LLVM 22.0.0git
SPIRVInstructionSelector.cpp
Go to the documentation of this file.
1//===- SPIRVInstructionSelector.cpp ------------------------------*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the targeting of the InstructionSelector class for
10// SPIRV.
11// TODO: This should be generated by TableGen.
12//
13//===----------------------------------------------------------------------===//
14
17#include "SPIRV.h"
18#include "SPIRVGlobalRegistry.h"
19#include "SPIRVInstrInfo.h"
20#include "SPIRVRegisterInfo.h"
21#include "SPIRVTargetMachine.h"
22#include "SPIRVUtils.h"
23#include "llvm/ADT/APFloat.h"
32#include "llvm/IR/IntrinsicsSPIRV.h"
33#include "llvm/Support/Debug.h"
35
36#define DEBUG_TYPE "spirv-isel"
37
38using namespace llvm;
39namespace CL = SPIRV::OpenCLExtInst;
40namespace GL = SPIRV::GLSLExtInst;
41
43 std::vector<std::pair<SPIRV::InstructionSet::InstructionSet, uint32_t>>;
44
45namespace {
46
47llvm::SPIRV::SelectionControl::SelectionControl
48getSelectionOperandForImm(int Imm) {
49 if (Imm == 2)
50 return SPIRV::SelectionControl::Flatten;
51 if (Imm == 1)
52 return SPIRV::SelectionControl::DontFlatten;
53 if (Imm == 0)
54 return SPIRV::SelectionControl::None;
55 llvm_unreachable("Invalid immediate");
56}
57
58#define GET_GLOBALISEL_PREDICATE_BITSET
59#include "SPIRVGenGlobalISel.inc"
60#undef GET_GLOBALISEL_PREDICATE_BITSET
61
62class SPIRVInstructionSelector : public InstructionSelector {
63 const SPIRVSubtarget &STI;
64 const SPIRVInstrInfo &TII;
66 const RegisterBankInfo &RBI;
69 MachineFunction *HasVRegsReset = nullptr;
70
71 /// We need to keep track of the number we give to anonymous global values to
72 /// generate the same name every time when this is needed.
73 mutable DenseMap<const GlobalValue *, unsigned> UnnamedGlobalIDs;
75
76public:
77 SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
78 const SPIRVSubtarget &ST,
79 const RegisterBankInfo &RBI);
80 void setupMF(MachineFunction &MF, GISelValueTracking *VT,
81 CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI,
82 BlockFrequencyInfo *BFI) override;
83 // Common selection code. Instruction-specific selection occurs in spvSelect.
84 bool select(MachineInstr &I) override;
85 static const char *getName() { return DEBUG_TYPE; }
86
87#define GET_GLOBALISEL_PREDICATES_DECL
88#include "SPIRVGenGlobalISel.inc"
89#undef GET_GLOBALISEL_PREDICATES_DECL
90
91#define GET_GLOBALISEL_TEMPORARIES_DECL
92#include "SPIRVGenGlobalISel.inc"
93#undef GET_GLOBALISEL_TEMPORARIES_DECL
94
95private:
96 void resetVRegsType(MachineFunction &MF);
97
98 // tblgen-erated 'select' implementation, used as the initial selector for
99 // the patterns that don't require complex C++.
100 bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
101
102 // All instruction-specific selection that didn't happen in "select()".
103 // Is basically a large Switch/Case delegating to all other select method.
104 bool spvSelect(Register ResVReg, const SPIRVType *ResType,
105 MachineInstr &I) const;
106
107 bool selectFirstBitHigh(Register ResVReg, const SPIRVType *ResType,
108 MachineInstr &I, bool IsSigned) const;
109
110 bool selectFirstBitLow(Register ResVReg, const SPIRVType *ResType,
111 MachineInstr &I) const;
112
113 bool selectFirstBitSet16(Register ResVReg, const SPIRVType *ResType,
114 MachineInstr &I, unsigned ExtendOpcode,
115 unsigned BitSetOpcode) const;
116
117 bool selectFirstBitSet32(Register ResVReg, const SPIRVType *ResType,
118 MachineInstr &I, Register SrcReg,
119 unsigned BitSetOpcode) const;
120
121 bool selectFirstBitSet64(Register ResVReg, const SPIRVType *ResType,
122 MachineInstr &I, Register SrcReg,
123 unsigned BitSetOpcode, bool SwapPrimarySide) const;
124
125 bool selectFirstBitSet64Overflow(Register ResVReg, const SPIRVType *ResType,
126 MachineInstr &I, Register SrcReg,
127 unsigned BitSetOpcode,
128 bool SwapPrimarySide) const;
129
130 bool selectGlobalValue(Register ResVReg, MachineInstr &I,
131 const MachineInstr *Init = nullptr) const;
132
133 bool selectOpWithSrcs(Register ResVReg, const SPIRVType *ResType,
134 MachineInstr &I, std::vector<Register> SrcRegs,
135 unsigned Opcode) const;
136
137 bool selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
138 unsigned Opcode) const;
139
140 bool selectBitcast(Register ResVReg, const SPIRVType *ResType,
141 MachineInstr &I) const;
142
143 bool selectLoad(Register ResVReg, const SPIRVType *ResType,
144 MachineInstr &I) const;
145 bool selectStore(MachineInstr &I) const;
146
147 bool selectStackSave(Register ResVReg, const SPIRVType *ResType,
148 MachineInstr &I) const;
149 bool selectStackRestore(MachineInstr &I) const;
150
151 bool selectMemOperation(Register ResVReg, MachineInstr &I) const;
152
153 bool selectAtomicRMW(Register ResVReg, const SPIRVType *ResType,
154 MachineInstr &I, unsigned NewOpcode,
155 unsigned NegateOpcode = 0) const;
156
157 bool selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType,
158 MachineInstr &I) const;
159
160 bool selectFence(MachineInstr &I) const;
161
162 bool selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType,
163 MachineInstr &I) const;
164
165 bool selectAnyOrAll(Register ResVReg, const SPIRVType *ResType,
166 MachineInstr &I, unsigned OpType) const;
167
168 bool selectAll(Register ResVReg, const SPIRVType *ResType,
169 MachineInstr &I) const;
170
171 bool selectAny(Register ResVReg, const SPIRVType *ResType,
172 MachineInstr &I) const;
173
174 bool selectBitreverse(Register ResVReg, const SPIRVType *ResType,
175 MachineInstr &I) const;
176
177 bool selectBuildVector(Register ResVReg, const SPIRVType *ResType,
178 MachineInstr &I) const;
179 bool selectSplatVector(Register ResVReg, const SPIRVType *ResType,
180 MachineInstr &I) const;
181
182 bool selectCmp(Register ResVReg, const SPIRVType *ResType,
183 unsigned comparisonOpcode, MachineInstr &I) const;
184 bool selectDiscard(Register ResVReg, const SPIRVType *ResType,
185 MachineInstr &I) const;
186
187 bool selectICmp(Register ResVReg, const SPIRVType *ResType,
188 MachineInstr &I) const;
189 bool selectFCmp(Register ResVReg, const SPIRVType *ResType,
190 MachineInstr &I) const;
191
192 bool selectSign(Register ResVReg, const SPIRVType *ResType,
193 MachineInstr &I) const;
194
195 bool selectFloatDot(Register ResVReg, const SPIRVType *ResType,
196 MachineInstr &I) const;
197
198 bool selectOverflowArith(Register ResVReg, const SPIRVType *ResType,
199 MachineInstr &I, unsigned Opcode) const;
200 bool selectDebugTrap(Register ResVReg, const SPIRVType *ResType,
201 MachineInstr &I) const;
202
203 bool selectIntegerDot(Register ResVReg, const SPIRVType *ResType,
204 MachineInstr &I, bool Signed) const;
205
206 bool selectIntegerDotExpansion(Register ResVReg, const SPIRVType *ResType,
207 MachineInstr &I) const;
208
209 bool selectOpIsInf(Register ResVReg, const SPIRVType *ResType,
210 MachineInstr &I) const;
211
212 bool selectOpIsNan(Register ResVReg, const SPIRVType *ResType,
213 MachineInstr &I) const;
214
215 template <bool Signed>
216 bool selectDot4AddPacked(Register ResVReg, const SPIRVType *ResType,
217 MachineInstr &I) const;
218 template <bool Signed>
219 bool selectDot4AddPackedExpansion(Register ResVReg, const SPIRVType *ResType,
220 MachineInstr &I) const;
221
222 bool selectWaveReduceMax(Register ResVReg, const SPIRVType *ResType,
223 MachineInstr &I, bool IsUnsigned) const;
224
225 bool selectWaveReduceSum(Register ResVReg, const SPIRVType *ResType,
226 MachineInstr &I) const;
227
228 bool selectConst(Register ResVReg, const SPIRVType *ResType,
229 MachineInstr &I) const;
230
231 bool selectSelect(Register ResVReg, const SPIRVType *ResType,
232 MachineInstr &I) const;
233 bool selectSelectDefaultArgs(Register ResVReg, const SPIRVType *ResType,
234 MachineInstr &I, bool IsSigned) const;
235 bool selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
236 bool IsSigned, unsigned Opcode) const;
237 bool selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
238 bool IsSigned) const;
239
240 bool selectTrunc(Register ResVReg, const SPIRVType *ResType,
241 MachineInstr &I) const;
242
243 bool selectSUCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
244 bool IsSigned) const;
245
246 bool selectIntToBool(Register IntReg, Register ResVReg, MachineInstr &I,
247 const SPIRVType *intTy, const SPIRVType *boolTy) const;
248
249 bool selectOpUndef(Register ResVReg, const SPIRVType *ResType,
250 MachineInstr &I) const;
251 bool selectFreeze(Register ResVReg, const SPIRVType *ResType,
252 MachineInstr &I) const;
253 bool selectIntrinsic(Register ResVReg, const SPIRVType *ResType,
254 MachineInstr &I) const;
255 bool selectExtractVal(Register ResVReg, const SPIRVType *ResType,
256 MachineInstr &I) const;
257 bool selectInsertVal(Register ResVReg, const SPIRVType *ResType,
258 MachineInstr &I) const;
259 bool selectExtractElt(Register ResVReg, const SPIRVType *ResType,
260 MachineInstr &I) const;
261 bool selectInsertElt(Register ResVReg, const SPIRVType *ResType,
262 MachineInstr &I) const;
263 bool selectGEP(Register ResVReg, const SPIRVType *ResType,
264 MachineInstr &I) const;
265
266 bool selectFrameIndex(Register ResVReg, const SPIRVType *ResType,
267 MachineInstr &I) const;
268 bool selectAllocaArray(Register ResVReg, const SPIRVType *ResType,
269 MachineInstr &I) const;
270
271 bool selectBranch(MachineInstr &I) const;
272 bool selectBranchCond(MachineInstr &I) const;
273
274 bool selectPhi(Register ResVReg, const SPIRVType *ResType,
275 MachineInstr &I) const;
276
277 bool selectExtInst(Register ResVReg, const SPIRVType *RestType,
278 MachineInstr &I, GL::GLSLExtInst GLInst) const;
279 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
280 MachineInstr &I, CL::OpenCLExtInst CLInst) const;
281 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
282 MachineInstr &I, CL::OpenCLExtInst CLInst,
283 GL::GLSLExtInst GLInst) const;
284 bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
285 MachineInstr &I, const ExtInstList &ExtInsts) const;
286 bool selectExtInstForLRound(Register ResVReg, const SPIRVType *ResType,
287 MachineInstr &I, CL::OpenCLExtInst CLInst,
288 GL::GLSLExtInst GLInst) const;
289 bool selectExtInstForLRound(Register ResVReg, const SPIRVType *ResType,
291 const ExtInstList &ExtInsts) const;
292
293 bool selectLog10(Register ResVReg, const SPIRVType *ResType,
294 MachineInstr &I) const;
295
296 bool selectSaturate(Register ResVReg, const SPIRVType *ResType,
297 MachineInstr &I) const;
298
299 bool selectWaveOpInst(Register ResVReg, const SPIRVType *ResType,
300 MachineInstr &I, unsigned Opcode) const;
301
302 bool selectWaveActiveCountBits(Register ResVReg, const SPIRVType *ResType,
303 MachineInstr &I) const;
304
306
307 bool selectHandleFromBinding(Register &ResVReg, const SPIRVType *ResType,
308 MachineInstr &I) const;
309
310 bool selectCounterHandleFromBinding(Register &ResVReg,
311 const SPIRVType *ResType,
312 MachineInstr &I) const;
313
314 bool selectReadImageIntrinsic(Register &ResVReg, const SPIRVType *ResType,
315 MachineInstr &I) const;
316 bool selectImageWriteIntrinsic(MachineInstr &I) const;
317 bool selectResourceGetPointer(Register &ResVReg, const SPIRVType *ResType,
318 MachineInstr &I) const;
319 bool selectModf(Register ResVReg, const SPIRVType *ResType,
320 MachineInstr &I) const;
321 bool selectUpdateCounter(Register &ResVReg, const SPIRVType *ResType,
322 MachineInstr &I) const;
323 bool selectFrexp(Register ResVReg, const SPIRVType *ResType,
324 MachineInstr &I) const;
325 // Utilities
326 std::pair<Register, bool>
327 buildI32Constant(uint32_t Val, MachineInstr &I,
328 const SPIRVType *ResType = nullptr) const;
329
330 Register buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const;
331 Register buildZerosValF(const SPIRVType *ResType, MachineInstr &I) const;
332 Register buildOnesVal(bool AllOnes, const SPIRVType *ResType,
333 MachineInstr &I) const;
334 Register buildOnesValF(const SPIRVType *ResType, MachineInstr &I) const;
335
336 bool wrapIntoSpecConstantOp(MachineInstr &I,
337 SmallVector<Register> &CompositeArgs) const;
338
339 Register getUcharPtrTypeReg(MachineInstr &I,
340 SPIRV::StorageClass::StorageClass SC) const;
341 MachineInstrBuilder buildSpecConstantOp(MachineInstr &I, Register Dest,
342 Register Src, Register DestType,
343 uint32_t Opcode) const;
344 MachineInstrBuilder buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
345 SPIRVType *SrcPtrTy) const;
346 Register buildPointerToResource(const SPIRVType *ResType,
347 SPIRV::StorageClass::StorageClass SC,
349 uint32_t ArraySize, Register IndexReg,
350 bool IsNonUniform, StringRef Name,
351 MachineIRBuilder MIRBuilder) const;
352 SPIRVType *widenTypeToVec4(const SPIRVType *Type, MachineInstr &I) const;
353 bool extractSubvector(Register &ResVReg, const SPIRVType *ResType,
354 Register &ReadReg, MachineInstr &InsertionPoint) const;
355 bool generateImageRead(Register &ResVReg, const SPIRVType *ResType,
356 Register ImageReg, Register IdxReg, DebugLoc Loc,
357 MachineInstr &Pos) const;
358 bool BuildCOPY(Register DestReg, Register SrcReg, MachineInstr &I) const;
359 bool loadVec3BuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
360 Register ResVReg, const SPIRVType *ResType,
361 MachineInstr &I) const;
362 bool loadBuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
363 Register ResVReg, const SPIRVType *ResType,
364 MachineInstr &I) const;
365 bool loadHandleBeforePosition(Register &HandleReg, const SPIRVType *ResType,
366 GIntrinsic &HandleDef, MachineInstr &Pos) const;
367};
368
369bool sampledTypeIsSignedInteger(const llvm::Type *HandleType) {
370 const TargetExtType *TET = cast<TargetExtType>(HandleType);
371 if (TET->getTargetExtName() == "spirv.Image") {
372 return false;
373 }
374 assert(TET->getTargetExtName() == "spirv.SignedImage");
375 return TET->getTypeParameter(0)->isIntegerTy();
376}
377} // end anonymous namespace
378
379#define GET_GLOBALISEL_IMPL
380#include "SPIRVGenGlobalISel.inc"
381#undef GET_GLOBALISEL_IMPL
382
383SPIRVInstructionSelector::SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
384 const SPIRVSubtarget &ST,
385 const RegisterBankInfo &RBI)
386 : InstructionSelector(), STI(ST), TII(*ST.getInstrInfo()),
387 TRI(*ST.getRegisterInfo()), RBI(RBI), GR(*ST.getSPIRVGlobalRegistry()),
388 MRI(nullptr),
390#include "SPIRVGenGlobalISel.inc"
393#include "SPIRVGenGlobalISel.inc"
395{
396}
397
398void SPIRVInstructionSelector::setupMF(MachineFunction &MF,
400 CodeGenCoverage *CoverageInfo,
402 BlockFrequencyInfo *BFI) {
403 MRI = &MF.getRegInfo();
404 GR.setCurrentFunc(MF);
405 InstructionSelector::setupMF(MF, VT, CoverageInfo, PSI, BFI);
406}
407
408// Ensure that register classes correspond to pattern matching rules.
409void SPIRVInstructionSelector::resetVRegsType(MachineFunction &MF) {
410 if (HasVRegsReset == &MF)
411 return;
412 HasVRegsReset = &MF;
413
414 MachineRegisterInfo &MRI = MF.getRegInfo();
415 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
416 Register Reg = Register::index2VirtReg(I);
417 LLT RegType = MRI.getType(Reg);
418 if (RegType.isScalar())
419 MRI.setType(Reg, LLT::scalar(64));
420 else if (RegType.isPointer())
421 MRI.setType(Reg, LLT::pointer(0, 64));
422 else if (RegType.isVector())
423 MRI.setType(Reg, LLT::fixed_vector(2, LLT::scalar(64)));
424 }
425 for (const auto &MBB : MF) {
426 for (const auto &MI : MBB) {
427 if (isPreISelGenericOpcode(MI.getOpcode()))
428 GR.erase(&MI);
429 if (MI.getOpcode() != SPIRV::ASSIGN_TYPE)
430 continue;
431
432 Register DstReg = MI.getOperand(0).getReg();
433 LLT DstType = MRI.getType(DstReg);
434 Register SrcReg = MI.getOperand(1).getReg();
435 LLT SrcType = MRI.getType(SrcReg);
436 if (DstType != SrcType)
437 MRI.setType(DstReg, MRI.getType(SrcReg));
438
439 const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg);
440 const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg);
441 if (DstRC != SrcRC && SrcRC)
442 MRI.setRegClass(DstReg, SrcRC);
443 }
444 }
445}
446
447// Return true if the type represents a constant register
450 OpDef = passCopy(OpDef, MRI);
451
452 if (Visited.contains(OpDef))
453 return true;
454 Visited.insert(OpDef);
455
456 unsigned Opcode = OpDef->getOpcode();
457 switch (Opcode) {
458 case TargetOpcode::G_CONSTANT:
459 case TargetOpcode::G_FCONSTANT:
460 return true;
461 case TargetOpcode::G_INTRINSIC:
462 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
463 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
464 return cast<GIntrinsic>(*OpDef).getIntrinsicID() ==
465 Intrinsic::spv_const_composite;
466 case TargetOpcode::G_BUILD_VECTOR:
467 case TargetOpcode::G_SPLAT_VECTOR: {
468 for (unsigned i = OpDef->getNumExplicitDefs(); i < OpDef->getNumOperands();
469 i++) {
470 MachineInstr *OpNestedDef =
471 OpDef->getOperand(i).isReg()
472 ? MRI->getVRegDef(OpDef->getOperand(i).getReg())
473 : nullptr;
474 if (OpNestedDef && !isConstReg(MRI, OpNestedDef, Visited))
475 return false;
476 }
477 return true;
478 case SPIRV::OpConstantTrue:
479 case SPIRV::OpConstantFalse:
480 case SPIRV::OpConstantI:
481 case SPIRV::OpConstantF:
482 case SPIRV::OpConstantComposite:
483 case SPIRV::OpConstantCompositeContinuedINTEL:
484 case SPIRV::OpConstantSampler:
485 case SPIRV::OpConstantNull:
486 case SPIRV::OpUndef:
487 case SPIRV::OpConstantFunctionPointerINTEL:
488 return true;
489 }
490 }
491 return false;
492}
493
494// Return true if the virtual register represents a constant
497 if (MachineInstr *OpDef = MRI->getVRegDef(OpReg))
498 return isConstReg(MRI, OpDef, Visited);
499 return false;
500}
501
503 for (const auto &MO : MI.all_defs()) {
504 Register Reg = MO.getReg();
505 if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
506 return false;
507 }
508 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE || MI.isFakeUse() ||
509 MI.isLifetimeMarker())
510 return false;
511 if (MI.isPHI())
512 return true;
513 if (MI.mayStore() || MI.isCall() ||
514 (MI.mayLoad() && MI.hasOrderedMemoryRef()) || MI.isPosition() ||
515 MI.isDebugInstr() || MI.isTerminator() || MI.isJumpTableDebugInfo())
516 return false;
517 return true;
518}
519
520bool SPIRVInstructionSelector::select(MachineInstr &I) {
521 resetVRegsType(*I.getParent()->getParent());
522
523 assert(I.getParent() && "Instruction should be in a basic block!");
524 assert(I.getParent()->getParent() && "Instruction should be in a function!");
525
526 Register Opcode = I.getOpcode();
527 // If it's not a GMIR instruction, we've selected it already.
528 if (!isPreISelGenericOpcode(Opcode)) {
529 if (Opcode == SPIRV::ASSIGN_TYPE) { // These pseudos aren't needed any more.
530 Register DstReg = I.getOperand(0).getReg();
531 Register SrcReg = I.getOperand(1).getReg();
532 auto *Def = MRI->getVRegDef(SrcReg);
533 if (isTypeFoldingSupported(Def->getOpcode()) &&
534 Def->getOpcode() != TargetOpcode::G_CONSTANT &&
535 Def->getOpcode() != TargetOpcode::G_FCONSTANT) {
536 bool Res = false;
537 if (Def->getOpcode() == TargetOpcode::G_SELECT) {
538 Register SelectDstReg = Def->getOperand(0).getReg();
539 Res = selectSelect(SelectDstReg, GR.getSPIRVTypeForVReg(SelectDstReg),
540 *Def);
542 Def->removeFromParent();
543 MRI->replaceRegWith(DstReg, SelectDstReg);
545 I.removeFromParent();
546 } else
547 Res = selectImpl(I, *CoverageInfo);
548 LLVM_DEBUG({
549 if (!Res && Def->getOpcode() != TargetOpcode::G_CONSTANT) {
550 dbgs() << "Unexpected pattern in ASSIGN_TYPE.\nInstruction: ";
551 I.print(dbgs());
552 }
553 });
554 assert(Res || Def->getOpcode() == TargetOpcode::G_CONSTANT);
555 if (Res) {
556 if (!isTriviallyDead(*Def, *MRI) && isDead(*Def, *MRI))
557 DeadMIs.insert(Def);
558 return Res;
559 }
560 }
561 MRI->setRegClass(SrcReg, MRI->getRegClass(DstReg));
562 MRI->replaceRegWith(SrcReg, DstReg);
564 I.removeFromParent();
565 return true;
566 } else if (I.getNumDefs() == 1) {
567 // Make all vregs 64 bits (for SPIR-V IDs).
568 MRI->setType(I.getOperand(0).getReg(), LLT::scalar(64));
569 }
571 }
572
573 if (DeadMIs.contains(&I)) {
574 // if the instruction has been already made dead by folding it away
575 // erase it
576 LLVM_DEBUG(dbgs() << "Instruction is folded and dead.\n");
579 I.eraseFromParent();
580 return true;
581 }
582
583 if (I.getNumOperands() != I.getNumExplicitOperands()) {
584 LLVM_DEBUG(errs() << "Generic instr has unexpected implicit operands\n");
585 return false;
586 }
587
588 // Common code for getting return reg+type, and removing selected instr
589 // from parent occurs here. Instr-specific selection happens in spvSelect().
590 bool HasDefs = I.getNumDefs() > 0;
591 Register ResVReg = HasDefs ? I.getOperand(0).getReg() : Register(0);
592 SPIRVType *ResType = HasDefs ? GR.getSPIRVTypeForVReg(ResVReg) : nullptr;
593 assert(!HasDefs || ResType || I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
594 I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF);
595 if (spvSelect(ResVReg, ResType, I)) {
596 if (HasDefs) // Make all vregs 64 bits (for SPIR-V IDs).
597 for (unsigned i = 0; i < I.getNumDefs(); ++i)
598 MRI->setType(I.getOperand(i).getReg(), LLT::scalar(64));
600 I.removeFromParent();
601 return true;
602 }
603 return false;
604}
605
606static bool mayApplyGenericSelection(unsigned Opcode) {
607 switch (Opcode) {
608 case TargetOpcode::G_CONSTANT:
609 case TargetOpcode::G_FCONSTANT:
610 return false;
611 case TargetOpcode::G_SADDO:
612 case TargetOpcode::G_SSUBO:
613 return true;
614 }
615 return isTypeFoldingSupported(Opcode);
616}
617
618bool SPIRVInstructionSelector::BuildCOPY(Register DestReg, Register SrcReg,
619 MachineInstr &I) const {
620 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DestReg);
621 const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg);
622 if (DstRC != SrcRC && SrcRC)
623 MRI->setRegClass(DestReg, SrcRC);
624 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
625 TII.get(TargetOpcode::COPY))
626 .addDef(DestReg)
627 .addUse(SrcReg)
628 .constrainAllUses(TII, TRI, RBI);
629}
630
631bool SPIRVInstructionSelector::spvSelect(Register ResVReg,
632 const SPIRVType *ResType,
633 MachineInstr &I) const {
634 const unsigned Opcode = I.getOpcode();
635 if (mayApplyGenericSelection(Opcode))
636 return selectImpl(I, *CoverageInfo);
637 switch (Opcode) {
638 case TargetOpcode::G_CONSTANT:
639 case TargetOpcode::G_FCONSTANT:
640 return selectConst(ResVReg, ResType, I);
641 case TargetOpcode::G_GLOBAL_VALUE:
642 return selectGlobalValue(ResVReg, I);
643 case TargetOpcode::G_IMPLICIT_DEF:
644 return selectOpUndef(ResVReg, ResType, I);
645 case TargetOpcode::G_FREEZE:
646 return selectFreeze(ResVReg, ResType, I);
647
648 case TargetOpcode::G_INTRINSIC:
649 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
650 case TargetOpcode::G_INTRINSIC_CONVERGENT:
651 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
652 return selectIntrinsic(ResVReg, ResType, I);
653 case TargetOpcode::G_BITREVERSE:
654 return selectBitreverse(ResVReg, ResType, I);
655
656 case TargetOpcode::G_BUILD_VECTOR:
657 return selectBuildVector(ResVReg, ResType, I);
658 case TargetOpcode::G_SPLAT_VECTOR:
659 return selectSplatVector(ResVReg, ResType, I);
660
661 case TargetOpcode::G_SHUFFLE_VECTOR: {
662 MachineBasicBlock &BB = *I.getParent();
663 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle))
664 .addDef(ResVReg)
665 .addUse(GR.getSPIRVTypeID(ResType))
666 .addUse(I.getOperand(1).getReg())
667 .addUse(I.getOperand(2).getReg());
668 for (auto V : I.getOperand(3).getShuffleMask())
669 MIB.addImm(V);
670 return MIB.constrainAllUses(TII, TRI, RBI);
671 }
672 case TargetOpcode::G_MEMMOVE:
673 case TargetOpcode::G_MEMCPY:
674 case TargetOpcode::G_MEMSET:
675 return selectMemOperation(ResVReg, I);
676
677 case TargetOpcode::G_ICMP:
678 return selectICmp(ResVReg, ResType, I);
679 case TargetOpcode::G_FCMP:
680 return selectFCmp(ResVReg, ResType, I);
681
682 case TargetOpcode::G_FRAME_INDEX:
683 return selectFrameIndex(ResVReg, ResType, I);
684
685 case TargetOpcode::G_LOAD:
686 return selectLoad(ResVReg, ResType, I);
687 case TargetOpcode::G_STORE:
688 return selectStore(I);
689
690 case TargetOpcode::G_BR:
691 return selectBranch(I);
692 case TargetOpcode::G_BRCOND:
693 return selectBranchCond(I);
694
695 case TargetOpcode::G_PHI:
696 return selectPhi(ResVReg, ResType, I);
697
698 case TargetOpcode::G_FPTOSI:
699 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
700 case TargetOpcode::G_FPTOUI:
701 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
702
703 case TargetOpcode::G_FPTOSI_SAT:
704 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
705 case TargetOpcode::G_FPTOUI_SAT:
706 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
707
708 case TargetOpcode::G_SITOFP:
709 return selectIToF(ResVReg, ResType, I, true, SPIRV::OpConvertSToF);
710 case TargetOpcode::G_UITOFP:
711 return selectIToF(ResVReg, ResType, I, false, SPIRV::OpConvertUToF);
712
713 case TargetOpcode::G_CTPOP:
714 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitCount);
715 case TargetOpcode::G_SMIN:
716 return selectExtInst(ResVReg, ResType, I, CL::s_min, GL::SMin);
717 case TargetOpcode::G_UMIN:
718 return selectExtInst(ResVReg, ResType, I, CL::u_min, GL::UMin);
719
720 case TargetOpcode::G_SMAX:
721 return selectExtInst(ResVReg, ResType, I, CL::s_max, GL::SMax);
722 case TargetOpcode::G_UMAX:
723 return selectExtInst(ResVReg, ResType, I, CL::u_max, GL::UMax);
724
725 case TargetOpcode::G_SCMP:
726 return selectSUCmp(ResVReg, ResType, I, true);
727 case TargetOpcode::G_UCMP:
728 return selectSUCmp(ResVReg, ResType, I, false);
729 case TargetOpcode::G_LROUND:
730 case TargetOpcode::G_LLROUND: {
731 Register regForLround =
732 MRI->createVirtualRegister(MRI->getRegClass(ResVReg), "lround");
733 MRI->setRegClass(regForLround, &SPIRV::iIDRegClass);
734 GR.assignSPIRVTypeToVReg(GR.getSPIRVTypeForVReg(I.getOperand(1).getReg()),
735 regForLround, *(I.getParent()->getParent()));
736 selectExtInstForLRound(regForLround, GR.getSPIRVTypeForVReg(regForLround),
737 I, CL::round, GL::Round);
738 MachineBasicBlock &BB = *I.getParent();
739 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConvertFToS))
740 .addDef(ResVReg)
741 .addUse(GR.getSPIRVTypeID(ResType))
742 .addUse(regForLround);
743 return MIB.constrainAllUses(TII, TRI, RBI);
744 }
745 case TargetOpcode::G_STRICT_FMA:
746 case TargetOpcode::G_FMA:
747 return selectExtInst(ResVReg, ResType, I, CL::fma, GL::Fma);
748
749 case TargetOpcode::G_STRICT_FLDEXP:
750 return selectExtInst(ResVReg, ResType, I, CL::ldexp);
751
752 case TargetOpcode::G_FPOW:
753 return selectExtInst(ResVReg, ResType, I, CL::pow, GL::Pow);
754 case TargetOpcode::G_FPOWI:
755 return selectExtInst(ResVReg, ResType, I, CL::pown);
756
757 case TargetOpcode::G_FEXP:
758 return selectExtInst(ResVReg, ResType, I, CL::exp, GL::Exp);
759 case TargetOpcode::G_FEXP2:
760 return selectExtInst(ResVReg, ResType, I, CL::exp2, GL::Exp2);
761 case TargetOpcode::G_FMODF:
762 return selectModf(ResVReg, ResType, I);
763
764 case TargetOpcode::G_FLOG:
765 return selectExtInst(ResVReg, ResType, I, CL::log, GL::Log);
766 case TargetOpcode::G_FLOG2:
767 return selectExtInst(ResVReg, ResType, I, CL::log2, GL::Log2);
768 case TargetOpcode::G_FLOG10:
769 return selectLog10(ResVReg, ResType, I);
770
771 case TargetOpcode::G_FABS:
772 return selectExtInst(ResVReg, ResType, I, CL::fabs, GL::FAbs);
773 case TargetOpcode::G_ABS:
774 return selectExtInst(ResVReg, ResType, I, CL::s_abs, GL::SAbs);
775
776 case TargetOpcode::G_FMINNUM:
777 case TargetOpcode::G_FMINIMUM:
778 return selectExtInst(ResVReg, ResType, I, CL::fmin, GL::NMin);
779 case TargetOpcode::G_FMAXNUM:
780 case TargetOpcode::G_FMAXIMUM:
781 return selectExtInst(ResVReg, ResType, I, CL::fmax, GL::NMax);
782
783 case TargetOpcode::G_FCOPYSIGN:
784 return selectExtInst(ResVReg, ResType, I, CL::copysign);
785
786 case TargetOpcode::G_FCEIL:
787 return selectExtInst(ResVReg, ResType, I, CL::ceil, GL::Ceil);
788 case TargetOpcode::G_FFLOOR:
789 return selectExtInst(ResVReg, ResType, I, CL::floor, GL::Floor);
790
791 case TargetOpcode::G_FCOS:
792 return selectExtInst(ResVReg, ResType, I, CL::cos, GL::Cos);
793 case TargetOpcode::G_FSIN:
794 return selectExtInst(ResVReg, ResType, I, CL::sin, GL::Sin);
795 case TargetOpcode::G_FTAN:
796 return selectExtInst(ResVReg, ResType, I, CL::tan, GL::Tan);
797 case TargetOpcode::G_FACOS:
798 return selectExtInst(ResVReg, ResType, I, CL::acos, GL::Acos);
799 case TargetOpcode::G_FASIN:
800 return selectExtInst(ResVReg, ResType, I, CL::asin, GL::Asin);
801 case TargetOpcode::G_FATAN:
802 return selectExtInst(ResVReg, ResType, I, CL::atan, GL::Atan);
803 case TargetOpcode::G_FATAN2:
804 return selectExtInst(ResVReg, ResType, I, CL::atan2, GL::Atan2);
805 case TargetOpcode::G_FCOSH:
806 return selectExtInst(ResVReg, ResType, I, CL::cosh, GL::Cosh);
807 case TargetOpcode::G_FSINH:
808 return selectExtInst(ResVReg, ResType, I, CL::sinh, GL::Sinh);
809 case TargetOpcode::G_FTANH:
810 return selectExtInst(ResVReg, ResType, I, CL::tanh, GL::Tanh);
811
812 case TargetOpcode::G_STRICT_FSQRT:
813 case TargetOpcode::G_FSQRT:
814 return selectExtInst(ResVReg, ResType, I, CL::sqrt, GL::Sqrt);
815
816 case TargetOpcode::G_CTTZ:
817 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
818 return selectExtInst(ResVReg, ResType, I, CL::ctz);
819 case TargetOpcode::G_CTLZ:
820 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
821 return selectExtInst(ResVReg, ResType, I, CL::clz);
822
823 case TargetOpcode::G_INTRINSIC_ROUND:
824 return selectExtInst(ResVReg, ResType, I, CL::round, GL::Round);
825 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
826 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
827 case TargetOpcode::G_INTRINSIC_TRUNC:
828 return selectExtInst(ResVReg, ResType, I, CL::trunc, GL::Trunc);
829 case TargetOpcode::G_FRINT:
830 case TargetOpcode::G_FNEARBYINT:
831 return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
832
833 case TargetOpcode::G_SMULH:
834 return selectExtInst(ResVReg, ResType, I, CL::s_mul_hi);
835 case TargetOpcode::G_UMULH:
836 return selectExtInst(ResVReg, ResType, I, CL::u_mul_hi);
837
838 case TargetOpcode::G_SADDSAT:
839 return selectExtInst(ResVReg, ResType, I, CL::s_add_sat);
840 case TargetOpcode::G_UADDSAT:
841 return selectExtInst(ResVReg, ResType, I, CL::u_add_sat);
842 case TargetOpcode::G_SSUBSAT:
843 return selectExtInst(ResVReg, ResType, I, CL::s_sub_sat);
844 case TargetOpcode::G_USUBSAT:
845 return selectExtInst(ResVReg, ResType, I, CL::u_sub_sat);
846
847 case TargetOpcode::G_FFREXP:
848 return selectFrexp(ResVReg, ResType, I);
849
850 case TargetOpcode::G_UADDO:
851 return selectOverflowArith(ResVReg, ResType, I,
852 ResType->getOpcode() == SPIRV::OpTypeVector
853 ? SPIRV::OpIAddCarryV
854 : SPIRV::OpIAddCarryS);
855 case TargetOpcode::G_USUBO:
856 return selectOverflowArith(ResVReg, ResType, I,
857 ResType->getOpcode() == SPIRV::OpTypeVector
858 ? SPIRV::OpISubBorrowV
859 : SPIRV::OpISubBorrowS);
860 case TargetOpcode::G_UMULO:
861 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpUMulExtended);
862 case TargetOpcode::G_SMULO:
863 return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpSMulExtended);
864
865 case TargetOpcode::G_SEXT:
866 return selectExt(ResVReg, ResType, I, true);
867 case TargetOpcode::G_ANYEXT:
868 case TargetOpcode::G_ZEXT:
869 return selectExt(ResVReg, ResType, I, false);
870 case TargetOpcode::G_TRUNC:
871 return selectTrunc(ResVReg, ResType, I);
872 case TargetOpcode::G_FPTRUNC:
873 case TargetOpcode::G_FPEXT:
874 return selectUnOp(ResVReg, ResType, I, SPIRV::OpFConvert);
875
876 case TargetOpcode::G_PTRTOINT:
877 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertPtrToU);
878 case TargetOpcode::G_INTTOPTR:
879 return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertUToPtr);
880 case TargetOpcode::G_BITCAST:
881 return selectBitcast(ResVReg, ResType, I);
882 case TargetOpcode::G_ADDRSPACE_CAST:
883 return selectAddrSpaceCast(ResVReg, ResType, I);
884 case TargetOpcode::G_PTR_ADD: {
885 // Currently, we get G_PTR_ADD only applied to global variables.
886 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
887 Register GV = I.getOperand(1).getReg();
888 MachineRegisterInfo::def_instr_iterator II = MRI->def_instr_begin(GV);
889 (void)II;
890 assert(((*II).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
891 (*II).getOpcode() == TargetOpcode::COPY ||
892 (*II).getOpcode() == SPIRV::OpVariable) &&
893 getImm(I.getOperand(2), MRI));
894 // It may be the initialization of a global variable.
895 bool IsGVInit = false;
897 UseIt = MRI->use_instr_begin(I.getOperand(0).getReg()),
898 UseEnd = MRI->use_instr_end();
899 UseIt != UseEnd; UseIt = std::next(UseIt)) {
900 if ((*UseIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
901 (*UseIt).getOpcode() == SPIRV::OpVariable) {
902 IsGVInit = true;
903 break;
904 }
905 }
906 MachineBasicBlock &BB = *I.getParent();
907 if (!IsGVInit) {
908 SPIRVType *GVType = GR.getSPIRVTypeForVReg(GV);
909 SPIRVType *GVPointeeType = GR.getPointeeType(GVType);
910 SPIRVType *ResPointeeType = GR.getPointeeType(ResType);
911 if (GVPointeeType && ResPointeeType && GVPointeeType != ResPointeeType) {
912 // Build a new virtual register that is associated with the required
913 // data type.
914 Register NewVReg = MRI->createGenericVirtualRegister(MRI->getType(GV));
915 MRI->setRegClass(NewVReg, MRI->getRegClass(GV));
916 // Having a correctly typed base we are ready to build the actually
917 // required GEP. It may not be a constant though, because all Operands
918 // of OpSpecConstantOp is to originate from other const instructions,
919 // and only the AccessChain named opcodes accept a global OpVariable
920 // instruction. We can't use an AccessChain opcode because of the type
921 // mismatch between result and base types.
922 if (!GR.isBitcastCompatible(ResType, GVType))
924 "incompatible result and operand types in a bitcast");
925 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
926 MachineInstrBuilder MIB =
927 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitcast))
928 .addDef(NewVReg)
929 .addUse(ResTypeReg)
930 .addUse(GV);
931 return MIB.constrainAllUses(TII, TRI, RBI) &&
932 BuildMI(BB, I, I.getDebugLoc(),
933 TII.get(STI.isLogicalSPIRV()
934 ? SPIRV::OpInBoundsAccessChain
935 : SPIRV::OpInBoundsPtrAccessChain))
936 .addDef(ResVReg)
937 .addUse(ResTypeReg)
938 .addUse(NewVReg)
939 .addUse(I.getOperand(2).getReg())
940 .constrainAllUses(TII, TRI, RBI);
941 } else {
942 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
943 .addDef(ResVReg)
944 .addUse(GR.getSPIRVTypeID(ResType))
945 .addImm(
946 static_cast<uint32_t>(SPIRV::Opcode::InBoundsPtrAccessChain))
947 .addUse(GV)
948 .addUse(I.getOperand(2).getReg())
949 .constrainAllUses(TII, TRI, RBI);
950 }
951 }
952 // It's possible to translate G_PTR_ADD to OpSpecConstantOp: either to
953 // initialize a global variable with a constant expression (e.g., the test
954 // case opencl/basic/progvar_prog_scope_init.ll), or for another use case
955 Register Idx = buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
956 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
957 .addDef(ResVReg)
958 .addUse(GR.getSPIRVTypeID(ResType))
959 .addImm(static_cast<uint32_t>(
960 SPIRV::Opcode::InBoundsPtrAccessChain))
961 .addUse(GV)
962 .addUse(Idx)
963 .addUse(I.getOperand(2).getReg());
964 return MIB.constrainAllUses(TII, TRI, RBI);
965 }
966
967 case TargetOpcode::G_ATOMICRMW_OR:
968 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicOr);
969 case TargetOpcode::G_ATOMICRMW_ADD:
970 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicIAdd);
971 case TargetOpcode::G_ATOMICRMW_AND:
972 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicAnd);
973 case TargetOpcode::G_ATOMICRMW_MAX:
974 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMax);
975 case TargetOpcode::G_ATOMICRMW_MIN:
976 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMin);
977 case TargetOpcode::G_ATOMICRMW_SUB:
978 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicISub);
979 case TargetOpcode::G_ATOMICRMW_XOR:
980 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicXor);
981 case TargetOpcode::G_ATOMICRMW_UMAX:
982 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMax);
983 case TargetOpcode::G_ATOMICRMW_UMIN:
984 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMin);
985 case TargetOpcode::G_ATOMICRMW_XCHG:
986 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicExchange);
987 case TargetOpcode::G_ATOMIC_CMPXCHG:
988 return selectAtomicCmpXchg(ResVReg, ResType, I);
989
990 case TargetOpcode::G_ATOMICRMW_FADD:
991 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT);
992 case TargetOpcode::G_ATOMICRMW_FSUB:
993 // Translate G_ATOMICRMW_FSUB to OpAtomicFAddEXT with negative value operand
994 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT,
995 SPIRV::OpFNegate);
996 case TargetOpcode::G_ATOMICRMW_FMIN:
997 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMinEXT);
998 case TargetOpcode::G_ATOMICRMW_FMAX:
999 return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMaxEXT);
1000
1001 case TargetOpcode::G_FENCE:
1002 return selectFence(I);
1003
1004 case TargetOpcode::G_STACKSAVE:
1005 return selectStackSave(ResVReg, ResType, I);
1006 case TargetOpcode::G_STACKRESTORE:
1007 return selectStackRestore(I);
1008
1009 case TargetOpcode::G_UNMERGE_VALUES:
1010 return selectUnmergeValues(I);
1011
1012 // Discard gen opcodes for intrinsics which we do not expect to actually
1013 // represent code after lowering or intrinsics which are not implemented but
1014 // should not crash when found in a customer's LLVM IR input.
1015 case TargetOpcode::G_TRAP:
1016 case TargetOpcode::G_UBSANTRAP:
1017 case TargetOpcode::DBG_LABEL:
1018 return true;
1019 case TargetOpcode::G_DEBUGTRAP:
1020 return selectDebugTrap(ResVReg, ResType, I);
1021
1022 default:
1023 return false;
1024 }
1025}
1026
1027bool SPIRVInstructionSelector::selectDebugTrap(Register ResVReg,
1028 const SPIRVType *ResType,
1029 MachineInstr &I) const {
1030 unsigned Opcode = SPIRV::OpNop;
1031 MachineBasicBlock &BB = *I.getParent();
1032 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
1033 .constrainAllUses(TII, TRI, RBI);
1034}
1035
1036bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1037 const SPIRVType *ResType,
1038 MachineInstr &I,
1039 GL::GLSLExtInst GLInst) const {
1040 if (!STI.canUseExtInstSet(
1041 SPIRV::InstructionSet::InstructionSet::GLSL_std_450)) {
1042 std::string DiagMsg;
1043 raw_string_ostream OS(DiagMsg);
1044 I.print(OS, true, false, false, false);
1045 DiagMsg += " is only supported with the GLSL extended instruction set.\n";
1046 report_fatal_error(DiagMsg.c_str(), false);
1047 }
1048 return selectExtInst(ResVReg, ResType, I,
1049 {{SPIRV::InstructionSet::GLSL_std_450, GLInst}});
1050}
1051
1052bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1053 const SPIRVType *ResType,
1054 MachineInstr &I,
1055 CL::OpenCLExtInst CLInst) const {
1056 return selectExtInst(ResVReg, ResType, I,
1057 {{SPIRV::InstructionSet::OpenCL_std, CLInst}});
1058}
1059
1060bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1061 const SPIRVType *ResType,
1062 MachineInstr &I,
1063 CL::OpenCLExtInst CLInst,
1064 GL::GLSLExtInst GLInst) const {
1065 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1066 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1067 return selectExtInst(ResVReg, ResType, I, ExtInsts);
1068}
1069
1070bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
1071 const SPIRVType *ResType,
1072 MachineInstr &I,
1073 const ExtInstList &Insts) const {
1074
1075 for (const auto &Ex : Insts) {
1076 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1077 uint32_t Opcode = Ex.second;
1078 if (STI.canUseExtInstSet(Set)) {
1079 MachineBasicBlock &BB = *I.getParent();
1080 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1081 .addDef(ResVReg)
1082 .addUse(GR.getSPIRVTypeID(ResType))
1083 .addImm(static_cast<uint32_t>(Set))
1084 .addImm(Opcode)
1085 .setMIFlags(I.getFlags());
1086 const unsigned NumOps = I.getNumOperands();
1087 unsigned Index = 1;
1088 if (Index < NumOps &&
1089 I.getOperand(Index).getType() ==
1090 MachineOperand::MachineOperandType::MO_IntrinsicID)
1091 Index = 2;
1092 for (; Index < NumOps; ++Index)
1093 MIB.add(I.getOperand(Index));
1094 return MIB.constrainAllUses(TII, TRI, RBI);
1095 }
1096 }
1097 return false;
1098}
1099bool SPIRVInstructionSelector::selectExtInstForLRound(
1100 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
1101 CL::OpenCLExtInst CLInst, GL::GLSLExtInst GLInst) const {
1102 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
1103 {SPIRV::InstructionSet::GLSL_std_450, GLInst}};
1104 return selectExtInstForLRound(ResVReg, ResType, I, ExtInsts);
1105}
1106
1107bool SPIRVInstructionSelector::selectExtInstForLRound(
1108 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
1109 const ExtInstList &Insts) const {
1110 for (const auto &Ex : Insts) {
1111 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1112 uint32_t Opcode = Ex.second;
1113 if (STI.canUseExtInstSet(Set)) {
1114 MachineBasicBlock &BB = *I.getParent();
1115 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1116 .addDef(ResVReg)
1117 .addUse(GR.getSPIRVTypeID(ResType))
1118 .addImm(static_cast<uint32_t>(Set))
1119 .addImm(Opcode);
1120 const unsigned NumOps = I.getNumOperands();
1121 unsigned Index = 1;
1122 if (Index < NumOps &&
1123 I.getOperand(Index).getType() ==
1124 MachineOperand::MachineOperandType::MO_IntrinsicID)
1125 Index = 2;
1126 for (; Index < NumOps; ++Index)
1127 MIB.add(I.getOperand(Index));
1128 MIB.constrainAllUses(TII, TRI, RBI);
1129 return true;
1130 }
1131 }
1132 return false;
1133}
1134
1135bool SPIRVInstructionSelector::selectFrexp(Register ResVReg,
1136 const SPIRVType *ResType,
1137 MachineInstr &I) const {
1138 ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CL::frexp},
1139 {SPIRV::InstructionSet::GLSL_std_450, GL::Frexp}};
1140 for (const auto &Ex : ExtInsts) {
1141 SPIRV::InstructionSet::InstructionSet Set = Ex.first;
1142 uint32_t Opcode = Ex.second;
1143 if (!STI.canUseExtInstSet(Set))
1144 continue;
1145
1146 MachineIRBuilder MIRBuilder(I);
1147 SPIRVType *PointeeTy = GR.getSPIRVTypeForVReg(I.getOperand(1).getReg());
1149 PointeeTy, MIRBuilder, SPIRV::StorageClass::Function);
1150 Register PointerVReg =
1151 createVirtualRegister(PointerType, &GR, MRI, MRI->getMF());
1152
1153 auto It = getOpVariableMBBIt(I);
1154 auto MIB = BuildMI(*It->getParent(), It, It->getDebugLoc(),
1155 TII.get(SPIRV::OpVariable))
1156 .addDef(PointerVReg)
1157 .addUse(GR.getSPIRVTypeID(PointerType))
1158 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
1159 .constrainAllUses(TII, TRI, RBI);
1160
1161 MIB = MIB &
1162 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
1163 .addDef(ResVReg)
1164 .addUse(GR.getSPIRVTypeID(ResType))
1165 .addImm(static_cast<uint32_t>(Ex.first))
1166 .addImm(Opcode)
1167 .add(I.getOperand(2))
1168 .addUse(PointerVReg)
1169 .constrainAllUses(TII, TRI, RBI);
1170
1171 MIB = MIB &
1172 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1173 .addDef(I.getOperand(1).getReg())
1174 .addUse(GR.getSPIRVTypeID(PointeeTy))
1175 .addUse(PointerVReg)
1176 .constrainAllUses(TII, TRI, RBI);
1177 return MIB;
1178 }
1179 return false;
1180}
1181
1182bool SPIRVInstructionSelector::selectOpWithSrcs(Register ResVReg,
1183 const SPIRVType *ResType,
1184 MachineInstr &I,
1185 std::vector<Register> Srcs,
1186 unsigned Opcode) const {
1187 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
1188 .addDef(ResVReg)
1189 .addUse(GR.getSPIRVTypeID(ResType));
1190 for (Register SReg : Srcs) {
1191 MIB.addUse(SReg);
1192 }
1193 return MIB.constrainAllUses(TII, TRI, RBI);
1194}
1195
1196bool SPIRVInstructionSelector::selectUnOp(Register ResVReg,
1197 const SPIRVType *ResType,
1198 MachineInstr &I,
1199 unsigned Opcode) const {
1200 if (STI.isPhysicalSPIRV() && I.getOperand(1).isReg()) {
1201 Register SrcReg = I.getOperand(1).getReg();
1202 bool IsGV = false;
1204 MRI->def_instr_begin(SrcReg);
1205 DefIt != MRI->def_instr_end(); DefIt = std::next(DefIt)) {
1206 if ((*DefIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
1207 (*DefIt).getOpcode() == SPIRV::OpVariable) {
1208 IsGV = true;
1209 break;
1210 }
1211 }
1212 if (IsGV) {
1213 uint32_t SpecOpcode = 0;
1214 switch (Opcode) {
1215 case SPIRV::OpConvertPtrToU:
1216 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertPtrToU);
1217 break;
1218 case SPIRV::OpConvertUToPtr:
1219 SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertUToPtr);
1220 break;
1221 }
1222 if (SpecOpcode)
1223 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1224 TII.get(SPIRV::OpSpecConstantOp))
1225 .addDef(ResVReg)
1226 .addUse(GR.getSPIRVTypeID(ResType))
1227 .addImm(SpecOpcode)
1228 .addUse(SrcReg)
1229 .constrainAllUses(TII, TRI, RBI);
1230 }
1231 }
1232 return selectOpWithSrcs(ResVReg, ResType, I, {I.getOperand(1).getReg()},
1233 Opcode);
1234}
1235
1236bool SPIRVInstructionSelector::selectBitcast(Register ResVReg,
1237 const SPIRVType *ResType,
1238 MachineInstr &I) const {
1239 Register OpReg = I.getOperand(1).getReg();
1240 SPIRVType *OpType = OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr;
1241 if (!GR.isBitcastCompatible(ResType, OpType))
1242 report_fatal_error("incompatible result and operand types in a bitcast");
1243 return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast);
1244}
1245
1248 MachineIRBuilder &MIRBuilder,
1249 SPIRVGlobalRegistry &GR) {
1250 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1251 if (MemOp->isVolatile())
1252 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1253 if (MemOp->isNonTemporal())
1254 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1255 if (MemOp->getAlign().value())
1256 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned);
1257
1258 [[maybe_unused]] MachineInstr *AliasList = nullptr;
1259 [[maybe_unused]] MachineInstr *NoAliasList = nullptr;
1260 const SPIRVSubtarget *ST =
1261 static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
1262 if (ST->canUseExtension(SPIRV::Extension::SPV_INTEL_memory_access_aliasing)) {
1263 if (auto *MD = MemOp->getAAInfo().Scope) {
1264 AliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1265 if (AliasList)
1266 SpvMemOp |=
1267 static_cast<uint32_t>(SPIRV::MemoryOperand::AliasScopeINTELMask);
1268 }
1269 if (auto *MD = MemOp->getAAInfo().NoAlias) {
1270 NoAliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
1271 if (NoAliasList)
1272 SpvMemOp |=
1273 static_cast<uint32_t>(SPIRV::MemoryOperand::NoAliasINTELMask);
1274 }
1275 }
1276
1277 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None)) {
1278 MIB.addImm(SpvMemOp);
1279 if (SpvMemOp & static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned))
1280 MIB.addImm(MemOp->getAlign().value());
1281 if (AliasList)
1282 MIB.addUse(AliasList->getOperand(0).getReg());
1283 if (NoAliasList)
1284 MIB.addUse(NoAliasList->getOperand(0).getReg());
1285 }
1286}
1287
1289 uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
1291 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
1293 SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
1294
1295 if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None))
1296 MIB.addImm(SpvMemOp);
1297}
1298
1299bool SPIRVInstructionSelector::selectLoad(Register ResVReg,
1300 const SPIRVType *ResType,
1301 MachineInstr &I) const {
1302 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1303 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1304
1305 auto *PtrDef = getVRegDef(*MRI, Ptr);
1306 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1307 if (IntPtrDef &&
1308 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1309 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1310 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1311 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1312 Register NewHandleReg =
1313 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1314 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1315 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1316 return false;
1317 }
1318
1319 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1320 return generateImageRead(ResVReg, ResType, NewHandleReg, IdxReg,
1321 I.getDebugLoc(), I);
1322 }
1323 }
1324
1325 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
1326 .addDef(ResVReg)
1327 .addUse(GR.getSPIRVTypeID(ResType))
1328 .addUse(Ptr);
1329 if (!I.getNumMemOperands()) {
1330 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1331 I.getOpcode() ==
1332 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1333 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1334 } else {
1335 MachineIRBuilder MIRBuilder(I);
1336 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1337 }
1338 return MIB.constrainAllUses(TII, TRI, RBI);
1339}
1340
1341bool SPIRVInstructionSelector::selectStore(MachineInstr &I) const {
1342 unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
1343 Register StoreVal = I.getOperand(0 + OpOffset).getReg();
1344 Register Ptr = I.getOperand(1 + OpOffset).getReg();
1345
1346 auto *PtrDef = getVRegDef(*MRI, Ptr);
1347 auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
1348 if (IntPtrDef &&
1349 IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
1350 Register HandleReg = IntPtrDef->getOperand(2).getReg();
1351 Register NewHandleReg =
1352 MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
1353 auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
1354 SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
1355 if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
1356 return false;
1357 }
1358
1359 Register IdxReg = IntPtrDef->getOperand(3).getReg();
1360 if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
1361 auto BMI = BuildMI(*I.getParent(), I, I.getDebugLoc(),
1362 TII.get(SPIRV::OpImageWrite))
1363 .addUse(NewHandleReg)
1364 .addUse(IdxReg)
1365 .addUse(StoreVal);
1366
1367 const llvm::Type *LLVMHandleType = GR.getTypeForSPIRVType(HandleType);
1368 if (sampledTypeIsSignedInteger(LLVMHandleType))
1369 BMI.addImm(0x1000); // SignExtend
1370
1371 return BMI.constrainAllUses(TII, TRI, RBI);
1372 }
1373 }
1374
1375 MachineBasicBlock &BB = *I.getParent();
1376 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpStore))
1377 .addUse(Ptr)
1378 .addUse(StoreVal);
1379 if (!I.getNumMemOperands()) {
1380 assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
1381 I.getOpcode() ==
1382 TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
1383 addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
1384 } else {
1385 MachineIRBuilder MIRBuilder(I);
1386 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1387 }
1388 return MIB.constrainAllUses(TII, TRI, RBI);
1389}
1390
1391bool SPIRVInstructionSelector::selectStackSave(Register ResVReg,
1392 const SPIRVType *ResType,
1393 MachineInstr &I) const {
1394 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1396 "llvm.stacksave intrinsic: this instruction requires the following "
1397 "SPIR-V extension: SPV_INTEL_variable_length_array",
1398 false);
1399 MachineBasicBlock &BB = *I.getParent();
1400 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSaveMemoryINTEL))
1401 .addDef(ResVReg)
1402 .addUse(GR.getSPIRVTypeID(ResType))
1403 .constrainAllUses(TII, TRI, RBI);
1404}
1405
1406bool SPIRVInstructionSelector::selectStackRestore(MachineInstr &I) const {
1407 if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
1409 "llvm.stackrestore intrinsic: this instruction requires the following "
1410 "SPIR-V extension: SPV_INTEL_variable_length_array",
1411 false);
1412 if (!I.getOperand(0).isReg())
1413 return false;
1414 MachineBasicBlock &BB = *I.getParent();
1415 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpRestoreMemoryINTEL))
1416 .addUse(I.getOperand(0).getReg())
1417 .constrainAllUses(TII, TRI, RBI);
1418}
1419
1420bool SPIRVInstructionSelector::selectMemOperation(Register ResVReg,
1421 MachineInstr &I) const {
1422 MachineBasicBlock &BB = *I.getParent();
1423 Register SrcReg = I.getOperand(1).getReg();
1424 bool Result = true;
1425 if (I.getOpcode() == TargetOpcode::G_MEMSET) {
1426 MachineIRBuilder MIRBuilder(I);
1427 assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
1428 unsigned Val = getIConstVal(I.getOperand(1).getReg(), MRI);
1429 unsigned Num = getIConstVal(I.getOperand(2).getReg(), MRI);
1430 Type *ValTy = Type::getInt8Ty(I.getMF()->getFunction().getContext());
1431 Type *ArrTy = ArrayType::get(ValTy, Num);
1433 ArrTy, MIRBuilder, SPIRV::StorageClass::UniformConstant);
1434
1435 SPIRVType *SpvArrTy = GR.getOrCreateSPIRVType(
1436 ArrTy, MIRBuilder, SPIRV::AccessQualifier::None, false);
1437 Register Const = GR.getOrCreateConstIntArray(Val, Num, I, SpvArrTy, TII);
1438 // TODO: check if we have such GV, add init, use buildGlobalVariable.
1439 Function &CurFunction = GR.CurMF->getFunction();
1440 Type *LLVMArrTy =
1441 ArrayType::get(IntegerType::get(CurFunction.getContext(), 8), Num);
1442 // Module takes ownership of the global var.
1443 GlobalVariable *GV = new GlobalVariable(*CurFunction.getParent(), LLVMArrTy,
1445 Constant::getNullValue(LLVMArrTy));
1446 Register VarReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1447 auto MIBVar =
1448 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
1449 .addDef(VarReg)
1450 .addUse(GR.getSPIRVTypeID(VarTy))
1451 .addImm(SPIRV::StorageClass::UniformConstant)
1452 .addUse(Const);
1453 Result &= MIBVar.constrainAllUses(TII, TRI, RBI);
1454
1455 GR.add(GV, MIBVar);
1456 GR.addGlobalObject(GV, GR.CurMF, VarReg);
1457
1458 buildOpDecorate(VarReg, I, TII, SPIRV::Decoration::Constant, {});
1460 ValTy, I, SPIRV::StorageClass::UniformConstant);
1461 SrcReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1462 selectOpWithSrcs(SrcReg, SourceTy, I, {VarReg}, SPIRV::OpBitcast);
1463 }
1464 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemorySized))
1465 .addUse(I.getOperand(0).getReg())
1466 .addUse(SrcReg)
1467 .addUse(I.getOperand(2).getReg());
1468 if (I.getNumMemOperands()) {
1469 MachineIRBuilder MIRBuilder(I);
1470 addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
1471 }
1472 Result &= MIB.constrainAllUses(TII, TRI, RBI);
1473 if (ResVReg.isValid() && ResVReg != MIB->getOperand(0).getReg())
1474 Result &= BuildCOPY(ResVReg, MIB->getOperand(0).getReg(), I);
1475 return Result;
1476}
1477
1478bool SPIRVInstructionSelector::selectAtomicRMW(Register ResVReg,
1479 const SPIRVType *ResType,
1480 MachineInstr &I,
1481 unsigned NewOpcode,
1482 unsigned NegateOpcode) const {
1483 bool Result = true;
1484 assert(I.hasOneMemOperand());
1485 const MachineMemOperand *MemOp = *I.memoperands_begin();
1486 uint32_t Scope = static_cast<uint32_t>(getMemScope(
1487 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1488 auto ScopeConstant = buildI32Constant(Scope, I);
1489 Register ScopeReg = ScopeConstant.first;
1490 Result &= ScopeConstant.second;
1491
1492 Register Ptr = I.getOperand(1).getReg();
1493 // TODO: Changed as it's implemented in the translator. See test/atomicrmw.ll
1494 // auto ScSem =
1495 // getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr));
1496 AtomicOrdering AO = MemOp->getSuccessOrdering();
1497 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1498 auto MemSemConstant = buildI32Constant(MemSem /*| ScSem*/, I);
1499 Register MemSemReg = MemSemConstant.first;
1500 Result &= MemSemConstant.second;
1501
1502 Register ValueReg = I.getOperand(2).getReg();
1503 if (NegateOpcode != 0) {
1504 // Translation with negative value operand is requested
1505 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, MRI->getMF());
1506 Result &= selectOpWithSrcs(TmpReg, ResType, I, {ValueReg}, NegateOpcode);
1507 ValueReg = TmpReg;
1508 }
1509
1510 return Result &&
1511 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(NewOpcode))
1512 .addDef(ResVReg)
1513 .addUse(GR.getSPIRVTypeID(ResType))
1514 .addUse(Ptr)
1515 .addUse(ScopeReg)
1516 .addUse(MemSemReg)
1517 .addUse(ValueReg)
1518 .constrainAllUses(TII, TRI, RBI);
1519}
1520
1521bool SPIRVInstructionSelector::selectUnmergeValues(MachineInstr &I) const {
1522 unsigned ArgI = I.getNumOperands() - 1;
1523 Register SrcReg =
1524 I.getOperand(ArgI).isReg() ? I.getOperand(ArgI).getReg() : Register(0);
1525 SPIRVType *DefType =
1526 SrcReg.isValid() ? GR.getSPIRVTypeForVReg(SrcReg) : nullptr;
1527 if (!DefType || DefType->getOpcode() != SPIRV::OpTypeVector)
1529 "cannot select G_UNMERGE_VALUES with a non-vector argument");
1530
1531 SPIRVType *ScalarType =
1532 GR.getSPIRVTypeForVReg(DefType->getOperand(1).getReg());
1533 MachineBasicBlock &BB = *I.getParent();
1534 bool Res = false;
1535 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1536 Register ResVReg = I.getOperand(i).getReg();
1537 SPIRVType *ResType = GR.getSPIRVTypeForVReg(ResVReg);
1538 if (!ResType) {
1539 // There was no "assign type" actions, let's fix this now
1540 ResType = ScalarType;
1541 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
1542 MRI->setType(ResVReg, LLT::scalar(GR.getScalarOrVectorBitWidth(ResType)));
1543 GR.assignSPIRVTypeToVReg(ResType, ResVReg, *GR.CurMF);
1544 }
1545 auto MIB =
1546 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1547 .addDef(ResVReg)
1548 .addUse(GR.getSPIRVTypeID(ResType))
1549 .addUse(SrcReg)
1550 .addImm(static_cast<int64_t>(i));
1551 Res |= MIB.constrainAllUses(TII, TRI, RBI);
1552 }
1553 return Res;
1554}
1555
1556bool SPIRVInstructionSelector::selectFence(MachineInstr &I) const {
1557 AtomicOrdering AO = AtomicOrdering(I.getOperand(0).getImm());
1558 uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
1559 auto MemSemConstant = buildI32Constant(MemSem, I);
1560 Register MemSemReg = MemSemConstant.first;
1561 bool Result = MemSemConstant.second;
1562 SyncScope::ID Ord = SyncScope::ID(I.getOperand(1).getImm());
1563 uint32_t Scope = static_cast<uint32_t>(
1564 getMemScope(GR.CurMF->getFunction().getContext(), Ord));
1565 auto ScopeConstant = buildI32Constant(Scope, I);
1566 Register ScopeReg = ScopeConstant.first;
1567 Result &= ScopeConstant.second;
1568 MachineBasicBlock &BB = *I.getParent();
1569 return Result &&
1570 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemoryBarrier))
1571 .addUse(ScopeReg)
1572 .addUse(MemSemReg)
1573 .constrainAllUses(TII, TRI, RBI);
1574}
1575
1576bool SPIRVInstructionSelector::selectOverflowArith(Register ResVReg,
1577 const SPIRVType *ResType,
1578 MachineInstr &I,
1579 unsigned Opcode) const {
1580 Type *ResTy = nullptr;
1581 StringRef ResName;
1582 if (!GR.findValueAttrs(&I, ResTy, ResName))
1584 "Not enough info to select the arithmetic with overflow instruction");
1585 if (!ResTy || !ResTy->isStructTy())
1586 report_fatal_error("Expect struct type result for the arithmetic "
1587 "with overflow instruction");
1588 // "Result Type must be from OpTypeStruct. The struct must have two members,
1589 // and the two members must be the same type."
1590 Type *ResElemTy = cast<StructType>(ResTy)->getElementType(0);
1591 ResTy = StructType::get(ResElemTy, ResElemTy);
1592 // Build SPIR-V types and constant(s) if needed.
1593 MachineIRBuilder MIRBuilder(I);
1594 SPIRVType *StructType = GR.getOrCreateSPIRVType(
1595 ResTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false);
1596 assert(I.getNumDefs() > 1 && "Not enought operands");
1597 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
1598 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
1599 if (N > 1)
1600 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
1601 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
1602 Register ZeroReg = buildZerosVal(ResType, I);
1603 // A new virtual register to store the result struct.
1604 Register StructVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1605 MRI->setRegClass(StructVReg, &SPIRV::IDRegClass);
1606 // Build the result name if needed.
1607 if (ResName.size() > 0)
1608 buildOpName(StructVReg, ResName, MIRBuilder);
1609 // Build the arithmetic with overflow instruction.
1610 MachineBasicBlock &BB = *I.getParent();
1611 auto MIB =
1612 BuildMI(BB, MIRBuilder.getInsertPt(), I.getDebugLoc(), TII.get(Opcode))
1613 .addDef(StructVReg)
1614 .addUse(GR.getSPIRVTypeID(StructType));
1615 for (unsigned i = I.getNumDefs(); i < I.getNumOperands(); ++i)
1616 MIB.addUse(I.getOperand(i).getReg());
1617 bool Result = MIB.constrainAllUses(TII, TRI, RBI);
1618 // Build instructions to extract fields of the instruction's result.
1619 // A new virtual register to store the higher part of the result struct.
1620 Register HigherVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
1621 MRI->setRegClass(HigherVReg, &SPIRV::iIDRegClass);
1622 for (unsigned i = 0; i < I.getNumDefs(); ++i) {
1623 auto MIB =
1624 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
1625 .addDef(i == 1 ? HigherVReg : I.getOperand(i).getReg())
1626 .addUse(GR.getSPIRVTypeID(ResType))
1627 .addUse(StructVReg)
1628 .addImm(i);
1629 Result &= MIB.constrainAllUses(TII, TRI, RBI);
1630 }
1631 // Build boolean value from the higher part.
1632 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
1633 .addDef(I.getOperand(1).getReg())
1634 .addUse(BoolTypeReg)
1635 .addUse(HigherVReg)
1636 .addUse(ZeroReg)
1637 .constrainAllUses(TII, TRI, RBI);
1638}
1639
1640bool SPIRVInstructionSelector::selectAtomicCmpXchg(Register ResVReg,
1641 const SPIRVType *ResType,
1642 MachineInstr &I) const {
1643 bool Result = true;
1644 Register ScopeReg;
1645 Register MemSemEqReg;
1646 Register MemSemNeqReg;
1647 Register Ptr = I.getOperand(2).getReg();
1648 if (!isa<GIntrinsic>(I)) {
1649 assert(I.hasOneMemOperand());
1650 const MachineMemOperand *MemOp = *I.memoperands_begin();
1651 unsigned Scope = static_cast<uint32_t>(getMemScope(
1652 GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
1653 auto ScopeConstant = buildI32Constant(Scope, I);
1654 ScopeReg = ScopeConstant.first;
1655 Result &= ScopeConstant.second;
1656
1657 unsigned ScSem = static_cast<uint32_t>(
1659 AtomicOrdering AO = MemOp->getSuccessOrdering();
1660 unsigned MemSemEq = static_cast<uint32_t>(getMemSemantics(AO)) | ScSem;
1661 auto MemSemEqConstant = buildI32Constant(MemSemEq, I);
1662 MemSemEqReg = MemSemEqConstant.first;
1663 Result &= MemSemEqConstant.second;
1664 AtomicOrdering FO = MemOp->getFailureOrdering();
1665 unsigned MemSemNeq = static_cast<uint32_t>(getMemSemantics(FO)) | ScSem;
1666 if (MemSemEq == MemSemNeq)
1667 MemSemNeqReg = MemSemEqReg;
1668 else {
1669 auto MemSemNeqConstant = buildI32Constant(MemSemEq, I);
1670 MemSemNeqReg = MemSemNeqConstant.first;
1671 Result &= MemSemNeqConstant.second;
1672 }
1673 } else {
1674 ScopeReg = I.getOperand(5).getReg();
1675 MemSemEqReg = I.getOperand(6).getReg();
1676 MemSemNeqReg = I.getOperand(7).getReg();
1677 }
1678
1679 Register Cmp = I.getOperand(3).getReg();
1680 Register Val = I.getOperand(4).getReg();
1681 SPIRVType *SpvValTy = GR.getSPIRVTypeForVReg(Val);
1682 Register ACmpRes = createVirtualRegister(SpvValTy, &GR, MRI, *I.getMF());
1683 const DebugLoc &DL = I.getDebugLoc();
1684 Result &=
1685 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpAtomicCompareExchange))
1686 .addDef(ACmpRes)
1687 .addUse(GR.getSPIRVTypeID(SpvValTy))
1688 .addUse(Ptr)
1689 .addUse(ScopeReg)
1690 .addUse(MemSemEqReg)
1691 .addUse(MemSemNeqReg)
1692 .addUse(Val)
1693 .addUse(Cmp)
1694 .constrainAllUses(TII, TRI, RBI);
1695 SPIRVType *BoolTy = GR.getOrCreateSPIRVBoolType(I, TII);
1696 Register CmpSuccReg = createVirtualRegister(BoolTy, &GR, MRI, *I.getMF());
1697 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpIEqual))
1698 .addDef(CmpSuccReg)
1699 .addUse(GR.getSPIRVTypeID(BoolTy))
1700 .addUse(ACmpRes)
1701 .addUse(Cmp)
1702 .constrainAllUses(TII, TRI, RBI);
1703 Register TmpReg = createVirtualRegister(ResType, &GR, MRI, *I.getMF());
1704 Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1705 .addDef(TmpReg)
1706 .addUse(GR.getSPIRVTypeID(ResType))
1707 .addUse(ACmpRes)
1708 .addUse(GR.getOrCreateUndef(I, ResType, TII))
1709 .addImm(0)
1710 .constrainAllUses(TII, TRI, RBI);
1711 return Result &&
1712 BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
1713 .addDef(ResVReg)
1714 .addUse(GR.getSPIRVTypeID(ResType))
1715 .addUse(CmpSuccReg)
1716 .addUse(TmpReg)
1717 .addImm(1)
1718 .constrainAllUses(TII, TRI, RBI);
1719}
1720
1721static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC) {
1722 switch (SC) {
1723 case SPIRV::StorageClass::DeviceOnlyINTEL:
1724 case SPIRV::StorageClass::HostOnlyINTEL:
1725 return true;
1726 default:
1727 return false;
1728 }
1729}
1730
1731// Returns true ResVReg is referred only from global vars and OpName's.
1733 bool IsGRef = false;
1734 bool IsAllowedRefs =
1735 llvm::all_of(MRI->use_instructions(ResVReg), [&IsGRef](auto const &It) {
1736 unsigned Opcode = It.getOpcode();
1737 if (Opcode == SPIRV::OpConstantComposite ||
1738 Opcode == SPIRV::OpVariable ||
1739 isSpvIntrinsic(It, Intrinsic::spv_init_global))
1740 return IsGRef = true;
1741 return Opcode == SPIRV::OpName;
1742 });
1743 return IsAllowedRefs && IsGRef;
1744}
1745
1746Register SPIRVInstructionSelector::getUcharPtrTypeReg(
1747 MachineInstr &I, SPIRV::StorageClass::StorageClass SC) const {
1749 Type::getInt8Ty(I.getMF()->getFunction().getContext()), I, SC));
1750}
1751
1752MachineInstrBuilder
1753SPIRVInstructionSelector::buildSpecConstantOp(MachineInstr &I, Register Dest,
1754 Register Src, Register DestType,
1755 uint32_t Opcode) const {
1756 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
1757 TII.get(SPIRV::OpSpecConstantOp))
1758 .addDef(Dest)
1759 .addUse(DestType)
1760 .addImm(Opcode)
1761 .addUse(Src);
1762}
1763
1764MachineInstrBuilder
1765SPIRVInstructionSelector::buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
1766 SPIRVType *SrcPtrTy) const {
1767 SPIRVType *GenericPtrTy =
1768 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
1769 Register Tmp = MRI->createVirtualRegister(&SPIRV::pIDRegClass);
1771 SPIRV::StorageClass::Generic),
1772 GR.getPointerSize()));
1773 MachineFunction *MF = I.getParent()->getParent();
1774 GR.assignSPIRVTypeToVReg(GenericPtrTy, Tmp, *MF);
1775 MachineInstrBuilder MIB = buildSpecConstantOp(
1776 I, Tmp, SrcPtr, GR.getSPIRVTypeID(GenericPtrTy),
1777 static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric));
1778 GR.add(MIB.getInstr(), MIB);
1779 return MIB;
1780}
1781
1782// In SPIR-V address space casting can only happen to and from the Generic
1783// storage class. We can also only cast Workgroup, CrossWorkgroup, or Function
1784// pointers to and from Generic pointers. As such, we can convert e.g. from
1785// Workgroup to Function by going via a Generic pointer as an intermediary. All
1786// other combinations can only be done by a bitcast, and are probably not safe.
1787bool SPIRVInstructionSelector::selectAddrSpaceCast(Register ResVReg,
1788 const SPIRVType *ResType,
1789 MachineInstr &I) const {
1790 MachineBasicBlock &BB = *I.getParent();
1791 const DebugLoc &DL = I.getDebugLoc();
1792
1793 Register SrcPtr = I.getOperand(1).getReg();
1794 SPIRVType *SrcPtrTy = GR.getSPIRVTypeForVReg(SrcPtr);
1795
1796 // don't generate a cast for a null that may be represented by OpTypeInt
1797 if (SrcPtrTy->getOpcode() != SPIRV::OpTypePointer ||
1798 ResType->getOpcode() != SPIRV::OpTypePointer)
1799 return BuildCOPY(ResVReg, SrcPtr, I);
1800
1801 SPIRV::StorageClass::StorageClass SrcSC = GR.getPointerStorageClass(SrcPtrTy);
1802 SPIRV::StorageClass::StorageClass DstSC = GR.getPointerStorageClass(ResType);
1803
1804 if (isASCastInGVar(MRI, ResVReg)) {
1805 // AddrSpaceCast uses within OpVariable and OpConstantComposite instructions
1806 // are expressed by OpSpecConstantOp with an Opcode.
1807 // TODO: maybe insert a check whether the Kernel capability was declared and
1808 // so PtrCastToGeneric/GenericCastToPtr are available.
1809 unsigned SpecOpcode =
1810 DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC)
1811 ? static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric)
1812 : (SrcSC == SPIRV::StorageClass::Generic &&
1814 ? static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr)
1815 : 0);
1816 // TODO: OpConstantComposite expects i8*, so we are forced to forget a
1817 // correct value of ResType and use general i8* instead. Maybe this should
1818 // be addressed in the emit-intrinsic step to infer a correct
1819 // OpConstantComposite type.
1820 if (SpecOpcode) {
1821 return buildSpecConstantOp(I, ResVReg, SrcPtr,
1822 getUcharPtrTypeReg(I, DstSC), SpecOpcode)
1823 .constrainAllUses(TII, TRI, RBI);
1824 } else if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
1825 MachineInstrBuilder MIB = buildConstGenericPtr(I, SrcPtr, SrcPtrTy);
1826 return MIB.constrainAllUses(TII, TRI, RBI) &&
1827 buildSpecConstantOp(
1828 I, ResVReg, MIB->getOperand(0).getReg(),
1829 getUcharPtrTypeReg(I, DstSC),
1830 static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr))
1831 .constrainAllUses(TII, TRI, RBI);
1832 }
1833 }
1834
1835 // don't generate a cast between identical storage classes
1836 if (SrcSC == DstSC)
1837 return BuildCOPY(ResVReg, SrcPtr, I);
1838
1839 if ((SrcSC == SPIRV::StorageClass::Function &&
1840 DstSC == SPIRV::StorageClass::Private) ||
1841 (DstSC == SPIRV::StorageClass::Function &&
1842 SrcSC == SPIRV::StorageClass::Private))
1843 return BuildCOPY(ResVReg, SrcPtr, I);
1844
1845 // Casting from an eligible pointer to Generic.
1846 if (DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC))
1847 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
1848 // Casting from Generic to an eligible pointer.
1849 if (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC))
1850 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
1851 // Casting between 2 eligible pointers using Generic as an intermediary.
1852 if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
1853 SPIRVType *GenericPtrTy =
1854 GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
1855 Register Tmp = createVirtualRegister(GenericPtrTy, &GR, MRI, MRI->getMF());
1856 bool Result = BuildMI(BB, I, DL, TII.get(SPIRV::OpPtrCastToGeneric))
1857 .addDef(Tmp)
1858 .addUse(GR.getSPIRVTypeID(GenericPtrTy))
1859 .addUse(SrcPtr)
1860 .constrainAllUses(TII, TRI, RBI);
1861 return Result && BuildMI(BB, I, DL, TII.get(SPIRV::OpGenericCastToPtr))
1862 .addDef(ResVReg)
1863 .addUse(GR.getSPIRVTypeID(ResType))
1864 .addUse(Tmp)
1865 .constrainAllUses(TII, TRI, RBI);
1866 }
1867
1868 // Check if instructions from the SPV_INTEL_usm_storage_classes extension may
1869 // be applied
1870 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::CrossWorkgroup)
1871 return selectUnOp(ResVReg, ResType, I,
1872 SPIRV::OpPtrCastToCrossWorkgroupINTEL);
1873 if (SrcSC == SPIRV::StorageClass::CrossWorkgroup && isUSMStorageClass(DstSC))
1874 return selectUnOp(ResVReg, ResType, I,
1875 SPIRV::OpCrossWorkgroupCastToPtrINTEL);
1876 if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::Generic)
1877 return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
1878 if (SrcSC == SPIRV::StorageClass::Generic && isUSMStorageClass(DstSC))
1879 return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
1880
1881 // Bitcast for pointers requires that the address spaces must match
1882 return false;
1883}
1884
1885static unsigned getFCmpOpcode(unsigned PredNum) {
1886 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1887 switch (Pred) {
1888 case CmpInst::FCMP_OEQ:
1889 return SPIRV::OpFOrdEqual;
1890 case CmpInst::FCMP_OGE:
1891 return SPIRV::OpFOrdGreaterThanEqual;
1892 case CmpInst::FCMP_OGT:
1893 return SPIRV::OpFOrdGreaterThan;
1894 case CmpInst::FCMP_OLE:
1895 return SPIRV::OpFOrdLessThanEqual;
1896 case CmpInst::FCMP_OLT:
1897 return SPIRV::OpFOrdLessThan;
1898 case CmpInst::FCMP_ONE:
1899 return SPIRV::OpFOrdNotEqual;
1900 case CmpInst::FCMP_ORD:
1901 return SPIRV::OpOrdered;
1902 case CmpInst::FCMP_UEQ:
1903 return SPIRV::OpFUnordEqual;
1904 case CmpInst::FCMP_UGE:
1905 return SPIRV::OpFUnordGreaterThanEqual;
1906 case CmpInst::FCMP_UGT:
1907 return SPIRV::OpFUnordGreaterThan;
1908 case CmpInst::FCMP_ULE:
1909 return SPIRV::OpFUnordLessThanEqual;
1910 case CmpInst::FCMP_ULT:
1911 return SPIRV::OpFUnordLessThan;
1912 case CmpInst::FCMP_UNE:
1913 return SPIRV::OpFUnordNotEqual;
1914 case CmpInst::FCMP_UNO:
1915 return SPIRV::OpUnordered;
1916 default:
1917 llvm_unreachable("Unknown predicate type for FCmp");
1918 }
1919}
1920
1921static unsigned getICmpOpcode(unsigned PredNum) {
1922 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1923 switch (Pred) {
1924 case CmpInst::ICMP_EQ:
1925 return SPIRV::OpIEqual;
1926 case CmpInst::ICMP_NE:
1927 return SPIRV::OpINotEqual;
1928 case CmpInst::ICMP_SGE:
1929 return SPIRV::OpSGreaterThanEqual;
1930 case CmpInst::ICMP_SGT:
1931 return SPIRV::OpSGreaterThan;
1932 case CmpInst::ICMP_SLE:
1933 return SPIRV::OpSLessThanEqual;
1934 case CmpInst::ICMP_SLT:
1935 return SPIRV::OpSLessThan;
1936 case CmpInst::ICMP_UGE:
1937 return SPIRV::OpUGreaterThanEqual;
1938 case CmpInst::ICMP_UGT:
1939 return SPIRV::OpUGreaterThan;
1940 case CmpInst::ICMP_ULE:
1941 return SPIRV::OpULessThanEqual;
1942 case CmpInst::ICMP_ULT:
1943 return SPIRV::OpULessThan;
1944 default:
1945 llvm_unreachable("Unknown predicate type for ICmp");
1946 }
1947}
1948
1949static unsigned getPtrCmpOpcode(unsigned Pred) {
1950 switch (static_cast<CmpInst::Predicate>(Pred)) {
1951 case CmpInst::ICMP_EQ:
1952 return SPIRV::OpPtrEqual;
1953 case CmpInst::ICMP_NE:
1954 return SPIRV::OpPtrNotEqual;
1955 default:
1956 llvm_unreachable("Unknown predicate type for pointer comparison");
1957 }
1958}
1959
1960// Return the logical operation, or abort if none exists.
1961static unsigned getBoolCmpOpcode(unsigned PredNum) {
1962 auto Pred = static_cast<CmpInst::Predicate>(PredNum);
1963 switch (Pred) {
1964 case CmpInst::ICMP_EQ:
1965 return SPIRV::OpLogicalEqual;
1966 case CmpInst::ICMP_NE:
1967 return SPIRV::OpLogicalNotEqual;
1968 default:
1969 llvm_unreachable("Unknown predicate type for Bool comparison");
1970 }
1971}
1972
1973static APFloat getZeroFP(const Type *LLVMFloatTy) {
1974 if (!LLVMFloatTy)
1976 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
1977 case Type::HalfTyID:
1979 default:
1980 case Type::FloatTyID:
1982 case Type::DoubleTyID:
1984 }
1985}
1986
1987static APFloat getOneFP(const Type *LLVMFloatTy) {
1988 if (!LLVMFloatTy)
1990 switch (LLVMFloatTy->getScalarType()->getTypeID()) {
1991 case Type::HalfTyID:
1993 default:
1994 case Type::FloatTyID:
1996 case Type::DoubleTyID:
1998 }
1999}
2000
2001bool SPIRVInstructionSelector::selectAnyOrAll(Register ResVReg,
2002 const SPIRVType *ResType,
2003 MachineInstr &I,
2004 unsigned OpAnyOrAll) const {
2005 assert(I.getNumOperands() == 3);
2006 assert(I.getOperand(2).isReg());
2007 MachineBasicBlock &BB = *I.getParent();
2008 Register InputRegister = I.getOperand(2).getReg();
2009 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2010
2011 if (!InputType)
2012 report_fatal_error("Input Type could not be determined.");
2013
2014 bool IsBoolTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeBool);
2015 bool IsVectorTy = InputType->getOpcode() == SPIRV::OpTypeVector;
2016 if (IsBoolTy && !IsVectorTy) {
2017 assert(ResVReg == I.getOperand(0).getReg());
2018 return BuildCOPY(ResVReg, InputRegister, I);
2019 }
2020
2021 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2022 unsigned SpirvNotEqualId =
2023 IsFloatTy ? SPIRV::OpFOrdNotEqual : SPIRV::OpINotEqual;
2024 SPIRVType *SpvBoolScalarTy = GR.getOrCreateSPIRVBoolType(I, TII);
2025 SPIRVType *SpvBoolTy = SpvBoolScalarTy;
2026 Register NotEqualReg = ResVReg;
2027
2028 if (IsVectorTy) {
2029 NotEqualReg =
2030 IsBoolTy ? InputRegister
2031 : createVirtualRegister(SpvBoolTy, &GR, MRI, MRI->getMF());
2032 const unsigned NumElts = InputType->getOperand(2).getImm();
2033 SpvBoolTy = GR.getOrCreateSPIRVVectorType(SpvBoolTy, NumElts, I, TII);
2034 }
2035
2036 bool Result = true;
2037 if (!IsBoolTy) {
2038 Register ConstZeroReg =
2039 IsFloatTy ? buildZerosValF(InputType, I) : buildZerosVal(InputType, I);
2040
2041 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SpirvNotEqualId))
2042 .addDef(NotEqualReg)
2043 .addUse(GR.getSPIRVTypeID(SpvBoolTy))
2044 .addUse(InputRegister)
2045 .addUse(ConstZeroReg)
2046 .constrainAllUses(TII, TRI, RBI);
2047 }
2048
2049 if (!IsVectorTy)
2050 return Result;
2051
2052 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(OpAnyOrAll))
2053 .addDef(ResVReg)
2054 .addUse(GR.getSPIRVTypeID(SpvBoolScalarTy))
2055 .addUse(NotEqualReg)
2056 .constrainAllUses(TII, TRI, RBI);
2057}
2058
2059bool SPIRVInstructionSelector::selectAll(Register ResVReg,
2060 const SPIRVType *ResType,
2061 MachineInstr &I) const {
2062 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAll);
2063}
2064
2065bool SPIRVInstructionSelector::selectAny(Register ResVReg,
2066 const SPIRVType *ResType,
2067 MachineInstr &I) const {
2068 return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAny);
2069}
2070
2071// Select the OpDot instruction for the given float dot
2072bool SPIRVInstructionSelector::selectFloatDot(Register ResVReg,
2073 const SPIRVType *ResType,
2074 MachineInstr &I) const {
2075 assert(I.getNumOperands() == 4);
2076 assert(I.getOperand(2).isReg());
2077 assert(I.getOperand(3).isReg());
2078
2079 [[maybe_unused]] SPIRVType *VecType =
2080 GR.getSPIRVTypeForVReg(I.getOperand(2).getReg());
2081
2082 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2083 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2084 "dot product requires a vector of at least 2 components");
2085
2086 [[maybe_unused]] SPIRVType *EltType =
2087 GR.getSPIRVTypeForVReg(VecType->getOperand(1).getReg());
2088
2089 assert(EltType->getOpcode() == SPIRV::OpTypeFloat);
2090
2091 MachineBasicBlock &BB = *I.getParent();
2092 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpDot))
2093 .addDef(ResVReg)
2094 .addUse(GR.getSPIRVTypeID(ResType))
2095 .addUse(I.getOperand(2).getReg())
2096 .addUse(I.getOperand(3).getReg())
2097 .constrainAllUses(TII, TRI, RBI);
2098}
2099
2100bool SPIRVInstructionSelector::selectIntegerDot(Register ResVReg,
2101 const SPIRVType *ResType,
2102 MachineInstr &I,
2103 bool Signed) const {
2104 assert(I.getNumOperands() == 4);
2105 assert(I.getOperand(2).isReg());
2106 assert(I.getOperand(3).isReg());
2107 MachineBasicBlock &BB = *I.getParent();
2108
2109 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2110 return BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2111 .addDef(ResVReg)
2112 .addUse(GR.getSPIRVTypeID(ResType))
2113 .addUse(I.getOperand(2).getReg())
2114 .addUse(I.getOperand(3).getReg())
2115 .constrainAllUses(TII, TRI, RBI);
2116}
2117
2118// Since pre-1.6 SPIRV has no integer dot implementation,
2119// expand by piecewise multiplying and adding the results
2120bool SPIRVInstructionSelector::selectIntegerDotExpansion(
2121 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2122 assert(I.getNumOperands() == 4);
2123 assert(I.getOperand(2).isReg());
2124 assert(I.getOperand(3).isReg());
2125 MachineBasicBlock &BB = *I.getParent();
2126
2127 // Multiply the vectors, then sum the results
2128 Register Vec0 = I.getOperand(2).getReg();
2129 Register Vec1 = I.getOperand(3).getReg();
2130 Register TmpVec = MRI->createVirtualRegister(GR.getRegClass(ResType));
2131 SPIRVType *VecType = GR.getSPIRVTypeForVReg(Vec0);
2132
2133 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulV))
2134 .addDef(TmpVec)
2135 .addUse(GR.getSPIRVTypeID(VecType))
2136 .addUse(Vec0)
2137 .addUse(Vec1)
2138 .constrainAllUses(TII, TRI, RBI);
2139
2140 assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
2141 GR.getScalarOrVectorComponentCount(VecType) > 1 &&
2142 "dot product requires a vector of at least 2 components");
2143
2144 Register Res = MRI->createVirtualRegister(GR.getRegClass(ResType));
2145 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2146 .addDef(Res)
2147 .addUse(GR.getSPIRVTypeID(ResType))
2148 .addUse(TmpVec)
2149 .addImm(0)
2150 .constrainAllUses(TII, TRI, RBI);
2151
2152 for (unsigned i = 1; i < GR.getScalarOrVectorComponentCount(VecType); i++) {
2153 Register Elt = MRI->createVirtualRegister(GR.getRegClass(ResType));
2154
2155 Result &=
2156 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2157 .addDef(Elt)
2158 .addUse(GR.getSPIRVTypeID(ResType))
2159 .addUse(TmpVec)
2160 .addImm(i)
2161 .constrainAllUses(TII, TRI, RBI);
2162
2163 Register Sum = i < GR.getScalarOrVectorComponentCount(VecType) - 1
2164 ? MRI->createVirtualRegister(GR.getRegClass(ResType))
2165 : ResVReg;
2166
2167 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2168 .addDef(Sum)
2169 .addUse(GR.getSPIRVTypeID(ResType))
2170 .addUse(Res)
2171 .addUse(Elt)
2172 .constrainAllUses(TII, TRI, RBI);
2173 Res = Sum;
2174 }
2175
2176 return Result;
2177}
2178
2179bool SPIRVInstructionSelector::selectOpIsInf(Register ResVReg,
2180 const SPIRVType *ResType,
2181 MachineInstr &I) const {
2182 MachineBasicBlock &BB = *I.getParent();
2183 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsInf))
2184 .addDef(ResVReg)
2185 .addUse(GR.getSPIRVTypeID(ResType))
2186 .addUse(I.getOperand(2).getReg())
2187 .constrainAllUses(TII, TRI, RBI);
2188}
2189
2190bool SPIRVInstructionSelector::selectOpIsNan(Register ResVReg,
2191 const SPIRVType *ResType,
2192 MachineInstr &I) const {
2193 MachineBasicBlock &BB = *I.getParent();
2194 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIsNan))
2195 .addDef(ResVReg)
2196 .addUse(GR.getSPIRVTypeID(ResType))
2197 .addUse(I.getOperand(2).getReg())
2198 .constrainAllUses(TII, TRI, RBI);
2199}
2200
2201template <bool Signed>
2202bool SPIRVInstructionSelector::selectDot4AddPacked(Register ResVReg,
2203 const SPIRVType *ResType,
2204 MachineInstr &I) const {
2205 assert(I.getNumOperands() == 5);
2206 assert(I.getOperand(2).isReg());
2207 assert(I.getOperand(3).isReg());
2208 assert(I.getOperand(4).isReg());
2209 MachineBasicBlock &BB = *I.getParent();
2210
2211 Register Acc = I.getOperand(2).getReg();
2212 Register X = I.getOperand(3).getReg();
2213 Register Y = I.getOperand(4).getReg();
2214
2215 auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
2216 Register Dot = MRI->createVirtualRegister(GR.getRegClass(ResType));
2217 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
2218 .addDef(Dot)
2219 .addUse(GR.getSPIRVTypeID(ResType))
2220 .addUse(X)
2221 .addUse(Y)
2222 .constrainAllUses(TII, TRI, RBI);
2223
2224 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2225 .addDef(ResVReg)
2226 .addUse(GR.getSPIRVTypeID(ResType))
2227 .addUse(Dot)
2228 .addUse(Acc)
2229 .constrainAllUses(TII, TRI, RBI);
2230}
2231
2232// Since pre-1.6 SPIRV has no DotProductInput4x8BitPacked implementation,
2233// extract the elements of the packed inputs, multiply them and add the result
2234// to the accumulator.
2235template <bool Signed>
2236bool SPIRVInstructionSelector::selectDot4AddPackedExpansion(
2237 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2238 assert(I.getNumOperands() == 5);
2239 assert(I.getOperand(2).isReg());
2240 assert(I.getOperand(3).isReg());
2241 assert(I.getOperand(4).isReg());
2242 MachineBasicBlock &BB = *I.getParent();
2243
2244 bool Result = true;
2245
2246 Register Acc = I.getOperand(2).getReg();
2247 Register X = I.getOperand(3).getReg();
2248 Register Y = I.getOperand(4).getReg();
2249
2250 SPIRVType *EltType = GR.getOrCreateSPIRVIntegerType(8, I, TII);
2251 auto ExtractOp =
2252 Signed ? SPIRV::OpBitFieldSExtract : SPIRV::OpBitFieldUExtract;
2253
2254 bool ZeroAsNull = !STI.isShader();
2255 // Extract the i8 element, multiply and add it to the accumulator
2256 for (unsigned i = 0; i < 4; i++) {
2257 // A[i]
2258 Register AElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2259 Result &=
2260 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2261 .addDef(AElt)
2262 .addUse(GR.getSPIRVTypeID(ResType))
2263 .addUse(X)
2264 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2265 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2266 .constrainAllUses(TII, TRI, RBI);
2267
2268 // B[i]
2269 Register BElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2270 Result &=
2271 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2272 .addDef(BElt)
2273 .addUse(GR.getSPIRVTypeID(ResType))
2274 .addUse(Y)
2275 .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
2276 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2277 .constrainAllUses(TII, TRI, RBI);
2278
2279 // A[i] * B[i]
2280 Register Mul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2281 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulS))
2282 .addDef(Mul)
2283 .addUse(GR.getSPIRVTypeID(ResType))
2284 .addUse(AElt)
2285 .addUse(BElt)
2286 .constrainAllUses(TII, TRI, RBI);
2287
2288 // Discard 24 highest-bits so that stored i32 register is i8 equivalent
2289 Register MaskMul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
2290 Result &=
2291 BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
2292 .addDef(MaskMul)
2293 .addUse(GR.getSPIRVTypeID(ResType))
2294 .addUse(Mul)
2295 .addUse(GR.getOrCreateConstInt(0, I, EltType, TII, ZeroAsNull))
2296 .addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
2297 .constrainAllUses(TII, TRI, RBI);
2298
2299 // Acc = Acc + A[i] * B[i]
2300 Register Sum =
2301 i < 3 ? MRI->createVirtualRegister(&SPIRV::IDRegClass) : ResVReg;
2302 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
2303 .addDef(Sum)
2304 .addUse(GR.getSPIRVTypeID(ResType))
2305 .addUse(Acc)
2306 .addUse(MaskMul)
2307 .constrainAllUses(TII, TRI, RBI);
2308
2309 Acc = Sum;
2310 }
2311
2312 return Result;
2313}
2314
2315/// Transform saturate(x) to clamp(x, 0.0f, 1.0f) as SPIRV
2316/// does not have a saturate builtin.
2317bool SPIRVInstructionSelector::selectSaturate(Register ResVReg,
2318 const SPIRVType *ResType,
2319 MachineInstr &I) const {
2320 assert(I.getNumOperands() == 3);
2321 assert(I.getOperand(2).isReg());
2322 MachineBasicBlock &BB = *I.getParent();
2323 Register VZero = buildZerosValF(ResType, I);
2324 Register VOne = buildOnesValF(ResType, I);
2325
2326 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
2327 .addDef(ResVReg)
2328 .addUse(GR.getSPIRVTypeID(ResType))
2329 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2330 .addImm(GL::FClamp)
2331 .addUse(I.getOperand(2).getReg())
2332 .addUse(VZero)
2333 .addUse(VOne)
2334 .constrainAllUses(TII, TRI, RBI);
2335}
2336
2337bool SPIRVInstructionSelector::selectSign(Register ResVReg,
2338 const SPIRVType *ResType,
2339 MachineInstr &I) const {
2340 assert(I.getNumOperands() == 3);
2341 assert(I.getOperand(2).isReg());
2342 MachineBasicBlock &BB = *I.getParent();
2343 Register InputRegister = I.getOperand(2).getReg();
2344 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2345 auto &DL = I.getDebugLoc();
2346
2347 if (!InputType)
2348 report_fatal_error("Input Type could not be determined.");
2349
2350 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2351
2352 unsigned SignBitWidth = GR.getScalarOrVectorBitWidth(InputType);
2353 unsigned ResBitWidth = GR.getScalarOrVectorBitWidth(ResType);
2354
2355 bool NeedsConversion = IsFloatTy || SignBitWidth != ResBitWidth;
2356
2357 auto SignOpcode = IsFloatTy ? GL::FSign : GL::SSign;
2358 Register SignReg = NeedsConversion
2359 ? MRI->createVirtualRegister(&SPIRV::IDRegClass)
2360 : ResVReg;
2361
2362 bool Result =
2363 BuildMI(BB, I, DL, TII.get(SPIRV::OpExtInst))
2364 .addDef(SignReg)
2365 .addUse(GR.getSPIRVTypeID(InputType))
2366 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
2367 .addImm(SignOpcode)
2368 .addUse(InputRegister)
2369 .constrainAllUses(TII, TRI, RBI);
2370
2371 if (NeedsConversion) {
2372 auto ConvertOpcode = IsFloatTy ? SPIRV::OpConvertFToS : SPIRV::OpSConvert;
2373 Result &= BuildMI(*I.getParent(), I, DL, TII.get(ConvertOpcode))
2374 .addDef(ResVReg)
2375 .addUse(GR.getSPIRVTypeID(ResType))
2376 .addUse(SignReg)
2377 .constrainAllUses(TII, TRI, RBI);
2378 }
2379
2380 return Result;
2381}
2382
2383bool SPIRVInstructionSelector::selectWaveOpInst(Register ResVReg,
2384 const SPIRVType *ResType,
2385 MachineInstr &I,
2386 unsigned Opcode) const {
2387 MachineBasicBlock &BB = *I.getParent();
2388 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2389
2390 auto BMI = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2391 .addDef(ResVReg)
2392 .addUse(GR.getSPIRVTypeID(ResType))
2393 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I,
2394 IntTy, TII, !STI.isShader()));
2395
2396 for (unsigned J = 2; J < I.getNumOperands(); J++) {
2397 BMI.addUse(I.getOperand(J).getReg());
2398 }
2399
2400 return BMI.constrainAllUses(TII, TRI, RBI);
2401}
2402
2403bool SPIRVInstructionSelector::selectWaveActiveCountBits(
2404 Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
2405
2406 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2407 SPIRVType *BallotType = GR.getOrCreateSPIRVVectorType(IntTy, 4, I, TII);
2408 Register BallotReg = MRI->createVirtualRegister(GR.getRegClass(BallotType));
2409 bool Result = selectWaveOpInst(BallotReg, BallotType, I,
2410 SPIRV::OpGroupNonUniformBallot);
2411
2412 MachineBasicBlock &BB = *I.getParent();
2413 Result &= BuildMI(BB, I, I.getDebugLoc(),
2414 TII.get(SPIRV::OpGroupNonUniformBallotBitCount))
2415 .addDef(ResVReg)
2416 .addUse(GR.getSPIRVTypeID(ResType))
2417 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy,
2418 TII, !STI.isShader()))
2419 .addImm(SPIRV::GroupOperation::Reduce)
2420 .addUse(BallotReg)
2421 .constrainAllUses(TII, TRI, RBI);
2422
2423 return Result;
2424}
2425
2426bool SPIRVInstructionSelector::selectWaveReduceMax(Register ResVReg,
2427 const SPIRVType *ResType,
2428 MachineInstr &I,
2429 bool IsUnsigned) const {
2430 assert(I.getNumOperands() == 3);
2431 assert(I.getOperand(2).isReg());
2432 MachineBasicBlock &BB = *I.getParent();
2433 Register InputRegister = I.getOperand(2).getReg();
2434 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2435
2436 if (!InputType)
2437 report_fatal_error("Input Type could not be determined.");
2438
2439 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2440 // Retreive the operation to use based on input type
2441 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2442 auto IntegerOpcodeType =
2443 IsUnsigned ? SPIRV::OpGroupNonUniformUMax : SPIRV::OpGroupNonUniformSMax;
2444 auto Opcode = IsFloatTy ? SPIRV::OpGroupNonUniformFMax : IntegerOpcodeType;
2445 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2446 .addDef(ResVReg)
2447 .addUse(GR.getSPIRVTypeID(ResType))
2448 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2449 !STI.isShader()))
2450 .addImm(SPIRV::GroupOperation::Reduce)
2451 .addUse(I.getOperand(2).getReg())
2452 .constrainAllUses(TII, TRI, RBI);
2453}
2454
2455bool SPIRVInstructionSelector::selectWaveReduceSum(Register ResVReg,
2456 const SPIRVType *ResType,
2457 MachineInstr &I) const {
2458 assert(I.getNumOperands() == 3);
2459 assert(I.getOperand(2).isReg());
2460 MachineBasicBlock &BB = *I.getParent();
2461 Register InputRegister = I.getOperand(2).getReg();
2462 SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
2463
2464 if (!InputType)
2465 report_fatal_error("Input Type could not be determined.");
2466
2467 SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
2468 // Retreive the operation to use based on input type
2469 bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
2470 auto Opcode =
2471 IsFloatTy ? SPIRV::OpGroupNonUniformFAdd : SPIRV::OpGroupNonUniformIAdd;
2472 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2473 .addDef(ResVReg)
2474 .addUse(GR.getSPIRVTypeID(ResType))
2475 .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
2476 !STI.isShader()))
2477 .addImm(SPIRV::GroupOperation::Reduce)
2478 .addUse(I.getOperand(2).getReg());
2479}
2480
2481bool SPIRVInstructionSelector::selectBitreverse(Register ResVReg,
2482 const SPIRVType *ResType,
2483 MachineInstr &I) const {
2484 MachineBasicBlock &BB = *I.getParent();
2485 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitReverse))
2486 .addDef(ResVReg)
2487 .addUse(GR.getSPIRVTypeID(ResType))
2488 .addUse(I.getOperand(1).getReg())
2489 .constrainAllUses(TII, TRI, RBI);
2490}
2491
2492bool SPIRVInstructionSelector::selectFreeze(Register ResVReg,
2493 const SPIRVType *ResType,
2494 MachineInstr &I) const {
2495 // There is no way to implement `freeze` correctly without support on SPIR-V
2496 // standard side, but we may at least address a simple (static) case when
2497 // undef/poison value presence is obvious. The main benefit of even
2498 // incomplete `freeze` support is preventing of translation from crashing due
2499 // to lack of support on legalization and instruction selection steps.
2500 if (!I.getOperand(0).isReg() || !I.getOperand(1).isReg())
2501 return false;
2502 Register OpReg = I.getOperand(1).getReg();
2503 if (MachineInstr *Def = MRI->getVRegDef(OpReg)) {
2504 if (Def->getOpcode() == TargetOpcode::COPY)
2505 Def = MRI->getVRegDef(Def->getOperand(1).getReg());
2506 Register Reg;
2507 switch (Def->getOpcode()) {
2508 case SPIRV::ASSIGN_TYPE:
2509 if (MachineInstr *AssignToDef =
2510 MRI->getVRegDef(Def->getOperand(1).getReg())) {
2511 if (AssignToDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
2512 Reg = Def->getOperand(2).getReg();
2513 }
2514 break;
2515 case SPIRV::OpUndef:
2516 Reg = Def->getOperand(1).getReg();
2517 break;
2518 }
2519 unsigned DestOpCode;
2520 if (Reg.isValid()) {
2521 DestOpCode = SPIRV::OpConstantNull;
2522 } else {
2523 DestOpCode = TargetOpcode::COPY;
2524 Reg = OpReg;
2525 }
2526 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DestOpCode))
2527 .addDef(I.getOperand(0).getReg())
2528 .addUse(Reg)
2529 .constrainAllUses(TII, TRI, RBI);
2530 }
2531 return false;
2532}
2533
2534bool SPIRVInstructionSelector::selectBuildVector(Register ResVReg,
2535 const SPIRVType *ResType,
2536 MachineInstr &I) const {
2537 unsigned N = 0;
2538 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2539 N = GR.getScalarOrVectorComponentCount(ResType);
2540 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2541 N = getArrayComponentCount(MRI, ResType);
2542 else
2543 report_fatal_error("Cannot select G_BUILD_VECTOR with a non-vector result");
2544 if (I.getNumExplicitOperands() - I.getNumExplicitDefs() != N)
2545 report_fatal_error("G_BUILD_VECTOR and the result type are inconsistent");
2546
2547 // check if we may construct a constant vector
2548 bool IsConst = true;
2549 for (unsigned i = I.getNumExplicitDefs();
2550 i < I.getNumExplicitOperands() && IsConst; ++i)
2551 if (!isConstReg(MRI, I.getOperand(i).getReg()))
2552 IsConst = false;
2553
2554 if (!IsConst && N < 2)
2556 "There must be at least two constituent operands in a vector");
2557
2558 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2559 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2560 TII.get(IsConst ? SPIRV::OpConstantComposite
2561 : SPIRV::OpCompositeConstruct))
2562 .addDef(ResVReg)
2563 .addUse(GR.getSPIRVTypeID(ResType));
2564 for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands(); ++i)
2565 MIB.addUse(I.getOperand(i).getReg());
2566 return MIB.constrainAllUses(TII, TRI, RBI);
2567}
2568
2569bool SPIRVInstructionSelector::selectSplatVector(Register ResVReg,
2570 const SPIRVType *ResType,
2571 MachineInstr &I) const {
2572 unsigned N = 0;
2573 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2574 N = GR.getScalarOrVectorComponentCount(ResType);
2575 else if (ResType->getOpcode() == SPIRV::OpTypeArray)
2576 N = getArrayComponentCount(MRI, ResType);
2577 else
2578 report_fatal_error("Cannot select G_SPLAT_VECTOR with a non-vector result");
2579
2580 unsigned OpIdx = I.getNumExplicitDefs();
2581 if (!I.getOperand(OpIdx).isReg())
2582 report_fatal_error("Unexpected argument in G_SPLAT_VECTOR");
2583
2584 // check if we may construct a constant vector
2585 Register OpReg = I.getOperand(OpIdx).getReg();
2586 bool IsConst = isConstReg(MRI, OpReg);
2587
2588 if (!IsConst && N < 2)
2590 "There must be at least two constituent operands in a vector");
2591
2592 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
2593 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
2594 TII.get(IsConst ? SPIRV::OpConstantComposite
2595 : SPIRV::OpCompositeConstruct))
2596 .addDef(ResVReg)
2597 .addUse(GR.getSPIRVTypeID(ResType));
2598 for (unsigned i = 0; i < N; ++i)
2599 MIB.addUse(OpReg);
2600 return MIB.constrainAllUses(TII, TRI, RBI);
2601}
2602
2603bool SPIRVInstructionSelector::selectDiscard(Register ResVReg,
2604 const SPIRVType *ResType,
2605 MachineInstr &I) const {
2606
2607 unsigned Opcode;
2608
2609 if (STI.canUseExtension(
2610 SPIRV::Extension::SPV_EXT_demote_to_helper_invocation) ||
2611 STI.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6))) {
2612 Opcode = SPIRV::OpDemoteToHelperInvocation;
2613 } else {
2614 Opcode = SPIRV::OpKill;
2615 // OpKill must be the last operation of any basic block.
2616 if (MachineInstr *NextI = I.getNextNode()) {
2617 GR.invalidateMachineInstr(NextI);
2618 NextI->removeFromParent();
2619 }
2620 }
2621
2622 MachineBasicBlock &BB = *I.getParent();
2623 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2624 .constrainAllUses(TII, TRI, RBI);
2625}
2626
2627bool SPIRVInstructionSelector::selectCmp(Register ResVReg,
2628 const SPIRVType *ResType,
2629 unsigned CmpOpc,
2630 MachineInstr &I) const {
2631 Register Cmp0 = I.getOperand(2).getReg();
2632 Register Cmp1 = I.getOperand(3).getReg();
2633 assert(GR.getSPIRVTypeForVReg(Cmp0)->getOpcode() ==
2634 GR.getSPIRVTypeForVReg(Cmp1)->getOpcode() &&
2635 "CMP operands should have the same type");
2636 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CmpOpc))
2637 .addDef(ResVReg)
2638 .addUse(GR.getSPIRVTypeID(ResType))
2639 .addUse(Cmp0)
2640 .addUse(Cmp1)
2641 .setMIFlags(I.getFlags())
2642 .constrainAllUses(TII, TRI, RBI);
2643}
2644
2645bool SPIRVInstructionSelector::selectICmp(Register ResVReg,
2646 const SPIRVType *ResType,
2647 MachineInstr &I) const {
2648 auto Pred = I.getOperand(1).getPredicate();
2649 unsigned CmpOpc;
2650
2651 Register CmpOperand = I.getOperand(2).getReg();
2652 if (GR.isScalarOfType(CmpOperand, SPIRV::OpTypePointer))
2653 CmpOpc = getPtrCmpOpcode(Pred);
2654 else if (GR.isScalarOrVectorOfType(CmpOperand, SPIRV::OpTypeBool))
2655 CmpOpc = getBoolCmpOpcode(Pred);
2656 else
2657 CmpOpc = getICmpOpcode(Pred);
2658 return selectCmp(ResVReg, ResType, CmpOpc, I);
2659}
2660
2661std::pair<Register, bool>
2662SPIRVInstructionSelector::buildI32Constant(uint32_t Val, MachineInstr &I,
2663 const SPIRVType *ResType) const {
2664 Type *LLVMTy = IntegerType::get(GR.CurMF->getFunction().getContext(), 32);
2665 const SPIRVType *SpvI32Ty =
2666 ResType ? ResType : GR.getOrCreateSPIRVIntegerType(32, I, TII);
2667 // Find a constant in DT or build a new one.
2668 auto ConstInt = ConstantInt::get(LLVMTy, Val);
2669 Register NewReg = GR.find(ConstInt, GR.CurMF);
2670 bool Result = true;
2671 if (!NewReg.isValid()) {
2672 NewReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
2673 MachineBasicBlock &BB = *I.getParent();
2674 MachineInstr *MI =
2675 Val == 0
2676 ? BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
2677 .addDef(NewReg)
2678 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2679 : BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI))
2680 .addDef(NewReg)
2681 .addUse(GR.getSPIRVTypeID(SpvI32Ty))
2682 .addImm(APInt(32, Val).getZExtValue());
2684 GR.add(ConstInt, MI);
2685 }
2686 return {NewReg, Result};
2687}
2688
2689bool SPIRVInstructionSelector::selectFCmp(Register ResVReg,
2690 const SPIRVType *ResType,
2691 MachineInstr &I) const {
2692 unsigned CmpOp = getFCmpOpcode(I.getOperand(1).getPredicate());
2693 return selectCmp(ResVReg, ResType, CmpOp, I);
2694}
2695
2696Register SPIRVInstructionSelector::buildZerosVal(const SPIRVType *ResType,
2697 MachineInstr &I) const {
2698 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2699 bool ZeroAsNull = !STI.isShader();
2700 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2701 return GR.getOrCreateConstVector(0UL, I, ResType, TII, ZeroAsNull);
2702 return GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
2703}
2704
2705Register SPIRVInstructionSelector::buildZerosValF(const SPIRVType *ResType,
2706 MachineInstr &I) const {
2707 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2708 bool ZeroAsNull = !STI.isShader();
2709 APFloat VZero = getZeroFP(GR.getTypeForSPIRVType(ResType));
2710 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2711 return GR.getOrCreateConstVector(VZero, I, ResType, TII, ZeroAsNull);
2712 return GR.getOrCreateConstFP(VZero, I, ResType, TII, ZeroAsNull);
2713}
2714
2715Register SPIRVInstructionSelector::buildOnesValF(const SPIRVType *ResType,
2716 MachineInstr &I) const {
2717 // OpenCL uses nulls for Zero. In HLSL we don't use null constants.
2718 bool ZeroAsNull = !STI.isShader();
2719 APFloat VOne = getOneFP(GR.getTypeForSPIRVType(ResType));
2720 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2721 return GR.getOrCreateConstVector(VOne, I, ResType, TII, ZeroAsNull);
2722 return GR.getOrCreateConstFP(VOne, I, ResType, TII, ZeroAsNull);
2723}
2724
2725Register SPIRVInstructionSelector::buildOnesVal(bool AllOnes,
2726 const SPIRVType *ResType,
2727 MachineInstr &I) const {
2728 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
2729 APInt One =
2730 AllOnes ? APInt::getAllOnes(BitWidth) : APInt::getOneBitSet(BitWidth, 0);
2731 if (ResType->getOpcode() == SPIRV::OpTypeVector)
2732 return GR.getOrCreateConstVector(One.getZExtValue(), I, ResType, TII);
2733 return GR.getOrCreateConstInt(One.getZExtValue(), I, ResType, TII);
2734}
2735
2736bool SPIRVInstructionSelector::selectSelect(Register ResVReg,
2737 const SPIRVType *ResType,
2738 MachineInstr &I) const {
2739 Register SelectFirstArg = I.getOperand(2).getReg();
2740 Register SelectSecondArg = I.getOperand(3).getReg();
2741 assert(ResType == GR.getSPIRVTypeForVReg(SelectFirstArg) &&
2742 ResType == GR.getSPIRVTypeForVReg(SelectSecondArg));
2743
2744 bool IsFloatTy =
2745 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypeFloat);
2746 bool IsPtrTy =
2747 GR.isScalarOrVectorOfType(SelectFirstArg, SPIRV::OpTypePointer);
2748 bool IsVectorTy = GR.getSPIRVTypeForVReg(SelectFirstArg)->getOpcode() ==
2749 SPIRV::OpTypeVector;
2750
2751 bool IsScalarBool =
2752 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
2753 unsigned Opcode;
2754 if (IsVectorTy) {
2755 if (IsFloatTy) {
2756 Opcode = IsScalarBool ? SPIRV::OpSelectVFSCond : SPIRV::OpSelectVFVCond;
2757 } else if (IsPtrTy) {
2758 Opcode = IsScalarBool ? SPIRV::OpSelectVPSCond : SPIRV::OpSelectVPVCond;
2759 } else {
2760 Opcode = IsScalarBool ? SPIRV::OpSelectVISCond : SPIRV::OpSelectVIVCond;
2761 }
2762 } else {
2763 if (IsFloatTy) {
2764 Opcode = IsScalarBool ? SPIRV::OpSelectSFSCond : SPIRV::OpSelectVFVCond;
2765 } else if (IsPtrTy) {
2766 Opcode = IsScalarBool ? SPIRV::OpSelectSPSCond : SPIRV::OpSelectVPVCond;
2767 } else {
2768 Opcode = IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
2769 }
2770 }
2771 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2772 .addDef(ResVReg)
2773 .addUse(GR.getSPIRVTypeID(ResType))
2774 .addUse(I.getOperand(1).getReg())
2775 .addUse(SelectFirstArg)
2776 .addUse(SelectSecondArg)
2777 .constrainAllUses(TII, TRI, RBI);
2778}
2779
2780bool SPIRVInstructionSelector::selectSelectDefaultArgs(Register ResVReg,
2781 const SPIRVType *ResType,
2782 MachineInstr &I,
2783 bool IsSigned) const {
2784 // To extend a bool, we need to use OpSelect between constants.
2785 Register ZeroReg = buildZerosVal(ResType, I);
2786 Register OneReg = buildOnesVal(IsSigned, ResType, I);
2787 bool IsScalarBool =
2788 GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
2789 unsigned Opcode =
2790 IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
2791 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
2792 .addDef(ResVReg)
2793 .addUse(GR.getSPIRVTypeID(ResType))
2794 .addUse(I.getOperand(1).getReg())
2795 .addUse(OneReg)
2796 .addUse(ZeroReg)
2797 .constrainAllUses(TII, TRI, RBI);
2798}
2799
2800bool SPIRVInstructionSelector::selectIToF(Register ResVReg,
2801 const SPIRVType *ResType,
2802 MachineInstr &I, bool IsSigned,
2803 unsigned Opcode) const {
2804 Register SrcReg = I.getOperand(1).getReg();
2805 // We can convert bool value directly to float type without OpConvert*ToF,
2806 // however the translator generates OpSelect+OpConvert*ToF, so we do the same.
2807 if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) {
2808 unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
2810 if (ResType->getOpcode() == SPIRV::OpTypeVector) {
2811 const unsigned NumElts = ResType->getOperand(2).getImm();
2812 TmpType = GR.getOrCreateSPIRVVectorType(TmpType, NumElts, I, TII);
2813 }
2814 SrcReg = createVirtualRegister(TmpType, &GR, MRI, MRI->getMF());
2815 selectSelectDefaultArgs(SrcReg, TmpType, I, false);
2816 }
2817 return selectOpWithSrcs(ResVReg, ResType, I, {SrcReg}, Opcode);
2818}
2819
2820bool SPIRVInstructionSelector::selectExt(Register ResVReg,
2821 const SPIRVType *ResType,
2822 MachineInstr &I, bool IsSigned) const {
2823 Register SrcReg = I.getOperand(1).getReg();
2824 if (GR.isScalarOrVectorOfType(SrcReg, SPIRV::OpTypeBool))
2825 return selectSelectDefaultArgs(ResVReg, ResType, I, IsSigned);
2826
2827 SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg);
2828 if (SrcType == ResType)
2829 return BuildCOPY(ResVReg, SrcReg, I);
2830
2831 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2832 return selectUnOp(ResVReg, ResType, I, Opcode);
2833}
2834
2835bool SPIRVInstructionSelector::selectSUCmp(Register ResVReg,
2836 const SPIRVType *ResType,
2837 MachineInstr &I,
2838 bool IsSigned) const {
2839 MachineIRBuilder MIRBuilder(I);
2840 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
2841 MachineBasicBlock &BB = *I.getParent();
2842 // Ensure we have bool.
2843 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
2844 unsigned N = GR.getScalarOrVectorComponentCount(ResType);
2845 if (N > 1)
2846 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
2847 Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
2848 // Build less-than-equal and less-than.
2849 // TODO: replace with one-liner createVirtualRegister() from
2850 // llvm/lib/Target/SPIRV/SPIRVUtils.cpp when PR #116609 is merged.
2851 Register IsLessEqReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2852 MRI->setType(IsLessEqReg, LLT::scalar(64));
2853 GR.assignSPIRVTypeToVReg(ResType, IsLessEqReg, MIRBuilder.getMF());
2854 bool Result = BuildMI(BB, I, I.getDebugLoc(),
2855 TII.get(IsSigned ? SPIRV::OpSLessThanEqual
2856 : SPIRV::OpULessThanEqual))
2857 .addDef(IsLessEqReg)
2858 .addUse(BoolTypeReg)
2859 .addUse(I.getOperand(1).getReg())
2860 .addUse(I.getOperand(2).getReg())
2861 .constrainAllUses(TII, TRI, RBI);
2862 Register IsLessReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
2863 MRI->setType(IsLessReg, LLT::scalar(64));
2864 GR.assignSPIRVTypeToVReg(ResType, IsLessReg, MIRBuilder.getMF());
2865 Result &= BuildMI(BB, I, I.getDebugLoc(),
2866 TII.get(IsSigned ? SPIRV::OpSLessThan : SPIRV::OpULessThan))
2867 .addDef(IsLessReg)
2868 .addUse(BoolTypeReg)
2869 .addUse(I.getOperand(1).getReg())
2870 .addUse(I.getOperand(2).getReg())
2871 .constrainAllUses(TII, TRI, RBI);
2872 // Build selects.
2873 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
2874 Register NegOneOrZeroReg =
2875 MRI->createVirtualRegister(GR.getRegClass(ResType));
2876 MRI->setType(NegOneOrZeroReg, LLT::scalar(64));
2877 GR.assignSPIRVTypeToVReg(ResType, NegOneOrZeroReg, MIRBuilder.getMF());
2878 unsigned SelectOpcode =
2879 N > 1 ? SPIRV::OpSelectVIVCond : SPIRV::OpSelectSISCond;
2880 Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
2881 .addDef(NegOneOrZeroReg)
2882 .addUse(ResTypeReg)
2883 .addUse(IsLessReg)
2884 .addUse(buildOnesVal(true, ResType, I)) // -1
2885 .addUse(buildZerosVal(ResType, I))
2886 .constrainAllUses(TII, TRI, RBI);
2887 return Result & BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
2888 .addDef(ResVReg)
2889 .addUse(ResTypeReg)
2890 .addUse(IsLessEqReg)
2891 .addUse(NegOneOrZeroReg) // -1 or 0
2892 .addUse(buildOnesVal(false, ResType, I))
2893 .constrainAllUses(TII, TRI, RBI);
2894}
2895
2896bool SPIRVInstructionSelector::selectIntToBool(Register IntReg,
2897 Register ResVReg,
2898 MachineInstr &I,
2899 const SPIRVType *IntTy,
2900 const SPIRVType *BoolTy) const {
2901 // To truncate to a bool, we use OpBitwiseAnd 1 and OpINotEqual to zero.
2902 Register BitIntReg = createVirtualRegister(IntTy, &GR, MRI, MRI->getMF());
2903 bool IsVectorTy = IntTy->getOpcode() == SPIRV::OpTypeVector;
2904 unsigned Opcode = IsVectorTy ? SPIRV::OpBitwiseAndV : SPIRV::OpBitwiseAndS;
2905 Register Zero = buildZerosVal(IntTy, I);
2906 Register One = buildOnesVal(false, IntTy, I);
2907 MachineBasicBlock &BB = *I.getParent();
2908 bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
2909 .addDef(BitIntReg)
2910 .addUse(GR.getSPIRVTypeID(IntTy))
2911 .addUse(IntReg)
2912 .addUse(One)
2913 .constrainAllUses(TII, TRI, RBI);
2914 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
2915 .addDef(ResVReg)
2916 .addUse(GR.getSPIRVTypeID(BoolTy))
2917 .addUse(BitIntReg)
2918 .addUse(Zero)
2919 .constrainAllUses(TII, TRI, RBI);
2920}
2921
2922bool SPIRVInstructionSelector::selectTrunc(Register ResVReg,
2923 const SPIRVType *ResType,
2924 MachineInstr &I) const {
2925 Register IntReg = I.getOperand(1).getReg();
2926 const SPIRVType *ArgType = GR.getSPIRVTypeForVReg(IntReg);
2927 if (GR.isScalarOrVectorOfType(ResVReg, SPIRV::OpTypeBool))
2928 return selectIntToBool(IntReg, ResVReg, I, ArgType, ResType);
2929 if (ArgType == ResType)
2930 return BuildCOPY(ResVReg, IntReg, I);
2931 bool IsSigned = GR.isScalarOrVectorSigned(ResType);
2932 unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
2933 return selectUnOp(ResVReg, ResType, I, Opcode);
2934}
2935
2936bool SPIRVInstructionSelector::selectConst(Register ResVReg,
2937 const SPIRVType *ResType,
2938 MachineInstr &I) const {
2939 unsigned Opcode = I.getOpcode();
2940 unsigned TpOpcode = ResType->getOpcode();
2941 Register Reg;
2942 if (TpOpcode == SPIRV::OpTypePointer || TpOpcode == SPIRV::OpTypeEvent) {
2943 assert(Opcode == TargetOpcode::G_CONSTANT &&
2944 I.getOperand(1).getCImm()->isZero());
2945 MachineBasicBlock &DepMBB = I.getMF()->front();
2946 MachineIRBuilder MIRBuilder(DepMBB, DepMBB.getFirstNonPHI());
2947 Reg = GR.getOrCreateConstNullPtr(MIRBuilder, ResType);
2948 } else if (Opcode == TargetOpcode::G_FCONSTANT) {
2949 Reg = GR.getOrCreateConstFP(I.getOperand(1).getFPImm()->getValue(), I,
2950 ResType, TII, !STI.isShader());
2951 } else {
2952 Reg = GR.getOrCreateConstInt(I.getOperand(1).getCImm()->getZExtValue(), I,
2953 ResType, TII, !STI.isShader());
2954 }
2955 return Reg == ResVReg ? true : BuildCOPY(ResVReg, Reg, I);
2956}
2957
2958bool SPIRVInstructionSelector::selectOpUndef(Register ResVReg,
2959 const SPIRVType *ResType,
2960 MachineInstr &I) const {
2961 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
2962 .addDef(ResVReg)
2963 .addUse(GR.getSPIRVTypeID(ResType))
2964 .constrainAllUses(TII, TRI, RBI);
2965}
2966
2967bool SPIRVInstructionSelector::selectInsertVal(Register ResVReg,
2968 const SPIRVType *ResType,
2969 MachineInstr &I) const {
2970 MachineBasicBlock &BB = *I.getParent();
2971 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeInsert))
2972 .addDef(ResVReg)
2973 .addUse(GR.getSPIRVTypeID(ResType))
2974 // object to insert
2975 .addUse(I.getOperand(3).getReg())
2976 // composite to insert into
2977 .addUse(I.getOperand(2).getReg());
2978 for (unsigned i = 4; i < I.getNumOperands(); i++)
2979 MIB.addImm(foldImm(I.getOperand(i), MRI));
2980 return MIB.constrainAllUses(TII, TRI, RBI);
2981}
2982
2983bool SPIRVInstructionSelector::selectExtractVal(Register ResVReg,
2984 const SPIRVType *ResType,
2985 MachineInstr &I) const {
2986 MachineBasicBlock &BB = *I.getParent();
2987 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
2988 .addDef(ResVReg)
2989 .addUse(GR.getSPIRVTypeID(ResType))
2990 .addUse(I.getOperand(2).getReg());
2991 for (unsigned i = 3; i < I.getNumOperands(); i++)
2992 MIB.addImm(foldImm(I.getOperand(i), MRI));
2993 return MIB.constrainAllUses(TII, TRI, RBI);
2994}
2995
2996bool SPIRVInstructionSelector::selectInsertElt(Register ResVReg,
2997 const SPIRVType *ResType,
2998 MachineInstr &I) const {
2999 if (getImm(I.getOperand(4), MRI))
3000 return selectInsertVal(ResVReg, ResType, I);
3001 MachineBasicBlock &BB = *I.getParent();
3002 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorInsertDynamic))
3003 .addDef(ResVReg)
3004 .addUse(GR.getSPIRVTypeID(ResType))
3005 .addUse(I.getOperand(2).getReg())
3006 .addUse(I.getOperand(3).getReg())
3007 .addUse(I.getOperand(4).getReg())
3008 .constrainAllUses(TII, TRI, RBI);
3009}
3010
3011bool SPIRVInstructionSelector::selectExtractElt(Register ResVReg,
3012 const SPIRVType *ResType,
3013 MachineInstr &I) const {
3014 if (getImm(I.getOperand(3), MRI))
3015 return selectExtractVal(ResVReg, ResType, I);
3016 MachineBasicBlock &BB = *I.getParent();
3017 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorExtractDynamic))
3018 .addDef(ResVReg)
3019 .addUse(GR.getSPIRVTypeID(ResType))
3020 .addUse(I.getOperand(2).getReg())
3021 .addUse(I.getOperand(3).getReg())
3022 .constrainAllUses(TII, TRI, RBI);
3023}
3024
3025bool SPIRVInstructionSelector::selectGEP(Register ResVReg,
3026 const SPIRVType *ResType,
3027 MachineInstr &I) const {
3028 const bool IsGEPInBounds = I.getOperand(2).getImm();
3029
3030 // OpAccessChain could be used for OpenCL, but the SPIRV-LLVM Translator only
3031 // relies on PtrAccessChain, so we'll try not to deviate. For Vulkan however,
3032 // we have to use Op[InBounds]AccessChain.
3033 const unsigned Opcode = STI.isLogicalSPIRV()
3034 ? (IsGEPInBounds ? SPIRV::OpInBoundsAccessChain
3035 : SPIRV::OpAccessChain)
3036 : (IsGEPInBounds ? SPIRV::OpInBoundsPtrAccessChain
3037 : SPIRV::OpPtrAccessChain);
3038
3039 auto Res = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
3040 .addDef(ResVReg)
3041 .addUse(GR.getSPIRVTypeID(ResType))
3042 // Object to get a pointer to.
3043 .addUse(I.getOperand(3).getReg());
3044 // Adding indices.
3045 const unsigned StartingIndex =
3046 (Opcode == SPIRV::OpAccessChain || Opcode == SPIRV::OpInBoundsAccessChain)
3047 ? 5
3048 : 4;
3049 for (unsigned i = StartingIndex; i < I.getNumExplicitOperands(); ++i)
3050 Res.addUse(I.getOperand(i).getReg());
3051 return Res.constrainAllUses(TII, TRI, RBI);
3052}
3053
3054// Maybe wrap a value into OpSpecConstantOp
3055bool SPIRVInstructionSelector::wrapIntoSpecConstantOp(
3056 MachineInstr &I, SmallVector<Register> &CompositeArgs) const {
3057 bool Result = true;
3058 unsigned Lim = I.getNumExplicitOperands();
3059 for (unsigned i = I.getNumExplicitDefs() + 1; i < Lim; ++i) {
3060 Register OpReg = I.getOperand(i).getReg();
3061 MachineInstr *OpDefine = MRI->getVRegDef(OpReg);
3062 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
3063 SmallPtrSet<SPIRVType *, 4> Visited;
3064 if (!OpDefine || !OpType || isConstReg(MRI, OpDefine, Visited) ||
3065 OpDefine->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
3066 GR.isAggregateType(OpType)) {
3067 // The case of G_ADDRSPACE_CAST inside spv_const_composite() is processed
3068 // by selectAddrSpaceCast()
3069 CompositeArgs.push_back(OpReg);
3070 continue;
3071 }
3072 MachineFunction *MF = I.getMF();
3073 Register WrapReg = GR.find(OpDefine, MF);
3074 if (WrapReg.isValid()) {
3075 CompositeArgs.push_back(WrapReg);
3076 continue;
3077 }
3078 // Create a new register for the wrapper
3079 WrapReg = MRI->createVirtualRegister(GR.getRegClass(OpType));
3080 CompositeArgs.push_back(WrapReg);
3081 // Decorate the wrapper register and generate a new instruction
3082 MRI->setType(WrapReg, LLT::pointer(0, 64));
3083 GR.assignSPIRVTypeToVReg(OpType, WrapReg, *MF);
3084 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3085 TII.get(SPIRV::OpSpecConstantOp))
3086 .addDef(WrapReg)
3087 .addUse(GR.getSPIRVTypeID(OpType))
3088 .addImm(static_cast<uint32_t>(SPIRV::Opcode::Bitcast))
3089 .addUse(OpReg);
3090 GR.add(OpDefine, MIB);
3091 Result = MIB.constrainAllUses(TII, TRI, RBI);
3092 if (!Result)
3093 break;
3094 }
3095 return Result;
3096}
3097
3098bool SPIRVInstructionSelector::selectIntrinsic(Register ResVReg,
3099 const SPIRVType *ResType,
3100 MachineInstr &I) const {
3101 MachineBasicBlock &BB = *I.getParent();
3102 Intrinsic::ID IID = cast<GIntrinsic>(I).getIntrinsicID();
3103 switch (IID) {
3104 case Intrinsic::spv_load:
3105 return selectLoad(ResVReg, ResType, I);
3106 case Intrinsic::spv_store:
3107 return selectStore(I);
3108 case Intrinsic::spv_extractv:
3109 return selectExtractVal(ResVReg, ResType, I);
3110 case Intrinsic::spv_insertv:
3111 return selectInsertVal(ResVReg, ResType, I);
3112 case Intrinsic::spv_extractelt:
3113 return selectExtractElt(ResVReg, ResType, I);
3114 case Intrinsic::spv_insertelt:
3115 return selectInsertElt(ResVReg, ResType, I);
3116 case Intrinsic::spv_gep:
3117 return selectGEP(ResVReg, ResType, I);
3118 case Intrinsic::spv_unref_global:
3119 case Intrinsic::spv_init_global: {
3120 MachineInstr *MI = MRI->getVRegDef(I.getOperand(1).getReg());
3121 MachineInstr *Init = I.getNumExplicitOperands() > 2
3122 ? MRI->getVRegDef(I.getOperand(2).getReg())
3123 : nullptr;
3124 assert(MI);
3125 Register GVarVReg = MI->getOperand(0).getReg();
3126 bool Res = selectGlobalValue(GVarVReg, *MI, Init);
3127 // We violate SSA form by inserting OpVariable and still having a gMIR
3128 // instruction %vreg = G_GLOBAL_VALUE @gvar. We need to fix this by erasing
3129 // the duplicated definition.
3130 if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
3132 MI->removeFromParent();
3133 }
3134 return Res;
3135 }
3136 case Intrinsic::spv_undef: {
3137 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
3138 .addDef(ResVReg)
3139 .addUse(GR.getSPIRVTypeID(ResType));
3140 return MIB.constrainAllUses(TII, TRI, RBI);
3141 }
3142 case Intrinsic::spv_const_composite: {
3143 // If no values are attached, the composite is null constant.
3144 bool IsNull = I.getNumExplicitDefs() + 1 == I.getNumExplicitOperands();
3145 SmallVector<Register> CompositeArgs;
3146 MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
3147
3148 // skip type MD node we already used when generated assign.type for this
3149 if (!IsNull) {
3150 if (!wrapIntoSpecConstantOp(I, CompositeArgs))
3151 return false;
3152 MachineIRBuilder MIR(I);
3153 SmallVector<MachineInstr *, 4> Instructions = createContinuedInstructions(
3154 MIR, SPIRV::OpConstantComposite, 3,
3155 SPIRV::OpConstantCompositeContinuedINTEL, CompositeArgs, ResVReg,
3156 GR.getSPIRVTypeID(ResType));
3157 for (auto *Instr : Instructions) {
3158 Instr->setDebugLoc(I.getDebugLoc());
3159 if (!constrainSelectedInstRegOperands(*Instr, TII, TRI, RBI))
3160 return false;
3161 }
3162 return true;
3163 } else {
3164 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
3165 .addDef(ResVReg)
3166 .addUse(GR.getSPIRVTypeID(ResType));
3167 return MIB.constrainAllUses(TII, TRI, RBI);
3168 }
3169 }
3170 case Intrinsic::spv_assign_name: {
3171 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpName));
3172 MIB.addUse(I.getOperand(I.getNumExplicitDefs() + 1).getReg());
3173 for (unsigned i = I.getNumExplicitDefs() + 2;
3174 i < I.getNumExplicitOperands(); ++i) {
3175 MIB.addImm(I.getOperand(i).getImm());
3176 }
3177 return MIB.constrainAllUses(TII, TRI, RBI);
3178 }
3179 case Intrinsic::spv_switch: {
3180 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSwitch));
3181 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3182 if (I.getOperand(i).isReg())
3183 MIB.addReg(I.getOperand(i).getReg());
3184 else if (I.getOperand(i).isCImm())
3185 addNumImm(I.getOperand(i).getCImm()->getValue(), MIB);
3186 else if (I.getOperand(i).isMBB())
3187 MIB.addMBB(I.getOperand(i).getMBB());
3188 else
3189 llvm_unreachable("Unexpected OpSwitch operand");
3190 }
3191 return MIB.constrainAllUses(TII, TRI, RBI);
3192 }
3193 case Intrinsic::spv_loop_merge: {
3194 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoopMerge));
3195 for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
3196 if (I.getOperand(i).isMBB())
3197 MIB.addMBB(I.getOperand(i).getMBB());
3198 else
3199 MIB.addImm(foldImm(I.getOperand(i), MRI));
3200 }
3201 return MIB.constrainAllUses(TII, TRI, RBI);
3202 }
3203 case Intrinsic::spv_selection_merge: {
3204 auto MIB =
3205 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSelectionMerge));
3206 assert(I.getOperand(1).isMBB() &&
3207 "operand 1 to spv_selection_merge must be a basic block");
3208 MIB.addMBB(I.getOperand(1).getMBB());
3209 MIB.addImm(getSelectionOperandForImm(I.getOperand(2).getImm()));
3210 return MIB.constrainAllUses(TII, TRI, RBI);
3211 }
3212 case Intrinsic::spv_cmpxchg:
3213 return selectAtomicCmpXchg(ResVReg, ResType, I);
3214 case Intrinsic::spv_unreachable:
3215 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUnreachable))
3216 .constrainAllUses(TII, TRI, RBI);
3217 case Intrinsic::spv_alloca:
3218 return selectFrameIndex(ResVReg, ResType, I);
3219 case Intrinsic::spv_alloca_array:
3220 return selectAllocaArray(ResVReg, ResType, I);
3221 case Intrinsic::spv_assume:
3222 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3223 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpAssumeTrueKHR))
3224 .addUse(I.getOperand(1).getReg())
3225 .constrainAllUses(TII, TRI, RBI);
3226 break;
3227 case Intrinsic::spv_expect:
3228 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
3229 return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExpectKHR))
3230 .addDef(ResVReg)
3231 .addUse(GR.getSPIRVTypeID(ResType))
3232 .addUse(I.getOperand(2).getReg())
3233 .addUse(I.getOperand(3).getReg())
3234 .constrainAllUses(TII, TRI, RBI);
3235 break;
3236 case Intrinsic::arithmetic_fence:
3237 if (STI.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
3238 return BuildMI(BB, I, I.getDebugLoc(),
3239 TII.get(SPIRV::OpArithmeticFenceEXT))
3240 .addDef(ResVReg)
3241 .addUse(GR.getSPIRVTypeID(ResType))
3242 .addUse(I.getOperand(2).getReg())
3243 .constrainAllUses(TII, TRI, RBI);
3244 else
3245 return BuildCOPY(ResVReg, I.getOperand(2).getReg(), I);
3246 break;
3247 case Intrinsic::spv_thread_id:
3248 // The HLSL SV_DispatchThreadID semantic is lowered to llvm.spv.thread.id
3249 // intrinsic in LLVM IR for SPIR-V backend.
3250 //
3251 // In SPIR-V backend, llvm.spv.thread.id is now correctly translated to a
3252 // `GlobalInvocationId` builtin variable
3253 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalInvocationId, ResVReg,
3254 ResType, I);
3255 case Intrinsic::spv_thread_id_in_group:
3256 // The HLSL SV_GroupThreadId semantic is lowered to
3257 // llvm.spv.thread.id.in.group intrinsic in LLVM IR for SPIR-V backend.
3258 //
3259 // In SPIR-V backend, llvm.spv.thread.id.in.group is now correctly
3260 // translated to a `LocalInvocationId` builtin variable
3261 return loadVec3BuiltinInputID(SPIRV::BuiltIn::LocalInvocationId, ResVReg,
3262 ResType, I);
3263 case Intrinsic::spv_group_id:
3264 // The HLSL SV_GroupId semantic is lowered to
3265 // llvm.spv.group.id intrinsic in LLVM IR for SPIR-V backend.
3266 //
3267 // In SPIR-V backend, llvm.spv.group.id is now translated to a `WorkgroupId`
3268 // builtin variable
3269 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupId, ResVReg, ResType,
3270 I);
3271 case Intrinsic::spv_flattened_thread_id_in_group:
3272 // The HLSL SV_GroupIndex semantic is lowered to
3273 // llvm.spv.flattened.thread.id.in.group() intrinsic in LLVM IR for SPIR-V
3274 // backend.
3275 //
3276 // In SPIR-V backend, llvm.spv.flattened.thread.id.in.group is translated to
3277 // a `LocalInvocationIndex` builtin variable
3278 return loadBuiltinInputID(SPIRV::BuiltIn::LocalInvocationIndex, ResVReg,
3279 ResType, I);
3280 case Intrinsic::spv_workgroup_size:
3281 return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupSize, ResVReg,
3282 ResType, I);
3283 case Intrinsic::spv_global_size:
3284 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalSize, ResVReg, ResType,
3285 I);
3286 case Intrinsic::spv_global_offset:
3287 return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalOffset, ResVReg,
3288 ResType, I);
3289 case Intrinsic::spv_num_workgroups:
3290 return loadVec3BuiltinInputID(SPIRV::BuiltIn::NumWorkgroups, ResVReg,
3291 ResType, I);
3292 case Intrinsic::spv_subgroup_size:
3293 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupSize, ResVReg, ResType,
3294 I);
3295 case Intrinsic::spv_num_subgroups:
3296 return loadBuiltinInputID(SPIRV::BuiltIn::NumSubgroups, ResVReg, ResType,
3297 I);
3298 case Intrinsic::spv_subgroup_id:
3299 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupId, ResVReg, ResType, I);
3300 case Intrinsic::spv_subgroup_local_invocation_id:
3301 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupLocalInvocationId,
3302 ResVReg, ResType, I);
3303 case Intrinsic::spv_subgroup_max_size:
3304 return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupMaxSize, ResVReg, ResType,
3305 I);
3306 case Intrinsic::spv_fdot:
3307 return selectFloatDot(ResVReg, ResType, I);
3308 case Intrinsic::spv_udot:
3309 case Intrinsic::spv_sdot:
3310 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3311 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3312 return selectIntegerDot(ResVReg, ResType, I,
3313 /*Signed=*/IID == Intrinsic::spv_sdot);
3314 return selectIntegerDotExpansion(ResVReg, ResType, I);
3315 case Intrinsic::spv_dot4add_i8packed:
3316 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3317 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3318 return selectDot4AddPacked<true>(ResVReg, ResType, I);
3319 return selectDot4AddPackedExpansion<true>(ResVReg, ResType, I);
3320 case Intrinsic::spv_dot4add_u8packed:
3321 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
3322 STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
3323 return selectDot4AddPacked<false>(ResVReg, ResType, I);
3324 return selectDot4AddPackedExpansion<false>(ResVReg, ResType, I);
3325 case Intrinsic::spv_all:
3326 return selectAll(ResVReg, ResType, I);
3327 case Intrinsic::spv_any:
3328 return selectAny(ResVReg, ResType, I);
3329 case Intrinsic::spv_cross:
3330 return selectExtInst(ResVReg, ResType, I, CL::cross, GL::Cross);
3331 case Intrinsic::spv_distance:
3332 return selectExtInst(ResVReg, ResType, I, CL::distance, GL::Distance);
3333 case Intrinsic::spv_lerp:
3334 return selectExtInst(ResVReg, ResType, I, CL::mix, GL::FMix);
3335 case Intrinsic::spv_length:
3336 return selectExtInst(ResVReg, ResType, I, CL::length, GL::Length);
3337 case Intrinsic::spv_degrees:
3338 return selectExtInst(ResVReg, ResType, I, CL::degrees, GL::Degrees);
3339 case Intrinsic::spv_faceforward:
3340 return selectExtInst(ResVReg, ResType, I, GL::FaceForward);
3341 case Intrinsic::spv_frac:
3342 return selectExtInst(ResVReg, ResType, I, CL::fract, GL::Fract);
3343 case Intrinsic::spv_isinf:
3344 return selectOpIsInf(ResVReg, ResType, I);
3345 case Intrinsic::spv_isnan:
3346 return selectOpIsNan(ResVReg, ResType, I);
3347 case Intrinsic::spv_normalize:
3348 return selectExtInst(ResVReg, ResType, I, CL::normalize, GL::Normalize);
3349 case Intrinsic::spv_refract:
3350 return selectExtInst(ResVReg, ResType, I, GL::Refract);
3351 case Intrinsic::spv_reflect:
3352 return selectExtInst(ResVReg, ResType, I, GL::Reflect);
3353 case Intrinsic::spv_rsqrt:
3354 return selectExtInst(ResVReg, ResType, I, CL::rsqrt, GL::InverseSqrt);
3355 case Intrinsic::spv_sign:
3356 return selectSign(ResVReg, ResType, I);
3357 case Intrinsic::spv_smoothstep:
3358 return selectExtInst(ResVReg, ResType, I, CL::smoothstep, GL::SmoothStep);
3359 case Intrinsic::spv_firstbituhigh: // There is no CL equivalent of FindUMsb
3360 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/false);
3361 case Intrinsic::spv_firstbitshigh: // There is no CL equivalent of FindSMsb
3362 return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/true);
3363 case Intrinsic::spv_firstbitlow: // There is no CL equivlent of FindILsb
3364 return selectFirstBitLow(ResVReg, ResType, I);
3365 case Intrinsic::spv_group_memory_barrier_with_group_sync: {
3366 bool Result = true;
3367 auto MemSemConstant =
3368 buildI32Constant(SPIRV::MemorySemantics::SequentiallyConsistent, I);
3369 Register MemSemReg = MemSemConstant.first;
3370 Result &= MemSemConstant.second;
3371 auto ScopeConstant = buildI32Constant(SPIRV::Scope::Workgroup, I);
3372 Register ScopeReg = ScopeConstant.first;
3373 Result &= ScopeConstant.second;
3374 MachineBasicBlock &BB = *I.getParent();
3375 return Result &&
3376 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpControlBarrier))
3377 .addUse(ScopeReg)
3378 .addUse(ScopeReg)
3379 .addUse(MemSemReg)
3380 .constrainAllUses(TII, TRI, RBI);
3381 }
3382 case Intrinsic::spv_generic_cast_to_ptr_explicit: {
3383 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 1).getReg();
3384 SPIRV::StorageClass::StorageClass ResSC =
3385 GR.getPointerStorageClass(ResType);
3386 if (!isGenericCastablePtr(ResSC))
3387 report_fatal_error("The target storage class is not castable from the "
3388 "Generic storage class");
3389 return BuildMI(BB, I, I.getDebugLoc(),
3390 TII.get(SPIRV::OpGenericCastToPtrExplicit))
3391 .addDef(ResVReg)
3392 .addUse(GR.getSPIRVTypeID(ResType))
3393 .addUse(PtrReg)
3394 .addImm(ResSC)
3395 .constrainAllUses(TII, TRI, RBI);
3396 }
3397 case Intrinsic::spv_lifetime_start:
3398 case Intrinsic::spv_lifetime_end: {
3399 unsigned Op = IID == Intrinsic::spv_lifetime_start ? SPIRV::OpLifetimeStart
3400 : SPIRV::OpLifetimeStop;
3401 int64_t Size = I.getOperand(I.getNumExplicitDefs() + 1).getImm();
3402 Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 2).getReg();
3403 if (Size == -1)
3404 Size = 0;
3405 return BuildMI(BB, I, I.getDebugLoc(), TII.get(Op))
3406 .addUse(PtrReg)
3407 .addImm(Size)
3408 .constrainAllUses(TII, TRI, RBI);
3409 }
3410 case Intrinsic::spv_saturate:
3411 return selectSaturate(ResVReg, ResType, I);
3412 case Intrinsic::spv_nclamp:
3413 return selectExtInst(ResVReg, ResType, I, CL::fclamp, GL::NClamp);
3414 case Intrinsic::spv_uclamp:
3415 return selectExtInst(ResVReg, ResType, I, CL::u_clamp, GL::UClamp);
3416 case Intrinsic::spv_sclamp:
3417 return selectExtInst(ResVReg, ResType, I, CL::s_clamp, GL::SClamp);
3418 case Intrinsic::spv_wave_active_countbits:
3419 return selectWaveActiveCountBits(ResVReg, ResType, I);
3420 case Intrinsic::spv_wave_all:
3421 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAll);
3422 case Intrinsic::spv_wave_any:
3423 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAny);
3424 case Intrinsic::spv_wave_is_first_lane:
3425 return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformElect);
3426 case Intrinsic::spv_wave_reduce_umax:
3427 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ true);
3428 case Intrinsic::spv_wave_reduce_max:
3429 return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ false);
3430 case Intrinsic::spv_wave_reduce_sum:
3431 return selectWaveReduceSum(ResVReg, ResType, I);
3432 case Intrinsic::spv_wave_readlane:
3433 return selectWaveOpInst(ResVReg, ResType, I,
3434 SPIRV::OpGroupNonUniformShuffle);
3435 case Intrinsic::spv_step:
3436 return selectExtInst(ResVReg, ResType, I, CL::step, GL::Step);
3437 case Intrinsic::spv_radians:
3438 return selectExtInst(ResVReg, ResType, I, CL::radians, GL::Radians);
3439 // Discard intrinsics which we do not expect to actually represent code after
3440 // lowering or intrinsics which are not implemented but should not crash when
3441 // found in a customer's LLVM IR input.
3442 case Intrinsic::instrprof_increment:
3443 case Intrinsic::instrprof_increment_step:
3444 case Intrinsic::instrprof_value_profile:
3445 break;
3446 // Discard internal intrinsics.
3447 case Intrinsic::spv_value_md:
3448 break;
3449 case Intrinsic::spv_resource_handlefrombinding: {
3450 return selectHandleFromBinding(ResVReg, ResType, I);
3451 }
3452 case Intrinsic::spv_resource_counterhandlefrombinding:
3453 return selectCounterHandleFromBinding(ResVReg, ResType, I);
3454 case Intrinsic::spv_resource_updatecounter:
3455 return selectUpdateCounter(ResVReg, ResType, I);
3456 case Intrinsic::spv_resource_store_typedbuffer: {
3457 return selectImageWriteIntrinsic(I);
3458 }
3459 case Intrinsic::spv_resource_load_typedbuffer: {
3460 return selectReadImageIntrinsic(ResVReg, ResType, I);
3461 }
3462 case Intrinsic::spv_resource_getpointer: {
3463 return selectResourceGetPointer(ResVReg, ResType, I);
3464 }
3465 case Intrinsic::spv_discard: {
3466 return selectDiscard(ResVReg, ResType, I);
3467 }
3468 default: {
3469 std::string DiagMsg;
3470 raw_string_ostream OS(DiagMsg);
3471 I.print(OS);
3472 DiagMsg = "Intrinsic selection not implemented: " + DiagMsg;
3473 report_fatal_error(DiagMsg.c_str(), false);
3474 }
3475 }
3476 return true;
3477}
3478
3479bool SPIRVInstructionSelector::selectHandleFromBinding(Register &ResVReg,
3480 const SPIRVType *ResType,
3481 MachineInstr &I) const {
3482 // The images need to be loaded in the same basic block as their use. We defer
3483 // loading the image to the intrinsic that uses it.
3484 if (ResType->getOpcode() == SPIRV::OpTypeImage)
3485 return true;
3486
3487 return loadHandleBeforePosition(ResVReg, GR.getSPIRVTypeForVReg(ResVReg),
3488 *cast<GIntrinsic>(&I), I);
3489}
3490
3491bool SPIRVInstructionSelector::selectCounterHandleFromBinding(
3492 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
3493 auto &Intr = cast<GIntrinsic>(I);
3494 assert(Intr.getIntrinsicID() ==
3495 Intrinsic::spv_resource_counterhandlefrombinding);
3496
3497 // Extract information from the intrinsic call.
3498 Register MainHandleReg = Intr.getOperand(2).getReg();
3499 auto *MainHandleDef = cast<GIntrinsic>(getVRegDef(*MRI, MainHandleReg));
3500 assert(MainHandleDef->getIntrinsicID() ==
3501 Intrinsic::spv_resource_handlefrombinding);
3502
3503 uint32_t Set = getIConstVal(Intr.getOperand(4).getReg(), MRI);
3504 uint32_t Binding = getIConstVal(Intr.getOperand(3).getReg(), MRI);
3505 uint32_t ArraySize = getIConstVal(MainHandleDef->getOperand(4).getReg(), MRI);
3506 Register IndexReg = MainHandleDef->getOperand(5).getReg();
3507 const bool IsNonUniform = false;
3508 std::string CounterName =
3509 getStringValueFromReg(MainHandleDef->getOperand(6).getReg(), *MRI) +
3510 ".counter";
3511
3512 // Create the counter variable.
3513 MachineIRBuilder MIRBuilder(I);
3514 Register CounterVarReg = buildPointerToResource(
3515 GR.getPointeeType(ResType), GR.getPointerStorageClass(ResType), Set,
3516 Binding, ArraySize, IndexReg, IsNonUniform, CounterName, MIRBuilder);
3517
3518 return BuildCOPY(ResVReg, CounterVarReg, I);
3519}
3520
3521bool SPIRVInstructionSelector::selectUpdateCounter(Register &ResVReg,
3522 const SPIRVType *ResType,
3523 MachineInstr &I) const {
3524 auto &Intr = cast<GIntrinsic>(I);
3525 assert(Intr.getIntrinsicID() == Intrinsic::spv_resource_updatecounter);
3526
3527 Register CounterHandleReg = Intr.getOperand(2).getReg();
3528 Register IncrReg = Intr.getOperand(3).getReg();
3529
3530 // The counter handle is a pointer to the counter variable (which is a struct
3531 // containing an i32). We need to get a pointer to that i32 member to do the
3532 // atomic operation.
3533#ifndef NDEBUG
3534 SPIRVType *CounterVarType = GR.getSPIRVTypeForVReg(CounterHandleReg);
3535 SPIRVType *CounterVarPointeeType = GR.getPointeeType(CounterVarType);
3536 assert(CounterVarPointeeType &&
3537 CounterVarPointeeType->getOpcode() == SPIRV::OpTypeStruct &&
3538 "Counter variable must be a struct");
3539 assert(GR.getPointerStorageClass(CounterVarType) ==
3540 SPIRV::StorageClass::StorageBuffer &&
3541 "Counter variable must be in the storage buffer storage class");
3542 assert(CounterVarPointeeType->getNumOperands() == 2 &&
3543 "Counter variable must have exactly 1 member in the struct");
3544 const SPIRVType *MemberType =
3545 GR.getSPIRVTypeForVReg(CounterVarPointeeType->getOperand(1).getReg());
3546 assert(MemberType->getOpcode() == SPIRV::OpTypeInt &&
3547 "Counter variable struct must have a single i32 member");
3548#endif
3549
3550 // The struct has a single i32 member.
3551 MachineIRBuilder MIRBuilder(I);
3552 const Type *LLVMIntType =
3553 Type::getInt32Ty(I.getMF()->getFunction().getContext());
3554
3555 SPIRVType *IntPtrType = GR.getOrCreateSPIRVPointerType(
3556 LLVMIntType, MIRBuilder, SPIRV::StorageClass::StorageBuffer);
3557
3558 auto Zero = buildI32Constant(0, I);
3559 if (!Zero.second)
3560 return false;
3561
3562 Register PtrToCounter =
3563 MRI->createVirtualRegister(GR.getRegClass(IntPtrType));
3564 if (!BuildMI(*I.getParent(), I, I.getDebugLoc(),
3565 TII.get(SPIRV::OpAccessChain))
3566 .addDef(PtrToCounter)
3567 .addUse(GR.getSPIRVTypeID(IntPtrType))
3568 .addUse(CounterHandleReg)
3569 .addUse(Zero.first)
3570 .constrainAllUses(TII, TRI, RBI)) {
3571 return false;
3572 }
3573
3574 // For UAV/SSBO counters, the scope is Device. The counter variable is not
3575 // used as a flag. So the memory semantics can be None.
3576 auto Scope = buildI32Constant(SPIRV::Scope::Device, I);
3577 if (!Scope.second)
3578 return false;
3579 auto Semantics = buildI32Constant(SPIRV::MemorySemantics::None, I);
3580 if (!Semantics.second)
3581 return false;
3582
3583 int64_t IncrVal = getIConstValSext(IncrReg, MRI);
3584 auto Incr = buildI32Constant(static_cast<uint32_t>(IncrVal), I);
3585 if (!Incr.second)
3586 return false;
3587
3588 Register AtomicRes = MRI->createVirtualRegister(GR.getRegClass(ResType));
3589 if (!BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpAtomicIAdd))
3590 .addDef(AtomicRes)
3591 .addUse(GR.getSPIRVTypeID(ResType))
3592 .addUse(PtrToCounter)
3593 .addUse(Scope.first)
3594 .addUse(Semantics.first)
3595 .addUse(Incr.first)
3596 .constrainAllUses(TII, TRI, RBI)) {
3597 return false;
3598 }
3599 if (IncrVal >= 0) {
3600 return BuildCOPY(ResVReg, AtomicRes, I);
3601 }
3602
3603 // In HLSL, IncrementCounter returns the value *before* the increment, while
3604 // DecrementCounter returns the value *after* the decrement. Both are lowered
3605 // to the same atomic intrinsic which returns the value *before* the
3606 // operation. So for decrements (negative IncrVal), we must subtract the
3607 // increment value from the result to get the post-decrement value.
3608 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
3609 .addDef(ResVReg)
3610 .addUse(GR.getSPIRVTypeID(ResType))
3611 .addUse(AtomicRes)
3612 .addUse(Incr.first)
3613 .constrainAllUses(TII, TRI, RBI);
3614}
3615bool SPIRVInstructionSelector::selectReadImageIntrinsic(
3616 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
3617
3618 // If the load of the image is in a different basic block, then
3619 // this will generate invalid code. A proper solution is to move
3620 // the OpLoad from selectHandleFromBinding here. However, to do
3621 // that we will need to change the return type of the intrinsic.
3622 // We will do that when we can, but for now trying to move forward with other
3623 // issues.
3624 Register ImageReg = I.getOperand(2).getReg();
3625 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
3626 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
3627 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
3628 *ImageDef, I)) {
3629 return false;
3630 }
3631
3632 Register IdxReg = I.getOperand(3).getReg();
3633 DebugLoc Loc = I.getDebugLoc();
3634 MachineInstr &Pos = I;
3635
3636 return generateImageRead(ResVReg, ResType, NewImageReg, IdxReg, Loc, Pos);
3637}
3638
3639bool SPIRVInstructionSelector::generateImageRead(Register &ResVReg,
3640 const SPIRVType *ResType,
3641 Register ImageReg,
3642 Register IdxReg, DebugLoc Loc,
3643 MachineInstr &Pos) const {
3644 SPIRVType *ImageType = GR.getSPIRVTypeForVReg(ImageReg);
3645 assert(ImageType && ImageType->getOpcode() == SPIRV::OpTypeImage &&
3646 "ImageReg is not an image type.");
3647 bool IsSignedInteger =
3648 sampledTypeIsSignedInteger(GR.getTypeForSPIRVType(ImageType));
3649
3650 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
3651 if (ResultSize == 4) {
3652 auto BMI = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead))
3653 .addDef(ResVReg)
3654 .addUse(GR.getSPIRVTypeID(ResType))
3655 .addUse(ImageReg)
3656 .addUse(IdxReg);
3657
3658 if (IsSignedInteger)
3659 BMI.addImm(0x1000); // SignExtend
3660 return BMI.constrainAllUses(TII, TRI, RBI);
3661 }
3662
3663 SPIRVType *ReadType = widenTypeToVec4(ResType, Pos);
3664 Register ReadReg = MRI->createVirtualRegister(GR.getRegClass(ReadType));
3665 auto BMI = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead))
3666 .addDef(ReadReg)
3667 .addUse(GR.getSPIRVTypeID(ReadType))
3668 .addUse(ImageReg)
3669 .addUse(IdxReg);
3670 if (IsSignedInteger)
3671 BMI.addImm(0x1000); // SignExtend
3672 bool Succeed = BMI.constrainAllUses(TII, TRI, RBI);
3673 if (!Succeed)
3674 return false;
3675
3676 if (ResultSize == 1) {
3677 return BuildMI(*Pos.getParent(), Pos, Loc,
3678 TII.get(SPIRV::OpCompositeExtract))
3679 .addDef(ResVReg)
3680 .addUse(GR.getSPIRVTypeID(ResType))
3681 .addUse(ReadReg)
3682 .addImm(0)
3683 .constrainAllUses(TII, TRI, RBI);
3684 }
3685 return extractSubvector(ResVReg, ResType, ReadReg, Pos);
3686}
3687
3688bool SPIRVInstructionSelector::selectResourceGetPointer(
3689 Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
3690 Register ResourcePtr = I.getOperand(2).getReg();
3691 SPIRVType *RegType = GR.getSPIRVTypeForVReg(ResourcePtr, I.getMF());
3692 if (RegType->getOpcode() == SPIRV::OpTypeImage) {
3693 // For texel buffers, the index into the image is part of the OpImageRead or
3694 // OpImageWrite instructions. So we will do nothing in this case. This
3695 // intrinsic will be combined with the load or store when selecting the load
3696 // or store.
3697 return true;
3698 }
3699
3700 assert(ResType->getOpcode() == SPIRV::OpTypePointer);
3701 MachineIRBuilder MIRBuilder(I);
3702
3703 Register IndexReg = I.getOperand(3).getReg();
3704 Register ZeroReg =
3705 buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
3706 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
3707 TII.get(SPIRV::OpAccessChain))
3708 .addDef(ResVReg)
3709 .addUse(GR.getSPIRVTypeID(ResType))
3710 .addUse(ResourcePtr)
3711 .addUse(ZeroReg)
3712 .addUse(IndexReg)
3713 .constrainAllUses(TII, TRI, RBI);
3714}
3715
3716bool SPIRVInstructionSelector::extractSubvector(
3717 Register &ResVReg, const SPIRVType *ResType, Register &ReadReg,
3718 MachineInstr &InsertionPoint) const {
3719 SPIRVType *InputType = GR.getResultType(ReadReg);
3720 [[maybe_unused]] uint64_t InputSize =
3721 GR.getScalarOrVectorComponentCount(InputType);
3722 uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
3723 assert(InputSize > 1 && "The input must be a vector.");
3724 assert(ResultSize > 1 && "The result must be a vector.");
3725 assert(ResultSize < InputSize &&
3726 "Cannot extract more element than there are in the input.");
3727 SmallVector<Register> ComponentRegisters;
3728 SPIRVType *ScalarType = GR.getScalarOrVectorComponentType(ResType);
3729 const TargetRegisterClass *ScalarRegClass = GR.getRegClass(ScalarType);
3730 for (uint64_t I = 0; I < ResultSize; I++) {
3731 Register ComponentReg = MRI->createVirtualRegister(ScalarRegClass);
3732 bool Succeed = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
3733 InsertionPoint.getDebugLoc(),
3734 TII.get(SPIRV::OpCompositeExtract))
3735 .addDef(ComponentReg)
3736 .addUse(ScalarType->getOperand(0).getReg())
3737 .addUse(ReadReg)
3738 .addImm(I)
3739 .constrainAllUses(TII, TRI, RBI);
3740 if (!Succeed)
3741 return false;
3742 ComponentRegisters.emplace_back(ComponentReg);
3743 }
3744
3745 MachineInstrBuilder MIB = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
3746 InsertionPoint.getDebugLoc(),
3747 TII.get(SPIRV::OpCompositeConstruct))
3748 .addDef(ResVReg)
3749 .addUse(GR.getSPIRVTypeID(ResType));
3750
3751 for (Register ComponentReg : ComponentRegisters)
3752 MIB.addUse(ComponentReg);
3753 return MIB.constrainAllUses(TII, TRI, RBI);
3754}
3755
3756bool SPIRVInstructionSelector::selectImageWriteIntrinsic(
3757 MachineInstr &I) const {
3758 // If the load of the image is in a different basic block, then
3759 // this will generate invalid code. A proper solution is to move
3760 // the OpLoad from selectHandleFromBinding here. However, to do
3761 // that we will need to change the return type of the intrinsic.
3762 // We will do that when we can, but for now trying to move forward with other
3763 // issues.
3764 Register ImageReg = I.getOperand(1).getReg();
3765 auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
3766 Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
3767 if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
3768 *ImageDef, I)) {
3769 return false;
3770 }
3771
3772 Register CoordinateReg = I.getOperand(2).getReg();
3773 Register DataReg = I.getOperand(3).getReg();
3774 assert(GR.getResultType(DataReg)->getOpcode() == SPIRV::OpTypeVector);
3776 return BuildMI(*I.getParent(), I, I.getDebugLoc(),
3777 TII.get(SPIRV::OpImageWrite))
3778 .addUse(NewImageReg)
3779 .addUse(CoordinateReg)
3780 .addUse(DataReg)
3781 .constrainAllUses(TII, TRI, RBI);
3782}
3783
3784Register SPIRVInstructionSelector::buildPointerToResource(
3785 const SPIRVType *SpirvResType, SPIRV::StorageClass::StorageClass SC,
3786 uint32_t Set, uint32_t Binding, uint32_t ArraySize, Register IndexReg,
3787 bool IsNonUniform, StringRef Name, MachineIRBuilder MIRBuilder) const {
3788 const Type *ResType = GR.getTypeForSPIRVType(SpirvResType);
3789 if (ArraySize == 1) {
3790 SPIRVType *PtrType =
3791 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
3792 assert(GR.getPointeeType(PtrType) == SpirvResType &&
3793 "SpirvResType did not have an explicit layout.");
3794 return GR.getOrCreateGlobalVariableWithBinding(PtrType, Set, Binding, Name,
3795 MIRBuilder);
3796 }
3797
3798 const Type *VarType = ArrayType::get(const_cast<Type *>(ResType), ArraySize);
3799 SPIRVType *VarPointerType =
3800 GR.getOrCreateSPIRVPointerType(VarType, MIRBuilder, SC);
3802 VarPointerType, Set, Binding, Name, MIRBuilder);
3803
3804 SPIRVType *ResPointerType =
3805 GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
3806
3807 Register AcReg = MRI->createVirtualRegister(GR.getRegClass(ResPointerType));
3808 if (IsNonUniform) {
3809 // It is unclear which value needs to be marked an non-uniform, so both
3810 // the index and the access changed are decorated as non-uniform.
3811 buildOpDecorate(IndexReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
3812 buildOpDecorate(AcReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
3813 }
3814
3815 MIRBuilder.buildInstr(SPIRV::OpAccessChain)
3816 .addDef(AcReg)
3817 .addUse(GR.getSPIRVTypeID(ResPointerType))
3818 .addUse(VarReg)
3819 .addUse(IndexReg);
3820
3821 return AcReg;
3822}
3823
3824bool SPIRVInstructionSelector::selectFirstBitSet16(
3825 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3826 unsigned ExtendOpcode, unsigned BitSetOpcode) const {
3827 Register ExtReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3828 bool Result = selectOpWithSrcs(ExtReg, ResType, I, {I.getOperand(2).getReg()},
3829 ExtendOpcode);
3830
3831 return Result &&
3832 selectFirstBitSet32(ResVReg, ResType, I, ExtReg, BitSetOpcode);
3833}
3834
3835bool SPIRVInstructionSelector::selectFirstBitSet32(
3836 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3837 Register SrcReg, unsigned BitSetOpcode) const {
3838 return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
3839 .addDef(ResVReg)
3840 .addUse(GR.getSPIRVTypeID(ResType))
3841 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
3842 .addImm(BitSetOpcode)
3843 .addUse(SrcReg)
3844 .constrainAllUses(TII, TRI, RBI);
3845}
3846
3847bool SPIRVInstructionSelector::selectFirstBitSet64Overflow(
3848 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3849 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
3850
3851 // SPIR-V allow vectors of size 2,3,4 only. Calling with a larger vectors
3852 // requires creating a param register and return register with an invalid
3853 // vector size. If that is resolved, then this function can be used for
3854 // vectors of any component size.
3855 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
3856 assert(ComponentCount < 5 && "Vec 5+ will generate invalid SPIR-V ops");
3857
3858 MachineIRBuilder MIRBuilder(I);
3860 SPIRVType *I64Type = GR.getOrCreateSPIRVIntegerType(64, MIRBuilder);
3861 SPIRVType *I64x2Type =
3862 GR.getOrCreateSPIRVVectorType(I64Type, 2, MIRBuilder, false);
3863 SPIRVType *Vec2ResType =
3864 GR.getOrCreateSPIRVVectorType(BaseType, 2, MIRBuilder, false);
3865
3866 std::vector<Register> PartialRegs;
3867
3868 // Loops 0, 2, 4, ... but stops one loop early when ComponentCount is odd
3869 unsigned CurrentComponent = 0;
3870 for (; CurrentComponent + 1 < ComponentCount; CurrentComponent += 2) {
3871 // This register holds the firstbitX result for each of the i64x2 vectors
3872 // extracted from SrcReg
3873 Register BitSetResult =
3874 MRI->createVirtualRegister(GR.getRegClass(I64x2Type));
3875
3876 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3877 TII.get(SPIRV::OpVectorShuffle))
3878 .addDef(BitSetResult)
3879 .addUse(GR.getSPIRVTypeID(I64x2Type))
3880 .addUse(SrcReg)
3881 .addUse(SrcReg)
3882 .addImm(CurrentComponent)
3883 .addImm(CurrentComponent + 1);
3884
3885 if (!MIB.constrainAllUses(TII, TRI, RBI))
3886 return false;
3887
3888 Register SubVecBitSetReg =
3889 MRI->createVirtualRegister(GR.getRegClass(Vec2ResType));
3890
3891 if (!selectFirstBitSet64(SubVecBitSetReg, Vec2ResType, I, BitSetResult,
3892 BitSetOpcode, SwapPrimarySide))
3893 return false;
3894
3895 PartialRegs.push_back(SubVecBitSetReg);
3896 }
3897
3898 // On odd component counts we need to handle one more component
3899 if (CurrentComponent != ComponentCount) {
3900 bool ZeroAsNull = !STI.isShader();
3901 Register FinalElemReg = MRI->createVirtualRegister(GR.getRegClass(I64Type));
3902 Register ConstIntLastIdx = GR.getOrCreateConstInt(
3903 ComponentCount - 1, I, BaseType, TII, ZeroAsNull);
3904
3905 if (!selectOpWithSrcs(FinalElemReg, I64Type, I, {SrcReg, ConstIntLastIdx},
3906 SPIRV::OpVectorExtractDynamic))
3907 return false;
3908
3909 Register FinalElemBitSetReg =
3910 MRI->createVirtualRegister(GR.getRegClass(BaseType));
3911
3912 if (!selectFirstBitSet64(FinalElemBitSetReg, BaseType, I, FinalElemReg,
3913 BitSetOpcode, SwapPrimarySide))
3914 return false;
3915
3916 PartialRegs.push_back(FinalElemBitSetReg);
3917 }
3918
3919 // Join all the resulting registers back into the return type in order
3920 // (ie i32x2, i32x2, i32x1 -> i32x5)
3921 return selectOpWithSrcs(ResVReg, ResType, I, std::move(PartialRegs),
3922 SPIRV::OpCompositeConstruct);
3923}
3924
3925bool SPIRVInstructionSelector::selectFirstBitSet64(
3926 Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
3927 Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
3928 unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
3930 bool ZeroAsNull = !STI.isShader();
3931 Register ConstIntZero =
3932 GR.getOrCreateConstInt(0, I, BaseType, TII, ZeroAsNull);
3933 Register ConstIntOne =
3934 GR.getOrCreateConstInt(1, I, BaseType, TII, ZeroAsNull);
3935
3936 // SPIRV doesn't support vectors with more than 4 components. Since the
3937 // algoritm below converts i64 -> i32x2 and i64x4 -> i32x8 it can only
3938 // operate on vectors with 2 or less components. When largers vectors are
3939 // seen. Split them, recurse, then recombine them.
3940 if (ComponentCount > 2) {
3941 return selectFirstBitSet64Overflow(ResVReg, ResType, I, SrcReg,
3942 BitSetOpcode, SwapPrimarySide);
3943 }
3944
3945 // 1. Split int64 into 2 pieces using a bitcast
3946 MachineIRBuilder MIRBuilder(I);
3947 SPIRVType *PostCastType = GR.getOrCreateSPIRVVectorType(
3948 BaseType, 2 * ComponentCount, MIRBuilder, false);
3949 Register BitcastReg =
3950 MRI->createVirtualRegister(GR.getRegClass(PostCastType));
3951
3952 if (!selectOpWithSrcs(BitcastReg, PostCastType, I, {SrcReg},
3953 SPIRV::OpBitcast))
3954 return false;
3955
3956 // 2. Find the first set bit from the primary side for all the pieces in #1
3957 Register FBSReg = MRI->createVirtualRegister(GR.getRegClass(PostCastType));
3958 if (!selectFirstBitSet32(FBSReg, PostCastType, I, BitcastReg, BitSetOpcode))
3959 return false;
3960
3961 // 3. Split result vector into high bits and low bits
3962 Register HighReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3963 Register LowReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
3964
3965 bool IsScalarRes = ResType->getOpcode() != SPIRV::OpTypeVector;
3966 if (IsScalarRes) {
3967 // if scalar do a vector extract
3968 if (!selectOpWithSrcs(HighReg, ResType, I, {FBSReg, ConstIntZero},
3969 SPIRV::OpVectorExtractDynamic))
3970 return false;
3971 if (!selectOpWithSrcs(LowReg, ResType, I, {FBSReg, ConstIntOne},
3972 SPIRV::OpVectorExtractDynamic))
3973 return false;
3974 } else {
3975 // if vector do a shufflevector
3976 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3977 TII.get(SPIRV::OpVectorShuffle))
3978 .addDef(HighReg)
3979 .addUse(GR.getSPIRVTypeID(ResType))
3980 .addUse(FBSReg)
3981 // Per the spec, repeat the vector if only one vec is needed
3982 .addUse(FBSReg);
3983
3984 // high bits are stored in even indexes. Extract them from FBSReg
3985 for (unsigned J = 0; J < ComponentCount * 2; J += 2) {
3986 MIB.addImm(J);
3987 }
3988
3989 if (!MIB.constrainAllUses(TII, TRI, RBI))
3990 return false;
3991
3992 MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
3993 TII.get(SPIRV::OpVectorShuffle))
3994 .addDef(LowReg)
3995 .addUse(GR.getSPIRVTypeID(ResType))
3996 .addUse(FBSReg)
3997 // Per the spec, repeat the vector if only one vec is needed
3998 .addUse(FBSReg);
3999
4000 // low bits are stored in odd indexes. Extract them from FBSReg
4001 for (unsigned J = 1; J < ComponentCount * 2; J += 2) {
4002 MIB.addImm(J);
4003 }
4004 if (!MIB.constrainAllUses(TII, TRI, RBI))
4005 return false;
4006 }
4007
4008 // 4. Check the result. When primary bits == -1 use secondary, otherwise use
4009 // primary
4010 SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
4011 Register NegOneReg;
4012 Register Reg0;
4013 Register Reg32;
4014 unsigned SelectOp;
4015 unsigned AddOp;
4016
4017 if (IsScalarRes) {
4018 NegOneReg =
4019 GR.getOrCreateConstInt((unsigned)-1, I, ResType, TII, ZeroAsNull);
4020 Reg0 = GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
4021 Reg32 = GR.getOrCreateConstInt(32, I, ResType, TII, ZeroAsNull);
4022 SelectOp = SPIRV::OpSelectSISCond;
4023 AddOp = SPIRV::OpIAddS;
4024 } else {
4025 BoolType = GR.getOrCreateSPIRVVectorType(BoolType, ComponentCount,
4026 MIRBuilder, false);
4027 NegOneReg =
4028 GR.getOrCreateConstVector((unsigned)-1, I, ResType, TII, ZeroAsNull);
4029 Reg0 = GR.getOrCreateConstVector(0, I, ResType, TII, ZeroAsNull);
4030 Reg32 = GR.getOrCreateConstVector(32, I, ResType, TII, ZeroAsNull);
4031 SelectOp = SPIRV::OpSelectVIVCond;
4032 AddOp = SPIRV::OpIAddV;
4033 }
4034
4035 Register PrimaryReg = HighReg;
4036 Register SecondaryReg = LowReg;
4037 Register PrimaryShiftReg = Reg32;
4038 Register SecondaryShiftReg = Reg0;
4039
4040 // By default the emitted opcodes check for the set bit from the MSB side.
4041 // Setting SwapPrimarySide checks the set bit from the LSB side
4042 if (SwapPrimarySide) {
4043 PrimaryReg = LowReg;
4044 SecondaryReg = HighReg;
4045 PrimaryShiftReg = Reg0;
4046 SecondaryShiftReg = Reg32;
4047 }
4048
4049 // Check if the primary bits are == -1
4050 Register BReg = MRI->createVirtualRegister(GR.getRegClass(BoolType));
4051 if (!selectOpWithSrcs(BReg, BoolType, I, {PrimaryReg, NegOneReg},
4052 SPIRV::OpIEqual))
4053 return false;
4054
4055 // Select secondary bits if true in BReg, otherwise primary bits
4056 Register TmpReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4057 if (!selectOpWithSrcs(TmpReg, ResType, I, {BReg, SecondaryReg, PrimaryReg},
4058 SelectOp))
4059 return false;
4060
4061 // 5. Add 32 when high bits are used, otherwise 0 for low bits
4062 Register ValReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4063 if (!selectOpWithSrcs(ValReg, ResType, I,
4064 {BReg, SecondaryShiftReg, PrimaryShiftReg}, SelectOp))
4065 return false;
4066
4067 return selectOpWithSrcs(ResVReg, ResType, I, {ValReg, TmpReg}, AddOp);
4068}
4069
4070bool SPIRVInstructionSelector::selectFirstBitHigh(Register ResVReg,
4071 const SPIRVType *ResType,
4072 MachineInstr &I,
4073 bool IsSigned) const {
4074 // FindUMsb and FindSMsb intrinsics only support 32 bit integers
4075 Register OpReg = I.getOperand(2).getReg();
4076 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
4077 // zero or sign extend
4078 unsigned ExtendOpcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
4079 unsigned BitSetOpcode = IsSigned ? GL::FindSMsb : GL::FindUMsb;
4080
4081 switch (GR.getScalarOrVectorBitWidth(OpType)) {
4082 case 16:
4083 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
4084 case 32:
4085 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
4086 case 64:
4087 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
4088 /*SwapPrimarySide=*/false);
4089 default:
4091 "spv_firstbituhigh and spv_firstbitshigh only support 16,32,64 bits.");
4092 }
4093}
4094
4095bool SPIRVInstructionSelector::selectFirstBitLow(Register ResVReg,
4096 const SPIRVType *ResType,
4097 MachineInstr &I) const {
4098 // FindILsb intrinsic only supports 32 bit integers
4099 Register OpReg = I.getOperand(2).getReg();
4100 SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
4101 // OpUConvert treats the operand bits as an unsigned i16 and zero extends it
4102 // to an unsigned i32. As this leaves all the least significant bits unchanged
4103 // so the first set bit from the LSB side doesn't change.
4104 unsigned ExtendOpcode = SPIRV::OpUConvert;
4105 unsigned BitSetOpcode = GL::FindILsb;
4106
4107 switch (GR.getScalarOrVectorBitWidth(OpType)) {
4108 case 16:
4109 return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
4110 case 32:
4111 return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
4112 case 64:
4113 return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
4114 /*SwapPrimarySide=*/true);
4115 default:
4116 report_fatal_error("spv_firstbitlow only supports 16,32,64 bits.");
4117 }
4118}
4119
4120bool SPIRVInstructionSelector::selectAllocaArray(Register ResVReg,
4121 const SPIRVType *ResType,
4122 MachineInstr &I) const {
4123 // there was an allocation size parameter to the allocation instruction
4124 // that is not 1
4125 MachineBasicBlock &BB = *I.getParent();
4126 bool Res = BuildMI(BB, I, I.getDebugLoc(),
4127 TII.get(SPIRV::OpVariableLengthArrayINTEL))
4128 .addDef(ResVReg)
4129 .addUse(GR.getSPIRVTypeID(ResType))
4130 .addUse(I.getOperand(2).getReg())
4131 .constrainAllUses(TII, TRI, RBI);
4132 if (!STI.isShader()) {
4133 unsigned Alignment = I.getOperand(3).getImm();
4134 buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::Alignment, {Alignment});
4135 }
4136 return Res;
4137}
4138
4139bool SPIRVInstructionSelector::selectFrameIndex(Register ResVReg,
4140 const SPIRVType *ResType,
4141 MachineInstr &I) const {
4142 // Change order of instructions if needed: all OpVariable instructions in a
4143 // function must be the first instructions in the first block
4144 auto It = getOpVariableMBBIt(I);
4145 bool Res = BuildMI(*It->getParent(), It, It->getDebugLoc(),
4146 TII.get(SPIRV::OpVariable))
4147 .addDef(ResVReg)
4148 .addUse(GR.getSPIRVTypeID(ResType))
4149 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
4150 .constrainAllUses(TII, TRI, RBI);
4151 if (!STI.isShader()) {
4152 unsigned Alignment = I.getOperand(2).getImm();
4153 buildOpDecorate(ResVReg, *It, TII, SPIRV::Decoration::Alignment,
4154 {Alignment});
4155 }
4156 return Res;
4157}
4158
4159bool SPIRVInstructionSelector::selectBranch(MachineInstr &I) const {
4160 // InstructionSelector walks backwards through the instructions. We can use
4161 // both a G_BR and a G_BRCOND to create an OpBranchConditional. We hit G_BR
4162 // first, so can generate an OpBranchConditional here. If there is no
4163 // G_BRCOND, we just use OpBranch for a regular unconditional branch.
4164 const MachineInstr *PrevI = I.getPrevNode();
4165 MachineBasicBlock &MBB = *I.getParent();
4166 if (PrevI != nullptr && PrevI->getOpcode() == TargetOpcode::G_BRCOND) {
4167 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
4168 .addUse(PrevI->getOperand(0).getReg())
4169 .addMBB(PrevI->getOperand(1).getMBB())
4170 .addMBB(I.getOperand(0).getMBB())
4171 .constrainAllUses(TII, TRI, RBI);
4172 }
4173 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranch))
4174 .addMBB(I.getOperand(0).getMBB())
4175 .constrainAllUses(TII, TRI, RBI);
4176}
4177
4178bool SPIRVInstructionSelector::selectBranchCond(MachineInstr &I) const {
4179 // InstructionSelector walks backwards through the instructions. For an
4180 // explicit conditional branch with no fallthrough, we use both a G_BR and a
4181 // G_BRCOND to create an OpBranchConditional. We should hit G_BR first, and
4182 // generate the OpBranchConditional in selectBranch above.
4183 //
4184 // If an OpBranchConditional has been generated, we simply return, as the work
4185 // is alread done. If there is no OpBranchConditional, LLVM must be relying on
4186 // implicit fallthrough to the next basic block, so we need to create an
4187 // OpBranchConditional with an explicit "false" argument pointing to the next
4188 // basic block that LLVM would fall through to.
4189 const MachineInstr *NextI = I.getNextNode();
4190 // Check if this has already been successfully selected.
4191 if (NextI != nullptr && NextI->getOpcode() == SPIRV::OpBranchConditional)
4192 return true;
4193 // Must be relying on implicit block fallthrough, so generate an
4194 // OpBranchConditional with the "next" basic block as the "false" target.
4195 MachineBasicBlock &MBB = *I.getParent();
4196 unsigned NextMBBNum = MBB.getNextNode()->getNumber();
4197 MachineBasicBlock *NextMBB = I.getMF()->getBlockNumbered(NextMBBNum);
4198 return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
4199 .addUse(I.getOperand(0).getReg())
4200 .addMBB(I.getOperand(1).getMBB())
4201 .addMBB(NextMBB)
4202 .constrainAllUses(TII, TRI, RBI);
4203}
4204
4205bool SPIRVInstructionSelector::selectPhi(Register ResVReg,
4206 const SPIRVType *ResType,
4207 MachineInstr &I) const {
4208 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpPhi))
4209 .addDef(ResVReg)
4210 .addUse(GR.getSPIRVTypeID(ResType));
4211 const unsigned NumOps = I.getNumOperands();
4212 for (unsigned i = 1; i < NumOps; i += 2) {
4213 MIB.addUse(I.getOperand(i + 0).getReg());
4214 MIB.addMBB(I.getOperand(i + 1).getMBB());
4215 }
4216 bool Res = MIB.constrainAllUses(TII, TRI, RBI);
4217 MIB->setDesc(TII.get(TargetOpcode::PHI));
4218 MIB->removeOperand(1);
4219 return Res;
4220}
4221
4222bool SPIRVInstructionSelector::selectGlobalValue(
4223 Register ResVReg, MachineInstr &I, const MachineInstr *Init) const {
4224 // FIXME: don't use MachineIRBuilder here, replace it with BuildMI.
4225 MachineIRBuilder MIRBuilder(I);
4226 const GlobalValue *GV = I.getOperand(1).getGlobal();
4228
4229 std::string GlobalIdent;
4230 if (!GV->hasName()) {
4231 unsigned &ID = UnnamedGlobalIDs[GV];
4232 if (ID == 0)
4233 ID = UnnamedGlobalIDs.size();
4234 GlobalIdent = "__unnamed_" + Twine(ID).str();
4235 } else {
4236 GlobalIdent = GV->getName();
4237 }
4238
4239 // Behaviour of functions as operands depends on availability of the
4240 // corresponding extension (SPV_INTEL_function_pointers):
4241 // - If there is an extension to operate with functions as operands:
4242 // We create a proper constant operand and evaluate a correct type for a
4243 // function pointer.
4244 // - Without the required extension:
4245 // We have functions as operands in tests with blocks of instruction e.g. in
4246 // transcoding/global_block.ll. These operands are not used and should be
4247 // substituted by zero constants. Their type is expected to be always
4248 // OpTypePointer Function %uchar.
4249 if (isa<Function>(GV)) {
4250 const Constant *ConstVal = GV;
4251 MachineBasicBlock &BB = *I.getParent();
4252 Register NewReg = GR.find(ConstVal, GR.CurMF);
4253 if (!NewReg.isValid()) {
4254 Register NewReg = ResVReg;
4255 const Function *GVFun =
4256 STI.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)
4257 ? dyn_cast<Function>(GV)
4258 : nullptr;
4260 GVType, I,
4261 GVFun ? SPIRV::StorageClass::CodeSectionINTEL
4263 if (GVFun) {
4264 // References to a function via function pointers generate virtual
4265 // registers without a definition. We will resolve it later, during
4266 // module analysis stage.
4267 Register ResTypeReg = GR.getSPIRVTypeID(ResType);
4268 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4269 Register FuncVReg =
4270 MRI->createGenericVirtualRegister(GR.getRegType(ResType));
4271 MRI->setRegClass(FuncVReg, &SPIRV::pIDRegClass);
4272 MachineInstrBuilder MIB1 =
4273 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
4274 .addDef(FuncVReg)
4275 .addUse(ResTypeReg);
4276 MachineInstrBuilder MIB2 =
4277 BuildMI(BB, I, I.getDebugLoc(),
4278 TII.get(SPIRV::OpConstantFunctionPointerINTEL))
4279 .addDef(NewReg)
4280 .addUse(ResTypeReg)
4281 .addUse(FuncVReg);
4282 GR.add(ConstVal, MIB2);
4283 // mapping the function pointer to the used Function
4284 GR.recordFunctionPointer(&MIB2.getInstr()->getOperand(2), GVFun);
4285 return MIB1.constrainAllUses(TII, TRI, RBI) &&
4286 MIB2.constrainAllUses(TII, TRI, RBI);
4287 }
4288 MachineInstrBuilder MIB3 =
4289 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
4290 .addDef(NewReg)
4291 .addUse(GR.getSPIRVTypeID(ResType));
4292 GR.add(ConstVal, MIB3);
4293 return MIB3.constrainAllUses(TII, TRI, RBI);
4294 }
4295 assert(NewReg != ResVReg);
4296 return BuildCOPY(ResVReg, NewReg, I);
4297 }
4299 assert(GlobalVar->getName() != "llvm.global.annotations");
4300
4301 // Skip empty declaration for GVs with initializers till we get the decl with
4302 // passed initializer.
4303 if (hasInitializer(GlobalVar) && !Init)
4304 return true;
4305
4306 bool HasLnkTy = !GV->hasInternalLinkage() && !GV->hasPrivateLinkage() &&
4307 !GV->hasHiddenVisibility();
4308 SPIRV::LinkageType::LinkageType LnkType =
4310 ? SPIRV::LinkageType::Import
4311 : (GV->hasLinkOnceODRLinkage() &&
4312 STI.canUseExtension(SPIRV::Extension::SPV_KHR_linkonce_odr)
4313 ? SPIRV::LinkageType::LinkOnceODR
4314 : SPIRV::LinkageType::Export);
4315
4316 const unsigned AddrSpace = GV->getAddressSpace();
4317 SPIRV::StorageClass::StorageClass StorageClass =
4318 addressSpaceToStorageClass(AddrSpace, STI);
4319 SPIRVType *ResType = GR.getOrCreateSPIRVPointerType(GVType, I, StorageClass);
4321 ResVReg, ResType, GlobalIdent, GV, StorageClass, Init,
4322 GlobalVar->isConstant(), HasLnkTy, LnkType, MIRBuilder, true);
4323 return Reg.isValid();
4324}
4325
4326bool SPIRVInstructionSelector::selectLog10(Register ResVReg,
4327 const SPIRVType *ResType,
4328 MachineInstr &I) const {
4329 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4330 return selectExtInst(ResVReg, ResType, I, CL::log10);
4331 }
4332
4333 // There is no log10 instruction in the GLSL Extended Instruction set, so it
4334 // is implemented as:
4335 // log10(x) = log2(x) * (1 / log2(10))
4336 // = log2(x) * 0.30103
4337
4338 MachineIRBuilder MIRBuilder(I);
4339 MachineBasicBlock &BB = *I.getParent();
4340
4341 // Build log2(x).
4342 Register VarReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
4343 bool Result =
4344 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4345 .addDef(VarReg)
4346 .addUse(GR.getSPIRVTypeID(ResType))
4347 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
4348 .addImm(GL::Log2)
4349 .add(I.getOperand(1))
4350 .constrainAllUses(TII, TRI, RBI);
4351
4352 // Build 0.30103.
4353 assert(ResType->getOpcode() == SPIRV::OpTypeVector ||
4354 ResType->getOpcode() == SPIRV::OpTypeFloat);
4355 // TODO: Add matrix implementation once supported by the HLSL frontend.
4356 const SPIRVType *SpirvScalarType =
4357 ResType->getOpcode() == SPIRV::OpTypeVector
4358 ? GR.getSPIRVTypeForVReg(ResType->getOperand(1).getReg())
4359 : ResType;
4360 Register ScaleReg =
4361 GR.buildConstantFP(APFloat(0.30103f), MIRBuilder, SpirvScalarType);
4362
4363 // Multiply log2(x) by 0.30103 to get log10(x) result.
4364 auto Opcode = ResType->getOpcode() == SPIRV::OpTypeVector
4365 ? SPIRV::OpVectorTimesScalar
4366 : SPIRV::OpFMulS;
4367 return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
4368 .addDef(ResVReg)
4369 .addUse(GR.getSPIRVTypeID(ResType))
4370 .addUse(VarReg)
4371 .addUse(ScaleReg)
4372 .constrainAllUses(TII, TRI, RBI);
4373}
4374
4375bool SPIRVInstructionSelector::selectModf(Register ResVReg,
4376 const SPIRVType *ResType,
4377 MachineInstr &I) const {
4378 // llvm.modf has a single arg --the number to be decomposed-- and returns a
4379 // struct { restype, restype }, while OpenCLLIB::modf has two args --the
4380 // number to be decomposed and a pointer--, returns the fractional part and
4381 // the integral part is stored in the pointer argument. Therefore, we can't
4382 // use directly the OpenCLLIB::modf intrinsic. However, we can do some
4383 // scaffolding to make it work. The idea is to create an alloca instruction
4384 // to get a ptr, pass this ptr to OpenCL::modf, and then load the value
4385 // from this ptr to place it in the struct. llvm.modf returns the fractional
4386 // part as the first element of the result, and the integral part as the
4387 // second element of the result.
4388
4389 // At this point, the return type is not a struct anymore, but rather two
4390 // independent elements of SPIRVResType. We can get each independent element
4391 // from I.getDefs() or I.getOperands().
4392 if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
4393 MachineIRBuilder MIRBuilder(I);
4394 // Get pointer type for alloca variable.
4395 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4396 ResType, MIRBuilder, SPIRV::StorageClass::Function);
4397 // Create new register for the pointer type of alloca variable.
4398 Register PtrTyReg =
4399 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
4400 MIRBuilder.getMRI()->setType(
4401 PtrTyReg,
4402 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Function),
4403 GR.getPointerSize()));
4404
4405 // Assign SPIR-V type of the pointer type of the alloca variable to the
4406 // new register.
4407 GR.assignSPIRVTypeToVReg(PtrType, PtrTyReg, MIRBuilder.getMF());
4408 MachineBasicBlock &EntryBB = I.getMF()->front();
4411 auto AllocaMIB =
4412 BuildMI(EntryBB, VarPos, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
4413 .addDef(PtrTyReg)
4414 .addUse(GR.getSPIRVTypeID(PtrType))
4415 .addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function));
4416 Register Variable = AllocaMIB->getOperand(0).getReg();
4417
4418 MachineBasicBlock &BB = *I.getParent();
4419 // Create the OpenCLLIB::modf instruction.
4420 auto MIB =
4421 BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
4422 .addDef(ResVReg)
4423 .addUse(GR.getSPIRVTypeID(ResType))
4424 .addImm(static_cast<uint32_t>(SPIRV::InstructionSet::OpenCL_std))
4425 .addImm(CL::modf)
4426 .setMIFlags(I.getFlags())
4427 .add(I.getOperand(I.getNumExplicitDefs())) // Floating point value.
4428 .addUse(Variable); // Pointer to integral part.
4429 // Assign the integral part stored in the ptr to the second element of the
4430 // result.
4431 Register IntegralPartReg = I.getOperand(1).getReg();
4432 if (IntegralPartReg.isValid()) {
4433 // Load the value from the pointer to integral part.
4434 auto LoadMIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4435 .addDef(IntegralPartReg)
4436 .addUse(GR.getSPIRVTypeID(ResType))
4437 .addUse(Variable);
4438 return LoadMIB.constrainAllUses(TII, TRI, RBI);
4439 }
4440
4441 return MIB.constrainAllUses(TII, TRI, RBI);
4442 } else if (STI.canUseExtInstSet(SPIRV::InstructionSet::GLSL_std_450)) {
4443 assert(false && "GLSL::Modf is deprecated.");
4444 // FIXME: GL::Modf is deprecated, use Modfstruct instead.
4445 return false;
4446 }
4447 return false;
4448}
4449
4450// Generate the instructions to load 3-element vector builtin input
4451// IDs/Indices.
4452// Like: GlobalInvocationId, LocalInvocationId, etc....
4453
4454bool SPIRVInstructionSelector::loadVec3BuiltinInputID(
4455 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
4456 const SPIRVType *ResType, MachineInstr &I) const {
4457 MachineIRBuilder MIRBuilder(I);
4458 const SPIRVType *Vec3Ty =
4459 GR.getOrCreateSPIRVVectorType(ResType, 3, MIRBuilder, false);
4460 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4461 Vec3Ty, MIRBuilder, SPIRV::StorageClass::Input);
4462
4463 // Create new register for the input ID builtin variable.
4464 Register NewRegister =
4465 MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
4466 MIRBuilder.getMRI()->setType(NewRegister, LLT::pointer(0, 64));
4467 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
4468
4469 // Build global variable with the necessary decorations for the input ID
4470 // builtin variable.
4472 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
4473 SPIRV::StorageClass::Input, nullptr, true, false,
4474 SPIRV::LinkageType::Import, MIRBuilder, false);
4475
4476 // Create new register for loading value.
4477 MachineRegisterInfo *MRI = MIRBuilder.getMRI();
4478 Register LoadedRegister = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
4479 MIRBuilder.getMRI()->setType(LoadedRegister, LLT::pointer(0, 64));
4480 GR.assignSPIRVTypeToVReg(Vec3Ty, LoadedRegister, MIRBuilder.getMF());
4481
4482 // Load v3uint value from the global variable.
4483 bool Result =
4484 BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4485 .addDef(LoadedRegister)
4486 .addUse(GR.getSPIRVTypeID(Vec3Ty))
4487 .addUse(Variable);
4488
4489 // Get the input ID index. Expecting operand is a constant immediate value,
4490 // wrapped in a type assignment.
4491 assert(I.getOperand(2).isReg());
4492 const uint32_t ThreadId = foldImm(I.getOperand(2), MRI);
4493
4494 // Extract the input ID from the loaded vector value.
4495 MachineBasicBlock &BB = *I.getParent();
4496 auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
4497 .addDef(ResVReg)
4498 .addUse(GR.getSPIRVTypeID(ResType))
4499 .addUse(LoadedRegister)
4500 .addImm(ThreadId);
4501 return Result && MIB.constrainAllUses(TII, TRI, RBI);
4502}
4503
4504// Generate the instructions to load 32-bit integer builtin input IDs/Indices.
4505// Like LocalInvocationIndex
4506bool SPIRVInstructionSelector::loadBuiltinInputID(
4507 SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
4508 const SPIRVType *ResType, MachineInstr &I) const {
4509 MachineIRBuilder MIRBuilder(I);
4510 const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
4511 ResType, MIRBuilder, SPIRV::StorageClass::Input);
4512
4513 // Create new register for the input ID builtin variable.
4514 Register NewRegister =
4515 MIRBuilder.getMRI()->createVirtualRegister(GR.getRegClass(PtrType));
4516 MIRBuilder.getMRI()->setType(
4517 NewRegister,
4518 LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Input),
4519 GR.getPointerSize()));
4520 GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
4521
4522 // Build global variable with the necessary decorations for the input ID
4523 // builtin variable.
4525 NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
4526 SPIRV::StorageClass::Input, nullptr, true, false,
4527 SPIRV::LinkageType::Import, MIRBuilder, false);
4528
4529 // Load uint value from the global variable.
4530 auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
4531 .addDef(ResVReg)
4532 .addUse(GR.getSPIRVTypeID(ResType))
4533 .addUse(Variable);
4534
4535 return MIB.constrainAllUses(TII, TRI, RBI);
4536}
4537
4538SPIRVType *SPIRVInstructionSelector::widenTypeToVec4(const SPIRVType *Type,
4539 MachineInstr &I) const {
4540 MachineIRBuilder MIRBuilder(I);
4541 if (Type->getOpcode() != SPIRV::OpTypeVector)
4542 return GR.getOrCreateSPIRVVectorType(Type, 4, MIRBuilder, false);
4543
4544 uint64_t VectorSize = Type->getOperand(2).getImm();
4545 if (VectorSize == 4)
4546 return Type;
4547
4548 Register ScalarTypeReg = Type->getOperand(1).getReg();
4549 const SPIRVType *ScalarType = GR.getSPIRVTypeForVReg(ScalarTypeReg);
4550 return GR.getOrCreateSPIRVVectorType(ScalarType, 4, MIRBuilder, false);
4551}
4552
4553bool SPIRVInstructionSelector::loadHandleBeforePosition(
4554 Register &HandleReg, const SPIRVType *ResType, GIntrinsic &HandleDef,
4555 MachineInstr &Pos) const {
4556
4557 assert(HandleDef.getIntrinsicID() ==
4558 Intrinsic::spv_resource_handlefrombinding);
4559 uint32_t Set = foldImm(HandleDef.getOperand(2), MRI);
4560 uint32_t Binding = foldImm(HandleDef.getOperand(3), MRI);
4561 uint32_t ArraySize = foldImm(HandleDef.getOperand(4), MRI);
4562 Register IndexReg = HandleDef.getOperand(5).getReg();
4563 // FIXME: The IsNonUniform flag needs to be set based on resource analysis.
4564 // https://github.com/llvm/llvm-project/issues/155701
4565 bool IsNonUniform = false;
4566 std::string Name =
4567 getStringValueFromReg(HandleDef.getOperand(6).getReg(), *MRI);
4568
4569 bool IsStructuredBuffer = ResType->getOpcode() == SPIRV::OpTypePointer;
4570 MachineIRBuilder MIRBuilder(HandleDef);
4571 SPIRVType *VarType = ResType;
4572 SPIRV::StorageClass::StorageClass SC = SPIRV::StorageClass::UniformConstant;
4573
4574 if (IsStructuredBuffer) {
4575 VarType = GR.getPointeeType(ResType);
4576 SC = GR.getPointerStorageClass(ResType);
4577 }
4578
4579 Register VarReg =
4580 buildPointerToResource(VarType, SC, Set, Binding, ArraySize, IndexReg,
4581 IsNonUniform, Name, MIRBuilder);
4582
4583 if (IsNonUniform)
4584 buildOpDecorate(HandleReg, HandleDef, TII, SPIRV::Decoration::NonUniformEXT,
4585 {});
4586
4587 // The handle for the buffer is the pointer to the resource. For an image, the
4588 // handle is the image object. So images get an extra load.
4589 uint32_t LoadOpcode =
4590 IsStructuredBuffer ? SPIRV::OpCopyObject : SPIRV::OpLoad;
4591 GR.assignSPIRVTypeToVReg(ResType, HandleReg, *Pos.getMF());
4592 return BuildMI(*Pos.getParent(), Pos, HandleDef.getDebugLoc(),
4593 TII.get(LoadOpcode))
4594 .addDef(HandleReg)
4595 .addUse(GR.getSPIRVTypeID(ResType))
4596 .addUse(VarReg)
4597 .constrainAllUses(TII, TRI, RBI);
4598}
4599
4600namespace llvm {
4601InstructionSelector *
4603 const SPIRVSubtarget &Subtarget,
4604 const RegisterBankInfo &RBI) {
4605 return new SPIRVInstructionSelector(TM, Subtarget, RBI);
4606}
4607} // namespace llvm
unsigned const MachineRegisterInfo * MRI
#define GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
@ Generic
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
static bool selectUnmergeValues(MachineInstrBuilder &MIB, const ARMBaseInstrInfo &TII, MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
basic Basic Alias true
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
DXIL Resource Implicit Binding
#define DEBUG_TYPE
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
static StringRef getName(Value *V)
static unsigned getFCmpOpcode(CmpInst::Predicate Pred, unsigned Size)
static APFloat getOneFP(const Type *LLVMFloatTy)
static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC)
static bool isASCastInGVar(MachineRegisterInfo *MRI, Register ResVReg)
static bool mayApplyGenericSelection(unsigned Opcode)
static APFloat getZeroFP(const Type *LLVMFloatTy)
std::vector< std::pair< SPIRV::InstructionSet::InstructionSet, uint32_t > > ExtInstList
static unsigned getBoolCmpOpcode(unsigned PredNum)
static unsigned getICmpOpcode(unsigned PredNum)
static void addMemoryOperands(MachineMemOperand *MemOp, MachineInstrBuilder &MIB, MachineIRBuilder &MIRBuilder, SPIRVGlobalRegistry &GR)
static bool isConstReg(MachineRegisterInfo *MRI, MachineInstr *OpDef, SmallPtrSet< SPIRVType *, 4 > &Visited)
static unsigned getPtrCmpOpcode(unsigned Pred)
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
spirv structurize SPIRV
BaseType
A given derived pointer can have multiple base pointers through phi/selects.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
BinaryOperator * Mul
static APFloat getOne(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative One.
Definition APFloat.h:1088
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Definition APFloat.h:1079
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition InstrTypes.h:681
@ ICMP_SLT
signed less than
Definition InstrTypes.h:707
@ ICMP_SLE
signed less or equal
Definition InstrTypes.h:708
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition InstrTypes.h:684
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition InstrTypes.h:693
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition InstrTypes.h:682
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition InstrTypes.h:683
@ ICMP_UGE
unsigned greater or equal
Definition InstrTypes.h:702
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:701
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:705
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition InstrTypes.h:692
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition InstrTypes.h:686
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition InstrTypes.h:689
@ ICMP_ULT
unsigned less than
Definition InstrTypes.h:703
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition InstrTypes.h:690
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition InstrTypes.h:685
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition InstrTypes.h:687
@ ICMP_NE
not equal
Definition InstrTypes.h:700
@ ICMP_SGE
signed greater or equal
Definition InstrTypes.h:706
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition InstrTypes.h:694
@ ICMP_ULE
unsigned less or equal
Definition InstrTypes.h:704
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition InstrTypes.h:691
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition InstrTypes.h:688
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
A debug info location.
Definition DebugLoc.h:124
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
Represents a call to an intrinsic.
Intrinsic::ID getIntrinsicID() const
bool hasPrivateLinkage() const
bool hasHiddenVisibility() const
bool isDeclarationForLinker() const
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
bool hasInternalLinkage() const
bool hasLinkOnceODRLinkage() const
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:319
constexpr bool isScalar() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr bool isPointer() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
LLVM_ABI iterator getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
MachineInstrBundleIterator< MachineInstr > iterator
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineFunction & getMF()
Getter for the function we currently build.
MachineRegisterInfo * getMRI()
Getter for MRI.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
bool constrainAllUses(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineBasicBlock * getParent() const
unsigned getNumOperands() const
Retuns the total number of operands.
LLVM_ABI void setDesc(const MCInstrDesc &TID)
Replace the instruction descriptor (thus opcode) of the current instruction with a new one.
LLVM_ABI unsigned getNumExplicitDefs() const
Returns the number of non-implicit definitions.
LLVM_ABI const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
@ MOVolatile
The memory access is volatile.
@ MONonTemporal
The memory access is non-temporal.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
defusechain_instr_iterator< true, false, false, true > use_instr_iterator
use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the specified register,...
defusechain_instr_iterator< false, true, false, true > def_instr_iterator
def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the specified register,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI void setType(Register VReg, LLT Ty)
Set the low-level type of VReg to Ty.
Analysis providing profile information.
Holds all the information related to register banks.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
constexpr bool isValid() const
Definition Register.h:107
SPIRVType * getSPIRVTypeForVReg(Register VReg, const MachineFunction *MF=nullptr) const
Register getOrCreateConstInt(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getResultType(Register VReg, MachineFunction *MF=nullptr)
SPIRVType * getOrCreateSPIRVBoolType(MachineIRBuilder &MIRBuilder, bool EmitIR)
MachineInstr * getOrAddMemAliasingINTELInst(MachineIRBuilder &MIRBuilder, const MDNode *AliasingListMD)
void assignSPIRVTypeToVReg(SPIRVType *Type, Register VReg, const MachineFunction &MF)
Register getOrCreateUndef(MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
SPIRVType * changePointerStorageClass(SPIRVType *PtrType, SPIRV::StorageClass::StorageClass SC, MachineInstr &I)
const Type * getTypeForSPIRVType(const SPIRVType *Ty) const
bool isBitcastCompatible(const SPIRVType *Type1, const SPIRVType *Type2) const
unsigned getScalarOrVectorComponentCount(Register VReg) const
bool isScalarOrVectorSigned(const SPIRVType *Type) const
Register getOrCreateGlobalVariableWithBinding(const SPIRVType *VarType, uint32_t Set, uint32_t Binding, StringRef Name, MachineIRBuilder &MIRBuilder)
SPIRVType * getOrCreateSPIRVType(const Type *Type, MachineInstr &I, SPIRV::AccessQualifier::AccessQualifier AQ, bool EmitIR)
SPIRVType * getOrCreateSPIRVPointerType(const Type *BaseType, MachineIRBuilder &MIRBuilder, SPIRV::StorageClass::StorageClass SC)
Register buildConstantFP(APFloat Val, MachineIRBuilder &MIRBuilder, SPIRVType *SpvType=nullptr)
SPIRVType * getPointeeType(SPIRVType *PtrType)
void invalidateMachineInstr(MachineInstr *MI)
Register getSPIRVTypeID(const SPIRVType *SpirvType) const
bool isScalarOfType(Register VReg, unsigned TypeOpcode) const
Register buildGlobalVariable(Register Reg, SPIRVType *BaseType, StringRef Name, const GlobalValue *GV, SPIRV::StorageClass::StorageClass Storage, const MachineInstr *Init, bool IsConst, bool HasLinkageTy, SPIRV::LinkageType::LinkageType LinkageType, MachineIRBuilder &MIRBuilder, bool IsInstSelector)
bool findValueAttrs(const MachineInstr *Key, Type *&Ty, StringRef &Name)
void addGlobalObject(const Value *V, const MachineFunction *MF, Register R)
SPIRVType * getScalarOrVectorComponentType(Register VReg) const
void recordFunctionPointer(const MachineOperand *MO, const Function *F)
bool isAggregateType(SPIRVType *Type) const
const TargetRegisterClass * getRegClass(SPIRVType *SpvType) const
SPIRVType * getOrCreateSPIRVVectorType(SPIRVType *BaseType, unsigned NumElements, MachineIRBuilder &MIRBuilder, bool EmitIR)
bool isScalarOrVectorOfType(Register VReg, unsigned TypeOpcode) const
Register getOrCreateConstIntArray(uint64_t Val, size_t Num, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII)
MachineFunction * setCurrentFunc(MachineFunction &MF)
Register getOrCreateConstVector(uint64_t Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
SPIRVType * getOrCreateSPIRVIntegerType(unsigned BitWidth, MachineIRBuilder &MIRBuilder)
Type * getDeducedGlobalValueType(const GlobalValue *Global)
LLT getRegType(SPIRVType *SpvType) const
SPIRV::StorageClass::StorageClass getPointerStorageClass(Register VReg) const
Register getOrCreateConstFP(APFloat Val, MachineInstr &I, SPIRVType *SpvType, const SPIRVInstrInfo &TII, bool ZeroAsNull=true)
Register getOrCreateConstNullPtr(MachineIRBuilder &MIRBuilder, SPIRVType *SpvType)
unsigned getScalarOrVectorBitWidth(const SPIRVType *Type) const
const SPIRVType * retrieveScalarOrVectorIntType(const SPIRVType *Type) const
bool erase(const MachineInstr *MI)
bool add(SPIRV::IRHandle Handle, const MachineInstr *MI)
Register find(SPIRV::IRHandle Handle, const MachineFunction *MF)
bool isPhysicalSPIRV() const
bool isAtLeastSPIRVVer(VersionTuple VerToCompareTo) const
bool canUseExtInstSet(SPIRV::InstructionSet::InstructionSet E) const
bool isLogicalSPIRV() const
bool canUseExtension(SPIRV::Extension::Extension E) const
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr size_t size() const
size - Get the string size.
Definition StringRef.h:146
static LLVM_ABI StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition Type.cpp:414
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
@ HalfTyID
16-bit floating point type
Definition Type.h:56
@ FloatTyID
32-bit floating point type
Definition Type.h:58
@ DoubleTyID
64-bit floating point type
Definition Type.h:59
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
bool isStructTy() const
True if this is an instance of StructType.
Definition Type.h:261
TypeID getTypeID() const
Return the type id for the type.
Definition Type.h:136
Value * getOperand(unsigned i) const
Definition User.h:232
bool hasName() const
Definition Value.h:262
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition ilist_node.h:348
LLVM_C_ABI LLVMTypeRef LLVMIntType(unsigned NumBits)
Definition Core.cpp:701
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char IsConst[]
Key for Kernel::Arg::Metadata::mIsConst.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
NodeAddr< DefNode * > Def
Definition RDFGraph.h:384
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
This is an optimization pass for GlobalISel generic memory operations.
void buildOpName(Register Target, const StringRef &Name, MachineIRBuilder &MIRBuilder)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
int64_t getIConstValSext(Register ConstReg, const MachineRegisterInfo *MRI)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isTypeFoldingSupported(unsigned Opcode)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB)
LLVM_ABI void salvageDebugInfo(const MachineRegisterInfo &MRI, MachineInstr &MI)
Assuming the instruction MI is going to be deleted, attempt to salvage debug users of MI by writing t...
Definition Utils.cpp:1725
LLVM_ABI bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
Mutate the newly-selected instruction I to constrain its (possibly generic) virtual register operands...
Definition Utils.cpp:155
bool isPreISelGenericOpcode(unsigned Opcode)
Check whether the given Opcode is a generic opcode that is not supposed to appear after ISel.
unsigned getArrayComponentCount(const MachineRegisterInfo *MRI, const MachineInstr *ResType)
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI)
SmallVector< MachineInstr *, 4 > createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode, unsigned MinWC, unsigned ContinuedOpcode, ArrayRef< Register > Args, Register ReturnRegister, Register TypeID)
SPIRV::MemorySemantics::MemorySemantics getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC)
constexpr unsigned storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:239
MachineBasicBlock::iterator getFirstValidInstructionInsertPoint(MachineBasicBlock &BB)
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder, SPIRV::Decoration::Decoration Dec, const std::vector< uint32_t > &DecArgs, StringRef StrImm)
MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I)
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI, const MachineFunction &MF)
MachineInstr * getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
Type * toTypedPointer(Type *Ty)
Definition SPIRVUtils.h:436
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
const MachineInstr SPIRVType
constexpr bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC)
Definition SPIRVUtils.h:224
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
MachineInstr * passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI)
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
SPIRV::StorageClass::StorageClass addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI)
AtomicOrdering
Atomic ordering for LLVM's memory model.
SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id)
InstructionSelector * createSPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &Subtarget, const RegisterBankInfo &RBI)
std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI)
int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI)
DWARFExpression::Operation Op
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
bool hasInitializer(const GlobalVariable *GV)
Definition SPIRVUtils.h:324
MachineInstr * getVRegDef(MachineRegisterInfo &MRI, Register Reg)
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord)
std::string getLinkStringForBuiltIn(SPIRV::BuiltIn::BuiltIn BuiltInValue)
LLVM_ABI bool isTriviallyDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
Check whether an instruction MI is dead: it only defines dead virtual registers, and doesn't have oth...
Definition Utils.cpp:222
#define N
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264