LLVM 22.0.0git
ScaledNumber.h
Go to the documentation of this file.
1//===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains functions (and a class) useful for working with scaled
10// numbers -- in particular, pairs of integers where one represents digits and
11// another represents a scale. The functions are helpers and live in the
12// namespace ScaledNumbers. The class ScaledNumber is useful for modelling
13// certain cost metrics that need simple, integer-like semantics that are easy
14// to reason about.
15//
16// These might remind you of soft-floats. If you want one of those, you're in
17// the wrong place. Look at include/llvm/ADT/APFloat.h instead.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_SUPPORT_SCALEDNUMBER_H
22#define LLVM_SUPPORT_SCALEDNUMBER_H
23
26#include <algorithm>
27#include <cstdint>
28#include <limits>
29#include <string>
30#include <tuple>
31#include <utility>
32
33namespace llvm {
34namespace ScaledNumbers {
35
36/// Maximum scale; same as APFloat for easy debug printing.
37const int32_t MaxScale = 16383;
38
39/// Maximum scale; same as APFloat for easy debug printing.
40const int32_t MinScale = -16382;
41
42/// Get the width of a number.
43template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
44
45/// Conditionally round up a scaled number.
46///
47/// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
48/// Always returns \c Scale unless there's an overflow, in which case it
49/// returns \c 1+Scale.
50///
51/// \pre adding 1 to \c Scale will not overflow INT16_MAX.
52template <class DigitsT>
53inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
54 bool ShouldRound) {
55 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
56
57 if (ShouldRound)
58 if (!++Digits)
59 // Overflow.
60 return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
61 return std::make_pair(Digits, Scale);
62}
63
64/// Convenience helper for 32-bit rounding.
65inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
66 bool ShouldRound) {
67 return getRounded(Digits, Scale, ShouldRound);
68}
69
70/// Convenience helper for 64-bit rounding.
71inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
72 bool ShouldRound) {
73 return getRounded(Digits, Scale, ShouldRound);
74}
75
76/// Adjust a 64-bit scaled number down to the appropriate width.
77///
78/// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
79template <class DigitsT>
80inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
81 int16_t Scale = 0) {
82 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
83
84 const int Width = getWidth<DigitsT>();
85 if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
86 return std::make_pair(Digits, Scale);
87
88 // Shift right and round.
89 int Shift = llvm::bit_width(Digits) - Width;
90 return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
91 Digits & (UINT64_C(1) << (Shift - 1)));
92}
93
94/// Convenience helper for adjusting to 32 bits.
95inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
96 int16_t Scale = 0) {
97 return getAdjusted<uint32_t>(Digits, Scale);
98}
99
100/// Convenience helper for adjusting to 64 bits.
101inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
102 int16_t Scale = 0) {
103 return getAdjusted<uint64_t>(Digits, Scale);
104}
105
106/// Multiply two 64-bit integers to create a 64-bit scaled number.
107///
108/// Implemented with four 64-bit integer multiplies.
109LLVM_ABI std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
110
111/// Multiply two 32-bit integers to create a 32-bit scaled number.
112///
113/// Implemented with one 64-bit integer multiply.
114template <class DigitsT>
115inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
116 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
117
118 if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
119 return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
120
121 return multiply64(LHS, RHS);
122}
123
124/// Convenience helper for 32-bit product.
125inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
126 return getProduct(LHS, RHS);
127}
128
129/// Convenience helper for 64-bit product.
130inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
131 return getProduct(LHS, RHS);
132}
133
134/// Divide two 64-bit integers to create a 64-bit scaled number.
135///
136/// Implemented with long division.
137///
138/// \pre \c Dividend and \c Divisor are non-zero.
139LLVM_ABI std::pair<uint64_t, int16_t> divide64(uint64_t Dividend,
140 uint64_t Divisor);
141
142/// Divide two 32-bit integers to create a 32-bit scaled number.
143///
144/// Implemented with one 64-bit integer divide/remainder pair.
145///
146/// \pre \c Dividend and \c Divisor are non-zero.
147LLVM_ABI std::pair<uint32_t, int16_t> divide32(uint32_t Dividend,
148 uint32_t Divisor);
149
150/// Divide two 32-bit numbers to create a 32-bit scaled number.
151///
152/// Implemented with one 64-bit integer divide/remainder pair.
153///
154/// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
155template <class DigitsT>
156std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
157 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
158 static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
159 "expected 32-bit or 64-bit digits");
160
161 // Check for zero.
162 if (!Dividend)
163 return std::make_pair(0, 0);
164 if (!Divisor)
165 return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);
166
167 if (getWidth<DigitsT>() == 64)
168 return divide64(Dividend, Divisor);
169 return divide32(Dividend, Divisor);
170}
171
172/// Convenience helper for 32-bit quotient.
173inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
174 uint32_t Divisor) {
175 return getQuotient(Dividend, Divisor);
176}
177
178/// Convenience helper for 64-bit quotient.
179inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
180 uint64_t Divisor) {
181 return getQuotient(Dividend, Divisor);
182}
183
184/// Implementation of getLg() and friends.
185///
186/// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
187/// this was rounded up (1), down (-1), or exact (0).
188///
189/// Returns \c INT32_MIN when \c Digits is zero.
190template <class DigitsT>
191inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
192 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
193
194 if (!Digits)
195 return std::make_pair(INT32_MIN, 0);
196
197 // Get the floor of the lg of Digits.
198 static_assert(sizeof(Digits) <= sizeof(uint64_t));
199 int32_t LocalFloor = llvm::Log2_64(Digits);
200
201 // Get the actual floor.
202 int32_t Floor = Scale + LocalFloor;
203 if (Digits == UINT64_C(1) << LocalFloor)
204 return std::make_pair(Floor, 0);
205
206 // Round based on the next digit.
207 assert(LocalFloor >= 1);
208 bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
209 return std::make_pair(Floor + Round, Round ? 1 : -1);
210}
211
212/// Get the lg (rounded) of a scaled number.
213///
214/// Get the lg of \c Digits*2^Scale.
215///
216/// Returns \c INT32_MIN when \c Digits is zero.
217template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
218 return getLgImpl(Digits, Scale).first;
219}
220
221/// Get the lg floor of a scaled number.
222///
223/// Get the floor of the lg of \c Digits*2^Scale.
224///
225/// Returns \c INT32_MIN when \c Digits is zero.
226template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
227 auto Lg = getLgImpl(Digits, Scale);
228 return Lg.first - (Lg.second > 0);
229}
230
231/// Get the lg ceiling of a scaled number.
232///
233/// Get the ceiling of the lg of \c Digits*2^Scale.
234///
235/// Returns \c INT32_MIN when \c Digits is zero.
236template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
237 auto Lg = getLgImpl(Digits, Scale);
238 return Lg.first + (Lg.second < 0);
239}
240
241/// Implementation for comparing scaled numbers.
242///
243/// Compare two 64-bit numbers with different scales. Given that the scale of
244/// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1,
245/// 1, and 0 for less than, greater than, and equal, respectively.
246///
247/// \pre 0 <= ScaleDiff < 64.
248LLVM_ABI int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
249
250/// Compare two scaled numbers.
251///
252/// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1
253/// for greater than.
254template <class DigitsT>
255int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
256 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
257
258 // Check for zero.
259 if (!LDigits)
260 return RDigits ? -1 : 0;
261 if (!RDigits)
262 return 1;
263
264 // Check for the scale. Use getLgFloor to be sure that the scale difference
265 // is always lower than 64.
266 int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
267 if (lgL != lgR)
268 return lgL < lgR ? -1 : 1;
269
270 // Compare digits.
271 if (LScale < RScale)
272 return compareImpl(LDigits, RDigits, RScale - LScale);
273
274 return -compareImpl(RDigits, LDigits, LScale - RScale);
275}
276
277/// Match scales of two numbers.
278///
279/// Given two scaled numbers, match up their scales. Change the digits and
280/// scales in place. Shift the digits as necessary to form equivalent numbers,
281/// losing precision only when necessary.
282///
283/// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
284/// \c LScale (\c RScale) is unspecified.
285///
286/// As a convenience, returns the matching scale. If the output value of one
287/// number is zero, returns the scale of the other. If both are zero, which
288/// scale is returned is unspecified.
289template <class DigitsT>
290int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
291 int16_t &RScale) {
292 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
293
294 if (LScale < RScale)
295 // Swap arguments.
296 return matchScales(RDigits, RScale, LDigits, LScale);
297 if (!LDigits)
298 return RScale;
299 if (!RDigits || LScale == RScale)
300 return LScale;
301
302 // Now LScale > RScale. Get the difference.
303 int32_t ScaleDiff = int32_t(LScale) - RScale;
304 if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
305 // Don't bother shifting. RDigits will get zero-ed out anyway.
306 RDigits = 0;
307 return LScale;
308 }
309
310 // Shift LDigits left as much as possible, then shift RDigits right.
311 int32_t ShiftL = std::min<int32_t>(llvm::countl_zero(LDigits), ScaleDiff);
312 assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
313
314 int32_t ShiftR = ScaleDiff - ShiftL;
315 if (ShiftR >= getWidth<DigitsT>()) {
316 // Don't bother shifting. RDigits will get zero-ed out anyway.
317 RDigits = 0;
318 return LScale;
319 }
320
321 LDigits <<= ShiftL;
322 RDigits >>= ShiftR;
323
324 LScale -= ShiftL;
325 RScale += ShiftR;
326 assert(LScale == RScale && "scales should match");
327 return LScale;
328}
329
330/// Get the sum of two scaled numbers.
331///
332/// Get the sum of two scaled numbers with as much precision as possible.
333///
334/// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
335template <class DigitsT>
336std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
337 DigitsT RDigits, int16_t RScale) {
338 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
339
340 // Check inputs up front. This is only relevant if addition overflows, but
341 // testing here should catch more bugs.
342 assert(LScale < INT16_MAX && "scale too large");
343 assert(RScale < INT16_MAX && "scale too large");
344
345 // Normalize digits to match scales.
346 int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);
347
348 // Compute sum.
349 DigitsT Sum = LDigits + RDigits;
350 if (Sum >= RDigits)
351 return std::make_pair(Sum, Scale);
352
353 // Adjust sum after arithmetic overflow.
354 DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
355 return std::make_pair(HighBit | Sum >> 1, Scale + 1);
356}
357
358/// Convenience helper for 32-bit sum.
359inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
360 uint32_t RDigits, int16_t RScale) {
361 return getSum(LDigits, LScale, RDigits, RScale);
362}
363
364/// Convenience helper for 64-bit sum.
365inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
366 uint64_t RDigits, int16_t RScale) {
367 return getSum(LDigits, LScale, RDigits, RScale);
368}
369
370/// Get the difference of two scaled numbers.
371///
372/// Get LHS minus RHS with as much precision as possible.
373///
374/// Returns \c (0, 0) if the RHS is larger than the LHS.
375template <class DigitsT>
376std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
377 DigitsT RDigits, int16_t RScale) {
378 static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
379
380 // Normalize digits to match scales.
381 const DigitsT SavedRDigits = RDigits;
382 const int16_t SavedRScale = RScale;
383 matchScales(LDigits, LScale, RDigits, RScale);
384
385 // Compute difference.
386 if (LDigits <= RDigits)
387 return std::make_pair(0, 0);
388 if (RDigits || !SavedRDigits)
389 return std::make_pair(LDigits - RDigits, LScale);
390
391 // Check if RDigits just barely lost its last bit. E.g., for 32-bit:
392 //
393 // 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
394 const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
395 if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
396 return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);
397
398 return std::make_pair(LDigits, LScale);
399}
400
401/// Convenience helper for 32-bit difference.
402inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
403 int16_t LScale,
404 uint32_t RDigits,
405 int16_t RScale) {
406 return getDifference(LDigits, LScale, RDigits, RScale);
407}
408
409/// Convenience helper for 64-bit difference.
410inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
411 int16_t LScale,
412 uint64_t RDigits,
413 int16_t RScale) {
414 return getDifference(LDigits, LScale, RDigits, RScale);
415}
416
417} // end namespace ScaledNumbers
418} // end namespace llvm
419
420namespace llvm {
421
422class raw_ostream;
424public:
425 static constexpr int DefaultPrecision = 10;
426
427 LLVM_ABI static void dump(uint64_t D, int16_t E, int Width);
428 LLVM_ABI static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E,
429 int Width, unsigned Precision);
430 LLVM_ABI static std::string toString(uint64_t D, int16_t E, int Width,
431 unsigned Precision);
434 static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
435
436 static std::pair<uint64_t, bool> splitSigned(int64_t N) {
437 if (N >= 0)
438 return std::make_pair(N, false);
439 uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
440 return std::make_pair(Unsigned, true);
441 }
442 static int64_t joinSigned(uint64_t U, bool IsNeg) {
443 if (U > uint64_t(INT64_MAX))
444 return IsNeg ? INT64_MIN : INT64_MAX;
445 return IsNeg ? -int64_t(U) : int64_t(U);
446 }
447};
448
449/// Simple representation of a scaled number.
450///
451/// ScaledNumber is a number represented by digits and a scale. It uses simple
452/// saturation arithmetic and every operation is well-defined for every value.
453/// It's somewhat similar in behaviour to a soft-float, but is *not* a
454/// replacement for one. If you're doing numerics, look at \a APFloat instead.
455/// Nevertheless, we've found these semantics useful for modelling certain cost
456/// metrics.
457///
458/// The number is split into a signed scale and unsigned digits. The number
459/// represented is \c getDigits()*2^getScale(). In this way, the digits are
460/// much like the mantissa in the x87 long double, but there is no canonical
461/// form so the same number can be represented by many bit representations.
462///
463/// ScaledNumber is templated on the underlying integer type for digits, which
464/// is expected to be unsigned.
465///
466/// Unlike APFloat, ScaledNumber does not model architecture floating point
467/// behaviour -- while this might make it a little faster and easier to reason
468/// about, it certainly makes it more dangerous for general numerics.
469///
470/// ScaledNumber is totally ordered. However, there is no canonical form, so
471/// there are multiple representations of most scalars. E.g.:
472///
473/// ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
474/// ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
475/// ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
476///
477/// ScaledNumber implements most arithmetic operations. Precision is kept
478/// where possible. Uses simple saturation arithmetic, so that operations
479/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
480/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
481/// Any other division by 0.0 is defined to be getLargest().
482///
483/// As a convenience for modifying the exponent, left and right shifting are
484/// both implemented, and both interpret negative shifts as positive shifts in
485/// the opposite direction.
486///
487/// Scales are limited to the range accepted by x87 long double. This makes
488/// it trivial to add functionality to convert to APFloat (this is already
489/// relied on for the implementation of printing).
490///
491/// Possible (and conflicting) future directions:
492///
493/// 1. Turn this into a wrapper around \a APFloat.
494/// 2. Share the algorithm implementations with \a APFloat.
495/// 3. Allow \a ScaledNumber to represent a signed number.
496template <class DigitsT> class ScaledNumber : ScaledNumberBase {
497public:
498 static_assert(!std::numeric_limits<DigitsT>::is_signed,
499 "only unsigned floats supported");
500
501 typedef DigitsT DigitsType;
502
503private:
504 typedef std::numeric_limits<DigitsType> DigitsLimits;
505
506 static constexpr int Width = sizeof(DigitsType) * 8;
507 static_assert(Width <= 64, "invalid integer width for digits");
508
509private:
510 DigitsType Digits = 0;
511 int16_t Scale = 0;
512
513public:
514 ScaledNumber() = default;
515
516 constexpr ScaledNumber(DigitsType Digits, int16_t Scale)
517 : Digits(Digits), Scale(Scale) {}
518
519private:
520 ScaledNumber(const std::pair<DigitsT, int16_t> &X)
521 : Digits(X.first), Scale(X.second) {}
522
523public:
524 static ScaledNumber getZero() { return ScaledNumber(0, 0); }
525 static ScaledNumber getOne() { return ScaledNumber(1, 0); }
527 return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
528 }
529 static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
531 return get(N).invert();
532 }
534 return getQuotient(N, D);
535 }
536
537 int16_t getScale() const { return Scale; }
538 DigitsType getDigits() const { return Digits; }
539
540 /// Convert to the given integer type.
541 ///
542 /// Convert to \c IntT using simple saturating arithmetic, truncating if
543 /// necessary.
544 template <class IntT> IntT toInt() const;
545
546 bool isZero() const { return !Digits; }
547 bool isLargest() const { return *this == getLargest(); }
548 bool isOne() const {
549 if (Scale > 0 || Scale <= -Width)
550 return false;
551 return Digits == DigitsType(1) << -Scale;
552 }
553
554 /// The log base 2, rounded.
555 ///
556 /// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
557 int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
558
559 /// The log base 2, rounded towards INT32_MIN.
560 ///
561 /// Get the lg floor. lg 0 is defined to be INT32_MIN.
562 int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
563
564 /// The log base 2, rounded towards INT32_MAX.
565 ///
566 /// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
567 int32_t lgCeiling() const {
568 return ScaledNumbers::getLgCeiling(Digits, Scale);
569 }
570
571 bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
572 bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
573 bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
574 bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
575 bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
576 bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
577
578 bool operator!() const { return isZero(); }
579
580 /// Convert to a decimal representation in a string.
581 ///
582 /// Convert to a string. Uses scientific notation for very large/small
583 /// numbers. Scientific notation is used roughly for numbers outside of the
584 /// range 2^-64 through 2^64.
585 ///
586 /// \c Precision indicates the number of decimal digits of precision to use;
587 /// 0 requests the maximum available.
588 ///
589 /// As a special case to make debugging easier, if the number is small enough
590 /// to convert without scientific notation and has more than \c Precision
591 /// digits before the decimal place, it's printed accurately to the first
592 /// digit past zero. E.g., assuming 10 digits of precision:
593 ///
594 /// 98765432198.7654... => 98765432198.8
595 /// 8765432198.7654... => 8765432198.8
596 /// 765432198.7654... => 765432198.8
597 /// 65432198.7654... => 65432198.77
598 /// 5432198.7654... => 5432198.765
599 std::string toString(unsigned Precision = DefaultPrecision) {
600 return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
601 }
602
603 /// Print a decimal representation.
604 ///
605 /// Print a string. See toString for documentation.
607 unsigned Precision = DefaultPrecision) const {
608 return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
609 }
610 void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
611
613 std::tie(Digits, Scale) =
614 ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
615 // Check for exponent past MaxScale.
616 if (Scale > ScaledNumbers::MaxScale)
617 *this = getLargest();
618 return *this;
619 }
621 std::tie(Digits, Scale) =
622 ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
623 return *this;
624 }
627 ScaledNumber &operator<<=(int16_t Shift) {
628 shiftLeft(Shift);
629 return *this;
630 }
631 ScaledNumber &operator>>=(int16_t Shift) {
632 shiftRight(Shift);
633 return *this;
634 }
635
636private:
637 void shiftLeft(int32_t Shift);
638 void shiftRight(int32_t Shift);
639
640 /// Adjust two floats to have matching exponents.
641 ///
642 /// Adjust \c this and \c X to have matching exponents. Returns the new \c X
643 /// by value. Does nothing if \a isZero() for either.
644 ///
645 /// The value that compares smaller will lose precision, and possibly become
646 /// \a isZero().
647 ScaledNumber matchScales(ScaledNumber X) {
648 ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
649 return X;
650 }
651
652public:
653 /// Scale a large number accurately.
654 ///
655 /// Scale N (multiply it by this). Uses full precision multiplication, even
656 /// if Width is smaller than 64, so information is not lost.
659 // TODO: implement directly, rather than relying on inverse. Inverse is
660 // expensive.
661 return inverse().scale(N);
662 }
663 int64_t scale(int64_t N) const {
664 std::pair<uint64_t, bool> Unsigned = splitSigned(N);
665 return joinSigned(scale(Unsigned.first), Unsigned.second);
666 }
667 int64_t scaleByInverse(int64_t N) const {
668 std::pair<uint64_t, bool> Unsigned = splitSigned(N);
669 return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
670 }
671
672 int compare(const ScaledNumber &X) const {
673 return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
674 }
675 int compareTo(uint64_t N) const {
676 return ScaledNumbers::compare<uint64_t>(Digits, Scale, N, 0);
677 }
678 int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
679
680 ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
681 ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
682
683private:
684 static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
686 }
687 static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
688 return ScaledNumbers::getQuotient(Dividend, Divisor);
689 }
690
691 static int countLeadingZerosWidth(DigitsType Digits) {
692 if (Width == 64)
693 return countLeadingZeros64(Digits);
694 if (Width == 32)
695 return countLeadingZeros32(Digits);
696 return countLeadingZeros32(Digits) + Width - 32;
697 }
698
699 /// Adjust a number to width, rounding up if necessary.
700 ///
701 /// Should only be called for \c Shift close to zero.
702 ///
703 /// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
704 static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
705 assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
706 assert(Shift <= ScaledNumbers::MaxScale - 64 &&
707 "Shift should be close to 0");
708 auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
709 return Adjusted;
710 }
711
712 static ScaledNumber getRounded(ScaledNumber P, bool Round) {
713 // Saturate.
714 if (P.isLargest())
715 return P;
716
717 return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
718 }
719};
720
721#define SCALED_NUMBER_BOP(op, base) \
722 template <class DigitsT> \
723 ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \
724 const ScaledNumber<DigitsT> &R) { \
725 return ScaledNumber<DigitsT>(L) base R; \
726 }
727SCALED_NUMBER_BOP(+, += )
728SCALED_NUMBER_BOP(-, -= )
729SCALED_NUMBER_BOP(*, *= )
730SCALED_NUMBER_BOP(/, /= )
731#undef SCALED_NUMBER_BOP
732
733template <class DigitsT>
734ScaledNumber<DigitsT> operator<<(const ScaledNumber<DigitsT> &L,
735 int16_t Shift) {
736 return ScaledNumber<DigitsT>(L) <<= Shift;
737}
738
739template <class DigitsT>
741 int16_t Shift) {
742 return ScaledNumber<DigitsT>(L) >>= Shift;
743}
744
745template <class DigitsT>
747 return X.print(OS, 10);
748}
749
750#define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \
751 template <class DigitsT> \
752 bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \
753 return L.compareTo(T2(R)) op 0; \
754 } \
755 template <class DigitsT> \
756 bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \
757 return 0 op R.compareTo(T2(L)); \
758 }
759#define SCALED_NUMBER_COMPARE_TO(op) \
760 SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
761 SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
762 SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \
763 SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
770#undef SCALED_NUMBER_COMPARE_TO
771#undef SCALED_NUMBER_COMPARE_TO_TYPE
772
773template <class DigitsT>
775 if (Width == 64 || N <= DigitsLimits::max())
776 return (get(N) * *this).template toInt<uint64_t>();
777
778 // Defer to the 64-bit version.
779 return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
780}
781
782template <class DigitsT>
783template <class IntT>
785 typedef std::numeric_limits<IntT> Limits;
786 if (*this < 1)
787 return 0;
788 if (*this >= Limits::max())
789 return Limits::max();
790
791 IntT N = Digits;
792 if (Scale > 0) {
793 assert(size_t(Scale) < sizeof(IntT) * 8);
794 return N << Scale;
795 }
796 if (Scale < 0) {
797 assert(size_t(-Scale) < sizeof(IntT) * 8);
798 return N >> -Scale;
799 }
800 return N;
801}
802
803template <class DigitsT>
805operator*=(const ScaledNumber &X) {
806 if (isZero())
807 return *this;
808 if (X.isZero())
809 return *this = X;
810
811 // Save the exponents.
812 int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
813
814 // Get the raw product.
815 *this = getProduct(Digits, X.Digits);
816
817 // Combine with exponents.
818 return *this <<= Scales;
819}
820template <class DigitsT>
822operator/=(const ScaledNumber &X) {
823 if (isZero())
824 return *this;
825 if (X.isZero())
826 return *this = getLargest();
827
828 // Save the exponents.
829 int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
830
831 // Get the raw quotient.
832 *this = getQuotient(Digits, X.Digits);
833
834 // Combine with exponents.
835 return *this <<= Scales;
836}
837template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
838 if (!Shift || isZero())
839 return;
840 assert(Shift != INT32_MIN);
841 if (Shift < 0) {
842 shiftRight(-Shift);
843 return;
844 }
845
846 // Shift as much as we can in the exponent.
847 int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
848 Scale += ScaleShift;
849 if (ScaleShift == Shift)
850 return;
851
852 // Check this late, since it's rare.
853 if (isLargest())
854 return;
855
856 // Shift the digits themselves.
857 Shift -= ScaleShift;
858 if (Shift > countLeadingZerosWidth(Digits)) {
859 // Saturate.
860 *this = getLargest();
861 return;
862 }
863
864 Digits <<= Shift;
865}
866
867template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
868 if (!Shift || isZero())
869 return;
870 assert(Shift != INT32_MIN);
871 if (Shift < 0) {
872 shiftLeft(-Shift);
873 return;
874 }
875
876 // Shift as much as we can in the exponent.
877 int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
878 Scale -= ScaleShift;
879 if (ScaleShift == Shift)
880 return;
881
882 // Shift the digits themselves.
883 Shift -= ScaleShift;
884 if (Shift >= Width) {
885 // Saturate.
886 *this = getZero();
887 return;
888 }
889
890 Digits >>= Shift;
891}
892
893
894} // end namespace llvm
895
896#endif // LLVM_SUPPORT_SCALEDNUMBER_H
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_ABI
Definition: Compiler.h:213
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:546
#define P(N)
raw_pwrite_stream & OS
#define SCALED_NUMBER_BOP(op, base)
Definition: ScaledNumber.h:721
#define SCALED_NUMBER_COMPARE_TO(op)
Definition: ScaledNumber.h:759
Value * RHS
Value * LHS
static int countLeadingZeros64(uint64_t N)
Definition: ScaledNumber.h:433
static int countLeadingZeros32(uint32_t N)
Definition: ScaledNumber.h:432
static constexpr int DefaultPrecision
Definition: ScaledNumber.h:425
static int64_t joinSigned(uint64_t U, bool IsNeg)
Definition: ScaledNumber.h:442
static LLVM_ABI raw_ostream & print(raw_ostream &OS, uint64_t D, int16_t E, int Width, unsigned Precision)
static LLVM_ABI std::string toString(uint64_t D, int16_t E, int Width, unsigned Precision)
static LLVM_ABI void dump(uint64_t D, int16_t E, int Width)
static uint64_t getHalf(uint64_t N)
Definition: ScaledNumber.h:434
static std::pair< uint64_t, bool > splitSigned(int64_t N)
Definition: ScaledNumber.h:436
Simple representation of a scaled number.
Definition: ScaledNumber.h:496
bool operator!=(const ScaledNumber &X) const
Definition: ScaledNumber.h:573
bool isZero() const
Definition: ScaledNumber.h:546
raw_ostream & print(raw_ostream &OS, unsigned Precision=DefaultPrecision) const
Print a decimal representation.
Definition: ScaledNumber.h:606
ScaledNumber & operator*=(const ScaledNumber &X)
Definition: ScaledNumber.h:805
static ScaledNumber getLargest()
Definition: ScaledNumber.h:526
ScaledNumber & operator/=(const ScaledNumber &X)
Definition: ScaledNumber.h:822
ScaledNumber & operator<<=(int16_t Shift)
Definition: ScaledNumber.h:627
int32_t lgFloor() const
The log base 2, rounded towards INT32_MIN.
Definition: ScaledNumber.h:562
ScaledNumber inverse() const
Definition: ScaledNumber.h:681
bool operator<=(const ScaledNumber &X) const
Definition: ScaledNumber.h:575
ScaledNumber & operator+=(const ScaledNumber &X)
Definition: ScaledNumber.h:612
bool operator==(const ScaledNumber &X) const
Definition: ScaledNumber.h:571
int compare(const ScaledNumber &X) const
Definition: ScaledNumber.h:672
bool isOne() const
Definition: ScaledNumber.h:548
std::string toString(unsigned Precision=DefaultPrecision)
Convert to a decimal representation in a string.
Definition: ScaledNumber.h:599
void dump() const
Definition: ScaledNumber.h:610
static ScaledNumber get(uint64_t N)
Definition: ScaledNumber.h:529
static ScaledNumber getZero()
Definition: ScaledNumber.h:524
DigitsType getDigits() const
Definition: ScaledNumber.h:538
static ScaledNumber getOne()
Definition: ScaledNumber.h:525
uint64_t scale(uint64_t N) const
Scale a large number accurately.
Definition: ScaledNumber.h:774
bool operator>(const ScaledNumber &X) const
Definition: ScaledNumber.h:574
ScaledNumber & operator>>=(int16_t Shift)
Definition: ScaledNumber.h:631
static ScaledNumber getFraction(DigitsType N, DigitsType D)
Definition: ScaledNumber.h:533
int64_t scaleByInverse(int64_t N) const
Definition: ScaledNumber.h:667
constexpr ScaledNumber(DigitsType Digits, int16_t Scale)
Definition: ScaledNumber.h:516
int32_t lgCeiling() const
The log base 2, rounded towards INT32_MAX.
Definition: ScaledNumber.h:567
uint64_t scaleByInverse(uint64_t N) const
Definition: ScaledNumber.h:658
bool operator!() const
Definition: ScaledNumber.h:578
ScaledNumber & invert()
Definition: ScaledNumber.h:680
bool operator<(const ScaledNumber &X) const
Definition: ScaledNumber.h:572
bool operator>=(const ScaledNumber &X) const
Definition: ScaledNumber.h:576
int32_t lg() const
The log base 2, rounded.
Definition: ScaledNumber.h:557
int compareTo(uint64_t N) const
Definition: ScaledNumber.h:675
ScaledNumber()=default
static ScaledNumber getInverse(uint64_t N)
Definition: ScaledNumber.h:530
IntT toInt() const
Convert to the given integer type.
Definition: ScaledNumber.h:784
bool isLargest() const
Definition: ScaledNumber.h:547
ScaledNumber & operator-=(const ScaledNumber &X)
Definition: ScaledNumber.h:620
int64_t scale(int64_t N) const
Definition: ScaledNumber.h:663
int16_t getScale() const
Definition: ScaledNumber.h:537
int compareTo(int64_t N) const
Definition: ScaledNumber.h:678
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
#define INT64_MIN
Definition: DataTypes.h:74
#define INT64_MAX
Definition: DataTypes.h:71
int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale)
Compare two scaled numbers.
Definition: ScaledNumber.h:255
LLVM_ABI std::pair< uint64_t, int16_t > divide64(uint64_t Dividend, uint64_t Divisor)
Divide two 64-bit integers to create a 64-bit scaled number.
int32_t getLgFloor(DigitsT Digits, int16_t Scale)
Get the lg floor of a scaled number.
Definition: ScaledNumber.h:226
LLVM_ABI std::pair< uint64_t, int16_t > multiply64(uint64_t LHS, uint64_t RHS)
Multiply two 64-bit integers to create a 64-bit scaled number.
std::pair< DigitsT, int16_t > getSum(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale)
Get the sum of two scaled numbers.
Definition: ScaledNumber.h:336
std::pair< uint32_t, int16_t > getAdjusted32(uint64_t Digits, int16_t Scale=0)
Convenience helper for adjusting to 32 bits.
Definition: ScaledNumber.h:95
const int32_t MinScale
Maximum scale; same as APFloat for easy debug printing.
Definition: ScaledNumber.h:40
std::pair< DigitsT, int16_t > getAdjusted(uint64_t Digits, int16_t Scale=0)
Adjust a 64-bit scaled number down to the appropriate width.
Definition: ScaledNumber.h:80
std::pair< uint64_t, int16_t > getAdjusted64(uint64_t Digits, int16_t Scale=0)
Convenience helper for adjusting to 64 bits.
Definition: ScaledNumber.h:101
std::pair< uint32_t, int16_t > getQuotient32(uint32_t Dividend, uint32_t Divisor)
Convenience helper for 32-bit quotient.
Definition: ScaledNumber.h:173
std::pair< int32_t, int > getLgImpl(DigitsT Digits, int16_t Scale)
Implementation of getLg() and friends.
Definition: ScaledNumber.h:191
std::pair< uint32_t, int16_t > getSum32(uint32_t LDigits, int16_t LScale, uint32_t RDigits, int16_t RScale)
Convenience helper for 32-bit sum.
Definition: ScaledNumber.h:359
std::pair< DigitsT, int16_t > getProduct(DigitsT LHS, DigitsT RHS)
Multiply two 32-bit integers to create a 32-bit scaled number.
Definition: ScaledNumber.h:115
std::pair< DigitsT, int16_t > getRounded(DigitsT Digits, int16_t Scale, bool ShouldRound)
Conditionally round up a scaled number.
Definition: ScaledNumber.h:53
std::pair< uint32_t, int16_t > getDifference32(uint32_t LDigits, int16_t LScale, uint32_t RDigits, int16_t RScale)
Convenience helper for 32-bit difference.
Definition: ScaledNumber.h:402
std::pair< uint64_t, int16_t > getQuotient64(uint64_t Dividend, uint64_t Divisor)
Convenience helper for 64-bit quotient.
Definition: ScaledNumber.h:179
std::pair< uint32_t, int16_t > getRounded32(uint32_t Digits, int16_t Scale, bool ShouldRound)
Convenience helper for 32-bit rounding.
Definition: ScaledNumber.h:65
int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits, int16_t &RScale)
Match scales of two numbers.
Definition: ScaledNumber.h:290
LLVM_ABI std::pair< uint32_t, int16_t > divide32(uint32_t Dividend, uint32_t Divisor)
Divide two 32-bit integers to create a 32-bit scaled number.
const int32_t MaxScale
Maximum scale; same as APFloat for easy debug printing.
Definition: ScaledNumber.h:37
std::pair< uint32_t, int16_t > getProduct32(uint32_t LHS, uint32_t RHS)
Convenience helper for 32-bit product.
Definition: ScaledNumber.h:125
int32_t getLg(DigitsT Digits, int16_t Scale)
Get the lg (rounded) of a scaled number.
Definition: ScaledNumber.h:217
std::pair< uint64_t, int16_t > getSum64(uint64_t LDigits, int16_t LScale, uint64_t RDigits, int16_t RScale)
Convenience helper for 64-bit sum.
Definition: ScaledNumber.h:365
std::pair< DigitsT, int16_t > getDifference(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale)
Get the difference of two scaled numbers.
Definition: ScaledNumber.h:376
std::pair< DigitsT, int16_t > getQuotient(DigitsT Dividend, DigitsT Divisor)
Divide two 32-bit numbers to create a 32-bit scaled number.
Definition: ScaledNumber.h:156
LLVM_ABI int compareImpl(uint64_t L, uint64_t R, int ScaleDiff)
Implementation for comparing scaled numbers.
int getWidth()
Get the width of a number.
Definition: ScaledNumber.h:43
std::pair< uint64_t, int16_t > getDifference64(uint64_t LDigits, int16_t LScale, uint64_t RDigits, int16_t RScale)
Convenience helper for 64-bit difference.
Definition: ScaledNumber.h:410
int32_t getLgCeiling(DigitsT Digits, int16_t Scale)
Get the lg ceiling of a scaled number.
Definition: ScaledNumber.h:236
std::pair< uint64_t, int16_t > getRounded64(uint64_t Digits, int16_t Scale, bool ShouldRound)
Convenience helper for 64-bit rounding.
Definition: ScaledNumber.h:71
std::pair< uint64_t, int16_t > getProduct64(uint64_t LHS, uint64_t RHS)
Convenience helper for 64-bit product.
Definition: ScaledNumber.h:130
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition: bit.h:270
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:342
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition: bit.h:203
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
static lostFraction shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits)
Definition: APFloat.cpp:696
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:312
ScaledNumber< DigitsT > operator>>(const ScaledNumber< DigitsT > &L, int16_t Shift)
Definition: ScaledNumber.h:740
#define N