SC = static_cast<SPIRV::StorageClass::StorageClass>(
3226 ExtensionType->getIntParameter(0));
3227 bool IsWritable = ExtensionType->getIntParameter(1);
3228 return GR->getOrCreateVulkanBufferType(MIRBuilder, T, SC, IsWritable);
3229}
3230
3231static SPIRVType *getLayoutType(const TargetExtType *ExtensionType,
3232 MachineIRBuilder &MIRBuilder,
3233 SPIRVGlobalRegistry *GR) {
3234 return GR->getOrCreateLayoutType(MIRBuilder, ExtensionType);
3235}
3236
3237namespace SPIRV {
3239 LLVMContext &Context) {
3240 StringRef NameWithParameters = TypeName;
3241
3242 // Pointers-to-opaque-structs representing OpenCL types are first translated
3243 // to equivalent SPIR-V types. OpenCL builtin type names should have the
3244 // following format: e.g. %opencl.event_t
3245 if (NameWithParameters.starts_with("opencl.")) {
3246 const SPIRV::OpenCLType *OCLTypeRecord =
3247 SPIRV::lookupOpenCLType(NameWithParameters);
3248 if (!OCLTypeRecord)
3249 report_fatal_error("Missing TableGen record for OpenCL type: " +
3250 NameWithParameters);
3251 NameWithParameters = OCLTypeRecord->SpirvTypeLiteral;
3252 // Continue with the SPIR-V builtin type...
3253 }
3254
3255 // Names of the opaque structs representing a SPIR-V builtins without
3256 // parameters should have the following format: e.g. %spirv.Event
3257 assert(NameWithParameters.starts_with("spirv.") &&
3258 "Unknown builtin opaque type!");
3259
3260 // Parameterized SPIR-V builtins names follow this format:
3261 // e.g. %spirv.Image._void_1_0_0_0_0_0_0, %spirv.Pipe._0
3262 if (!NameWithParameters.contains('_'))
3263 return TargetExtType::get(Context, NameWithParameters);
3264
3265 SmallVector<StringRef> Parameters;
3266 unsigned BaseNameLength = NameWithParameters.find('_') - 1;
3267 SplitString(NameWithParameters.substr(BaseNameLength + 1), Parameters, "_");
3268
3269 SmallVector<Type *, 1> TypeParameters;
3270 bool HasTypeParameter = !isDigit(Parameters[0][0]);
3271 if (HasTypeParameter)
3272 TypeParameters.push_back(parseTypeString(Parameters[0], Context));
3273 SmallVector<unsigned> IntParameters;
3274 for (unsigned i = HasTypeParameter ? 1 : 0; i < Parameters.size(); i++) {
3275 unsigned IntParameter = 0;
3276 bool ValidLiteral = !Parameters[i].getAsInteger(10, IntParameter);
3277 (void)ValidLiteral;
3278 assert(ValidLiteral &&
3279 "Invalid format of SPIR-V builtin parameter literal!");
3280 IntParameters.push_back(IntParameter);
3281 }
3282 return TargetExtType::get(Context,
3283 NameWithParameters.substr(0, BaseNameLength),
3284 TypeParameters, IntParameters);
3285}
3286
3288 SPIRV::AccessQualifier::AccessQualifier AccessQual,
3289 MachineIRBuilder &MIRBuilder,
3290 SPIRVGlobalRegistry *GR) {
3291 // In LLVM IR, SPIR-V and OpenCL builtin types are represented as either
3292 // target(...) target extension types or pointers-to-opaque-structs. The
3293 // approach relying on structs is deprecated and works only in the non-opaque
3294 // pointer mode (-opaque-pointers=0).
3295 // In order to maintain compatibility with LLVM IR generated by older versions
3296 // of Clang and LLVM/SPIR-V Translator, the pointers-to-opaque-structs are
3297 // "translated" to target extension types. This translation is temporary and
3298 // will be removed in the future release of LLVM.
3300 if (!BuiltinType)
3302 OpaqueType->getStructName().str(), MIRBuilder.getContext());
3303
3304 unsigned NumStartingVRegs = MIRBuilder.getMRI()->getNumVirtRegs();
3305
3306 const StringRef Name = BuiltinType->getName();
3307 LLVM_DEBUG(dbgs() << "Lowering builtin type: " << Name << "\n");
3308
3309 SPIRVType *TargetType;
3310 if (Name == "spirv.Type") {
3311 TargetType = getInlineSpirvType(BuiltinType, MIRBuilder, GR);
3312 } else if (Name == "spirv.VulkanBuffer") {
3313 TargetType = getVulkanBufferType(BuiltinType, MIRBuilder, GR);
3314 } else if (Name == "spirv.Layout") {
3315 TargetType = getLayoutType(BuiltinType, MIRBuilder, GR);
3316 } else {
3317 // Lookup the demangled builtin type in the TableGen records.
3318 const SPIRV::BuiltinType *TypeRecord = SPIRV::lookupBuiltinType(Name);
3319 if (!TypeRecord)
3320 report_fatal_error("Missing TableGen record for builtin type: " + Name);
3321
3322 // "Lower" the BuiltinType into TargetType. The following get<...>Type
3323 // methods use the implementation details from TableGen records or
3324 // TargetExtType parameters to either create a new OpType<...> machine
3325 // instruction or get an existing equivalent SPIRVType from
3326 // GlobalRegistry.
3327
3328 switch (TypeRecord->Opcode) {
3329 case SPIRV::OpTypeImage:
3330 TargetType = GR->getImageType(BuiltinType, AccessQual, MIRBuilder);
3331 break;
3332 case SPIRV::OpTypePipe:
3333 TargetType = getPipeType(BuiltinType, MIRBuilder, GR);
3334 break;
3335 case SPIRV::OpTypeDeviceEvent:
3336 TargetType = GR->getOrCreateOpTypeDeviceEvent(MIRBuilder);
3337 break;
3338 case SPIRV::OpTypeSampler:
3339 TargetType = getSamplerType(MIRBuilder, GR);
3340 break;
3341 case SPIRV::OpTypeSampledImage:
3342 TargetType = getSampledImageType(BuiltinType, MIRBuilder, GR);
3343 break;
3344 case SPIRV::OpTypeCooperativeMatrixKHR:
3345 TargetType = getCoopMatrType(BuiltinType, MIRBuilder, GR);
3346 break;
3347 default:
3348 TargetType =
3349 getNonParameterizedType(BuiltinType, TypeRecord, MIRBuilder, GR);
3350 break;
3351 }
3352 }
3353
3354 // Emit OpName instruction if a new OpType<...> instruction was added
3355 // (equivalent type was not found in GlobalRegistry).
3356 if (NumStartingVRegs < MIRBuilder.getMRI()->getNumVirtRegs())
3357 buildOpName(GR->getSPIRVTypeID(TargetType), Name, MIRBuilder);
3358
3359 return TargetType;
3360}
3361} // namespace SPIRV
3362} // namespace llvm
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Lower Kernel Arguments
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
Register Reg
Promote Memory to Register
Definition Mem2Reg.cpp:110
#define T
spirv structurize SPIRV
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
APInt bitcastToAPInt() const
Definition APFloat.h:1353
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1079
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
This class represents an incoming formal argument to a Function.
Definition Argument.h:32
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
static LLVM_ABI ArrayType * get(Type *ElementType, uint64_t NumElements)
This static method is the primary way to construct an ArrayType.
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ ICMP_NE
not equal
Definition InstrTypes.h:700
const APFloat & getValueAPF() const
Definition Constants.h:320
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Tagged union holding either a T or a Error.
Definition Error.h:485
Class to represent fixed width SIMD vectors.
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
static MCOperand createReg(MCRegister Reg)
Definition MCInst.h:138
static MCOperand createImm(int64_t Val)
Definition MCInst.h:145
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
LLVMContext & getContext() const
MachineInstrBuilder buildSelect(const DstOp &Res, const SrcOp &Tst, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_SELECT Tst, Op0, Op1.
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_ICMP Pred, Op0, Op1.
MachineBasicBlock::iterator getInsertPt()
Current insertion point for new instructions.
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef< Register > Res, bool HasSideEffects, bool isConvergent)
Build and insert a G_INTRINSIC instruction.
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildZExtOrTrunc(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ZEXT Op, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes...
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineFunction & getMF()
Getter for the function we currently build.
MachineRegisterInfo * getMRI()
Getter for MRI.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
const DataLayout & getDataLayout() const
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
const ConstantInt * getCImm() const
bool isCImm() const
isCImm - Test if this is a MO_CImmediate operand.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
const MDNode * getMetadata() const
Register getReg() const
getReg - Returns the register number.
const ConstantFP * getFPImm() const
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
LLVM_ABI void setRegClass(Register Reg, const TargetRegisterClass *RC)
setRegClass - Set the register class of the specified virtual register.
LLVM_ABI Register createGenericVirtualRegister(LLT Ty, StringRef Name="")
Create and return a new generic virtual register with low-level type Ty.
unsigned getNumVirtRegs() const
getNumVirtRegs - Return the number of virtual registers created.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isValid() const
Definition Register.h:107
SPIRVType * getOrCreateOpTypePipe(MachineIRBuilder &MIRBuilder, SPIRV::AccessQualifier::AccessQualifier AccQual)
SPIRVType * getSPIRVTypeForVReg(Register VReg, const MachineFunction *MF=nullptr) const
SPIRVType * getOrCreateSPIRVBoolType(MachineIRBuilder &MIRBuilder, bool EmitIR)
void assignSPIRVTypeToVReg(SPIRVType *Type, Register VReg, const MachineFunction &MF)
const Type * getTypeForSPIRVType(const SPIRVType *Ty) const
SPIRVType * getOrCreateUnknownType(const Type *Ty, MachineIRBuilder &MIRBuilder, unsigned Opcode, const ArrayRef< MCOperand > Operands)
unsigned getScalarOrVectorComponentCount(Register VReg) const
SPIRVType * getOrCreateSPIRVType(const Type *Type, MachineInstr &I, SPIRV::AccessQualifier::AccessQualifier AQ, bool EmitIR)
SPIRVType * getOrCreateSPIRVPointerType(const Type *BaseType, MachineIRBuilder &MIRBuilder, SPIRV::StorageClass::StorageClass SC)
SPIRVType * getOrCreateOpTypeByOpcode(const Type *Ty, MachineIRBuilder &MIRBuilder, unsigned Opcode)
Register buildConstantFP(APFloat Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType=nullptr)
SPIRVType * getPointeeType(SPIRVType *PtrType)
Register getSPIRVTypeID(const SPIRVType *SpirvType) const
bool isScalarOfType(Register VReg, unsigned TypeOpcode) const
Register buildGlobalVariable(Register Reg, SPIRVType *BaseType, StringRef Name, const GlobalValue *GV, SPIRV::StorageClass::StorageClass Storage, const MachineInstr *Init, bool IsConst, bool HasLinkageTy, SPIRV::LinkageType::LinkageType LinkageType, MachineIRBuilder &MIRBuilder, bool IsInstSelector)
SPIRVType * getOrCreateOpTypeSampledImage(SPIRVType *ImageType, MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateVulkanBufferType(MachineIRBuilder &MIRBuilder, Type *ElemType, SPIRV::StorageClass::StorageClass SC, bool IsWritable, bool EmitIr=false)
SPIRVType * getOrCreateSPIRVTypeByName(StringRef TypeStr, MachineIRBuilder &MIRBuilder, bool EmitIR, SPIRV::StorageClass::StorageClass SC=SPIRV::StorageClass::Function, SPIRV::AccessQualifier::AccessQualifier AQ=SPIRV::AccessQualifier::ReadWrite)
SPIRVType * getOrCreateLayoutType(MachineIRBuilder &MIRBuilder, const TargetExtType *T, bool EmitIr=false)
Register getOrCreateConsIntVector(uint64_t Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType, bool EmitIR)
const TargetRegisterClass * getRegClass(SPIRVType *SpvType) const
SPIRVType * getOrCreateSPIRVVectorType(SPIRVType *BaseType, unsigned NumElements, MachineIRBuilder &MIRBuilder, bool EmitIR)
SPIRVType * getOrCreateOpTypeCoopMatr(MachineIRBuilder &MIRBuilder, const TargetExtType *ExtensionType, const SPIRVType *ElemType, uint32_t Scope, uint32_t Rows, uint32_t Columns, uint32_t Use, bool EmitIR)
bool isScalarOrVectorOfType(Register VReg, unsigned TypeOpcode) const
Register getOrCreateConstIntArray(uint64_t Val, size_t Num, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
SPIRVType * getOrCreateOpTypeDeviceEvent(MachineIRBuilder &MIRBuilder)
SPIRVType * getImageType(const TargetExtType *ExtensionType, const SPIRV::AccessQualifier::AccessQualifier Qualifier, MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateSPIRVIntegerType(unsigned BitWidth, MachineIRBuilder &MIRBuilder)
Register buildConstantInt(uint64_t Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType, bool EmitIR, bool ZeroAsNull=true)
LLT getRegType(SPIRVType *SpvType) const
SPIRV::StorageClass::StorageClass getPointerStorageClass(Register VReg) const
SPIRVType * getOrCreateOpTypeSampler(MachineIRBuilder &MIRBuilder)
Register buildConstantSampler(Register Res, unsigned AddrMode, unsigned Param, unsigned FilerMode, MachineIRBuilder &MIRBuilder)
Register getOrCreateConstNullPtr(MachineIRBuilder &MIRBuilder, SPIRVType *SpvType)
unsigned getScalarOrVectorBitWidth(const SPIRVType *Type) const
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition StringRef.h:702
bool consume_back(StringRef Suffix)
Returns true if this StringRef has the given suffix and removes that suffix.
Definition StringRef.h:657
bool getAsInteger(unsigned Radix, T &Result) const
Parse the current string as an integer of the specified radix.
Definition StringRef.h:472
std::string str() const
str - Get the contents as an std::string.
Definition StringRef.h:225
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Definition StringRef.h:261
bool contains_insensitive(StringRef Other) const
Return true if the given string is a substring of *this, and false otherwise.
Definition StringRef.h:438
StringRef slice(size_t Start, size_t End) const
Return a reference to the substring from [Start, End).
Definition StringRef.h:686
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
bool contains(StringRef Other) const
Return true if the given string is a substring of *this, and false otherwise.
Definition StringRef.h:426
bool consume_front(StringRef Prefix)
Returns true if this StringRef has the given prefix and removes that prefix.
Definition StringRef.h:637
size_t find_first_of(char C, size_t From=0) const
Find the first character in the string that is C, or npos if not found.
Definition StringRef.h:376
size_t rfind(char C, size_t From=npos) const
Search for the last character C in the string.
Definition StringRef.h:345
size_t find(char C, size_t From=0) const
Search for the first character C in the string.
Definition StringRef.h:293
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition StringRef.h:273
static constexpr size_t npos
Definition StringRef.h:57
A switch()-like statement whose cases are string literals.
StringSwitch & EndsWith(StringLiteral S, T Value)
Class to represent struct types.
Class to represent target extensions types, which are generally unintrospectable from target-independ...
ArrayRef< Type * > type_params() const
Return the type parameters for this particular target extension type.
unsigned getNumIntParameters() const
static LLVM_ABI TargetExtType * get(LLVMContext &Context, StringRef Name, ArrayRef< Type * > Types={}, ArrayRef< unsigned > Ints={})
Return a target extension type having the specified name and optional type and integer parameters.
Definition Type.cpp:908
Type * getTypeParameter(unsigned i) const
unsigned getNumTypeParameters() const
unsigned getIntParameter(unsigned i) const
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
LLVM_ABI StringRef getStructName() const
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
static LLVM_ABI Type * getFloatTy(LLVMContext &C)
Definition Type.cpp:285
static LLVM_ABI Type * getHalfTy(LLVMContext &C)
Definition Type.cpp:283
LLVM Value Representation.
Definition Value.h:75
LLVM_ABI Value(Type *Ty, unsigned scid)
Definition Value.cpp:53
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Represents a version number in the form major[.minor[.subminor[.build]]].
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
CallInst * Call
LLVM_C_ABI LLVMTypeRef LLVMVectorType(LLVMTypeRef ElementType, unsigned ElementCount)
Create a vector type that contains a defined type and has a specific number of elements.
Definition Core.cpp:883
std::string lookupBuiltinNameHelper(StringRef DemangledCall, FPDecorationId *DecorationId)
Parses the name part of the demangled builtin call.
Type * parseBuiltinCallArgumentType(StringRef TypeStr, LLVMContext &Ctx)
bool parseBuiltinTypeStr(SmallVector< StringRef, 10 > &BuiltinArgsTypeStrs, const StringRef DemangledCall, LLVMContext &Ctx)
std::tuple< int, unsigned, unsigned > mapBuiltinToOpcode(const StringRef DemangledCall, SPIRV::InstructionSet::InstructionSet Set)
Helper function for finding a builtin function attributes by a demangled function name.
Type * parseBuiltinCallArgumentBaseType(const StringRef DemangledCall, unsigned ArgIdx, LLVMContext &Ctx)
Parses the provided ArgIdx argument base type in the DemangledCall skeleton.
TargetExtType * parseBuiltinTypeNameToTargetExtType(std::string TypeName, LLVMContext &Context)
Translates a string representing a SPIR-V or OpenCL builtin type to a TargetExtType that can be furth...
std::optional< bool > lowerBuiltin(const StringRef DemangledCall, SPIRV::InstructionSet::InstructionSet Set, MachineIRBuilder &MIRBuilder, const Register OrigRet, const Type *OrigRetTy, const SmallVectorImpl< Register > &Args, SPIRVGlobalRegistry *GR)
SPIRVType * lowerBuiltinType(const Type *OpaqueType, SPIRV::AccessQualifier::AccessQualifier AccessQual, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
This is an optimization pass for GlobalISel generic memory operations.
void buildOpName(Register Target, const StringRef &Name, MachineIRBuilder &MIRBuilder)
static bool build2DBlockIOINTELInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building Intel's 2d block io instructions.
static SPIRVType * getVulkanBufferType(const TargetExtType *ExtensionType, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
void insertAssignInstr(Register Reg, Type *Ty, SPIRVType *SpirvTy, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB, MachineRegisterInfo &MRI)
Helper external function for inserting ASSIGN_TYPE instuction between Reg and its definition,...
static bool generateBindlessImageINTELInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateGetQueryInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateLoadStoreInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRVType * getInlineSpirvType(const TargetExtType *ExtensionType, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateConstructInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool buildAtomicFlagInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building atomic flag instructions (e.g.
static Register buildBuiltinVariableLoad(MachineIRBuilder &MIRBuilder, SPIRVType *VariableType, SPIRVGlobalRegistry *GR, SPIRV::BuiltIn::BuiltIn BuiltinValue, LLT LLType, Register Reg=Register(0), bool isConst=true, bool hasLinkageTy=true)
Helper function for building a load instruction for loading a builtin global variable of BuiltinValue...
static bool generateImageSizeQueryInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRV::SamplerFilterMode::SamplerFilterMode getSamplerFilterModeFromBitmask(unsigned Bitmask)
static bool buildAtomicStoreInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building an atomic store instruction.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
FunctionAddr VTableAddr uintptr_t uintptr_t Int32Ty
Definition InstrProf.h:296
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB)
static bool buildExtendedBitOpsInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building extended bit operations.
static const Type * getBlockStructType(Register ParamReg, MachineRegisterInfo *MRI)
static bool generateGroupInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
FPDecorationId demangledPostfixToDecorationId(const std::string &S)
Definition SPIRVUtils.h:478
static unsigned getNumComponentsForDim(SPIRV::Dim::Dim dim)
static bool generateICarryBorrowInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static Register buildScopeReg(Register CLScopeRegister, SPIRV::Scope::Scope Scope, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI)
FPDecorationId
Definition SPIRVUtils.h:476
static std::tuple< Register, SPIRVType * > buildBoolRegister(MachineIRBuilder &MIRBuilder, const SPIRVType *ResultType, SPIRVGlobalRegistry *GR)
Helper function building either a resulting scalar or vector bool register depending on the expected ...
static unsigned getNumSizeComponents(SPIRVType *imgType)
Helper function for obtaining the number of size components.
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI)
static Register buildConstantIntReg32(uint64_t Val, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRVType * getSampledImageType(const TargetExtType *OpaqueType, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
SmallVector< MachineInstr *, 4 > createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode, unsigned MinWC, unsigned ContinuedOpcode, ArrayRef< Register > Args, Register ReturnRegister, Register TypeID)
SPIRV::MemorySemantics::MemorySemantics getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC)
constexpr unsigned storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:191
static bool generateSampleImageInst(const StringRef DemangledCall, const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateBarrierInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
LLVM_ABI void SplitString(StringRef Source, SmallVectorImpl< StringRef > &OutFragments, StringRef Delimiters=" \t\n\v\f\r")
SplitString - Split up the specified string according to the specified delimiters,...
static SPIRVType * getCoopMatrType(const TargetExtType *ExtensionType, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateKernelClockInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static void setRegClassIfNull(Register Reg, MachineRegisterInfo *MRI, SPIRVGlobalRegistry *GR)
static bool generateGroupUniformInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateWaveInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder, SPIRV::Decoration::Decoration Dec, const std::vector< uint32_t > &DecArgs, StringRef StrImm)
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI, const MachineFunction &MF)
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
static bool buildBarrierInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building barriers, i.e., memory/control ordering operations.
static bool generateAsyncCopy(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRV::Scope::Scope getSPIRVScope(SPIRV::CLMemoryScope ClScope)
static SPIRVType * getSamplerType(MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
static Register buildLoadInst(SPIRVType *BaseType, Register PtrRegister, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR, LLT LowLevelType, Register DestinationReg=Register(0))
Helper function for building a load instruction loading into the DestinationReg.
static bool generateEnqueueInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
static bool buildSelectInst(MachineIRBuilder &MIRBuilder, Register ReturnRegister, Register SourceRegister, const SPIRVType *ReturnType, SPIRVGlobalRegistry *GR)
Helper function for building either a vector or scalar select instruction depending on the expected R...
static const Type * getMachineInstrType(MachineInstr *MI)
bool isDigit(char C)
Checks if character C is one of the 10 decimal digits.
static SPIRV::SamplerAddressingMode::SamplerAddressingMode getSamplerAddressingModeFromBitmask(unsigned Bitmask)
static bool generateAtomicInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
const MachineInstr SPIRVType
static SPIRVType * getLayoutType(const TargetExtType *ExtensionType, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateDotOrFMulInst(const StringRef DemangledCall, const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateConvertInst(const StringRef DemangledCall, const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateTernaryBitwiseFunctionINTELInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateCastToPtrInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
constexpr bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:176
static Register buildMemSemanticsReg(Register SemanticsRegister, Register PtrRegister, unsigned &Semantics, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static unsigned getConstFromIntrinsic(Register Reg, MachineRegisterInfo *MRI)
static bool generateImageMiscQueryInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateSelectInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder)
static bool buildAtomicLoadInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building an atomic load instruction.
static bool generateIntelSubgroupsInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateExtendedBitOpsInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool buildPipeInst(const SPIRV::IncomingCall *Call, unsigned Opcode, unsigned Scope, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateSpecConstantInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRVType * getOrCreateSPIRVDeviceEventPointer(MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Type * parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx)
static bool generateVectorLoadStoreInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool genWorkgroupQuery(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR, SPIRV::BuiltIn::BuiltIn BuiltinValue, uint64_t DefaultValue)
static bool generateCoopMatrInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool buildBindlessImageINTELInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building Intel's bindless image instructions.
static std::unique_ptr< const SPIRV::IncomingCall > lookupBuiltin(StringRef DemangledCall, SPIRV::InstructionSet::InstructionSet Set, Register ReturnRegister, const SPIRVType *ReturnType, const SmallVectorImpl< Register > &Arguments)
Looks up the demangled builtin call in the SPIRVBuiltins.td records using the provided DemangledCall ...
static bool buildAtomicFloatingRMWInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building an atomic floating-type instruction.
MachineInstr * getDefInstrMaybeConstant(Register &ConstReg, const MachineRegisterInfo *MRI)
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1847
static bool generate2DBlockIOINTELInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateReadImageInst(const StringRef DemangledCall, const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
bool hasBuiltinTypePrefix(StringRef Name)
static bool buildEnqueueKernel(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Type * getMDOperandAsType(const MDNode *N, unsigned I)
static bool generatePipeInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool buildTernaryBitwiseFunctionINTELInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building Intel's OpBitwiseFunctionINTEL instruction.
static bool buildAtomicRMWInst(const SPIRV::IncomingCall *Call, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building atomic instructions.
static SPIRV::MemorySemantics::MemorySemantics getSPIRVMemSemantics(std::memory_order MemOrder)
static bool generateRelationalInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool buildAtomicInitInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder)
Helper function for translating atomic init to OpStore.
static bool generateWriteImageInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRVType * getPipeType(const TargetExtType *ExtensionType, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static Type * parseTypeString(const StringRef Name, LLVMContext &Context)
bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID)
static bool generateAtomicFloatingInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool generateExtInst(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static bool buildNDRange(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static SPIRVType * getNonParameterizedType(const TargetExtType *ExtensionType, const SPIRV::BuiltinType *TypeRecord, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
static MachineInstr * getBlockStructInstr(Register ParamReg, MachineRegisterInfo *MRI)
static bool buildOpFromWrapper(MachineIRBuilder &MIRBuilder, unsigned Opcode, const SPIRV::IncomingCall *Call, Register TypeReg, ArrayRef< uint32_t > ImmArgs={})
static unsigned getSamplerParamFromBitmask(unsigned Bitmask)
static bool buildAtomicCompareExchangeInst(const SPIRV::IncomingCall *Call, const SPIRV::DemangledBuiltin *Builtin, unsigned Opcode, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Helper function for building an atomic compare-exchange instruction.
std::string getLinkStringForBuiltIn(SPIRV::BuiltIn::BuiltIn BuiltInValue)
static bool generateBuiltinVar(const SPIRV::IncomingCall *Call, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry *GR)
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
This class contains a discriminated union of information about pointers in memory operands,...
FPRoundingMode::FPRoundingMode RoundingMode
InstructionSet::InstructionSet Set
InstructionSet::InstructionSet Set
InstructionSet::InstructionSet Set
InstructionSet::InstructionSet Set
const SmallVectorImpl< Register > & Arguments
const std::string BuiltinName
const SPIRVType * ReturnType
const DemangledBuiltin * Builtin
IncomingCall(const std::string BuiltinName, const DemangledBuiltin *Builtin, const Register ReturnRegister, const SPIRVType *ReturnType, const SmallVectorImpl< Register > &Arguments)
InstructionSet::InstructionSet Set
InstructionSet::InstructionSet Set
FPRoundingMode::FPRoundingMode RoundingMode