83#include "llvm/Config/llvm-config.h"
138#define DEBUG_TYPE "scalar-evolution"
141 "Number of loop exits with predictable exit counts");
143 "Number of loop exits without predictable exit counts");
145 "Number of loops with trip counts computed by force");
147#ifdef EXPENSIVE_CHECKS
155 cl::desc(
"Maximum number of iterations SCEV will "
156 "symbolically execute a constant "
162 cl::desc(
"Verify ScalarEvolution's backedge taken counts (slow)"));
165 cl::desc(
"Enable stricter verification with -verify-scev is passed"));
169 cl::desc(
"Verify IR correctness when making sensitive SCEV queries (slow)"),
174 cl::desc(
"Threshold for inlining multiplication operands into a SCEV"),
179 cl::desc(
"Threshold for inlining addition operands into a SCEV"),
183 "scalar-evolution-max-scev-compare-depth",
cl::Hidden,
184 cl::desc(
"Maximum depth of recursive SCEV complexity comparisons"),
188 "scalar-evolution-max-scev-operations-implication-depth",
cl::Hidden,
189 cl::desc(
"Maximum depth of recursive SCEV operations implication analysis"),
193 "scalar-evolution-max-value-compare-depth",
cl::Hidden,
194 cl::desc(
"Maximum depth of recursive value complexity comparisons"),
199 cl::desc(
"Maximum depth of recursive arithmetics"),
203 "scalar-evolution-max-constant-evolving-depth",
cl::Hidden,
208 cl::desc(
"Maximum depth of recursive SExt/ZExt/Trunc"),
213 cl::desc(
"Max coefficients in AddRec during evolving"),
218 cl::desc(
"Size of the expression which is considered huge"),
223 cl::desc(
"Threshold for switching to iteratively computing SCEV ranges"),
227 "scalar-evolution-max-loop-guard-collection-depth",
cl::Hidden,
228 cl::desc(
"Maximum depth for recursive loop guard collection"),
cl::init(1));
233 cl::desc(
"When printing analysis, include information on every instruction"));
236 "scalar-evolution-use-expensive-range-sharpening",
cl::Hidden,
238 cl::desc(
"Use more powerful methods of sharpening expression ranges. May "
239 "be costly in terms of compile time"));
242 "scalar-evolution-max-scc-analysis-depth",
cl::Hidden,
243 cl::desc(
"Maximum amount of nodes to process while searching SCEVUnknown "
244 "Phi strongly connected components"),
249 cl::desc(
"Handle <= and >= in finite loops"),
253 "scalar-evolution-use-context-for-no-wrap-flag-strenghening",
cl::Hidden,
254 cl::desc(
"Infer nuw/nsw flags using context where suitable"),
265#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
283 OS <<
"(ptrtoint " << *
Op->getType() <<
" " << *
Op <<
" to "
284 << *PtrToInt->
getType() <<
")";
290 OS <<
"(trunc " << *
Op->getType() <<
" " << *
Op <<
" to "
297 OS <<
"(zext " << *
Op->getType() <<
" " << *
Op <<
" to "
304 OS <<
"(sext " << *
Op->getType() <<
" " << *
Op <<
" to "
333 const char *OpStr =
nullptr;
346 OpStr =
" umin_seq ";
370 OS <<
"(" << *UDiv->
getLHS() <<
" /u " << *UDiv->
getRHS() <<
")";
377 OS <<
"***COULDNOTCOMPUTE***";
453 if (!
Mul)
return false;
457 if (!SC)
return false;
475 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
return S;
477 UniqueSCEVs.InsertNode(S, IP);
496 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
499 UniqueSCEVs.InsertNode(S, IP);
519 "Must be a non-bit-width-changing pointer-to-integer cast!");
531 "Cannot truncate non-integer value!");
538 "Cannot zero extend non-integer value!");
545 "Cannot sign extend non-integer value!");
550 SE->forgetMemoizedResults(
this);
553 SE->UniqueSCEVs.RemoveNode(
this);
559void SCEVUnknown::allUsesReplacedWith(
Value *New) {
561 SE->forgetMemoizedResults(
this);
564 SE->UniqueSCEVs.RemoveNode(
this);
586 if (LIsPointer != RIsPointer)
587 return (
int)LIsPointer - (int)RIsPointer;
592 return (
int)LID - (int)RID;
597 unsigned LArgNo = LA->getArgNo(), RArgNo =
RA->getArgNo();
598 return (
int)LArgNo - (int)RArgNo;
604 if (
auto L = LGV->getLinkage() - RGV->getLinkage())
607 const auto IsGVNameSemantic = [&](
const GlobalValue *GV) {
608 auto LT = GV->getLinkage();
615 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
616 return LGV->getName().compare(RGV->getName());
627 if (LParent != RParent) {
630 if (LDepth != RDepth)
631 return (
int)LDepth - (int)RDepth;
635 unsigned LNumOps = LInst->getNumOperands(),
636 RNumOps = RInst->getNumOperands();
637 if (LNumOps != RNumOps)
638 return (
int)LNumOps - (int)RNumOps;
640 for (
unsigned Idx :
seq(LNumOps)) {
642 RInst->getOperand(Idx),
Depth + 1);
656static std::optional<int>
666 return (
int)LType - (int)RType;
691 unsigned LBitWidth = LA.
getBitWidth(), RBitWidth =
RA.getBitWidth();
692 if (LBitWidth != RBitWidth)
693 return (
int)LBitWidth - (int)RBitWidth;
694 return LA.
ult(
RA) ? -1 : 1;
700 return LTy->getBitWidth() - RTy->getBitWidth();
711 if (LLoop != RLoop) {
713 assert(LHead != RHead &&
"Two loops share the same header?");
717 "No dominance between recurrences used by one SCEV?");
740 unsigned LNumOps = LOps.
size(), RNumOps = ROps.
size();
741 if (LNumOps != RNumOps)
742 return (
int)LNumOps - (int)RNumOps;
744 for (
unsigned i = 0; i != LNumOps; ++i) {
769 if (
Ops.size() < 2)
return;
774 return Complexity && *Complexity < 0;
776 if (
Ops.size() == 2) {
780 if (IsLessComplex(
RHS,
LHS))
787 return IsLessComplex(
LHS,
RHS);
794 for (
unsigned i = 0, e =
Ops.size(); i != e-2; ++i) {
800 for (
unsigned j = i+1; j != e &&
Ops[j]->getSCEVType() == Complexity; ++j) {
805 if (i == e-2)
return;
827template <
typename FoldT,
typename IsIdentityT,
typename IsAbsorberT>
831 IsIdentityT IsIdentity, IsAbsorberT IsAbsorber) {
833 for (
unsigned Idx = 0; Idx <
Ops.size();) {
841 Ops.erase(
Ops.begin() + Idx);
848 assert(Folded &&
"Must have folded value");
852 if (Folded && IsAbsorber(Folded->
getAPInt()))
856 if (Folded && !IsIdentity(Folded->
getAPInt()))
857 Ops.insert(
Ops.begin(), Folded);
859 return Ops.size() == 1 ?
Ops[0] :
nullptr;
934 APInt OddFactorial(W, 1);
936 for (
unsigned i = 3; i <= K; ++i) {
939 OddFactorial *= (i >> TwoFactors);
943 unsigned CalculationBits = W +
T;
957 for (
unsigned i = 1; i != K; ++i) {
990 for (
unsigned i = 1, e =
Operands.size(); i != e; ++i) {
1010 "getLosslessPtrToIntExpr() should self-recurse at most once.");
1014 if (!
Op->getType()->isPointerTy())
1025 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
1055 SCEV *S =
new (SCEVAllocator)
1057 UniqueSCEVs.InsertNode(S, IP);
1062 assert(
Depth == 0 &&
"getLosslessPtrToIntExpr() should not self-recurse for "
1063 "non-SCEVUnknown's.");
1075 class SCEVPtrToIntSinkingRewriter
1083 SCEVPtrToIntSinkingRewriter
Rewriter(SE);
1084 return Rewriter.visit(Scev);
1093 return Base::visit(S);
1118 "Should only reach pointer-typed SCEVUnknown's.");
1124 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(
Op, *
this);
1126 "We must have succeeded in sinking the cast, "
1127 "and ending up with an integer-typed expression!");
1132 assert(Ty->isIntegerTy() &&
"Target type must be an integer type!");
1144 "This is not a truncating conversion!");
1146 "This is not a conversion to a SCEVable type!");
1147 assert(!
Op->getType()->isPointerTy() &&
"Can't truncate pointer!");
1155 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
return S;
1177 UniqueSCEVs.InsertNode(S, IP);
1189 unsigned numTruncs = 0;
1190 for (
unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1198 if (numTruncs < 2) {
1208 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
1215 for (
const SCEV *
Op : AddRec->operands())
1230 UniqueSCEVs.InsertNode(S, IP);
1270struct ExtendOpTraitsBase {
1271 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(
const SCEV *,
Type *,
1276template <
typename ExtendOp>
struct ExtendOpTraits {
1292 static const GetExtendExprTy GetExtendExpr;
1294 static const SCEV *getOverflowLimitForStep(
const SCEV *Step,
1295 ICmpInst::Predicate *Pred,
1296 ScalarEvolution *SE) {
1301const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1308 static const GetExtendExprTy GetExtendExpr;
1310 static const SCEV *getOverflowLimitForStep(
const SCEV *Step,
1311 ICmpInst::Predicate *Pred,
1312 ScalarEvolution *SE) {
1317const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1329template <
typename ExtendOpTy>
1332 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1333 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1349 for (
auto It = DiffOps.
begin(); It != DiffOps.
end(); ++It)
1362 auto PreStartFlags =
1380 const SCEV *OperandExtendedStart =
1382 (SE->*GetExtendExpr)(Step, WideTy,
Depth));
1383 if ((SE->*GetExtendExpr)(Start, WideTy,
Depth) == OperandExtendedStart) {
1395 const SCEV *OverflowLimit =
1396 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1398 if (OverflowLimit &&
1406template <
typename ExtendOpTy>
1410 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1418 (SE->*GetExtendExpr)(PreStart, Ty,
Depth));
1453template <
typename ExtendOpTy>
1454bool ScalarEvolution::proveNoWrapByVaryingStart(
const SCEV *Start,
1457 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1467 APInt StartAI = StartC->
getAPInt();
1469 for (
unsigned Delta : {-2, -1, 1, 2}) {
1470 const SCEV *PreStart =
getConstant(StartAI - Delta);
1472 FoldingSetNodeID
ID;
1474 ID.AddPointer(PreStart);
1475 ID.AddPointer(Step);
1479 static_cast<SCEVAddRecExpr *
>(UniqueSCEVs.FindNodeOrInsertPos(
ID, IP));
1483 if (PreAR && PreAR->getNoWrapFlags(WrapType)) {
1486 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1487 DeltaS, &Pred,
this);
1505 const unsigned BitWidth =
C.getBitWidth();
1523 const APInt &ConstantStart,
1542 auto &UserIDs = FoldCacheUser[
I.first->second];
1543 assert(
count(UserIDs,
ID) == 1 &&
"unexpected duplicates in UserIDs");
1544 for (
unsigned I = 0;
I != UserIDs.size(); ++
I)
1545 if (UserIDs[
I] ==
ID) {
1550 I.first->second = S;
1552 FoldCacheUser[S].push_back(
ID);
1558 "This is not an extending conversion!");
1560 "This is not a conversion to a SCEVable type!");
1561 assert(!
Op->getType()->isPointerTy() &&
"Can't extend pointer!");
1565 if (
const SCEV *S = FoldCache.lookup(
ID))
1577 "This is not an extending conversion!");
1579 assert(!
Op->getType()->isPointerTy() &&
"Can't extend pointer!");
1596 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
return S;
1600 UniqueSCEVs.InsertNode(S, IP);
1609 const SCEV *
X = ST->getOperand();
1623 if (AR->isAffine()) {
1624 const SCEV *Start = AR->getStart();
1625 const SCEV *Step = AR->getStepRecurrence(*
this);
1627 const Loop *L = AR->getLoop();
1631 if (AR->hasNoUnsignedWrap()) {
1652 const SCEV *CastedMaxBECount =
1656 if (MaxBECount == RecastedMaxBECount) {
1666 const SCEV *WideMaxBECount =
1668 const SCEV *OperandExtendedAdd =
1674 if (ZAdd == OperandExtendedAdd) {
1685 OperandExtendedAdd =
1691 if (ZAdd == OperandExtendedAdd) {
1712 !AC.assumptions().empty()) {
1714 auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1716 if (AR->hasNoUnsignedWrap()) {
1751 const APInt &
C = SC->getAPInt();
1755 const SCEV *SResidual =
1764 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1777 if (matchURem(
Op, LHS, RHS))
1789 if (SA->hasNoUnsignedWrap()) {
1793 for (
const auto *
Op : SA->operands())
1810 const SCEV *SResidual =
1822 if (SM->hasNoUnsignedWrap()) {
1826 for (
const auto *
Op : SM->operands())
1843 if (SM->getNumOperands() == 2)
1845 if (MulLHS->getAPInt().isPowerOf2())
1848 MulLHS->getAPInt().logBase2();
1863 for (
auto *Operand :
MinMax->operands())
1874 for (
auto *Operand :
MinMax->operands())
1881 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
return S;
1884 UniqueSCEVs.InsertNode(S, IP);
1892 "This is not an extending conversion!");
1894 "This is not a conversion to a SCEVable type!");
1895 assert(!
Op->getType()->isPointerTy() &&
"Can't extend pointer!");
1899 if (
const SCEV *S = FoldCache.lookup(
ID))
1911 "This is not an extending conversion!");
1913 assert(!
Op->getType()->isPointerTy() &&
"Can't extend pointer!");
1935 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
return S;
1940 UniqueSCEVs.InsertNode(S, IP);
1949 const SCEV *
X = ST->getOperand();
1960 if (SA->hasNoSignedWrap()) {
1964 for (
const auto *
Op : SA->operands())
1982 const SCEV *SResidual =
1996 if (AR->isAffine()) {
1997 const SCEV *Start = AR->getStart();
1998 const SCEV *Step = AR->getStepRecurrence(*
this);
2000 const Loop *L = AR->getLoop();
2004 if (AR->hasNoSignedWrap()) {
2026 const SCEV *CastedMaxBECount =
2030 if (MaxBECount == RecastedMaxBECount) {
2040 const SCEV *WideMaxBECount =
2042 const SCEV *OperandExtendedAdd =
2048 if (SAdd == OperandExtendedAdd) {
2059 OperandExtendedAdd =
2065 if (SAdd == OperandExtendedAdd) {
2085 auto NewFlags = proveNoSignedWrapViaInduction(AR);
2087 if (AR->hasNoSignedWrap()) {
2102 const APInt &
C = SC->getAPInt();
2106 const SCEV *SResidual =
2115 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2134 for (
auto *Operand :
MinMax->operands())
2143 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
return S;
2146 UniqueSCEVs.InsertNode(S, IP);
2172 "This is not an extending conversion!");
2174 "This is not a conversion to a SCEVable type!");
2179 if (SC->getAPInt().isNegative())
2184 const SCEV *NewOp =
T->getOperand();
2203 for (
const SCEV *
Op : AR->operands())
2242 APInt &AccumulatedConstant,
2245 bool Interesting =
false;
2252 if (Scale != 1 || AccumulatedConstant != 0 ||
C->getValue()->isZero())
2254 AccumulatedConstant += Scale *
C->getAPInt();
2259 for (; i !=
Ops.size(); ++i) {
2269 Add->operands(), NewScale, SE);
2275 auto Pair = M.insert({
Key, NewScale});
2279 Pair.first->second += NewScale;
2287 std::pair<DenseMap<const SCEV *, APInt>::iterator,
bool> Pair =
2288 M.insert({
Ops[i], Scale});
2292 Pair.first->second += Scale;
2311 case Instruction::Add:
2314 case Instruction::Sub:
2317 case Instruction::Mul:
2331 const SCEV *
A = (this->*Extension)(
2333 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
2334 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
2342 if (BinOp == Instruction::Mul)
2348 APInt C = RHSC->getAPInt();
2349 unsigned NumBits =
C.getBitWidth();
2350 bool IsSub = (BinOp == Instruction::Sub);
2351 bool IsNegativeConst = (
Signed &&
C.isNegative());
2353 bool OverflowDown = IsSub ^ IsNegativeConst;
2355 if (IsNegativeConst) {
2368 APInt Limit = Min + Magnitude;
2374 APInt Limit = Max - Magnitude;
2379std::optional<SCEV::NoWrapFlags>
2384 return std::nullopt;
2393 bool Deduced =
false;
2395 if (OBO->
getOpcode() != Instruction::Add &&
2398 return std::nullopt;
2407 false, LHS, RHS, CtxI)) {
2414 true, LHS, RHS, CtxI)) {
2421 return std::nullopt;
2431 using namespace std::placeholders;
2438 assert(CanAnalyze &&
"don't call from other places!");
2445 auto IsKnownNonNegative = [&](
const SCEV *S) {
2455 if (SignOrUnsignWrap != SignOrUnsignMask &&
2462 return Instruction::Add;
2464 return Instruction::Mul;
2475 Opcode,
C, OBO::NoSignedWrap);
2483 Opcode,
C, OBO::NoUnsignedWrap);
2493 Ops[0]->isZero() && IsKnownNonNegative(
Ops[1]))
2500 if (UDiv->getOperand(1) ==
Ops[1])
2503 if (UDiv->getOperand(1) ==
Ops[0])
2519 "only nuw or nsw allowed");
2520 assert(!
Ops.empty() &&
"Cannot get empty add!");
2521 if (
Ops.size() == 1)
return Ops[0];
2524 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
2526 "SCEVAddExpr operand types don't match!");
2528 Ops, [](
const SCEV *
Op) {
return Op->getType()->isPointerTy(); });
2529 assert(NumPtrs <= 1 &&
"add has at most one pointer operand");
2534 [](
const APInt &C1,
const APInt &C2) {
return C1 + C2; },
2535 [](
const APInt &
C) {
return C.isZero(); },
2536 [](
const APInt &
C) {
return false; });
2549 return getOrCreateAddExpr(
Ops, ComputeFlags(
Ops));
2554 if (
Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2555 Add->setNoWrapFlags(ComputeFlags(
Ops));
2563 bool FoundMatch =
false;
2564 for (
unsigned i = 0, e =
Ops.size(); i != e-1; ++i)
2565 if (
Ops[i] ==
Ops[i+1]) {
2577 --i; e -=
Count - 1;
2587 auto FindTruncSrcType = [&]() ->
Type * {
2593 return T->getOperand()->getType();
2595 const auto *LastOp =
Mul->getOperand(
Mul->getNumOperands() - 1);
2597 return T->getOperand()->getType();
2601 if (
auto *SrcType = FindTruncSrcType()) {
2608 if (
T->getOperand()->getType() != SrcType) {
2617 for (
unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2620 if (
T->getOperand()->getType() != SrcType) {
2648 if (
Ops.size() == 2) {
2658 auto C2 =
C->getAPInt();
2661 APInt ConstAdd = C1 + C2;
2662 auto AddFlags = AddExpr->getNoWrapFlags();
2702 if (
Ops.size() == 2) {
2704 if (
Mul &&
Mul->getNumOperands() == 2 &&
2705 Mul->getOperand(0)->isAllOnesValue()) {
2708 if (matchURem(
Mul->getOperand(1),
X,
Y) &&
X ==
Ops[1]) {
2719 if (Idx <
Ops.size()) {
2720 bool DeletedAdd =
false;
2731 Ops.erase(
Ops.begin()+Idx);
2734 CommonFlags =
maskFlags(CommonFlags,
Add->getNoWrapFlags());
2757 struct APIntCompare {
2758 bool operator()(
const APInt &LHS,
const APInt &RHS)
const {
2759 return LHS.ult(RHS);
2766 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2767 for (
const SCEV *NewOp : NewOps)
2768 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2771 if (AccumulatedConstant != 0)
2773 for (
auto &MulOp : MulOpLists) {
2774 if (MulOp.first == 1) {
2776 }
else if (MulOp.first != 0) {
2785 if (
Ops.size() == 1)
2796 for (
unsigned MulOp = 0, e =
Mul->getNumOperands(); MulOp != e; ++MulOp) {
2797 const SCEV *MulOpSCEV =
Mul->getOperand(MulOp);
2800 for (
unsigned AddOp = 0, e =
Ops.size(); AddOp != e; ++AddOp)
2801 if (MulOpSCEV ==
Ops[AddOp]) {
2803 const SCEV *InnerMul =
Mul->getOperand(MulOp == 0);
2804 if (
Mul->getNumOperands() != 2) {
2808 Mul->operands().take_front(MulOp));
2816 if (
Ops.size() == 2)
return OuterMul;
2818 Ops.erase(
Ops.begin()+AddOp);
2819 Ops.erase(
Ops.begin()+Idx-1);
2821 Ops.erase(
Ops.begin()+Idx);
2822 Ops.erase(
Ops.begin()+AddOp-1);
2824 Ops.push_back(OuterMul);
2829 for (
unsigned OtherMulIdx = Idx+1;
2836 OMulOp != e; ++OMulOp)
2837 if (OtherMul->
getOperand(OMulOp) == MulOpSCEV) {
2839 const SCEV *InnerMul1 =
Mul->getOperand(MulOp == 0);
2840 if (
Mul->getNumOperands() != 2) {
2842 Mul->operands().take_front(MulOp));
2849 OtherMul->
operands().take_front(OMulOp));
2854 const SCEV *InnerMulSum =
2858 if (
Ops.size() == 2)
return OuterMul;
2859 Ops.erase(
Ops.begin()+Idx);
2860 Ops.erase(
Ops.begin()+OtherMulIdx-1);
2861 Ops.push_back(OuterMul);
2881 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i)
2884 Ops.erase(
Ops.begin()+i);
2889 if (!LIOps.
empty()) {
2914 auto *DefI = getDefiningScopeBound(LIOps);
2916 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2928 if (
Ops.size() == 1)
return NewRec;
2931 for (
unsigned i = 0;; ++i)
2932 if (
Ops[i] == AddRec) {
2942 for (
unsigned OtherIdx = Idx+1;
2950 "AddRecExprs are not sorted in reverse dominance order?");
2957 if (OtherAddRec->getLoop() == AddRecLoop) {
2958 for (
unsigned i = 0, e = OtherAddRec->getNumOperands();
2960 if (i >= AddRecOps.
size()) {
2961 append_range(AddRecOps, OtherAddRec->operands().drop_front(i));
2965 AddRecOps[i], OtherAddRec->getOperand(i)};
2968 Ops.erase(
Ops.begin() + OtherIdx); --OtherIdx;
2983 return getOrCreateAddExpr(
Ops, ComputeFlags(
Ops));
2995 static_cast<SCEVAddExpr *
>(UniqueSCEVs.FindNodeOrInsertPos(
ID, IP));
2999 S =
new (SCEVAllocator)
3001 UniqueSCEVs.InsertNode(S, IP);
3011 FoldingSetNodeID
ID;
3013 for (
const SCEV *
Op :
Ops)
3018 static_cast<SCEVAddRecExpr *
>(UniqueSCEVs.FindNodeOrInsertPos(
ID, IP));
3020 const SCEV **
O = SCEVAllocator.Allocate<
const SCEV *>(
Ops.size());
3022 S =
new (SCEVAllocator)
3023 SCEVAddRecExpr(
ID.Intern(SCEVAllocator), O,
Ops.size(), L);
3024 UniqueSCEVs.InsertNode(S, IP);
3025 LoopUsers[
L].push_back(S);
3035 FoldingSetNodeID
ID;
3037 for (
const SCEV *
Op :
Ops)
3041 static_cast<SCEVMulExpr *
>(UniqueSCEVs.FindNodeOrInsertPos(
ID, IP));
3043 const SCEV **
O = SCEVAllocator.Allocate<
const SCEV *>(
Ops.size());
3045 S =
new (SCEVAllocator) SCEVMulExpr(
ID.Intern(SCEVAllocator),
3047 UniqueSCEVs.InsertNode(S, IP);
3056 if (j > 1 && k / j != i) Overflow =
true;
3072 if (n == 0 || n == k)
return 1;
3073 if (k > n)
return 0;
3079 for (
uint64_t i = 1; i <= k; ++i) {
3080 r =
umul_ov(r, n-(i-1), Overflow);
3089 struct FindConstantInAddMulChain {
3090 bool FoundConstant =
false;
3092 bool follow(
const SCEV *S) {
3097 bool isDone()
const {
3098 return FoundConstant;
3102 FindConstantInAddMulChain
F;
3104 ST.visitAll(StartExpr);
3105 return F.FoundConstant;
3113 "only nuw or nsw allowed");
3114 assert(!
Ops.empty() &&
"Cannot get empty mul!");
3115 if (
Ops.size() == 1)
return Ops[0];
3117 Type *ETy =
Ops[0]->getType();
3119 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i)
3121 "SCEVMulExpr operand types don't match!");
3126 [](
const APInt &C1,
const APInt &C2) {
return C1 * C2; },
3127 [](
const APInt &
C) {
return C.isOne(); },
3128 [](
const APInt &
C) {
return C.isZero(); });
3139 return getOrCreateMulExpr(
Ops, ComputeFlags(
Ops));
3144 if (
Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3145 Mul->setNoWrapFlags(ComputeFlags(
Ops));
3150 if (
Ops.size() == 2) {
3167 if (
Ops[0]->isAllOnesValue()) {
3172 bool AnyFolded =
false;
3173 for (
const SCEV *AddOp :
Add->operands()) {
3200 AddRec->getNoWrapFlags(FlagsMask));
3223 APInt C1V = LHSC->getAPInt();
3233 const SCEV *NewMul =
nullptr;
3237 assert(C1V.
ugt(1) &&
"C1 <= 1 should have been folded earlier");
3252 if (Idx <
Ops.size()) {
3253 bool DeletedMul =
false;
3259 Ops.erase(
Ops.begin()+Idx);
3283 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i)
3286 Ops.erase(
Ops.begin()+i);
3291 if (!LIOps.
empty()) {
3304 for (
unsigned i = 0, e = AddRec->
getNumOperands(); i != e; ++i) {
3320 if (
Ops.size() == 1)
return NewRec;
3323 for (
unsigned i = 0;; ++i)
3324 if (
Ops[i] == AddRec) {
3345 bool OpsModified =
false;
3346 for (
unsigned OtherIdx = Idx+1;
3360 bool Overflow =
false;
3367 for (
int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3371 z < ze && !Overflow; ++z) {
3374 if (LargerThan64Bits)
3375 Coeff =
umul_ov(Coeff1, Coeff2, Overflow);
3377 Coeff = Coeff1*Coeff2;
3392 if (
Ops.size() == 2)
return NewAddRec;
3393 Ops[Idx] = NewAddRec;
3394 Ops.erase(
Ops.begin() + OtherIdx); --OtherIdx;
3410 return getOrCreateMulExpr(
Ops, ComputeFlags(
Ops));
3418 "SCEVURemExpr operand types don't match!");
3423 if (RHSC->getValue()->isOne())
3424 return getZero(LHS->getType());
3427 if (RHSC->getAPInt().isPowerOf2()) {
3428 Type *FullTy = LHS->getType();
3445 assert(!LHS->getType()->isPointerTy() &&
3446 "SCEVUDivExpr operand can't be pointer!");
3447 assert(LHS->getType() == RHS->getType() &&
3448 "SCEVUDivExpr operand types don't match!");
3455 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
3463 if (RHSC->getValue()->isOne())
3468 if (!RHSC->getValue()->isZero()) {
3472 Type *Ty = LHS->getType();
3473 unsigned LZ = RHSC->getAPInt().countl_zero();
3477 if (!RHSC->getAPInt().isPowerOf2())
3485 const APInt &StepInt = Step->getAPInt();
3486 const APInt &DivInt = RHSC->getAPInt();
3487 if (!StepInt.
urem(DivInt) &&
3493 for (
const SCEV *
Op : AR->operands())
3501 if (StartC && !DivInt.
urem(StepInt) &&
3507 const APInt &StartRem = StartInt.
urem(StepInt);
3508 if (StartRem != 0) {
3509 const SCEV *NewLHS =
3512 if (LHS != NewLHS) {
3522 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
3531 for (
const SCEV *
Op : M->operands())
3535 for (
unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3536 const SCEV *
Op = M->getOperand(i);
3548 if (
auto *DivisorConstant =
3550 bool Overflow =
false;
3552 DivisorConstant->getAPInt().
umul_ov(RHSC->getAPInt(), Overflow);
3563 for (
const SCEV *
Op :
A->operands())
3567 for (
unsigned i = 0, e =
A->getNumOperands(); i != e; ++i) {
3574 if (
Operands.size() ==
A->getNumOperands())
3581 return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt()));
3587 AE && AE->getNumOperands() == 2) {
3589 const APInt &NegC = VC->getAPInt();
3592 if (MME && MME->getNumOperands() == 2 &&
3595 MME->getOperand(1) == RHS)
3596 return getZero(LHS->getType());
3603 const SCEV *NewLHS, *NewRHS;
3611 if (
const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP))
return S;
3614 UniqueSCEVs.InsertNode(S, IP);
3644 if (!
Mul || !
Mul->hasNoUnsignedWrap())
3651 if (LHSCst == RHSCst) {
3659 APInt Factor =
gcd(LHSCst, RHSCst);
3677 for (
int i = 0, e =
Mul->getNumOperands(); i != e; ++i) {
3678 if (
Mul->getOperand(i) == RHS) {
3697 if (StepChrec->getLoop() == L) {
3716 "SCEVAddRecExpr operand types don't match!");
3717 assert(!
Op->getType()->isPointerTy() &&
"Step must be integer");
3721 "SCEVAddRecExpr operand is not available at loop entry!");
3739 const Loop *NestedLoop = NestedAR->getLoop();
3740 if (L->contains(NestedLoop)
3743 DT.dominates(L->getHeader(), NestedLoop->
getHeader()))) {
3745 Operands[0] = NestedAR->getStart();
3749 bool AllInvariant =
all_of(
3761 AllInvariant =
all_of(NestedOperands, [&](
const SCEV *
Op) {
3772 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3782 return getOrCreateAddRecExpr(
Operands, L, Flags);
3800 if (!GEPI || !isSCEVExprNeverPoison(GEPI))
3811 bool FirstIter =
true;
3813 for (
const SCEV *IndexExpr : IndexExprs) {
3820 Offsets.push_back(FieldOffset);
3823 CurTy = STy->getTypeAtIndex(Index);
3828 "The first index of a GEP indexes a pointer");
3829 CurTy =
GEP->getSourceElementType();
3840 const SCEV *LocalOffset =
getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3841 Offsets.push_back(LocalOffset);
3846 if (Offsets.empty())
3859 "GEP should not change type mid-flight.");
3863SCEV *ScalarEvolution::findExistingSCEVInCache(
SCEVTypes SCEVType,
3866 ID.AddInteger(SCEVType);
3870 return UniqueSCEVs.FindNodeOrInsertPos(
ID, IP);
3880 assert(SCEVMinMaxExpr::isMinMaxType(Kind) &&
"Not a SCEVMinMaxExpr!");
3881 assert(!
Ops.empty() &&
"Cannot get empty (u|s)(min|max)!");
3882 if (
Ops.size() == 1)
return Ops[0];
3885 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
3887 "Operand types don't match!");
3890 "min/max should be consistently pointerish");
3916 return IsSigned ?
C.isMinSignedValue() :
C.isMinValue();
3918 return IsSigned ?
C.isMaxSignedValue() :
C.isMaxValue();
3923 return IsSigned ?
C.isMaxSignedValue() :
C.isMaxValue();
3925 return IsSigned ?
C.isMinSignedValue() :
C.isMinValue();
3931 if (
const SCEV *S = findExistingSCEVInCache(Kind,
Ops)) {
3937 while (Idx <
Ops.size() &&
Ops[Idx]->getSCEVType() < Kind)
3942 if (Idx <
Ops.size()) {
3943 bool DeletedAny =
false;
3944 while (
Ops[Idx]->getSCEVType() == Kind) {
3946 Ops.erase(
Ops.begin()+Idx);
3964 for (
unsigned i = 0, e =
Ops.size() - 1; i != e; ++i) {
3965 if (
Ops[i] ==
Ops[i + 1] ||
3966 isKnownViaNonRecursiveReasoning(FirstPred,
Ops[i],
Ops[i + 1])) {
3969 Ops.erase(
Ops.begin() + i + 1,
Ops.begin() + i + 2);
3972 }
else if (isKnownViaNonRecursiveReasoning(SecondPred,
Ops[i],
3975 Ops.erase(
Ops.begin() + i,
Ops.begin() + i + 1);
3981 if (
Ops.size() == 1)
return Ops[0];
3983 assert(!
Ops.empty() &&
"Reduced smax down to nothing!");
3988 ID.AddInteger(Kind);
3992 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP);
3994 return ExistingSCEV;
3995 const SCEV **O = SCEVAllocator.Allocate<
const SCEV *>(
Ops.size());
3997 SCEV *S =
new (SCEVAllocator)
4000 UniqueSCEVs.InsertNode(S, IP);
4007class SCEVSequentialMinMaxDeduplicatingVisitor final
4008 :
public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
4009 std::optional<const SCEV *>> {
4010 using RetVal = std::optional<const SCEV *>;
4018 bool canRecurseInto(
SCEVTypes Kind)
const {
4021 return RootKind == Kind || NonSequentialRootKind == Kind;
4024 RetVal visitAnyMinMaxExpr(
const SCEV *S) {
4026 "Only for min/max expressions.");
4029 if (!canRecurseInto(Kind))
4039 return std::nullopt;
4046 RetVal
visit(
const SCEV *S) {
4048 if (!SeenOps.
insert(S).second)
4049 return std::nullopt;
4050 return Base::visit(S);
4054 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
4056 : SE(SE), RootKind(RootKind),
4057 NonSequentialRootKind(
4058 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4062 SmallVectorImpl<const SCEV *> &NewOps) {
4067 for (
const SCEV *
Op : OrigOps) {
4072 Ops.emplace_back(*NewOp);
4076 NewOps = std::move(
Ops);
4080 RetVal visitConstant(
const SCEVConstant *Constant) {
return Constant; }
4082 RetVal visitVScale(
const SCEVVScale *VScale) {
return VScale; }
4084 RetVal visitPtrToIntExpr(
const SCEVPtrToIntExpr *Expr) {
return Expr; }
4086 RetVal visitTruncateExpr(
const SCEVTruncateExpr *Expr) {
return Expr; }
4088 RetVal visitZeroExtendExpr(
const SCEVZeroExtendExpr *Expr) {
return Expr; }
4090 RetVal visitSignExtendExpr(
const SCEVSignExtendExpr *Expr) {
return Expr; }
4092 RetVal visitAddExpr(
const SCEVAddExpr *Expr) {
return Expr; }
4094 RetVal visitMulExpr(
const SCEVMulExpr *Expr) {
return Expr; }
4096 RetVal visitUDivExpr(
const SCEVUDivExpr *Expr) {
return Expr; }
4098 RetVal visitAddRecExpr(
const SCEVAddRecExpr *Expr) {
return Expr; }
4100 RetVal visitSMaxExpr(
const SCEVSMaxExpr *Expr) {
4101 return visitAnyMinMaxExpr(Expr);
4104 RetVal visitUMaxExpr(
const SCEVUMaxExpr *Expr) {
4105 return visitAnyMinMaxExpr(Expr);
4108 RetVal visitSMinExpr(
const SCEVSMinExpr *Expr) {
4109 return visitAnyMinMaxExpr(Expr);
4112 RetVal visitUMinExpr(
const SCEVUMinExpr *Expr) {
4113 return visitAnyMinMaxExpr(Expr);
4116 RetVal visitSequentialUMinExpr(
const SCEVSequentialUMinExpr *Expr) {
4117 return visitAnyMinMaxExpr(Expr);
4120 RetVal visitUnknown(
const SCEVUnknown *Expr) {
return Expr; }
4122 RetVal visitCouldNotCompute(
const SCEVCouldNotCompute *Expr) {
return Expr; }
4164struct SCEVPoisonCollector {
4165 bool LookThroughMaybePoisonBlocking;
4166 SmallPtrSet<const SCEVUnknown *, 4> MaybePoison;
4167 SCEVPoisonCollector(
bool LookThroughMaybePoisonBlocking)
4168 : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {}
4170 bool follow(
const SCEV *S) {
4171 if (!LookThroughMaybePoisonBlocking &&
4181 bool isDone()
const {
return false; }
4191 SCEVPoisonCollector PC1(
true);
4196 if (PC1.MaybePoison.empty())
4202 SCEVPoisonCollector PC2(
false);
4212 SCEVPoisonCollector PC(
false);
4235 while (!Worklist.
empty()) {
4237 if (!Visited.
insert(V).second)
4241 if (Visited.
size() > 16)
4246 if (PoisonVals.
contains(V) || ::isGuaranteedNotToBePoison(V))
4257 if (PDI->isDisjoint())
4264 II &&
II->getIntrinsicID() == Intrinsic::vscale)
4271 if (
I->hasPoisonGeneratingAnnotations())
4282 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4283 "Not a SCEVSequentialMinMaxExpr!");
4284 assert(!
Ops.empty() &&
"Cannot get empty (u|s)(min|max)!");
4285 if (
Ops.size() == 1)
4289 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
4291 "Operand types don't match!");
4294 "min/max should be consistently pointerish");
4302 if (
const SCEV *S = findExistingSCEVInCache(Kind,
Ops))
4309 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*
this, Kind);
4319 bool DeletedAny =
false;
4320 while (Idx <
Ops.size()) {
4321 if (
Ops[Idx]->getSCEVType() != Kind) {
4326 Ops.erase(
Ops.begin() + Idx);
4327 Ops.insert(
Ops.begin() + Idx, SMME->operands().begin(),
4328 SMME->operands().end());
4336 const SCEV *SaturationPoint;
4347 for (
unsigned i = 1, e =
Ops.size(); i != e; ++i) {
4348 if (!isGuaranteedNotToCauseUB(
Ops[i]))
4360 Ops.erase(
Ops.begin() + i);
4365 if (isKnownViaNonRecursiveReasoning(Pred,
Ops[i - 1],
Ops[i])) {
4366 Ops.erase(
Ops.begin() + i);
4374 ID.AddInteger(Kind);
4378 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP);
4380 return ExistingSCEV;
4382 const SCEV **O = SCEVAllocator.Allocate<
const SCEV *>(
Ops.size());
4384 SCEV *S =
new (SCEVAllocator)
4387 UniqueSCEVs.InsertNode(S, IP);
4435 if (
Size.isScalable())
4456 "Cannot get offset for structure containing scalable vector types");
4470 if (
SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(
ID, IP)) {
4472 "Stale SCEVUnknown in uniquing map!");
4478 UniqueSCEVs.InsertNode(S, IP);
4492 return Ty->isIntOrPtrTy();
4499 if (Ty->isPointerTy())
4510 if (Ty->isIntegerTy())
4514 assert(Ty->isPointerTy() &&
"Unexpected non-pointer non-integer type!");
4526 bool PreciseA, PreciseB;
4527 auto *ScopeA = getDefiningScopeBound({
A}, PreciseA);
4528 auto *ScopeB = getDefiningScopeBound({
B}, PreciseB);
4529 if (!PreciseA || !PreciseB)
4532 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4533 DT.dominates(ScopeB, ScopeA);
4537 return CouldNotCompute.get();
4540bool ScalarEvolution::checkValidity(
const SCEV *S)
const {
4543 return SU && SU->getValue() ==
nullptr;
4546 return !ContainsNulls;
4551 if (
I != HasRecMap.end())
4556 HasRecMap.insert({S, FoundAddRec});
4564 if (
SI == ExprValueMap.
end())
4566 return SI->second.getArrayRef();
4572void ScalarEvolution::eraseValueFromMap(
Value *V) {
4574 if (
I != ValueExprMap.end()) {
4575 auto EVIt = ExprValueMap.find(
I->second);
4576 bool Removed = EVIt->second.remove(V);
4578 assert(Removed &&
"Value not in ExprValueMap?");
4579 ValueExprMap.erase(
I);
4583void ScalarEvolution::insertValueToMap(
Value *V,
const SCEV *S) {
4587 auto It = ValueExprMap.find_as(V);
4588 if (It == ValueExprMap.end()) {
4590 ExprValueMap[S].insert(V);
4601 return createSCEVIter(V);
4608 if (
I != ValueExprMap.end()) {
4609 const SCEV *S =
I->second;
4610 assert(checkValidity(S) &&
4611 "existing SCEV has not been properly invalidated");
4624 Type *Ty = V->getType();
4632 if (!
Add ||
Add->getNumOperands() != 2 ||
4633 !
Add->getOperand(0)->isAllOnesValue())
4646 assert(!V->getType()->isPointerTy() &&
"Can't negate pointer");
4659 return (
const SCEV *)
nullptr;
4665 if (
const SCEV *Replaced = MatchMinMaxNegation(MME))
4669 Type *Ty = V->getType();
4675 assert(
P->getType()->isPointerTy());
4688 const SCEV **PtrOp =
nullptr;
4689 for (
const SCEV *&AddOp :
Ops) {
4690 if (AddOp->getType()->isPointerTy()) {
4691 assert(!PtrOp &&
"Cannot have multiple pointer ops");
4709 return getZero(LHS->getType());
4714 if (RHS->getType()->isPointerTy()) {
4715 if (!LHS->getType()->isPointerTy() ||
4725 const bool RHSIsNotMinSigned =
4756 Type *SrcTy = V->getType();
4757 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4758 "Cannot truncate or zero extend with non-integer arguments!");
4768 Type *SrcTy = V->getType();
4769 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4770 "Cannot truncate or zero extend with non-integer arguments!");
4780 Type *SrcTy = V->getType();
4781 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4782 "Cannot noop or zero extend with non-integer arguments!");
4784 "getNoopOrZeroExtend cannot truncate!");
4792 Type *SrcTy = V->getType();
4793 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4794 "Cannot noop or sign extend with non-integer arguments!");
4796 "getNoopOrSignExtend cannot truncate!");
4804 Type *SrcTy = V->getType();
4805 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4806 "Cannot noop or any extend with non-integer arguments!");
4808 "getNoopOrAnyExtend cannot truncate!");
4816 Type *SrcTy = V->getType();
4817 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4818 "Cannot truncate or noop with non-integer arguments!");
4820 "getTruncateOrNoop cannot extend!");
4828 const SCEV *PromotedLHS = LHS;
4829 const SCEV *PromotedRHS = RHS;
4849 assert(!
Ops.empty() &&
"At least one operand must be!");
4851 if (
Ops.size() == 1)
4855 Type *MaxType =
nullptr;
4856 for (
const auto *S :
Ops)
4861 assert(MaxType &&
"Failed to find maximum type!");
4865 for (
const auto *S :
Ops)
4874 if (!V->getType()->isPointerTy())
4879 V = AddRec->getStart();
4881 const SCEV *PtrOp =
nullptr;
4882 for (
const SCEV *AddOp :
Add->operands()) {
4883 if (AddOp->getType()->isPointerTy()) {
4884 assert(!PtrOp &&
"Cannot have multiple pointer ops");
4888 assert(PtrOp &&
"Must have pointer op");
4900 for (
User *U :
I->users()) {
4902 if (Visited.
insert(UserInsn).second)
4916 static const SCEV *rewrite(
const SCEV *S,
const Loop *L, ScalarEvolution &SE,
4917 bool IgnoreOtherLoops =
true) {
4920 if (
Rewriter.hasSeenLoopVariantSCEVUnknown())
4922 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4927 const SCEV *visitUnknown(
const SCEVUnknown *Expr) {
4929 SeenLoopVariantSCEVUnknown =
true;
4933 const SCEV *visitAddRecExpr(
const SCEVAddRecExpr *Expr) {
4937 SeenOtherLoops =
true;
4941 bool hasSeenLoopVariantSCEVUnknown() {
return SeenLoopVariantSCEVUnknown; }
4943 bool hasSeenOtherLoops() {
return SeenOtherLoops; }
4946 explicit SCEVInitRewriter(
const Loop *L, ScalarEvolution &SE)
4947 : SCEVRewriteVisitor(SE),
L(
L) {}
4950 bool SeenLoopVariantSCEVUnknown =
false;
4951 bool SeenOtherLoops =
false;
4960 static const SCEV *rewrite(
const SCEV *S,
const Loop *L, ScalarEvolution &SE) {
4961 SCEVPostIncRewriter
Rewriter(L, SE);
4963 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4968 const SCEV *visitUnknown(
const SCEVUnknown *Expr) {
4970 SeenLoopVariantSCEVUnknown =
true;
4974 const SCEV *visitAddRecExpr(
const SCEVAddRecExpr *Expr) {
4978 SeenOtherLoops =
true;
4982 bool hasSeenLoopVariantSCEVUnknown() {
return SeenLoopVariantSCEVUnknown; }
4984 bool hasSeenOtherLoops() {
return SeenOtherLoops; }
4987 explicit SCEVPostIncRewriter(
const Loop *L, ScalarEvolution &SE)
4988 : SCEVRewriteVisitor(SE),
L(
L) {}
4991 bool SeenLoopVariantSCEVUnknown =
false;
4992 bool SeenOtherLoops =
false;
4998class SCEVBackedgeConditionFolder
5001 static const SCEV *rewrite(
const SCEV *S,
const Loop *L,
5002 ScalarEvolution &SE) {
5003 bool IsPosBECond =
false;
5004 Value *BECond =
nullptr;
5005 if (BasicBlock *Latch =
L->getLoopLatch()) {
5009 "Both outgoing branches should not target same header!");
5016 SCEVBackedgeConditionFolder
Rewriter(L, BECond, IsPosBECond, SE);
5020 const SCEV *visitUnknown(
const SCEVUnknown *Expr) {
5021 const SCEV *
Result = Expr;
5026 switch (
I->getOpcode()) {
5027 case Instruction::Select: {
5029 std::optional<const SCEV *> Res =
5030 compareWithBackedgeCondition(
SI->getCondition());
5038 std::optional<const SCEV *> Res = compareWithBackedgeCondition(
I);
5049 explicit SCEVBackedgeConditionFolder(
const Loop *L,
Value *BECond,
5050 bool IsPosBECond, ScalarEvolution &SE)
5051 : SCEVRewriteVisitor(SE),
L(
L), BackedgeCond(BECond),
5052 IsPositiveBECond(IsPosBECond) {}
5054 std::optional<const SCEV *> compareWithBackedgeCondition(
Value *IC);
5058 Value *BackedgeCond =
nullptr;
5060 bool IsPositiveBECond;
5063std::optional<const SCEV *>
5064SCEVBackedgeConditionFolder::compareWithBackedgeCondition(
Value *IC) {
5069 if (BackedgeCond == IC)
5072 return std::nullopt;
5077 static const SCEV *rewrite(
const SCEV *S,
const Loop *L,
5078 ScalarEvolution &SE) {
5084 const SCEV *visitUnknown(
const SCEVUnknown *Expr) {
5091 const SCEV *visitAddRecExpr(
const SCEVAddRecExpr *Expr) {
5098 bool isValid() {
return Valid; }
5101 explicit SCEVShiftRewriter(
const Loop *L, ScalarEvolution &SE)
5102 : SCEVRewriteVisitor(SE),
L(
L) {}
5111ScalarEvolution::proveNoWrapViaConstantRanges(
const SCEVAddRecExpr *AR) {
5115 using OBO = OverflowingBinaryOperator;
5123 const APInt &BECountAP = BECountMax->getAPInt();
5124 unsigned NoOverflowBitWidth =
5136 Instruction::Add, IncRange, OBO::NoSignedWrap);
5137 if (NSWRegion.contains(AddRecRange))
5146 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
5147 if (NUWRegion.contains(AddRecRange))
5155ScalarEvolution::proveNoSignedWrapViaInduction(
const SCEVAddRecExpr *AR) {
5165 if (!SignedWrapViaInductionTried.insert(AR).second)
5190 AC.assumptions().empty())
5198 const SCEV *OverflowLimit =
5200 if (OverflowLimit &&
5208ScalarEvolution::proveNoUnsignedWrapViaInduction(
const SCEVAddRecExpr *AR) {
5218 if (!UnsignedWrapViaInductionTried.insert(AR).second)
5244 AC.assumptions().empty())
5279 explicit BinaryOp(Operator *
Op)
5283 IsNSW = OBO->hasNoSignedWrap();
5284 IsNUW = OBO->hasNoUnsignedWrap();
5288 explicit BinaryOp(
unsigned Opcode,
Value *
LHS,
Value *
RHS,
bool IsNSW =
false,
5290 : Opcode(Opcode),
LHS(
LHS),
RHS(
RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5302 return std::nullopt;
5308 switch (
Op->getOpcode()) {
5309 case Instruction::Add:
5310 case Instruction::Sub:
5311 case Instruction::Mul:
5312 case Instruction::UDiv:
5313 case Instruction::URem:
5314 case Instruction::And:
5315 case Instruction::AShr:
5316 case Instruction::Shl:
5317 return BinaryOp(
Op);
5319 case Instruction::Or: {
5322 return BinaryOp(Instruction::Add,
Op->getOperand(0),
Op->getOperand(1),
5324 return BinaryOp(
Op);
5327 case Instruction::Xor:
5331 if (RHSC->getValue().isSignMask())
5332 return BinaryOp(Instruction::Add,
Op->getOperand(0),
Op->getOperand(1));
5334 if (V->getType()->isIntegerTy(1))
5335 return BinaryOp(Instruction::Add,
Op->getOperand(0),
Op->getOperand(1));
5336 return BinaryOp(
Op);
5338 case Instruction::LShr:
5347 if (SA->getValue().ult(
BitWidth)) {
5349 ConstantInt::get(SA->getContext(),
5351 return BinaryOp(Instruction::UDiv,
Op->getOperand(0),
X);
5354 return BinaryOp(
Op);
5356 case Instruction::ExtractValue: {
5358 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5366 bool Signed = WO->isSigned();
5369 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5374 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5385 if (
II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5386 return BinaryOp(Instruction::Sub,
II->getOperand(0),
II->getOperand(1));
5388 return std::nullopt;
5414 if (
Op == SymbolicPHI)
5419 if (SourceBits != NewBits)
5432 if (
X != SymbolicPHI)
5434 Signed = SExt !=
nullptr;
5442 if (!L || L->getHeader() != PN->
getParent())
5500std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5501ScalarEvolution::createAddRecFromPHIWithCastsImpl(
const SCEVUnknown *SymbolicPHI) {
5509 assert(L &&
"Expecting an integer loop header phi");
5514 Value *BEValueV =
nullptr, *StartValueV =
nullptr;
5515 for (
unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5516 Value *
V = PN->getIncomingValue(i);
5517 if (
L->contains(PN->getIncomingBlock(i))) {
5520 }
else if (BEValueV != V) {
5524 }
else if (!StartValueV) {
5526 }
else if (StartValueV != V) {
5527 StartValueV =
nullptr;
5531 if (!BEValueV || !StartValueV)
5532 return std::nullopt;
5534 const SCEV *BEValue =
getSCEV(BEValueV);
5541 return std::nullopt;
5545 unsigned FoundIndex =
Add->getNumOperands();
5546 Type *TruncTy =
nullptr;
5548 for (
unsigned i = 0, e =
Add->getNumOperands(); i != e; ++i)
5551 if (FoundIndex == e) {
5556 if (FoundIndex ==
Add->getNumOperands())
5557 return std::nullopt;
5561 for (
unsigned i = 0, e =
Add->getNumOperands(); i != e; ++i)
5562 if (i != FoundIndex)
5563 Ops.push_back(
Add->getOperand(i));
5569 return std::nullopt;
5622 const SCEV *StartVal =
getSCEV(StartValueV);
5623 const SCEV *PHISCEV =
5650 auto getExtendedExpr = [&](
const SCEV *Expr,
5651 bool CreateSignExtend) ->
const SCEV * {
5654 const SCEV *ExtendedExpr =
5657 return ExtendedExpr;
5665 auto PredIsKnownFalse = [&](
const SCEV *Expr,
5666 const SCEV *ExtendedExpr) ->
bool {
5667 return Expr != ExtendedExpr &&
5671 const SCEV *StartExtended = getExtendedExpr(StartVal,
Signed);
5672 if (PredIsKnownFalse(StartVal, StartExtended)) {
5674 return std::nullopt;
5679 const SCEV *AccumExtended = getExtendedExpr(Accum,
true);
5680 if (PredIsKnownFalse(Accum, AccumExtended)) {
5682 return std::nullopt;
5685 auto AppendPredicate = [&](
const SCEV *Expr,
5686 const SCEV *ExtendedExpr) ->
void {
5687 if (Expr != ExtendedExpr &&
5695 AppendPredicate(StartVal, StartExtended);
5696 AppendPredicate(Accum, AccumExtended);
5704 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5705 std::make_pair(NewAR, Predicates);
5707 PredicatedSCEVRewrites[{SymbolicPHI,
L}] = PredRewrite;
5711std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5716 return std::nullopt;
5719 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5720 if (
I != PredicatedSCEVRewrites.end()) {
5721 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5724 if (Rewrite.first == SymbolicPHI)
5725 return std::nullopt;
5729 assert(!(Rewrite.second).empty() &&
"Expected to find Predicates");
5733 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5734 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5739 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5740 return std::nullopt;
5757 auto areExprsEqual = [&](
const SCEV *Expr1,
const SCEV *Expr2) ->
bool {
5758 if (Expr1 != Expr2 &&
5759 !Preds->implies(SE.getEqualPredicate(Expr1, Expr2), SE) &&
5760 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1), SE))
5777const SCEV *ScalarEvolution::createSimpleAffineAddRec(
PHINode *PN,
5779 Value *StartValueV) {
5782 assert(BEValueV && StartValueV);
5788 if (BO->Opcode != Instruction::Add)
5791 const SCEV *Accum =
nullptr;
5792 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5794 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5808 insertValueToMap(PN, PHISCEV);
5813 proveNoWrapViaConstantRanges(AR)));
5821 "Accum is defined outside L, but is not invariant?");
5822 if (isAddRecNeverPoison(BEInst, L))
5829const SCEV *ScalarEvolution::createAddRecFromPHI(
PHINode *PN) {
5830 const Loop *
L = LI.getLoopFor(PN->
getParent());
5837 Value *BEValueV =
nullptr, *StartValueV =
nullptr;
5843 }
else if (BEValueV != V) {
5847 }
else if (!StartValueV) {
5849 }
else if (StartValueV != V) {
5850 StartValueV =
nullptr;
5854 if (!BEValueV || !StartValueV)
5857 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5858 "PHI node already processed?");
5862 if (
auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5867 insertValueToMap(PN, SymbolicName);
5871 const SCEV *BEValue =
getSCEV(BEValueV);
5881 unsigned FoundIndex =
Add->getNumOperands();
5882 for (
unsigned i = 0, e =
Add->getNumOperands(); i != e; ++i)
5883 if (
Add->getOperand(i) == SymbolicName)
5884 if (FoundIndex == e) {
5889 if (FoundIndex !=
Add->getNumOperands()) {
5892 for (
unsigned i = 0, e =
Add->getNumOperands(); i != e; ++i)
5893 if (i != FoundIndex)
5894 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(
Add->getOperand(i),
5906 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5913 if (
GEP->getOperand(0) == PN) {
5914 GEPNoWrapFlags NW =
GEP->getNoWrapFlags();
5932 const SCEV *StartVal =
getSCEV(StartValueV);
5933 const SCEV *PHISCEV =
getAddRecExpr(StartVal, Accum, L, Flags);
5938 forgetMemoizedResults(SymbolicName);
5939 insertValueToMap(PN, PHISCEV);
5944 proveNoWrapViaConstantRanges(AR)));
5969 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *
this);
5970 const SCEV *
Start = SCEVInitRewriter::rewrite(Shifted, L, *
this,
false);
5972 isGuaranteedNotToCauseUB(Shifted) &&
::impliesPoison(Shifted, Start)) {
5973 const SCEV *StartVal =
getSCEV(StartValueV);
5974 if (Start == StartVal) {
5978 forgetMemoizedResults(SymbolicName);
5979 insertValueToMap(PN, Shifted);
5989 eraseValueFromMap(PN);
6009 Use &LeftUse =
Merge->getOperandUse(0);
6010 Use &RightUse =
Merge->getOperandUse(1);
6027const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(
PHINode *PN) {
6029 [&](
BasicBlock *BB) {
return DT.isReachableFromEntry(BB); };
6044 assert(IDom &&
"At least the entry block should dominate PN");
6053 return createNodeForSelectOrPHI(PN,
Cond,
LHS,
RHS);
6069ScalarEvolution::createNodeForPHIWithIdenticalOperands(
PHINode *PN) {
6070 BinaryOperator *CommonInst =
nullptr;
6081 CommonInst = IncomingInst;
6088 const SCEV *CommonSCEV =
getSCEV(CommonInst);
6089 bool SCEVExprsIdentical =
6091 [
this, CommonSCEV](
Value *V) { return CommonSCEV == getSCEV(V); });
6092 return SCEVExprsIdentical ? CommonSCEV :
nullptr;
6095const SCEV *ScalarEvolution::createNodeForPHI(
PHINode *PN) {
6096 if (
const SCEV *S = createAddRecFromPHI(PN))
6106 if (
const SCEV *S = createNodeForPHIWithIdenticalOperands(PN))
6109 if (
const SCEV *S = createNodeFromSelectLikePHI(PN))
6118 struct FindClosure {
6119 const SCEV *OperandToFind;
6125 bool canRecurseInto(
SCEVTypes Kind)
const {
6128 return RootKind == Kind || NonSequentialRootKind == Kind ||
6133 : OperandToFind(OperandToFind), RootKind(RootKind),
6134 NonSequentialRootKind(
6138 bool follow(
const SCEV *S) {
6139 Found = S == OperandToFind;
6141 return !isDone() && canRecurseInto(S->
getSCEVType());
6144 bool isDone()
const {
return Found; }
6147 FindClosure FC(OperandToFind, RootKind);
6152std::optional<const SCEV *>
6153ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(
Type *Ty,
6163 switch (ICI->getPredicate()) {
6177 bool Signed = ICI->isSigned();
6178 const SCEV *LA =
getSCEV(TrueVal);
6186 if (LA == LS &&
RA == RS)
6188 if (LA == RS &&
RA == LS)
6191 auto CoerceOperand = [&](
const SCEV *
Op) ->
const SCEV * {
6192 if (
Op->getType()->isPointerTy()) {
6203 LS = CoerceOperand(LS);
6204 RS = CoerceOperand(RS);
6228 const SCEV *TrueValExpr =
getSCEV(TrueVal);
6229 const SCEV *FalseValExpr =
getSCEV(FalseVal);
6243 X = ZExt->getOperand();
6245 const SCEV *FalseValExpr =
getSCEV(FalseVal);
6256 return std::nullopt;
6259static std::optional<const SCEV *>
6261 const SCEV *TrueExpr,
const SCEV *FalseExpr) {
6265 "Unexpected operands of a select.");
6277 return std::nullopt;
6292static std::optional<const SCEV *>
6296 return std::nullopt;
6299 const auto *SETrue = SE->
getSCEV(TrueVal);
6300 const auto *SEFalse = SE->
getSCEV(FalseVal);
6304const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6306 assert(
Cond->getType()->isIntegerTy(1) &&
"Select condition is not an i1?");
6308 V->getType() ==
TrueVal->getType() &&
6309 "Types of select hands and of the result must match.");
6312 if (!
V->getType()->isIntegerTy(1))
6315 if (std::optional<const SCEV *> S =
6328 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6332 if (std::optional<const SCEV *> S =
6333 createNodeForSelectOrPHIInstWithICmpInstCond(
I->getType(), ICI,
6339 return createNodeForSelectOrPHIViaUMinSeq(V,
Cond, TrueVal, FalseVal);
6345 assert(
GEP->getSourceElementType()->isSized() &&
6346 "GEP source element type must be sized");
6349 for (
Value *Index :
GEP->indices())
6354APInt ScalarEvolution::getConstantMultipleImpl(
const SCEV *S,
6357 auto GetShiftedByZeros = [
BitWidth](uint32_t TrailingZeros) {
6360 : APInt::getOneBitSet(
BitWidth, TrailingZeros);
6362 auto GetGCDMultiple = [
this, CtxI](
const SCEVNAryExpr *
N) {
6365 for (
unsigned I = 1,
E =
N->getNumOperands();
I <
E && Res != 1; ++
I)
6383 return GetShiftedByZeros(TZ);
6393 return GetShiftedByZeros(TZ);
6397 if (
M->hasNoUnsignedWrap()) {
6400 for (
const SCEV *Operand :
M->operands().drop_front())
6408 for (
const SCEV *Operand :
M->operands())
6410 return GetShiftedByZeros(TZ);
6415 if (
N->hasNoUnsignedWrap())
6416 return GetGCDMultiple(
N);
6419 for (
const SCEV *Operand :
N->operands().drop_front())
6421 return GetShiftedByZeros(TZ);
6434 .countMinTrailingZeros();
6435 return GetShiftedByZeros(Known);
6448 return getConstantMultipleImpl(S, CtxI);
6450 auto I = ConstantMultipleCache.find(S);
6451 if (
I != ConstantMultipleCache.end())
6454 APInt Result = getConstantMultipleImpl(S, CtxI);
6455 auto InsertPair = ConstantMultipleCache.insert({S, Result});
6456 assert(InsertPair.second &&
"Should insert a new key");
6457 return InsertPair.first->second;
6474 if (
MDNode *MD =
I->getMetadata(LLVMContext::MD_range))
6477 if (std::optional<ConstantRange>
Range = CB->getRange())
6481 if (std::optional<ConstantRange>
Range =
A->getRange())
6484 return std::nullopt;
6491 UnsignedRanges.erase(AddRec);
6492 SignedRanges.erase(AddRec);
6493 ConstantMultipleCache.erase(AddRec);
6498getRangeForUnknownRecurrence(
const SCEVUnknown *U) {
6524 Value *Start, *Step;
6531 assert(L && L->getHeader() ==
P->getParent());
6544 case Instruction::AShr:
6545 case Instruction::LShr:
6546 case Instruction::Shl:
6561 KnownStep.getBitWidth() ==
BitWidth);
6564 auto MaxShiftAmt = KnownStep.getMaxValue();
6566 bool Overflow =
false;
6567 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6574 case Instruction::AShr: {
6582 if (KnownStart.isNonNegative())
6585 KnownStart.getMaxValue() + 1);
6586 if (KnownStart.isNegative())
6589 KnownEnd.getMaxValue() + 1);
6592 case Instruction::LShr: {
6601 KnownStart.getMaxValue() + 1);
6603 case Instruction::Shl: {
6607 if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6608 return ConstantRange(KnownStart.getMinValue(),
6609 KnownEnd.getMaxValue() + 1);
6617ScalarEvolution::getRangeRefIter(
const SCEV *S,
6618 ScalarEvolution::RangeSignHint SignHint) {
6619 DenseMap<const SCEV *, ConstantRange> &Cache =
6620 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6623 SmallPtrSet<const SCEV *, 8> Seen;
6627 auto AddToWorklist = [&WorkList, &Seen, &Cache](
const SCEV *Expr) {
6628 if (!Seen.
insert(Expr).second)
6661 for (
unsigned I = 0;
I != WorkList.
size(); ++
I) {
6662 const SCEV *
P = WorkList[
I];
6666 for (
const SCEV *
Op :
P->operands())
6672 if (!PendingPhiRangesIter.insert(
P).second)
6679 if (!WorkList.
empty()) {
6684 getRangeRef(
P, SignHint);
6688 PendingPhiRangesIter.erase(
P);
6692 return getRangeRef(S, SignHint, 0);
6699 const SCEV *S, ScalarEvolution::RangeSignHint SignHint,
unsigned Depth) {
6700 DenseMap<const SCEV *, ConstantRange> &Cache =
6701 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6709 if (
I != Cache.
end())
6713 return setRange(
C, SignHint, ConstantRange(
C->getAPInt()));
6718 return getRangeRefIter(S, SignHint);
6721 ConstantRange ConservativeResult(
BitWidth,
true);
6722 using OBO = OverflowingBinaryOperator;
6726 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
6730 ConservativeResult =
6737 ConservativeResult = ConstantRange(
6753 ConservativeResult.intersectWith(
X.truncate(
BitWidth), RangeType));
6760 ConservativeResult.intersectWith(
X.zeroExtend(
BitWidth), RangeType));
6767 ConservativeResult.intersectWith(
X.signExtend(
BitWidth), RangeType));
6771 ConstantRange
X = getRangeRef(PtrToInt->
getOperand(), SignHint,
Depth + 1);
6772 return setRange(PtrToInt, SignHint,
X);
6776 ConstantRange
X = getRangeRef(
Add->getOperand(0), SignHint,
Depth + 1);
6777 unsigned WrapType = OBO::AnyWrap;
6778 if (
Add->hasNoSignedWrap())
6779 WrapType |= OBO::NoSignedWrap;
6780 if (
Add->hasNoUnsignedWrap())
6781 WrapType |= OBO::NoUnsignedWrap;
6783 X =
X.addWithNoWrap(getRangeRef(
Op, SignHint,
Depth + 1), WrapType,
6785 return setRange(
Add, SignHint,
6786 ConservativeResult.intersectWith(
X, RangeType));
6790 ConstantRange
X = getRangeRef(
Mul->getOperand(0), SignHint,
Depth + 1);
6792 X =
X.multiply(getRangeRef(
Op, SignHint,
Depth + 1));
6793 return setRange(
Mul, SignHint,
6794 ConservativeResult.intersectWith(
X, RangeType));
6798 ConstantRange
X = getRangeRef(UDiv->
getLHS(), SignHint,
Depth + 1);
6799 ConstantRange
Y = getRangeRef(UDiv->
getRHS(), SignHint,
Depth + 1);
6800 return setRange(UDiv, SignHint,
6801 ConservativeResult.intersectWith(
X.udiv(
Y), RangeType));
6809 if (!UnsignedMinValue.
isZero())
6810 ConservativeResult = ConservativeResult.intersectWith(
6811 ConstantRange(UnsignedMinValue, APInt(
BitWidth, 0)), RangeType);
6820 bool AllNonNeg =
true;
6821 bool AllNonPos =
true;
6822 for (
unsigned i = 1, e = AddRec->
getNumOperands(); i != e; ++i) {
6829 ConservativeResult = ConservativeResult.intersectWith(
6834 ConservativeResult = ConservativeResult.intersectWith(
6843 const SCEV *MaxBEScev =
6857 auto RangeFromAffine = getRangeForAffineAR(
6859 ConservativeResult =
6860 ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6862 auto RangeFromFactoring = getRangeViaFactoring(
6864 ConservativeResult =
6865 ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6871 const SCEV *SymbolicMaxBECount =
6876 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6877 AddRec, SymbolicMaxBECount,
BitWidth, SignHint);
6878 ConservativeResult =
6879 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6884 return setRange(AddRec, SignHint, std::move(ConservativeResult));
6894 ID = Intrinsic::umax;
6897 ID = Intrinsic::smax;
6901 ID = Intrinsic::umin;
6904 ID = Intrinsic::smin;
6911 ConstantRange
X = getRangeRef(NAry->getOperand(0), SignHint,
Depth + 1);
6912 for (
unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6914 ID, {
X, getRangeRef(NAry->getOperand(i), SignHint,
Depth + 1)});
6915 return setRange(S, SignHint,
6916 ConservativeResult.intersectWith(
X, RangeType));
6925 ConservativeResult =
6926 ConservativeResult.intersectWith(*MDRange, RangeType);
6931 auto CR = getRangeForUnknownRecurrence(U);
6932 ConservativeResult = ConservativeResult.intersectWith(CR);
6943 if (
U->getType()->isPointerTy()) {
6946 unsigned ptrSize = DL.getPointerTypeSizeInBits(
U->getType());
6947 int ptrIdxDiff = ptrSize -
BitWidth;
6948 if (ptrIdxDiff > 0 && ptrSize >
BitWidth && NS > (
unsigned)ptrIdxDiff)
6961 ConservativeResult = ConservativeResult.intersectWith(
6965 ConservativeResult = ConservativeResult.intersectWith(
6970 if (
U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) {
6973 bool CanBeNull, CanBeFreed;
6974 uint64_t DerefBytes =
6975 V->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
6985 uint64_t
Align =
U->getValue()->getPointerAlignment(DL).value();
6986 uint64_t Rem = MaxVal.
urem(Align);
6991 ConservativeResult = ConservativeResult.intersectWith(
6999 if (PendingPhiRanges.insert(Phi).second) {
7000 ConstantRange RangeFromOps(
BitWidth,
false);
7002 for (
const auto &
Op :
Phi->operands()) {
7004 RangeFromOps = RangeFromOps.unionWith(OpRange);
7006 if (RangeFromOps.isFullSet())
7009 ConservativeResult =
7010 ConservativeResult.intersectWith(RangeFromOps, RangeType);
7011 bool Erased = PendingPhiRanges.erase(Phi);
7012 assert(Erased &&
"Failed to erase Phi properly?");
7019 if (
II->getIntrinsicID() == Intrinsic::vscale) {
7021 ConservativeResult = ConservativeResult.difference(Disallowed);
7024 return setRange(U, SignHint, std::move(ConservativeResult));
7030 return setRange(S, SignHint, std::move(ConservativeResult));
7039 const APInt &MaxBECount,
7046 if (Step == 0 || MaxBECount == 0)
7053 return ConstantRange::getFull(
BitWidth);
7069 return ConstantRange::getFull(
BitWidth);
7081 APInt MovedBoundary = Descending ? (StartLower - std::move(
Offset))
7082 : (StartUpper + std::move(
Offset));
7087 if (StartRange.
contains(MovedBoundary))
7088 return ConstantRange::getFull(
BitWidth);
7091 Descending ? std::move(MovedBoundary) : std::move(StartLower);
7093 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
7102 const APInt &MaxBECount) {
7106 "mismatched bit widths");
7115 StepSRange.
getSignedMin(), StartSRange, MaxBECount,
true);
7117 StartSRange, MaxBECount,
7129ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
7131 ScalarEvolution::RangeSignHint SignHint) {
7132 assert(AddRec->
isAffine() &&
"Non-affine AddRecs are not suppored!\n");
7134 "This only works for non-self-wrapping AddRecs!");
7135 const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
7139 return ConstantRange::getFull(
BitWidth);
7147 return ConstantRange::getFull(
BitWidth);
7151 const SCEV *MaxItersWithoutWrap =
getUDivExpr(RangeWidth, StepAbs);
7153 MaxItersWithoutWrap))
7154 return ConstantRange::getFull(
BitWidth);
7175 ConstantRange StartRange = getRangeRef(Start, SignHint);
7176 ConstantRange EndRange = getRangeRef(End, SignHint);
7177 ConstantRange RangeBetween = StartRange.
unionWith(EndRange);
7181 return RangeBetween;
7186 return ConstantRange::getFull(
BitWidth);
7189 isKnownPredicateViaConstantRanges(LEPred, Start, End))
7190 return RangeBetween;
7192 isKnownPredicateViaConstantRanges(GEPred, Start, End))
7193 return RangeBetween;
7194 return ConstantRange::getFull(
BitWidth);
7199 const APInt &MaxBECount) {
7206 "mismatched bit widths");
7208 struct SelectPattern {
7209 Value *Condition =
nullptr;
7213 explicit SelectPattern(ScalarEvolution &SE,
unsigned BitWidth,
7215 std::optional<unsigned> CastOp;
7229 CastOp = SCast->getSCEVType();
7230 S = SCast->getOperand();
7233 using namespace llvm::PatternMatch;
7240 Condition =
nullptr;
7272 bool isRecognized() {
return Condition !=
nullptr; }
7275 SelectPattern StartPattern(*
this,
BitWidth, Start);
7276 if (!StartPattern.isRecognized())
7277 return ConstantRange::getFull(
BitWidth);
7279 SelectPattern StepPattern(*
this,
BitWidth, Step);
7280 if (!StepPattern.isRecognized())
7281 return ConstantRange::getFull(
BitWidth);
7283 if (StartPattern.Condition != StepPattern.Condition) {
7287 return ConstantRange::getFull(
BitWidth);
7298 const SCEV *TrueStart = this->
getConstant(StartPattern.TrueValue);
7299 const SCEV *TrueStep = this->
getConstant(StepPattern.TrueValue);
7300 const SCEV *FalseStart = this->
getConstant(StartPattern.FalseValue);
7301 const SCEV *FalseStep = this->
getConstant(StepPattern.FalseValue);
7303 ConstantRange TrueRange =
7304 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount);
7305 ConstantRange FalseRange =
7306 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount);
7328ScalarEvolution::getNonTrivialDefiningScopeBound(
const SCEV *S) {
7342 SmallPtrSet<const SCEV *, 16> Visited;
7344 auto pushOp = [&](
const SCEV *S) {
7345 if (!Visited.
insert(S).second)
7348 if (Visited.
size() > 30) {
7355 for (
const auto *S :
Ops)
7359 while (!Worklist.
empty()) {
7361 if (
auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7362 if (!Bound || DT.dominates(Bound, DefI))
7369 return Bound ? Bound : &*F.getEntryBlock().begin();
7375 return getDefiningScopeBound(
Ops, Discard);
7378bool ScalarEvolution::isGuaranteedToTransferExecutionTo(
const Instruction *
A,
7380 if (
A->getParent() ==
B->getParent() &&
7385 auto *BLoop = LI.getLoopFor(
B->getParent());
7386 if (BLoop && BLoop->getHeader() ==
B->getParent() &&
7387 BLoop->getLoopPreheader() ==
A->getParent() &&
7389 A->getParent()->end()) &&
7396bool ScalarEvolution::isGuaranteedNotToBePoison(
const SCEV *
Op) {
7397 SCEVPoisonCollector PC(
true);
7399 return PC.MaybePoison.empty();
7402bool ScalarEvolution::isGuaranteedNotToCauseUB(
const SCEV *
Op) {
7408 return M && (!
isKnownNonZero(Op1) || !isGuaranteedNotToBePoison(Op1));
7412bool ScalarEvolution::isSCEVExprNeverPoison(
const Instruction *
I) {
7429 for (
const Use &
Op :
I->operands()) {
7435 auto *DefI = getDefiningScopeBound(SCEVOps);
7436 return isGuaranteedToTransferExecutionTo(DefI,
I);
7439bool ScalarEvolution::isAddRecNeverPoison(
const Instruction *
I,
const Loop *L) {
7441 if (isSCEVExprNeverPoison(
I))
7452 auto *ExitingBB =
L->getExitingBlock();
7456 SmallPtrSet<const Value *, 16> KnownPoison;
7465 while (!Worklist.
empty()) {
7468 for (
const Use &U :
Poison->uses()) {
7471 DT.dominates(PoisonUser->
getParent(), ExitingBB))
7475 if (KnownPoison.
insert(PoisonUser).second)
7483ScalarEvolution::LoopProperties
7484ScalarEvolution::getLoopProperties(
const Loop *L) {
7485 using LoopProperties = ScalarEvolution::LoopProperties;
7487 auto Itr = LoopPropertiesCache.find(L);
7488 if (Itr == LoopPropertiesCache.end()) {
7491 return !
SI->isSimple();
7501 return I->mayWriteToMemory();
7504 LoopProperties LP = {
true,
7507 for (
auto *BB :
L->getBlocks())
7508 for (
auto &
I : *BB) {
7510 LP.HasNoAbnormalExits =
false;
7511 if (HasSideEffects(&
I))
7512 LP.HasNoSideEffects =
false;
7513 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7517 auto InsertPair = LoopPropertiesCache.insert({
L, LP});
7518 assert(InsertPair.second &&
"We just checked!");
7519 Itr = InsertPair.first;
7532const SCEV *ScalarEvolution::createSCEVIter(
Value *V) {
7538 Stack.emplace_back(V,
true);
7539 Stack.emplace_back(V,
false);
7540 while (!Stack.empty()) {
7541 auto E = Stack.pop_back_val();
7542 Value *CurV = E.getPointer();
7548 const SCEV *CreatedSCEV =
nullptr;
7551 CreatedSCEV = createSCEV(CurV);
7556 CreatedSCEV = getOperandsToCreate(CurV,
Ops);
7560 insertValueToMap(CurV, CreatedSCEV);
7564 Stack.emplace_back(CurV,
true);
7566 Stack.emplace_back(
Op,
false);
7583 if (!DT.isReachableFromEntry(
I->getParent()))
7596 switch (BO->Opcode) {
7597 case Instruction::Add:
7598 case Instruction::Mul: {
7605 Ops.push_back(BO->
Op);
7609 Ops.push_back(BO->RHS);
7613 (BO->Opcode == Instruction::Add &&
7614 (NewBO->Opcode != Instruction::Add &&
7615 NewBO->Opcode != Instruction::Sub)) ||
7616 (BO->Opcode == Instruction::Mul &&
7617 NewBO->Opcode != Instruction::Mul)) {
7618 Ops.push_back(BO->LHS);
7623 if (BO->
Op && (BO->IsNSW || BO->IsNUW)) {
7626 Ops.push_back(BO->LHS);
7634 case Instruction::Sub:
7635 case Instruction::UDiv:
7636 case Instruction::URem:
7638 case Instruction::AShr:
7639 case Instruction::Shl:
7640 case Instruction::Xor:
7644 case Instruction::And:
7645 case Instruction::Or:
7649 case Instruction::LShr:
7656 Ops.push_back(BO->LHS);
7657 Ops.push_back(BO->RHS);
7661 switch (
U->getOpcode()) {
7662 case Instruction::Trunc:
7663 case Instruction::ZExt:
7664 case Instruction::SExt:
7665 case Instruction::PtrToInt:
7666 Ops.push_back(
U->getOperand(0));
7669 case Instruction::BitCast:
7671 Ops.push_back(
U->getOperand(0));
7676 case Instruction::SDiv:
7677 case Instruction::SRem:
7678 Ops.push_back(
U->getOperand(0));
7679 Ops.push_back(
U->getOperand(1));
7682 case Instruction::GetElementPtr:
7684 "GEP source element type must be sized");
7688 case Instruction::IntToPtr:
7691 case Instruction::PHI:
7695 case Instruction::Select: {
7697 auto CanSimplifyToUnknown = [
this,
U]() {
7715 if (CanSimplifyToUnknown())
7722 case Instruction::Call:
7723 case Instruction::Invoke:
7730 switch (
II->getIntrinsicID()) {
7731 case Intrinsic::abs:
7732 Ops.push_back(
II->getArgOperand(0));
7734 case Intrinsic::umax:
7735 case Intrinsic::umin:
7736 case Intrinsic::smax:
7737 case Intrinsic::smin:
7738 case Intrinsic::usub_sat:
7739 case Intrinsic::uadd_sat:
7740 Ops.push_back(
II->getArgOperand(0));
7741 Ops.push_back(
II->getArgOperand(1));
7743 case Intrinsic::start_loop_iterations:
7744 case Intrinsic::annotation:
7745 case Intrinsic::ptr_annotation:
7746 Ops.push_back(
II->getArgOperand(0));
7758const SCEV *ScalarEvolution::createSCEV(
Value *V) {
7767 if (!DT.isReachableFromEntry(
I->getParent()))
7782 switch (BO->Opcode) {
7783 case Instruction::Add: {
7809 if (BO->Opcode == Instruction::Sub)
7817 if (BO->Opcode == Instruction::Sub)
7824 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7825 NewBO->Opcode != Instruction::Sub)) {
7835 case Instruction::Mul: {
7856 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7865 case Instruction::UDiv:
7869 case Instruction::URem:
7873 case Instruction::Sub: {
7876 Flags = getNoWrapFlagsFromUB(BO->
Op);
7881 case Instruction::And:
7887 if (CI->isMinusOne())
7889 const APInt &
A = CI->getValue();
7895 unsigned LZ =
A.countl_zero();
7896 unsigned TZ =
A.countr_zero();
7901 APInt EffectiveMask =
7903 if ((LZ != 0 || TZ != 0) && !((~
A & ~Known.
Zero) & EffectiveMask)) {
7906 const SCEV *ShiftedLHS =
nullptr;
7910 unsigned MulZeros = OpC->getAPInt().countr_zero();
7911 unsigned GCD = std::min(MulZeros, TZ);
7916 auto *NewMul =
getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7938 case Instruction::Or:
7947 case Instruction::Xor:
7950 if (CI->isMinusOne())
7959 if (LBO->getOpcode() == Instruction::And &&
7960 LCI->getValue() == CI->getValue())
7961 if (
const SCEVZeroExtendExpr *Z =
7964 const SCEV *Z0 =
Z->getOperand();
7971 if (CI->getValue().isMask(Z0TySize))
7977 APInt Trunc = CI->getValue().trunc(Z0TySize);
7986 case Instruction::Shl:
8004 auto MulFlags = getNoWrapFlagsFromUB(BO->
Op);
8012 ConstantInt *
X = ConstantInt::get(
8018 case Instruction::AShr:
8040 const SCEV *AddTruncateExpr =
nullptr;
8041 ConstantInt *ShlAmtCI =
nullptr;
8042 const SCEV *AddConstant =
nullptr;
8044 if (L &&
L->getOpcode() == Instruction::Add) {
8052 if (LShift && LShift->
getOpcode() == Instruction::Shl) {
8059 APInt AddOperand = AddOperandCI->
getValue().
ashr(AShrAmt);
8067 }
else if (L &&
L->getOpcode() == Instruction::Shl) {
8072 const SCEV *ShlOp0SCEV =
getSCEV(
L->getOperand(0));
8077 if (AddTruncateExpr && ShlAmtCI) {
8089 const APInt &ShlAmt = ShlAmtCI->
getValue();
8093 const SCEV *CompositeExpr =
8095 if (
L->getOpcode() != Instruction::Shl)
8096 CompositeExpr =
getAddExpr(CompositeExpr, AddConstant);
8105 switch (
U->getOpcode()) {
8106 case Instruction::Trunc:
8109 case Instruction::ZExt:
8112 case Instruction::SExt:
8122 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
8123 Type *Ty =
U->getType();
8131 case Instruction::BitCast:
8137 case Instruction::PtrToInt: {
8140 Type *DstIntTy =
U->getType();
8148 case Instruction::IntToPtr:
8152 case Instruction::SDiv:
8159 case Instruction::SRem:
8166 case Instruction::GetElementPtr:
8169 case Instruction::PHI:
8172 case Instruction::Select:
8173 return createNodeForSelectOrPHI(U,
U->getOperand(0),
U->getOperand(1),
8176 case Instruction::Call:
8177 case Instruction::Invoke:
8182 switch (
II->getIntrinsicID()) {
8183 case Intrinsic::abs:
8187 case Intrinsic::umax:
8191 case Intrinsic::umin:
8195 case Intrinsic::smax:
8199 case Intrinsic::smin:
8203 case Intrinsic::usub_sat: {
8204 const SCEV *
X =
getSCEV(
II->getArgOperand(0));
8205 const SCEV *
Y =
getSCEV(
II->getArgOperand(1));
8209 case Intrinsic::uadd_sat: {
8210 const SCEV *
X =
getSCEV(
II->getArgOperand(0));
8211 const SCEV *
Y =
getSCEV(
II->getArgOperand(1));
8215 case Intrinsic::start_loop_iterations:
8216 case Intrinsic::annotation:
8217 case Intrinsic::ptr_annotation:
8221 case Intrinsic::vscale:
8241 auto *ExitCountType = ExitCount->
getType();
8242 assert(ExitCountType->isIntegerTy());
8244 1 + ExitCountType->getScalarSizeInBits());
8257 auto CanAddOneWithoutOverflow = [&]() {
8259 getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED);
8270 if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow())
8300 assert(ExitingBlock &&
"Must pass a non-null exiting block!");
8301 assert(L->isLoopExiting(ExitingBlock) &&
8302 "Exiting block must actually branch out of the loop!");
8311 const auto *MaxExitCount =
8319 L->getExitingBlocks(ExitingBlocks);
8321 std::optional<unsigned> Res;
8322 for (
auto *ExitingBB : ExitingBlocks) {
8326 Res = std::gcd(*Res, Multiple);
8328 return Res.value_or(1);
8332 const SCEV *ExitCount) {
8362 assert(ExitingBlock &&
"Must pass a non-null exiting block!");
8363 assert(L->isLoopExiting(ExitingBlock) &&
8364 "Exiting block must actually branch out of the loop!");
8374 return getBackedgeTakenInfo(L).getExact(ExitingBlock,
this);
8376 return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock,
this);
8378 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock,
this);
8388 return getPredicatedBackedgeTakenInfo(L).getExact(ExitingBlock,
this,
8391 return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock,
this,
8394 return getPredicatedBackedgeTakenInfo(L).getConstantMax(ExitingBlock,
this,
8402 return getPredicatedBackedgeTakenInfo(L).getExact(L,
this, &Preds);
8409 return getBackedgeTakenInfo(L).getExact(L,
this);
8411 return getBackedgeTakenInfo(L).getConstantMax(
this);
8413 return getBackedgeTakenInfo(L).getSymbolicMax(L,
this);
8420 return getPredicatedBackedgeTakenInfo(L).getSymbolicMax(L,
this, &Preds);
8425 return getPredicatedBackedgeTakenInfo(L).getConstantMax(
this, &Preds);
8429 return getBackedgeTakenInfo(L).isConstantMaxOrZero(
this);
8439 for (
PHINode &PN : Header->phis())
8440 if (Visited.
insert(&PN).second)
8444ScalarEvolution::BackedgeTakenInfo &
8445ScalarEvolution::getPredicatedBackedgeTakenInfo(
const Loop *L) {
8446 auto &BTI = getBackedgeTakenInfo(L);
8447 if (BTI.hasFullInfo())
8450 auto Pair = PredicatedBackedgeTakenCounts.try_emplace(L);
8453 return Pair.first->second;
8455 BackedgeTakenInfo
Result =
8456 computeBackedgeTakenCount(L,
true);
8458 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
8461ScalarEvolution::BackedgeTakenInfo &
8462ScalarEvolution::getBackedgeTakenInfo(
const Loop *L) {
8468 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator,
bool> Pair =
8469 BackedgeTakenCounts.try_emplace(L);
8471 return Pair.first->second;
8476 BackedgeTakenInfo
Result = computeBackedgeTakenCount(L);
8483 if (
Result.hasAnyInfo()) {
8486 auto LoopUsersIt = LoopUsers.find(L);
8487 if (LoopUsersIt != LoopUsers.end())
8489 forgetMemoizedResults(ToForget);
8492 for (PHINode &PN :
L->getHeader()->phis())
8493 ConstantEvolutionLoopExitValue.erase(&PN);
8501 return BackedgeTakenCounts.find(L)->second = std::move(Result);
8510 BackedgeTakenCounts.clear();
8511 PredicatedBackedgeTakenCounts.clear();
8512 BECountUsers.clear();
8513 LoopPropertiesCache.clear();
8514 ConstantEvolutionLoopExitValue.clear();
8515 ValueExprMap.clear();
8516 ValuesAtScopes.clear();
8517 ValuesAtScopesUsers.clear();
8518 LoopDispositions.clear();
8519 BlockDispositions.clear();
8520 UnsignedRanges.clear();
8521 SignedRanges.clear();
8522 ExprValueMap.clear();
8524 ConstantMultipleCache.clear();
8525 PredicatedSCEVRewrites.clear();
8527 FoldCacheUser.clear();
8529void ScalarEvolution::visitAndClearUsers(
8533 while (!Worklist.
empty()) {
8540 if (It != ValueExprMap.
end()) {
8541 eraseValueFromMap(It->first);
8544 ConstantEvolutionLoopExitValue.erase(PN);
8558 while (!LoopWorklist.
empty()) {
8562 forgetBackedgeTakenCounts(CurrL,
false);
8563 forgetBackedgeTakenCounts(CurrL,
true);
8566 for (
auto I = PredicatedSCEVRewrites.begin();
8567 I != PredicatedSCEVRewrites.end();) {
8568 std::pair<const SCEV *, const Loop *> Entry =
I->first;
8569 if (Entry.second == CurrL)
8570 PredicatedSCEVRewrites.erase(
I++);
8575 auto LoopUsersItr = LoopUsers.find(CurrL);
8576 if (LoopUsersItr != LoopUsers.end())
8581 visitAndClearUsers(Worklist, Visited, ToForget);
8583 LoopPropertiesCache.erase(CurrL);
8586 LoopWorklist.
append(CurrL->begin(), CurrL->end());
8588 forgetMemoizedResults(ToForget);
8605 visitAndClearUsers(Worklist, Visited, ToForget);
8607 forgetMemoizedResults(ToForget);
8619 struct InvalidationRootCollector {
8623 InvalidationRootCollector(
Loop *L) : L(L) {}
8625 bool follow(
const SCEV *S) {
8631 if (L->contains(AddRec->
getLoop()))
8636 bool isDone()
const {
return false; }
8639 InvalidationRootCollector
C(L);
8641 forgetMemoizedResults(
C.Roots);
8654 BlockDispositions.clear();
8655 LoopDispositions.clear();
8672 while (!Worklist.
empty()) {
8674 bool LoopDispoRemoved = LoopDispositions.erase(Curr);
8675 bool BlockDispoRemoved = BlockDispositions.erase(Curr);
8676 if (!LoopDispoRemoved && !BlockDispoRemoved)
8678 auto Users = SCEVUsers.find(Curr);
8679 if (
Users != SCEVUsers.end())
8692const SCEV *ScalarEvolution::BackedgeTakenInfo::getExact(
8696 if (!isComplete() || ExitNotTaken.
empty())
8707 for (
const auto &ENT : ExitNotTaken) {
8708 const SCEV *BECount = ENT.ExactNotTaken;
8711 "We should only have known counts for exiting blocks that dominate "
8714 Ops.push_back(BECount);
8719 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8720 "Predicate should be always true!");
8729const ScalarEvolution::ExitNotTakenInfo *
8730ScalarEvolution::BackedgeTakenInfo::getExitNotTaken(
8731 const BasicBlock *ExitingBlock,
8732 SmallVectorImpl<const SCEVPredicate *> *Predicates)
const {
8733 for (
const auto &ENT : ExitNotTaken)
8734 if (ENT.ExitingBlock == ExitingBlock) {
8735 if (ENT.hasAlwaysTruePredicate())
8737 else if (Predicates) {
8747const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8749 SmallVectorImpl<const SCEVPredicate *> *Predicates)
const {
8750 if (!getConstantMax())
8753 for (
const auto &ENT : ExitNotTaken)
8754 if (!ENT.hasAlwaysTruePredicate()) {
8762 "No point in having a non-constant max backedge taken count!");
8763 return getConstantMax();
8766const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8768 SmallVectorImpl<const SCEVPredicate *> *Predicates) {
8776 for (
const auto &ENT : ExitNotTaken) {
8777 const SCEV *ExitCount = ENT.SymbolicMaxNotTaken;
8780 "We should only have known counts for exiting blocks that "
8786 assert((Predicates || ENT.hasAlwaysTruePredicate()) &&
8787 "Predicate should be always true!");
8790 if (ExitCounts.
empty())
8799bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8801 auto PredicateNotAlwaysTrue = [](
const ExitNotTakenInfo &ENT) {
8802 return !ENT.hasAlwaysTruePredicate();
8804 return MaxOrZero && !
any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8820 this->ExactNotTaken = E = ConstantMaxNotTaken;
8821 this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken;
8826 "Exact is not allowed to be less precise than Constant Max");
8829 "Exact is not allowed to be less precise than Symbolic Max");
8832 "Symbolic Max is not allowed to be less precise than Constant Max");
8835 "No point in having a non-constant max backedge taken count!");
8837 for (
const auto PredList : PredLists)
8838 for (
const auto *
P : PredList) {
8846 "Backedge count should be int");
8849 "Max backedge count should be int");
8862ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8864 bool IsComplete,
const SCEV *ConstantMax,
bool MaxOrZero)
8865 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8866 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8868 ExitNotTaken.reserve(ExitCounts.
size());
8869 std::transform(ExitCounts.
begin(), ExitCounts.
end(),
8870 std::back_inserter(ExitNotTaken),
8871 [&](
const EdgeExitInfo &EEI) {
8872 BasicBlock *ExitBB = EEI.first;
8873 const ExitLimit &EL = EEI.second;
8874 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken,
8875 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken,
8880 "No point in having a non-constant max backedge taken count!");
8884ScalarEvolution::BackedgeTakenInfo
8885ScalarEvolution::computeBackedgeTakenCount(
const Loop *L,
8886 bool AllowPredicates) {
8888 L->getExitingBlocks(ExitingBlocks);
8890 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8893 bool CouldComputeBECount =
true;
8895 const SCEV *MustExitMaxBECount =
nullptr;
8896 const SCEV *MayExitMaxBECount =
nullptr;
8897 bool MustExitMaxOrZero =
false;
8898 bool IsOnlyExit = ExitingBlocks.
size() == 1;
8910 if (ExitIfTrue == CI->
isZero())
8914 ExitLimit EL = computeExitLimit(L, ExitBB, IsOnlyExit, AllowPredicates);
8916 assert((AllowPredicates || EL.Predicates.empty()) &&
8917 "Predicated exit limit when predicates are not allowed!");
8922 ++NumExitCountsComputed;
8926 CouldComputeBECount =
false;
8933 "Exact is known but symbolic isn't?");
8934 ++NumExitCountsNotComputed;
8949 DT.dominates(ExitBB, Latch)) {
8950 if (!MustExitMaxBECount) {
8951 MustExitMaxBECount = EL.ConstantMaxNotTaken;
8952 MustExitMaxOrZero = EL.MaxOrZero;
8955 EL.ConstantMaxNotTaken);
8959 MayExitMaxBECount = EL.ConstantMaxNotTaken;
8962 EL.ConstantMaxNotTaken);
8966 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8970 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8976 for (
const auto &Pair : ExitCounts) {
8978 BECountUsers[Pair.second.ExactNotTaken].insert({
L, AllowPredicates});
8980 BECountUsers[Pair.second.SymbolicMaxNotTaken].insert(
8981 {
L, AllowPredicates});
8983 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8984 MaxBECount, MaxOrZero);
8987ScalarEvolution::ExitLimit
8988ScalarEvolution::computeExitLimit(
const Loop *L, BasicBlock *ExitingBlock,
8989 bool IsOnlyExit,
bool AllowPredicates) {
8990 assert(
L->contains(ExitingBlock) &&
"Exit count for non-loop block?");
8994 if (!Latch || !DT.dominates(ExitingBlock, Latch))
9002 "It should have one successor in loop and one exit block!");
9013 if (!
L->contains(SBB)) {
9018 assert(Exit &&
"Exiting block must have at least one exit");
9019 return computeExitLimitFromSingleExitSwitch(
9020 L, SI, Exit, IsOnlyExit);
9027 const Loop *L,
Value *ExitCond,
bool ExitIfTrue,
bool ControlsOnlyExit,
9028 bool AllowPredicates) {
9029 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
9030 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
9031 ControlsOnlyExit, AllowPredicates);
9034std::optional<ScalarEvolution::ExitLimit>
9035ScalarEvolution::ExitLimitCache::find(
const Loop *L,
Value *ExitCond,
9036 bool ExitIfTrue,
bool ControlsOnlyExit,
9037 bool AllowPredicates) {
9039 (void)this->ExitIfTrue;
9040 (void)this->AllowPredicates;
9042 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
9043 this->AllowPredicates == AllowPredicates &&
9044 "Variance in assumed invariant key components!");
9045 auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit});
9046 if (Itr == TripCountMap.end())
9047 return std::nullopt;
9051void ScalarEvolution::ExitLimitCache::insert(
const Loop *L,
Value *ExitCond,
9053 bool ControlsOnlyExit,
9054 bool AllowPredicates,
9056 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
9057 this->AllowPredicates == AllowPredicates &&
9058 "Variance in assumed invariant key components!");
9060 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL});
9061 assert(InsertResult.second &&
"Expected successful insertion!");
9066ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
9067 ExitLimitCacheTy &Cache,
const Loop *L,
Value *ExitCond,
bool ExitIfTrue,
9068 bool ControlsOnlyExit,
bool AllowPredicates) {
9070 if (
auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit,
9074 ExitLimit EL = computeExitLimitFromCondImpl(
9075 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates);
9076 Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL);
9080ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
9081 ExitLimitCacheTy &Cache,
const Loop *L,
Value *ExitCond,
bool ExitIfTrue,
9082 bool ControlsOnlyExit,
bool AllowPredicates) {
9084 if (
auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
9085 Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates))
9086 return *LimitFromBinOp;
9092 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit);
9093 if (EL.hasFullInfo() || !AllowPredicates)
9097 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue,
9117 const WithOverflowInst *WO;
9132 auto EL = computeExitLimitFromICmp(L, Pred,
LHS,
getConstant(NewRHSC),
9133 ControlsOnlyExit, AllowPredicates);
9134 if (EL.hasAnyInfo())
9139 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9142std::optional<ScalarEvolution::ExitLimit>
9143ScalarEvolution::computeExitLimitFromCondFromBinOp(
9144 ExitLimitCacheTy &Cache,
const Loop *L,
Value *ExitCond,
bool ExitIfTrue,
9145 bool ControlsOnlyExit,
bool AllowPredicates) {
9154 return std::nullopt;
9159 bool EitherMayExit = IsAnd ^ ExitIfTrue;
9160 ExitLimit EL0 = computeExitLimitFromCondCached(
9161 Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
9163 ExitLimit EL1 = computeExitLimitFromCondCached(
9164 Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
9168 const Constant *NeutralElement = ConstantInt::get(ExitCond->
getType(), IsAnd);
9170 return Op1 == NeutralElement ? EL0 : EL1;
9172 return Op0 == NeutralElement ? EL1 : EL0;
9177 if (EitherMayExit) {
9187 ConstantMaxBECount = EL1.ConstantMaxNotTaken;
9189 ConstantMaxBECount = EL0.ConstantMaxNotTaken;
9192 EL1.ConstantMaxNotTaken);
9194 SymbolicMaxBECount = EL1.SymbolicMaxNotTaken;
9196 SymbolicMaxBECount = EL0.SymbolicMaxNotTaken;
9199 EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin);
9203 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
9204 BECount = EL0.ExactNotTaken;
9217 SymbolicMaxBECount =
9219 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount,
false,
9223ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9224 const Loop *L, ICmpInst *ExitCond,
bool ExitIfTrue,
bool ControlsOnlyExit,
9225 bool AllowPredicates) {
9237 ExitLimit EL = computeExitLimitFromICmp(L, Pred,
LHS,
RHS, ControlsOnlyExit,
9239 if (EL.hasAnyInfo())
9242 auto *ExhaustiveCount =
9243 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
9246 return ExhaustiveCount;
9248 return computeShiftCompareExitLimit(ExitCond->
getOperand(0),
9251ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
9252 const Loop *L, CmpPredicate Pred,
const SCEV *
LHS,
const SCEV *
RHS,
9253 bool ControlsOnlyExit,
bool AllowPredicates) {
9278 ConstantRange CompRange =
9294 auto *InnerLHS =
LHS;
9296 InnerLHS = ZExt->getOperand();
9343 if (EL.hasAnyInfo())
9360 if (EL.hasAnyInfo())
return EL;
9392 ExitLimit EL = howManyLessThans(
LHS,
RHS, L, IsSigned, ControlsOnlyExit,
9394 if (EL.hasAnyInfo())
9410 ExitLimit EL = howManyGreaterThans(
LHS,
RHS, L, IsSigned, ControlsOnlyExit,
9412 if (EL.hasAnyInfo())
9423ScalarEvolution::ExitLimit
9424ScalarEvolution::computeExitLimitFromSingleExitSwitch(
const Loop *L,
9426 BasicBlock *ExitingBlock,
9427 bool ControlsOnlyExit) {
9428 assert(!
L->contains(ExitingBlock) &&
"Not an exiting block!");
9431 if (
Switch->getDefaultDest() == ExitingBlock)
9435 "Default case must not exit the loop!");
9441 if (EL.hasAnyInfo())
9453 "Evaluation of SCEV at constant didn't fold correctly?");
9457ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
9467 const BasicBlock *Predecessor =
L->getLoopPredecessor();
9473 auto MatchPositiveShift =
9476 using namespace PatternMatch;
9478 ConstantInt *ShiftAmt;
9480 OutOpCode = Instruction::LShr;
9482 OutOpCode = Instruction::AShr;
9484 OutOpCode = Instruction::Shl;
9499 auto MatchShiftRecurrence =
9501 std::optional<Instruction::BinaryOps> PostShiftOpCode;
9516 if (MatchPositiveShift(
LHS, V, OpC)) {
9517 PostShiftOpCode = OpC;
9523 if (!PNOut || PNOut->getParent() !=
L->getHeader())
9526 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
9532 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
9539 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
9544 if (!MatchShiftRecurrence(
LHS, PN, OpCode))
9556 ConstantInt *StableValue =
nullptr;
9561 case Instruction::AShr: {
9569 StableValue = ConstantInt::get(Ty, 0);
9571 StableValue = ConstantInt::get(Ty, -1,
true);
9577 case Instruction::LShr:
9578 case Instruction::Shl:
9588 "Otherwise cannot be an operand to a branch instruction");
9590 if (
Result->isZeroValue()) {
9592 const SCEV *UpperBound =
9609 if (
const Function *
F = CI->getCalledFunction())
9618 if (!L->contains(
I))
return false;
9623 return L->getHeader() ==
I->getParent();
9699 if (!
I)
return nullptr;
9712 std::vector<Constant*>
Operands(
I->getNumOperands());
9714 for (
unsigned i = 0, e =
I->getNumOperands(); i != e; ++i) {
9723 if (!
C)
return nullptr;
9745 if (IncomingVal != CurrentVal) {
9748 IncomingVal = CurrentVal;
9760ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9763 auto [
I,
Inserted] = ConstantEvolutionLoopExitValue.try_emplace(PN);
9772 DenseMap<Instruction *, Constant *> CurrentIterVals;
9774 assert(PN->
getParent() == Header &&
"Can't evaluate PHI not in loop header!");
9780 for (PHINode &
PHI : Header->phis()) {
9782 CurrentIterVals[&
PHI] = StartCST;
9784 if (!CurrentIterVals.
count(PN))
9785 return RetVal =
nullptr;
9791 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9794 unsigned IterationNum = 0;
9796 for (; ; ++IterationNum) {
9797 if (IterationNum == NumIterations)
9798 return RetVal = CurrentIterVals[PN];
9802 DenseMap<Instruction *, Constant *> NextIterVals;
9807 NextIterVals[PN] = NextPHI;
9809 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9815 for (
const auto &
I : CurrentIterVals) {
9817 if (!
PHI ||
PHI == PN ||
PHI->getParent() != Header)
continue;
9822 for (
const auto &
I : PHIsToCompute) {
9823 PHINode *
PHI =
I.first;
9826 Value *BEValue =
PHI->getIncomingValueForBlock(Latch);
9829 if (NextPHI !=
I.second)
9830 StoppedEvolving =
false;
9835 if (StoppedEvolving)
9836 return RetVal = CurrentIterVals[PN];
9838 CurrentIterVals.swap(NextIterVals);
9842const SCEV *ScalarEvolution::computeExitCountExhaustively(
const Loop *L,
9852 DenseMap<Instruction *, Constant *> CurrentIterVals;
9854 assert(PN->
getParent() == Header &&
"Can't evaluate PHI not in loop header!");
9857 assert(Latch &&
"Should follow from NumIncomingValues == 2!");
9859 for (PHINode &
PHI : Header->phis()) {
9861 CurrentIterVals[&
PHI] = StartCST;
9863 if (!CurrentIterVals.
count(PN))
9871 for (
unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9878 if (CondVal->getValue() == uint64_t(ExitWhen)) {
9879 ++NumBruteForceTripCountsComputed;
9884 DenseMap<Instruction *, Constant *> NextIterVals;
9890 for (
const auto &
I : CurrentIterVals) {
9892 if (!
PHI ||
PHI->getParent() != Header)
continue;
9895 for (PHINode *
PHI : PHIsToCompute) {
9897 if (NextPHI)
continue;
9899 Value *BEValue =
PHI->getIncomingValueForBlock(Latch);
9902 CurrentIterVals.
swap(NextIterVals);
9913 for (
auto &LS : Values)
9915 return LS.second ? LS.second : V;
9920 const SCEV *
C = computeSCEVAtScope(V, L);
9921 for (
auto &LS :
reverse(ValuesAtScopes[V]))
9922 if (LS.first == L) {
9925 ValuesAtScopesUsers[
C].push_back({L, V});
9936 switch (V->getSCEVType()) {
9969 assert(!
C->getType()->isPointerTy() &&
9970 "Can only have one pointer, and it must be last");
9997ScalarEvolution::getWithOperands(
const SCEV *S,
9998 SmallVectorImpl<const SCEV *> &NewOps) {
10032const SCEV *ScalarEvolution::computeSCEVAtScope(
const SCEV *V,
const Loop *L) {
10033 switch (
V->getSCEVType()) {
10044 for (
unsigned i = 0, e = AddRec->
getNumOperands(); i != e; ++i) {
10055 for (++i; i !=
e; ++i)
10099 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
10101 if (OpAtScope !=
Ops[i]) {
10109 for (++i; i !=
e; ++i) {
10114 return getWithOperands(V, NewOps);
10129 const Loop *CurrLoop = this->LI[
I->getParent()];
10140 if (BackedgeTakenCount->
isZero()) {
10141 Value *InitValue =
nullptr;
10142 bool MultipleInitValues =
false;
10148 MultipleInitValues =
true;
10153 if (!MultipleInitValues && InitValue)
10162 unsigned InLoopPred =
10173 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop);
10189 bool MadeImprovement =
false;
10204 MadeImprovement |= OrigV != OpV;
10209 assert(
C->getType() ==
Op->getType() &&
"Type mismatch");
10214 if (!MadeImprovement)
10235const SCEV *ScalarEvolution::stripInjectiveFunctions(
const SCEV *S)
const {
10237 return stripInjectiveFunctions(ZExt->getOperand());
10239 return stripInjectiveFunctions(SExt->getOperand());
10257 assert(
A != 0 &&
"A must be non-zero.");
10273 if (MinTZ < Mult2 && L->getLoopPredecessor())
10275 if (MinTZ < Mult2) {
10298 APInt AD =
A.lshr(Mult2).trunc(BW - Mult2);
10318static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
10324 LLVM_DEBUG(
dbgs() << __func__ <<
": analyzing quadratic addrec: "
10325 << *AddRec <<
'\n');
10328 if (!LC || !MC || !
NC) {
10329 LLVM_DEBUG(
dbgs() << __func__ <<
": coefficients are not constant\n");
10330 return std::nullopt;
10336 assert(!
N.isZero() &&
"This is not a quadratic addrec");
10344 N =
N.sext(NewWidth);
10345 M = M.sext(NewWidth);
10346 L = L.sext(NewWidth);
10363 <<
"x + " <<
C <<
", coeff bw: " << NewWidth
10364 <<
", multiplied by " <<
T <<
'\n');
10373 std::optional<APInt>
Y) {
10375 unsigned W = std::max(
X->getBitWidth(),
Y->getBitWidth());
10378 return XW.
slt(YW) ? *
X : *
Y;
10381 return std::nullopt;
10382 return X ? *
X : *
Y;
10399 return std::nullopt;
10400 unsigned W =
X->getBitWidth();
10420static std::optional<APInt>
10426 return std::nullopt;
10429 LLVM_DEBUG(
dbgs() << __func__ <<
": solving for unsigned overflow\n");
10430 std::optional<APInt>
X =
10433 return std::nullopt;
10438 return std::nullopt;
10453static std::optional<APInt>
10457 "Starting value of addrec should be 0");
10458 LLVM_DEBUG(
dbgs() << __func__ <<
": solving boundary crossing for range "
10459 <<
Range <<
", addrec " << *AddRec <<
'\n');
10463 "Addrec's initial value should be in range");
10469 return std::nullopt;
10479 auto SolveForBoundary =
10480 [&](
APInt Bound) -> std::pair<std::optional<APInt>,
bool> {
10483 LLVM_DEBUG(
dbgs() <<
"SolveQuadraticAddRecRange: checking boundary "
10484 << Bound <<
" (before multiplying by " << M <<
")\n");
10487 std::optional<APInt> SO;
10490 "signed overflow\n");
10494 "unsigned overflow\n");
10495 std::optional<APInt> UO =
10498 auto LeavesRange = [&] (
const APInt &
X) {
10515 return {std::nullopt,
false};
10520 if (LeavesRange(*Min))
10521 return { Min,
true };
10522 std::optional<APInt> Max = Min == SO ? UO : SO;
10523 if (LeavesRange(*Max))
10524 return { Max,
true };
10527 return {std::nullopt,
true};
10534 auto SL = SolveForBoundary(
Lower);
10535 auto SU = SolveForBoundary(
Upper);
10538 if (!SL.second || !SU.second)
10539 return std::nullopt;
10582ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(
const SCEV *V,
10584 bool ControlsOnlyExit,
10585 bool AllowPredicates) {
10596 if (
C->getValue()->isZero())
return C;
10600 const SCEVAddRecExpr *AddRec =
10603 if (!AddRec && AllowPredicates)
10609 if (!AddRec || AddRec->
getLoop() != L)
10620 return ExitLimit(R, R, R,
false, Predicates);
10678 const SCEV *DistancePlusOne =
getAddExpr(Distance, One);
10704 const SCEV *
Exact =
10712 const SCEV *SymbolicMax =
10714 return ExitLimit(
Exact, ConstantMax, SymbolicMax,
false, Predicates);
10723 AllowPredicates ? &Predicates :
nullptr, *
this, L);
10731 return ExitLimit(
E, M, S,
false, Predicates);
10734ScalarEvolution::ExitLimit
10735ScalarEvolution::howFarToNonZero(
const SCEV *V,
const Loop *L) {
10743 if (!
C->getValue()->isZero())
10753std::pair<const BasicBlock *, const BasicBlock *>
10754ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(
const BasicBlock *BB)
10765 if (
const Loop *L = LI.getLoopFor(BB))
10766 return {
L->getLoopPredecessor(),
L->getHeader()};
10768 return {
nullptr, BB};
10777 if (
A ==
B)
return true;
10792 if (ComputesEqualValues(AI, BI))
10801 if (!
Add ||
Add->getNumOperands() != 2)
10804 ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) {
10805 LHS =
Add->getOperand(1);
10806 RHS = ME->getOperand(1);
10810 ME && ME->getNumOperands() == 2 && ME->getOperand(0)->isAllOnesValue()) {
10811 LHS =
Add->getOperand(0);
10812 RHS = ME->getOperand(1);
10823 auto TrivialCase = [&](
bool TriviallyTrue) {
10832 const SCEV *NewLHS, *NewRHS;
10856 return TrivialCase(
false);
10857 return TrivialCase(
true);
10880 const APInt &
RA = RC->getAPInt();
10882 bool SimplifiedByConstantRange =
false;
10887 return TrivialCase(
true);
10889 return TrivialCase(
false);
10898 Changed = SimplifiedByConstantRange =
true;
10902 if (!SimplifiedByConstantRange) {
10919 assert(!
RA.isMinValue() &&
"Should have been caught earlier!");
10925 assert(!
RA.isMaxValue() &&
"Should have been caught earlier!");
10931 assert(!
RA.isMinSignedValue() &&
"Should have been caught earlier!");
10937 assert(!
RA.isMaxSignedValue() &&
"Should have been caught earlier!");
10949 return TrivialCase(
true);
10951 return TrivialCase(
false);
11056 auto NonRecursive = [
this, OrNegative](
const SCEV *S) {
11058 return C->getAPInt().isPowerOf2() ||
11059 (OrNegative &&
C->getAPInt().isNegatedPowerOf2());
11062 return isa<SCEVVScale>(S) && F.hasFnAttribute(Attribute::VScaleRange);
11065 if (NonRecursive(S))
11091 APInt C = Cst->getAPInt();
11092 return C.urem(M) == 0;
11100 const SCEV *SmodM =
11115 for (
auto *
A : Assumptions)
11116 if (
A->implies(
P, *
this))
11124std::pair<const SCEV *, const SCEV *>
11127 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *
this);
11129 return { Start, Start };
11131 const SCEV *
PostInc = SCEVPostIncRewriter::rewrite(S, L, *
this);
11140 getUsedLoops(LHS, LoopsUsed);
11141 getUsedLoops(RHS, LoopsUsed);
11143 if (LoopsUsed.
empty())
11148 for (
const auto *L1 : LoopsUsed)
11149 for (
const auto *L2 : LoopsUsed)
11150 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
11151 DT.dominates(L2->getHeader(), L1->getHeader())) &&
11152 "Domination relationship is not a linear order");
11182 SplitRHS.second) &&
11194 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
11198 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
11208 return std::nullopt;
11223 if (KnownWithoutContext)
11224 return KnownWithoutContext;
11231 return std::nullopt;
11237 const Loop *L = LHS->getLoop();
11242std::optional<ScalarEvolution::MonotonicPredicateType>
11245 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
11251 auto ResultSwapped =
11254 assert(*ResultSwapped != *Result &&
11255 "monotonicity should flip as we flip the predicate");
11262std::optional<ScalarEvolution::MonotonicPredicateType>
11263ScalarEvolution::getMonotonicPredicateTypeImpl(
const SCEVAddRecExpr *LHS,
11277 return std::nullopt;
11281 "Should be greater or less!");
11285 if (!LHS->hasNoUnsignedWrap())
11286 return std::nullopt;
11290 "Relational predicate is either signed or unsigned!");
11291 if (!
LHS->hasNoSignedWrap())
11292 return std::nullopt;
11294 const SCEV *Step =
LHS->getStepRecurrence(*
this);
11302 return std::nullopt;
11305std::optional<ScalarEvolution::LoopInvariantPredicate>
11312 return std::nullopt;
11319 if (!ArLHS || ArLHS->
getLoop() != L)
11320 return std::nullopt;
11324 return std::nullopt;
11350 return std::nullopt;
11387 return std::nullopt;
11390std::optional<ScalarEvolution::LoopInvariantPredicate>
11395 Pred, LHS, RHS, L, CtxI, MaxIter))
11403 for (
auto *
Op :
UMin->operands())
11405 Pred, LHS, RHS, L, CtxI,
Op))
11407 return std::nullopt;
11410std::optional<ScalarEvolution::LoopInvariantPredicate>
11425 return std::nullopt;
11432 if (!AR || AR->
getLoop() != L)
11433 return std::nullopt;
11437 return std::nullopt;
11443 if (Step != One && Step != MinusOne)
11444 return std::nullopt;
11450 return std::nullopt;
11456 return std::nullopt;
11464 if (Step == MinusOne)
11468 return std::nullopt;
11474bool ScalarEvolution::isKnownPredicateViaConstantRanges(
CmpPredicate Pred,
11480 auto CheckRange = [&](
bool IsSigned) {
11483 return RangeLHS.
icmp(Pred, RangeRHS);
11492 if (CheckRange(
true) || CheckRange(
false))
11501bool ScalarEvolution::isKnownPredicateViaNoOverflow(CmpPredicate Pred,
11508 auto MatchBinaryAddToConst = [
this](
const SCEV *
X,
const SCEV *
Y,
11509 APInt &OutC1, APInt &OutC2,
11511 const SCEV *XNonConstOp, *XConstOp;
11512 const SCEV *YNonConstOp, *YConstOp;
11516 if (!splitBinaryAdd(
X, XConstOp, XNonConstOp, XFlagsPresent)) {
11519 XFlagsPresent = ExpectedFlags;
11524 if (!splitBinaryAdd(
Y, YConstOp, YNonConstOp, YFlagsPresent)) {
11527 YFlagsPresent = ExpectedFlags;
11530 if (YNonConstOp != XNonConstOp)
11538 if ((YFlagsPresent & ExpectedFlags) != ExpectedFlags)
11541 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) {
11601bool ScalarEvolution::isKnownPredicateViaSplitting(CmpPredicate Pred,
11623bool ScalarEvolution::isImpliedViaGuard(
const BasicBlock *BB, CmpPredicate Pred,
11624 const SCEV *
LHS,
const SCEV *
RHS) {
11629 return any_of(*BB, [&](
const Instruction &
I) {
11630 using namespace llvm::PatternMatch;
11635 isImpliedCond(Pred,
LHS,
RHS, Condition,
false);
11649 if (!L || !DT.isReachableFromEntry(L->getHeader()))
11654 "This cannot be done on broken IR!");
11657 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11666 if (LoopContinuePredicate && LoopContinuePredicate->
isConditional() &&
11667 isImpliedCond(Pred, LHS, RHS,
11669 LoopContinuePredicate->
getSuccessor(0) != L->getHeader()))
11674 if (WalkingBEDominatingConds)
11680 const auto &BETakenInfo = getBackedgeTakenInfo(L);
11681 const SCEV *LatchBECount = BETakenInfo.getExact(Latch,
this);
11688 const SCEV *LoopCounter =
11696 for (
auto &AssumeVH : AC.assumptions()) {
11703 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0),
false))
11707 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
11710 for (
DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
11711 DTN != HeaderDTN; DTN = DTN->getIDom()) {
11712 assert(DTN &&
"should reach the loop header before reaching the root!");
11715 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
11723 if (!ContinuePredicate || !ContinuePredicate->
isConditional())
11737 assert(DT.dominates(DominatingEdge, Latch) &&
"should be!");
11739 if (isImpliedCond(Pred, LHS, RHS, Condition,
11753 if (!DT.isReachableFromEntry(BB))
11757 "This cannot be done on broken IR!");
11765 const bool ProvingStrictComparison =
11767 bool ProvedNonStrictComparison =
false;
11768 bool ProvedNonEquality =
false;
11771 if (!ProvedNonStrictComparison)
11772 ProvedNonStrictComparison = Fn(NonStrictPredicate);
11773 if (!ProvedNonEquality)
11775 if (ProvedNonStrictComparison && ProvedNonEquality)
11780 if (ProvingStrictComparison) {
11782 return isKnownViaNonRecursiveReasoning(
P, LHS, RHS);
11784 if (SplitAndProve(ProofFn))
11789 auto ProveViaCond = [&](
const Value *Condition,
bool Inverse) {
11791 if (isImpliedCond(Pred, LHS, RHS, Condition,
Inverse, CtxI))
11793 if (ProvingStrictComparison) {
11795 return isImpliedCond(
P, LHS, RHS, Condition,
Inverse, CtxI);
11797 if (SplitAndProve(ProofFn))
11806 const Loop *ContainingLoop = LI.getLoopFor(BB);
11808 if (ContainingLoop && ContainingLoop->
getHeader() == BB)
11812 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11813 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
11825 for (
auto &AssumeVH : AC.assumptions()) {
11829 if (!DT.dominates(CI, BB))
11832 if (ProveViaCond(CI->getArgOperand(0),
false))
11838 F.getParent(), Intrinsic::experimental_guard);
11840 for (
const auto *GU : GuardDecl->users())
11842 if (Guard->getFunction() == BB->
getParent() && DT.dominates(Guard, BB))
11843 if (ProveViaCond(Guard->getArgOperand(0),
false))
11858 "LHS is not available at Loop Entry");
11860 "RHS is not available at Loop Entry");
11862 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11873 if (FoundCondValue ==
11877 if (!PendingLoopPredicates.insert(FoundCondValue).second)
11881 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11884 const Value *Op0, *Op1;
11887 return isImpliedCond(Pred,
LHS,
RHS, Op0,
Inverse, CtxI) ||
11891 return isImpliedCond(Pred,
LHS,
RHS, Op0, Inverse, CtxI) ||
11892 isImpliedCond(Pred,
LHS,
RHS, Op1, Inverse, CtxI);
11896 if (!ICI)
return false;
11900 CmpPredicate FoundPred;
11909 return isImpliedCond(Pred,
LHS,
RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11912bool ScalarEvolution::isImpliedCond(CmpPredicate Pred,
const SCEV *
LHS,
11913 const SCEV *
RHS, CmpPredicate FoundPred,
11914 const SCEV *FoundLHS,
const SCEV *FoundRHS,
11915 const Instruction *CtxI) {
11925 auto *WideType = FoundLHS->
getType();
11937 TruncFoundLHS, TruncFoundRHS, CtxI))
11963 return isImpliedCondBalancedTypes(Pred,
LHS,
RHS, FoundPred, FoundLHS,
11967bool ScalarEvolution::isImpliedCondBalancedTypes(
11968 CmpPredicate Pred,
const SCEV *
LHS,
const SCEV *
RHS, CmpPredicate FoundPred,
11969 const SCEV *FoundLHS,
const SCEV *FoundRHS,
const Instruction *CtxI) {
11972 "Types should be balanced!");
11979 if (FoundLHS == FoundRHS)
11983 if (
LHS == FoundRHS ||
RHS == FoundLHS) {
11995 return isImpliedCondOperands(*
P,
LHS,
RHS, FoundLHS, FoundRHS, CtxI);
12012 LHS, FoundLHS, FoundRHS, CtxI);
12014 return isImpliedCondOperands(*
P,
LHS,
RHS, FoundRHS, FoundLHS, CtxI);
12036 assert(P1 != P2 &&
"Handled earlier!");
12040 if (IsSignFlippedPredicate(Pred, FoundPred)) {
12045 return isImpliedCondOperands(Pred,
LHS,
RHS, FoundLHS, FoundRHS, CtxI);
12048 CmpPredicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
12049 const SCEV *CanonicalLHS =
LHS, *CanonicalRHS =
RHS,
12050 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
12055 std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
12066 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
12067 CanonicalRHS, CanonicalFoundLHS,
12068 CanonicalFoundRHS);
12073 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
12074 CanonicalRHS, CanonicalFoundLHS,
12075 CanonicalFoundRHS);
12082 const SCEVConstant *
C =
nullptr;
12083 const SCEV *
V =
nullptr;
12101 if (Min ==
C->getAPInt()) {
12106 APInt SharperMin = Min + 1;
12109 case ICmpInst::ICMP_SGE:
12110 case ICmpInst::ICMP_UGE:
12113 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
12118 case ICmpInst::ICMP_SGT:
12119 case ICmpInst::ICMP_UGT:
12129 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
12134 case ICmpInst::ICMP_SLE:
12135 case ICmpInst::ICMP_ULE:
12136 if (isImpliedCondOperands(ICmpInst::getSwappedCmpPredicate(Pred), RHS,
12137 LHS, V, getConstant(SharperMin), CtxI))
12141 case ICmpInst::ICMP_SLT:
12142 case ICmpInst::ICMP_ULT:
12143 if (isImpliedCondOperands(ICmpInst::getSwappedCmpPredicate(Pred), RHS,
12144 LHS, V, getConstant(Min), CtxI))
12158 if (isImpliedCondOperands(Pred,
LHS,
RHS, FoundLHS, FoundRHS, CtxI))
12162 if (isImpliedCondOperands(FoundPred,
LHS,
RHS, FoundLHS, FoundRHS, CtxI))
12165 if (isImpliedCondOperandsViaRanges(Pred,
LHS,
RHS, FoundPred, FoundLHS, FoundRHS))
12172bool ScalarEvolution::splitBinaryAdd(
const SCEV *Expr,
12173 const SCEV *&L,
const SCEV *&R,
12176 if (!AE || AE->getNumOperands() != 2)
12179 L = AE->getOperand(0);
12180 R = AE->getOperand(1);
12181 Flags = AE->getNoWrapFlags();
12185std::optional<APInt>
12192 APInt DiffMul(BW, 1);
12195 for (
unsigned I = 0;
I < 8; ++
I) {
12204 if (LAR->getLoop() != MAR->getLoop())
12205 return std::nullopt;
12209 if (!LAR->isAffine() || !MAR->isAffine())
12210 return std::nullopt;
12212 if (LAR->getStepRecurrence(*
this) != MAR->getStepRecurrence(*
this))
12213 return std::nullopt;
12215 Less = LAR->getStart();
12216 More = MAR->getStart();
12221 auto MatchConstMul =
12222 [](
const SCEV *S) -> std::optional<std::pair<const SCEV *, APInt>> {
12224 if (!M || M->getNumOperands() != 2 ||
12226 return std::nullopt;
12230 if (
auto MatchedMore = MatchConstMul(More)) {
12231 if (
auto MatchedLess = MatchConstMul(
Less)) {
12232 if (MatchedMore->second == MatchedLess->second) {
12233 More = MatchedMore->first;
12234 Less = MatchedLess->first;
12235 DiffMul *= MatchedMore->second;
12246 Diff +=
C->getAPInt() * DiffMul;
12249 Diff -=
C->getAPInt() * DiffMul;
12252 Multiplicity[S] +=
Mul;
12254 auto Decompose = [&](
const SCEV *S,
int Mul) {
12261 Decompose(More, 1);
12262 Decompose(
Less, -1);
12266 const SCEV *NewMore =
nullptr, *NewLess =
nullptr;
12267 for (
const auto &[S,
Mul] : Multiplicity) {
12272 return std::nullopt;
12274 }
else if (
Mul == -1) {
12276 return std::nullopt;
12279 return std::nullopt;
12283 if (NewMore == More || NewLess ==
Less)
12284 return std::nullopt;
12290 if (!More && !
Less)
12294 if (!More || !
Less)
12295 return std::nullopt;
12299 return std::nullopt;
12302bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
12326 if (!L->contains(ContextBB) || !DT.
dominates(ContextBB, L->getLoopLatch()))
12337 if (!L->contains(ContextBB) || !DT.
dominates(ContextBB, L->getLoopLatch()))
12347bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred,
12350 const SCEV *FoundLHS,
12351 const SCEV *FoundRHS) {
12360 if (!AddRecFoundLHS)
12367 const Loop *
L = AddRecFoundLHS->getLoop();
12368 if (L != AddRecLHS->getLoop())
12407 if (!RDiff || *LDiff != *RDiff)
12410 if (LDiff->isMinValue())
12413 APInt FoundRHSLimit;
12416 FoundRHSLimit = -(*RDiff);
12428bool ScalarEvolution::isImpliedViaMerge(CmpPredicate Pred,
const SCEV *
LHS,
12429 const SCEV *
RHS,
const SCEV *FoundLHS,
12430 const SCEV *FoundRHS,
unsigned Depth) {
12431 const PHINode *LPhi =
nullptr, *RPhi =
nullptr;
12435 bool Erased = PendingMerges.erase(LPhi);
12436 assert(Erased &&
"Failed to erase LPhi!");
12440 bool Erased = PendingMerges.erase(RPhi);
12441 assert(Erased &&
"Failed to erase RPhi!");
12449 if (!PendingMerges.insert(Phi).second)
12463 if (!PendingMerges.insert(Phi).second)
12469 if (!LPhi && !RPhi)
12480 assert(LPhi &&
"LPhi should definitely be a SCEVUnknown Phi!");
12484 auto ProvedEasily = [&](
const SCEV *
S1,
const SCEV *S2) {
12485 return isKnownViaNonRecursiveReasoning(Pred,
S1, S2) ||
12486 isImpliedCondOperandsViaRanges(Pred,
S1, S2, Pred, FoundLHS, FoundRHS) ||
12487 isImpliedViaOperations(Pred,
S1, S2, FoundLHS, FoundRHS,
Depth);
12490 if (RPhi && RPhi->getParent() == LBB) {
12497 const SCEV *
R =
getSCEV(RPhi->getIncomingValueForBlock(IncBB));
12498 if (!ProvedEasily(L, R))
12509 auto *RLoop = RAR->
getLoop();
12510 auto *Predecessor = RLoop->getLoopPredecessor();
12511 assert(Predecessor &&
"Loop with AddRec with no predecessor?");
12513 if (!ProvedEasily(L1, RAR->
getStart()))
12515 auto *Latch = RLoop->getLoopLatch();
12516 assert(Latch &&
"Loop with AddRec with no latch?");
12537 if (
auto *Loop = LI.getLoopFor(LBB))
12540 if (!ProvedEasily(L,
RHS))
12547bool ScalarEvolution::isImpliedCondOperandsViaShift(CmpPredicate Pred,
12550 const SCEV *FoundLHS,
12551 const SCEV *FoundRHS) {
12554 if (
RHS == FoundRHS) {
12559 if (
LHS != FoundLHS)
12566 Value *Shiftee, *ShiftValue;
12568 using namespace PatternMatch;
12569 if (
match(SUFoundRHS->getValue(),
12571 auto *ShifteeS =
getSCEV(Shiftee);
12589bool ScalarEvolution::isImpliedCondOperands(CmpPredicate Pred,
const SCEV *
LHS,
12591 const SCEV *FoundLHS,
12592 const SCEV *FoundRHS,
12593 const Instruction *CtxI) {
12594 return isImpliedCondOperandsViaRanges(Pred,
LHS,
RHS, Pred, FoundLHS,
12596 isImpliedCondOperandsViaNoOverflow(Pred,
LHS,
RHS, FoundLHS,
12598 isImpliedCondOperandsViaShift(Pred,
LHS,
RHS, FoundLHS, FoundRHS) ||
12599 isImpliedCondOperandsViaAddRecStart(Pred,
LHS,
RHS, FoundLHS, FoundRHS,
12601 isImpliedCondOperandsHelper(Pred,
LHS,
RHS, FoundLHS, FoundRHS);
12605template <
typename MinMaxExprType>
12607 const SCEV *Candidate) {
12612 return is_contained(MinMaxExpr->operands(), Candidate);
12625 const SCEV *LStart, *RStart, *Step;
12675bool ScalarEvolution::isImpliedViaOperations(CmpPredicate Pred,
const SCEV *
LHS,
12677 const SCEV *FoundLHS,
12678 const SCEV *FoundRHS,
12682 "LHS and RHS have different sizes?");
12685 "FoundLHS and FoundRHS have different sizes?");
12719 auto GetOpFromSExt = [&](
const SCEV *S) {
12721 return Ext->getOperand();
12728 auto *OrigLHS =
LHS;
12729 auto *OrigFoundLHS = FoundLHS;
12730 LHS = GetOpFromSExt(
LHS);
12731 FoundLHS = GetOpFromSExt(FoundLHS);
12734 auto IsSGTViaContext = [&](
const SCEV *
S1,
const SCEV *S2) {
12737 FoundRHS,
Depth + 1);
12750 if (!LHSAddExpr->hasNoSignedWrap())
12753 auto *LL = LHSAddExpr->getOperand(0);
12754 auto *LR = LHSAddExpr->getOperand(1);
12758 auto IsSumGreaterThanRHS = [&](
const SCEV *
S1,
const SCEV *S2) {
12759 return IsSGTViaContext(
S1, MinusOne) && IsSGTViaContext(S2,
RHS);
12764 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
12770 using namespace llvm::PatternMatch;
12789 if (!Numerator || Numerator->getType() != FoundLHS->
getType())
12797 auto *DTy = Denominator->getType();
12798 auto *FRHSTy = FoundRHS->
getType();
12799 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
12818 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
12829 auto *NegDenomMinusOne =
getMinusSCEV(MinusOne, DenominatorExt);
12831 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
12839 if (isImpliedViaMerge(Pred, OrigLHS,
RHS, OrigFoundLHS, FoundRHS,
Depth + 1))
12872bool ScalarEvolution::isKnownViaNonRecursiveReasoning(CmpPredicate Pred,
12876 isKnownPredicateViaConstantRanges(Pred,
LHS,
RHS) ||
12879 isKnownPredicateViaNoOverflow(Pred,
LHS,
RHS);
12882bool ScalarEvolution::isImpliedCondOperandsHelper(CmpPredicate Pred,
12885 const SCEV *FoundLHS,
12886 const SCEV *FoundRHS) {
12922 if (isImpliedViaOperations(Pred,
LHS,
RHS, FoundLHS, FoundRHS))
12928bool ScalarEvolution::isImpliedCondOperandsViaRanges(
12929 CmpPredicate Pred,
const SCEV *
LHS,
const SCEV *
RHS, CmpPredicate FoundPred,
12930 const SCEV *FoundLHS,
const SCEV *FoundRHS) {
12944 ConstantRange FoundLHSRange =
12948 ConstantRange LHSRange = FoundLHSRange.
add(ConstantRange(*Addend));
12955 return LHSRange.
icmp(Pred, ConstRHS);
12958bool ScalarEvolution::canIVOverflowOnLT(
const SCEV *
RHS,
const SCEV *Stride,
12971 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12979 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12982bool ScalarEvolution::canIVOverflowOnGT(
const SCEV *
RHS,
const SCEV *Stride,
12994 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
13002 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
13014const SCEV *ScalarEvolution::computeMaxBECountForLT(
const SCEV *Start,
13015 const SCEV *Stride,
13046 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
13057 :
APIntOps::umax(MaxEnd, MinStart);
13064ScalarEvolution::howManyLessThans(
const SCEV *
LHS,
const SCEV *
RHS,
13065 const Loop *L,
bool IsSigned,
13066 bool ControlsOnlyExit,
bool AllowPredicates) {
13070 bool PredicatedIV =
false;
13075 auto canProveNUW = [&]() {
13078 if (!ControlsOnlyExit)
13099 Limit = Limit.
zext(OuterBitWidth);
13111 Type *Ty = ZExt->getType();
13122 if (!
IV && AllowPredicates) {
13127 PredicatedIV =
true;
13131 if (!
IV ||
IV->getLoop() != L || !
IV->isAffine())
13145 bool NoWrap = ControlsOnlyExit &&
IV->getNoWrapFlags(WrapType);
13148 const SCEV *Stride =
IV->getStepRecurrence(*
this);
13153 if (!PositiveStride) {
13205 auto wouldZeroStrideBeUB = [&]() {
13217 if (!wouldZeroStrideBeUB()) {
13221 }
else if (!NoWrap) {
13224 if (canIVOverflowOnLT(
RHS, Stride, IsSigned))
13237 const SCEV *
Start =
IV->getStart();
13243 const SCEV *OrigStart =
Start;
13244 const SCEV *OrigRHS =
RHS;
13245 if (
Start->getType()->isPointerTy()) {
13256 const SCEV *End =
nullptr, *BECount =
nullptr,
13257 *BECountIfBackedgeTaken =
nullptr;
13260 if (PositiveStride && RHSAddRec !=
nullptr && RHSAddRec->getLoop() == L &&
13261 RHSAddRec->getNoWrapFlags()) {
13274 const SCEV *RHSStart = RHSAddRec->getStart();
13275 const SCEV *RHSStride = RHSAddRec->getStepRecurrence(*
this);
13287 const SCEV *Denominator =
getMinusSCEV(Stride, RHSStride);
13296 BECountIfBackedgeTaken =
13301 if (BECount ==
nullptr) {
13306 const SCEV *MaxBECount = computeMaxBECountForLT(
13309 MaxBECount,
false , Predicates);
13316 auto *OrigStartMinusStride =
getMinusSCEV(OrigStart, Stride);
13343 const SCEV *Numerator =
13349 auto canProveRHSGreaterThanEqualStart = [&]() {
13368 auto *StartMinusOne =
13375 if (canProveRHSGreaterThanEqualStart()) {
13390 BECountIfBackedgeTaken =
13406 bool MayAddOverflow = [&] {
13452 if (Start == Stride || Start ==
getMinusSCEV(Stride, One)) {
13466 if (!MayAddOverflow) {
13478 const SCEV *ConstantMaxBECount;
13479 bool MaxOrZero =
false;
13481 ConstantMaxBECount = BECount;
13482 }
else if (BECountIfBackedgeTaken &&
13487 ConstantMaxBECount = BECountIfBackedgeTaken;
13490 ConstantMaxBECount = computeMaxBECountForLT(
13498 const SCEV *SymbolicMaxBECount =
13500 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero,
13504ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans(
13505 const SCEV *
LHS,
const SCEV *
RHS,
const Loop *L,
bool IsSigned,
13506 bool ControlsOnlyExit,
bool AllowPredicates) {
13513 if (!
IV && AllowPredicates)
13520 if (!
IV ||
IV->getLoop() != L || !
IV->isAffine())
13524 bool NoWrap = ControlsOnlyExit &&
IV->getNoWrapFlags(WrapType);
13537 if (!Stride->
isOne() && !NoWrap)
13538 if (canIVOverflowOnGT(
RHS, Stride, IsSigned))
13541 const SCEV *
Start =
IV->getStart();
13542 const SCEV *End =
RHS;
13553 if (
Start->getType()->isPointerTy()) {
13588 const SCEV *ConstantMaxBECount =
13595 ConstantMaxBECount = BECount;
13596 const SCEV *SymbolicMaxBECount =
13599 return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount,
false,
13605 if (
Range.isFullSet())
13610 if (!SC->getValue()->isZero()) {
13616 return ShiftedAddRec->getNumIterationsInRange(
13617 Range.subtract(SC->getAPInt()), SE);
13648 APInt ExitVal = (End +
A).udiv(
A);
13661 ConstantInt::get(SE.
getContext(), ExitVal - 1), SE)->getValue()) &&
13662 "Linear scev computation is off in a bad way!");
13693 assert(!
Last->isZero() &&
"Recurrency with zero step?");
13721 Ty = Store->getValueOperand()->getType();
13723 Ty = Load->getType();
13736 assert(SE &&
"SCEVCallbackVH called with a null ScalarEvolution!");
13738 SE->ConstantEvolutionLoopExitValue.erase(PN);
13739 SE->eraseValueFromMap(getValPtr());
13743void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(
Value *V) {
13744 assert(SE &&
"SCEVCallbackVH called with a null ScalarEvolution!");
13754 : CallbackVH(
V), SE(se) {}
13763 : F(F), DL(F.
getDataLayout()), TLI(TLI), AC(AC), DT(DT), LI(LI),
13765 LoopDispositions(64), BlockDispositions(64) {
13777 F.getParent(), Intrinsic::experimental_guard);
13778 HasGuards = GuardDecl && !GuardDecl->use_empty();
13782 : F(Arg.F), DL(Arg.DL), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC),
13783 DT(Arg.DT), LI(Arg.LI), CouldNotCompute(
std::
move(Arg.CouldNotCompute)),
13784 ValueExprMap(
std::
move(Arg.ValueExprMap)),
13785 PendingLoopPredicates(
std::
move(Arg.PendingLoopPredicates)),
13786 PendingPhiRanges(
std::
move(Arg.PendingPhiRanges)),
13787 PendingMerges(
std::
move(Arg.PendingMerges)),
13788 ConstantMultipleCache(
std::
move(Arg.ConstantMultipleCache)),
13789 BackedgeTakenCounts(
std::
move(Arg.BackedgeTakenCounts)),
13790 PredicatedBackedgeTakenCounts(
13791 std::
move(Arg.PredicatedBackedgeTakenCounts)),
13792 BECountUsers(
std::
move(Arg.BECountUsers)),
13793 ConstantEvolutionLoopExitValue(
13794 std::
move(Arg.ConstantEvolutionLoopExitValue)),
13795 ValuesAtScopes(
std::
move(Arg.ValuesAtScopes)),
13796 ValuesAtScopesUsers(
std::
move(Arg.ValuesAtScopesUsers)),
13797 LoopDispositions(
std::
move(Arg.LoopDispositions)),
13798 LoopPropertiesCache(
std::
move(Arg.LoopPropertiesCache)),
13799 BlockDispositions(
std::
move(Arg.BlockDispositions)),
13800 SCEVUsers(
std::
move(Arg.SCEVUsers)),
13801 UnsignedRanges(
std::
move(Arg.UnsignedRanges)),
13802 SignedRanges(
std::
move(Arg.SignedRanges)),
13803 UniqueSCEVs(
std::
move(Arg.UniqueSCEVs)),
13804 UniquePreds(
std::
move(Arg.UniquePreds)),
13805 SCEVAllocator(
std::
move(Arg.SCEVAllocator)),
13806 LoopUsers(
std::
move(Arg.LoopUsers)),
13807 PredicatedSCEVRewrites(
std::
move(Arg.PredicatedSCEVRewrites)),
13808 FirstUnknown(Arg.FirstUnknown) {
13809 Arg.FirstUnknown =
nullptr;
13818 Tmp->~SCEVUnknown();
13820 FirstUnknown =
nullptr;
13822 ExprValueMap.clear();
13823 ValueExprMap.clear();
13825 BackedgeTakenCounts.clear();
13826 PredicatedBackedgeTakenCounts.clear();
13828 assert(PendingLoopPredicates.empty() &&
"isImpliedCond garbage");
13829 assert(PendingPhiRanges.empty() &&
"getRangeRef garbage");
13830 assert(PendingMerges.empty() &&
"isImpliedViaMerge garbage");
13831 assert(!WalkingBEDominatingConds &&
"isLoopBackedgeGuardedByCond garbage!");
13832 assert(!ProvingSplitPredicate &&
"ProvingSplitPredicate garbage!");
13854 L->getHeader()->printAsOperand(OS,
false);
13858 L->getExitingBlocks(ExitingBlocks);
13859 if (ExitingBlocks.
size() != 1)
13860 OS <<
"<multiple exits> ";
13864 OS <<
"backedge-taken count is ";
13867 OS <<
"Unpredictable backedge-taken count.";
13870 if (ExitingBlocks.
size() > 1)
13871 for (
BasicBlock *ExitingBlock : ExitingBlocks) {
13872 OS <<
" exit count for " << ExitingBlock->
getName() <<
": ";
13880 OS <<
"\n predicated exit count for " << ExitingBlock->
getName()
13883 OS <<
"\n Predicates:\n";
13884 for (
const auto *
P : Predicates)
13892 L->getHeader()->printAsOperand(OS,
false);
13897 OS <<
"constant max backedge-taken count is ";
13900 OS <<
", actual taken count either this or zero.";
13902 OS <<
"Unpredictable constant max backedge-taken count. ";
13907 L->getHeader()->printAsOperand(OS,
false);
13912 OS <<
"symbolic max backedge-taken count is ";
13915 OS <<
", actual taken count either this or zero.";
13917 OS <<
"Unpredictable symbolic max backedge-taken count. ";
13921 if (ExitingBlocks.
size() > 1)
13922 for (
BasicBlock *ExitingBlock : ExitingBlocks) {
13923 OS <<
" symbolic max exit count for " << ExitingBlock->
getName() <<
": ";
13933 OS <<
"\n predicated symbolic max exit count for "
13934 << ExitingBlock->
getName() <<
": ";
13936 OS <<
"\n Predicates:\n";
13937 for (
const auto *
P : Predicates)
13947 assert(!Preds.
empty() &&
"Different predicated BTC, but no predicates");
13949 L->getHeader()->printAsOperand(OS,
false);
13952 OS <<
"Predicated backedge-taken count is ";
13955 OS <<
"Unpredictable predicated backedge-taken count.";
13957 OS <<
" Predicates:\n";
13958 for (
const auto *
P : Preds)
13963 auto *PredConstantMax =
13965 if (PredConstantMax != ConstantBTC) {
13967 "different predicated constant max BTC but no predicates");
13969 L->getHeader()->printAsOperand(OS,
false);
13972 OS <<
"Predicated constant max backedge-taken count is ";
13975 OS <<
"Unpredictable predicated constant max backedge-taken count.";
13977 OS <<
" Predicates:\n";
13978 for (
const auto *
P : Preds)
13983 auto *PredSymbolicMax =
13985 if (SymbolicBTC != PredSymbolicMax) {
13987 "Different predicated symbolic max BTC, but no predicates");
13989 L->getHeader()->printAsOperand(OS,
false);
13992 OS <<
"Predicated symbolic max backedge-taken count is ";
13995 OS <<
"Unpredictable predicated symbolic max backedge-taken count.";
13997 OS <<
" Predicates:\n";
13998 for (
const auto *
P : Preds)
14004 L->getHeader()->printAsOperand(OS,
false);
14020 OS <<
"Computable";
14029 OS <<
"DoesNotDominate";
14035 OS <<
"ProperlyDominates";
14052 OS <<
"Classifying expressions for: ";
14053 F.printAsOperand(OS,
false);
14068 const Loop *L = LI.getLoopFor(
I.getParent());
14083 OS <<
"\t\t" "Exits: ";
14086 OS <<
"<<Unknown>>";
14092 for (
const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
14094 OS <<
"\t\t" "LoopDispositions: { ";
14100 Iter->getHeader()->printAsOperand(OS,
false);
14108 OS <<
"\t\t" "LoopDispositions: { ";
14114 InnerL->getHeader()->printAsOperand(OS,
false);
14125 OS <<
"Determining loop execution counts for: ";
14126 F.printAsOperand(OS,
false);
14134 auto &Values = LoopDispositions[S];
14135 for (
auto &V : Values) {
14136 if (V.getPointer() == L)
14141 auto &Values2 = LoopDispositions[S];
14143 if (V.getPointer() == L) {
14152ScalarEvolution::computeLoopDisposition(
const SCEV *S,
const Loop *L) {
14171 assert(!L->contains(AR->
getLoop()) &&
"Containing loop's header does not"
14172 " dominate the contained loop's header?");
14199 bool HasVarying =
false;
14233 auto &Values = BlockDispositions[S];
14234 for (
auto &V : Values) {
14235 if (V.getPointer() == BB)
14240 auto &Values2 = BlockDispositions[S];
14242 if (V.getPointer() == BB) {
14251ScalarEvolution::computeBlockDisposition(
const SCEV *S,
const BasicBlock *BB) {
14280 bool Proper =
true;
14291 if (Instruction *
I =
14293 if (
I->getParent() == BB)
14295 if (DT.properlyDominates(
I->getParent(), BB))
14318void ScalarEvolution::forgetBackedgeTakenCounts(
const Loop *L,
14321 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14322 auto It = BECounts.find(L);
14323 if (It != BECounts.end()) {
14324 for (
const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
14325 for (
const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14327 auto UserIt = BECountUsers.find(S);
14328 assert(UserIt != BECountUsers.end());
14333 BECounts.erase(It);
14341 while (!Worklist.
empty()) {
14343 auto Users = SCEVUsers.find(Curr);
14344 if (
Users != SCEVUsers.end())
14345 for (
const auto *User :
Users->second)
14346 if (ToForget.
insert(User).second)
14350 for (
const auto *S : ToForget)
14351 forgetMemoizedResultsImpl(S);
14353 for (
auto I = PredicatedSCEVRewrites.begin();
14354 I != PredicatedSCEVRewrites.end();) {
14355 std::pair<const SCEV *, const Loop *>
Entry =
I->first;
14356 if (ToForget.count(
Entry.first))
14357 PredicatedSCEVRewrites.erase(
I++);
14363void ScalarEvolution::forgetMemoizedResultsImpl(
const SCEV *S) {
14364 LoopDispositions.erase(S);
14365 BlockDispositions.erase(S);
14366 UnsignedRanges.erase(S);
14367 SignedRanges.erase(S);
14368 HasRecMap.erase(S);
14369 ConstantMultipleCache.erase(S);
14372 UnsignedWrapViaInductionTried.erase(AR);
14373 SignedWrapViaInductionTried.erase(AR);
14376 auto ExprIt = ExprValueMap.find(S);
14377 if (ExprIt != ExprValueMap.end()) {
14378 for (
Value *V : ExprIt->second) {
14379 auto ValueIt = ValueExprMap.find_as(V);
14380 if (ValueIt != ValueExprMap.end())
14381 ValueExprMap.erase(ValueIt);
14383 ExprValueMap.erase(ExprIt);
14386 auto ScopeIt = ValuesAtScopes.find(S);
14387 if (ScopeIt != ValuesAtScopes.end()) {
14388 for (
const auto &Pair : ScopeIt->second)
14391 std::make_pair(Pair.first, S));
14392 ValuesAtScopes.erase(ScopeIt);
14395 auto ScopeUserIt = ValuesAtScopesUsers.find(S);
14396 if (ScopeUserIt != ValuesAtScopesUsers.end()) {
14397 for (
const auto &Pair : ScopeUserIt->second)
14398 llvm::erase(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
14399 ValuesAtScopesUsers.erase(ScopeUserIt);
14402 auto BEUsersIt = BECountUsers.find(S);
14403 if (BEUsersIt != BECountUsers.end()) {
14405 auto Copy = BEUsersIt->second;
14406 for (
const auto &Pair : Copy)
14407 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
14408 BECountUsers.erase(BEUsersIt);
14411 auto FoldUser = FoldCacheUser.find(S);
14412 if (FoldUser != FoldCacheUser.end())
14413 for (
auto &KV : FoldUser->second)
14414 FoldCache.erase(KV);
14415 FoldCacheUser.erase(S);
14419ScalarEvolution::getUsedLoops(
const SCEV *S,
14421 struct FindUsedLoops {
14422 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
14423 : LoopsUsed(LoopsUsed) {}
14424 SmallPtrSetImpl<const Loop *> &LoopsUsed;
14425 bool follow(
const SCEV *S) {
14431 bool isDone()
const {
return false; }
14434 FindUsedLoops
F(LoopsUsed);
14435 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
14438void ScalarEvolution::getReachableBlocks(
14441 Worklist.
push_back(&F.getEntryBlock());
14442 while (!Worklist.
empty()) {
14444 if (!Reachable.
insert(BB).second)
14452 Worklist.
push_back(
C->isOne() ? TrueBB : FalseBB);
14459 if (isKnownPredicateViaConstantRanges(
Cmp->getCmpPredicate(), L, R)) {
14463 if (isKnownPredicateViaConstantRanges(
Cmp->getInverseCmpPredicate(), L,
14498 SCEVMapper SCM(SE2);
14500 SE2.getReachableBlocks(ReachableBlocks, F);
14502 auto GetDelta = [&](
const SCEV *Old,
const SCEV *New) ->
const SCEV * {
14520 while (!LoopStack.
empty()) {
14526 if (!ReachableBlocks.
contains(L->getHeader()))
14531 auto It = BackedgeTakenCounts.find(L);
14532 if (It == BackedgeTakenCounts.end())
14536 SCM.visit(It->second.getExact(L,
const_cast<ScalarEvolution *
>(
this)));
14556 const SCEV *Delta = GetDelta(CurBECount, NewBECount);
14557 if (Delta && !Delta->
isZero()) {
14558 dbgs() <<
"Trip Count for " << *L <<
" Changed!\n";
14559 dbgs() <<
"Old: " << *CurBECount <<
"\n";
14560 dbgs() <<
"New: " << *NewBECount <<
"\n";
14561 dbgs() <<
"Delta: " << *Delta <<
"\n";
14569 while (!Worklist.
empty()) {
14571 if (ValidLoops.
insert(L).second)
14572 Worklist.
append(L->begin(), L->end());
14574 for (
const auto &KV : ValueExprMap) {
14579 "AddRec references invalid loop");
14584 auto It = ExprValueMap.find(KV.second);
14585 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) {
14586 dbgs() <<
"Value " << *KV.first
14587 <<
" is in ValueExprMap but not in ExprValueMap\n";
14592 if (!ReachableBlocks.
contains(
I->getParent()))
14594 const SCEV *OldSCEV = SCM.visit(KV.second);
14596 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
14597 if (Delta && !Delta->
isZero()) {
14598 dbgs() <<
"SCEV for value " << *
I <<
" changed!\n"
14599 <<
"Old: " << *OldSCEV <<
"\n"
14600 <<
"New: " << *NewSCEV <<
"\n"
14601 <<
"Delta: " << *Delta <<
"\n";
14607 for (
const auto &KV : ExprValueMap) {
14608 for (
Value *V : KV.second) {
14609 const SCEV *S = ValueExprMap.lookup(V);
14611 dbgs() <<
"Value " << *V
14612 <<
" is in ExprValueMap but not in ValueExprMap\n";
14615 if (S != KV.first) {
14616 dbgs() <<
"Value " << *V <<
" mapped to " << *S <<
" rather than "
14617 << *KV.first <<
"\n";
14624 for (
const auto &S : UniqueSCEVs) {
14629 auto It = SCEVUsers.find(
Op);
14630 if (It != SCEVUsers.end() && It->second.count(&S))
14632 dbgs() <<
"Use of operand " << *
Op <<
" by user " << S
14633 <<
" is not being tracked!\n";
14639 for (
const auto &ValueAndVec : ValuesAtScopes) {
14641 for (
const auto &LoopAndValueAtScope : ValueAndVec.second) {
14642 const Loop *L = LoopAndValueAtScope.first;
14643 const SCEV *ValueAtScope = LoopAndValueAtScope.second;
14645 auto It = ValuesAtScopesUsers.find(ValueAtScope);
14646 if (It != ValuesAtScopesUsers.end() &&
14649 dbgs() <<
"Value: " << *
Value <<
", Loop: " << *L <<
", ValueAtScope: "
14650 << *ValueAtScope <<
" missing in ValuesAtScopesUsers\n";
14656 for (
const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
14657 const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
14658 for (
const auto &LoopAndValue : ValueAtScopeAndVec.second) {
14659 const Loop *L = LoopAndValue.first;
14660 const SCEV *
Value = LoopAndValue.second;
14662 auto It = ValuesAtScopes.find(
Value);
14663 if (It != ValuesAtScopes.end() &&
14664 is_contained(It->second, std::make_pair(L, ValueAtScope)))
14666 dbgs() <<
"Value: " << *
Value <<
", Loop: " << *L <<
", ValueAtScope: "
14667 << *ValueAtScope <<
" missing in ValuesAtScopes\n";
14673 auto VerifyBECountUsers = [&](
bool Predicated) {
14675 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14676 for (
const auto &LoopAndBEInfo : BECounts) {
14677 for (
const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
14678 for (
const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14680 auto UserIt = BECountUsers.find(S);
14681 if (UserIt != BECountUsers.end() &&
14682 UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
14684 dbgs() <<
"Value " << *S <<
" for loop " << *LoopAndBEInfo.first
14685 <<
" missing from BECountUsers\n";
14692 VerifyBECountUsers(
false);
14693 VerifyBECountUsers(
true);
14696 for (
auto &[S, Values] : LoopDispositions) {
14697 for (
auto [
Loop, CachedDisposition] : Values) {
14699 if (CachedDisposition != RecomputedDisposition) {
14700 dbgs() <<
"Cached disposition of " << *S <<
" for loop " << *
Loop
14701 <<
" is incorrect: cached " << CachedDisposition <<
", actual "
14702 << RecomputedDisposition <<
"\n";
14709 for (
auto &[S, Values] : BlockDispositions) {
14710 for (
auto [BB, CachedDisposition] : Values) {
14712 if (CachedDisposition != RecomputedDisposition) {
14713 dbgs() <<
"Cached disposition of " << *S <<
" for block %"
14714 << BB->
getName() <<
" is incorrect: cached " << CachedDisposition
14715 <<
", actual " << RecomputedDisposition <<
"\n";
14722 for (
auto [
FoldID, Expr] : FoldCache) {
14723 auto I = FoldCacheUser.find(Expr);
14724 if (
I == FoldCacheUser.end()) {
14725 dbgs() <<
"Missing entry in FoldCacheUser for cached expression " << *Expr
14730 dbgs() <<
"Missing FoldID in cached users of " << *Expr <<
"!\n";
14734 for (
auto [Expr, IDs] : FoldCacheUser) {
14735 for (
auto &
FoldID : IDs) {
14738 dbgs() <<
"Missing entry in FoldCache for expression " << *Expr
14743 dbgs() <<
"Entry in FoldCache doesn't match FoldCacheUser: " << *S
14744 <<
" != " << *Expr <<
"!\n";
14755 for (
auto [S, Multiple] : ConstantMultipleCache) {
14757 if ((Multiple != 0 && RecomputedMultiple != 0 &&
14758 Multiple.
urem(RecomputedMultiple) != 0 &&
14759 RecomputedMultiple.
urem(Multiple) != 0)) {
14760 dbgs() <<
"Incorrect cached computation in ConstantMultipleCache for "
14761 << *S <<
" : Computed " << RecomputedMultiple
14762 <<
" but cache contains " << Multiple <<
"!\n";
14770 FunctionAnalysisManager::Invalidator &Inv) {
14802 OS <<
"Printing analysis 'Scalar Evolution Analysis' for function '"
14803 <<
F.getName() <<
"':\n";
14809 "Scalar Evolution Analysis",
false,
true)
14858 const SCEV *LHS,
const SCEV *RHS) {
14860 assert(LHS->getType() == RHS->getType() &&
14861 "Type mismatch between LHS and RHS");
14864 ID.AddInteger(Pred);
14865 ID.AddPointer(LHS);
14866 ID.AddPointer(RHS);
14867 void *IP =
nullptr;
14868 if (
const auto *S = UniquePreds.FindNodeOrInsertPos(
ID, IP))
14872 UniquePreds.InsertNode(Eq, IP);
14883 ID.AddInteger(AddedFlags);
14884 void *IP =
nullptr;
14885 if (
const auto *S = UniquePreds.FindNodeOrInsertPos(
ID, IP))
14887 auto *OF =
new (SCEVAllocator)
14889 UniquePreds.InsertNode(OF, IP);
14909 SCEVPredicateRewriter
Rewriter(L, SE, NewPreds, Pred);
14910 return Rewriter.visit(S);
14916 for (
const auto *Pred : U->getPredicates())
14918 if (IPred->getLHS() == Expr &&
14920 return IPred->getRHS();
14922 if (IPred->getLHS() == Expr &&
14923 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14924 return IPred->getRHS();
14927 return convertToAddRecWithPreds(Expr);
14930 const SCEV *visitZeroExtendExpr(
const SCEVZeroExtendExpr *Expr) {
14946 const SCEV *visitSignExtendExpr(
const SCEVSignExtendExpr *Expr) {
14963 explicit SCEVPredicateRewriter(
14964 const Loop *L, ScalarEvolution &SE,
14965 SmallVectorImpl<const SCEVPredicate *> *NewPreds,
14966 const SCEVPredicate *Pred)
14967 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred),
L(
L) {}
14969 bool addOverflowAssumption(
const SCEVPredicate *
P) {
14972 return Pred && Pred->
implies(
P, SE);
14978 bool addOverflowAssumption(
const SCEVAddRecExpr *AR,
14981 return addOverflowAssumption(
A);
14990 const SCEV *convertToAddRecWithPreds(
const SCEVUnknown *Expr) {
14994 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
14996 if (!PredicatedRewrite)
14998 for (
const auto *
P : PredicatedRewrite->second){
15001 if (L != WP->getExpr()->getLoop())
15004 if (!addOverflowAssumption(
P))
15007 return PredicatedRewrite->first;
15010 SmallVectorImpl<const SCEVPredicate *> *NewPreds;
15011 const SCEVPredicate *Pred;
15020 return SCEVPredicateRewriter::rewrite(S, L, *
this,
nullptr, &Preds);
15027 S = SCEVPredicateRewriter::rewrite(S, L, *
this, &TransformPreds,
nullptr);
15047 if (!Step->
isOne())
15072 assert(LHS->getType() == RHS->getType() &&
"LHS and RHS types don't match");
15073 assert(LHS != RHS &&
"LHS and RHS are the same SCEV");
15086 return Op->LHS == LHS &&
Op->RHS == RHS;
15093 OS.
indent(
Depth) <<
"Equal predicate: " << *LHS <<
" == " << *RHS <<
"\n";
15095 OS.
indent(
Depth) <<
"Compare predicate: " << *LHS <<
" " << Pred <<
") "
15120 const SCEV *Start = AR->getStart();
15121 const SCEV *OpStart =
Op->AR->getStart();
15126 if (Start->getType()->isPointerTy() && Start->getType() != OpStart->
getType())
15129 const SCEV *Step = AR->getStepRecurrence(SE);
15130 const SCEV *OpStep =
Op->AR->getStepRecurrence(SE);
15183 if (Step->getValue()->getValue().isNonNegative())
15187 return ImpliedFlags;
15194 for (
const auto *
P : Preds)
15207 return this->implies(I, SE);
15215 for (
const auto *Pred : Preds)
15216 Pred->print(OS,
Depth);
15221 for (
const auto *Pred : Set->Preds)
15229 bool CheckImplies = Preds.
size() < 16;
15232 if (CheckImplies &&
implies(
N, SE))
15238 for (
auto *
P : Preds) {
15239 if (CheckImplies &&
N->implies(
P, SE))
15243 Preds = std::move(PrunedPreds);
15244 Preds.push_back(
N);
15251 Preds = std::make_unique<SCEVUnionPredicate>(
Empty, SE);
15256 for (
const auto *
Op :
Ops)
15261 SCEVUsers[
Op].insert(
User);
15265 const SCEV *Expr = SE.getSCEV(V);
15266 RewriteEntry &Entry = RewriteMap[Expr];
15269 if (Entry.second && Generation == Entry.first)
15270 return Entry.second;
15275 Expr = Entry.second;
15277 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
15278 Entry = {Generation, NewSCEV};
15284 if (!BackedgeCount) {
15286 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
15287 for (
const auto *
P : Preds)
15290 return BackedgeCount;
15294 if (!SymbolicMaxBackedgeCount) {
15296 SymbolicMaxBackedgeCount =
15297 SE.getPredicatedSymbolicMaxBackedgeTakenCount(&L, Preds);
15298 for (
const auto *
P : Preds)
15301 return SymbolicMaxBackedgeCount;
15305 if (!SmallConstantMaxTripCount) {
15307 SmallConstantMaxTripCount = SE.getSmallConstantMaxTripCount(&L, &Preds);
15308 for (
const auto *
P : Preds)
15311 return *SmallConstantMaxTripCount;
15315 if (Preds->implies(&Pred, SE))
15320 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds, SE);
15321 updateGeneration();
15328void PredicatedScalarEvolution::updateGeneration() {
15330 if (++Generation == 0) {
15331 for (
auto &
II : RewriteMap) {
15332 const SCEV *Rewritten =
II.second.second;
15349 auto II = FlagsMap.insert({V, Flags});
15362 auto II = FlagsMap.find(V);
15364 if (
II != FlagsMap.end())
15373 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
15378 for (
const auto *
P : NewPreds)
15381 RewriteMap[SE.getSCEV(V)] = {Generation, New};
15387 : RewriteMap(
Init.RewriteMap), SE(
Init.SE), L(
Init.L),
15390 Generation(
Init.Generation), BackedgeCount(
Init.BackedgeCount) {
15391 for (
auto I :
Init.FlagsMap)
15392 FlagsMap.insert(
I);
15397 for (
auto *BB : L.getBlocks())
15398 for (
auto &
I : *BB) {
15399 if (!SE.isSCEVable(
I.getType()))
15402 auto *Expr = SE.getSCEV(&
I);
15403 auto II = RewriteMap.find(Expr);
15405 if (
II == RewriteMap.end())
15409 if (
II->second.second == Expr)
15414 OS.
indent(
Depth + 2) <<
"--> " << *
II->second.second <<
"\n";
15423bool ScalarEvolution::matchURem(
const SCEV *Expr,
const SCEV *&LHS,
15424 const SCEV *&RHS) {
15433 LHS = Trunc->getOperand();
15439 if (LHS->getType() != Expr->
getType())
15446 if (
Add ==
nullptr ||
Add->getNumOperands() != 2)
15449 const SCEV *
A =
Add->getOperand(1);
15452 if (
Mul ==
nullptr)
15455 const auto MatchURemWithDivisor = [&](
const SCEV *
B) {
15467 return MatchURemWithDivisor(
Mul->getOperand(1)) ||
15468 MatchURemWithDivisor(
Mul->getOperand(2));
15471 if (
Mul->getNumOperands() == 2)
15472 return MatchURemWithDivisor(
Mul->getOperand(1)) ||
15473 MatchURemWithDivisor(
Mul->getOperand(0)) ||
15483 LoopGuards Guards(SE);
15491void ScalarEvolution::LoopGuards::collectFromPHI(
15499 using MinMaxPattern = std::pair<const SCEVConstant *, SCEVTypes>;
15500 auto GetMinMaxConst = [&](
unsigned IncomingIdx) -> MinMaxPattern {
15514 auto &RewriteMap =
G->second.RewriteMap;
15515 if (RewriteMap.empty())
15517 auto S = RewriteMap.find(SE.
getSCEV(
Phi.getIncomingValue(IncomingIdx)));
15518 if (S == RewriteMap.end())
15524 return {C0, SM->getSCEVType()};
15527 auto MergeMinMaxConst = [](MinMaxPattern
P1,
15528 MinMaxPattern P2) -> MinMaxPattern {
15529 auto [C1,
T1] =
P1;
15530 auto [C2, T2] = P2;
15531 if (!C1 || !C2 ||
T1 != T2)
15535 return {C1->getAPInt().
ult(C2->getAPInt()) ? C1 : C2,
T1};
15537 return {C1->getAPInt().
slt(C2->getAPInt()) ? C1 : C2,
T1};
15539 return {C1->getAPInt().
ugt(C2->getAPInt()) ? C1 : C2,
T1};
15541 return {C1->getAPInt().
sgt(C2->getAPInt()) ? C1 : C2,
T1};
15546 auto P = GetMinMaxConst(0);
15547 for (
unsigned int In = 1;
In <
Phi.getNumIncomingValues();
In++) {
15550 P = MergeMinMaxConst(
P, GetMinMaxConst(In));
15553 const SCEV *
LHS = SE.
getSCEV(
const_cast<PHINode *
>(&Phi));
15556 Guards.RewriteMap.insert({
LHS,
RHS});
15560void ScalarEvolution::LoopGuards::collectFromBlock(
15562 const BasicBlock *
Block,
const BasicBlock *Pred,
15570 DenseMap<const SCEV *, const SCEV *>
15587 &ExprsToRewrite]() {
15588 const SCEVConstant *C1;
15601 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
15603 auto [
I,
Inserted] = RewriteMap.try_emplace(LHSUnknown);
15604 const SCEV *RewrittenLHS =
Inserted ? LHSUnknown :
I->second;
15612 if (MatchRangeCheckIdiom())
15618 auto IsMinMaxSCEVWithNonNegativeConstant =
15619 [&](
const SCEV *Expr,
SCEVTypes &SCTy,
const SCEV *&
LHS,
15620 const SCEV *&
RHS) {
15622 if (MinMax->getNumOperands() != 2)
15625 if (
C->getAPInt().isNegative())
15627 SCTy = MinMax->getSCEVType();
15628 LHS = MinMax->getOperand(0);
15629 RHS = MinMax->getOperand(1);
15638 auto GetNonNegExprAndPosDivisor = [&](
const SCEV *Expr,
const SCEV *Divisor,
15639 APInt &ExprVal, APInt &DivisorVal) {
15642 if (!ConstExpr || !ConstDivisor)
15644 ExprVal = ConstExpr->getAPInt();
15645 DivisorVal = ConstDivisor->getAPInt();
15646 return ExprVal.isNonNegative() && !DivisorVal.isNonPositive();
15652 auto GetNextSCEVDividesByDivisor = [&](
const SCEV *Expr,
15653 const SCEV *Divisor) {
15656 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15658 APInt Rem = ExprVal.
urem(DivisorVal);
15661 return SE.
getConstant(ExprVal + DivisorVal - Rem);
15668 auto GetPreviousSCEVDividesByDivisor = [&](
const SCEV *Expr,
15669 const SCEV *Divisor) {
15672 if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15674 APInt Rem = ExprVal.
urem(DivisorVal);
15682 std::function<
const SCEV *(
const SCEV *,
const SCEV *)>
15683 ApplyDivisibiltyOnMinMaxExpr = [&](
const SCEV *MinMaxExpr,
15684 const SCEV *Divisor) {
15685 const SCEV *MinMaxLHS =
nullptr, *MinMaxRHS =
nullptr;
15687 if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
15693 "Expected non-negative operand!");
15694 auto *DivisibleExpr =
15695 IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor)
15696 : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor);
15698 ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr};
15707 const SCEV *URemLHS =
nullptr;
15708 const SCEV *URemRHS =
nullptr;
15709 if (SE.matchURem(
LHS, URemLHS, URemRHS)) {
15711 auto I = RewriteMap.find(LHSUnknown);
15712 const SCEV *RewrittenLHS =
15713 I != RewriteMap.end() ?
I->second : LHSUnknown;
15714 RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS);
15715 const auto *Multiple =
15717 RewriteMap[LHSUnknown] = Multiple;
15738 auto AddRewrite = [&](
const SCEV *From,
const SCEV *FromRewritten,
15740 if (From == FromRewritten)
15742 RewriteMap[From] = To;
15748 auto GetMaybeRewritten = [&](
const SCEV *S) {
15749 return RewriteMap.lookup_or(S, S);
15752 const SCEV *RewrittenLHS = GetMaybeRewritten(
LHS);
15753 const SCEV *DividesBy =
nullptr;
15755 if (!Multiple.
isOne())
15770 switch (Predicate) {
15778 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(
RHS, DividesBy) :
RHS;
15784 RHS = DividesBy ? GetNextSCEVDividesByDivisor(
RHS, DividesBy) :
RHS;
15788 RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(
RHS, DividesBy) :
RHS;
15792 RHS = DividesBy ? GetNextSCEVDividesByDivisor(
RHS, DividesBy) :
RHS;
15799 SmallPtrSet<const SCEV *, 16> Visited;
15801 auto EnqueueOperands = [&Worklist](
const SCEVNAryExpr *S) {
15805 while (!Worklist.
empty()) {
15809 if (!Visited.
insert(From).second)
15811 const SCEV *FromRewritten = GetMaybeRewritten(From);
15812 const SCEV *To =
nullptr;
15814 switch (Predicate) {
15819 EnqueueOperands(
UMax);
15825 EnqueueOperands(
SMax);
15831 EnqueueOperands(
UMin);
15837 EnqueueOperands(
SMin);
15845 const SCEV *OneAlignedUp =
15846 DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One;
15847 To = SE.
getUMaxExpr(FromRewritten, OneAlignedUp);
15855 AddRewrite(From, FromRewritten, To);
15872 SE.F.
getParent(), Intrinsic::experimental_guard);
15874 for (
const auto *GU : GuardDecl->users())
15876 if (Guard->getFunction() ==
Block->getParent() &&
15885 unsigned NumCollectedConditions = 0;
15887 std::pair<const BasicBlock *, const BasicBlock *> Pair(Pred,
Block);
15889 Pair = SE.getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
15891 const BranchInst *LoopEntryPredicate =
15898 NumCollectedConditions++;
15902 if (
Depth > 0 && NumCollectedConditions == 2)
15910 if (Pair.second->hasNPredecessorsOrMore(2) &&
15912 SmallDenseMap<const BasicBlock *, LoopGuards> IncomingGuards;
15913 for (
auto &Phi : Pair.second->phis())
15921 for (
auto [Term, EnterIfTrue] :
reverse(Terms)) {
15922 SmallVector<Value *, 8> Worklist;
15923 SmallPtrSet<Value *, 8> Visited;
15925 while (!Worklist.
empty()) {
15932 EnterIfTrue ?
Cmp->getPredicate() :
Cmp->getInversePredicate();
15935 CollectCondition(Predicate,
LHS,
RHS, Guards.RewriteMap);
15951 Guards.PreserveNUW =
true;
15952 Guards.PreserveNSW =
true;
15953 for (
const SCEV *Expr : ExprsToRewrite) {
15954 const SCEV *RewriteTo = Guards.RewriteMap[Expr];
15955 Guards.PreserveNUW &=
15957 Guards.PreserveNSW &=
15964 if (ExprsToRewrite.size() > 1) {
15965 for (
const SCEV *Expr : ExprsToRewrite) {
15966 const SCEV *RewriteTo = Guards.RewriteMap[Expr];
15967 Guards.RewriteMap.erase(Expr);
15968 Guards.RewriteMap.insert({Expr, Guards.
rewrite(RewriteTo)});
15977 class SCEVLoopGuardRewriter
15987 if (Guards.PreserveNUW)
15989 if (Guards.PreserveNSW)
15996 return Map.lookup_or(Expr, Expr);
16000 if (
const SCEV *S = Map.lookup(Expr))
16007 unsigned Bitwidth = Ty->getScalarSizeInBits() / 2;
16008 while (Bitwidth % 8 == 0 && Bitwidth >= 8 &&
16009 Bitwidth >
Op->getType()->getScalarSizeInBits()) {
16011 auto *NarrowExt = SE.getZeroExtendExpr(
Op, NarrowTy);
16012 if (
const SCEV *S = Map.lookup(NarrowExt))
16013 return SE.getZeroExtendExpr(S, Ty);
16014 Bitwidth = Bitwidth / 2;
16022 if (
const SCEV *S = Map.lookup(Expr))
16029 if (
const SCEV *S = Map.lookup(Expr))
16035 if (
const SCEV *S = Map.lookup(Expr))
16047 if (
const SCEV *S = Map.lookup(
16049 return SE.getAddExpr(Expr->
getOperand(0), S);
16083 if (RewriteMap.empty())
16086 SCEVLoopGuardRewriter
Rewriter(SE, *
this);
16087 return Rewriter.visit(Expr);
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
SmallPtrSet< const BasicBlock *, 8 > VisitedBlocks
This file defines the DenseMap class.
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
static bool isSigned(unsigned int Opcode)
This file defines a hash set that can be used to remove duplication of nodes in a graph.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This defines the Use class.
iv Induction Variable Users
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
mir Rename Register Operands
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
const SmallVectorImpl< MachineOperand > & Cond
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
SI optimize exec mask operations pre RA
void visit(MachineFunction &MF, MachineBasicBlock &Start, std::function< void(MachineBasicBlock *)> op)
This file provides utility classes that use RAII to save and restore values.
bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, SCEVTypes RootKind)
static cl::opt< unsigned > MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, cl::desc("Max coefficients in AddRec during evolving"), cl::init(8))
static cl::opt< unsigned > RangeIterThreshold("scev-range-iter-threshold", cl::Hidden, cl::desc("Threshold for switching to iteratively computing SCEV ranges"), cl::init(32))
static const Loop * isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI)
static unsigned getConstantTripCount(const SCEVConstant *ExitCount)
static int CompareValueComplexity(const LoopInfo *const LI, Value *LV, Value *RV, unsigned Depth)
Compare the two values LV and RV in terms of their "complexity" where "complexity" is a partial (and ...
static void PushLoopPHIs(const Loop *L, SmallVectorImpl< Instruction * > &Worklist, SmallPtrSetImpl< Instruction * > &Visited)
Push PHI nodes in the header of the given loop onto the given Worklist.
static void insertFoldCacheEntry(const ScalarEvolution::FoldID &ID, const SCEV *S, DenseMap< ScalarEvolution::FoldID, const SCEV * > &FoldCache, DenseMap< const SCEV *, SmallVector< ScalarEvolution::FoldID, 2 > > &FoldCacheUser)
static cl::opt< bool > ClassifyExpressions("scalar-evolution-classify-expressions", cl::Hidden, cl::init(true), cl::desc("When printing analysis, include information on every instruction"))
static bool CanConstantFold(const Instruction *I)
Return true if we can constant fold an instruction of the specified type, assuming that all operands ...
static cl::opt< unsigned > AddOpsInlineThreshold("scev-addops-inline-threshold", cl::Hidden, cl::desc("Threshold for inlining addition operands into a SCEV"), cl::init(500))
static cl::opt< unsigned > MaxLoopGuardCollectionDepth("scalar-evolution-max-loop-guard-collection-depth", cl::Hidden, cl::desc("Maximum depth for recursive loop guard collection"), cl::init(1))
static cl::opt< bool > VerifyIR("scev-verify-ir", cl::Hidden, cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), cl::init(false))
static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, Value *&C, Value *&LHS, Value *&RHS)
static const SCEV * getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, ScalarEvolution *SE, unsigned Depth)
static std::optional< APInt > MinOptional(std::optional< APInt > X, std::optional< APInt > Y)
Helper function to compare optional APInts: (a) if X and Y both exist, return min(X,...
static cl::opt< unsigned > MulOpsInlineThreshold("scev-mulops-inline-threshold", cl::Hidden, cl::desc("Threshold for inlining multiplication operands into a SCEV"), cl::init(32))
static void GroupByComplexity(SmallVectorImpl< const SCEV * > &Ops, LoopInfo *LI, DominatorTree &DT)
Given a list of SCEV objects, order them by their complexity, and group objects of the same complexit...
static const SCEV * constantFoldAndGroupOps(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, SmallVectorImpl< const SCEV * > &Ops, FoldT Fold, IsIdentityT IsIdentity, IsAbsorberT IsAbsorber)
Performs a number of common optimizations on the passed Ops.
static std::optional< const SCEV * > createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, const SCEV *TrueExpr, const SCEV *FalseExpr)
static Constant * BuildConstantFromSCEV(const SCEV *V)
This builds up a Constant using the ConstantExpr interface.
static ConstantInt * EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, ScalarEvolution &SE)
static const SCEV * BinomialCoefficient(const SCEV *It, unsigned K, ScalarEvolution &SE, Type *ResultTy)
Compute BC(It, K). The result has width W. Assume, K > 0.
static cl::opt< unsigned > MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), cl::init(8))
static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, const SCEV *Candidate)
Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
static PHINode * getConstantEvolvingPHI(Value *V, const Loop *L)
getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node in the loop that V is deri...
static const SCEV * SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, SmallVectorImpl< const SCEVPredicate * > *Predicates, ScalarEvolution &SE, const Loop *L)
Finds the minimum unsigned root of the following equation:
static cl::opt< unsigned > MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, cl::desc("Maximum number of iterations SCEV will " "symbolically execute a constant " "derived loop"), cl::init(100))
static bool MatchBinarySub(const SCEV *S, const SCEV *&LHS, const SCEV *&RHS)
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static void PrintSCEVWithTypeHint(raw_ostream &OS, const SCEV *S)
When printing a top-level SCEV for trip counts, it's helpful to include a type for constants which ar...
static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, const Loop *L)
static bool containsConstantInAddMulChain(const SCEV *StartExpr)
Determine if any of the operands in this SCEV are a constant or if any of the add or multiply express...
static const SCEV * getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, ScalarEvolution *SE, unsigned Depth)
static bool hasHugeExpression(ArrayRef< const SCEV * > Ops)
Returns true if Ops contains a huge SCEV (the subtree of S contains at least HugeExprThreshold nodes)...
static cl::opt< unsigned > MaxPhiSCCAnalysisSize("scalar-evolution-max-scc-analysis-depth", cl::Hidden, cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " "Phi strongly connected components"), cl::init(8))
static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
static cl::opt< unsigned > MaxSCEVOperationsImplicationDepth("scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, cl::desc("Maximum depth of recursive SCEV operations implication analysis"), cl::init(2))
static void PushDefUseChildren(Instruction *I, SmallVectorImpl< Instruction * > &Worklist, SmallPtrSetImpl< Instruction * > &Visited)
Push users of the given Instruction onto the given Worklist.
static std::optional< APInt > SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, const ConstantRange &Range, ScalarEvolution &SE)
Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n iterations.
static cl::opt< bool > UseContextForNoWrapFlagInference("scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden, cl::desc("Infer nuw/nsw flags using context where suitable"), cl::init(true))
static cl::opt< bool > EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, cl::desc("Handle <= and >= in finite loops"), cl::init(true))
static std::optional< std::tuple< APInt, APInt, APInt, APInt, unsigned > > GetQuadraticEquation(const SCEVAddRecExpr *AddRec)
For a given quadratic addrec, generate coefficients of the corresponding quadratic equation,...
static bool isKnownPredicateExtendIdiom(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
static std::optional< BinaryOp > MatchBinaryOp(Value *V, const DataLayout &DL, AssumptionCache &AC, const DominatorTree &DT, const Instruction *CxtI)
Try to map V into a BinaryOp, and return std::nullopt on failure.
static std::optional< APInt > SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE)
Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n iterations.
static std::optional< APInt > TruncIfPossible(std::optional< APInt > X, unsigned BitWidth)
Helper function to truncate an optional APInt to a given BitWidth.
static cl::opt< unsigned > MaxSCEVCompareDepth("scalar-evolution-max-scev-compare-depth", cl::Hidden, cl::desc("Maximum depth of recursive SCEV complexity comparisons"), cl::init(32))
static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, const SCEVConstant *ConstantTerm, const SCEVAddExpr *WholeAddExpr)
static cl::opt< unsigned > MaxConstantEvolvingDepth("scalar-evolution-max-constant-evolving-depth", cl::Hidden, cl::desc("Maximum depth of recursive constant evolving"), cl::init(32))
static ConstantRange getRangeForAffineARHelper(APInt Step, const ConstantRange &StartRange, const APInt &MaxBECount, bool Signed)
static std::optional< ConstantRange > GetRangeFromMetadata(Value *V)
Helper method to assign a range to V from metadata present in the IR.
static cl::opt< unsigned > HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, cl::desc("Size of the expression which is considered huge"), cl::init(4096))
static Type * isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, bool &Signed, ScalarEvolution &SE)
Helper function to createAddRecFromPHIWithCasts.
static Constant * EvaluateExpression(Value *V, const Loop *L, DenseMap< Instruction *, Constant * > &Vals, const DataLayout &DL, const TargetLibraryInfo *TLI)
EvaluateExpression - Given an expression that passes the getConstantEvolvingPHI predicate,...
static const SCEV * MatchNotExpr(const SCEV *Expr)
If Expr computes ~A, return A else return nullptr.
static cl::opt< unsigned > MaxValueCompareDepth("scalar-evolution-max-value-compare-depth", cl::Hidden, cl::desc("Maximum depth of recursive value complexity comparisons"), cl::init(2))
static cl::opt< bool, true > VerifySCEVOpt("verify-scev", cl::Hidden, cl::location(VerifySCEV), cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"))
static const SCEV * getSignedOverflowLimitForStep(const SCEV *Step, ICmpInst::Predicate *Pred, ScalarEvolution *SE)
static SCEV::NoWrapFlags StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, const ArrayRef< const SCEV * > Ops, SCEV::NoWrapFlags Flags)
static cl::opt< unsigned > MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, cl::desc("Maximum depth of recursive arithmetics"), cl::init(32))
static bool HasSameValue(const SCEV *A, const SCEV *B)
SCEV structural equivalence is usually sufficient for testing whether two expressions are equal,...
static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow)
Compute the result of "n choose k", the binomial coefficient.
static std::optional< int > CompareSCEVComplexity(const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, DominatorTree &DT, unsigned Depth=0)
static bool CollectAddOperandsWithScales(SmallDenseMap< const SCEV *, APInt, 16 > &M, SmallVectorImpl< const SCEV * > &NewOps, APInt &AccumulatedConstant, ArrayRef< const SCEV * > Ops, const APInt &Scale, ScalarEvolution &SE)
Process the given Ops list, which is a list of operands to be added under the given scale,...
static bool canConstantEvolve(Instruction *I, const Loop *L)
Determine whether this instruction can constant evolve within this loop assuming its operands can all...
static PHINode * getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, DenseMap< Instruction *, PHINode * > &PHIMap, unsigned Depth)
getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by recursing through each instructi...
static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind)
static cl::opt< bool > VerifySCEVStrict("verify-scev-strict", cl::Hidden, cl::desc("Enable stricter verification with -verify-scev is passed"))
static Constant * getOtherIncomingValue(PHINode *PN, BasicBlock *BB)
static cl::opt< bool > UseExpensiveRangeSharpening("scalar-evolution-use-expensive-range-sharpening", cl::Hidden, cl::init(false), cl::desc("Use more powerful methods of sharpening expression ranges. May " "be costly in terms of compile time"))
static const SCEV * getUnsignedOverflowLimitForStep(const SCEV *Step, ICmpInst::Predicate *Pred, ScalarEvolution *SE)
static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Is LHS Pred RHS true on the virtue of LHS or RHS being a Min or Max expression?
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
static bool InBlock(const Value *V, const BasicBlock *BB)
Provides some synthesis utilities to produce sequences of values.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SymbolRef::Type getType(const Symbol *Sym)
LocallyHashedType DenseMapInfo< LocallyHashedType >::Empty
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
Virtual Register Rewriter
static const uint32_t IV[8]
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
APInt abs() const
Get the absolute value.
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned countTrailingZeros() const
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt multiplicativeInverse() const
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
bool isOne() const
Determine if this is a value of 1.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
This templated class represents "all analyses that operate over <aparticular IR unit>" (e....
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Represent the analysis usage information of a pass.
void setPreservesAll()
Set by analyses that do not transform their input at all.
AnalysisUsage & addRequiredTransitive()
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A function analysis which provides an AssumptionCache.
An immutable pass that tracks lazily created AssumptionCache objects.
A cache of @llvm.assume calls within a function.
MutableArrayRef< WeakVH > assumptions()
Access the list of assumption handles currently tracked for this function.
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
const Instruction & front() const
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI unsigned getNoWrapKind() const
Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
LLVM_ATTRIBUTE_RETURNS_NONNULL void * Allocate(size_t Size, Align Alignment)
Allocate space at the specified alignment.
This class represents a function call, abstracting a target machine's calling convention.
virtual void deleted()
Callback for Value destruction.
bool isFalseWhenEqual() const
This is just a convenience.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getGetElementPtr(Type *Ty, Constant *C, ArrayRef< Constant * > IdxList, GEPNoWrapFlags NW=GEPNoWrapFlags::none(), std::optional< ConstantRange > InRange=std::nullopt, Type *OnlyIfReducedTy=nullptr)
Getelementptr form.
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getNeg(Constant *C, bool HasNSW=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
This is the shared class of boolean and integer constants.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
const APInt & getValue() const
Return the constant as an APInt value reference.
static LLVM_ABI ConstantInt * getBool(LLVMContext &Context, bool V)
This class represents a range of values.
LLVM_ABI ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
LLVM_ABI ConstantRange zextOrTrunc(uint32_t BitWidth) const
Make this range have the bit width given by BitWidth.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
LLVM_ABI bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const
Set up Pred and RHS such that ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.
const APInt & getLower() const
Return the lower value for this range.
LLVM_ABI bool isFullSet() const
Return true if this set contains all of the elements possible for this data-type.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI bool isEmptySet() const
Return true if this set contains no members.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool isSignWrappedSet() const
Return true if this set wraps around the signed domain.
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI bool isWrappedSet() const
Return true if this set wraps around the unsigned domain.
LLVM_ABI void print(raw_ostream &OS) const
Print out the bounds to a stream.
LLVM_ABI ConstantRange truncate(uint32_t BitWidth, unsigned NoWrapKind=0) const
Return a new range in the specified integer type, which must be strictly smaller than the current typ...
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
const APInt & getUpper() const
Return the upper value for this range.
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
static LLVM_ABI ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind)
Produce the largest range containing all X such that "X BinOp Y" is guaranteed not to wrap (overflow)...
LLVM_ABI unsigned getMinSignedBits() const
Compute the maximal number of bits needed to represent every value in this signed range.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
LLVM_ABI ConstantRange sextOrTrunc(uint32_t BitWidth) const
Make this range have the bit width given by BitWidth.
static LLVM_ABI ConstantRange makeExactNoWrapRegion(Instruction::BinaryOps BinOp, const APInt &Other, unsigned NoWrapKind)
Produce the range that contains X if and only if "X BinOp Other" does not wrap.
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI IntegerType * getIndexType(LLVMContext &C, unsigned AddressSpace) const
Returns the type of a GEP index in AddressSpace.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
iterator find(const_arg_type_t< KeyT > Val)
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
DenseMapIterator< KeyT, ValueT, KeyInfoT, BucketT > iterator
iterator find_as(const LookupKeyT &Val)
Alternate version of find() which allows a different, and possibly less expensive,...
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Analysis pass which computes a DominatorTree.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID,...
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Represents flags for the getelementptr instruction/expression.
bool hasNoUnsignedSignedWrap() const
bool hasNoUnsignedWrap() const
static GEPNoWrapFlags none()
static LLVM_ABI Type * getTypeAtIndex(Type *Ty, Value *Idx)
Return the type of the element at the given index of an indexable type.
Module * getParent()
Get the module that this global value is contained inside of...
static bool isPrivateLinkage(LinkageTypes Linkage)
static bool isInternalLinkage(LinkageTypes Linkage)
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getCmpPredicate() const
static bool isGE(Predicate P)
Return true if the predicate is SGE or UGE.
CmpPredicate getSwappedCmpPredicate() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
CmpPredicate getInverseCmpPredicate() const
Predicate getNonStrictCmpPredicate() const
For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static CmpPredicate getInverseCmpPredicate(CmpPredicate Pred)
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
static bool isLE(Predicate P)
Return true if the predicate is SLE or ULE.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI bool isIdenticalToWhenDefined(const Instruction *I, bool IntersectAttrs=false) const LLVM_READONLY
This is like isIdenticalTo, except that it ignores the SubclassOptionalData flags,...
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
An instruction for reading from memory.
Analysis pass that exposes the LoopInfo for a function.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
BlockT * getLoopPredecessor() const
If the given loop's header has exactly one unique predecessor outside the loop, return it.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
unsigned getLoopDepth(const BlockT *BB) const
Return the loop nesting level of the specified block.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
The legacy pass manager's analysis pass to compute loop information.
Represents a single loop in the control flow graph.
bool isLoopInvariant(const Value *V) const
Return true if the specified value is loop invariant.
A Module instance is used to store all the information related to an LLVM module.
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
iterator_range< const_block_iterator > blocks() const
op_range incoming_values()
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
PointerIntPair - This class implements a pair of a pointer and small integer.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
LLVM_ABI void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth) const
Print the SCEV mappings done by the Predicated Scalar Evolution.
LLVM_ABI bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const
Check if AR1 and AR2 are equal, while taking into account Equal predicates in Preds.
LLVM_ABI PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L)
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
PreservedAnalysisChecker getChecker() const
Build a checker for this PreservedAnalyses and the specified analysis type.
constexpr bool isValid() const
This node represents an addition of some number of SCEVs.
This node represents a polynomial recurrence on the trip count of the specified loop.
friend class ScalarEvolution
const SCEV * getStart() const
LLVM_ABI const SCEV * evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const
Return the value of this chain of recurrences at the specified iteration number.
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
void setNoWrapFlags(NoWrapFlags Flags)
Set flags for a recurrence without clearing any previously set flags.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
bool isQuadratic() const
Return true if this represents an expression A + B*x + C*x^2 where A, B and C are loop invariant valu...
LLVM_ABI const SCEV * getNumIterationsInRange(const ConstantRange &Range, ScalarEvolution &SE) const
Return the number of iterations of this loop that produce values in the specified constant range.
LLVM_ABI const SCEVAddRecExpr * getPostIncExpr(ScalarEvolution &SE) const
Return an expression representing the value of this expression one iteration of the loop ahead.
const Loop * getLoop() const
This is the base class for unary cast operator classes.
const SCEV * getOperand() const
LLVM_ABI SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, const SCEV *op, Type *ty)
void setNoWrapFlags(NoWrapFlags Flags)
Set flags for a non-recurrence without clearing previously set flags.
This class represents an assumption that the expression LHS Pred RHS evaluates to true,...
SCEVComparePredicate(const FoldingSetNodeIDRef ID, const ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
bool isAlwaysTrue() const override
Returns true if the predicate is always true.
void print(raw_ostream &OS, unsigned Depth=0) const override
Prints a textual representation of this predicate with an indentation of Depth.
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Implementation of the SCEVPredicate interface.
This class represents a constant integer value.
ConstantInt * getValue() const
const APInt & getAPInt() const
This is the base class for unary integral cast operator classes.
LLVM_ABI SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, const SCEV *op, Type *ty)
This node is the base class min/max selections.
static enum SCEVTypes negate(enum SCEVTypes T)
This node represents multiplication of some number of SCEVs.
This node is a base class providing common functionality for n'ary operators.
bool hasNoUnsignedWrap() const
bool hasNoSelfWrap() const
size_t getNumOperands() const
bool hasNoSignedWrap() const
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
const SCEV * getOperand(unsigned i) const
const SCEV *const * Operands
ArrayRef< const SCEV * > operands() const
This class represents an assumption made using SCEV expressions which can be checked at run-time.
SCEVPredicate(const SCEVPredicate &)=default
virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const =0
Returns true if this predicate implies N.
This class represents a cast from a pointer to a pointer-sized integer value.
This visitor recursively visits a SCEV expression and re-writes it.
const SCEV * visitSignExtendExpr(const SCEVSignExtendExpr *Expr)
const SCEV * visit(const SCEV *S)
const SCEV * visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr)
const SCEV * visitSMinExpr(const SCEVSMinExpr *Expr)
const SCEV * visitUMinExpr(const SCEVUMinExpr *Expr)
This class represents a signed minimum selection.
This node is the base class for sequential/in-order min/max selections.
static SCEVTypes getEquivalentNonSequentialSCEVType(SCEVTypes Ty)
This class represents a sign extension of a small integer value to a larger integer value.
Visit all nodes in the expression tree using worklist traversal.
This class represents a truncation of an integer value to a smaller integer value.
This class represents a binary unsigned division operation.
const SCEV * getLHS() const
const SCEV * getRHS() const
This class represents an unsigned minimum selection.
This class represents a composition of other SCEV predicates, and is the class that most clients will...
void print(raw_ostream &OS, unsigned Depth) const override
Prints a textual representation of this predicate with an indentation of Depth.
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Returns true if this predicate implies N.
SCEVUnionPredicate(ArrayRef< const SCEVPredicate * > Preds, ScalarEvolution &SE)
Union predicates don't get cached so create a dummy set ID for it.
bool isAlwaysTrue() const override
Implementation of the SCEVPredicate interface.
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents the value of vscale, as used when defining the length of a scalable vector or r...
This class represents an assumption made on an AddRec expression.
IncrementWrapFlags
Similar to SCEV::NoWrapFlags, but with slightly different semantics for FlagNUSW.
SCEVWrapPredicate(const FoldingSetNodeIDRef ID, const SCEVAddRecExpr *AR, IncrementWrapFlags Flags)
bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const override
Returns true if this predicate implies N.
static SCEVWrapPredicate::IncrementWrapFlags setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OnFlags)
void print(raw_ostream &OS, unsigned Depth=0) const override
Prints a textual representation of this predicate with an indentation of Depth.
bool isAlwaysTrue() const override
Returns true if the predicate is always true.
const SCEVAddRecExpr * getExpr() const
Implementation of the SCEVPredicate interface.
static SCEVWrapPredicate::IncrementWrapFlags clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OffFlags)
Convenient IncrementWrapFlags manipulation methods.
static SCEVWrapPredicate::IncrementWrapFlags getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE)
Returns the set of SCEVWrapPredicate no wrap flags implied by a SCEVAddRecExpr.
IncrementWrapFlags getFlags() const
Returns the set assumed no overflow flags.
This class represents a zero extension of a small integer value to a larger integer value.
This class represents an analyzed expression in the program.
LLVM_ABI ArrayRef< const SCEV * > operands() const
Return operands of this SCEV expression.
unsigned short getExpressionSize() const
LLVM_ABI bool isOne() const
Return true if the expression is a constant one.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
LLVM_ABI void dump() const
This method is used for debugging.
LLVM_ABI bool isAllOnesValue() const
Return true if the expression is a constant all-ones value.
LLVM_ABI bool isNonConstantNegative() const
Return true if the specified scev is negated, but not a constant.
LLVM_ABI void print(raw_ostream &OS) const
Print out the internal representation of this scalar to the specified stream.
SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, unsigned short ExpressionSize)
SCEVTypes getSCEVType() const
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
NoWrapFlags
NoWrapFlags are bitfield indices into SubclassData.
Analysis pass that exposes the ScalarEvolution for a function.
LLVM_ABI ScalarEvolution run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
void print(raw_ostream &OS, const Module *=nullptr) const override
print - Print out the internal state of the pass.
bool runOnFunction(Function &F) override
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
void releaseMemory() override
releaseMemory() - This member can be implemented by a pass if it wants to be able to release its memo...
void verifyAnalysis() const override
verifyAnalysis() - This member can be implemented by a analysis pass to check state of analysis infor...
ScalarEvolutionWrapperPass()
static LLVM_ABI LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
LLVM_ABI const SCEV * rewrite(const SCEV *Expr) const
Try to apply the collected loop guards to Expr.
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
static bool hasFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags TestFlags)
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI bool isKnownOnEveryIteration(CmpPredicate Pred, const SCEVAddRecExpr *LHS, const SCEV *RHS)
Test if the condition described by Pred, LHS, RHS is known to be true on every iteration of the loop ...
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterationsImpl(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
LLVM_ABI const SCEV * getSMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getUDivCeilSCEV(const SCEV *N, const SCEV *D)
Compute ceil(N / D).
LLVM_ABI const SCEV * getGEPExpr(GEPOperator *GEP, const SmallVectorImpl< const SCEV * > &IndexExprs)
Returns an expression for a GEP.
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterations(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L at given Context duri...
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
LLVM_ABI bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getPredicatedConstantMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getConstantMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
LLVM_ABI const SCEV * removePointerBase(const SCEV *S)
Compute an expression equivalent to S - getPointerBase(S).
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
LLVM_ABI bool isKnownNonZero(const SCEV *S)
Test if the given expression is known to be non-zero.
LLVM_ABI const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
LLVM_ABI const SCEV * getSMinExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags)
Update no-wrap flags of an AddRec.
LLVM_ABI const SCEV * getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS)
Promote the operands to the wider of the types using zero-extension, and then perform a umax operatio...
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?
LLVM_ABI ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates=false)
Compute the number of times the backedge of the specified loop will execute if its exit condition wer...
LLVM_ABI const SCEV * getZeroExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI unsigned getSmallConstantTripMultiple(const Loop *L, const SCEV *ExitCount)
Returns the largest constant divisor of the trip count as a normal unsigned value,...
LLVM_ABI uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getPredicatedBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getBackedgeTakenCount, except it will add a set of SCEV predicates to Predicates that are ...
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
ConstantRange getSignedRange(const SCEV *S)
Determine the signed range for a particular SCEV.
LLVM_ABI const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool loopHasNoAbnormalExits(const Loop *L)
Return true if the loop has no abnormal exits.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
LLVM_ABI ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC, DominatorTree &DT, LoopInfo &LI)
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getTruncateOrNoop(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty)
LLVM_ABI const SCEV * getSequentialMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
LLVM_ABI const SCEV * getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth=0)
LLVM_ABI std::optional< bool > evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Check whether the condition described by Pred, LHS, and RHS is true or false in the given Context.
LLVM_ABI unsigned getSmallConstantMaxTripCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Returns the upper bound of the loop trip count as a normal unsigned value.
LLVM_ABI const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
LLVM_ABI bool isBackedgeTakenCountMaxOrZero(const Loop *L)
Return true if the backedge taken count is either the value returned by getConstantMaxBackedgeTakenCo...
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
APInt getUnsignedRangeMin(const SCEV *S)
Determine the min of the unsigned range for a particular SCEV.
LLVM_ABI bool SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS, const SCEV *&RHS, unsigned Depth=0)
Simplify LHS and RHS in a comparison with predicate Pred.
LLVM_ABI const SCEV * getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo)
Return an expression for offsetof on the given field with type IntTy.
LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
LLVM_ABI bool containsAddRecurrence(const SCEV *S)
Return true if the SCEV is a scAddRecExpr or it contains scAddRecExpr.
LLVM_ABI const SCEV * getSignExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
LLVM_ABI bool hasOperand(const SCEV *S, const SCEV *Op) const
Test whether the given SCEV has Op as a direct or indirect operand.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
LLVM_ABI const SCEVPredicate * getComparePredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getNotSCEV(const SCEV *V)
Return the SCEV object corresponding to ~V.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B)
Return true if there exists a point in the program at which both A and B could be operands to the sam...
ConstantRange getUnsignedRange(const SCEV *S)
Determine the unsigned range for a particular SCEV.
LLVM_ABI void print(raw_ostream &OS) const
LLVM_ABI const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
LLVM_ABI const SCEV * getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock, SmallVectorImpl< const SCEVPredicate * > *Predicates, ExitCountKind Kind=Exact)
Same as above except this uses the predicated backedge taken info and may require predicates.
static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags)
LLVM_ABI void forgetTopmostLoop(const Loop *L)
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
LLVM_ABI const SCEV * getNoopOrAnyExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LLVM_ABI const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
@ MonotonicallyDecreasing
@ MonotonicallyIncreasing
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI=nullptr)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L, return a LoopInvaria...
LLVM_ABI const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
LLVM_ABI const SCEVPredicate * getWrapPredicate(const SCEVAddRecExpr *AR, SCEVWrapPredicate::IncrementWrapFlags AddedFlags)
LLVM_ABI bool isLoopBackedgeGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether the backedge of the loop is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI APInt getNonZeroConstantMultiple(const SCEV *S)
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags)
LLVM_ABI bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
LLVM_ABI BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB)
Return the "disposition" of the given SCEV with respect to the given block.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
LLVM_ABI const SCEV * getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
Promote the operands to the wider of the types using zero-extension, and then perform a umin operatio...
LLVM_ABI bool loopIsFiniteByAssumption(const Loop *L)
Return true if this loop is finite by assumption.
LLVM_ABI const SCEV * getExistingSCEV(Value *V)
Return an existing SCEV for V if there is one, otherwise return nullptr.
LLVM_ABI APInt getConstantMultiple(const SCEV *S, const Instruction *CtxI=nullptr)
Returns the max constant multiple of S.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopComputable
The SCEV varies predictably with the loop.
@ LoopVariant
The SCEV is loop-variant (unknown).
@ LoopInvariant
The SCEV is loop-invariant.
friend class SCEVCallbackVH
LLVM_ABI bool isKnownMultipleOf(const SCEV *S, uint64_t M, SmallVectorImpl< const SCEVPredicate * > &Assumptions)
Check that S is a multiple of M.
LLVM_ABI const SCEV * getAnyExtendExpr(const SCEV *Op, Type *Ty)
getAnyExtendExpr - Return a SCEV for the given operand extended with unspecified bits out to the give...
LLVM_ABI bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero=false, bool OrNegative=false)
Test if the given expression is known to be a power of 2.
LLVM_ABI std::optional< SCEV::NoWrapFlags > getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO)
Parse NSW/NUW flags from add/sub/mul IR binary operation Op into SCEV no-wrap flags,...
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI bool containsUndefs(const SCEV *S) const
Return true if the SCEV expression contains an undef value.
LLVM_ABI std::optional< MonotonicPredicateType > getMonotonicPredicateType(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred)
If, for all loop invariant X, the predicate "LHS `Pred` X" is monotonically increasing or decreasing,...
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
LLVM_ABI uint32_t getMinTrailingZeros(const SCEV *S, const Instruction *CtxI=nullptr)
Determine the minimum number of zero bits that S is guaranteed to end in (at every loop iteration).
BlockDisposition
An enum describing the relationship between a SCEV and a basic block.
@ DominatesBlock
The SCEV dominates the block.
@ ProperlyDominatesBlock
The SCEV properly dominates the block.
@ DoesNotDominateBlock
The SCEV does not dominate the block.
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI void getPoisonGeneratingValues(SmallPtrSetImpl< const Value * > &Result, const SCEV *S)
Return the set of Values that, if poison, will definitively result in S being poison as well.
LLVM_ABI void forgetLoopDispositions()
Called when the client has changed the disposition of values in this loop.
LLVM_ABI const SCEV * getVScale(Type *Ty)
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
LLVM_ABI bool hasComputableLoopEvolution(const SCEV *S, const Loop *L)
Return true if the given SCEV changes value in a known way in the specified loop.
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
LLVM_ABI const SCEV * getMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
LLVM_ABI void forgetAllLoops()
LLVM_ABI bool dominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV dominate the specified basic block.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
ExitCountKind
The terms "backedge taken count" and "exit count" are used interchangeably to refer to the number of ...
@ SymbolicMaximum
An expression which provides an upper bound on the exact trip count.
@ ConstantMaximum
A constant which provides an upper bound on the exact trip count.
@ Exact
An expression exactly describing the number of times the backedge has executed when a loop is exited.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEVAddRecExpr * convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Preds)
Tries to convert the S expression to an AddRec expression, adding additional predicates to Preds as r...
LLVM_ABI const SCEV * getElementSize(Instruction *Inst)
Return the size of an element read or written by Inst.
LLVM_ABI const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
LLVM_ABI std::optional< bool > evaluatePredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Check whether the condition described by Pred, LHS, and RHS is true or false.
LLVM_ABI const SCEV * getUnknown(Value *V)
LLVM_ABI std::optional< std::pair< const SCEV *, SmallVector< const SCEVPredicate *, 3 > > > createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI)
Checks if SymbolicPHI can be rewritten as an AddRecExpr under some Predicates.
LLVM_ABI const SCEV * getTruncateOrZeroExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask)
Convenient NoWrapFlags manipulation that hides enum casts and is visible in the ScalarEvolution name ...
LLVM_ABI std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
LLVM_ABI bool properlyDominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV properly dominate the specified basic block.
LLVM_ABI const SCEV * rewriteUsingPredicate(const SCEV *S, const Loop *L, const SCEVPredicate &A)
Re-writes the SCEV according to the Predicates in A.
LLVM_ABI std::pair< const SCEV *, const SCEV * > SplitIntoInitAndPostInc(const Loop *L, const SCEV *S)
Splits SCEV expression S into two SCEVs.
LLVM_ABI bool canReuseInstruction(const SCEV *S, Instruction *I, SmallVectorImpl< Instruction * > &DropPoisonGeneratingInsts)
Check whether it is poison-safe to represent the expression S using the instruction I.
LLVM_ABI bool isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI const SCEV * getPredicatedSymbolicMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
LLVM_ABI ~ScalarEvolution()
LLVM_ABI const SCEV * getUDivExactExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI void registerUser(const SCEV *User, ArrayRef< const SCEV * > Ops)
Notify this ScalarEvolution that User directly uses SCEVs in Ops.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the basic block is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool containsErasedValue(const SCEV *S) const
Return true if the SCEV expression contains a Value that has been optimised out and is now a nullptr.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI bool isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
We'd like to check the predicate on every iteration of the most dominated loop between loops used in ...
const SCEV * getSymbolicMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEV that is greater than or equal to (i.e.
APInt getSignedRangeMax(const SCEV *S)
Determine the max of the signed range for a particular SCEV.
LLVM_ABI void verify() const
LLVMContext & getContext() const
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
iterator insert(iterator I, T &&Elt)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
TypeSize getElementOffset(unsigned Idx) const
TypeSize getSizeInBits() const
Class to represent struct types.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isPointerTy() const
True if this is an instance of PointerType.
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntOrPtrTy() const
Return true if this is an integer type or a pointer type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
unsigned getValueID() const
Return an ID for the concrete type of this object.
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
const ParentTy * getParent() const
This class implements an extremely fast bulk output stream that can only output to a stream.
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
LLVM_ABI std::optional< APInt > SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, unsigned RangeWidth)
Let q(n) = An^2 + Bn + C, and BW = bit width of the value range (e.g.
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
LLVM_ABI APInt GreatestCommonDivisor(APInt A, APInt B)
Compute GCD of two unsigned APInt values.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI)
Return the minimum value of an extendable operand.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getDeclarationIfExists(const Module *M, ID id)
Look up the Function declaration of the intrinsic id in the Module M and return it if it exists.
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
bool match(Val *V, const Pattern &P)
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
class_match< const SCEVVScale > m_SCEVVScale()
bind_cst_ty m_scev_APInt(const APInt *&C)
Match an SCEV constant and bind it to an APInt.
cst_pred_ty< is_all_ones > m_scev_AllOnes()
Match an integer with all bits set.
SCEVUnaryExpr_match< SCEVZeroExtendExpr, Op0_t > m_scev_ZExt(const Op0_t &Op0)
class_match< const SCEVConstant > m_SCEVConstant()
cst_pred_ty< is_one > m_scev_One()
Match an integer 1.
specificloop_ty m_SpecificLoop(const Loop *L)
SCEVAffineAddRec_match< Op0_t, Op1_t, class_match< const Loop > > m_scev_AffineAddRec(const Op0_t &Op0, const Op1_t &Op1)
SCEVUnaryExpr_match< SCEVSignExtendExpr, Op0_t > m_scev_SExt(const Op0_t &Op0)
cst_pred_ty< is_zero > m_scev_Zero()
Match an integer 0.
bool match(const SCEV *S, const Pattern &P)
SCEVBinaryExpr_match< SCEVUDivExpr, Op0_t, Op1_t > m_scev_UDiv(const Op0_t &Op0, const Op1_t &Op1)
specificscev_ty m_scev_Specific(const SCEV *S)
Match if we have a specific specified SCEV.
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagNUW, true > m_scev_c_NUWMul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const Loop > m_Loop()
bind_ty< const SCEVAddExpr > m_scev_Add(const SCEVAddExpr *&V)
bind_ty< const SCEVUnknown > m_SCEVUnknown(const SCEVUnknown *&V)
SCEVBinaryExpr_match< SCEVMulExpr, Op0_t, Op1_t, SCEV::FlagAnyWrap, true > m_scev_c_Mul(const Op0_t &Op0, const Op1_t &Op1)
class_match< const SCEV > m_SCEV()
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
NodeAddr< PhiNode * > Phi
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
void visitAll(const SCEV *Root, SV &Visitor)
Use SCEVTraversal to visit all nodes in the given expression tree.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
FunctionAddr VTableAddr Value
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt gcd(const DynamicAPInt &A, const DynamicAPInt &B)
void stable_sort(R &&Range)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
SaveAndRestore(T &) -> SaveAndRestore< T >
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr, unsigned DynamicVGPRBlockSize=0)
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
InterleavedRange< Range > interleaved(const Range &R, StringRef Separator=", ", StringRef Prefix="", StringRef Suffix="")
Output range R as a sequence of interleaved elements.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
auto successors(const MachineBasicBlock *BB)
constexpr from_range_t from_range
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
bool set_is_subset(const S1Ty &S1, const S2Ty &S2)
set_is_subset(A, B) - Return true iff A in B
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
unsigned short computeExpressionSize(ArrayRef< const SCEV * > Args)
auto uninitialized_copy(R &&Src, IterTy Dst)
bool isa_and_nonnull(const Y &Val)
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
DomTreeNodeBase< BasicBlock > DomTreeNode
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
auto dyn_cast_or_null(const Y &Val)
void erase(Container &C, ValueType V)
Wrapper function to remove a value from a container:
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
iterator_range< pointee_iterator< WrappedIteratorT > > make_pointee_range(RangeT &&Range)
auto reverse(ContainerTy &&C)
LLVM_ABI bool isMustProgress(const Loop *L)
Return true if this loop can be assumed to make progress.
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI bool isFinite(const Loop *L)
Return true if this loop can be assumed to run for a finite number of iterations.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isPointerTy(const Type *T)
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ Mul
Product of integers.
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
auto count(R &&Range, const E &Element)
Wrapper function around std::count to count the number of times an element Element occurs in the give...
DWARFExpression::Operation Op
auto max_element(R &&Range)
Provide wrappers to std::max_element which take ranges instead of having to pass begin/end explicitly...
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
constexpr bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
iterator_range< df_iterator< T > > depth_first(const T &G)
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI Constant * ConstantFoldInstOperands(const Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
bool SCEVExprContains(const SCEV *Root, PredTy Pred)
Return true if any node in Root satisfies the predicate Pred.
Implement std::hash so that hash_code can be used in STL containers.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A special type used by analysis passes to provide an address that identifies that particular analysis...
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
bool isNonNegative() const
Returns true if this value is known to be non-negative.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
APInt getMinValue() const
Return the minimal unsigned value possible given these KnownBits.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
An object of this class is returned by queries that could not be answered.
LLVM_ABI SCEVCouldNotCompute()
static LLVM_ABI bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class defines a simple visitor class that may be used for various SCEV analysis purposes.
A utility class that uses RAII to save and restore the value of a variable.
Information about the number of loop iterations for which a loop exit's branch condition evaluates to...
LLVM_ABI ExitLimit(const SCEV *E)
Construct either an exact exit limit from a constant, or an unknown one from a SCEVCouldNotCompute.
const SCEV * ExactNotTaken
const SCEV * SymbolicMaxNotTaken
SmallVector< const SCEVPredicate *, 4 > Predicates
A vector of predicate guards for this ExitLimit.
const SCEV * ConstantMaxNotTaken