20#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21#define LLVM_ANALYSIS_SCALAREVOLUTION_H
47class OverflowingBinaryOperator;
63class TargetLibraryInfo;
189 return ID ==
X.FastID;
193 return X.FastID.ComputeHash();
267 return ID ==
X.FastID;
272 return X.FastID.ComputeHash();
292 bool isAlwaysTrue()
const override;
304 return P->getKind() == P_Compare;
343 IncrementAnyWrap = 0,
344 IncrementNUSW = (1 << 0),
345 IncrementNSSW = (1 << 1),
347 IncrementNoWrapMask = (1 << 2) - 1
354 assert((Flags & IncrementNoWrapMask) == Flags &&
"Invalid flags value!");
355 assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
356 "Invalid flags value!");
362 assert((Flags & IncrementNoWrapMask) == Flags &&
"Invalid flags value!");
363 assert((Mask & IncrementNoWrapMask) == Mask &&
"Invalid mask value!");
371 assert((Flags & IncrementNoWrapMask) == Flags &&
"Invalid flags value!");
372 assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
373 "Invalid flags value!");
385 IncrementWrapFlags Flags;
390 IncrementWrapFlags Flags);
399 bool isAlwaysTrue()
const override;
403 return P->getKind() == P_Wrap;
431 bool isAlwaysTrue()
const override;
441 return P->getKind() == P_Union;
482 return TestFlags ==
maskFlags(Flags, TestFlags);
543 LLVM_ABI std::optional<SCEV::NoWrapFlags>
590 unsigned Depth = 0) {
596 unsigned Depth = 0) {
605 unsigned Depth = 0) {
611 unsigned Depth = 0) {
633 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
656 bool Sequential =
false);
658 bool Sequential =
false);
758 bool Sequential =
false);
764 bool Sequential =
false);
855 const SCEV *ExitCount);
1016 return getRangeRef(S, HINT_RANGE_UNSIGNED);
1032 return getRangeRef(S, HINT_RANGE_SIGNED);
1037 return getRangeRef(S, HINT_RANGE_SIGNED).
getSignedMin();
1042 return getRangeRef(S, HINT_RANGE_SIGNED).
getSignedMax();
1063 bool OrNegative =
false);
1089 LLVM_ABI std::pair<const SCEV *, const SCEV *>
1200 bool ControlsOnlyExit,
1201 bool AllowPredicates =
false);
1218 LLVM_ABI std::optional<MonotonicPredicateType>
1233 LLVM_ABI std::optional<LoopInvariantPredicate>
1242 LLVM_ABI std::optional<LoopInvariantPredicate>
1247 const SCEV *MaxIter);
1249 LLVM_ABI std::optional<LoopInvariantPredicate>
1344 bool PreserveNUW =
false;
1345 bool PreserveNSW =
false;
1357 unsigned Depth = 0);
1363 static void collectFromPHI(
1388 return getLoopProperties(L).HasNoAbnormalExits;
1410 const SCEV *
Op =
nullptr;
1411 const Type *Ty =
nullptr;
1425 reinterpret_cast<uintptr_t
>(Ty)));
1429 return std::tie(
Op, Ty,
C) == std::tie(
RHS.Op,
RHS.Ty,
RHS.C);
1439 void deleted()
override;
1440 void allUsesReplacedWith(
Value *New)
override;
1474 std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1516 bool WalkingBEDominatingConds =
false;
1520 bool ProvingSplitPredicate =
false;
1529 APInt getConstantMultipleImpl(
const SCEV *S);
1533 struct ExitNotTakenInfo {
1535 const SCEV *ExactNotTaken;
1536 const SCEV *ConstantMaxNotTaken;
1537 const SCEV *SymbolicMaxNotTaken;
1541 const SCEV *ExactNotTaken,
1542 const SCEV *ConstantMaxNotTaken,
1543 const SCEV *SymbolicMaxNotTaken,
1545 : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1546 ConstantMaxNotTaken(ConstantMaxNotTaken),
1547 SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
1549 bool hasAlwaysTruePredicate()
const {
1550 return Predicates.
empty();
1557 class BackedgeTakenInfo {
1558 friend class ScalarEvolution;
1562 SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1567 const SCEV *ConstantMax =
nullptr;
1571 bool IsComplete =
false;
1575 const SCEV *SymbolicMax =
nullptr;
1578 bool MaxOrZero =
false;
1580 bool isComplete()
const {
return IsComplete; }
1581 const SCEV *getConstantMax()
const {
return ConstantMax; }
1583 LLVM_ABI const ExitNotTakenInfo *getExitNotTaken(
1584 const BasicBlock *ExitingBlock,
1585 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const;
1588 BackedgeTakenInfo() =
default;
1589 BackedgeTakenInfo(BackedgeTakenInfo &&) =
default;
1590 BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) =
default;
1592 using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1595 LLVM_ABI BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts,
1596 bool IsComplete,
const SCEV *ConstantMax,
1601 bool hasAnyInfo()
const {
1602 return !ExitNotTaken.empty() ||
1603 !isa<SCEVCouldNotCompute>(getConstantMax());
1607 bool hasFullInfo()
const {
return isComplete(); }
1628 const Loop *L, ScalarEvolution *SE,
1629 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const;
1636 const SCEV *getExact(
1637 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1638 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const {
1639 if (
auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1640 return ENT->ExactNotTaken;
1642 return SE->getCouldNotCompute();
1646 LLVM_ABI const SCEV *getConstantMax(
1647 ScalarEvolution *SE,
1648 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const;
1651 const SCEV *getConstantMax(
1652 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1653 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const {
1654 if (
auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1655 return ENT->ConstantMaxNotTaken;
1657 return SE->getCouldNotCompute();
1661 LLVM_ABI const SCEV *getSymbolicMax(
1662 const Loop *L, ScalarEvolution *SE,
1663 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr);
1666 const SCEV *getSymbolicMax(
1667 const BasicBlock *ExitingBlock, ScalarEvolution *SE,
1668 SmallVectorImpl<const SCEVPredicate *> *Predicates =
nullptr)
const {
1669 if (
auto *ENT = getExitNotTaken(ExitingBlock, Predicates))
1670 return ENT->SymbolicMaxNotTaken;
1672 return SE->getCouldNotCompute();
1677 LLVM_ABI bool isConstantMaxOrZero(ScalarEvolution *SE)
const;
1682 DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1686 DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1689 DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1696 DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1701 DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1706 DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1707 ValuesAtScopesUsers;
1710 DenseMap<
const SCEV *,
1711 SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1714 struct LoopProperties {
1720 bool HasNoAbnormalExits;
1724 bool HasNoSideEffects;
1728 DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1731 LLVM_ABI LoopProperties getLoopProperties(
const Loop *L);
1733 bool loopHasNoSideEffects(
const Loop *L) {
1734 return getLoopProperties(L).HasNoSideEffects;
1743 SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1747 BlockDisposition computeBlockDisposition(
const SCEV *S,
const BasicBlock *BB);
1750 DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1753 DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1756 DenseMap<const SCEV *, ConstantRange> SignedRanges;
1759 enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1762 const ConstantRange &setRange(
const SCEV *S, RangeSignHint Hint,
1764 DenseMap<const SCEV *, ConstantRange> &Cache =
1765 Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1767 auto Pair = Cache.insert_or_assign(S, std::move(CR));
1768 return Pair.first->second;
1774 LLVM_ABI const ConstantRange &getRangeRef(
const SCEV *S, RangeSignHint Hint,
1775 unsigned Depth = 0);
1779 const ConstantRange &getRangeRefIter(
const SCEV *S, RangeSignHint Hint);
1783 ConstantRange getRangeForAffineAR(
const SCEV *Start,
const SCEV *Step,
1784 const APInt &MaxBECount);
1788 ConstantRange getRangeForAffineNoSelfWrappingAR(
const SCEVAddRecExpr *AddRec,
1789 const SCEV *MaxBECount,
1791 RangeSignHint SignHint);
1796 ConstantRange getRangeViaFactoring(
const SCEV *Start,
const SCEV *Step,
1797 const APInt &MaxBECount);
1803 ConstantRange getRangeForUnknownRecurrence(
const SCEVUnknown *U);
1807 const SCEV *createSCEV(Value *V);
1811 const SCEV *createSCEVIter(Value *V);
1815 const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1819 const SCEV *createNodeForPHIWithIdenticalOperands(PHINode *PN);
1822 const SCEV *createNodeForPHI(PHINode *PN);
1825 const SCEV *createAddRecFromPHI(PHINode *PN);
1828 const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1829 Value *StartValueV);
1832 const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1838 std::optional<const SCEV *>
1839 createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *
Cond,
1840 Value *TrueVal, Value *FalseVal);
1843 const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *
I, Value *
Cond,
1851 const SCEV *createNodeForSelectOrPHI(Value *V, Value *
Cond, Value *TrueVal,
1855 const SCEV *createNodeForGEP(GEPOperator *
GEP);
1859 const SCEV *computeSCEVAtScope(
const SCEV *S,
const Loop *L);
1864 BackedgeTakenInfo &getBackedgeTakenInfo(
const Loop *L);
1868 BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(
const Loop *L);
1873 BackedgeTakenInfo computeBackedgeTakenCount(
const Loop *L,
1874 bool AllowPredicates =
false);
1880 ExitLimit computeExitLimit(
const Loop *L, BasicBlock *ExitingBlock,
1881 bool IsOnlyExit,
bool AllowPredicates =
false);
1886 class ExitLimitCache {
1892 SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1896 bool AllowPredicates;
1899 ExitLimitCache(
const Loop *L,
bool ExitIfTrue,
bool AllowPredicates)
1900 :
L(
L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1902 LLVM_ABI std::optional<ExitLimit>
find(
const Loop *L, Value *ExitCond,
1904 bool ControlsOnlyExit,
1905 bool AllowPredicates);
1907 LLVM_ABI void insert(
const Loop *L, Value *ExitCond,
bool ExitIfTrue,
1908 bool ControlsOnlyExit,
bool AllowPredicates,
1909 const ExitLimit &EL);
1912 using ExitLimitCacheTy = ExitLimitCache;
1914 ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1915 const Loop *L, Value *ExitCond,
1917 bool ControlsOnlyExit,
1918 bool AllowPredicates);
1919 ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache,
const Loop *L,
1920 Value *ExitCond,
bool ExitIfTrue,
1921 bool ControlsOnlyExit,
1922 bool AllowPredicates);
1923 std::optional<ScalarEvolution::ExitLimit> computeExitLimitFromCondFromBinOp(
1924 ExitLimitCacheTy &Cache,
const Loop *L, Value *ExitCond,
bool ExitIfTrue,
1925 bool ControlsOnlyExit,
bool AllowPredicates);
1932 ExitLimit computeExitLimitFromICmp(
const Loop *L, ICmpInst *ExitCond,
1935 bool AllowPredicates =
false);
1941 ExitLimit computeExitLimitFromICmp(
const Loop *L, CmpPredicate Pred,
1942 const SCEV *
LHS,
const SCEV *
RHS,
1944 bool AllowPredicates =
false);
1949 ExitLimit computeExitLimitFromSingleExitSwitch(
const Loop *L,
1951 BasicBlock *ExitingBB,
1961 ExitLimit computeShiftCompareExitLimit(Value *
LHS, Value *
RHS,
const Loop *L,
1969 const SCEV *computeExitCountExhaustively(
const Loop *L, Value *
Cond,
1976 ExitLimit howFarToZero(
const SCEV *V,
const Loop *L,
bool IsSubExpr,
1977 bool AllowPredicates =
false);
1982 ExitLimit howFarToNonZero(
const SCEV *V,
const Loop *L);
1996 ExitLimit howManyLessThans(
const SCEV *
LHS,
const SCEV *
RHS,
const Loop *L,
1997 bool isSigned,
bool ControlsOnlyExit,
1998 bool AllowPredicates =
false);
2000 ExitLimit howManyGreaterThans(
const SCEV *
LHS,
const SCEV *
RHS,
const Loop *L,
2002 bool AllowPredicates =
false);
2007 std::pair<const BasicBlock *, const BasicBlock *>
2008 getPredecessorWithUniqueSuccessorForBB(
const BasicBlock *BB)
const;
2014 LLVM_ABI bool isImpliedCond(CmpPredicate Pred,
const SCEV *
LHS,
2015 const SCEV *
RHS,
const Value *FoundCondValue,
2017 const Instruction *Context =
nullptr);
2023 LLVM_ABI bool isImpliedCondBalancedTypes(CmpPredicate Pred,
const SCEV *
LHS,
2025 CmpPredicate FoundPred,
2026 const SCEV *FoundLHS,
2027 const SCEV *FoundRHS,
2028 const Instruction *CtxI);
2034 LLVM_ABI bool isImpliedCond(CmpPredicate Pred,
const SCEV *
LHS,
2035 const SCEV *
RHS, CmpPredicate FoundPred,
2036 const SCEV *FoundLHS,
const SCEV *FoundRHS,
2037 const Instruction *Context =
nullptr);
2043 bool isImpliedCondOperands(CmpPredicate Pred,
const SCEV *
LHS,
2044 const SCEV *
RHS,
const SCEV *FoundLHS,
2045 const SCEV *FoundRHS,
2046 const Instruction *Context =
nullptr);
2052 bool isImpliedViaOperations(CmpPredicate Pred,
const SCEV *
LHS,
2053 const SCEV *
RHS,
const SCEV *FoundLHS,
2054 const SCEV *FoundRHS,
unsigned Depth = 0);
2058 bool isKnownViaNonRecursiveReasoning(CmpPredicate Pred,
const SCEV *
LHS,
2064 bool isImpliedCondOperandsHelper(CmpPredicate Pred,
const SCEV *
LHS,
2065 const SCEV *
RHS,
const SCEV *FoundLHS,
2066 const SCEV *FoundRHS);
2072 bool isImpliedCondOperandsViaRanges(CmpPredicate Pred,
const SCEV *
LHS,
2073 const SCEV *
RHS, CmpPredicate FoundPred,
2074 const SCEV *FoundLHS,
2075 const SCEV *FoundRHS);
2079 bool isImpliedViaGuard(
const BasicBlock *BB, CmpPredicate Pred,
2080 const SCEV *
LHS,
const SCEV *
RHS);
2088 bool isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred,
const SCEV *
LHS,
2089 const SCEV *
RHS,
const SCEV *FoundLHS,
2090 const SCEV *FoundRHS);
2098 bool isImpliedCondOperandsViaAddRecStart(CmpPredicate Pred,
const SCEV *
LHS,
2100 const SCEV *FoundLHS,
2101 const SCEV *FoundRHS,
2102 const Instruction *CtxI);
2111 bool isImpliedViaMerge(CmpPredicate Pred,
const SCEV *
LHS,
const SCEV *
RHS,
2112 const SCEV *FoundLHS,
const SCEV *FoundRHS,
2120 bool isImpliedCondOperandsViaShift(CmpPredicate Pred,
const SCEV *
LHS,
2121 const SCEV *
RHS,
const SCEV *FoundLHS,
2122 const SCEV *FoundRHS);
2127 Constant *getConstantEvolutionLoopExitValue(PHINode *PN,
const APInt &BEs,
2132 bool isKnownPredicateViaConstantRanges(CmpPredicate Pred,
const SCEV *
LHS,
2140 bool isKnownPredicateViaNoOverflow(CmpPredicate Pred,
const SCEV *
LHS,
2145 bool isKnownPredicateViaSplitting(CmpPredicate Pred,
const SCEV *
LHS,
2149 bool splitBinaryAdd(
const SCEV *Expr,
const SCEV *&L,
const SCEV *&R,
2153 void forgetBackedgeTakenCounts(
const Loop *L,
bool Predicated);
2156 void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
2159 void forgetMemoizedResultsImpl(
const SCEV *S);
2163 void visitAndClearUsers(SmallVectorImpl<Instruction *> &Worklist,
2164 SmallPtrSetImpl<Instruction *> &Visited,
2165 SmallVectorImpl<const SCEV *> &ToForget);
2168 void eraseValueFromMap(Value *V);
2171 void insertValueToMap(Value *V,
const SCEV *S);
2175 bool checkValidity(
const SCEV *S)
const;
2182 template <
typename ExtendOpTy>
2183 bool proveNoWrapByVaryingStart(
const SCEV *Start,
const SCEV *Step,
2197 std::optional<MonotonicPredicateType>
2198 getMonotonicPredicateTypeImpl(
const SCEVAddRecExpr *
LHS,
2210 const Instruction *getNonTrivialDefiningScopeBound(
const SCEV *S);
2215 const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2220 const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2224 bool isGuaranteedToTransferExecutionTo(
const Instruction *
A,
2225 const Instruction *
B);
2228 bool isGuaranteedNotToCauseUB(
const SCEV *
Op);
2231 static bool isGuaranteedNotToBePoison(
const SCEV *
Op);
2249 bool isSCEVExprNeverPoison(
const Instruction *
I);
2255 bool isAddRecNeverPoison(
const Instruction *
I,
const Loop *L);
2267 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2268 createAddRecFromPHIWithCastsImpl(
const SCEVUnknown *SymbolicPHI);
2279 const SCEV *computeMaxBECountForLT(
const SCEV *Start,
const SCEV *Stride,
2286 bool canIVOverflowOnLT(
const SCEV *
RHS,
const SCEV *Stride,
bool IsSigned);
2291 bool canIVOverflowOnGT(
const SCEV *
RHS,
const SCEV *Stride,
bool IsSigned);
2294 const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2298 const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2302 const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2306 const SCEV *stripInjectiveFunctions(
const SCEV *Val)
const;
2311 void getUsedLoops(
const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2315 LLVM_ABI bool matchURem(
const SCEV *Expr,
const SCEV *&
LHS,
const SCEV *&
RHS);
2319 SCEV *findExistingSCEVInCache(
SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2323 void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2328 const SCEV *getWithOperands(
const SCEV *S,
2329 SmallVectorImpl<const SCEV *> &NewOps);
2331 FoldingSet<SCEV> UniqueSCEVs;
2332 FoldingSet<SCEVPredicate> UniquePreds;
2336 DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2340 DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2341 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2342 PredicatedSCEVRewrites;
2346 SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
2350 SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
2393 std::unique_ptr<ScalarEvolution> SE;
2404 void releaseMemory()
override;
2407 void verifyAnalysis()
const override;
2481 void updateGeneration();
2485 using RewriteEntry = std::pair<unsigned, const SCEV *>;
2505 std::unique_ptr<SCEVUnionPredicate> Preds;
2511 unsigned Generation = 0;
2514 const SCEV *BackedgeCount =
nullptr;
2517 const SCEV *SymbolicMaxBackedgeCount =
nullptr;
2520 std::optional<unsigned> SmallConstantMaxTripCount;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
static bool runOnFunction(Function &F, bool PostInlining)
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
This file defines a hash set that can be used to remove duplication of nodes in a graph.
This header defines various interfaces for pass management in LLVM.
mir Rename Register Operands
This file defines the PointerIntPair class.
const SmallVectorImpl< MachineOperand > & Cond
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
Class for arbitrary precision integers.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
API to communicate dependencies between analyses during invalidation.
A container for analyses that lazily runs them and caches their results.
Represent the analysis usage information of a pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Value handle with callbacks on RAUW and destruction.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
This is the shared class of boolean and integer constants.
This class represents a range of values.
LLVM_ABI APInt getUnsignedMin() const
Return the smallest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Node - This class is used to maintain the singly linked bucket list in a folding set.
FoldingSetNodeIDRef - This class describes a reference to an interned FoldingSetNodeID,...
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
FunctionPass class - This class is used to implement most global optimizations.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
A Module instance is used to store all the information related to an LLVM module.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Value handle that poisons itself if the Value is deleted.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
LLVM_ABI void addPredicate(const SCEVPredicate &Pred)
Adds a new predicate.
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
LLVM_ABI const SCEVPredicate & getPredicate() const
LLVM_ABI bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Returns true if we've proved that V doesn't wrap by means of a SCEV predicate.
LLVM_ABI void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags)
Proves that V doesn't overflow by adding SCEV predicate.
LLVM_ABI void print(raw_ostream &OS, unsigned Depth) const
Print the SCEV mappings done by the Predicated Scalar Evolution.
LLVM_ABI bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const
Check if AR1 and AR2 are equal, while taking into account Equal predicates in Preds.
LLVM_ABI const SCEVAddRecExpr * getAsAddRec(Value *V)
Attempts to produce an AddRecExpr for V by adding additional SCEV predicates.
LLVM_ABI unsigned getSmallConstantMaxTripCount()
Returns the upper bound of the loop trip count as a normal unsigned value, or 0 if the trip count is ...
LLVM_ABI const SCEV * getBackedgeTakenCount()
Get the (predicated) backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSymbolicMaxBackedgeTakenCount()
Get the (predicated) symbolic max backedge count for the analyzed loop.
LLVM_ABI const SCEV * getSCEV(Value *V)
Returns the SCEV expression of V, in the context of the current SCEV predicate.
A set of analyses that are preserved following a run of a transformation pass.
This node represents a polynomial recurrence on the trip count of the specified loop.
This class represents an assumption that the expression LHS Pred RHS evaluates to true,...
const SCEV * getRHS() const
Returns the right hand side of the predicate.
ICmpInst::Predicate getPredicate() const
const SCEV * getLHS() const
Returns the left hand side of the predicate.
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
This class uses information about analyze scalars to rewrite expressions in canonical form.
This class represents an assumption made using SCEV expressions which can be checked at run-time.
SCEVPredicateKind getKind() const
virtual unsigned getComplexity() const
Returns the estimated complexity of this predicate.
SCEVPredicate & operator=(const SCEVPredicate &)=default
SCEVPredicate(const SCEVPredicate &)=default
virtual bool implies(const SCEVPredicate *N, ScalarEvolution &SE) const =0
Returns true if this predicate implies N.
virtual void print(raw_ostream &OS, unsigned Depth=0) const =0
Prints a textual representation of this predicate with an indentation of Depth.
virtual bool isAlwaysTrue() const =0
Returns true if the predicate is always true.
This class represents a composition of other SCEV predicates, and is the class that most clients will...
unsigned getComplexity() const override
We estimate the complexity of a union predicate as the size number of predicates in the union.
ArrayRef< const SCEVPredicate * > getPredicates() const
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents an assumption made on an AddRec expression.
IncrementWrapFlags
Similar to SCEV::NoWrapFlags, but with slightly different semantics for FlagNUSW.
static SCEVWrapPredicate::IncrementWrapFlags setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OnFlags)
static SCEVWrapPredicate::IncrementWrapFlags clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, SCEVWrapPredicate::IncrementWrapFlags OffFlags)
Convenient IncrementWrapFlags manipulation methods.
static bool classof(const SCEVPredicate *P)
Methods for support type inquiry through isa, cast, and dyn_cast:
IncrementWrapFlags getFlags() const
Returns the set assumed no overflow flags.
static SCEVWrapPredicate::IncrementWrapFlags maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask)
This class represents an analyzed expression in the program.
LLVM_ABI ArrayRef< const SCEV * > operands() const
Return operands of this SCEV expression.
unsigned short getExpressionSize() const
SCEV & operator=(const SCEV &)=delete
LLVM_ABI bool isOne() const
Return true if the expression is a constant one.
LLVM_ABI bool isZero() const
Return true if the expression is a constant zero.
SCEV(const SCEV &)=delete
LLVM_ABI void dump() const
This method is used for debugging.
LLVM_ABI bool isAllOnesValue() const
Return true if the expression is a constant all-ones value.
LLVM_ABI bool isNonConstantNegative() const
Return true if the specified scev is negated, but not a constant.
const unsigned short ExpressionSize
LLVM_ABI void print(raw_ostream &OS) const
Print out the internal representation of this scalar to the specified stream.
SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, unsigned short ExpressionSize)
SCEVTypes getSCEVType() const
unsigned short SubclassData
This field is initialized to zero and may be used in subclasses to store miscellaneous information.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
NoWrapFlags
NoWrapFlags are bitfield indices into SubclassData.
Analysis pass that exposes the ScalarEvolution for a function.
LLVM_ABI ScalarEvolution run(Function &F, FunctionAnalysisManager &AM)
Printer pass for the ScalarEvolutionAnalysis results.
ScalarEvolutionPrinterPass(raw_ostream &OS)
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Verifier pass for the ScalarEvolutionAnalysis results.
LLVM_ABI PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
ScalarEvolution & getSE()
const ScalarEvolution & getSE() const
bool operator==(const FoldID &RHS) const
FoldID(SCEVTypes C, const SCEV *Op, const Type *Ty)
unsigned computeHash() const
static LLVM_ABI LoopGuards collect(const Loop *L, ScalarEvolution &SE)
Collect rewrite map for loop guards for loop L, together with flags indicating if NUW and NSW can be ...
LLVM_ABI const SCEV * rewrite(const SCEV *Expr) const
Try to apply the collected loop guards to Expr.
The main scalar evolution driver.
const SCEV * getConstantMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEVConstant that is greater than or equal to (i.e.
static bool hasFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags TestFlags)
const DataLayout & getDataLayout() const
Return the DataLayout associated with the module this SCEV instance is operating on.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI bool isKnownOnEveryIteration(CmpPredicate Pred, const SCEVAddRecExpr *LHS, const SCEV *RHS)
Test if the condition described by Pred, LHS, RHS is known to be true on every iteration of the loop ...
LLVM_ABI const SCEV * getNegativeSCEV(const SCEV *V, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
Return the SCEV object corresponding to -V.
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterationsImpl(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
LLVM_ABI const SCEV * getSMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getUDivCeilSCEV(const SCEV *N, const SCEV *D)
Compute ceil(N / D).
LLVM_ABI const SCEV * getGEPExpr(GEPOperator *GEP, const SmallVectorImpl< const SCEV * > &IndexExprs)
Returns an expression for a GEP.
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantExitCondDuringFirstIterations(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI, const SCEV *MaxIter)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L at given Context duri...
LLVM_ABI Type * getWiderType(Type *Ty1, Type *Ty2) const
LLVM_ABI const SCEV * getAbsExpr(const SCEV *Op, bool IsNSW)
LLVM_ABI bool isKnownNonPositive(const SCEV *S)
Test if the given expression is known to be non-positive.
LLVM_ABI const SCEV * getURemExpr(const SCEV *LHS, const SCEV *RHS)
Represents an unsigned remainder expression based on unsigned division.
LLVM_ABI APInt getConstantMultiple(const SCEV *S)
Returns the max constant multiple of S.
LLVM_ABI bool isKnownNegative(const SCEV *S)
Test if the given expression is known to be negative.
LLVM_ABI const SCEV * getPredicatedConstantMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getConstantMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
LLVM_ABI const SCEV * removePointerBase(const SCEV *S)
Compute an expression equivalent to S - getPointerBase(S).
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
LLVM_ABI bool isKnownNonZero(const SCEV *S)
Test if the given expression is known to be non-zero.
LLVM_ABI const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
LLVM_ABI const SCEV * getSMinExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
LLVM_ABI const SCEV * getUMaxExpr(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags)
Update no-wrap flags of an AddRec.
const SCEV * getAddExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI const SCEV * getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS)
Promote the operands to the wider of the types using zero-extension, and then perform a umax operatio...
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI=nullptr)
Is operation BinOp between LHS and RHS provably does not have a signed/unsigned overflow (Signed)?...
LLVM_ABI ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit, bool AllowPredicates=false)
Compute the number of times the backedge of the specified loop will execute if its exit condition wer...
LLVM_ABI const SCEV * getZeroExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEVPredicate * getEqualPredicate(const SCEV *LHS, const SCEV *RHS)
LLVM_ABI unsigned getSmallConstantTripMultiple(const Loop *L, const SCEV *ExitCount)
Returns the largest constant divisor of the trip count as a normal unsigned value,...
LLVM_ABI uint64_t getTypeSizeInBits(Type *Ty) const
Return the size in bits of the specified type, for which isSCEVable must return true.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getPredicatedBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getBackedgeTakenCount, except it will add a set of SCEV predicates to Predicates that are ...
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
ConstantRange getSignedRange(const SCEV *S)
Determine the signed range for a particular SCEV.
LLVM_ABI const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
bool loopHasNoAbnormalExits(const Loop *L)
Return true if the loop has no abnormal exits.
LLVM_ABI const SCEV * getTripCountFromExitCount(const SCEV *ExitCount)
A version of getTripCountFromExitCount below which always picks an evaluation type which can not resu...
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
LLVM_ABI const SCEV * getTruncateOrNoop(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI const SCEV * getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty)
LLVM_ABI const SCEV * getSequentialMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
LLVM_ABI const SCEV * getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth=0)
LLVM_ABI std::optional< bool > evaluatePredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Check whether the condition described by Pred, LHS, and RHS is true or false in the given Context.
LLVM_ABI unsigned getSmallConstantMaxTripCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Returns the upper bound of the loop trip count as a normal unsigned value.
LLVM_ABI const SCEV * getPtrToIntExpr(const SCEV *Op, Type *Ty)
const SCEV * getMulExpr(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI bool isBackedgeTakenCountMaxOrZero(const Loop *L)
Return true if the backedge taken count is either the value returned by getConstantMaxBackedgeTakenCo...
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI bool isKnownPositive(const SCEV *S)
Test if the given expression is known to be positive.
APInt getUnsignedRangeMin(const SCEV *S)
Determine the min of the unsigned range for a particular SCEV.
LLVM_ABI bool SimplifyICmpOperands(CmpPredicate &Pred, const SCEV *&LHS, const SCEV *&RHS, unsigned Depth=0)
Simplify LHS and RHS in a comparison with predicate Pred.
LLVM_ABI const SCEV * getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo)
Return an expression for offsetof on the given field with type IntTy.
LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
LLVM_ABI bool containsAddRecurrence(const SCEV *S)
Return true if the SCEV is a scAddRecExpr or it contains scAddRecExpr.
LLVM_ABI const SCEV * getSignExtendExprImpl(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
Get an add recurrence expression for the specified loop.
LLVM_ABI bool hasOperand(const SCEV *S, const SCEV *Op) const
Test whether the given SCEV has Op as a direct or indirect operand.
LLVM_ABI const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI const SCEV * getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI Type * getEffectiveSCEVType(Type *Ty) const
Return a type with the same bitwidth as the given type and which represents how SCEV will treat the g...
const SCEV * getAddRecExpr(const SmallVectorImpl< const SCEV * > &Operands, const Loop *L, SCEV::NoWrapFlags Flags)
LLVM_ABI const SCEVPredicate * getComparePredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
LLVM_ABI const SCEV * getNotSCEV(const SCEV *V)
Return the SCEV object corresponding to ~V.
LLVM_ABI const SCEV * getElementCount(Type *Ty, ElementCount EC, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
LLVM_ABI bool instructionCouldExistWithOperands(const SCEV *A, const SCEV *B)
Return true if there exists a point in the program at which both A and B could be operands to the sam...
ConstantRange getUnsignedRange(const SCEV *S)
Determine the unsigned range for a particular SCEV.
LLVM_ABI uint32_t getMinTrailingZeros(const SCEV *S)
Determine the minimum number of zero bits that S is guaranteed to end in (at every loop iteration).
LLVM_ABI void print(raw_ostream &OS) const
LLVM_ABI const SCEV * getUMinExpr(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
LLVM_ABI const SCEV * getPredicatedExitCount(const Loop *L, const BasicBlock *ExitingBlock, SmallVectorImpl< const SCEVPredicate * > *Predicates, ExitCountKind Kind=Exact)
Same as above except this uses the predicated backedge taken info and may require predicates.
static SCEV::NoWrapFlags clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags)
LLVM_ABI void forgetTopmostLoop(const Loop *L)
friend class ScalarEvolutionsTest
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
APInt getSignedRangeMin(const SCEV *S)
Determine the min of the signed range for a particular SCEV.
const SCEV * getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI const SCEV * getNoopOrAnyExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LLVM_ABI const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
MonotonicPredicateType
A predicate is said to be monotonically increasing if may go from being false to being true as the lo...
@ MonotonicallyDecreasing
@ MonotonicallyIncreasing
LLVM_ABI std::optional< LoopInvariantPredicate > getLoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, const Instruction *CtxI=nullptr)
If the result of the predicate LHS Pred RHS is loop invariant with respect to L, return a LoopInvaria...
LLVM_ABI const SCEV * getStoreSizeOfExpr(Type *IntTy, Type *StoreTy)
Return an expression for the store size of StoreTy that is type IntTy.
LLVM_ABI const SCEVPredicate * getWrapPredicate(const SCEVAddRecExpr *AR, SCEVWrapPredicate::IncrementWrapFlags AddedFlags)
LLVM_ABI bool isLoopBackedgeGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether the backedge of the loop is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Return LHS-RHS.
LLVM_ABI APInt getNonZeroConstantMultiple(const SCEV *S)
const SCEV * getMinusOne(Type *Ty)
Return a SCEV for the constant -1 of a specific type.
static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags)
LLVM_ABI bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
LLVM_ABI BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB)
Return the "disposition" of the given SCEV with respect to the given block.
LLVM_ABI const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv)
LLVM_ABI const SCEV * getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
Promote the operands to the wider of the types using zero-extension, and then perform a umin operatio...
LLVM_ABI bool loopIsFiniteByAssumption(const Loop *L)
Return true if this loop is finite by assumption.
LLVM_ABI const SCEV * getExistingSCEV(Value *V)
Return an existing SCEV for V if there is one, otherwise return nullptr.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopComputable
The SCEV varies predictably with the loop.
@ LoopVariant
The SCEV is loop-variant (unknown).
@ LoopInvariant
The SCEV is loop-invariant.
friend class SCEVCallbackVH
LLVM_ABI bool isKnownMultipleOf(const SCEV *S, uint64_t M, SmallVectorImpl< const SCEVPredicate * > &Assumptions)
Check that S is a multiple of M.
LLVM_ABI const SCEV * getAnyExtendExpr(const SCEV *Op, Type *Ty)
getAnyExtendExpr - Return a SCEV for the given operand extended with unspecified bits out to the give...
LLVM_ABI bool isKnownToBeAPowerOfTwo(const SCEV *S, bool OrZero=false, bool OrNegative=false)
Test if the given expression is known to be a power of 2.
LLVM_ABI std::optional< SCEV::NoWrapFlags > getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO)
Parse NSW/NUW flags from add/sub/mul IR binary operation Op into SCEV no-wrap flags,...
LLVM_ABI void forgetLcssaPhiWithNewPredecessor(Loop *L, PHINode *V)
Forget LCSSA phi node V of loop L to which a new predecessor was added, such that it may no longer be...
LLVM_ABI bool containsUndefs(const SCEV *S) const
Return true if the SCEV expression contains an undef value.
LLVM_ABI std::optional< MonotonicPredicateType > getMonotonicPredicateType(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred)
If, for all loop invariant X, the predicate "LHS `Pred` X" is monotonically increasing or decreasing,...
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
BlockDisposition
An enum describing the relationship between a SCEV and a basic block.
@ DominatesBlock
The SCEV dominates the block.
@ ProperlyDominatesBlock
The SCEV properly dominates the block.
@ DoesNotDominateBlock
The SCEV does not dominate the block.
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI void getPoisonGeneratingValues(SmallPtrSetImpl< const Value * > &Result, const SCEV *S)
Return the set of Values that, if poison, will definitively result in S being poison as well.
LLVM_ABI void forgetLoopDispositions()
Called when the client has changed the disposition of values in this loop.
LLVM_ABI const SCEV * getVScale(Type *Ty)
LLVM_ABI unsigned getSmallConstantTripCount(const Loop *L)
Returns the exact trip count of the loop if we can compute it, and the result is a small constant.
LLVM_ABI bool hasComputableLoopEvolution(const SCEV *S, const Loop *L)
Return true if the given SCEV changes value in a known way in the specified loop.
LLVM_ABI const SCEV * getPointerBase(const SCEV *V)
Transitively follow the chain of pointer-type operands until reaching a SCEV that does not have a sin...
const SCEV * getPowerOfTwo(Type *Ty, unsigned Power)
Return a SCEV for the constant Power of two.
LLVM_ABI const SCEV * getMinMaxExpr(SCEVTypes Kind, SmallVectorImpl< const SCEV * > &Operands)
LLVM_ABI void forgetAllLoops()
LLVM_ABI bool dominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV dominate the specified basic block.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
ExitCountKind
The terms "backedge taken count" and "exit count" are used interchangeably to refer to the number of ...
@ SymbolicMaximum
An expression which provides an upper bound on the exact trip count.
@ ConstantMaximum
A constant which provides an upper bound on the exact trip count.
@ Exact
An expression exactly describing the number of times the backedge has executed when a loop is exited.
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
LLVM_ABI const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical multiply expression, or something simpler if possible.
LLVM_ABI const SCEVAddRecExpr * convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Preds)
Tries to convert the S expression to an AddRec expression, adding additional predicates to Preds as r...
LLVM_ABI const SCEV * getElementSize(Instruction *Inst)
Return the size of an element read or written by Inst.
LLVM_ABI const SCEV * getSizeOfExpr(Type *IntTy, TypeSize Size)
Return an expression for a TypeSize.
LLVM_ABI std::optional< bool > evaluatePredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Check whether the condition described by Pred, LHS, and RHS is true or false.
LLVM_ABI const SCEV * getUnknown(Value *V)
LLVM_ABI std::optional< std::pair< const SCEV *, SmallVector< const SCEVPredicate *, 3 > > > createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI)
Checks if SymbolicPHI can be rewritten as an AddRecExpr under some Predicates.
LLVM_ABI const SCEV * getTruncateOrZeroExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, int Mask)
Convenient NoWrapFlags manipulation that hides enum casts and is visible in the ScalarEvolution name ...
LLVM_ABI std::optional< APInt > computeConstantDifference(const SCEV *LHS, const SCEV *RHS)
Compute LHS - RHS and returns the result as an APInt if it is a constant, and std::nullopt if it isn'...
LLVM_ABI bool properlyDominates(const SCEV *S, const BasicBlock *BB)
Return true if elements that makes up the given SCEV properly dominate the specified basic block.
const SCEV * getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
LLVM_ABI const SCEV * rewriteUsingPredicate(const SCEV *S, const Loop *L, const SCEVPredicate &A)
Re-writes the SCEV according to the Predicates in A.
LLVM_ABI std::pair< const SCEV *, const SCEV * > SplitIntoInitAndPostInc(const Loop *L, const SCEV *S)
Splits SCEV expression S into two SCEVs.
LLVM_ABI bool canReuseInstruction(const SCEV *S, Instruction *I, SmallVectorImpl< Instruction * > &DropPoisonGeneratingInsts)
Check whether it is poison-safe to represent the expression S using the instruction I.
LLVM_ABI bool isKnownPredicateAt(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS, const Instruction *CtxI)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI const SCEV * getPredicatedSymbolicMaxBackedgeTakenCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > &Predicates)
Similar to getSymbolicMaxBackedgeTakenCount, except it will add a set of SCEV predicates to Predicate...
LLVM_ABI ~ScalarEvolution()
LLVM_ABI const SCEV * getUDivExactExpr(const SCEV *LHS, const SCEV *RHS)
Get a canonical unsigned division expression, or something simpler if possible.
LLVM_ABI void registerUser(const SCEV *User, ArrayRef< const SCEV * > Ops)
Notify this ScalarEvolution that User directly uses SCEVs in Ops.
LLVM_ABI const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
LLVM_ABI bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the basic block is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getTruncateOrSignExtend(const SCEV *V, Type *Ty, unsigned Depth=0)
Return a SCEV corresponding to a conversion of the input value to the specified type.
LLVM_ABI bool containsErasedValue(const SCEV *S) const
Return true if the SCEV expression contains a Value that has been optimised out and is now a nullptr.
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
LLVM_ABI bool isKnownViaInduction(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
We'd like to check the predicate on every iteration of the most dominated loop between loops used in ...
const SCEV * getSymbolicMaxBackedgeTakenCount(const Loop *L)
When successful, this returns a SCEV that is greater than or equal to (i.e.
APInt getSignedRangeMax(const SCEV *S)
Determine the max of the signed range for a particular SCEV.
LLVM_ABI void verify() const
LLVMContext & getContext() const
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM Value Representation.
This class implements an extremely fast bulk output stream that can only output to a stream.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
@ BasicBlock
Various leaf nodes.
unsigned combineHashValue(unsigned a, unsigned b)
Simplistic combination of 32-bit hash values into 32-bit hash values.
This is an optimization pass for GlobalISel generic memory operations.
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
BumpPtrAllocatorImpl BumpPtrAllocator
The standard BumpPtrAllocator which just uses the default template parameters.
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
constexpr unsigned BitWidth
A CRTP mix-in that provides informational APIs needed for analysis passes.
A special type used by analysis passes to provide an address that identifies that particular analysis...
DefaultFoldingSetTrait - This class provides default implementations for FoldingSetTrait implementati...
static unsigned getHashValue(const ScalarEvolution::FoldID &Val)
static ScalarEvolution::FoldID getTombstoneKey()
static ScalarEvolution::FoldID getEmptyKey()
static bool isEqual(const ScalarEvolution::FoldID &LHS, const ScalarEvolution::FoldID &RHS)
An information struct used to provide DenseMap with the various necessary components for a given valu...
static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID)
static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SCEVPredicate &X, FoldingSetNodeID &TempID)
static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID)
static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID)
static void Profile(const SCEV &X, FoldingSetNodeID &ID)
FoldingSetTrait - This trait class is used to define behavior of how to "profile" (in the FoldingSet ...
A CRTP mix-in to automatically provide informational APIs needed for passes.
An object of this class is returned by queries that could not be answered.
LLVM_ABI SCEVCouldNotCompute()
static LLVM_ABI bool classof(const SCEV *S)
Methods for support type inquiry through isa, cast, and dyn_cast:
Information about the number of loop iterations for which a loop exit's branch condition evaluates to...
bool hasAnyInfo() const
Test whether this ExitLimit contains any computed information, or whether it's all SCEVCouldNotComput...
const SCEV * ExactNotTaken
const SCEV * SymbolicMaxNotTaken
SmallVector< const SCEVPredicate *, 4 > Predicates
A vector of predicate guards for this ExitLimit.
bool hasFullInfo() const
Test whether this ExitLimit contains all information.
const SCEV * ConstantMaxNotTaken
LoopInvariantPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)