LLVM 22.0.0git
SelectionDAG.cpp
Go to the documentation of this file.
1//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAG class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/FoldingSet.h"
22#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Twine.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugLoc.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/GlobalValue.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Type.h"
64#include "llvm/Support/Debug.h"
73#include <algorithm>
74#include <cassert>
75#include <cstdint>
76#include <cstdlib>
77#include <limits>
78#include <optional>
79#include <set>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85using namespace llvm::SDPatternMatch;
86
87/// makeVTList - Return an instance of the SDVTList struct initialized with the
88/// specified members.
89static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
90 SDVTList Res = {VTs, NumVTs};
91 return Res;
92}
93
94// Default null implementations of the callbacks.
98
99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101
102#define DEBUG_TYPE "selectiondag"
103
104static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
105 cl::Hidden, cl::init(true),
106 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
107
108static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
109 cl::desc("Number limit for gluing ld/st of memcpy."),
110 cl::Hidden, cl::init(0));
111
113 MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192),
114 cl::desc("DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
116
118 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
119}
120
122
123//===----------------------------------------------------------------------===//
124// ConstantFPSDNode Class
125//===----------------------------------------------------------------------===//
126
127/// isExactlyValue - We don't rely on operator== working on double values, as
128/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
129/// As such, this method can be used to do an exact bit-for-bit comparison of
130/// two floating point values.
132 return getValueAPF().bitwiseIsEqual(V);
133}
134
136 const APFloat& Val) {
137 assert(VT.isFloatingPoint() && "Can only convert between FP types");
138
139 // convert modifies in place, so make a copy.
140 APFloat Val2 = APFloat(Val);
141 bool losesInfo;
143 &losesInfo);
144 return !losesInfo;
145}
146
147//===----------------------------------------------------------------------===//
148// ISD Namespace
149//===----------------------------------------------------------------------===//
150
151bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
152 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
153 if (auto OptAPInt = N->getOperand(0)->bitcastToAPInt()) {
154 unsigned EltSize =
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->trunc(EltSize);
157 return true;
158 }
159 }
160
161 auto *BV = dyn_cast<BuildVectorSDNode>(N);
162 if (!BV)
163 return false;
164
165 APInt SplatUndef;
166 unsigned SplatBitSize;
167 bool HasUndefs;
168 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
169 // Endianness does not matter here. We are checking for a splat given the
170 // element size of the vector, and if we find such a splat for little endian
171 // layout, then that should be valid also for big endian (as the full vector
172 // size is known to be a multiple of the element size).
173 const bool IsBigEndian = false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
177}
178
179// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
180// specializations of the more general isConstantSplatVector()?
181
182bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
183 // Look through a bit convert.
184 while (N->getOpcode() == ISD::BITCAST)
185 N = N->getOperand(0).getNode();
186
187 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
188 APInt SplatVal;
189 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
190 }
191
192 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
193
194 unsigned i = 0, e = N->getNumOperands();
195
196 // Skip over all of the undef values.
197 while (i != e && N->getOperand(i).isUndef())
198 ++i;
199
200 // Do not accept an all-undef vector.
201 if (i == e) return false;
202
203 // Do not accept build_vectors that aren't all constants or which have non-~0
204 // elements. We have to be a bit careful here, as the type of the constant
205 // may not be the same as the type of the vector elements due to type
206 // legalization (the elements are promoted to a legal type for the target and
207 // a vector of a type may be legal when the base element type is not).
208 // We only want to check enough bits to cover the vector elements, because
209 // we care if the resultant vector is all ones, not whether the individual
210 // constants are.
211 SDValue NotZero = N->getOperand(i);
212 if (auto OptAPInt = NotZero->bitcastToAPInt()) {
213 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
215 return false;
216 } else
217 return false;
218
219 // Okay, we have at least one ~0 value, check to see if the rest match or are
220 // undefs. Even with the above element type twiddling, this should be OK, as
221 // the same type legalization should have applied to all the elements.
222 for (++i; i != e; ++i)
223 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
224 return false;
225 return true;
226}
227
228bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
229 // Look through a bit convert.
230 while (N->getOpcode() == ISD::BITCAST)
231 N = N->getOperand(0).getNode();
232
233 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
234 APInt SplatVal;
235 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
236 }
237
238 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
239
240 bool IsAllUndef = true;
241 for (const SDValue &Op : N->op_values()) {
242 if (Op.isUndef())
243 continue;
244 IsAllUndef = false;
245 // Do not accept build_vectors that aren't all constants or which have non-0
246 // elements. We have to be a bit careful here, as the type of the constant
247 // may not be the same as the type of the vector elements due to type
248 // legalization (the elements are promoted to a legal type for the target
249 // and a vector of a type may be legal when the base element type is not).
250 // We only want to check enough bits to cover the vector elements, because
251 // we care if the resultant vector is all zeros, not whether the individual
252 // constants are.
253 if (auto OptAPInt = Op->bitcastToAPInt()) {
254 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
256 return false;
257 } else
258 return false;
259 }
260
261 // Do not accept an all-undef vector.
262 if (IsAllUndef)
263 return false;
264 return true;
265}
266
268 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
269}
270
272 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
273}
274
276 if (N->getOpcode() != ISD::BUILD_VECTOR)
277 return false;
278
279 for (const SDValue &Op : N->op_values()) {
280 if (Op.isUndef())
281 continue;
283 return false;
284 }
285 return true;
286}
287
289 if (N->getOpcode() != ISD::BUILD_VECTOR)
290 return false;
291
292 for (const SDValue &Op : N->op_values()) {
293 if (Op.isUndef())
294 continue;
296 return false;
297 }
298 return true;
299}
300
301bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
302 bool Signed) {
303 assert(N->getValueType(0).isVector() && "Expected a vector!");
304
305 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
307 return false;
308
309 if (N->getOpcode() == ISD::ZERO_EXTEND) {
310 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
311 NewEltSize) &&
312 !Signed;
313 }
314 if (N->getOpcode() == ISD::SIGN_EXTEND) {
315 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
316 NewEltSize) &&
317 Signed;
318 }
319 if (N->getOpcode() != ISD::BUILD_VECTOR)
320 return false;
321
322 for (const SDValue &Op : N->op_values()) {
323 if (Op.isUndef())
324 continue;
326 return false;
327
328 APInt C = Op->getAsAPIntVal().trunc(EltSize);
329 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
330 return false;
331 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
332 return false;
333 }
334
335 return true;
336}
337
339 // Return false if the node has no operands.
340 // This is "logically inconsistent" with the definition of "all" but
341 // is probably the desired behavior.
342 if (N->getNumOperands() == 0)
343 return false;
344 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
345}
346
348 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
349}
350
351template <typename ConstNodeType>
353 std::function<bool(ConstNodeType *)> Match,
354 bool AllowUndefs, bool AllowTruncation) {
355 // FIXME: Add support for scalar UNDEF cases?
356 if (auto *C = dyn_cast<ConstNodeType>(Op))
357 return Match(C);
358
359 // FIXME: Add support for vector UNDEF cases?
360 if (ISD::BUILD_VECTOR != Op.getOpcode() &&
361 ISD::SPLAT_VECTOR != Op.getOpcode())
362 return false;
363
364 EVT SVT = Op.getValueType().getScalarType();
365 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs && Op.getOperand(i).isUndef()) {
367 if (!Match(nullptr))
368 return false;
369 continue;
370 }
371
372 auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
374 !Match(Cst))
375 return false;
376 }
377 return true;
378}
379// Build used template types.
381 SDValue, std::function<bool(ConstantSDNode *)>, bool, bool);
383 SDValue, std::function<bool(ConstantFPSDNode *)>, bool, bool);
384
386 SDValue LHS, SDValue RHS,
387 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
388 bool AllowUndefs, bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
390 return false;
391
392 // TODO: Add support for scalar UNDEF cases?
393 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
394 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
395 return Match(LHSCst, RHSCst);
396
397 // TODO: Add support for vector UNDEF cases?
398 if (LHS.getOpcode() != RHS.getOpcode() ||
399 (LHS.getOpcode() != ISD::BUILD_VECTOR &&
400 LHS.getOpcode() != ISD::SPLAT_VECTOR))
401 return false;
402
403 EVT SVT = LHS.getValueType().getScalarType();
404 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
405 SDValue LHSOp = LHS.getOperand(i);
406 SDValue RHSOp = RHS.getOperand(i);
407 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
409 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
410 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 return false;
413 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
414 LHSOp.getValueType() != RHSOp.getValueType()))
415 return false;
416 if (!Match(LHSCst, RHSCst))
417 return false;
418 }
419 return true;
420}
421
423 switch (MinMaxOpc) {
424 default:
425 llvm_unreachable("unrecognized opcode");
426 case ISD::UMIN:
427 return ISD::UMAX;
428 case ISD::UMAX:
429 return ISD::UMIN;
430 case ISD::SMIN:
431 return ISD::SMAX;
432 case ISD::SMAX:
433 return ISD::SMIN;
434 }
435}
436
438 switch (VecReduceOpcode) {
439 default:
440 llvm_unreachable("Expected VECREDUCE opcode");
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
445 return ISD::FADD;
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
450 return ISD::FMUL;
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
453 return ISD::ADD;
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
456 return ISD::MUL;
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
459 return ISD::AND;
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
462 return ISD::OR;
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
465 return ISD::XOR;
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
468 return ISD::SMAX;
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
471 return ISD::SMIN;
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
474 return ISD::UMAX;
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
477 return ISD::UMIN;
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
480 return ISD::FMAXNUM;
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
483 return ISD::FMINNUM;
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
490 }
491}
492
493bool ISD::isVPOpcode(unsigned Opcode) {
494 switch (Opcode) {
495 default:
496 return false;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
498 case ISD::VPSD: \
499 return true;
500#include "llvm/IR/VPIntrinsics.def"
501 }
502}
503
504bool ISD::isVPBinaryOp(unsigned Opcode) {
505 switch (Opcode) {
506 default:
507 break;
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
512 }
513 return false;
514}
515
516bool ISD::isVPReduction(unsigned Opcode) {
517 switch (Opcode) {
518 default:
519 return false;
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
537 return true;
538 }
539}
540
541/// The operand position of the vector mask.
542std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
543 switch (Opcode) {
544 default:
545 return std::nullopt;
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
547 case ISD::VPSD: \
548 return MASKPOS;
549#include "llvm/IR/VPIntrinsics.def"
550 }
551}
552
553/// The operand position of the explicit vector length parameter.
554std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
555 switch (Opcode) {
556 default:
557 return std::nullopt;
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
559 case ISD::VPSD: \
560 return EVLPOS;
561#include "llvm/IR/VPIntrinsics.def"
562 }
563}
564
565std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
566 bool hasFPExcept) {
567 // FIXME: Return strict opcodes in case of fp exceptions.
568 switch (VPOpcode) {
569 default:
570 return std::nullopt;
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
575 }
576 return std::nullopt;
577}
578
579std::optional<unsigned> ISD::getVPForBaseOpcode(unsigned Opcode) {
580 switch (Opcode) {
581 default:
582 return std::nullopt;
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
587 }
588}
589
591 switch (ExtType) {
592 case ISD::EXTLOAD:
593 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
594 case ISD::SEXTLOAD:
595 return ISD::SIGN_EXTEND;
596 case ISD::ZEXTLOAD:
597 return ISD::ZERO_EXTEND;
598 default:
599 break;
600 }
601
602 llvm_unreachable("Invalid LoadExtType");
603}
604
606 // To perform this operation, we just need to swap the L and G bits of the
607 // operation.
608 unsigned OldL = (Operation >> 2) & 1;
609 unsigned OldG = (Operation >> 1) & 1;
610 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
611 (OldL << 1) | // New G bit
612 (OldG << 2)); // New L bit.
613}
614
616 unsigned Operation = Op;
617 if (isIntegerLike)
618 Operation ^= 7; // Flip L, G, E bits, but not U.
619 else
620 Operation ^= 15; // Flip all of the condition bits.
621
623 Operation &= ~8; // Don't let N and U bits get set.
624
625 return ISD::CondCode(Operation);
626}
627
631
633 bool isIntegerLike) {
634 return getSetCCInverseImpl(Op, isIntegerLike);
635}
636
637/// For an integer comparison, return 1 if the comparison is a signed operation
638/// and 2 if the result is an unsigned comparison. Return zero if the operation
639/// does not depend on the sign of the input (setne and seteq).
640static int isSignedOp(ISD::CondCode Opcode) {
641 switch (Opcode) {
642 default: llvm_unreachable("Illegal integer setcc operation!");
643 case ISD::SETEQ:
644 case ISD::SETNE: return 0;
645 case ISD::SETLT:
646 case ISD::SETLE:
647 case ISD::SETGT:
648 case ISD::SETGE: return 1;
649 case ISD::SETULT:
650 case ISD::SETULE:
651 case ISD::SETUGT:
652 case ISD::SETUGE: return 2;
653 }
654}
655
657 EVT Type) {
658 bool IsInteger = Type.isInteger();
659 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
660 // Cannot fold a signed integer setcc with an unsigned integer setcc.
661 return ISD::SETCC_INVALID;
662
663 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
664
665 // If the N and U bits get set, then the resultant comparison DOES suddenly
666 // care about orderedness, and it is true when ordered.
667 if (Op > ISD::SETTRUE2)
668 Op &= ~16; // Clear the U bit if the N bit is set.
669
670 // Canonicalize illegal integer setcc's.
671 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
672 Op = ISD::SETNE;
673
674 return ISD::CondCode(Op);
675}
676
678 EVT Type) {
679 bool IsInteger = Type.isInteger();
680 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
681 // Cannot fold a signed setcc with an unsigned setcc.
682 return ISD::SETCC_INVALID;
683
684 // Combine all of the condition bits.
685 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
686
687 // Canonicalize illegal integer setcc's.
688 if (IsInteger) {
689 switch (Result) {
690 default: break;
691 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
692 case ISD::SETOEQ: // SETEQ & SETU[LG]E
693 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
694 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
695 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
696 }
697 }
698
699 return Result;
700}
701
702//===----------------------------------------------------------------------===//
703// SDNode Profile Support
704//===----------------------------------------------------------------------===//
705
706/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
707static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
708 ID.AddInteger(OpC);
709}
710
711/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
712/// solely with their pointer.
714 ID.AddPointer(VTList.VTs);
715}
716
717/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
720 for (const auto &Op : Ops) {
721 ID.AddPointer(Op.getNode());
722 ID.AddInteger(Op.getResNo());
723 }
724}
725
726/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
729 for (const auto &Op : Ops) {
730 ID.AddPointer(Op.getNode());
731 ID.AddInteger(Op.getResNo());
732 }
733}
734
735static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
736 SDVTList VTList, ArrayRef<SDValue> OpList) {
737 AddNodeIDOpcode(ID, OpC);
738 AddNodeIDValueTypes(ID, VTList);
739 AddNodeIDOperands(ID, OpList);
740}
741
742/// If this is an SDNode with special info, add this info to the NodeID data.
744 switch (N->getOpcode()) {
747 case ISD::MCSymbol:
748 llvm_unreachable("Should only be used on nodes with operands");
749 default: break; // Normal nodes don't need extra info.
751 case ISD::Constant: {
753 ID.AddPointer(C->getConstantIntValue());
754 ID.AddBoolean(C->isOpaque());
755 break;
756 }
758 case ISD::ConstantFP:
759 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
760 break;
766 ID.AddPointer(GA->getGlobal());
767 ID.AddInteger(GA->getOffset());
768 ID.AddInteger(GA->getTargetFlags());
769 break;
770 }
771 case ISD::BasicBlock:
773 break;
774 case ISD::Register:
775 ID.AddInteger(cast<RegisterSDNode>(N)->getReg().id());
776 break;
778 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
779 break;
780 case ISD::SRCVALUE:
781 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
782 break;
783 case ISD::FrameIndex:
785 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
786 break;
787 case ISD::PSEUDO_PROBE:
788 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
789 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
790 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
791 break;
792 case ISD::JumpTable:
794 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
795 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
796 break;
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
804 else
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
807 break;
808 }
809 case ISD::TargetIndex: {
811 ID.AddInteger(TI->getIndex());
812 ID.AddInteger(TI->getOffset());
813 ID.AddInteger(TI->getTargetFlags());
814 break;
815 }
816 case ISD::LOAD: {
817 const LoadSDNode *LD = cast<LoadSDNode>(N);
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
822 break;
823 }
824 case ISD::STORE: {
825 const StoreSDNode *ST = cast<StoreSDNode>(N);
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
830 break;
831 }
832 case ISD::VP_LOAD: {
833 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
834 ID.AddInteger(ELD->getMemoryVT().getRawBits());
835 ID.AddInteger(ELD->getRawSubclassData());
836 ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
837 ID.AddInteger(ELD->getMemOperand()->getFlags());
838 break;
839 }
840 case ISD::VP_LOAD_FF: {
841 const auto *LD = cast<VPLoadFFSDNode>(N);
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
846 break;
847 }
848 case ISD::VP_STORE: {
849 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
850 ID.AddInteger(EST->getMemoryVT().getRawBits());
851 ID.AddInteger(EST->getRawSubclassData());
852 ID.AddInteger(EST->getPointerInfo().getAddrSpace());
853 ID.AddInteger(EST->getMemOperand()->getFlags());
854 break;
855 }
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
858 ID.AddInteger(SLD->getMemoryVT().getRawBits());
859 ID.AddInteger(SLD->getRawSubclassData());
860 ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
861 break;
862 }
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
865 ID.AddInteger(SST->getMemoryVT().getRawBits());
866 ID.AddInteger(SST->getRawSubclassData());
867 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
868 break;
869 }
870 case ISD::VP_GATHER: {
872 ID.AddInteger(EG->getMemoryVT().getRawBits());
873 ID.AddInteger(EG->getRawSubclassData());
874 ID.AddInteger(EG->getPointerInfo().getAddrSpace());
875 ID.AddInteger(EG->getMemOperand()->getFlags());
876 break;
877 }
878 case ISD::VP_SCATTER: {
880 ID.AddInteger(ES->getMemoryVT().getRawBits());
881 ID.AddInteger(ES->getRawSubclassData());
882 ID.AddInteger(ES->getPointerInfo().getAddrSpace());
883 ID.AddInteger(ES->getMemOperand()->getFlags());
884 break;
885 }
886 case ISD::MLOAD: {
888 ID.AddInteger(MLD->getMemoryVT().getRawBits());
889 ID.AddInteger(MLD->getRawSubclassData());
890 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
891 ID.AddInteger(MLD->getMemOperand()->getFlags());
892 break;
893 }
894 case ISD::MSTORE: {
896 ID.AddInteger(MST->getMemoryVT().getRawBits());
897 ID.AddInteger(MST->getRawSubclassData());
898 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
899 ID.AddInteger(MST->getMemOperand()->getFlags());
900 break;
901 }
902 case ISD::MGATHER: {
904 ID.AddInteger(MG->getMemoryVT().getRawBits());
905 ID.AddInteger(MG->getRawSubclassData());
906 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
907 ID.AddInteger(MG->getMemOperand()->getFlags());
908 break;
909 }
910 case ISD::MSCATTER: {
912 ID.AddInteger(MS->getMemoryVT().getRawBits());
913 ID.AddInteger(MS->getRawSubclassData());
914 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
915 ID.AddInteger(MS->getMemOperand()->getFlags());
916 break;
917 }
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
934 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
935 ID.AddInteger(AT->getMemoryVT().getRawBits());
936 ID.AddInteger(AT->getRawSubclassData());
937 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
938 ID.AddInteger(AT->getMemOperand()->getFlags());
939 break;
940 }
941 case ISD::VECTOR_SHUFFLE: {
942 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
943 for (int M : Mask)
944 ID.AddInteger(M);
945 break;
946 }
947 case ISD::ADDRSPACECAST: {
949 ID.AddInteger(ASC->getSrcAddressSpace());
950 ID.AddInteger(ASC->getDestAddressSpace());
951 break;
952 }
954 case ISD::BlockAddress: {
956 ID.AddPointer(BA->getBlockAddress());
957 ID.AddInteger(BA->getOffset());
958 ID.AddInteger(BA->getTargetFlags());
959 break;
960 }
961 case ISD::AssertAlign:
962 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
963 break;
964 case ISD::PREFETCH:
967 // Handled by MemIntrinsicSDNode check after the switch.
968 break;
969 case ISD::MDNODE_SDNODE:
970 ID.AddPointer(cast<MDNodeSDNode>(N)->getMD());
971 break;
972 } // end switch (N->getOpcode())
973
974 // MemIntrinsic nodes could also have subclass data, address spaces, and flags
975 // to check.
976 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
981 }
982}
983
984/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
985/// data.
986static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
987 AddNodeIDOpcode(ID, N->getOpcode());
988 // Add the return value info.
989 AddNodeIDValueTypes(ID, N->getVTList());
990 // Add the operand info.
991 AddNodeIDOperands(ID, N->ops());
992
993 // Handle SDNode leafs with special info.
995}
996
997//===----------------------------------------------------------------------===//
998// SelectionDAG Class
999//===----------------------------------------------------------------------===//
1000
1001/// doNotCSE - Return true if CSE should not be performed for this node.
1002static bool doNotCSE(SDNode *N) {
1003 if (N->getValueType(0) == MVT::Glue)
1004 return true; // Never CSE anything that produces a glue result.
1005
1006 switch (N->getOpcode()) {
1007 default: break;
1008 case ISD::HANDLENODE:
1009 case ISD::EH_LABEL:
1010 return true; // Never CSE these nodes.
1011 }
1012
1013 // Check that remaining values produced are not flags.
1014 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
1015 if (N->getValueType(i) == MVT::Glue)
1016 return true; // Never CSE anything that produces a glue result.
1017
1018 return false;
1019}
1020
1021/// RemoveDeadNodes - This method deletes all unreachable nodes in the
1022/// SelectionDAG.
1024 // Create a dummy node (which is not added to allnodes), that adds a reference
1025 // to the root node, preventing it from being deleted.
1026 HandleSDNode Dummy(getRoot());
1027
1028 SmallVector<SDNode*, 128> DeadNodes;
1029
1030 // Add all obviously-dead nodes to the DeadNodes worklist.
1031 for (SDNode &Node : allnodes())
1032 if (Node.use_empty())
1033 DeadNodes.push_back(&Node);
1034
1035 RemoveDeadNodes(DeadNodes);
1036
1037 // If the root changed (e.g. it was a dead load, update the root).
1038 setRoot(Dummy.getValue());
1039}
1040
1041/// RemoveDeadNodes - This method deletes the unreachable nodes in the
1042/// given list, and any nodes that become unreachable as a result.
1044
1045 // Process the worklist, deleting the nodes and adding their uses to the
1046 // worklist.
1047 while (!DeadNodes.empty()) {
1048 SDNode *N = DeadNodes.pop_back_val();
1049 // Skip to next node if we've already managed to delete the node. This could
1050 // happen if replacing a node causes a node previously added to the node to
1051 // be deleted.
1052 if (N->getOpcode() == ISD::DELETED_NODE)
1053 continue;
1054
1055 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1056 DUL->NodeDeleted(N, nullptr);
1057
1058 // Take the node out of the appropriate CSE map.
1059 RemoveNodeFromCSEMaps(N);
1060
1061 // Next, brutally remove the operand list. This is safe to do, as there are
1062 // no cycles in the graph.
1063 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1064 SDUse &Use = *I++;
1065 SDNode *Operand = Use.getNode();
1066 Use.set(SDValue());
1067
1068 // Now that we removed this operand, see if there are no uses of it left.
1069 if (Operand->use_empty())
1070 DeadNodes.push_back(Operand);
1071 }
1072
1073 DeallocateNode(N);
1074 }
1075}
1076
1078 SmallVector<SDNode*, 16> DeadNodes(1, N);
1079
1080 // Create a dummy node that adds a reference to the root node, preventing
1081 // it from being deleted. (This matters if the root is an operand of the
1082 // dead node.)
1083 HandleSDNode Dummy(getRoot());
1084
1085 RemoveDeadNodes(DeadNodes);
1086}
1087
1089 // First take this out of the appropriate CSE map.
1090 RemoveNodeFromCSEMaps(N);
1091
1092 // Finally, remove uses due to operands of this node, remove from the
1093 // AllNodes list, and delete the node.
1094 DeleteNodeNotInCSEMaps(N);
1095}
1096
1097void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1098 assert(N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(N->use_empty() && "Cannot delete a node that is not dead!");
1101
1102 // Drop all of the operands and decrement used node's use counts.
1103 N->DropOperands();
1104
1105 DeallocateNode(N);
1106}
1107
1108void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1109 assert(!(V->isVariadic() && isParameter));
1110 if (isParameter)
1111 ByvalParmDbgValues.push_back(V);
1112 else
1113 DbgValues.push_back(V);
1114 for (const SDNode *Node : V->getSDNodes())
1115 if (Node)
1116 DbgValMap[Node].push_back(V);
1117}
1118
1120 DbgValMapType::iterator I = DbgValMap.find(Node);
1121 if (I == DbgValMap.end())
1122 return;
1123 for (auto &Val: I->second)
1124 Val->setIsInvalidated();
1125 DbgValMap.erase(I);
1126}
1127
1128void SelectionDAG::DeallocateNode(SDNode *N) {
1129 // If we have operands, deallocate them.
1131
1132 NodeAllocator.Deallocate(AllNodes.remove(N));
1133
1134 // Set the opcode to DELETED_NODE to help catch bugs when node
1135 // memory is reallocated.
1136 // FIXME: There are places in SDag that have grown a dependency on the opcode
1137 // value in the released node.
1138 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1139 N->NodeType = ISD::DELETED_NODE;
1140
1141 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1142 // them and forget about that node.
1143 DbgInfo->erase(N);
1144
1145 // Invalidate extra info.
1146 SDEI.erase(N);
1147}
1148
1149#ifndef NDEBUG
1150/// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
1151void SelectionDAG::verifyNode(SDNode *N) const {
1152 switch (N->getOpcode()) {
1153 default:
1154 if (N->isTargetOpcode())
1156 break;
1157 case ISD::BUILD_PAIR: {
1158 EVT VT = N->getValueType(0);
1159 assert(N->getNumValues() == 1 && "Too many results!");
1160 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1161 "Wrong return type!");
1162 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1163 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1165 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1166 "Wrong operand type!");
1167 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1168 "Wrong return type size");
1169 break;
1170 }
1171 case ISD::BUILD_VECTOR: {
1172 assert(N->getNumValues() == 1 && "Too many results!");
1173 assert(N->getValueType(0).isVector() && "Wrong return type!");
1174 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT = N->getValueType(0).getVectorElementType();
1177 for (const SDUse &Op : N->ops()) {
1178 assert((Op.getValueType() == EltVT ||
1179 (EltVT.isInteger() && Op.getValueType().isInteger() &&
1180 EltVT.bitsLE(Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1184 }
1185 break;
1186 }
1187 }
1188}
1189#endif // NDEBUG
1190
1191/// Insert a newly allocated node into the DAG.
1192///
1193/// Handles insertion into the all nodes list and CSE map, as well as
1194/// verification and other common operations when a new node is allocated.
1195void SelectionDAG::InsertNode(SDNode *N) {
1196 AllNodes.push_back(N);
1197#ifndef NDEBUG
1198 N->PersistentId = NextPersistentId++;
1199 verifyNode(N);
1200#endif
1201 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1202 DUL->NodeInserted(N);
1203}
1204
1205/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1206/// correspond to it. This is useful when we're about to delete or repurpose
1207/// the node. We don't want future request for structurally identical nodes
1208/// to return N anymore.
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1210 bool Erased = false;
1211 switch (N->getOpcode()) {
1212 case ISD::HANDLENODE: return false; // noop.
1213 case ISD::CONDCODE:
1214 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1215 "Cond code doesn't exist!");
1216 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1217 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1218 break;
1220 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1221 break;
1223 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1225 ESN->getSymbol(), ESN->getTargetFlags()));
1226 break;
1227 }
1228 case ISD::MCSymbol: {
1229 auto *MCSN = cast<MCSymbolSDNode>(N);
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1231 break;
1232 }
1233 case ISD::VALUETYPE: {
1234 EVT VT = cast<VTSDNode>(N)->getVT();
1235 if (VT.isExtended()) {
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1237 } else {
1238 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1239 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1240 }
1241 break;
1242 }
1243 default:
1244 // Remove it from the CSE Map.
1245 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1246 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1247 Erased = CSEMap.RemoveNode(N);
1248 break;
1249 }
1250#ifndef NDEBUG
1251 // Verify that the node was actually in one of the CSE maps, unless it has a
1252 // glue result (which cannot be CSE'd) or is one of the special cases that are
1253 // not subject to CSE.
1254 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1255 !N->isMachineOpcode() && !doNotCSE(N)) {
1256 N->dump(this);
1257 dbgs() << "\n";
1258 llvm_unreachable("Node is not in map!");
1259 }
1260#endif
1261 return Erased;
1262}
1263
1264/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1265/// maps and modified in place. Add it back to the CSE maps, unless an identical
1266/// node already exists, in which case transfer all its users to the existing
1267/// node. This transfer can potentially trigger recursive merging.
1268void
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1270 // For node types that aren't CSE'd, just act as if no identical node
1271 // already exists.
1272 if (!doNotCSE(N)) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(N);
1274 if (Existing != N) {
1275 // If there was already an existing matching node, use ReplaceAllUsesWith
1276 // to replace the dead one with the existing one. This can cause
1277 // recursive merging of other unrelated nodes down the line.
1278 Existing->intersectFlagsWith(N->getFlags());
1279 if (auto *MemNode = dyn_cast<MemSDNode>(Existing))
1280 MemNode->refineRanges(cast<MemSDNode>(N)->getMemOperand());
1281 ReplaceAllUsesWith(N, Existing);
1282
1283 // N is now dead. Inform the listeners and delete it.
1284 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1285 DUL->NodeDeleted(N, Existing);
1286 DeleteNodeNotInCSEMaps(N);
1287 return;
1288 }
1289 }
1290
1291 // If the node doesn't already exist, we updated it. Inform listeners.
1292 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1293 DUL->NodeUpdated(N);
1294}
1295
1296/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1297/// were replaced with those specified. If this node is never memoized,
1298/// return null, otherwise return a pointer to the slot it would take. If a
1299/// node already exists with these operands, the slot will be non-null.
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1301 void *&InsertPos) {
1302 if (doNotCSE(N))
1303 return nullptr;
1304
1305 SDValue Ops[] = { Op };
1306 FoldingSetNodeID ID;
1307 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1309 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1310 if (Node)
1311 Node->intersectFlagsWith(N->getFlags());
1312 return Node;
1313}
1314
1315/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1316/// were replaced with those specified. If this node is never memoized,
1317/// return null, otherwise return a pointer to the slot it would take. If a
1318/// node already exists with these operands, the slot will be non-null.
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1320 SDValue Op1, SDValue Op2,
1321 void *&InsertPos) {
1322 if (doNotCSE(N))
1323 return nullptr;
1324
1325 SDValue Ops[] = { Op1, Op2 };
1326 FoldingSetNodeID ID;
1327 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1329 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1330 if (Node)
1331 Node->intersectFlagsWith(N->getFlags());
1332 return Node;
1333}
1334
1335/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1336/// were replaced with those specified. If this node is never memoized,
1337/// return null, otherwise return a pointer to the slot it would take. If a
1338/// node already exists with these operands, the slot will be non-null.
1339SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1340 void *&InsertPos) {
1341 if (doNotCSE(N))
1342 return nullptr;
1343
1344 FoldingSetNodeID ID;
1345 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1347 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1348 if (Node)
1349 Node->intersectFlagsWith(N->getFlags());
1350 return Node;
1351}
1352
1354 Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1355 : VT.getTypeForEVT(*getContext());
1356
1357 return getDataLayout().getABITypeAlign(Ty);
1358}
1359
1360// EntryNode could meaningfully have debug info if we can find it...
1362 : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1363 getVTList(MVT::Other, MVT::Glue)),
1364 Root(getEntryNode()) {
1365 InsertNode(&EntryNode);
1366 DbgInfo = new SDDbgInfo();
1367}
1368
1370 OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1371 const TargetLibraryInfo *LibraryInfo,
1372 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1374 FunctionVarLocs const *VarLocs) {
1375 MF = &NewMF;
1376 SDAGISelPass = PassPtr;
1377 ORE = &NewORE;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1382 UA = NewUA;
1383 PSI = PSIin;
1384 BFI = BFIin;
1385 MMI = &MMIin;
1386 FnVarLocs = VarLocs;
1387}
1388
1390 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1391 allnodes_clear();
1392 OperandRecycler.clear(OperandAllocator);
1393 delete DbgInfo;
1394}
1395
1397 return llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1398}
1399
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1405#ifndef NDEBUG
1406 NextPersistentId = 0;
1407#endif
1408}
1409
1410SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1411 void *&InsertPos) {
1412 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1413 if (N) {
1414 switch (N->getOpcode()) {
1415 default: break;
1416 case ISD::Constant:
1417 case ISD::ConstantFP:
1418 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1419 "debug location. Use another overload.");
1420 }
1421 }
1422 return N;
1423}
1424
1425SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1426 const SDLoc &DL, void *&InsertPos) {
1427 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1428 if (N) {
1429 switch (N->getOpcode()) {
1430 case ISD::Constant:
1431 case ISD::ConstantFP:
1432 // Erase debug location from the node if the node is used at several
1433 // different places. Do not propagate one location to all uses as it
1434 // will cause a worse single stepping debugging experience.
1435 if (N->getDebugLoc() != DL.getDebugLoc())
1436 N->setDebugLoc(DebugLoc());
1437 break;
1438 default:
1439 // When the node's point of use is located earlier in the instruction
1440 // sequence than its prior point of use, update its debug info to the
1441 // earlier location.
1442 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1443 N->setDebugLoc(DL.getDebugLoc());
1444 break;
1445 }
1446 }
1447 return N;
1448}
1449
1451 allnodes_clear();
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1454 CSEMap.clear();
1455
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1459 MCSymbols.clear();
1460 SDEI.clear();
1461 llvm::fill(CondCodeNodes, nullptr);
1462 llvm::fill(ValueTypeNodes, nullptr);
1463
1464 EntryNode.UseList = nullptr;
1465 InsertNode(&EntryNode);
1466 Root = getEntryNode();
1467 DbgInfo->clear();
1468}
1469
1471 return VT.bitsGT(Op.getValueType())
1472 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1473 : getNode(ISD::FP_ROUND, DL, VT, Op,
1474 getIntPtrConstant(0, DL, /*isTarget=*/true));
1475}
1476
1477std::pair<SDValue, SDValue>
1479 const SDLoc &DL, EVT VT) {
1480 assert(!VT.bitsEq(Op.getValueType()) &&
1481 "Strict no-op FP extend/round not allowed.");
1482 SDValue Res =
1483 VT.bitsGT(Op.getValueType())
1484 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1485 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1486 {Chain, Op, getIntPtrConstant(0, DL, /*isTarget=*/true)});
1487
1488 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1489}
1490
1492 return VT.bitsGT(Op.getValueType()) ?
1493 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1494 getNode(ISD::TRUNCATE, DL, VT, Op);
1495}
1496
1498 return VT.bitsGT(Op.getValueType()) ?
1499 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1500 getNode(ISD::TRUNCATE, DL, VT, Op);
1501}
1502
1504 return VT.bitsGT(Op.getValueType()) ?
1505 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1506 getNode(ISD::TRUNCATE, DL, VT, Op);
1507}
1508
1510 EVT VT) {
1511 assert(!VT.isVector());
1512 auto Type = Op.getValueType();
1513 SDValue DestOp;
1514 if (Type == VT)
1515 return Op;
1516 auto Size = Op.getValueSizeInBits();
1517 DestOp = getBitcast(EVT::getIntegerVT(*Context, Size), Op);
1518 if (DestOp.getValueType() == VT)
1519 return DestOp;
1520
1521 return getAnyExtOrTrunc(DestOp, DL, VT);
1522}
1523
1525 EVT VT) {
1526 assert(!VT.isVector());
1527 auto Type = Op.getValueType();
1528 SDValue DestOp;
1529 if (Type == VT)
1530 return Op;
1531 auto Size = Op.getValueSizeInBits();
1532 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1533 if (DestOp.getValueType() == VT)
1534 return DestOp;
1535
1536 return getSExtOrTrunc(DestOp, DL, VT);
1537}
1538
1540 EVT VT) {
1541 assert(!VT.isVector());
1542 auto Type = Op.getValueType();
1543 SDValue DestOp;
1544 if (Type == VT)
1545 return Op;
1546 auto Size = Op.getValueSizeInBits();
1547 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1548 if (DestOp.getValueType() == VT)
1549 return DestOp;
1550
1551 return getZExtOrTrunc(DestOp, DL, VT);
1552}
1553
1555 EVT OpVT) {
1556 if (VT.bitsLE(Op.getValueType()))
1557 return getNode(ISD::TRUNCATE, SL, VT, Op);
1558
1559 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1560 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1561}
1562
1564 EVT OpVT = Op.getValueType();
1565 assert(VT.isInteger() && OpVT.isInteger() &&
1566 "Cannot getZeroExtendInReg FP types");
1567 assert(VT.isVector() == OpVT.isVector() &&
1568 "getZeroExtendInReg type should be vector iff the operand "
1569 "type is vector!");
1570 assert((!VT.isVector() ||
1572 "Vector element counts must match in getZeroExtendInReg");
1573 assert(VT.bitsLE(OpVT) && "Not extending!");
1574 if (OpVT == VT)
1575 return Op;
1577 VT.getScalarSizeInBits());
1578 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1579}
1580
1582 SDValue EVL, const SDLoc &DL,
1583 EVT VT) {
1584 EVT OpVT = Op.getValueType();
1585 assert(VT.isInteger() && OpVT.isInteger() &&
1586 "Cannot getVPZeroExtendInReg FP types");
1587 assert(VT.isVector() && OpVT.isVector() &&
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1591 assert(VT.bitsLE(OpVT) && "Not extending!");
1592 if (OpVT == VT)
1593 return Op;
1595 VT.getScalarSizeInBits());
1596 return getNode(ISD::VP_AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT), Mask,
1597 EVL);
1598}
1599
1601 // Only unsigned pointer semantics are supported right now. In the future this
1602 // might delegate to TLI to check pointer signedness.
1603 return getZExtOrTrunc(Op, DL, VT);
1604}
1605
1607 // Only unsigned pointer semantics are supported right now. In the future this
1608 // might delegate to TLI to check pointer signedness.
1609 return getZeroExtendInReg(Op, DL, VT);
1610}
1611
1613 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1614}
1615
1616/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1618 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1619}
1620
1622 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1623 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1624}
1625
1627 SDValue Mask, SDValue EVL, EVT VT) {
1628 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1629 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1630}
1631
1633 SDValue Mask, SDValue EVL) {
1634 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1635}
1636
1638 SDValue Mask, SDValue EVL) {
1639 if (VT.bitsGT(Op.getValueType()))
1640 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1641 if (VT.bitsLT(Op.getValueType()))
1642 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1643 return Op;
1644}
1645
1647 EVT OpVT) {
1648 if (!V)
1649 return getConstant(0, DL, VT);
1650
1651 switch (TLI->getBooleanContents(OpVT)) {
1654 return getConstant(1, DL, VT);
1656 return getAllOnesConstant(DL, VT);
1657 }
1658 llvm_unreachable("Unexpected boolean content enum!");
1659}
1660
1662 bool isT, bool isO) {
1663 return getConstant(APInt(VT.getScalarSizeInBits(), Val, /*isSigned=*/false),
1664 DL, VT, isT, isO);
1665}
1666
1668 bool isT, bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1670}
1671
1673 EVT VT, bool isT, bool isO) {
1674 assert(VT.isInteger() && "Cannot create FP integer constant!");
1675
1676 EVT EltVT = VT.getScalarType();
1677 const ConstantInt *Elt = &Val;
1678
1679 // Vector splats are explicit within the DAG, with ConstantSDNode holding the
1680 // to-be-splatted scalar ConstantInt.
1681 if (isa<VectorType>(Elt->getType()))
1682 Elt = ConstantInt::get(*getContext(), Elt->getValue());
1683
1684 // In some cases the vector type is legal but the element type is illegal and
1685 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1686 // inserted value (the type does not need to match the vector element type).
1687 // Any extra bits introduced will be truncated away.
1688 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1690 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1691 APInt NewVal;
1692 if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1693 NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1694 else
1695 NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1696 Elt = ConstantInt::get(*getContext(), NewVal);
1697 }
1698 // In other cases the element type is illegal and needs to be expanded, for
1699 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1700 // the value into n parts and use a vector type with n-times the elements.
1701 // Then bitcast to the type requested.
1702 // Legalizing constants too early makes the DAGCombiner's job harder so we
1703 // only legalize if the DAG tells us we must produce legal types.
1704 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1705 TLI->getTypeAction(*getContext(), EltVT) ==
1707 const APInt &NewVal = Elt->getValue();
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1709 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1710
1711 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1712 if (VT.isScalableVector() ||
1713 TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1714 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1715 "Can only handle an even split!");
1716 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1717
1718 SmallVector<SDValue, 2> ScalarParts;
1719 for (unsigned i = 0; i != Parts; ++i)
1720 ScalarParts.push_back(getConstant(
1721 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1722 ViaEltVT, isT, isO));
1723
1724 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1725 }
1726
1727 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1728 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1729
1730 // Check the temporary vector is the correct size. If this fails then
1731 // getTypeToTransformTo() probably returned a type whose size (in bits)
1732 // isn't a power-of-2 factor of the requested type size.
1733 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1734
1735 SmallVector<SDValue, 2> EltParts;
1736 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1737 EltParts.push_back(getConstant(
1738 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1739 ViaEltVT, isT, isO));
1740
1741 // EltParts is currently in little endian order. If we actually want
1742 // big-endian order then reverse it now.
1743 if (getDataLayout().isBigEndian())
1744 std::reverse(EltParts.begin(), EltParts.end());
1745
1746 // The elements must be reversed when the element order is different
1747 // to the endianness of the elements (because the BITCAST is itself a
1748 // vector shuffle in this situation). However, we do not need any code to
1749 // perform this reversal because getConstant() is producing a vector
1750 // splat.
1751 // This situation occurs in MIPS MSA.
1752
1754 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1755 llvm::append_range(Ops, EltParts);
1756
1757 SDValue V =
1758 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1759 return V;
1760 }
1761
1762 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1763 "APInt size does not match type size!");
1764 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1765 SDVTList VTs = getVTList(EltVT);
1767 AddNodeIDNode(ID, Opc, VTs, {});
1768 ID.AddPointer(Elt);
1769 ID.AddBoolean(isO);
1770 void *IP = nullptr;
1771 SDNode *N = nullptr;
1772 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1773 if (!VT.isVector())
1774 return SDValue(N, 0);
1775
1776 if (!N) {
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(N, IP);
1779 InsertNode(N);
1780 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1781 }
1782
1783 SDValue Result(N, 0);
1784 if (VT.isVector())
1785 Result = getSplat(VT, DL, Result);
1786 return Result;
1787}
1788
1790 bool isT, bool isO) {
1791 unsigned Size = VT.getScalarSizeInBits();
1792 return getConstant(APInt(Size, Val, /*isSigned=*/true), DL, VT, isT, isO);
1793}
1794
1796 bool IsOpaque) {
1798 IsTarget, IsOpaque);
1799}
1800
1802 bool isTarget) {
1803 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1804}
1805
1807 const SDLoc &DL) {
1808 assert(VT.isInteger() && "Shift amount is not an integer type!");
1809 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout());
1810 return getConstant(Val, DL, ShiftVT);
1811}
1812
1814 const SDLoc &DL) {
1815 assert(Val.ult(VT.getScalarSizeInBits()) && "Out of range shift");
1816 return getShiftAmountConstant(Val.getZExtValue(), VT, DL);
1817}
1818
1820 bool isTarget) {
1821 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1822}
1823
1825 bool isTarget) {
1826 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1827}
1828
1830 EVT VT, bool isTarget) {
1831 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1832
1833 EVT EltVT = VT.getScalarType();
1834 const ConstantFP *Elt = &V;
1835
1836 // Vector splats are explicit within the DAG, with ConstantFPSDNode holding
1837 // the to-be-splatted scalar ConstantFP.
1838 if (isa<VectorType>(Elt->getType()))
1839 Elt = ConstantFP::get(*getContext(), Elt->getValue());
1840
1841 // Do the map lookup using the actual bit pattern for the floating point
1842 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1843 // we don't have issues with SNANs.
1844 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1845 SDVTList VTs = getVTList(EltVT);
1847 AddNodeIDNode(ID, Opc, VTs, {});
1848 ID.AddPointer(Elt);
1849 void *IP = nullptr;
1850 SDNode *N = nullptr;
1851 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1852 if (!VT.isVector())
1853 return SDValue(N, 0);
1854
1855 if (!N) {
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(N, IP);
1858 InsertNode(N);
1859 }
1860
1861 SDValue Result(N, 0);
1862 if (VT.isVector())
1863 Result = getSplat(VT, DL, Result);
1864 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1865 return Result;
1866}
1867
1869 bool isTarget) {
1870 EVT EltVT = VT.getScalarType();
1871 if (EltVT == MVT::f32)
1872 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1873 if (EltVT == MVT::f64)
1874 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1877 bool Ignored;
1878 APFloat APF = APFloat(Val);
1880 &Ignored);
1881 return getConstantFP(APF, DL, VT, isTarget);
1882 }
1883 llvm_unreachable("Unsupported type in getConstantFP");
1884}
1885
1887 EVT VT, int64_t Offset, bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1891
1892 // Truncate (with sign-extension) the offset value to the pointer size.
1894 if (BitWidth < 64)
1896
1897 unsigned Opc;
1898 if (GV->isThreadLocal())
1900 else
1902
1903 SDVTList VTs = getVTList(VT);
1905 AddNodeIDNode(ID, Opc, VTs, {});
1906 ID.AddPointer(GV);
1907 ID.AddInteger(Offset);
1908 ID.AddInteger(TargetFlags);
1909 void *IP = nullptr;
1910 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1911 return SDValue(E, 0);
1912
1913 auto *N = newSDNode<GlobalAddressSDNode>(
1914 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VTs, Offset, TargetFlags);
1915 CSEMap.InsertNode(N, IP);
1916 InsertNode(N);
1917 return SDValue(N, 0);
1918}
1919
1920SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1921 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1922 SDVTList VTs = getVTList(VT);
1924 AddNodeIDNode(ID, Opc, VTs, {});
1925 ID.AddInteger(FI);
1926 void *IP = nullptr;
1927 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1928 return SDValue(E, 0);
1929
1930 auto *N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(N, IP);
1932 InsertNode(N);
1933 return SDValue(N, 0);
1934}
1935
1936SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1940 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1941 SDVTList VTs = getVTList(VT);
1943 AddNodeIDNode(ID, Opc, VTs, {});
1944 ID.AddInteger(JTI);
1945 ID.AddInteger(TargetFlags);
1946 void *IP = nullptr;
1947 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1948 return SDValue(E, 0);
1949
1950 auto *N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(N, IP);
1952 InsertNode(N);
1953 return SDValue(N, 0);
1954}
1955
1957 const SDLoc &DL) {
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1960 getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1961}
1962
1964 MaybeAlign Alignment, int Offset,
1965 bool isTarget, unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1968 if (!Alignment)
1969 Alignment = shouldOptForSize()
1970 ? getDataLayout().getABITypeAlign(C->getType())
1971 : getDataLayout().getPrefTypeAlign(C->getType());
1972 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1973 SDVTList VTs = getVTList(VT);
1975 AddNodeIDNode(ID, Opc, VTs, {});
1976 ID.AddInteger(Alignment->value());
1977 ID.AddInteger(Offset);
1978 ID.AddPointer(C);
1979 ID.AddInteger(TargetFlags);
1980 void *IP = nullptr;
1981 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1982 return SDValue(E, 0);
1983
1984 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1985 TargetFlags);
1986 CSEMap.InsertNode(N, IP);
1987 InsertNode(N);
1988 SDValue V = SDValue(N, 0);
1989 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1990 return V;
1991}
1992
1994 MaybeAlign Alignment, int Offset,
1995 bool isTarget, unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
1998 if (!Alignment)
1999 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
2000 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
2001 SDVTList VTs = getVTList(VT);
2003 AddNodeIDNode(ID, Opc, VTs, {});
2004 ID.AddInteger(Alignment->value());
2005 ID.AddInteger(Offset);
2006 C->addSelectionDAGCSEId(ID);
2007 ID.AddInteger(TargetFlags);
2008 void *IP = nullptr;
2009 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2010 return SDValue(E, 0);
2011
2012 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
2013 TargetFlags);
2014 CSEMap.InsertNode(N, IP);
2015 InsertNode(N);
2016 return SDValue(N, 0);
2017}
2018
2021 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), {});
2022 ID.AddPointer(MBB);
2023 void *IP = nullptr;
2024 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2025 return SDValue(E, 0);
2026
2027 auto *N = newSDNode<BasicBlockSDNode>(MBB);
2028 CSEMap.InsertNode(N, IP);
2029 InsertNode(N);
2030 return SDValue(N, 0);
2031}
2032
2034 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
2035 ValueTypeNodes.size())
2036 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
2037
2038 SDNode *&N = VT.isExtended() ?
2039 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
2040
2041 if (N) return SDValue(N, 0);
2042 N = newSDNode<VTSDNode>(VT);
2043 InsertNode(N);
2044 return SDValue(N, 0);
2045}
2046
2048 SDNode *&N = ExternalSymbols[Sym];
2049 if (N) return SDValue(N, 0);
2050 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, getVTList(VT));
2051 InsertNode(N);
2052 return SDValue(N, 0);
2053}
2054
2056 SDNode *&N = MCSymbols[Sym];
2057 if (N)
2058 return SDValue(N, 0);
2059 N = newSDNode<MCSymbolSDNode>(Sym, getVTList(VT));
2060 InsertNode(N);
2061 return SDValue(N, 0);
2062}
2063
2065 unsigned TargetFlags) {
2066 SDNode *&N =
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2068 if (N) return SDValue(N, 0);
2069 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, getVTList(VT));
2070 InsertNode(N);
2071 return SDValue(N, 0);
2072}
2073
2075 if ((unsigned)Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(Cond+1);
2077
2078 if (!CondCodeNodes[Cond]) {
2079 auto *N = newSDNode<CondCodeSDNode>(Cond);
2080 CondCodeNodes[Cond] = N;
2081 InsertNode(N);
2082 }
2083
2084 return SDValue(CondCodeNodes[Cond], 0);
2085}
2086
2088 bool ConstantFold) {
2089 assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
2090 "APInt size does not match type size!");
2091
2092 if (MulImm == 0)
2093 return getConstant(0, DL, VT);
2094
2095 if (ConstantFold) {
2096 const MachineFunction &MF = getMachineFunction();
2097 const Function &F = MF.getFunction();
2098 ConstantRange CR = getVScaleRange(&F, 64);
2099 if (const APInt *C = CR.getSingleElement())
2100 return getConstant(MulImm * C->getZExtValue(), DL, VT);
2101 }
2102
2103 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2104}
2105
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2109 return getVScale(DL, VT,
2110 APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2111
2112 return getConstant(EC.getKnownMinValue(), DL, VT);
2113}
2114
2116 APInt One(ResVT.getScalarSizeInBits(), 1);
2117 return getStepVector(DL, ResVT, One);
2118}
2119
2121 const APInt &StepVal) {
2122 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2123 if (ResVT.isScalableVector())
2124 return getNode(
2125 ISD::STEP_VECTOR, DL, ResVT,
2126 getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2127
2128 SmallVector<SDValue, 16> OpsStepConstants;
2129 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2130 OpsStepConstants.push_back(
2131 getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2132 return getBuildVector(ResVT, DL, OpsStepConstants);
2133}
2134
2135/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2136/// point at N1 to point at N2 and indices that point at N2 to point at N1.
2141
2143 SDValue N2, ArrayRef<int> Mask) {
2144 assert(VT.getVectorNumElements() == Mask.size() &&
2145 "Must have the same number of vector elements as mask elements!");
2146 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2147 "Invalid VECTOR_SHUFFLE");
2148
2149 // Canonicalize shuffle undef, undef -> undef
2150 if (N1.isUndef() && N2.isUndef())
2151 return getUNDEF(VT);
2152
2153 // Validate that all indices in Mask are within the range of the elements
2154 // input to the shuffle.
2155 int NElts = Mask.size();
2156 assert(llvm::all_of(Mask,
2157 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2159
2160 // Copy the mask so we can do any needed cleanup.
2161 SmallVector<int, 8> MaskVec(Mask);
2162
2163 // Canonicalize shuffle v, v -> v, undef
2164 if (N1 == N2) {
2165 N2 = getUNDEF(VT);
2166 for (int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2168 }
2169
2170 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
2171 if (N1.isUndef())
2172 commuteShuffle(N1, N2, MaskVec);
2173
2174 if (TLI->hasVectorBlend()) {
2175 // If shuffling a splat, try to blend the splat instead. We do this here so
2176 // that even when this arises during lowering we don't have to re-handle it.
2177 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2178 BitVector UndefElements;
2179 SDValue Splat = BV->getSplatValue(&UndefElements);
2180 if (!Splat)
2181 return;
2182
2183 for (int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2185 continue;
2186
2187 // If this input comes from undef, mark it as such.
2188 if (UndefElements[MaskVec[i] - Offset]) {
2189 MaskVec[i] = -1;
2190 continue;
2191 }
2192
2193 // If we can blend a non-undef lane, use that instead.
2194 if (!UndefElements[i])
2195 MaskVec[i] = i + Offset;
2196 }
2197 };
2198 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2199 BlendSplat(N1BV, 0);
2200 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2201 BlendSplat(N2BV, NElts);
2202 }
2203
2204 // Canonicalize all index into lhs, -> shuffle lhs, undef
2205 // Canonicalize all index into rhs, -> shuffle rhs, undef
2206 bool AllLHS = true, AllRHS = true;
2207 bool N2Undef = N2.isUndef();
2208 for (int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2210 if (N2Undef)
2211 MaskVec[i] = -1;
2212 else
2213 AllLHS = false;
2214 } else if (MaskVec[i] >= 0) {
2215 AllRHS = false;
2216 }
2217 }
2218 if (AllLHS && AllRHS)
2219 return getUNDEF(VT);
2220 if (AllLHS && !N2Undef)
2221 N2 = getUNDEF(VT);
2222 if (AllRHS) {
2223 N1 = getUNDEF(VT);
2224 commuteShuffle(N1, N2, MaskVec);
2225 }
2226 // Reset our undef status after accounting for the mask.
2227 N2Undef = N2.isUndef();
2228 // Re-check whether both sides ended up undef.
2229 if (N1.isUndef() && N2Undef)
2230 return getUNDEF(VT);
2231
2232 // If Identity shuffle return that node.
2233 bool Identity = true, AllSame = true;
2234 for (int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame = false;
2237 }
2238 if (Identity && NElts)
2239 return N1;
2240
2241 // Shuffling a constant splat doesn't change the result.
2242 if (N2Undef) {
2243 SDValue V = N1;
2244
2245 // Look through any bitcasts. We check that these don't change the number
2246 // (and size) of elements and just changes their types.
2247 while (V.getOpcode() == ISD::BITCAST)
2248 V = V->getOperand(0);
2249
2250 // A splat should always show up as a build vector node.
2251 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2252 BitVector UndefElements;
2253 SDValue Splat = BV->getSplatValue(&UndefElements);
2254 // If this is a splat of an undef, shuffling it is also undef.
2255 if (Splat && Splat.isUndef())
2256 return getUNDEF(VT);
2257
2258 bool SameNumElts =
2259 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2260
2261 // We only have a splat which can skip shuffles if there is a splatted
2262 // value and no undef lanes rearranged by the shuffle.
2263 if (Splat && UndefElements.none()) {
2264 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2265 // number of elements match or the value splatted is a zero constant.
2266 if (SameNumElts || isNullConstant(Splat))
2267 return N1;
2268 }
2269
2270 // If the shuffle itself creates a splat, build the vector directly.
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2273 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2274 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2275
2276 // We may have jumped through bitcasts, so the type of the
2277 // BUILD_VECTOR may not match the type of the shuffle.
2278 if (BuildVT != VT)
2279 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2280 return NewBV;
2281 }
2282 }
2283 }
2284
2285 SDVTList VTs = getVTList(VT);
2287 SDValue Ops[2] = { N1, N2 };
2289 for (int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2291
2292 void* IP = nullptr;
2293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2294 return SDValue(E, 0);
2295
2296 // Allocate the mask array for the node out of the BumpPtrAllocator, since
2297 // SDNode doesn't have access to it. This memory will be "leaked" when
2298 // the node is deallocated, but recovered when the NodeAllocator is released.
2299 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2300 llvm::copy(MaskVec, MaskAlloc);
2301
2302 auto *N = newSDNode<ShuffleVectorSDNode>(VTs, dl.getIROrder(),
2303 dl.getDebugLoc(), MaskAlloc);
2304 createOperands(N, Ops);
2305
2306 CSEMap.InsertNode(N, IP);
2307 InsertNode(N);
2308 SDValue V = SDValue(N, 0);
2309 NewSDValueDbgMsg(V, "Creating new node: ", this);
2310 return V;
2311}
2312
2314 EVT VT = SV.getValueType(0);
2315 SmallVector<int, 8> MaskVec(SV.getMask());
2317
2318 SDValue Op0 = SV.getOperand(0);
2319 SDValue Op1 = SV.getOperand(1);
2320 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2321}
2322
2324 SDVTList VTs = getVTList(VT);
2326 AddNodeIDNode(ID, ISD::Register, VTs, {});
2327 ID.AddInteger(Reg.id());
2328 void *IP = nullptr;
2329 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2330 return SDValue(E, 0);
2331
2332 auto *N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2334 CSEMap.InsertNode(N, IP);
2335 InsertNode(N);
2336 return SDValue(N, 0);
2337}
2338
2341 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), {});
2342 ID.AddPointer(RegMask);
2343 void *IP = nullptr;
2344 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2345 return SDValue(E, 0);
2346
2347 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(N, IP);
2349 InsertNode(N);
2350 return SDValue(N, 0);
2351}
2352
2354 MCSymbol *Label) {
2355 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2356}
2357
2358SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2359 SDValue Root, MCSymbol *Label) {
2361 SDValue Ops[] = { Root };
2362 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2363 ID.AddPointer(Label);
2364 void *IP = nullptr;
2365 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2366 return SDValue(E, 0);
2367
2368 auto *N =
2369 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2370 createOperands(N, Ops);
2371
2372 CSEMap.InsertNode(N, IP);
2373 InsertNode(N);
2374 return SDValue(N, 0);
2375}
2376
2378 int64_t Offset, bool isTarget,
2379 unsigned TargetFlags) {
2380 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2381 SDVTList VTs = getVTList(VT);
2382
2384 AddNodeIDNode(ID, Opc, VTs, {});
2385 ID.AddPointer(BA);
2386 ID.AddInteger(Offset);
2387 ID.AddInteger(TargetFlags);
2388 void *IP = nullptr;
2389 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2390 return SDValue(E, 0);
2391
2392 auto *N = newSDNode<BlockAddressSDNode>(Opc, VTs, BA, Offset, TargetFlags);
2393 CSEMap.InsertNode(N, IP);
2394 InsertNode(N);
2395 return SDValue(N, 0);
2396}
2397
2400 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), {});
2401 ID.AddPointer(V);
2402
2403 void *IP = nullptr;
2404 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2405 return SDValue(E, 0);
2406
2407 auto *N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(N, IP);
2409 InsertNode(N);
2410 return SDValue(N, 0);
2411}
2412
2415 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), {});
2416 ID.AddPointer(MD);
2417
2418 void *IP = nullptr;
2419 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2420 return SDValue(E, 0);
2421
2422 auto *N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(N, IP);
2424 InsertNode(N);
2425 return SDValue(N, 0);
2426}
2427
2429 if (VT == V.getValueType())
2430 return V;
2431
2432 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2433}
2434
2436 unsigned SrcAS, unsigned DestAS) {
2437 SDVTList VTs = getVTList(VT);
2438 SDValue Ops[] = {Ptr};
2440 AddNodeIDNode(ID, ISD::ADDRSPACECAST, VTs, Ops);
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2443
2444 void *IP = nullptr;
2445 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2446 return SDValue(E, 0);
2447
2448 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2449 VTs, SrcAS, DestAS);
2450 createOperands(N, Ops);
2451
2452 CSEMap.InsertNode(N, IP);
2453 InsertNode(N);
2454 return SDValue(N, 0);
2455}
2456
2458 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2459}
2460
2461/// getShiftAmountOperand - Return the specified value casted to
2462/// the target's desired shift amount type.
2464 EVT OpTy = Op.getValueType();
2465 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2466 if (OpTy == ShTy || OpTy.isVector()) return Op;
2467
2468 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2469}
2470
2471/// Given a store node \p StoreNode, return true if it is safe to fold that node
2472/// into \p FPNode, which expands to a library call with output pointers.
2474 SDNode *FPNode) {
2476 SmallVector<const SDNode *, 8> DeferredNodes;
2478
2479 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
2480 for (SDValue Op : StoreNode->ops())
2481 if (Op.getNode() != FPNode)
2482 Worklist.push_back(Op.getNode());
2483
2485 while (!Worklist.empty()) {
2486 const SDNode *Node = Worklist.pop_back_val();
2487 auto [_, Inserted] = Visited.insert(Node);
2488 if (!Inserted)
2489 continue;
2490
2491 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
2492 return false;
2493
2494 // Reached the FPNode (would result in a cycle).
2495 // OR Reached CALLSEQ_START (would result in nested call sequences).
2496 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
2497 return false;
2498
2499 if (Node->getOpcode() == ISD::CALLSEQ_END) {
2500 // Defer looking into call sequences (so we can check we're outside one).
2501 // We still need to look through these for the predecessor check.
2502 DeferredNodes.push_back(Node);
2503 continue;
2504 }
2505
2506 for (SDValue Op : Node->ops())
2507 Worklist.push_back(Op.getNode());
2508 }
2509
2510 // True if we're outside a call sequence and don't have the FPNode as a
2511 // predecessor. No cycles or nested call sequences possible.
2512 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
2513 MaxSteps);
2514}
2515
2517 RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl<SDValue> &Results,
2518 std::optional<unsigned> CallRetResNo) {
2519 LLVMContext &Ctx = *getContext();
2520 EVT VT = Node->getValueType(0);
2521 unsigned NumResults = Node->getNumValues();
2522
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2524 return false;
2525
2526 const char *LCName = TLI->getLibcallName(LC);
2527 if (!LCName)
2528 return false;
2529
2530 auto getVecDesc = [&]() -> VecDesc const * {
2531 for (bool Masked : {false, true}) {
2532 if (VecDesc const *VD = getLibInfo().getVectorMappingInfo(
2533 LCName, VT.getVectorElementCount(), Masked)) {
2534 return VD;
2535 }
2536 }
2537 return nullptr;
2538 };
2539
2540 // For vector types, we must find a vector mapping for the libcall.
2541 VecDesc const *VD = nullptr;
2542 if (VT.isVector() && !(VD = getVecDesc()))
2543 return false;
2544
2545 // Find users of the node that store the results (and share input chains). The
2546 // destination pointers can be used instead of creating stack allocations.
2547 SDValue StoresInChain;
2548 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
2549 for (SDNode *User : Node->users()) {
2551 continue;
2552 auto *ST = cast<StoreSDNode>(User);
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.getResNo();
2555 // Ensure the store corresponds to an output pointer.
2556 if (CallRetResNo == ResNo)
2557 continue;
2558 // Ensure the store to the default address space and not atomic or volatile.
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2560 continue;
2561 // Ensure all store chains are the same (so they don't alias).
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2563 continue;
2564 // Ensure the store is properly aligned.
2565 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
2566 if (ST->getAlign() <
2567 getDataLayout().getABITypeAlign(StoreType->getScalarType()))
2568 continue;
2569 // Avoid:
2570 // 1. Creating cyclic dependencies.
2571 // 2. Expanding the node to a call within a call sequence.
2573 continue;
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2576 }
2577
2579
2580 // Pass the arguments.
2581 for (const SDValue &Op : Node->op_values()) {
2582 EVT ArgVT = Op.getValueType();
2583 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
2584 Args.emplace_back(Op, ArgTy);
2585 }
2586
2587 // Pass the output pointers.
2588 SmallVector<SDValue, 2> ResultPtrs(NumResults);
2590 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
2591 if (ResNo == CallRetResNo)
2592 continue;
2593 EVT ResVT = Node->getValueType(ResNo);
2594 SDValue ResultPtr = ST ? ST->getBasePtr() : CreateStackTemporary(ResVT);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr, PointerTy);
2597 }
2598
2599 SDLoc DL(Node);
2600
2601 // Pass the vector mask (if required).
2602 if (VD && VD->isMasked()) {
2603 EVT MaskVT = TLI->getSetCCResultType(getDataLayout(), Ctx, VT);
2604 SDValue Mask = getBoolConstant(true, DL, MaskVT, VT);
2605 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
2606 }
2607
2608 Type *RetType = CallRetResNo.has_value()
2609 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2610 : Type::getVoidTy(Ctx);
2611 SDValue InChain = StoresInChain ? StoresInChain : getEntryNode();
2612 SDValue Callee = getExternalSymbol(VD ? VD->getVectorFnName().data() : LCName,
2613 TLI->getPointerTy(getDataLayout()));
2615 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2617
2618 auto [Call, CallChain] = TLI->LowerCallTo(CLI);
2619
2620 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
2621 if (ResNo == CallRetResNo) {
2622 Results.push_back(Call);
2623 continue;
2624 }
2625 MachinePointerInfo PtrInfo;
2626 SDValue LoadResult =
2627 getLoad(Node->getValueType(ResNo), DL, CallChain, ResultPtr, PtrInfo);
2628 SDValue OutChain = LoadResult.getValue(1);
2629
2630 if (StoreSDNode *ST = ResultStores[ResNo]) {
2631 // Replace store with the library call.
2632 ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
2633 PtrInfo = ST->getPointerInfo();
2634 } else {
2636 getMachineFunction(), cast<FrameIndexSDNode>(ResultPtr)->getIndex());
2637 }
2638
2639 Results.push_back(LoadResult);
2640 }
2641
2642 return true;
2643}
2644
2646 SDLoc dl(Node);
2648 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2649 EVT VT = Node->getValueType(0);
2650 SDValue Tmp1 = Node->getOperand(0);
2651 SDValue Tmp2 = Node->getOperand(1);
2652 const MaybeAlign MA(Node->getConstantOperandVal(3));
2653
2654 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2655 Tmp2, MachinePointerInfo(V));
2656 SDValue VAList = VAListLoad;
2657
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2659 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2660 getConstant(MA->value() - 1, dl, VAList.getValueType()));
2661
2662 VAList = getNode(
2663 ISD::AND, dl, VAList.getValueType(), VAList,
2664 getSignedConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2665 }
2666
2667 // Increment the pointer, VAList, to the next vaarg
2668 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2669 getConstant(getDataLayout().getTypeAllocSize(
2670 VT.getTypeForEVT(*getContext())),
2671 dl, VAList.getValueType()));
2672 // Store the incremented VAList to the legalized pointer
2673 Tmp1 =
2674 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2675 // Load the actual argument out of the pointer VAList
2676 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2677}
2678
2680 SDLoc dl(Node);
2682 // This defaults to loading a pointer from the input and storing it to the
2683 // output, returning the chain.
2684 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2685 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2686 SDValue Tmp1 =
2687 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2688 Node->getOperand(2), MachinePointerInfo(VS));
2689 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2690 MachinePointerInfo(VD));
2691}
2692
2694 const DataLayout &DL = getDataLayout();
2695 Type *Ty = VT.getTypeForEVT(*getContext());
2696 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2697
2698 if (TLI->isTypeLegal(VT) || !VT.isVector())
2699 return RedAlign;
2700
2701 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2702 const Align StackAlign = TFI->getStackAlign();
2703
2704 // See if we can choose a smaller ABI alignment in cases where it's an
2705 // illegal vector type that will get broken down.
2706 if (RedAlign > StackAlign) {
2707 EVT IntermediateVT;
2708 MVT RegisterVT;
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2712 Ty = IntermediateVT.getTypeForEVT(*getContext());
2713 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2716
2717 if (!getMachineFunction().getFrameInfo().isStackRealignable())
2718 // If the stack is not realignable, the alignment should be limited to the
2719 // StackAlignment
2720 RedAlign = std::min(RedAlign, StackAlign);
2721 }
2722
2723 return RedAlign;
2724}
2725
2727 MachineFrameInfo &MFI = MF->getFrameInfo();
2728 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2729 int StackID = 0;
2730 if (Bytes.isScalable())
2731 StackID = TFI->getStackIDForScalableVectors();
2732 // The stack id gives an indication of whether the object is scalable or
2733 // not, so it's safe to pass in the minimum size here.
2734 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2735 false, nullptr, StackID);
2736 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2737}
2738
2740 Type *Ty = VT.getTypeForEVT(*getContext());
2741 Align StackAlign =
2742 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2743 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2744}
2745
2747 TypeSize VT1Size = VT1.getStoreSize();
2748 TypeSize VT2Size = VT2.getStoreSize();
2749 assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2750 "Don't know how to choose the maximum size when creating a stack "
2751 "temporary");
2752 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2753 ? VT1Size
2754 : VT2Size;
2755
2756 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2757 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2758 const DataLayout &DL = getDataLayout();
2759 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2760 return CreateStackTemporary(Bytes, Align);
2761}
2762
2764 ISD::CondCode Cond, const SDLoc &dl) {
2765 EVT OpVT = N1.getValueType();
2766
2767 auto GetUndefBooleanConstant = [&]() {
2768 if (VT.getScalarType() == MVT::i1 ||
2769 TLI->getBooleanContents(OpVT) ==
2771 return getUNDEF(VT);
2772 // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2773 // so we cannot use getUNDEF(). Return zero instead.
2774 return getConstant(0, dl, VT);
2775 };
2776
2777 // These setcc operations always fold.
2778 switch (Cond) {
2779 default: break;
2780 case ISD::SETFALSE:
2781 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2782 case ISD::SETTRUE:
2783 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2784
2785 case ISD::SETOEQ:
2786 case ISD::SETOGT:
2787 case ISD::SETOGE:
2788 case ISD::SETOLT:
2789 case ISD::SETOLE:
2790 case ISD::SETONE:
2791 case ISD::SETO:
2792 case ISD::SETUO:
2793 case ISD::SETUEQ:
2794 case ISD::SETUNE:
2795 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2796 break;
2797 }
2798
2799 if (OpVT.isInteger()) {
2800 // For EQ and NE, we can always pick a value for the undef to make the
2801 // predicate pass or fail, so we can return undef.
2802 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2803 // icmp eq/ne X, undef -> undef.
2804 if ((N1.isUndef() || N2.isUndef()) &&
2805 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2806 return GetUndefBooleanConstant();
2807
2808 // If both operands are undef, we can return undef for int comparison.
2809 // icmp undef, undef -> undef.
2810 if (N1.isUndef() && N2.isUndef())
2811 return GetUndefBooleanConstant();
2812
2813 // icmp X, X -> true/false
2814 // icmp X, undef -> true/false because undef could be X.
2815 if (N1.isUndef() || N2.isUndef() || N1 == N2)
2816 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2817 }
2818
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2823
2825 dl, VT, OpVT);
2826 }
2827 }
2828
2829 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2830 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2831
2832 if (N1CFP && N2CFP) {
2833 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2834 switch (Cond) {
2835 default: break;
2836 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2837 return GetUndefBooleanConstant();
2838 [[fallthrough]];
2839 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2840 OpVT);
2841 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2842 return GetUndefBooleanConstant();
2843 [[fallthrough]];
2845 R==APFloat::cmpLessThan, dl, VT,
2846 OpVT);
2847 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2848 return GetUndefBooleanConstant();
2849 [[fallthrough]];
2850 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2851 OpVT);
2852 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2853 return GetUndefBooleanConstant();
2854 [[fallthrough]];
2856 VT, OpVT);
2857 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2858 return GetUndefBooleanConstant();
2859 [[fallthrough]];
2861 R==APFloat::cmpEqual, dl, VT,
2862 OpVT);
2863 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2864 return GetUndefBooleanConstant();
2865 [[fallthrough]];
2867 R==APFloat::cmpEqual, dl, VT, OpVT);
2868 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2869 OpVT);
2870 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2871 OpVT);
2873 R==APFloat::cmpEqual, dl, VT,
2874 OpVT);
2875 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2876 OpVT);
2878 R==APFloat::cmpLessThan, dl, VT,
2879 OpVT);
2881 R==APFloat::cmpUnordered, dl, VT,
2882 OpVT);
2884 VT, OpVT);
2885 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2886 OpVT);
2887 }
2888 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2889 // Ensure that the constant occurs on the RHS.
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2892 return SDValue();
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2895 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2896 // If an operand is known to be a nan (or undef that could be a nan), we can
2897 // fold it.
2898 // Choosing NaN for the undef will always make unordered comparison succeed
2899 // and ordered comparison fails.
2900 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2901 switch (ISD::getUnorderedFlavor(Cond)) {
2902 default:
2903 llvm_unreachable("Unknown flavor!");
2904 case 0: // Known false.
2905 return getBoolConstant(false, dl, VT, OpVT);
2906 case 1: // Known true.
2907 return getBoolConstant(true, dl, VT, OpVT);
2908 case 2: // Undefined.
2909 return GetUndefBooleanConstant();
2910 }
2911 }
2912
2913 // Could not fold it.
2914 return SDValue();
2915}
2916
2917/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2918/// use this predicate to simplify operations downstream.
2920 unsigned BitWidth = Op.getScalarValueSizeInBits();
2922}
2923
2924/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2925/// this predicate to simplify operations downstream. Mask is known to be zero
2926/// for bits that V cannot have.
2928 unsigned Depth) const {
2929 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2930}
2931
2932/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2933/// DemandedElts. We use this predicate to simplify operations downstream.
2934/// Mask is known to be zero for bits that V cannot have.
2936 const APInt &DemandedElts,
2937 unsigned Depth) const {
2938 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2939}
2940
2941/// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2942/// DemandedElts. We use this predicate to simplify operations downstream.
2944 unsigned Depth /* = 0 */) const {
2945 return computeKnownBits(V, DemandedElts, Depth).isZero();
2946}
2947
2948/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2950 unsigned Depth) const {
2951 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2952}
2953
2955 const APInt &DemandedElts,
2956 unsigned Depth) const {
2957 EVT VT = Op.getValueType();
2958 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2959
2960 unsigned NumElts = VT.getVectorNumElements();
2961 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2962
2963 APInt KnownZeroElements = APInt::getZero(NumElts);
2964 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2966 continue; // Don't query elements that are not demanded.
2967 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2968 if (MaskedVectorIsZero(Op, Mask, Depth))
2969 KnownZeroElements.setBit(EltIdx);
2970 }
2971 return KnownZeroElements;
2972}
2973
2974/// isSplatValue - Return true if the vector V has the same value
2975/// across all DemandedElts. For scalable vectors, we don't know the
2976/// number of lanes at compile time. Instead, we use a 1 bit APInt
2977/// to represent a conservative value for all lanes; that is, that
2978/// one bit value is implicitly splatted across all lanes.
2979bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2980 APInt &UndefElts, unsigned Depth) const {
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2983 assert(VT.isVector() && "Vector type expected");
2984 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2985 "scalable demanded bits are ignored");
2986
2987 if (!DemandedElts)
2988 return false; // No demanded elts, better to assume we don't know anything.
2989
2990 if (Depth >= MaxRecursionDepth)
2991 return false; // Limit search depth.
2992
2993 // Deal with some common cases here that work for both fixed and scalable
2994 // vector types.
2995 switch (Opcode) {
2996 case ISD::SPLAT_VECTOR:
2997 UndefElts = V.getOperand(0).isUndef()
2998 ? APInt::getAllOnes(DemandedElts.getBitWidth())
2999 : APInt(DemandedElts.getBitWidth(), 0);
3000 return true;
3001 case ISD::ADD:
3002 case ISD::SUB:
3003 case ISD::AND:
3004 case ISD::XOR:
3005 case ISD::OR: {
3006 APInt UndefLHS, UndefRHS;
3007 SDValue LHS = V.getOperand(0);
3008 SDValue RHS = V.getOperand(1);
3009 // Only recognize splats with the same demanded undef elements for both
3010 // operands, otherwise we might fail to handle binop-specific undef
3011 // handling.
3012 // e.g. (and undef, 0) -> 0 etc.
3013 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
3014 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1) &&
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3017 return true;
3018 }
3019 return false;
3020 }
3021 case ISD::ABS:
3022 case ISD::TRUNCATE:
3023 case ISD::SIGN_EXTEND:
3024 case ISD::ZERO_EXTEND:
3025 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
3026 default:
3027 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
3028 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
3030 Depth);
3031 break;
3032 }
3033
3034 // We don't support other cases than those above for scalable vectors at
3035 // the moment.
3036 if (VT.isScalableVector())
3037 return false;
3038
3039 unsigned NumElts = VT.getVectorNumElements();
3040 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
3041 UndefElts = APInt::getZero(NumElts);
3042
3043 switch (Opcode) {
3044 case ISD::BUILD_VECTOR: {
3045 SDValue Scl;
3046 for (unsigned i = 0; i != NumElts; ++i) {
3047 SDValue Op = V.getOperand(i);
3048 if (Op.isUndef()) {
3049 UndefElts.setBit(i);
3050 continue;
3051 }
3052 if (!DemandedElts[i])
3053 continue;
3054 if (Scl && Scl != Op)
3055 return false;
3056 Scl = Op;
3057 }
3058 return true;
3059 }
3060 case ISD::VECTOR_SHUFFLE: {
3061 // Check if this is a shuffle node doing a splat or a shuffle of a splat.
3062 APInt DemandedLHS = APInt::getZero(NumElts);
3063 APInt DemandedRHS = APInt::getZero(NumElts);
3064 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
3065 for (int i = 0; i != (int)NumElts; ++i) {
3066 int M = Mask[i];
3067 if (M < 0) {
3068 UndefElts.setBit(i);
3069 continue;
3070 }
3071 if (!DemandedElts[i])
3072 continue;
3073 if (M < (int)NumElts)
3074 DemandedLHS.setBit(M);
3075 else
3076 DemandedRHS.setBit(M - NumElts);
3077 }
3078
3079 // If we aren't demanding either op, assume there's no splat.
3080 // If we are demanding both ops, assume there's no splat.
3081 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
3082 (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
3083 return false;
3084
3085 // See if the demanded elts of the source op is a splat or we only demand
3086 // one element, which should always be a splat.
3087 // TODO: Handle source ops splats with undefs.
3088 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
3089 APInt SrcUndefs;
3090 return (SrcElts.popcount() == 1) ||
3091 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
3092 (SrcElts & SrcUndefs).isZero());
3093 };
3094 if (!DemandedLHS.isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3097 }
3099 // Offset the demanded elts by the subvector index.
3100 SDValue Src = V.getOperand(0);
3101 // We don't support scalable vectors at the moment.
3102 if (Src.getValueType().isScalableVector())
3103 return false;
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3106 APInt UndefSrcElts;
3107 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3108 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3109 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
3110 return true;
3111 }
3112 break;
3113 }
3117 // Widen the demanded elts by the src element count.
3118 SDValue Src = V.getOperand(0);
3119 // We don't support scalable vectors at the moment.
3120 if (Src.getValueType().isScalableVector())
3121 return false;
3122 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3123 APInt UndefSrcElts;
3124 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3125 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3126 UndefElts = UndefSrcElts.trunc(NumElts);
3127 return true;
3128 }
3129 break;
3130 }
3131 case ISD::BITCAST: {
3132 SDValue Src = V.getOperand(0);
3133 EVT SrcVT = Src.getValueType();
3134 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
3135 unsigned BitWidth = VT.getScalarSizeInBits();
3136
3137 // Ignore bitcasts from unsupported types.
3138 // TODO: Add fp support?
3139 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
3140 break;
3141
3142 // Bitcast 'small element' vector to 'large element' vector.
3143 if ((BitWidth % SrcBitWidth) == 0) {
3144 // See if each sub element is a splat.
3145 unsigned Scale = BitWidth / SrcBitWidth;
3146 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3147 APInt ScaledDemandedElts =
3148 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3149 for (unsigned I = 0; I != Scale; ++I) {
3150 APInt SubUndefElts;
3151 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
3152 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
3153 SubDemandedElts &= ScaledDemandedElts;
3154 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
3155 return false;
3156 // TODO: Add support for merging sub undef elements.
3157 if (!SubUndefElts.isZero())
3158 return false;
3159 }
3160 return true;
3161 }
3162 break;
3163 }
3164 }
3165
3166 return false;
3167}
3168
3169/// Helper wrapper to main isSplatValue function.
3170bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
3171 EVT VT = V.getValueType();
3172 assert(VT.isVector() && "Vector type expected");
3173
3174 APInt UndefElts;
3175 // Since the number of lanes in a scalable vector is unknown at compile time,
3176 // we track one bit which is implicitly broadcast to all lanes. This means
3177 // that all lanes in a scalable vector are considered demanded.
3178 APInt DemandedElts
3180 return isSplatValue(V, DemandedElts, UndefElts) &&
3181 (AllowUndefs || !UndefElts);
3182}
3183
3186
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3189 switch (Opcode) {
3190 default: {
3191 APInt UndefElts;
3192 // Since the number of lanes in a scalable vector is unknown at compile time,
3193 // we track one bit which is implicitly broadcast to all lanes. This means
3194 // that all lanes in a scalable vector are considered demanded.
3195 APInt DemandedElts
3197
3198 if (isSplatValue(V, DemandedElts, UndefElts)) {
3199 if (VT.isScalableVector()) {
3200 // DemandedElts and UndefElts are ignored for scalable vectors, since
3201 // the only supported cases are SPLAT_VECTOR nodes.
3202 SplatIdx = 0;
3203 } else {
3204 // Handle case where all demanded elements are UNDEF.
3205 if (DemandedElts.isSubsetOf(UndefElts)) {
3206 SplatIdx = 0;
3207 return getUNDEF(VT);
3208 }
3209 SplatIdx = (UndefElts & DemandedElts).countr_one();
3210 }
3211 return V;
3212 }
3213 break;
3214 }
3215 case ISD::SPLAT_VECTOR:
3216 SplatIdx = 0;
3217 return V;
3218 case ISD::VECTOR_SHUFFLE: {
3219 assert(!VT.isScalableVector());
3220 // Check if this is a shuffle node doing a splat.
3221 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
3222 // getTargetVShiftNode currently struggles without the splat source.
3223 auto *SVN = cast<ShuffleVectorSDNode>(V);
3224 if (!SVN->isSplat())
3225 break;
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3230 }
3231 }
3232
3233 return SDValue();
3234}
3235
3237 int SplatIdx;
3238 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
3239 EVT SVT = SrcVector.getValueType().getScalarType();
3240 EVT LegalSVT = SVT;
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3242 if (!SVT.isInteger())
3243 return SDValue();
3244 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3245 if (LegalSVT.bitsLT(SVT))
3246 return SDValue();
3247 }
3248 return getExtractVectorElt(SDLoc(V), LegalSVT, SrcVector, SplatIdx);
3249 }
3250 return SDValue();
3251}
3252
3253std::optional<ConstantRange>
3255 unsigned Depth) const {
3256 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3257 V.getOpcode() == ISD::SRA) &&
3258 "Unknown shift node");
3259 // Shifting more than the bitwidth is not valid.
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3261
3262 if (auto *Cst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3263 const APInt &ShAmt = Cst->getAPIntValue();
3264 if (ShAmt.uge(BitWidth))
3265 return std::nullopt;
3266 return ConstantRange(ShAmt);
3267 }
3268
3269 if (auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1))) {
3270 const APInt *MinAmt = nullptr, *MaxAmt = nullptr;
3271 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3273 continue;
3274 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3275 if (!SA) {
3276 MinAmt = MaxAmt = nullptr;
3277 break;
3278 }
3279 const APInt &ShAmt = SA->getAPIntValue();
3280 if (ShAmt.uge(BitWidth))
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->ugt(ShAmt))
3283 MinAmt = &ShAmt;
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3285 MaxAmt = &ShAmt;
3286 }
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3290 return ConstantRange(*MinAmt, *MaxAmt + 1);
3291 }
3292
3293 // Use computeKnownBits to find a hidden constant/knownbits (usually type
3294 // legalized). e.g. Hidden behind multiple bitcasts/build_vector/casts etc.
3295 KnownBits KnownAmt = computeKnownBits(V.getOperand(1), DemandedElts, Depth);
3296 if (KnownAmt.getMaxValue().ult(BitWidth))
3297 return ConstantRange::fromKnownBits(KnownAmt, /*IsSigned=*/false);
3298
3299 return std::nullopt;
3300}
3301
3302std::optional<unsigned>
3304 unsigned Depth) const {
3305 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3306 V.getOpcode() == ISD::SRA) &&
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3309 getValidShiftAmountRange(V, DemandedElts, Depth))
3310 if (const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3313}
3314
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3318 APInt DemandedElts = VT.isFixedLengthVector()
3320 : APInt(1, 1);
3321 return getValidShiftAmount(V, DemandedElts, Depth);
3322}
3323
3324std::optional<unsigned>
3326 unsigned Depth) const {
3327 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3328 V.getOpcode() == ISD::SRA) &&
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3331 getValidShiftAmountRange(V, DemandedElts, Depth))
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3334}
3335
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3339 APInt DemandedElts = VT.isFixedLengthVector()
3341 : APInt(1, 1);
3342 return getValidMinimumShiftAmount(V, DemandedElts, Depth);
3343}
3344
3345std::optional<unsigned>
3347 unsigned Depth) const {
3348 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3349 V.getOpcode() == ISD::SRA) &&
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3352 getValidShiftAmountRange(V, DemandedElts, Depth))
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3355}
3356
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3360 APInt DemandedElts = VT.isFixedLengthVector()
3362 : APInt(1, 1);
3363 return getValidMaximumShiftAmount(V, DemandedElts, Depth);
3364}
3365
3366/// Determine which bits of Op are known to be either zero or one and return
3367/// them in Known. For vectors, the known bits are those that are shared by
3368/// every vector element.
3370 EVT VT = Op.getValueType();
3371
3372 // Since the number of lanes in a scalable vector is unknown at compile time,
3373 // we track one bit which is implicitly broadcast to all lanes. This means
3374 // that all lanes in a scalable vector are considered demanded.
3375 APInt DemandedElts = VT.isFixedLengthVector()
3377 : APInt(1, 1);
3378 return computeKnownBits(Op, DemandedElts, Depth);
3379}
3380
3381/// Determine which bits of Op are known to be either zero or one and return
3382/// them in Known. The DemandedElts argument allows us to only collect the known
3383/// bits that are shared by the requested vector elements.
3385 unsigned Depth) const {
3386 unsigned BitWidth = Op.getScalarValueSizeInBits();
3387
3388 KnownBits Known(BitWidth); // Don't know anything.
3389
3390 if (auto OptAPInt = Op->bitcastToAPInt()) {
3391 // We know all of the bits for a constant!
3392 return KnownBits::makeConstant(*std::move(OptAPInt));
3393 }
3394
3395 if (Depth >= MaxRecursionDepth)
3396 return Known; // Limit search depth.
3397
3398 KnownBits Known2;
3399 unsigned NumElts = DemandedElts.getBitWidth();
3400 assert((!Op.getValueType().isFixedLengthVector() ||
3401 NumElts == Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3403
3404 if (!DemandedElts)
3405 return Known; // No demanded elts, better to assume we don't know anything.
3406
3407 unsigned Opcode = Op.getOpcode();
3408 switch (Opcode) {
3409 case ISD::MERGE_VALUES:
3410 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3411 Depth + 1);
3412 case ISD::SPLAT_VECTOR: {
3413 SDValue SrcOp = Op.getOperand(0);
3414 assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3415 "Expected SPLAT_VECTOR implicit truncation");
3416 // Implicitly truncate the bits to match the official semantics of
3417 // SPLAT_VECTOR.
3418 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3419 break;
3420 }
3422 unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3423 assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3425 for (auto [I, SrcOp] : enumerate(Op->ops())) {
3426 Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3427 }
3428 break;
3429 }
3430 case ISD::STEP_VECTOR: {
3431 const APInt &Step = Op.getConstantOperandAPInt(0);
3432
3433 if (Step.isPowerOf2())
3434 Known.Zero.setLowBits(Step.logBase2());
3435
3437
3438 if (!isUIntN(BitWidth, Op.getValueType().getVectorMinNumElements()))
3439 break;
3440 const APInt MinNumElts =
3441 APInt(BitWidth, Op.getValueType().getVectorMinNumElements());
3442
3443 bool Overflow;
3444 const APInt MaxNumElts = getVScaleRange(&F, BitWidth)
3446 .umul_ov(MinNumElts, Overflow);
3447 if (Overflow)
3448 break;
3449
3450 const APInt MaxValue = (MaxNumElts - 1).umul_ov(Step, Overflow);
3451 if (Overflow)
3452 break;
3453
3454 Known.Zero.setHighBits(MaxValue.countl_zero());
3455 break;
3456 }
3457 case ISD::BUILD_VECTOR:
3458 assert(!Op.getValueType().isScalableVector());
3459 // Collect the known bits that are shared by every demanded vector element.
3460 Known.Zero.setAllBits(); Known.One.setAllBits();
3461 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3463 continue;
3464
3465 SDValue SrcOp = Op.getOperand(i);
3466 Known2 = computeKnownBits(SrcOp, Depth + 1);
3467
3468 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3469 if (SrcOp.getValueSizeInBits() != BitWidth) {
3470 assert(SrcOp.getValueSizeInBits() > BitWidth &&
3471 "Expected BUILD_VECTOR implicit truncation");
3472 Known2 = Known2.trunc(BitWidth);
3473 }
3474
3475 // Known bits are the values that are shared by every demanded element.
3476 Known = Known.intersectWith(Known2);
3477
3478 // If we don't know any bits, early out.
3479 if (Known.isUnknown())
3480 break;
3481 }
3482 break;
3483 case ISD::VECTOR_SHUFFLE: {
3484 assert(!Op.getValueType().isScalableVector());
3485 // Collect the known bits that are shared by every vector element referenced
3486 // by the shuffle.
3487 APInt DemandedLHS, DemandedRHS;
3489 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3490 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3491 DemandedLHS, DemandedRHS))
3492 break;
3493
3494 // Known bits are the values that are shared by every demanded element.
3495 Known.Zero.setAllBits(); Known.One.setAllBits();
3496 if (!!DemandedLHS) {
3497 SDValue LHS = Op.getOperand(0);
3498 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3499 Known = Known.intersectWith(Known2);
3500 }
3501 // If we don't know any bits, early out.
3502 if (Known.isUnknown())
3503 break;
3504 if (!!DemandedRHS) {
3505 SDValue RHS = Op.getOperand(1);
3506 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3507 Known = Known.intersectWith(Known2);
3508 }
3509 break;
3510 }
3511 case ISD::VSCALE: {
3513 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3514 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3515 break;
3516 }
3517 case ISD::CONCAT_VECTORS: {
3518 if (Op.getValueType().isScalableVector())
3519 break;
3520 // Split DemandedElts and test each of the demanded subvectors.
3521 Known.Zero.setAllBits(); Known.One.setAllBits();
3522 EVT SubVectorVT = Op.getOperand(0).getValueType();
3523 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3524 unsigned NumSubVectors = Op.getNumOperands();
3525 for (unsigned i = 0; i != NumSubVectors; ++i) {
3526 APInt DemandedSub =
3527 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3528 if (!!DemandedSub) {
3529 SDValue Sub = Op.getOperand(i);
3530 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3531 Known = Known.intersectWith(Known2);
3532 }
3533 // If we don't know any bits, early out.
3534 if (Known.isUnknown())
3535 break;
3536 }
3537 break;
3538 }
3539 case ISD::INSERT_SUBVECTOR: {
3540 if (Op.getValueType().isScalableVector())
3541 break;
3542 // Demand any elements from the subvector and the remainder from the src its
3543 // inserted into.
3544 SDValue Src = Op.getOperand(0);
3545 SDValue Sub = Op.getOperand(1);
3546 uint64_t Idx = Op.getConstantOperandVal(2);
3547 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3548 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3549 APInt DemandedSrcElts = DemandedElts;
3550 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3551
3552 Known.One.setAllBits();
3553 Known.Zero.setAllBits();
3554 if (!!DemandedSubElts) {
3555 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3556 if (Known.isUnknown())
3557 break; // early-out.
3558 }
3559 if (!!DemandedSrcElts) {
3560 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3561 Known = Known.intersectWith(Known2);
3562 }
3563 break;
3564 }
3566 // Offset the demanded elts by the subvector index.
3567 SDValue Src = Op.getOperand(0);
3568 // Bail until we can represent demanded elements for scalable vectors.
3569 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3570 break;
3571 uint64_t Idx = Op.getConstantOperandVal(1);
3572 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3573 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3574 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3575 break;
3576 }
3577 case ISD::SCALAR_TO_VECTOR: {
3578 if (Op.getValueType().isScalableVector())
3579 break;
3580 // We know about scalar_to_vector as much as we know about it source,
3581 // which becomes the first element of otherwise unknown vector.
3582 if (DemandedElts != 1)
3583 break;
3584
3585 SDValue N0 = Op.getOperand(0);
3586 Known = computeKnownBits(N0, Depth + 1);
3587 if (N0.getValueSizeInBits() != BitWidth)
3588 Known = Known.trunc(BitWidth);
3589
3590 break;
3591 }
3592 case ISD::BITCAST: {
3593 if (Op.getValueType().isScalableVector())
3594 break;
3595
3596 SDValue N0 = Op.getOperand(0);
3597 EVT SubVT = N0.getValueType();
3598 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3599
3600 // Ignore bitcasts from unsupported types.
3601 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3602 break;
3603
3604 // Fast handling of 'identity' bitcasts.
3605 if (BitWidth == SubBitWidth) {
3606 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3607 break;
3608 }
3609
3610 bool IsLE = getDataLayout().isLittleEndian();
3611
3612 // Bitcast 'small element' vector to 'large element' scalar/vector.
3613 if ((BitWidth % SubBitWidth) == 0) {
3614 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3615
3616 // Collect known bits for the (larger) output by collecting the known
3617 // bits from each set of sub elements and shift these into place.
3618 // We need to separately call computeKnownBits for each set of
3619 // sub elements as the knownbits for each is likely to be different.
3620 unsigned SubScale = BitWidth / SubBitWidth;
3621 APInt SubDemandedElts(NumElts * SubScale, 0);
3622 for (unsigned i = 0; i != NumElts; ++i)
3623 if (DemandedElts[i])
3624 SubDemandedElts.setBit(i * SubScale);
3625
3626 for (unsigned i = 0; i != SubScale; ++i) {
3627 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3628 Depth + 1);
3629 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3630 Known.insertBits(Known2, SubBitWidth * Shifts);
3631 }
3632 }
3633
3634 // Bitcast 'large element' scalar/vector to 'small element' vector.
3635 if ((SubBitWidth % BitWidth) == 0) {
3636 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3637
3638 // Collect known bits for the (smaller) output by collecting the known
3639 // bits from the overlapping larger input elements and extracting the
3640 // sub sections we actually care about.
3641 unsigned SubScale = SubBitWidth / BitWidth;
3642 APInt SubDemandedElts =
3643 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3644 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3645
3646 Known.Zero.setAllBits(); Known.One.setAllBits();
3647 for (unsigned i = 0; i != NumElts; ++i)
3648 if (DemandedElts[i]) {
3649 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3650 unsigned Offset = (Shifts % SubScale) * BitWidth;
3651 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3652 // If we don't know any bits, early out.
3653 if (Known.isUnknown())
3654 break;
3655 }
3656 }
3657 break;
3658 }
3659 case ISD::AND:
3660 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3661 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3662
3663 Known &= Known2;
3664 break;
3665 case ISD::OR:
3666 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3667 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3668
3669 Known |= Known2;
3670 break;
3671 case ISD::XOR:
3672 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3673 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3674
3675 Known ^= Known2;
3676 break;
3677 case ISD::MUL: {
3678 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3679 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3680 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3681 // TODO: SelfMultiply can be poison, but not undef.
3682 if (SelfMultiply)
3683 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3684 Op.getOperand(0), DemandedElts, false, Depth + 1);
3685 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3686
3687 // If the multiplication is known not to overflow, the product of a number
3688 // with itself is non-negative. Only do this if we didn't already computed
3689 // the opposite value for the sign bit.
3690 if (Op->getFlags().hasNoSignedWrap() &&
3691 Op.getOperand(0) == Op.getOperand(1) &&
3692 !Known.isNegative())
3693 Known.makeNonNegative();
3694 break;
3695 }
3696 case ISD::MULHU: {
3697 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3698 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3699 Known = KnownBits::mulhu(Known, Known2);
3700 break;
3701 }
3702 case ISD::MULHS: {
3703 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3704 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3705 Known = KnownBits::mulhs(Known, Known2);
3706 break;
3707 }
3708 case ISD::ABDU: {
3709 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3710 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3711 Known = KnownBits::abdu(Known, Known2);
3712 break;
3713 }
3714 case ISD::ABDS: {
3715 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3716 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3717 Known = KnownBits::abds(Known, Known2);
3718 unsigned SignBits1 =
3719 ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3720 if (SignBits1 == 1)
3721 break;
3722 unsigned SignBits0 =
3723 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3724 Known.Zero.setHighBits(std::min(SignBits0, SignBits1) - 1);
3725 break;
3726 }
3727 case ISD::UMUL_LOHI: {
3728 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3729 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3730 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3731 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3732 if (Op.getResNo() == 0)
3733 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3734 else
3735 Known = KnownBits::mulhu(Known, Known2);
3736 break;
3737 }
3738 case ISD::SMUL_LOHI: {
3739 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3740 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3741 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3742 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3743 if (Op.getResNo() == 0)
3744 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3745 else
3746 Known = KnownBits::mulhs(Known, Known2);
3747 break;
3748 }
3749 case ISD::AVGFLOORU: {
3750 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3751 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3752 Known = KnownBits::avgFloorU(Known, Known2);
3753 break;
3754 }
3755 case ISD::AVGCEILU: {
3756 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3757 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3758 Known = KnownBits::avgCeilU(Known, Known2);
3759 break;
3760 }
3761 case ISD::AVGFLOORS: {
3762 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3763 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3764 Known = KnownBits::avgFloorS(Known, Known2);
3765 break;
3766 }
3767 case ISD::AVGCEILS: {
3768 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3769 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3770 Known = KnownBits::avgCeilS(Known, Known2);
3771 break;
3772 }
3773 case ISD::SELECT:
3774 case ISD::VSELECT:
3775 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3776 // If we don't know any bits, early out.
3777 if (Known.isUnknown())
3778 break;
3779 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3780
3781 // Only known if known in both the LHS and RHS.
3782 Known = Known.intersectWith(Known2);
3783 break;
3784 case ISD::SELECT_CC:
3785 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3786 // If we don't know any bits, early out.
3787 if (Known.isUnknown())
3788 break;
3789 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3790
3791 // Only known if known in both the LHS and RHS.
3792 Known = Known.intersectWith(Known2);
3793 break;
3794 case ISD::SMULO:
3795 case ISD::UMULO:
3796 if (Op.getResNo() != 1)
3797 break;
3798 // The boolean result conforms to getBooleanContents.
3799 // If we know the result of a setcc has the top bits zero, use this info.
3800 // We know that we have an integer-based boolean since these operations
3801 // are only available for integer.
3802 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3804 BitWidth > 1)
3805 Known.Zero.setBitsFrom(1);
3806 break;
3807 case ISD::SETCC:
3808 case ISD::SETCCCARRY:
3809 case ISD::STRICT_FSETCC:
3810 case ISD::STRICT_FSETCCS: {
3811 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3812 // If we know the result of a setcc has the top bits zero, use this info.
3813 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3815 BitWidth > 1)
3816 Known.Zero.setBitsFrom(1);
3817 break;
3818 }
3819 case ISD::SHL: {
3820 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3821 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3822
3823 bool NUW = Op->getFlags().hasNoUnsignedWrap();
3824 bool NSW = Op->getFlags().hasNoSignedWrap();
3825
3826 bool ShAmtNonZero = Known2.isNonZero();
3827
3828 Known = KnownBits::shl(Known, Known2, NUW, NSW, ShAmtNonZero);
3829
3830 // Minimum shift low bits are known zero.
3831 if (std::optional<unsigned> ShMinAmt =
3832 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3833 Known.Zero.setLowBits(*ShMinAmt);
3834 break;
3835 }
3836 case ISD::SRL:
3837 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3838 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3839 Known = KnownBits::lshr(Known, Known2, /*ShAmtNonZero=*/false,
3840 Op->getFlags().hasExact());
3841
3842 // Minimum shift high bits are known zero.
3843 if (std::optional<unsigned> ShMinAmt =
3844 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3845 Known.Zero.setHighBits(*ShMinAmt);
3846 break;
3847 case ISD::SRA:
3848 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3849 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3850 Known = KnownBits::ashr(Known, Known2, /*ShAmtNonZero=*/false,
3851 Op->getFlags().hasExact());
3852 break;
3853 case ISD::ROTL:
3854 case ISD::ROTR:
3855 if (ConstantSDNode *C =
3856 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3857 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3858
3859 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3860
3861 // Canonicalize to ROTR.
3862 if (Opcode == ISD::ROTL && Amt != 0)
3863 Amt = BitWidth - Amt;
3864
3865 Known.Zero = Known.Zero.rotr(Amt);
3866 Known.One = Known.One.rotr(Amt);
3867 }
3868 break;
3869 case ISD::FSHL:
3870 case ISD::FSHR:
3871 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3872 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3873
3874 // For fshl, 0-shift returns the 1st arg.
3875 // For fshr, 0-shift returns the 2nd arg.
3876 if (Amt == 0) {
3877 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3878 DemandedElts, Depth + 1);
3879 break;
3880 }
3881
3882 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3883 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3884 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3885 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3886 if (Opcode == ISD::FSHL) {
3887 Known <<= Amt;
3888 Known2 >>= BitWidth - Amt;
3889 } else {
3890 Known <<= BitWidth - Amt;
3891 Known2 >>= Amt;
3892 }
3893 Known = Known.unionWith(Known2);
3894 }
3895 break;
3896 case ISD::SHL_PARTS:
3897 case ISD::SRA_PARTS:
3898 case ISD::SRL_PARTS: {
3899 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3900
3901 // Collect lo/hi source values and concatenate.
3902 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3903 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3904 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3905 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3906 Known = Known2.concat(Known);
3907
3908 // Collect shift amount.
3909 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3910
3911 if (Opcode == ISD::SHL_PARTS)
3912 Known = KnownBits::shl(Known, Known2);
3913 else if (Opcode == ISD::SRA_PARTS)
3914 Known = KnownBits::ashr(Known, Known2);
3915 else // if (Opcode == ISD::SRL_PARTS)
3916 Known = KnownBits::lshr(Known, Known2);
3917
3918 // TODO: Minimum shift low/high bits are known zero.
3919
3920 if (Op.getResNo() == 0)
3921 Known = Known.extractBits(LoBits, 0);
3922 else
3923 Known = Known.extractBits(HiBits, LoBits);
3924 break;
3925 }
3927 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3928 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3929 Known = Known.sextInReg(EVT.getScalarSizeInBits());
3930 break;
3931 }
3932 case ISD::CTTZ:
3933 case ISD::CTTZ_ZERO_UNDEF: {
3934 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3935 // If we have a known 1, its position is our upper bound.
3936 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3937 unsigned LowBits = llvm::bit_width(PossibleTZ);
3938 Known.Zero.setBitsFrom(LowBits);
3939 break;
3940 }
3941 case ISD::CTLZ:
3942 case ISD::CTLZ_ZERO_UNDEF: {
3943 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3944 // If we have a known 1, its position is our upper bound.
3945 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3946 unsigned LowBits = llvm::bit_width(PossibleLZ);
3947 Known.Zero.setBitsFrom(LowBits);
3948 break;
3949 }
3950 case ISD::CTPOP: {
3951 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3952 // If we know some of the bits are zero, they can't be one.
3953 unsigned PossibleOnes = Known2.countMaxPopulation();
3954 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3955 break;
3956 }
3957 case ISD::PARITY: {
3958 // Parity returns 0 everywhere but the LSB.
3959 Known.Zero.setBitsFrom(1);
3960 break;
3961 }
3962 case ISD::MGATHER:
3963 case ISD::MLOAD: {
3964 ISD::LoadExtType ETy =
3965 (Opcode == ISD::MGATHER)
3966 ? cast<MaskedGatherSDNode>(Op)->getExtensionType()
3967 : cast<MaskedLoadSDNode>(Op)->getExtensionType();
3968 if (ETy == ISD::ZEXTLOAD) {
3969 EVT MemVT = cast<MemSDNode>(Op)->getMemoryVT();
3970 KnownBits Known0(MemVT.getScalarSizeInBits());
3971 return Known0.zext(BitWidth);
3972 }
3973 break;
3974 }
3975 case ISD::LOAD: {
3977 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3978 if (ISD::isNON_EXTLoad(LD) && Cst) {
3979 // Determine any common known bits from the loaded constant pool value.
3980 Type *CstTy = Cst->getType();
3981 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3982 !Op.getValueType().isScalableVector()) {
3983 // If its a vector splat, then we can (quickly) reuse the scalar path.
3984 // NOTE: We assume all elements match and none are UNDEF.
3985 if (CstTy->isVectorTy()) {
3986 if (const Constant *Splat = Cst->getSplatValue()) {
3987 Cst = Splat;
3988 CstTy = Cst->getType();
3989 }
3990 }
3991 // TODO - do we need to handle different bitwidths?
3992 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3993 // Iterate across all vector elements finding common known bits.
3994 Known.One.setAllBits();
3995 Known.Zero.setAllBits();
3996 for (unsigned i = 0; i != NumElts; ++i) {
3997 if (!DemandedElts[i])
3998 continue;
3999 if (Constant *Elt = Cst->getAggregateElement(i)) {
4000 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4001 const APInt &Value = CInt->getValue();
4002 Known.One &= Value;
4003 Known.Zero &= ~Value;
4004 continue;
4005 }
4006 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4007 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4008 Known.One &= Value;
4009 Known.Zero &= ~Value;
4010 continue;
4011 }
4012 }
4013 Known.One.clearAllBits();
4014 Known.Zero.clearAllBits();
4015 break;
4016 }
4017 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
4018 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
4019 Known = KnownBits::makeConstant(CInt->getValue());
4020 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
4021 Known =
4022 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
4023 }
4024 }
4025 }
4026 } else if (Op.getResNo() == 0) {
4027 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4028 KnownBits KnownScalarMemory(ScalarMemorySize);
4029 if (const MDNode *MD = LD->getRanges())
4030 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4031
4032 // Extend the Known bits from memory to the size of the scalar result.
4033 if (ISD::isZEXTLoad(Op.getNode()))
4034 Known = KnownScalarMemory.zext(BitWidth);
4035 else if (ISD::isSEXTLoad(Op.getNode()))
4036 Known = KnownScalarMemory.sext(BitWidth);
4037 else if (ISD::isEXTLoad(Op.getNode()))
4038 Known = KnownScalarMemory.anyext(BitWidth);
4039 else
4040 Known = KnownScalarMemory;
4041 assert(Known.getBitWidth() == BitWidth);
4042 return Known;
4043 }
4044 break;
4045 }
4047 if (Op.getValueType().isScalableVector())
4048 break;
4049 EVT InVT = Op.getOperand(0).getValueType();
4050 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4051 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4052 Known = Known.zext(BitWidth);
4053 break;
4054 }
4055 case ISD::ZERO_EXTEND: {
4056 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4057 Known = Known.zext(BitWidth);
4058 break;
4059 }
4061 if (Op.getValueType().isScalableVector())
4062 break;
4063 EVT InVT = Op.getOperand(0).getValueType();
4064 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4065 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4066 // If the sign bit is known to be zero or one, then sext will extend
4067 // it to the top bits, else it will just zext.
4068 Known = Known.sext(BitWidth);
4069 break;
4070 }
4071 case ISD::SIGN_EXTEND: {
4072 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4073 // If the sign bit is known to be zero or one, then sext will extend
4074 // it to the top bits, else it will just zext.
4075 Known = Known.sext(BitWidth);
4076 break;
4077 }
4079 if (Op.getValueType().isScalableVector())
4080 break;
4081 EVT InVT = Op.getOperand(0).getValueType();
4082 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4083 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4084 Known = Known.anyext(BitWidth);
4085 break;
4086 }
4087 case ISD::ANY_EXTEND: {
4088 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4089 Known = Known.anyext(BitWidth);
4090 break;
4091 }
4092 case ISD::TRUNCATE: {
4093 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4094 Known = Known.trunc(BitWidth);
4095 break;
4096 }
4097 case ISD::AssertZext: {
4098 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4100 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4101 Known.Zero |= (~InMask);
4102 Known.One &= (~Known.Zero);
4103 break;
4104 }
4105 case ISD::AssertAlign: {
4106 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
4107 assert(LogOfAlign != 0);
4108
4109 // TODO: Should use maximum with source
4110 // If a node is guaranteed to be aligned, set low zero bits accordingly as
4111 // well as clearing one bits.
4112 Known.Zero.setLowBits(LogOfAlign);
4113 Known.One.clearLowBits(LogOfAlign);
4114 break;
4115 }
4116 case ISD::FGETSIGN:
4117 // All bits are zero except the low bit.
4118 Known.Zero.setBitsFrom(1);
4119 break;
4120 case ISD::ADD:
4121 case ISD::SUB: {
4122 SDNodeFlags Flags = Op.getNode()->getFlags();
4123 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4124 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4126 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
4127 Flags.hasNoUnsignedWrap(), Known, Known2);
4128 break;
4129 }
4130 case ISD::USUBO:
4131 case ISD::SSUBO:
4132 case ISD::USUBO_CARRY:
4133 case ISD::SSUBO_CARRY:
4134 if (Op.getResNo() == 1) {
4135 // If we know the result of a setcc has the top bits zero, use this info.
4136 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4138 BitWidth > 1)
4139 Known.Zero.setBitsFrom(1);
4140 break;
4141 }
4142 [[fallthrough]];
4143 case ISD::SUBC: {
4144 assert(Op.getResNo() == 0 &&
4145 "We only compute knownbits for the difference here.");
4146
4147 // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
4148 KnownBits Borrow(1);
4149 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
4150 Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4151 // Borrow has bit width 1
4152 Borrow = Borrow.trunc(1);
4153 } else {
4154 Borrow.setAllZero();
4155 }
4156
4157 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4158 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4159 Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
4160 break;
4161 }
4162 case ISD::UADDO:
4163 case ISD::SADDO:
4164 case ISD::UADDO_CARRY:
4165 case ISD::SADDO_CARRY:
4166 if (Op.getResNo() == 1) {
4167 // If we know the result of a setcc has the top bits zero, use this info.
4168 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4170 BitWidth > 1)
4171 Known.Zero.setBitsFrom(1);
4172 break;
4173 }
4174 [[fallthrough]];
4175 case ISD::ADDC:
4176 case ISD::ADDE: {
4177 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
4178
4179 // With ADDE and UADDO_CARRY, a carry bit may be added in.
4180 KnownBits Carry(1);
4181 if (Opcode == ISD::ADDE)
4182 // Can't track carry from glue, set carry to unknown.
4183 Carry.resetAll();
4184 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
4185 Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4186 // Carry has bit width 1
4187 Carry = Carry.trunc(1);
4188 } else {
4189 Carry.setAllZero();
4190 }
4191
4192 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4193 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4194 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
4195 break;
4196 }
4197 case ISD::UDIV: {
4198 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4199 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4200 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
4201 break;
4202 }
4203 case ISD::SDIV: {
4204 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4205 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4206 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
4207 break;
4208 }
4209 case ISD::SREM: {
4210 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4211 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4212 Known = KnownBits::srem(Known, Known2);
4213 break;
4214 }
4215 case ISD::UREM: {
4216 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4217 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4218 Known = KnownBits::urem(Known, Known2);
4219 break;
4220 }
4221 case ISD::EXTRACT_ELEMENT: {
4222 Known = computeKnownBits(Op.getOperand(0), Depth+1);
4223 const unsigned Index = Op.getConstantOperandVal(1);
4224 const unsigned EltBitWidth = Op.getValueSizeInBits();
4225
4226 // Remove low part of known bits mask
4227 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4228 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4229
4230 // Remove high part of known bit mask
4231 Known = Known.trunc(EltBitWidth);
4232 break;
4233 }
4235 SDValue InVec = Op.getOperand(0);
4236 SDValue EltNo = Op.getOperand(1);
4237 EVT VecVT = InVec.getValueType();
4238 // computeKnownBits not yet implemented for scalable vectors.
4239 if (VecVT.isScalableVector())
4240 break;
4241 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
4242 const unsigned NumSrcElts = VecVT.getVectorNumElements();
4243
4244 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
4245 // anything about the extended bits.
4246 if (BitWidth > EltBitWidth)
4247 Known = Known.trunc(EltBitWidth);
4248
4249 // If we know the element index, just demand that vector element, else for
4250 // an unknown element index, ignore DemandedElts and demand them all.
4251 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4252 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4253 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4254 DemandedSrcElts =
4255 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4256
4257 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
4258 if (BitWidth > EltBitWidth)
4259 Known = Known.anyext(BitWidth);
4260 break;
4261 }
4263 if (Op.getValueType().isScalableVector())
4264 break;
4265
4266 // If we know the element index, split the demand between the
4267 // source vector and the inserted element, otherwise assume we need
4268 // the original demanded vector elements and the value.
4269 SDValue InVec = Op.getOperand(0);
4270 SDValue InVal = Op.getOperand(1);
4271 SDValue EltNo = Op.getOperand(2);
4272 bool DemandedVal = true;
4273 APInt DemandedVecElts = DemandedElts;
4274 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4275 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4276 unsigned EltIdx = CEltNo->getZExtValue();
4277 DemandedVal = !!DemandedElts[EltIdx];
4278 DemandedVecElts.clearBit(EltIdx);
4279 }
4280 Known.One.setAllBits();
4281 Known.Zero.setAllBits();
4282 if (DemandedVal) {
4283 Known2 = computeKnownBits(InVal, Depth + 1);
4284 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
4285 }
4286 if (!!DemandedVecElts) {
4287 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
4288 Known = Known.intersectWith(Known2);
4289 }
4290 break;
4291 }
4292 case ISD::BITREVERSE: {
4293 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4294 Known = Known2.reverseBits();
4295 break;
4296 }
4297 case ISD::BSWAP: {
4298 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4299 Known = Known2.byteSwap();
4300 break;
4301 }
4302 case ISD::ABS: {
4303 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4304 Known = Known2.abs();
4305 Known.Zero.setHighBits(
4306 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1) - 1);
4307 break;
4308 }
4309 case ISD::USUBSAT: {
4310 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4311 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4312 Known = KnownBits::usub_sat(Known, Known2);
4313 break;
4314 }
4315 case ISD::UMIN: {
4316 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4317 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4318 Known = KnownBits::umin(Known, Known2);
4319 break;
4320 }
4321 case ISD::UMAX: {
4322 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4323 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4324 Known = KnownBits::umax(Known, Known2);
4325 break;
4326 }
4327 case ISD::SMIN:
4328 case ISD::SMAX: {
4329 // If we have a clamp pattern, we know that the number of sign bits will be
4330 // the minimum of the clamp min/max range.
4331 bool IsMax = (Opcode == ISD::SMAX);
4332 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4333 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4334 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4335 CstHigh =
4336 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4337 if (CstLow && CstHigh) {
4338 if (!IsMax)
4339 std::swap(CstLow, CstHigh);
4340
4341 const APInt &ValueLow = CstLow->getAPIntValue();
4342 const APInt &ValueHigh = CstHigh->getAPIntValue();
4343 if (ValueLow.sle(ValueHigh)) {
4344 unsigned LowSignBits = ValueLow.getNumSignBits();
4345 unsigned HighSignBits = ValueHigh.getNumSignBits();
4346 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4347 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
4348 Known.One.setHighBits(MinSignBits);
4349 break;
4350 }
4351 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
4352 Known.Zero.setHighBits(MinSignBits);
4353 break;
4354 }
4355 }
4356 }
4357
4358 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4359 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4360 if (IsMax)
4361 Known = KnownBits::smax(Known, Known2);
4362 else
4363 Known = KnownBits::smin(Known, Known2);
4364
4365 // For SMAX, if CstLow is non-negative we know the result will be
4366 // non-negative and thus all sign bits are 0.
4367 // TODO: There's an equivalent of this for smin with negative constant for
4368 // known ones.
4369 if (IsMax && CstLow) {
4370 const APInt &ValueLow = CstLow->getAPIntValue();
4371 if (ValueLow.isNonNegative()) {
4372 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4373 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
4374 }
4375 }
4376
4377 break;
4378 }
4379 case ISD::UINT_TO_FP: {
4380 Known.makeNonNegative();
4381 break;
4382 }
4383 case ISD::SINT_TO_FP: {
4384 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4385 if (Known2.isNonNegative())
4386 Known.makeNonNegative();
4387 else if (Known2.isNegative())
4388 Known.makeNegative();
4389 break;
4390 }
4391 case ISD::FP_TO_UINT_SAT: {
4392 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
4393 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4395 break;
4396 }
4397 case ISD::ATOMIC_LOAD: {
4398 // If we are looking at the loaded value.
4399 if (Op.getResNo() == 0) {
4400 auto *AT = cast<AtomicSDNode>(Op);
4401 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4402 KnownBits KnownScalarMemory(ScalarMemorySize);
4403 if (const MDNode *MD = AT->getRanges())
4404 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4405
4406 switch (AT->getExtensionType()) {
4407 case ISD::ZEXTLOAD:
4408 Known = KnownScalarMemory.zext(BitWidth);
4409 break;
4410 case ISD::SEXTLOAD:
4411 Known = KnownScalarMemory.sext(BitWidth);
4412 break;
4413 case ISD::EXTLOAD:
4414 switch (TLI->getExtendForAtomicOps()) {
4415 case ISD::ZERO_EXTEND:
4416 Known = KnownScalarMemory.zext(BitWidth);
4417 break;
4418 case ISD::SIGN_EXTEND:
4419 Known = KnownScalarMemory.sext(BitWidth);
4420 break;
4421 default:
4422 Known = KnownScalarMemory.anyext(BitWidth);
4423 break;
4424 }
4425 break;
4426 case ISD::NON_EXTLOAD:
4427 Known = KnownScalarMemory;
4428 break;
4429 }
4430 assert(Known.getBitWidth() == BitWidth);
4431 }
4432 break;
4433 }
4434 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4435 if (Op.getResNo() == 1) {
4436 // The boolean result conforms to getBooleanContents.
4437 // If we know the result of a setcc has the top bits zero, use this info.
4438 // We know that we have an integer-based boolean since these operations
4439 // are only available for integer.
4440 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
4442 BitWidth > 1)
4443 Known.Zero.setBitsFrom(1);
4444 break;
4445 }
4446 [[fallthrough]];
4447 case ISD::ATOMIC_CMP_SWAP:
4448 case ISD::ATOMIC_SWAP:
4449 case ISD::ATOMIC_LOAD_ADD:
4450 case ISD::ATOMIC_LOAD_SUB:
4451 case ISD::ATOMIC_LOAD_AND:
4452 case ISD::ATOMIC_LOAD_CLR:
4453 case ISD::ATOMIC_LOAD_OR:
4454 case ISD::ATOMIC_LOAD_XOR:
4455 case ISD::ATOMIC_LOAD_NAND:
4456 case ISD::ATOMIC_LOAD_MIN:
4457 case ISD::ATOMIC_LOAD_MAX:
4458 case ISD::ATOMIC_LOAD_UMIN:
4459 case ISD::ATOMIC_LOAD_UMAX: {
4460 // If we are looking at the loaded value.
4461 if (Op.getResNo() == 0) {
4462 auto *AT = cast<AtomicSDNode>(Op);
4463 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4464
4465 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4466 Known.Zero.setBitsFrom(MemBits);
4467 }
4468 break;
4469 }
4470 case ISD::FrameIndex:
4472 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4473 Known, getMachineFunction());
4474 break;
4475
4476 default:
4477 if (Opcode < ISD::BUILTIN_OP_END)
4478 break;
4479 [[fallthrough]];
4483 // TODO: Probably okay to remove after audit; here to reduce change size
4484 // in initial enablement patch for scalable vectors
4485 if (Op.getValueType().isScalableVector())
4486 break;
4487
4488 // Allow the target to implement this method for its nodes.
4489 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4490 break;
4491 }
4492
4493 return Known;
4494}
4495
4496/// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4509
4512 // X + 0 never overflow
4513 if (isNullConstant(N1))
4514 return OFK_Never;
4515
4516 // If both operands each have at least two sign bits, the addition
4517 // cannot overflow.
4518 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4519 return OFK_Never;
4520
4521 // TODO: Add ConstantRange::signedAddMayOverflow handling.
4522 return OFK_Sometime;
4523}
4524
4527 // X + 0 never overflow
4528 if (isNullConstant(N1))
4529 return OFK_Never;
4530
4531 // mulhi + 1 never overflow
4532 KnownBits N1Known = computeKnownBits(N1);
4533 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4534 N1Known.getMaxValue().ult(2))
4535 return OFK_Never;
4536
4537 KnownBits N0Known = computeKnownBits(N0);
4538 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4539 N0Known.getMaxValue().ult(2))
4540 return OFK_Never;
4541
4542 // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4543 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4544 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4545 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4546}
4547
4550 // X - 0 never overflow
4551 if (isNullConstant(N1))
4552 return OFK_Never;
4553
4554 // If both operands each have at least two sign bits, the subtraction
4555 // cannot overflow.
4556 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4557 return OFK_Never;
4558
4559 KnownBits N0Known = computeKnownBits(N0);
4560 KnownBits N1Known = computeKnownBits(N1);
4561 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4562 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4563 return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4564}
4565
4568 // X - 0 never overflow
4569 if (isNullConstant(N1))
4570 return OFK_Never;
4571
4572 KnownBits N0Known = computeKnownBits(N0);
4573 KnownBits N1Known = computeKnownBits(N1);
4574 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4575 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4576 return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4577}
4578
4581 // X * 0 and X * 1 never overflow.
4582 if (isNullConstant(N1) || isOneConstant(N1))
4583 return OFK_Never;
4584
4585 KnownBits N0Known = computeKnownBits(N0);
4586 KnownBits N1Known = computeKnownBits(N1);
4587 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4588 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4589 return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4590}
4591
4594 // X * 0 and X * 1 never overflow.
4595 if (isNullConstant(N1) || isOneConstant(N1))
4596 return OFK_Never;
4597
4598 // Get the size of the result.
4599 unsigned BitWidth = N0.getScalarValueSizeInBits();
4600
4601 // Sum of the sign bits.
4602 unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4603
4604 // If we have enough sign bits, then there's no overflow.
4605 if (SignBits > BitWidth + 1)
4606 return OFK_Never;
4607
4608 if (SignBits == BitWidth + 1) {
4609 // The overflow occurs when the true multiplication of the
4610 // the operands is the minimum negative number.
4611 KnownBits N0Known = computeKnownBits(N0);
4612 KnownBits N1Known = computeKnownBits(N1);
4613 // If one of the operands is non-negative, then there's no
4614 // overflow.
4615 if (N0Known.isNonNegative() || N1Known.isNonNegative())
4616 return OFK_Never;
4617 }
4618
4619 return OFK_Sometime;
4620}
4621
4623 if (Depth >= MaxRecursionDepth)
4624 return false; // Limit search depth.
4625
4626 EVT OpVT = Val.getValueType();
4627 unsigned BitWidth = OpVT.getScalarSizeInBits();
4628
4629 // Is the constant a known power of 2?
4631 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4632 }))
4633 return true;
4634
4635 // A left-shift of a constant one will have exactly one bit set because
4636 // shifting the bit off the end is undefined.
4637 if (Val.getOpcode() == ISD::SHL) {
4638 auto *C = isConstOrConstSplat(Val.getOperand(0));
4639 if (C && C->getAPIntValue() == 1)
4640 return true;
4641 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4642 isKnownNeverZero(Val, Depth);
4643 }
4644
4645 // Similarly, a logical right-shift of a constant sign-bit will have exactly
4646 // one bit set.
4647 if (Val.getOpcode() == ISD::SRL) {
4648 auto *C = isConstOrConstSplat(Val.getOperand(0));
4649 if (C && C->getAPIntValue().isSignMask())
4650 return true;
4651 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4652 isKnownNeverZero(Val, Depth);
4653 }
4654
4655 if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4656 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4657
4658 // Are all operands of a build vector constant powers of two?
4659 if (Val.getOpcode() == ISD::BUILD_VECTOR)
4660 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4661 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4662 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4663 return false;
4664 }))
4665 return true;
4666
4667 // Is the operand of a splat vector a constant power of two?
4668 if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4670 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4671 return true;
4672
4673 // vscale(power-of-two) is a power-of-two for some targets
4674 if (Val.getOpcode() == ISD::VSCALE &&
4675 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4677 return true;
4678
4679 if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4680 Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4681 return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4683
4684 if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4685 return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4687
4688 // Looking for `x & -x` pattern:
4689 // If x == 0:
4690 // x & -x -> 0
4691 // If x != 0:
4692 // x & -x -> non-zero pow2
4693 // so if we find the pattern return whether we know `x` is non-zero.
4694 SDValue X;
4695 if (sd_match(Val, m_And(m_Value(X), m_Neg(m_Deferred(X)))))
4696 return isKnownNeverZero(X, Depth);
4697
4698 if (Val.getOpcode() == ISD::ZERO_EXTEND)
4699 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4700
4701 // More could be done here, though the above checks are enough
4702 // to handle some common cases.
4703 return false;
4704}
4705
4707 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Val, true))
4708 return C1->getValueAPF().getExactLog2Abs() >= 0;
4709
4710 if (Val.getOpcode() == ISD::UINT_TO_FP || Val.getOpcode() == ISD::SINT_TO_FP)
4711 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4712
4713 return false;
4714}
4715
4717 EVT VT = Op.getValueType();
4718
4719 // Since the number of lanes in a scalable vector is unknown at compile time,
4720 // we track one bit which is implicitly broadcast to all lanes. This means
4721 // that all lanes in a scalable vector are considered demanded.
4722 APInt DemandedElts = VT.isFixedLengthVector()
4724 : APInt(1, 1);
4725 return ComputeNumSignBits(Op, DemandedElts, Depth);
4726}
4727
4728unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4729 unsigned Depth) const {
4730 EVT VT = Op.getValueType();
4731 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4732 unsigned VTBits = VT.getScalarSizeInBits();
4733 unsigned NumElts = DemandedElts.getBitWidth();
4734 unsigned Tmp, Tmp2;
4735 unsigned FirstAnswer = 1;
4736
4737 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4738 const APInt &Val = C->getAPIntValue();
4739 return Val.getNumSignBits();
4740 }
4741
4742 if (Depth >= MaxRecursionDepth)
4743 return 1; // Limit search depth.
4744
4745 if (!DemandedElts)
4746 return 1; // No demanded elts, better to assume we don't know anything.
4747
4748 unsigned Opcode = Op.getOpcode();
4749 switch (Opcode) {
4750 default: break;
4751 case ISD::AssertSext:
4752 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4753 return VTBits-Tmp+1;
4754 case ISD::AssertZext:
4755 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4756 return VTBits-Tmp;
4757 case ISD::MERGE_VALUES:
4758 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4759 Depth + 1);
4760 case ISD::SPLAT_VECTOR: {
4761 // Check if the sign bits of source go down as far as the truncated value.
4762 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4763 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4764 if (NumSrcSignBits > (NumSrcBits - VTBits))
4765 return NumSrcSignBits - (NumSrcBits - VTBits);
4766 break;
4767 }
4768 case ISD::BUILD_VECTOR:
4769 assert(!VT.isScalableVector());
4770 Tmp = VTBits;
4771 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4772 if (!DemandedElts[i])
4773 continue;
4774
4775 SDValue SrcOp = Op.getOperand(i);
4776 // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4777 // for constant nodes to ensure we only look at the sign bits.
4779 APInt T = C->getAPIntValue().trunc(VTBits);
4780 Tmp2 = T.getNumSignBits();
4781 } else {
4782 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4783
4784 if (SrcOp.getValueSizeInBits() != VTBits) {
4785 assert(SrcOp.getValueSizeInBits() > VTBits &&
4786 "Expected BUILD_VECTOR implicit truncation");
4787 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4788 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4789 }
4790 }
4791 Tmp = std::min(Tmp, Tmp2);
4792 }
4793 return Tmp;
4794
4795 case ISD::VECTOR_SHUFFLE: {
4796 // Collect the minimum number of sign bits that are shared by every vector
4797 // element referenced by the shuffle.
4798 APInt DemandedLHS, DemandedRHS;
4800 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4801 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4802 DemandedLHS, DemandedRHS))
4803 return 1;
4804
4805 Tmp = std::numeric_limits<unsigned>::max();
4806 if (!!DemandedLHS)
4807 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4808 if (!!DemandedRHS) {
4809 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4810 Tmp = std::min(Tmp, Tmp2);
4811 }
4812 // If we don't know anything, early out and try computeKnownBits fall-back.
4813 if (Tmp == 1)
4814 break;
4815 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4816 return Tmp;
4817 }
4818
4819 case ISD::BITCAST: {
4820 if (VT.isScalableVector())
4821 break;
4822 SDValue N0 = Op.getOperand(0);
4823 EVT SrcVT = N0.getValueType();
4824 unsigned SrcBits = SrcVT.getScalarSizeInBits();
4825
4826 // Ignore bitcasts from unsupported types..
4827 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4828 break;
4829
4830 // Fast handling of 'identity' bitcasts.
4831 if (VTBits == SrcBits)
4832 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4833
4834 bool IsLE = getDataLayout().isLittleEndian();
4835
4836 // Bitcast 'large element' scalar/vector to 'small element' vector.
4837 if ((SrcBits % VTBits) == 0) {
4838 assert(VT.isVector() && "Expected bitcast to vector");
4839
4840 unsigned Scale = SrcBits / VTBits;
4841 APInt SrcDemandedElts =
4842 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4843
4844 // Fast case - sign splat can be simply split across the small elements.
4845 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4846 if (Tmp == SrcBits)
4847 return VTBits;
4848
4849 // Slow case - determine how far the sign extends into each sub-element.
4850 Tmp2 = VTBits;
4851 for (unsigned i = 0; i != NumElts; ++i)
4852 if (DemandedElts[i]) {
4853 unsigned SubOffset = i % Scale;
4854 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4855 SubOffset = SubOffset * VTBits;
4856 if (Tmp <= SubOffset)
4857 return 1;
4858 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4859 }
4860 return Tmp2;
4861 }
4862 break;
4863 }
4864
4866 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4867 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4868 return VTBits - Tmp + 1;
4869 case ISD::SIGN_EXTEND:
4870 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4871 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4873 // Max of the input and what this extends.
4874 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4875 Tmp = VTBits-Tmp+1;
4876 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4877 return std::max(Tmp, Tmp2);
4879 if (VT.isScalableVector())
4880 break;
4881 SDValue Src = Op.getOperand(0);
4882 EVT SrcVT = Src.getValueType();
4883 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4884 Tmp = VTBits - SrcVT.getScalarSizeInBits();
4885 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4886 }
4887 case ISD::SRA:
4888 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4889 // SRA X, C -> adds C sign bits.
4890 if (std::optional<unsigned> ShAmt =
4891 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
4892 Tmp = std::min(Tmp + *ShAmt, VTBits);
4893 return Tmp;
4894 case ISD::SHL:
4895 if (std::optional<ConstantRange> ShAmtRange =
4896 getValidShiftAmountRange(Op, DemandedElts, Depth + 1)) {
4897 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4898 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4899 // Try to look through ZERO/SIGN/ANY_EXTEND. If all extended bits are
4900 // shifted out, then we can compute the number of sign bits for the
4901 // operand being extended. A future improvement could be to pass along the
4902 // "shifted left by" information in the recursive calls to
4903 // ComputeKnownSignBits. Allowing us to handle this more generically.
4904 if (ISD::isExtOpcode(Op.getOperand(0).getOpcode())) {
4905 SDValue Ext = Op.getOperand(0);
4906 EVT ExtVT = Ext.getValueType();
4907 SDValue Extendee = Ext.getOperand(0);
4908 EVT ExtendeeVT = Extendee.getValueType();
4909 unsigned SizeDifference =
4910 ExtVT.getScalarSizeInBits() - ExtendeeVT.getScalarSizeInBits();
4911 if (SizeDifference <= MinShAmt) {
4912 Tmp = SizeDifference +
4913 ComputeNumSignBits(Extendee, DemandedElts, Depth + 1);
4914 if (MaxShAmt < Tmp)
4915 return Tmp - MaxShAmt;
4916 }
4917 }
4918 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4919 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4920 if (MaxShAmt < Tmp)
4921 return Tmp - MaxShAmt;
4922 }
4923 break;
4924 case ISD::AND:
4925 case ISD::OR:
4926 case ISD::XOR: // NOT is handled here.
4927 // Logical binary ops preserve the number of sign bits at the worst.
4928 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4929 if (Tmp != 1) {
4930 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4931 FirstAnswer = std::min(Tmp, Tmp2);
4932 // We computed what we know about the sign bits as our first
4933 // answer. Now proceed to the generic code that uses
4934 // computeKnownBits, and pick whichever answer is better.
4935 }
4936 break;
4937
4938 case ISD::SELECT:
4939 case ISD::VSELECT:
4940 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4941 if (Tmp == 1) return 1; // Early out.
4942 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4943 return std::min(Tmp, Tmp2);
4944 case ISD::SELECT_CC:
4945 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4946 if (Tmp == 1) return 1; // Early out.
4947 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4948 return std::min(Tmp, Tmp2);
4949
4950 case ISD::SMIN:
4951 case ISD::SMAX: {
4952 // If we have a clamp pattern, we know that the number of sign bits will be
4953 // the minimum of the clamp min/max range.
4954 bool IsMax = (Opcode == ISD::SMAX);
4955 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4956 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4957 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4958 CstHigh =
4959 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4960 if (CstLow && CstHigh) {
4961 if (!IsMax)
4962 std::swap(CstLow, CstHigh);
4963 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4964 Tmp = CstLow->getAPIntValue().getNumSignBits();
4965 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4966 return std::min(Tmp, Tmp2);
4967 }
4968 }
4969
4970 // Fallback - just get the minimum number of sign bits of the operands.
4971 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4972 if (Tmp == 1)
4973 return 1; // Early out.
4974 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4975 return std::min(Tmp, Tmp2);
4976 }
4977 case ISD::UMIN:
4978 case ISD::UMAX:
4979 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4980 if (Tmp == 1)
4981 return 1; // Early out.
4982 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4983 return std::min(Tmp, Tmp2);
4984 case ISD::SSUBO_CARRY:
4985 case ISD::USUBO_CARRY:
4986 // sub_carry(x,x,c) -> 0/-1 (sext carry)
4987 if (Op.getResNo() == 0 && Op.getOperand(0) == Op.getOperand(1))
4988 return VTBits;
4989 [[fallthrough]];
4990 case ISD::SADDO:
4991 case ISD::UADDO:
4992 case ISD::SADDO_CARRY:
4993 case ISD::UADDO_CARRY:
4994 case ISD::SSUBO:
4995 case ISD::USUBO:
4996 case ISD::SMULO:
4997 case ISD::UMULO:
4998 if (Op.getResNo() != 1)
4999 break;
5000 // The boolean result conforms to getBooleanContents. Fall through.
5001 // If setcc returns 0/-1, all bits are sign bits.
5002 // We know that we have an integer-based boolean since these operations
5003 // are only available for integer.
5004 if (TLI->getBooleanContents(VT.isVector(), false) ==
5006 return VTBits;
5007 break;
5008 case ISD::SETCC:
5009 case ISD::SETCCCARRY:
5010 case ISD::STRICT_FSETCC:
5011 case ISD::STRICT_FSETCCS: {
5012 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
5013 // If setcc returns 0/-1, all bits are sign bits.
5014 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
5016 return VTBits;
5017 break;
5018 }
5019 case ISD::ROTL:
5020 case ISD::ROTR:
5021 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5022
5023 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
5024 if (Tmp == VTBits)
5025 return VTBits;
5026
5027 if (ConstantSDNode *C =
5028 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
5029 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
5030
5031 // Handle rotate right by N like a rotate left by 32-N.
5032 if (Opcode == ISD::ROTR)
5033 RotAmt = (VTBits - RotAmt) % VTBits;
5034
5035 // If we aren't rotating out all of the known-in sign bits, return the
5036 // number that are left. This handles rotl(sext(x), 1) for example.
5037 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
5038 }
5039 break;
5040 case ISD::ADD:
5041 case ISD::ADDC:
5042 // Add can have at most one carry bit. Thus we know that the output
5043 // is, at worst, one more bit than the inputs.
5044 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5045 if (Tmp == 1) return 1; // Early out.
5046
5047 // Special case decrementing a value (ADD X, -1):
5048 if (ConstantSDNode *CRHS =
5049 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
5050 if (CRHS->isAllOnes()) {
5051 KnownBits Known =
5052 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5053
5054 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5055 // sign bits set.
5056 if ((Known.Zero | 1).isAllOnes())
5057 return VTBits;
5058
5059 // If we are subtracting one from a positive number, there is no carry
5060 // out of the result.
5061 if (Known.isNonNegative())
5062 return Tmp;
5063 }
5064
5065 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5066 if (Tmp2 == 1) return 1; // Early out.
5067 return std::min(Tmp, Tmp2) - 1;
5068 case ISD::SUB:
5069 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5070 if (Tmp2 == 1) return 1; // Early out.
5071
5072 // Handle NEG.
5073 if (ConstantSDNode *CLHS =
5074 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
5075 if (CLHS->isZero()) {
5076 KnownBits Known =
5077 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5078 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5079 // sign bits set.
5080 if ((Known.Zero | 1).isAllOnes())
5081 return VTBits;
5082
5083 // If the input is known to be positive (the sign bit is known clear),
5084 // the output of the NEG has the same number of sign bits as the input.
5085 if (Known.isNonNegative())
5086 return Tmp2;
5087
5088 // Otherwise, we treat this like a SUB.
5089 }
5090
5091 // Sub can have at most one carry bit. Thus we know that the output
5092 // is, at worst, one more bit than the inputs.
5093 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5094 if (Tmp == 1) return 1; // Early out.
5095 return std::min(Tmp, Tmp2) - 1;
5096 case ISD::MUL: {
5097 // The output of the Mul can be at most twice the valid bits in the inputs.
5098 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5099 if (SignBitsOp0 == 1)
5100 break;
5101 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
5102 if (SignBitsOp1 == 1)
5103 break;
5104 unsigned OutValidBits =
5105 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5106 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5107 }
5108 case ISD::AVGCEILS:
5109 case ISD::AVGFLOORS:
5110 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5111 if (Tmp == 1)
5112 return 1; // Early out.
5113 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5114 return std::min(Tmp, Tmp2);
5115 case ISD::SREM:
5116 // The sign bit is the LHS's sign bit, except when the result of the
5117 // remainder is zero. The magnitude of the result should be less than or
5118 // equal to the magnitude of the LHS. Therefore, the result should have
5119 // at least as many sign bits as the left hand side.
5120 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5121 case ISD::TRUNCATE: {
5122 // Check if the sign bits of source go down as far as the truncated value.
5123 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
5124 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5125 if (NumSrcSignBits > (NumSrcBits - VTBits))
5126 return NumSrcSignBits - (NumSrcBits - VTBits);
5127 break;
5128 }
5129 case ISD::EXTRACT_ELEMENT: {
5130 if (VT.isScalableVector())
5131 break;
5132 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
5133 const int BitWidth = Op.getValueSizeInBits();
5134 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
5135
5136 // Get reverse index (starting from 1), Op1 value indexes elements from
5137 // little end. Sign starts at big end.
5138 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
5139
5140 // If the sign portion ends in our element the subtraction gives correct
5141 // result. Otherwise it gives either negative or > bitwidth result
5142 return std::clamp(KnownSign - rIndex * BitWidth, 1, BitWidth);
5143 }
5145 if (VT.isScalableVector())
5146 break;
5147 // If we know the element index, split the demand between the
5148 // source vector and the inserted element, otherwise assume we need
5149 // the original demanded vector elements and the value.
5150 SDValue InVec = Op.getOperand(0);
5151 SDValue InVal = Op.getOperand(1);
5152 SDValue EltNo = Op.getOperand(2);
5153 bool DemandedVal = true;
5154 APInt DemandedVecElts = DemandedElts;
5155 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
5156 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5157 unsigned EltIdx = CEltNo->getZExtValue();
5158 DemandedVal = !!DemandedElts[EltIdx];
5159 DemandedVecElts.clearBit(EltIdx);
5160 }
5161 Tmp = std::numeric_limits<unsigned>::max();
5162 if (DemandedVal) {
5163 // TODO - handle implicit truncation of inserted elements.
5164 if (InVal.getScalarValueSizeInBits() != VTBits)
5165 break;
5166 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
5167 Tmp = std::min(Tmp, Tmp2);
5168 }
5169 if (!!DemandedVecElts) {
5170 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
5171 Tmp = std::min(Tmp, Tmp2);
5172 }
5173 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5174 return Tmp;
5175 }
5177 assert(!VT.isScalableVector());
5178 SDValue InVec = Op.getOperand(0);
5179 SDValue EltNo = Op.getOperand(1);
5180 EVT VecVT = InVec.getValueType();
5181 // ComputeNumSignBits not yet implemented for scalable vectors.
5182 if (VecVT.isScalableVector())
5183 break;
5184 const unsigned BitWidth = Op.getValueSizeInBits();
5185 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
5186 const unsigned NumSrcElts = VecVT.getVectorNumElements();
5187
5188 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
5189 // anything about sign bits. But if the sizes match we can derive knowledge
5190 // about sign bits from the vector operand.
5191 if (BitWidth != EltBitWidth)
5192 break;
5193
5194 // If we know the element index, just demand that vector element, else for
5195 // an unknown element index, ignore DemandedElts and demand them all.
5196 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
5197 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
5198 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5199 DemandedSrcElts =
5200 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
5201
5202 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
5203 }
5205 // Offset the demanded elts by the subvector index.
5206 SDValue Src = Op.getOperand(0);
5207 // Bail until we can represent demanded elements for scalable vectors.
5208 if (Src.getValueType().isScalableVector())
5209 break;
5210 uint64_t Idx = Op.getConstantOperandVal(1);
5211 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5212 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5213 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5214 }
5215 case ISD::CONCAT_VECTORS: {
5216 if (VT.isScalableVector())
5217 break;
5218 // Determine the minimum number of sign bits across all demanded
5219 // elts of the input vectors. Early out if the result is already 1.
5220 Tmp = std::numeric_limits<unsigned>::max();
5221 EVT SubVectorVT = Op.getOperand(0).getValueType();
5222 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
5223 unsigned NumSubVectors = Op.getNumOperands();
5224 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5225 APInt DemandedSub =
5226 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
5227 if (!DemandedSub)
5228 continue;
5229 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
5230 Tmp = std::min(Tmp, Tmp2);
5231 }
5232 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5233 return Tmp;
5234 }
5235 case ISD::INSERT_SUBVECTOR: {
5236 if (VT.isScalableVector())
5237 break;
5238 // Demand any elements from the subvector and the remainder from the src its
5239 // inserted into.
5240 SDValue Src = Op.getOperand(0);
5241 SDValue Sub = Op.getOperand(1);
5242 uint64_t Idx = Op.getConstantOperandVal(2);
5243 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5244 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5245 APInt DemandedSrcElts = DemandedElts;
5246 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5247
5248 Tmp = std::numeric_limits<unsigned>::max();
5249 if (!!DemandedSubElts) {
5250 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
5251 if (Tmp == 1)
5252 return 1; // early-out
5253 }
5254 if (!!DemandedSrcElts) {
5255 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5256 Tmp = std::min(Tmp, Tmp2);
5257 }
5258 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5259 return Tmp;
5260 }
5261 case ISD::LOAD: {
5263 if (const MDNode *Ranges = LD->getRanges()) {
5264 if (DemandedElts != 1)
5265 break;
5266
5268 if (VTBits > CR.getBitWidth()) {
5269 switch (LD->getExtensionType()) {
5270 case ISD::SEXTLOAD:
5271 CR = CR.signExtend(VTBits);
5272 break;
5273 case ISD::ZEXTLOAD:
5274 CR = CR.zeroExtend(VTBits);
5275 break;
5276 default:
5277 break;
5278 }
5279 }
5280
5281 if (VTBits != CR.getBitWidth())
5282 break;
5283 return std::min(CR.getSignedMin().getNumSignBits(),
5285 }
5286
5287 break;
5288 }
5289 case ISD::ATOMIC_CMP_SWAP:
5290 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5291 case ISD::ATOMIC_SWAP:
5292 case ISD::ATOMIC_LOAD_ADD:
5293 case ISD::ATOMIC_LOAD_SUB:
5294 case ISD::ATOMIC_LOAD_AND:
5295 case ISD::ATOMIC_LOAD_CLR:
5296 case ISD::ATOMIC_LOAD_OR:
5297 case ISD::ATOMIC_LOAD_XOR:
5298 case ISD::ATOMIC_LOAD_NAND:
5299 case ISD::ATOMIC_LOAD_MIN:
5300 case ISD::ATOMIC_LOAD_MAX:
5301 case ISD::ATOMIC_LOAD_UMIN:
5302 case ISD::ATOMIC_LOAD_UMAX:
5303 case ISD::ATOMIC_LOAD: {
5304 auto *AT = cast<AtomicSDNode>(Op);
5305 // If we are looking at the loaded value.
5306 if (Op.getResNo() == 0) {
5307 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5308 if (Tmp == VTBits)
5309 return 1; // early-out
5310
5311 // For atomic_load, prefer to use the extension type.
5312 if (Op->getOpcode() == ISD::ATOMIC_LOAD) {
5313 switch (AT->getExtensionType()) {
5314 default:
5315 break;
5316 case ISD::SEXTLOAD:
5317 return VTBits - Tmp + 1;
5318 case ISD::ZEXTLOAD:
5319 return VTBits - Tmp;
5320 }
5321 }
5322
5323 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
5324 return VTBits - Tmp + 1;
5325 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
5326 return VTBits - Tmp;
5327 }
5328 break;
5329 }
5330 }
5331
5332 // If we are looking at the loaded value of the SDNode.
5333 if (Op.getResNo() == 0) {
5334 // Handle LOADX separately here. EXTLOAD case will fallthrough.
5335 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
5336 unsigned ExtType = LD->getExtensionType();
5337 switch (ExtType) {
5338 default: break;
5339 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
5340 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5341 return VTBits - Tmp + 1;
5342 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
5343 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5344 return VTBits - Tmp;
5345 case ISD::NON_EXTLOAD:
5346 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5347 // We only need to handle vectors - computeKnownBits should handle
5348 // scalar cases.
5349 Type *CstTy = Cst->getType();
5350 if (CstTy->isVectorTy() && !VT.isScalableVector() &&
5351 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
5352 VTBits == CstTy->getScalarSizeInBits()) {
5353 Tmp = VTBits;
5354 for (unsigned i = 0; i != NumElts; ++i) {
5355 if (!DemandedElts[i])
5356 continue;
5357 if (Constant *Elt = Cst->getAggregateElement(i)) {
5358 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
5359 const APInt &Value = CInt->getValue();
5360 Tmp = std::min(Tmp, Value.getNumSignBits());
5361 continue;
5362 }
5363 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
5364 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5365 Tmp = std::min(Tmp, Value.getNumSignBits());
5366 continue;
5367 }
5368 }
5369 // Unknown type. Conservatively assume no bits match sign bit.
5370 return 1;
5371 }
5372 return Tmp;
5373 }
5374 }
5375 break;
5376 }
5377 }
5378 }
5379
5380 // Allow the target to implement this method for its nodes.
5381 if (Opcode >= ISD::BUILTIN_OP_END ||
5382 Opcode == ISD::INTRINSIC_WO_CHAIN ||
5383 Opcode == ISD::INTRINSIC_W_CHAIN ||
5384 Opcode == ISD::INTRINSIC_VOID) {
5385 // TODO: This can probably be removed once target code is audited. This
5386 // is here purely to reduce patch size and review complexity.
5387 if (!VT.isScalableVector()) {
5388 unsigned NumBits =
5389 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
5390 if (NumBits > 1)
5391 FirstAnswer = std::max(FirstAnswer, NumBits);
5392 }
5393 }
5394
5395 // Finally, if we can prove that the top bits of the result are 0's or 1's,
5396 // use this information.
5397 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
5398 return std::max(FirstAnswer, Known.countMinSignBits());
5399}
5400
5402 unsigned Depth) const {
5403 unsigned SignBits = ComputeNumSignBits(Op, Depth);
5404 return Op.getScalarValueSizeInBits() - SignBits + 1;
5405}
5406
5408 const APInt &DemandedElts,
5409 unsigned Depth) const {
5410 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
5411 return Op.getScalarValueSizeInBits() - SignBits + 1;
5412}
5413
5415 unsigned Depth) const {
5416 // Early out for FREEZE.
5417 if (Op.getOpcode() == ISD::FREEZE)
5418 return true;
5419
5420 EVT VT = Op.getValueType();
5421 APInt DemandedElts = VT.isFixedLengthVector()
5423 : APInt(1, 1);
5424 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
5425}
5426
5428 const APInt &DemandedElts,
5429 bool PoisonOnly,
5430 unsigned Depth) const {
5431 unsigned Opcode = Op.getOpcode();
5432
5433 // Early out for FREEZE.
5434 if (Opcode == ISD::FREEZE)
5435 return true;
5436
5437 if (Depth >= MaxRecursionDepth)
5438 return false; // Limit search depth.
5439
5440 if (isIntOrFPConstant(Op))
5441 return true;
5442
5443 switch (Opcode) {
5444 case ISD::CONDCODE:
5445 case ISD::VALUETYPE:
5446 case ISD::FrameIndex:
5448 case ISD::CopyFromReg:
5449 return true;
5450
5451 case ISD::POISON:
5452 return false;
5453
5454 case ISD::UNDEF:
5455 return PoisonOnly;
5456
5457 case ISD::BUILD_VECTOR:
5458 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
5459 // this shouldn't affect the result.
5460 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
5461 if (!DemandedElts[i])
5462 continue;
5464 Depth + 1))
5465 return false;
5466 }
5467 return true;
5468
5470 SDValue Src = Op.getOperand(0);
5471 if (Src.getValueType().isScalableVector())
5472 break;
5473 uint64_t Idx = Op.getConstantOperandVal(1);
5474 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5475 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5476 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5477 Depth + 1);
5478 }
5479
5480 case ISD::INSERT_SUBVECTOR: {
5481 if (Op.getValueType().isScalableVector())
5482 break;
5483 SDValue Src = Op.getOperand(0);
5484 SDValue Sub = Op.getOperand(1);
5485 uint64_t Idx = Op.getConstantOperandVal(2);
5486 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5487 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5488 APInt DemandedSrcElts = DemandedElts;
5489 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5490
5491 if (!!DemandedSubElts && !isGuaranteedNotToBeUndefOrPoison(
5492 Sub, DemandedSubElts, PoisonOnly, Depth + 1))
5493 return false;
5494 if (!!DemandedSrcElts && !isGuaranteedNotToBeUndefOrPoison(
5495 Src, DemandedSrcElts, PoisonOnly, Depth + 1))
5496 return false;
5497 return true;
5498 }
5499
5501 SDValue Src = Op.getOperand(0);
5502 auto *IndexC = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5503 EVT SrcVT = Src.getValueType();
5504 if (SrcVT.isFixedLengthVector() && IndexC &&
5505 IndexC->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5506 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5507 IndexC->getZExtValue());
5508 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5509 Depth + 1);
5510 }
5511 break;
5512 }
5513
5515 SDValue InVec = Op.getOperand(0);
5516 SDValue InVal = Op.getOperand(1);
5517 SDValue EltNo = Op.getOperand(2);
5518 EVT VT = InVec.getValueType();
5519 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
5520 if (IndexC && VT.isFixedLengthVector() &&
5521 IndexC->getAPIntValue().ult(VT.getVectorNumElements())) {
5522 if (DemandedElts[IndexC->getZExtValue()] &&
5524 return false;
5525 APInt InVecDemandedElts = DemandedElts;
5526 InVecDemandedElts.clearBit(IndexC->getZExtValue());
5527 if (!!InVecDemandedElts &&
5529 peekThroughInsertVectorElt(InVec, InVecDemandedElts),
5530 InVecDemandedElts, PoisonOnly, Depth + 1))
5531 return false;
5532 return true;
5533 }
5534 break;
5535 }
5536
5538 // Check upper (known undef) elements.
5539 if (DemandedElts.ugt(1) && !PoisonOnly)
5540 return false;
5541 // Check element zero.
5542 if (DemandedElts[0] && !isGuaranteedNotToBeUndefOrPoison(
5543 Op.getOperand(0), PoisonOnly, Depth + 1))
5544 return false;
5545 return true;
5546
5547 case ISD::SPLAT_VECTOR:
5548 return isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), PoisonOnly,
5549 Depth + 1);
5550
5551 case ISD::VECTOR_SHUFFLE: {
5552 APInt DemandedLHS, DemandedRHS;
5553 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5554 if (!getShuffleDemandedElts(DemandedElts.getBitWidth(), SVN->getMask(),
5555 DemandedElts, DemandedLHS, DemandedRHS,
5556 /*AllowUndefElts=*/false))
5557 return false;
5558 if (!DemandedLHS.isZero() &&
5559 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedLHS,
5560 PoisonOnly, Depth + 1))
5561 return false;
5562 if (!DemandedRHS.isZero() &&
5563 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedRHS,
5564 PoisonOnly, Depth + 1))
5565 return false;
5566 return true;
5567 }
5568
5569 case ISD::SHL:
5570 case ISD::SRL:
5571 case ISD::SRA:
5572 // Shift amount operand is checked by canCreateUndefOrPoison. So it is
5573 // enough to check operand 0 if Op can't create undef/poison.
5574 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5575 /*ConsiderFlags*/ true, Depth) &&
5576 isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
5577 PoisonOnly, Depth + 1);
5578
5579 case ISD::BSWAP:
5580 case ISD::CTPOP:
5581 case ISD::BITREVERSE:
5582 case ISD::AND:
5583 case ISD::OR:
5584 case ISD::XOR:
5585 case ISD::ADD:
5586 case ISD::SUB:
5587 case ISD::MUL:
5588 case ISD::SADDSAT:
5589 case ISD::UADDSAT:
5590 case ISD::SSUBSAT:
5591 case ISD::USUBSAT:
5592 case ISD::SSHLSAT:
5593 case ISD::USHLSAT:
5594 case ISD::SMIN:
5595 case ISD::SMAX:
5596 case ISD::UMIN:
5597 case ISD::UMAX:
5598 case ISD::ZERO_EXTEND:
5599 case ISD::SIGN_EXTEND:
5600 case ISD::ANY_EXTEND:
5601 case ISD::TRUNCATE:
5602 case ISD::VSELECT: {
5603 // If Op can't create undef/poison and none of its operands are undef/poison
5604 // then Op is never undef/poison. A difference from the more common check
5605 // below, outside the switch, is that we handle elementwise operations for
5606 // which the DemandedElts mask is valid for all operands here.
5607 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5608 /*ConsiderFlags*/ true, Depth) &&
5609 all_of(Op->ops(), [&](SDValue V) {
5610 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5611 PoisonOnly, Depth + 1);
5612 });
5613 }
5614
5615 // TODO: Search for noundef attributes from library functions.
5616
5617 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
5618
5619 default:
5620 // Allow the target to implement this method for its nodes.
5621 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5622 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5623 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5624 Op, DemandedElts, *this, PoisonOnly, Depth);
5625 break;
5626 }
5627
5628 // If Op can't create undef/poison and none of its operands are undef/poison
5629 // then Op is never undef/poison.
5630 // NOTE: TargetNodes can handle this in themselves in
5631 // isGuaranteedNotToBeUndefOrPoisonForTargetNode or let
5632 // TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode handle it.
5633 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
5634 Depth) &&
5635 all_of(Op->ops(), [&](SDValue V) {
5636 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5637 });
5638}
5639
5641 bool ConsiderFlags,
5642 unsigned Depth) const {
5643 EVT VT = Op.getValueType();
5644 APInt DemandedElts = VT.isFixedLengthVector()
5646 : APInt(1, 1);
5647 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5648 Depth);
5649}
5650
5652 bool PoisonOnly, bool ConsiderFlags,
5653 unsigned Depth) const {
5654 if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5655 return true;
5656
5657 unsigned Opcode = Op.getOpcode();
5658 switch (Opcode) {
5659 case ISD::AssertSext:
5660 case ISD::AssertZext:
5661 case ISD::AssertAlign:
5663 // Assertion nodes can create poison if the assertion fails.
5664 return true;
5665
5666 case ISD::FREEZE:
5670 case ISD::SADDSAT:
5671 case ISD::UADDSAT:
5672 case ISD::SSUBSAT:
5673 case ISD::USUBSAT:
5674 case ISD::MULHU:
5675 case ISD::MULHS:
5676 case ISD::AVGFLOORS:
5677 case ISD::AVGFLOORU:
5678 case ISD::AVGCEILS:
5679 case ISD::AVGCEILU:
5680 case ISD::ABDU:
5681 case ISD::ABDS:
5682 case ISD::SMIN:
5683 case ISD::SMAX:
5684 case ISD::SCMP:
5685 case ISD::UMIN:
5686 case ISD::UMAX:
5687 case ISD::UCMP:
5688 case ISD::AND:
5689 case ISD::XOR:
5690 case ISD::ROTL:
5691 case ISD::ROTR:
5692 case ISD::FSHL:
5693 case ISD::FSHR:
5694 case ISD::BSWAP:
5695 case ISD::CTTZ:
5696 case ISD::CTLZ:
5697 case ISD::CTPOP:
5698 case ISD::BITREVERSE:
5699 case ISD::PARITY:
5700 case ISD::SIGN_EXTEND:
5701 case ISD::TRUNCATE:
5705 case ISD::BITCAST:
5706 case ISD::BUILD_VECTOR:
5707 case ISD::BUILD_PAIR:
5708 case ISD::SPLAT_VECTOR:
5709 case ISD::FABS:
5710 return false;
5711
5712 case ISD::ABS:
5713 // ISD::ABS defines abs(INT_MIN) -> INT_MIN and never generates poison.
5714 // Different to Intrinsic::abs.
5715 return false;
5716
5717 case ISD::ADDC:
5718 case ISD::SUBC:
5719 case ISD::ADDE:
5720 case ISD::SUBE:
5721 case ISD::SADDO:
5722 case ISD::SSUBO:
5723 case ISD::SMULO:
5724 case ISD::SADDO_CARRY:
5725 case ISD::SSUBO_CARRY:
5726 case ISD::UADDO:
5727 case ISD::USUBO:
5728 case ISD::UMULO:
5729 case ISD::UADDO_CARRY:
5730 case ISD::USUBO_CARRY:
5731 // No poison on result or overflow flags.
5732 return false;
5733
5734 case ISD::SELECT_CC:
5735 case ISD::SETCC: {
5736 // Integer setcc cannot create undef or poison.
5737 if (Op.getOperand(0).getValueType().isInteger())
5738 return false;
5739
5740 // FP compares are more complicated. They can create poison for nan/infinity
5741 // based on options and flags. The options and flags also cause special
5742 // nonan condition codes to be used. Those condition codes may be preserved
5743 // even if the nonan flag is dropped somewhere.
5744 unsigned CCOp = Opcode == ISD::SETCC ? 2 : 4;
5745 ISD::CondCode CCCode = cast<CondCodeSDNode>(Op.getOperand(CCOp))->get();
5746 if (((unsigned)CCCode & 0x10U))
5747 return true;
5748
5750 return Options.NoNaNsFPMath || Options.NoInfsFPMath;
5751 }
5752
5753 case ISD::OR:
5754 case ISD::ZERO_EXTEND:
5755 case ISD::SELECT:
5756 case ISD::VSELECT:
5757 case ISD::ADD:
5758 case ISD::SUB:
5759 case ISD::MUL:
5760 case ISD::FNEG:
5761 case ISD::FADD:
5762 case ISD::FSUB:
5763 case ISD::FMUL:
5764 case ISD::FDIV:
5765 case ISD::FREM:
5766 case ISD::FCOPYSIGN:
5767 case ISD::FMA:
5768 case ISD::FMAD:
5769 case ISD::FP_EXTEND:
5772 // No poison except from flags (which is handled above)
5773 return false;
5774
5775 case ISD::SHL:
5776 case ISD::SRL:
5777 case ISD::SRA:
5778 // If the max shift amount isn't in range, then the shift can
5779 // create poison.
5780 return !getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1);
5781
5784 // If the amount is zero then the result will be poison.
5785 // TODO: Add isKnownNeverZero DemandedElts handling.
5786 return !isKnownNeverZero(Op.getOperand(0), Depth + 1);
5787
5789 // Check if we demand any upper (undef) elements.
5790 return !PoisonOnly && DemandedElts.ugt(1);
5791
5794 // Ensure that the element index is in bounds.
5795 EVT VecVT = Op.getOperand(0).getValueType();
5796 SDValue Idx = Op.getOperand(Opcode == ISD::INSERT_VECTOR_ELT ? 2 : 1);
5797 KnownBits KnownIdx = computeKnownBits(Idx, Depth + 1);
5798 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5799 }
5800
5801 case ISD::VECTOR_SHUFFLE: {
5802 // Check for any demanded shuffle element that is undef.
5803 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5804 for (auto [Idx, Elt] : enumerate(SVN->getMask()))
5805 if (Elt < 0 && DemandedElts[Idx])
5806 return true;
5807 return false;
5808 }
5809
5810 default:
5811 // Allow the target to implement this method for its nodes.
5812 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5813 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5814 return TLI->canCreateUndefOrPoisonForTargetNode(
5815 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5816 break;
5817 }
5818
5819 // Be conservative and return true.
5820 return true;
5821}
5822
5823bool SelectionDAG::isADDLike(SDValue Op, bool NoWrap) const {
5824 unsigned Opcode = Op.getOpcode();
5825 if (Opcode == ISD::OR)
5826 return Op->getFlags().hasDisjoint() ||
5827 haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5828 if (Opcode == ISD::XOR)
5829 return !NoWrap && isMinSignedConstant(Op.getOperand(1));
5830 return false;
5831}
5832
5834 return Op.getNumOperands() == 2 && isa<ConstantSDNode>(Op.getOperand(1)) &&
5835 (Op.isAnyAdd() || isADDLike(Op));
5836}
5837
5839 unsigned Depth) const {
5840 EVT VT = Op.getValueType();
5841
5842 // Since the number of lanes in a scalable vector is unknown at compile time,
5843 // we track one bit which is implicitly broadcast to all lanes. This means
5844 // that all lanes in a scalable vector are considered demanded.
5845 APInt DemandedElts = VT.isFixedLengthVector()
5847 : APInt(1, 1);
5848
5849 return isKnownNeverNaN(Op, DemandedElts, SNaN, Depth);
5850}
5851
5853 bool SNaN, unsigned Depth) const {
5854 assert(!DemandedElts.isZero() && "No demanded elements");
5855
5856 // If we're told that NaNs won't happen, assume they won't.
5857 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5858 return true;
5859
5860 if (Depth >= MaxRecursionDepth)
5861 return false; // Limit search depth.
5862
5863 // If the value is a constant, we can obviously see if it is a NaN or not.
5865 return !C->getValueAPF().isNaN() ||
5866 (SNaN && !C->getValueAPF().isSignaling());
5867 }
5868
5869 unsigned Opcode = Op.getOpcode();
5870 switch (Opcode) {
5871 case ISD::FADD:
5872 case ISD::FSUB:
5873 case ISD::FMUL:
5874 case ISD::FDIV:
5875 case ISD::FREM:
5876 case ISD::FSIN:
5877 case ISD::FCOS:
5878 case ISD::FTAN:
5879 case ISD::FASIN:
5880 case ISD::FACOS:
5881 case ISD::FATAN:
5882 case ISD::FATAN2:
5883 case ISD::FSINH:
5884 case ISD::FCOSH:
5885 case ISD::FTANH:
5886 case ISD::FMA:
5887 case ISD::FMAD: {
5888 if (SNaN)
5889 return true;
5890 // TODO: Need isKnownNeverInfinity
5891 return false;
5892 }
5893 case ISD::FCANONICALIZE:
5894 case ISD::FEXP:
5895 case ISD::FEXP2:
5896 case ISD::FEXP10:
5897 case ISD::FTRUNC:
5898 case ISD::FFLOOR:
5899 case ISD::FCEIL:
5900 case ISD::FROUND:
5901 case ISD::FROUNDEVEN:
5902 case ISD::LROUND:
5903 case ISD::LLROUND:
5904 case ISD::FRINT:
5905 case ISD::LRINT:
5906 case ISD::LLRINT:
5907 case ISD::FNEARBYINT:
5908 case ISD::FLDEXP: {
5909 if (SNaN)
5910 return true;
5911 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5912 }
5913 case ISD::FABS:
5914 case ISD::FNEG:
5915 case ISD::FCOPYSIGN: {
5916 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5917 }
5918 case ISD::SELECT:
5919 return isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1) &&
5920 isKnownNeverNaN(Op.getOperand(2), DemandedElts, SNaN, Depth + 1);
5921 case ISD::FP_EXTEND:
5922 case ISD::FP_ROUND: {
5923 if (SNaN)
5924 return true;
5925 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5926 }
5927 case ISD::SINT_TO_FP:
5928 case ISD::UINT_TO_FP:
5929 return true;
5930 case ISD::FSQRT: // Need is known positive
5931 case ISD::FLOG:
5932 case ISD::FLOG2:
5933 case ISD::FLOG10:
5934 case ISD::FPOWI:
5935 case ISD::FPOW: {
5936 if (SNaN)
5937 return true;
5938 // TODO: Refine on operand
5939 return false;
5940 }
5941 case ISD::FMINNUM:
5942 case ISD::FMAXNUM:
5943 case ISD::FMINIMUMNUM:
5944 case ISD::FMAXIMUMNUM: {
5945 // Only one needs to be known not-nan, since it will be returned if the
5946 // other ends up being one.
5947 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) ||
5948 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5949 }
5950 case ISD::FMINNUM_IEEE:
5951 case ISD::FMAXNUM_IEEE: {
5952 if (SNaN)
5953 return true;
5954 // This can return a NaN if either operand is an sNaN, or if both operands
5955 // are NaN.
5956 return (isKnownNeverNaN(Op.getOperand(0), DemandedElts, false, Depth + 1) &&
5957 isKnownNeverSNaN(Op.getOperand(1), DemandedElts, Depth + 1)) ||
5958 (isKnownNeverNaN(Op.getOperand(1), DemandedElts, false, Depth + 1) &&
5959 isKnownNeverSNaN(Op.getOperand(0), DemandedElts, Depth + 1));
5960 }
5961 case ISD::FMINIMUM:
5962 case ISD::FMAXIMUM: {
5963 // TODO: Does this quiet or return the origina NaN as-is?
5964 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) &&
5965 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5966 }
5968 SDValue Src = Op.getOperand(0);
5969 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5970 EVT SrcVT = Src.getValueType();
5971 if (SrcVT.isFixedLengthVector() && Idx &&
5972 Idx->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5973 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5974 Idx->getZExtValue());
5975 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
5976 }
5977 return isKnownNeverNaN(Src, SNaN, Depth + 1);
5978 }
5980 SDValue Src = Op.getOperand(0);
5981 if (Src.getValueType().isFixedLengthVector()) {
5982 unsigned Idx = Op.getConstantOperandVal(1);
5983 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5984 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5985 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
5986 }
5987 return isKnownNeverNaN(Src, SNaN, Depth + 1);
5988 }
5989 case ISD::INSERT_SUBVECTOR: {
5990 SDValue BaseVector = Op.getOperand(0);
5991 SDValue SubVector = Op.getOperand(1);
5992 EVT BaseVectorVT = BaseVector.getValueType();
5993 if (BaseVectorVT.isFixedLengthVector()) {
5994 unsigned Idx = Op.getConstantOperandVal(2);
5995 unsigned NumBaseElts = BaseVectorVT.getVectorNumElements();
5996 unsigned NumSubElts = SubVector.getValueType().getVectorNumElements();
5997
5998 // Clear/Extract the bits at the position where the subvector will be
5999 // inserted.
6000 APInt DemandedMask =
6001 APInt::getBitsSet(NumBaseElts, Idx, Idx + NumSubElts);
6002 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6003 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
6004
6005 bool NeverNaN = true;
6006 if (!DemandedSrcElts.isZero())
6007 NeverNaN &=
6008 isKnownNeverNaN(BaseVector, DemandedSrcElts, SNaN, Depth + 1);
6009 if (NeverNaN && !DemandedSubElts.isZero())
6010 NeverNaN &=
6011 isKnownNeverNaN(SubVector, DemandedSubElts, SNaN, Depth + 1);
6012 return NeverNaN;
6013 }
6014 return isKnownNeverNaN(BaseVector, SNaN, Depth + 1) &&
6015 isKnownNeverNaN(SubVector, SNaN, Depth + 1);
6016 }
6017 case ISD::BUILD_VECTOR: {
6018 unsigned NumElts = Op.getNumOperands();
6019 for (unsigned I = 0; I != NumElts; ++I)
6020 if (DemandedElts[I] &&
6021 !isKnownNeverNaN(Op.getOperand(I), SNaN, Depth + 1))
6022 return false;
6023 return true;
6024 }
6025 case ISD::AssertNoFPClass: {
6026 FPClassTest NoFPClass =
6027 static_cast<FPClassTest>(Op.getConstantOperandVal(1));
6028 if ((NoFPClass & fcNan) == fcNan)
6029 return true;
6030 if (SNaN && (NoFPClass & fcSNan) == fcSNan)
6031 return true;
6032 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
6033 }
6034 default:
6035 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
6036 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) {
6037 return TLI->isKnownNeverNaNForTargetNode(Op, DemandedElts, *this, SNaN,
6038 Depth);
6039 }
6040
6041 return false;
6042 }
6043}
6044
6046 assert(Op.getValueType().isFloatingPoint() &&
6047 "Floating point type expected");
6048
6049 // If the value is a constant, we can obviously see if it is a zero or not.
6051 Op, [](ConstantFPSDNode *C) { return !C->isZero(); });
6052}
6053
6055 if (Depth >= MaxRecursionDepth)
6056 return false; // Limit search depth.
6057
6058 assert(!Op.getValueType().isFloatingPoint() &&
6059 "Floating point types unsupported - use isKnownNeverZeroFloat");
6060
6061 // If the value is a constant, we can obviously see if it is a zero or not.
6063 [](ConstantSDNode *C) { return !C->isZero(); }))
6064 return true;
6065
6066 // TODO: Recognize more cases here. Most of the cases are also incomplete to
6067 // some degree.
6068 switch (Op.getOpcode()) {
6069 default:
6070 break;
6071
6072 case ISD::OR:
6073 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6074 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6075
6076 case ISD::VSELECT:
6077 case ISD::SELECT:
6078 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6079 isKnownNeverZero(Op.getOperand(2), Depth + 1);
6080
6081 case ISD::SHL: {
6082 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6083 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6084 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6085 // 1 << X is never zero.
6086 if (ValKnown.One[0])
6087 return true;
6088 // If max shift cnt of known ones is non-zero, result is non-zero.
6089 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6090 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6091 !ValKnown.One.shl(MaxCnt).isZero())
6092 return true;
6093 break;
6094 }
6095 case ISD::UADDSAT:
6096 case ISD::UMAX:
6097 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6098 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6099
6100 // For smin/smax: If either operand is known negative/positive
6101 // respectively we don't need the other to be known at all.
6102 case ISD::SMAX: {
6103 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6104 if (Op1.isStrictlyPositive())
6105 return true;
6106
6107 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6108 if (Op0.isStrictlyPositive())
6109 return true;
6110
6111 if (Op1.isNonZero() && Op0.isNonZero())
6112 return true;
6113
6114 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6115 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6116 }
6117 case ISD::SMIN: {
6118 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6119 if (Op1.isNegative())
6120 return true;
6121
6122 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6123 if (Op0.isNegative())
6124 return true;
6125
6126 if (Op1.isNonZero() && Op0.isNonZero())
6127 return true;
6128
6129 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6130 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6131 }
6132 case ISD::UMIN:
6133 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6134 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6135
6136 case ISD::ROTL:
6137 case ISD::ROTR:
6138 case ISD::BITREVERSE:
6139 case ISD::BSWAP:
6140 case ISD::CTPOP:
6141 case ISD::ABS:
6142 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6143
6144 case ISD::SRA:
6145 case ISD::SRL: {
6146 if (Op->getFlags().hasExact())
6147 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6148 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6149 if (ValKnown.isNegative())
6150 return true;
6151 // If max shift cnt of known ones is non-zero, result is non-zero.
6152 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6153 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6154 !ValKnown.One.lshr(MaxCnt).isZero())
6155 return true;
6156 break;
6157 }
6158 case ISD::UDIV:
6159 case ISD::SDIV:
6160 // div exact can only produce a zero if the dividend is zero.
6161 // TODO: For udiv this is also true if Op1 u<= Op0
6162 if (Op->getFlags().hasExact())
6163 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6164 break;
6165
6166 case ISD::ADD:
6167 if (Op->getFlags().hasNoUnsignedWrap())
6168 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6169 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6170 return true;
6171 // TODO: There are a lot more cases we can prove for add.
6172 break;
6173
6174 case ISD::SUB: {
6175 if (isNullConstant(Op.getOperand(0)))
6176 return isKnownNeverZero(Op.getOperand(1), Depth + 1);
6177
6178 std::optional<bool> ne =
6179 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
6180 computeKnownBits(Op.getOperand(1), Depth + 1));
6181 return ne && *ne;
6182 }
6183
6184 case ISD::MUL:
6185 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6186 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6187 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6188 return true;
6189 break;
6190
6191 case ISD::ZERO_EXTEND:
6192 case ISD::SIGN_EXTEND:
6193 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6194 case ISD::VSCALE: {
6196 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
6197 ConstantRange CR =
6198 getVScaleRange(&F, Op.getScalarValueSizeInBits()).multiply(Multiplier);
6199 if (!CR.contains(APInt(CR.getBitWidth(), 0)))
6200 return true;
6201 break;
6202 }
6203 }
6204
6206}
6207
6209 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Op, true))
6210 return !C1->isNegative();
6211
6212 return Op.getOpcode() == ISD::FABS;
6213}
6214
6216 // Check the obvious case.
6217 if (A == B) return true;
6218
6219 // For negative and positive zero.
6222 if (CA->isZero() && CB->isZero()) return true;
6223
6224 // Otherwise they may not be equal.
6225 return false;
6226}
6227
6228// Only bits set in Mask must be negated, other bits may be arbitrary.
6230 if (isBitwiseNot(V, AllowUndefs))
6231 return V.getOperand(0);
6232
6233 // Handle any_extend (not (truncate X)) pattern, where Mask only sets
6234 // bits in the non-extended part.
6235 ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
6236 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
6237 return SDValue();
6238 SDValue ExtArg = V.getOperand(0);
6239 if (ExtArg.getScalarValueSizeInBits() >=
6240 MaskC->getAPIntValue().getActiveBits() &&
6241 isBitwiseNot(ExtArg, AllowUndefs) &&
6242 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6243 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
6244 return ExtArg.getOperand(0).getOperand(0);
6245 return SDValue();
6246}
6247
6249 // Match masked merge pattern (X & ~M) op (Y & M)
6250 // Including degenerate case (X & ~M) op M
6251 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
6252 SDValue Other) {
6253 if (SDValue NotOperand =
6254 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
6255 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
6256 NotOperand->getOpcode() == ISD::TRUNCATE)
6257 NotOperand = NotOperand->getOperand(0);
6258
6259 if (Other == NotOperand)
6260 return true;
6261 if (Other->getOpcode() == ISD::AND)
6262 return NotOperand == Other->getOperand(0) ||
6263 NotOperand == Other->getOperand(1);
6264 }
6265 return false;
6266 };
6267
6268 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
6269 A = A->getOperand(0);
6270
6271 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
6272 B = B->getOperand(0);
6273
6274 if (A->getOpcode() == ISD::AND)
6275 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
6276 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
6277 return false;
6278}
6279
6280// FIXME: unify with llvm::haveNoCommonBitsSet.
6282 assert(A.getValueType() == B.getValueType() &&
6283 "Values must have the same type");
6286 return true;
6289}
6290
6291static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
6292 SelectionDAG &DAG) {
6293 if (cast<ConstantSDNode>(Step)->isZero())
6294 return DAG.getConstant(0, DL, VT);
6295
6296 return SDValue();
6297}
6298
6301 SelectionDAG &DAG) {
6302 int NumOps = Ops.size();
6303 assert(NumOps != 0 && "Can't build an empty vector!");
6304 assert(!VT.isScalableVector() &&
6305 "BUILD_VECTOR cannot be used with scalable types");
6306 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
6307 "Incorrect element count in BUILD_VECTOR!");
6308
6309 // BUILD_VECTOR of UNDEFs is UNDEF.
6310 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6311 return DAG.getUNDEF(VT);
6312
6313 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
6314 SDValue IdentitySrc;
6315 bool IsIdentity = true;
6316 for (int i = 0; i != NumOps; ++i) {
6318 Ops[i].getOperand(0).getValueType() != VT ||
6319 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
6320 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
6321 Ops[i].getConstantOperandAPInt(1) != i) {
6322 IsIdentity = false;
6323 break;
6324 }
6325 IdentitySrc = Ops[i].getOperand(0);
6326 }
6327 if (IsIdentity)
6328 return IdentitySrc;
6329
6330 return SDValue();
6331}
6332
6333/// Try to simplify vector concatenation to an input value, undef, or build
6334/// vector.
6337 SelectionDAG &DAG) {
6338 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
6340 [Ops](SDValue Op) {
6341 return Ops[0].getValueType() == Op.getValueType();
6342 }) &&
6343 "Concatenation of vectors with inconsistent value types!");
6344 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
6345 VT.getVectorElementCount() &&
6346 "Incorrect element count in vector concatenation!");
6347
6348 if (Ops.size() == 1)
6349 return Ops[0];
6350
6351 // Concat of UNDEFs is UNDEF.
6352 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6353 return DAG.getUNDEF(VT);
6354
6355 // Scan the operands and look for extract operations from a single source
6356 // that correspond to insertion at the same location via this concatenation:
6357 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
6358 SDValue IdentitySrc;
6359 bool IsIdentity = true;
6360 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
6361 SDValue Op = Ops[i];
6362 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
6363 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
6364 Op.getOperand(0).getValueType() != VT ||
6365 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
6366 Op.getConstantOperandVal(1) != IdentityIndex) {
6367 IsIdentity = false;
6368 break;
6369 }
6370 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
6371 "Unexpected identity source vector for concat of extracts");
6372 IdentitySrc = Op.getOperand(0);
6373 }
6374 if (IsIdentity) {
6375 assert(IdentitySrc && "Failed to set source vector of extracts");
6376 return IdentitySrc;
6377 }
6378
6379 // The code below this point is only designed to work for fixed width
6380 // vectors, so we bail out for now.
6381 if (VT.isScalableVector())
6382 return SDValue();
6383
6384 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
6385 // simplified to one big BUILD_VECTOR.
6386 // FIXME: Add support for SCALAR_TO_VECTOR as well.
6387 EVT SVT = VT.getScalarType();
6389 for (SDValue Op : Ops) {
6390 EVT OpVT = Op.getValueType();
6391 if (Op.isUndef())
6392 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
6393 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
6394 Elts.append(Op->op_begin(), Op->op_end());
6395 else
6396 return SDValue();
6397 }
6398
6399 // BUILD_VECTOR requires all inputs to be of the same type, find the
6400 // maximum type and extend them all.
6401 for (SDValue Op : Elts)
6402 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
6403
6404 if (SVT.bitsGT(VT.getScalarType())) {
6405 for (SDValue &Op : Elts) {
6406 if (Op.isUndef())
6407 Op = DAG.getUNDEF(SVT);
6408 else
6409 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
6410 ? DAG.getZExtOrTrunc(Op, DL, SVT)
6411 : DAG.getSExtOrTrunc(Op, DL, SVT);
6412 }
6413 }
6414
6415 SDValue V = DAG.getBuildVector(VT, DL, Elts);
6416 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
6417 return V;
6418}
6419
6420/// Gets or creates the specified node.
6421SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
6422 SDVTList VTs = getVTList(VT);
6424 AddNodeIDNode(ID, Opcode, VTs, {});
6425 void *IP = nullptr;
6426 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6427 return SDValue(E, 0);
6428
6429 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6430 CSEMap.InsertNode(N, IP);
6431
6432 InsertNode(N);
6433 SDValue V = SDValue(N, 0);
6434 NewSDValueDbgMsg(V, "Creating new node: ", this);
6435 return V;
6436}
6437
6438SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6439 SDValue N1) {
6440 SDNodeFlags Flags;
6441 if (Inserter)
6442 Flags = Inserter->getFlags();
6443 return getNode(Opcode, DL, VT, N1, Flags);
6444}
6445
6446SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6447 SDValue N1, const SDNodeFlags Flags) {
6448 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
6449
6450 // Constant fold unary operations with a vector integer or float operand.
6451 switch (Opcode) {
6452 default:
6453 // FIXME: Entirely reasonable to perform folding of other unary
6454 // operations here as the need arises.
6455 break;
6456 case ISD::FNEG:
6457 case ISD::FABS:
6458 case ISD::FCEIL:
6459 case ISD::FTRUNC:
6460 case ISD::FFLOOR:
6461 case ISD::FP_EXTEND:
6462 case ISD::FP_TO_SINT:
6463 case ISD::FP_TO_UINT:
6464 case ISD::FP_TO_FP16:
6465 case ISD::FP_TO_BF16:
6466 case ISD::TRUNCATE:
6467 case ISD::ANY_EXTEND:
6468 case ISD::ZERO_EXTEND:
6469 case ISD::SIGN_EXTEND:
6470 case ISD::UINT_TO_FP:
6471 case ISD::SINT_TO_FP:
6472 case ISD::FP16_TO_FP:
6473 case ISD::BF16_TO_FP:
6474 case ISD::BITCAST:
6475 case ISD::ABS:
6476 case ISD::BITREVERSE:
6477 case ISD::BSWAP:
6478 case ISD::CTLZ:
6480 case ISD::CTTZ:
6482 case ISD::CTPOP:
6483 case ISD::STEP_VECTOR: {
6484 SDValue Ops = {N1};
6485 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
6486 return Fold;
6487 }
6488 }
6489
6490 unsigned OpOpcode = N1.getNode()->getOpcode();
6491 switch (Opcode) {
6492 case ISD::STEP_VECTOR:
6493 assert(VT.isScalableVector() &&
6494 "STEP_VECTOR can only be used with scalable types");
6495 assert(OpOpcode == ISD::TargetConstant &&
6496 VT.getVectorElementType() == N1.getValueType() &&
6497 "Unexpected step operand");
6498 break;
6499 case ISD::FREEZE:
6500 assert(VT == N1.getValueType() && "Unexpected VT!");
6501 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly=*/false))
6502 return N1;
6503 break;
6504 case ISD::TokenFactor:
6505 case ISD::MERGE_VALUES:
6507 return N1; // Factor, merge or concat of one node? No need.
6508 case ISD::BUILD_VECTOR: {
6509 // Attempt to simplify BUILD_VECTOR.
6510 SDValue Ops[] = {N1};
6511 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6512 return V;
6513 break;
6514 }
6515 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
6516 case ISD::FP_EXTEND:
6518 "Invalid FP cast!");
6519 if (N1.getValueType() == VT) return N1; // noop conversion.
6520 assert((!VT.isVector() || VT.getVectorElementCount() ==
6522 "Vector element count mismatch!");
6523 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
6524 if (N1.isUndef())
6525 return getUNDEF(VT);
6526 break;
6527 case ISD::FP_TO_SINT:
6528 case ISD::FP_TO_UINT:
6529 if (N1.isUndef())
6530 return getUNDEF(VT);
6531 break;
6532 case ISD::SINT_TO_FP:
6533 case ISD::UINT_TO_FP:
6534 // [us]itofp(undef) = 0, because the result value is bounded.
6535 if (N1.isUndef())
6536 return getConstantFP(0.0, DL, VT);
6537 break;
6538 case ISD::SIGN_EXTEND:
6539 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6540 "Invalid SIGN_EXTEND!");
6541 assert(VT.isVector() == N1.getValueType().isVector() &&
6542 "SIGN_EXTEND result type type should be vector iff the operand "
6543 "type is vector!");
6544 if (N1.getValueType() == VT) return N1; // noop extension
6545 assert((!VT.isVector() || VT.getVectorElementCount() ==
6547 "Vector element count mismatch!");
6548 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
6549 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) {
6550 SDNodeFlags Flags;
6551 if (OpOpcode == ISD::ZERO_EXTEND)
6552 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6553 SDValue NewVal = getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6554 transferDbgValues(N1, NewVal);
6555 return NewVal;
6556 }
6557
6558 if (OpOpcode == ISD::POISON)
6559 return getPOISON(VT);
6560
6561 if (N1.isUndef())
6562 // sext(undef) = 0, because the top bits will all be the same.
6563 return getConstant(0, DL, VT);
6564
6565 // Skip unnecessary sext_inreg pattern:
6566 // (sext (trunc x)) -> x iff the upper bits are all signbits.
6567 if (OpOpcode == ISD::TRUNCATE) {
6568 SDValue OpOp = N1.getOperand(0);
6569 if (OpOp.getValueType() == VT) {
6570 unsigned NumSignExtBits =
6572 if (ComputeNumSignBits(OpOp) > NumSignExtBits) {
6573 transferDbgValues(N1, OpOp);
6574 return OpOp;
6575 }
6576 }
6577 }
6578 break;
6579 case ISD::ZERO_EXTEND:
6580 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6581 "Invalid ZERO_EXTEND!");
6582 assert(VT.isVector() == N1.getValueType().isVector() &&
6583 "ZERO_EXTEND result type type should be vector iff the operand "
6584 "type is vector!");
6585 if (N1.getValueType() == VT) return N1; // noop extension
6586 assert((!VT.isVector() || VT.getVectorElementCount() ==
6588 "Vector element count mismatch!");
6589 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
6590 if (OpOpcode == ISD::ZERO_EXTEND) { // (zext (zext x)) -> (zext x)
6591 SDNodeFlags Flags;
6592 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6593 SDValue NewVal =
6594 getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0), Flags);
6595 transferDbgValues(N1, NewVal);
6596 return NewVal;
6597 }
6598
6599 if (OpOpcode == ISD::POISON)
6600 return getPOISON(VT);
6601
6602 if (N1.isUndef())
6603 // zext(undef) = 0, because the top bits will be zero.
6604 return getConstant(0, DL, VT);
6605
6606 // Skip unnecessary zext_inreg pattern:
6607 // (zext (trunc x)) -> x iff the upper bits are known zero.
6608 // TODO: Remove (zext (trunc (and x, c))) exception which some targets
6609 // use to recognise zext_inreg patterns.
6610 if (OpOpcode == ISD::TRUNCATE) {
6611 SDValue OpOp = N1.getOperand(0);
6612 if (OpOp.getValueType() == VT) {
6613 if (OpOp.getOpcode() != ISD::AND) {
6616 if (MaskedValueIsZero(OpOp, HiBits)) {
6617 transferDbgValues(N1, OpOp);
6618 return OpOp;
6619 }
6620 }
6621 }
6622 }
6623 break;
6624 case ISD::ANY_EXTEND:
6625 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6626 "Invalid ANY_EXTEND!");
6627 assert(VT.isVector() == N1.getValueType().isVector() &&
6628 "ANY_EXTEND result type type should be vector iff the operand "
6629 "type is vector!");
6630 if (N1.getValueType() == VT) return N1; // noop extension
6631 assert((!VT.isVector() || VT.getVectorElementCount() ==
6633 "Vector element count mismatch!");
6634 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
6635
6636 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6637 OpOpcode == ISD::ANY_EXTEND) {
6638 SDNodeFlags Flags;
6639 if (OpOpcode == ISD::ZERO_EXTEND)
6640 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6641 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
6642 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6643 }
6644 if (N1.isUndef())
6645 return getUNDEF(VT);
6646
6647 // (ext (trunc x)) -> x
6648 if (OpOpcode == ISD::TRUNCATE) {
6649 SDValue OpOp = N1.getOperand(0);
6650 if (OpOp.getValueType() == VT) {
6651 transferDbgValues(N1, OpOp);
6652 return OpOp;
6653 }
6654 }
6655 break;
6656 case ISD::TRUNCATE:
6657 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6658 "Invalid TRUNCATE!");
6659 assert(VT.isVector() == N1.getValueType().isVector() &&
6660 "TRUNCATE result type type should be vector iff the operand "
6661 "type is vector!");
6662 if (N1.getValueType() == VT) return N1; // noop truncate
6663 assert((!VT.isVector() || VT.getVectorElementCount() ==
6665 "Vector element count mismatch!");
6666 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
6667 if (OpOpcode == ISD::TRUNCATE)
6668 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6669 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6670 OpOpcode == ISD::ANY_EXTEND) {
6671 // If the source is smaller than the dest, we still need an extend.
6673 VT.getScalarType())) {
6674 SDNodeFlags Flags;
6675 if (OpOpcode == ISD::ZERO_EXTEND)
6676 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6677 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6678 }
6679 if (N1.getOperand(0).getValueType().bitsGT(VT))
6680 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6681 return N1.getOperand(0);
6682 }
6683 if (N1.isUndef())
6684 return getUNDEF(VT);
6685 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
6686 return getVScale(DL, VT,
6688 break;
6692 assert(VT.isVector() && "This DAG node is restricted to vector types.");
6693 assert(N1.getValueType().bitsLE(VT) &&
6694 "The input must be the same size or smaller than the result.");
6697 "The destination vector type must have fewer lanes than the input.");
6698 break;
6699 case ISD::ABS:
6700 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
6701 if (N1.isUndef())
6702 return getConstant(0, DL, VT);
6703 break;
6704 case ISD::BSWAP:
6705 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
6706 assert((VT.getScalarSizeInBits() % 16 == 0) &&
6707 "BSWAP types must be a multiple of 16 bits!");
6708 if (N1.isUndef())
6709 return getUNDEF(VT);
6710 // bswap(bswap(X)) -> X.
6711 if (OpOpcode == ISD::BSWAP)
6712 return N1.getOperand(0);
6713 break;
6714 case ISD::BITREVERSE:
6715 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
6716 if (N1.isUndef())
6717 return getUNDEF(VT);
6718 break;
6719 case ISD::BITCAST:
6721 "Cannot BITCAST between types of different sizes!");
6722 if (VT == N1.getValueType()) return N1; // noop conversion.
6723 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
6724 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
6725 if (N1.isUndef())
6726 return getUNDEF(VT);
6727 break;
6729 assert(VT.isVector() && !N1.getValueType().isVector() &&
6730 (VT.getVectorElementType() == N1.getValueType() ||
6732 N1.getValueType().isInteger() &&
6734 "Illegal SCALAR_TO_VECTOR node!");
6735 if (N1.isUndef())
6736 return getUNDEF(VT);
6737 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
6738 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
6740 N1.getConstantOperandVal(1) == 0 &&
6741 N1.getOperand(0).getValueType() == VT)
6742 return N1.getOperand(0);
6743 break;
6744 case ISD::FNEG:
6745 // Negation of an unknown bag of bits is still completely undefined.
6746 if (N1.isUndef())
6747 return getUNDEF(VT);
6748
6749 if (OpOpcode == ISD::FNEG) // --X -> X
6750 return N1.getOperand(0);
6751 break;
6752 case ISD::FABS:
6753 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
6754 return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
6755 break;
6756 case ISD::VSCALE:
6757 assert(VT == N1.getValueType() && "Unexpected VT!");
6758 break;
6759 case ISD::CTPOP:
6760 if (N1.getValueType().getScalarType() == MVT::i1)
6761 return N1;
6762 break;
6763 case ISD::CTLZ:
6764 case ISD::CTTZ:
6765 if (N1.getValueType().getScalarType() == MVT::i1)
6766 return getNOT(DL, N1, N1.getValueType());
6767 break;
6768 case ISD::VECREDUCE_ADD:
6769 if (N1.getValueType().getScalarType() == MVT::i1)
6770 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
6771 break;
6772 case ISD::VECREDUCE_SMIN:
6773 case ISD::VECREDUCE_UMAX:
6774 if (N1.getValueType().getScalarType() == MVT::i1)
6775 return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
6776 break;
6777 case ISD::VECREDUCE_SMAX:
6778 case ISD::VECREDUCE_UMIN:
6779 if (N1.getValueType().getScalarType() == MVT::i1)
6780 return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
6781 break;
6782 case ISD::SPLAT_VECTOR:
6783 assert(VT.isVector() && "Wrong return type!");
6784 // FIXME: Hexagon uses i32 scalar for a floating point zero vector so allow
6785 // that for now.
6787 (VT.isFloatingPoint() && N1.getValueType() == MVT::i32) ||
6789 N1.getValueType().isInteger() &&
6791 "Wrong operand type!");
6792 break;
6793 }
6794
6795 SDNode *N;
6796 SDVTList VTs = getVTList(VT);
6797 SDValue Ops[] = {N1};
6798 if (VT != MVT::Glue) { // Don't CSE glue producing nodes
6800 AddNodeIDNode(ID, Opcode, VTs, Ops);
6801 void *IP = nullptr;
6802 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6803 E->intersectFlagsWith(Flags);
6804 return SDValue(E, 0);
6805 }
6806
6807 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6808 N->setFlags(Flags);
6809 createOperands(N, Ops);
6810 CSEMap.InsertNode(N, IP);
6811 } else {
6812 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6813 createOperands(N, Ops);
6814 }
6815
6816 InsertNode(N);
6817 SDValue V = SDValue(N, 0);
6818 NewSDValueDbgMsg(V, "Creating new node: ", this);
6819 return V;
6820}
6821
6822static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
6823 const APInt &C2) {
6824 switch (Opcode) {
6825 case ISD::ADD: return C1 + C2;
6826 case ISD::SUB: return C1 - C2;
6827 case ISD::MUL: return C1 * C2;
6828 case ISD::AND: return C1 & C2;
6829 case ISD::OR: return C1 | C2;
6830 case ISD::XOR: return C1 ^ C2;
6831 case ISD::SHL: return C1 << C2;
6832 case ISD::SRL: return C1.lshr(C2);
6833 case ISD::SRA: return C1.ashr(C2);
6834 case ISD::ROTL: return C1.rotl(C2);
6835 case ISD::ROTR: return C1.rotr(C2);
6836 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
6837 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
6838 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
6839 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
6840 case ISD::SADDSAT: return C1.sadd_sat(C2);
6841 case ISD::UADDSAT: return C1.uadd_sat(C2);
6842 case ISD::SSUBSAT: return C1.ssub_sat(C2);
6843 case ISD::USUBSAT: return C1.usub_sat(C2);
6844 case ISD::SSHLSAT: return C1.sshl_sat(C2);
6845 case ISD::USHLSAT: return C1.ushl_sat(C2);
6846 case ISD::UDIV:
6847 if (!C2.getBoolValue())
6848 break;
6849 return C1.udiv(C2);
6850 case ISD::UREM:
6851 if (!C2.getBoolValue())
6852 break;
6853 return C1.urem(C2);
6854 case ISD::SDIV:
6855 if (!C2.getBoolValue())
6856 break;
6857 return C1.sdiv(C2);
6858 case ISD::SREM:
6859 if (!C2.getBoolValue())
6860 break;
6861 return C1.srem(C2);
6862 case ISD::AVGFLOORS:
6863 return APIntOps::avgFloorS(C1, C2);
6864 case ISD::AVGFLOORU:
6865 return APIntOps::avgFloorU(C1, C2);
6866 case ISD::AVGCEILS:
6867 return APIntOps::avgCeilS(C1, C2);
6868 case ISD::AVGCEILU:
6869 return APIntOps::avgCeilU(C1, C2);
6870 case ISD::ABDS:
6871 return APIntOps::abds(C1, C2);
6872 case ISD::ABDU:
6873 return APIntOps::abdu(C1, C2);
6874 case ISD::MULHS:
6875 return APIntOps::mulhs(C1, C2);
6876 case ISD::MULHU:
6877 return APIntOps::mulhu(C1, C2);
6878 }
6879 return std::nullopt;
6880}
6881// Handle constant folding with UNDEF.
6882// TODO: Handle more cases.
6883static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6884 bool IsUndef1, const APInt &C2,
6885 bool IsUndef2) {
6886 if (!(IsUndef1 || IsUndef2))
6887 return FoldValue(Opcode, C1, C2);
6888
6889 // Fold and(x, undef) -> 0
6890 // Fold mul(x, undef) -> 0
6891 if (Opcode == ISD::AND || Opcode == ISD::MUL)
6892 return APInt::getZero(C1.getBitWidth());
6893
6894 return std::nullopt;
6895}
6896
6898 const GlobalAddressSDNode *GA,
6899 const SDNode *N2) {
6900 if (GA->getOpcode() != ISD::GlobalAddress)
6901 return SDValue();
6902 if (!TLI->isOffsetFoldingLegal(GA))
6903 return SDValue();
6904 auto *C2 = dyn_cast<ConstantSDNode>(N2);
6905 if (!C2)
6906 return SDValue();
6907 int64_t Offset = C2->getSExtValue();
6908 switch (Opcode) {
6909 case ISD::ADD:
6910 case ISD::PTRADD:
6911 break;
6912 case ISD::SUB: Offset = -uint64_t(Offset); break;
6913 default: return SDValue();
6914 }
6915 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6916 GA->getOffset() + uint64_t(Offset));
6917}
6918
6920 switch (Opcode) {
6921 case ISD::SDIV:
6922 case ISD::UDIV:
6923 case ISD::SREM:
6924 case ISD::UREM: {
6925 // If a divisor is zero/undef or any element of a divisor vector is
6926 // zero/undef, the whole op is undef.
6927 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6928 SDValue Divisor = Ops[1];
6929 if (Divisor.isUndef() || isNullConstant(Divisor))
6930 return true;
6931
6932 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6933 llvm::any_of(Divisor->op_values(),
6934 [](SDValue V) { return V.isUndef() ||
6935 isNullConstant(V); });
6936 // TODO: Handle signed overflow.
6937 }
6938 // TODO: Handle oversized shifts.
6939 default:
6940 return false;
6941 }
6942}
6943
6946 SDNodeFlags Flags) {
6947 // If the opcode is a target-specific ISD node, there's nothing we can
6948 // do here and the operand rules may not line up with the below, so
6949 // bail early.
6950 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6951 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6952 // foldCONCAT_VECTORS in getNode before this is called.
6953 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6954 return SDValue();
6955
6956 unsigned NumOps = Ops.size();
6957 if (NumOps == 0)
6958 return SDValue();
6959
6960 if (isUndef(Opcode, Ops))
6961 return getUNDEF(VT);
6962
6963 // Handle unary special cases.
6964 if (NumOps == 1) {
6965 SDValue N1 = Ops[0];
6966
6967 // Constant fold unary operations with an integer constant operand. Even
6968 // opaque constant will be folded, because the folding of unary operations
6969 // doesn't create new constants with different values. Nevertheless, the
6970 // opaque flag is preserved during folding to prevent future folding with
6971 // other constants.
6972 if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
6973 const APInt &Val = C->getAPIntValue();
6974 switch (Opcode) {
6975 case ISD::SIGN_EXTEND:
6976 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6977 C->isTargetOpcode(), C->isOpaque());
6978 case ISD::TRUNCATE:
6979 if (C->isOpaque())
6980 break;
6981 [[fallthrough]];
6982 case ISD::ZERO_EXTEND:
6983 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6984 C->isTargetOpcode(), C->isOpaque());
6985 case ISD::ANY_EXTEND:
6986 // Some targets like RISCV prefer to sign extend some types.
6987 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
6988 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6989 C->isTargetOpcode(), C->isOpaque());
6990 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6991 C->isTargetOpcode(), C->isOpaque());
6992 case ISD::ABS:
6993 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
6994 C->isOpaque());
6995 case ISD::BITREVERSE:
6996 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
6997 C->isOpaque());
6998 case ISD::BSWAP:
6999 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
7000 C->isOpaque());
7001 case ISD::CTPOP:
7002 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
7003 C->isOpaque());
7004 case ISD::CTLZ:
7006 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
7007 C->isOpaque());
7008 case ISD::CTTZ:
7010 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
7011 C->isOpaque());
7012 case ISD::UINT_TO_FP:
7013 case ISD::SINT_TO_FP: {
7015 (void)FPV.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
7017 return getConstantFP(FPV, DL, VT);
7018 }
7019 case ISD::FP16_TO_FP:
7020 case ISD::BF16_TO_FP: {
7021 bool Ignored;
7022 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
7023 : APFloat::BFloat(),
7024 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
7025
7026 // This can return overflow, underflow, or inexact; we don't care.
7027 // FIXME need to be more flexible about rounding mode.
7029 &Ignored);
7030 return getConstantFP(FPV, DL, VT);
7031 }
7032 case ISD::STEP_VECTOR:
7033 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
7034 return V;
7035 break;
7036 case ISD::BITCAST:
7037 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
7038 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
7039 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
7040 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
7041 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
7042 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
7043 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
7044 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
7045 break;
7046 }
7047 }
7048
7049 // Constant fold unary operations with a floating point constant operand.
7050 if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
7051 APFloat V = C->getValueAPF(); // make copy
7052 switch (Opcode) {
7053 case ISD::FNEG:
7054 V.changeSign();
7055 return getConstantFP(V, DL, VT);
7056 case ISD::FABS:
7057 V.clearSign();
7058 return getConstantFP(V, DL, VT);
7059 case ISD::FCEIL: {
7060 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
7062 return getConstantFP(V, DL, VT);
7063 return SDValue();
7064 }
7065 case ISD::FTRUNC: {
7066 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
7068 return getConstantFP(V, DL, VT);
7069 return SDValue();
7070 }
7071 case ISD::FFLOOR: {
7072 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
7074 return getConstantFP(V, DL, VT);
7075 return SDValue();
7076 }
7077 case ISD::FP_EXTEND: {
7078 bool ignored;
7079 // This can return overflow, underflow, or inexact; we don't care.
7080 // FIXME need to be more flexible about rounding mode.
7081 (void)V.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
7082 &ignored);
7083 return getConstantFP(V, DL, VT);
7084 }
7085 case ISD::FP_TO_SINT:
7086 case ISD::FP_TO_UINT: {
7087 bool ignored;
7088 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
7089 // FIXME need to be more flexible about rounding mode.
7091 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
7092 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
7093 break;
7094 return getConstant(IntVal, DL, VT);
7095 }
7096 case ISD::FP_TO_FP16:
7097 case ISD::FP_TO_BF16: {
7098 bool Ignored;
7099 // This can return overflow, underflow, or inexact; we don't care.
7100 // FIXME need to be more flexible about rounding mode.
7101 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
7102 : APFloat::BFloat(),
7104 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7105 }
7106 case ISD::BITCAST:
7107 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
7108 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7109 VT);
7110 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
7111 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7112 VT);
7113 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
7114 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
7115 VT);
7116 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
7117 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7118 break;
7119 }
7120 }
7121
7122 // Early-out if we failed to constant fold a bitcast.
7123 if (Opcode == ISD::BITCAST)
7124 return SDValue();
7125 }
7126
7127 // Handle binops special cases.
7128 if (NumOps == 2) {
7129 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
7130 return CFP;
7131
7132 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7133 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
7134 if (C1->isOpaque() || C2->isOpaque())
7135 return SDValue();
7136
7137 std::optional<APInt> FoldAttempt =
7138 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7139 if (!FoldAttempt)
7140 return SDValue();
7141
7142 SDValue Folded = getConstant(*FoldAttempt, DL, VT);
7143 assert((!Folded || !VT.isVector()) &&
7144 "Can't fold vectors ops with scalar operands");
7145 return Folded;
7146 }
7147 }
7148
7149 // fold (add Sym, c) -> Sym+c
7151 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
7152 if (TLI->isCommutativeBinOp(Opcode))
7154 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
7155
7156 // fold (sext_in_reg c1) -> c2
7157 if (Opcode == ISD::SIGN_EXTEND_INREG) {
7158 EVT EVT = cast<VTSDNode>(Ops[1])->getVT();
7159
7160 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
7161 unsigned FromBits = EVT.getScalarSizeInBits();
7162 Val <<= Val.getBitWidth() - FromBits;
7163 Val.ashrInPlace(Val.getBitWidth() - FromBits);
7164 return getConstant(Val, DL, ConstantVT);
7165 };
7166
7167 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7168 const APInt &Val = C1->getAPIntValue();
7169 return SignExtendInReg(Val, VT);
7170 }
7171
7173 SmallVector<SDValue, 8> ScalarOps;
7174 llvm::EVT OpVT = Ops[0].getOperand(0).getValueType();
7175 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
7176 SDValue Op = Ops[0].getOperand(I);
7177 if (Op.isUndef()) {
7178 ScalarOps.push_back(getUNDEF(OpVT));
7179 continue;
7180 }
7181 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
7182 ScalarOps.push_back(SignExtendInReg(Val, OpVT));
7183 }
7184 return getBuildVector(VT, DL, ScalarOps);
7185 }
7186
7187 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR &&
7188 isa<ConstantSDNode>(Ops[0].getOperand(0)))
7189 return getNode(ISD::SPLAT_VECTOR, DL, VT,
7190 SignExtendInReg(Ops[0].getConstantOperandAPInt(0),
7191 Ops[0].getOperand(0).getValueType()));
7192 }
7193 }
7194
7195 // Handle fshl/fshr special cases.
7196 if (Opcode == ISD::FSHL || Opcode == ISD::FSHR) {
7197 auto *C1 = dyn_cast<ConstantSDNode>(Ops[0]);
7198 auto *C2 = dyn_cast<ConstantSDNode>(Ops[1]);
7199 auto *C3 = dyn_cast<ConstantSDNode>(Ops[2]);
7200
7201 if (C1 && C2 && C3) {
7202 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7203 return SDValue();
7204 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7205 &V3 = C3->getAPIntValue();
7206
7207 APInt FoldedVal = Opcode == ISD::FSHL ? APIntOps::fshl(V1, V2, V3)
7208 : APIntOps::fshr(V1, V2, V3);
7209 return getConstant(FoldedVal, DL, VT);
7210 }
7211 }
7212
7213 // Handle fma/fmad special cases.
7214 if (Opcode == ISD::FMA || Opcode == ISD::FMAD) {
7215 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7216 assert(Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7217 Ops[2].getValueType() == VT && "FMA types must match!");
7221 if (C1 && C2 && C3) {
7222 APFloat V1 = C1->getValueAPF();
7223 const APFloat &V2 = C2->getValueAPF();
7224 const APFloat &V3 = C3->getValueAPF();
7225 if (Opcode == ISD::FMAD) {
7228 } else
7230 return getConstantFP(V1, DL, VT);
7231 }
7232 }
7233
7234 // This is for vector folding only from here on.
7235 if (!VT.isVector())
7236 return SDValue();
7237
7238 ElementCount NumElts = VT.getVectorElementCount();
7239
7240 // See if we can fold through any bitcasted integer ops.
7241 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
7242 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7243 (Ops[0].getOpcode() == ISD::BITCAST ||
7244 Ops[1].getOpcode() == ISD::BITCAST)) {
7247 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
7248 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
7249 if (BV1 && BV2 && N1.getValueType().isInteger() &&
7250 N2.getValueType().isInteger()) {
7251 bool IsLE = getDataLayout().isLittleEndian();
7252 unsigned EltBits = VT.getScalarSizeInBits();
7253 SmallVector<APInt> RawBits1, RawBits2;
7254 BitVector UndefElts1, UndefElts2;
7255 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7256 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7257 SmallVector<APInt> RawBits;
7258 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
7259 std::optional<APInt> Fold = FoldValueWithUndef(
7260 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
7261 if (!Fold)
7262 break;
7263 RawBits.push_back(*Fold);
7264 }
7265 if (RawBits.size() == NumElts.getFixedValue()) {
7266 // We have constant folded, but we might need to cast this again back
7267 // to the original (possibly legalized) type.
7268 EVT BVVT, BVEltVT;
7269 if (N1.getValueType() == VT) {
7270 BVVT = N1.getValueType();
7271 BVEltVT = BV1->getOperand(0).getValueType();
7272 } else {
7273 BVVT = N2.getValueType();
7274 BVEltVT = BV2->getOperand(0).getValueType();
7275 }
7276 unsigned BVEltBits = BVEltVT.getSizeInBits();
7277 SmallVector<APInt> DstBits;
7278 BitVector DstUndefs;
7280 DstBits, RawBits, DstUndefs,
7281 BitVector(RawBits.size(), false));
7282 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
7283 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
7284 if (DstUndefs[I])
7285 continue;
7286 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
7287 }
7288 return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
7289 }
7290 }
7291 }
7292 }
7293
7294 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
7295 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
7296 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
7297 Ops[0].getOpcode() == ISD::STEP_VECTOR) {
7298 APInt RHSVal;
7299 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
7300 APInt NewStep = Opcode == ISD::MUL
7301 ? Ops[0].getConstantOperandAPInt(0) * RHSVal
7302 : Ops[0].getConstantOperandAPInt(0) << RHSVal;
7303 return getStepVector(DL, VT, NewStep);
7304 }
7305 }
7306
7307 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
7308 return !Op.getValueType().isVector() ||
7309 Op.getValueType().getVectorElementCount() == NumElts;
7310 };
7311
7312 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
7313 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
7314 Op.getOpcode() == ISD::BUILD_VECTOR ||
7315 Op.getOpcode() == ISD::SPLAT_VECTOR;
7316 };
7317
7318 // All operands must be vector types with the same number of elements as
7319 // the result type and must be either UNDEF or a build/splat vector
7320 // or UNDEF scalars.
7321 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
7322 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
7323 return SDValue();
7324
7325 // If we are comparing vectors, then the result needs to be a i1 boolean that
7326 // is then extended back to the legal result type depending on how booleans
7327 // are represented.
7328 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
7329 ISD::NodeType ExtendCode =
7330 (Opcode == ISD::SETCC && SVT != VT.getScalarType())
7331 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
7333
7334 // Find legal integer scalar type for constant promotion and
7335 // ensure that its scalar size is at least as large as source.
7336 EVT LegalSVT = VT.getScalarType();
7337 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
7338 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
7339 if (LegalSVT.bitsLT(VT.getScalarType()))
7340 return SDValue();
7341 }
7342
7343 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
7344 // only have one operand to check. For fixed-length vector types we may have
7345 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
7346 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
7347
7348 // Constant fold each scalar lane separately.
7349 SmallVector<SDValue, 4> ScalarResults;
7350 for (unsigned I = 0; I != NumVectorElts; I++) {
7351 SmallVector<SDValue, 4> ScalarOps;
7352 for (SDValue Op : Ops) {
7353 EVT InSVT = Op.getValueType().getScalarType();
7354 if (Op.getOpcode() != ISD::BUILD_VECTOR &&
7355 Op.getOpcode() != ISD::SPLAT_VECTOR) {
7356 if (Op.isUndef())
7357 ScalarOps.push_back(getUNDEF(InSVT));
7358 else
7359 ScalarOps.push_back(Op);
7360 continue;
7361 }
7362
7363 SDValue ScalarOp =
7364 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
7365 EVT ScalarVT = ScalarOp.getValueType();
7366
7367 // Build vector (integer) scalar operands may need implicit
7368 // truncation - do this before constant folding.
7369 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
7370 // Don't create illegally-typed nodes unless they're constants or undef
7371 // - if we fail to constant fold we can't guarantee the (dead) nodes
7372 // we're creating will be cleaned up before being visited for
7373 // legalization.
7374 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
7375 !isa<ConstantSDNode>(ScalarOp) &&
7376 TLI->getTypeAction(*getContext(), InSVT) !=
7378 return SDValue();
7379 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
7380 }
7381
7382 ScalarOps.push_back(ScalarOp);
7383 }
7384
7385 // Constant fold the scalar operands.
7386 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
7387
7388 // Scalar folding only succeeded if the result is a constant or UNDEF.
7389 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
7390 ScalarResult.getOpcode() != ISD::ConstantFP)
7391 return SDValue();
7392
7393 // Legalize the (integer) scalar constant if necessary. We only do
7394 // this once we know the folding succeeded, since otherwise we would
7395 // get a node with illegal type which has a user.
7396 if (LegalSVT != SVT)
7397 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
7398
7399 ScalarResults.push_back(ScalarResult);
7400 }
7401
7402 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
7403 : getBuildVector(VT, DL, ScalarResults);
7404 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
7405 return V;
7406}
7407
7410 // TODO: Add support for unary/ternary fp opcodes.
7411 if (Ops.size() != 2)
7412 return SDValue();
7413
7414 // TODO: We don't do any constant folding for strict FP opcodes here, but we
7415 // should. That will require dealing with a potentially non-default
7416 // rounding mode, checking the "opStatus" return value from the APFloat
7417 // math calculations, and possibly other variations.
7418 SDValue N1 = Ops[0];
7419 SDValue N2 = Ops[1];
7420 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
7421 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
7422 if (N1CFP && N2CFP) {
7423 APFloat C1 = N1CFP->getValueAPF(); // make copy
7424 const APFloat &C2 = N2CFP->getValueAPF();
7425 switch (Opcode) {
7426 case ISD::FADD:
7428 return getConstantFP(C1, DL, VT);
7429 case ISD::FSUB:
7431 return getConstantFP(C1, DL, VT);
7432 case ISD::FMUL:
7434 return getConstantFP(C1, DL, VT);
7435 case ISD::FDIV:
7437 return getConstantFP(C1, DL, VT);
7438 case ISD::FREM:
7439 C1.mod(C2);
7440 return getConstantFP(C1, DL, VT);
7441 case ISD::FCOPYSIGN:
7442 C1.copySign(C2);
7443 return getConstantFP(C1, DL, VT);
7444 case ISD::FMINNUM:
7445 return getConstantFP(minnum(C1, C2), DL, VT);
7446 case ISD::FMAXNUM:
7447 return getConstantFP(maxnum(C1, C2), DL, VT);
7448 case ISD::FMINIMUM:
7449 return getConstantFP(minimum(C1, C2), DL, VT);
7450 case ISD::FMAXIMUM:
7451 return getConstantFP(maximum(C1, C2), DL, VT);
7452 case ISD::FMINIMUMNUM:
7453 return getConstantFP(minimumnum(C1, C2), DL, VT);
7454 case ISD::FMAXIMUMNUM:
7455 return getConstantFP(maximumnum(C1, C2), DL, VT);
7456 default: break;
7457 }
7458 }
7459 if (N1CFP && Opcode == ISD::FP_ROUND) {
7460 APFloat C1 = N1CFP->getValueAPF(); // make copy
7461 bool Unused;
7462 // This can return overflow, underflow, or inexact; we don't care.
7463 // FIXME need to be more flexible about rounding mode.
7465 &Unused);
7466 return getConstantFP(C1, DL, VT);
7467 }
7468
7469 switch (Opcode) {
7470 case ISD::FSUB:
7471 // -0.0 - undef --> undef (consistent with "fneg undef")
7472 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
7473 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
7474 return getUNDEF(VT);
7475 [[fallthrough]];
7476
7477 case ISD::FADD:
7478 case ISD::FMUL:
7479 case ISD::FDIV:
7480 case ISD::FREM:
7481 // If both operands are undef, the result is undef. If 1 operand is undef,
7482 // the result is NaN. This should match the behavior of the IR optimizer.
7483 if (N1.isUndef() && N2.isUndef())
7484 return getUNDEF(VT);
7485 if (N1.isUndef() || N2.isUndef())
7487 }
7488 return SDValue();
7489}
7490
7492 const SDLoc &DL, EVT DstEltVT) {
7493 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7494
7495 // If this is already the right type, we're done.
7496 if (SrcEltVT == DstEltVT)
7497 return SDValue(BV, 0);
7498
7499 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7500 unsigned DstBitSize = DstEltVT.getSizeInBits();
7501
7502 // If this is a conversion of N elements of one type to N elements of another
7503 // type, convert each element. This handles FP<->INT cases.
7504 if (SrcBitSize == DstBitSize) {
7506 for (SDValue Op : BV->op_values()) {
7507 // If the vector element type is not legal, the BUILD_VECTOR operands
7508 // are promoted and implicitly truncated. Make that explicit here.
7509 if (Op.getValueType() != SrcEltVT)
7510 Op = getNode(ISD::TRUNCATE, DL, SrcEltVT, Op);
7511 Ops.push_back(getBitcast(DstEltVT, Op));
7512 }
7513 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT,
7515 return getBuildVector(VT, DL, Ops);
7516 }
7517
7518 // Otherwise, we're growing or shrinking the elements. To avoid having to
7519 // handle annoying details of growing/shrinking FP values, we convert them to
7520 // int first.
7521 if (SrcEltVT.isFloatingPoint()) {
7522 // Convert the input float vector to a int vector where the elements are the
7523 // same sizes.
7524 EVT IntEltVT = EVT::getIntegerVT(*getContext(), SrcEltVT.getSizeInBits());
7525 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7527 DstEltVT);
7528 return SDValue();
7529 }
7530
7531 // Now we know the input is an integer vector. If the output is a FP type,
7532 // convert to integer first, then to FP of the right size.
7533 if (DstEltVT.isFloatingPoint()) {
7534 EVT IntEltVT = EVT::getIntegerVT(*getContext(), DstEltVT.getSizeInBits());
7535 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7537 DstEltVT);
7538 return SDValue();
7539 }
7540
7541 // Okay, we know the src/dst types are both integers of differing types.
7542 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7543
7544 // Extract the constant raw bit data.
7545 BitVector UndefElements;
7546 SmallVector<APInt> RawBits;
7547 bool IsLE = getDataLayout().isLittleEndian();
7548 if (!BV->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements))
7549 return SDValue();
7550
7552 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) {
7553 if (UndefElements[I])
7554 Ops.push_back(getUNDEF(DstEltVT));
7555 else
7556 Ops.push_back(getConstant(RawBits[I], DL, DstEltVT));
7557 }
7558
7559 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT, Ops.size());
7560 return getBuildVector(VT, DL, Ops);
7561}
7562
7564 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
7565
7566 // There's no need to assert on a byte-aligned pointer. All pointers are at
7567 // least byte aligned.
7568 if (A == Align(1))
7569 return Val;
7570
7571 SDVTList VTs = getVTList(Val.getValueType());
7573 AddNodeIDNode(ID, ISD::AssertAlign, VTs, {Val});
7574 ID.AddInteger(A.value());
7575
7576 void *IP = nullptr;
7577 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7578 return SDValue(E, 0);
7579
7580 auto *N =
7581 newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, A);
7582 createOperands(N, {Val});
7583
7584 CSEMap.InsertNode(N, IP);
7585 InsertNode(N);
7586
7587 SDValue V(N, 0);
7588 NewSDValueDbgMsg(V, "Creating new node: ", this);
7589 return V;
7590}
7591
7592SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7593 SDValue N1, SDValue N2) {
7594 SDNodeFlags Flags;
7595 if (Inserter)
7596 Flags = Inserter->getFlags();
7597 return getNode(Opcode, DL, VT, N1, N2, Flags);
7598}
7599
7601 SDValue &N2) const {
7602 if (!TLI->isCommutativeBinOp(Opcode))
7603 return;
7604
7605 // Canonicalize:
7606 // binop(const, nonconst) -> binop(nonconst, const)
7609 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
7610 bool N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
7611 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7612 std::swap(N1, N2);
7613
7614 // Canonicalize:
7615 // binop(splat(x), step_vector) -> binop(step_vector, splat(x))
7616 else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
7618 std::swap(N1, N2);
7619}
7620
7621SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7622 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
7624 N2.getOpcode() != ISD::DELETED_NODE &&
7625 "Operand is DELETED_NODE!");
7626
7627 canonicalizeCommutativeBinop(Opcode, N1, N2);
7628
7629 auto *N1C = dyn_cast<ConstantSDNode>(N1);
7630 auto *N2C = dyn_cast<ConstantSDNode>(N2);
7631
7632 // Don't allow undefs in vector splats - we might be returning N2 when folding
7633 // to zero etc.
7634 ConstantSDNode *N2CV =
7635 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
7636
7637 switch (Opcode) {
7638 default: break;
7639 case ISD::TokenFactor:
7640 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
7641 N2.getValueType() == MVT::Other && "Invalid token factor!");
7642 // Fold trivial token factors.
7643 if (N1.getOpcode() == ISD::EntryToken) return N2;
7644 if (N2.getOpcode() == ISD::EntryToken) return N1;
7645 if (N1 == N2) return N1;
7646 break;
7647 case ISD::BUILD_VECTOR: {
7648 // Attempt to simplify BUILD_VECTOR.
7649 SDValue Ops[] = {N1, N2};
7650 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7651 return V;
7652 break;
7653 }
7654 case ISD::CONCAT_VECTORS: {
7655 SDValue Ops[] = {N1, N2};
7656 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7657 return V;
7658 break;
7659 }
7660 case ISD::AND:
7661 assert(VT.isInteger() && "This operator does not apply to FP types!");
7662 assert(N1.getValueType() == N2.getValueType() &&
7663 N1.getValueType() == VT && "Binary operator types must match!");
7664 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
7665 // worth handling here.
7666 if (N2CV && N2CV->isZero())
7667 return N2;
7668 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
7669 return N1;
7670 break;
7671 case ISD::OR:
7672 case ISD::XOR:
7673 case ISD::ADD:
7674 case ISD::PTRADD:
7675 case ISD::SUB:
7676 assert(VT.isInteger() && "This operator does not apply to FP types!");
7677 assert(N1.getValueType() == N2.getValueType() &&
7678 N1.getValueType() == VT && "Binary operator types must match!");
7679 // The equal operand types requirement is unnecessarily strong for PTRADD.
7680 // However, the SelectionDAGBuilder does not generate PTRADDs with different
7681 // operand types, and we'd need to re-implement GEP's non-standard wrapping
7682 // logic everywhere where PTRADDs may be folded or combined to properly
7683 // support them. If/when we introduce pointer types to the SDAG, we will
7684 // need to relax this constraint.
7685
7686 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
7687 // it's worth handling here.
7688 if (N2CV && N2CV->isZero())
7689 return N1;
7690 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) &&
7691 VT.getScalarType() == MVT::i1)
7692 return getNode(ISD::XOR, DL, VT, N1, N2);
7693 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
7694 if (Opcode == ISD::ADD && N1.getOpcode() == ISD::VSCALE &&
7695 N2.getOpcode() == ISD::VSCALE) {
7696 const APInt &C1 = N1->getConstantOperandAPInt(0);
7697 const APInt &C2 = N2->getConstantOperandAPInt(0);
7698 return getVScale(DL, VT, C1 + C2);
7699 }
7700 break;
7701 case ISD::MUL:
7702 assert(VT.isInteger() && "This operator does not apply to FP types!");
7703 assert(N1.getValueType() == N2.getValueType() &&
7704 N1.getValueType() == VT && "Binary operator types must match!");
7705 if (VT.getScalarType() == MVT::i1)
7706 return getNode(ISD::AND, DL, VT, N1, N2);
7707 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7708 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7709 const APInt &N2CImm = N2C->getAPIntValue();
7710 return getVScale(DL, VT, MulImm * N2CImm);
7711 }
7712 break;
7713 case ISD::UDIV:
7714 case ISD::UREM:
7715 case ISD::MULHU:
7716 case ISD::MULHS:
7717 case ISD::SDIV:
7718 case ISD::SREM:
7719 case ISD::SADDSAT:
7720 case ISD::SSUBSAT:
7721 case ISD::UADDSAT:
7722 case ISD::USUBSAT:
7723 assert(VT.isInteger() && "This operator does not apply to FP types!");
7724 assert(N1.getValueType() == N2.getValueType() &&
7725 N1.getValueType() == VT && "Binary operator types must match!");
7726 if (VT.getScalarType() == MVT::i1) {
7727 // fold (add_sat x, y) -> (or x, y) for bool types.
7728 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
7729 return getNode(ISD::OR, DL, VT, N1, N2);
7730 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
7731 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
7732 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
7733 }
7734 break;
7735 case ISD::SCMP:
7736 case ISD::UCMP:
7737 assert(N1.getValueType() == N2.getValueType() &&
7738 "Types of operands of UCMP/SCMP must match");
7739 assert(N1.getValueType().isVector() == VT.isVector() &&
7740 "Operands and return type of must both be scalars or vectors");
7741 if (VT.isVector())
7744 "Result and operands must have the same number of elements");
7745 break;
7746 case ISD::AVGFLOORS:
7747 case ISD::AVGFLOORU:
7748 case ISD::AVGCEILS:
7749 case ISD::AVGCEILU:
7750 assert(VT.isInteger() && "This operator does not apply to FP types!");
7751 assert(N1.getValueType() == N2.getValueType() &&
7752 N1.getValueType() == VT && "Binary operator types must match!");
7753 break;
7754 case ISD::ABDS:
7755 case ISD::ABDU:
7756 assert(VT.isInteger() && "This operator does not apply to FP types!");
7757 assert(N1.getValueType() == N2.getValueType() &&
7758 N1.getValueType() == VT && "Binary operator types must match!");
7759 if (VT.getScalarType() == MVT::i1)
7760 return getNode(ISD::XOR, DL, VT, N1, N2);
7761 break;
7762 case ISD::SMIN:
7763 case ISD::UMAX:
7764 assert(VT.isInteger() && "This operator does not apply to FP types!");
7765 assert(N1.getValueType() == N2.getValueType() &&
7766 N1.getValueType() == VT && "Binary operator types must match!");
7767 if (VT.getScalarType() == MVT::i1)
7768 return getNode(ISD::OR, DL, VT, N1, N2);
7769 break;
7770 case ISD::SMAX:
7771 case ISD::UMIN:
7772 assert(VT.isInteger() && "This operator does not apply to FP types!");
7773 assert(N1.getValueType() == N2.getValueType() &&
7774 N1.getValueType() == VT && "Binary operator types must match!");
7775 if (VT.getScalarType() == MVT::i1)
7776 return getNode(ISD::AND, DL, VT, N1, N2);
7777 break;
7778 case ISD::FADD:
7779 case ISD::FSUB:
7780 case ISD::FMUL:
7781 case ISD::FDIV:
7782 case ISD::FREM:
7783 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7784 assert(N1.getValueType() == N2.getValueType() &&
7785 N1.getValueType() == VT && "Binary operator types must match!");
7786 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
7787 return V;
7788 break;
7789 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
7790 assert(N1.getValueType() == VT &&
7793 "Invalid FCOPYSIGN!");
7794 break;
7795 case ISD::SHL:
7796 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7797 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7798 const APInt &ShiftImm = N2C->getAPIntValue();
7799 return getVScale(DL, VT, MulImm << ShiftImm);
7800 }
7801 [[fallthrough]];
7802 case ISD::SRA:
7803 case ISD::SRL:
7804 if (SDValue V = simplifyShift(N1, N2))
7805 return V;
7806 [[fallthrough]];
7807 case ISD::ROTL:
7808 case ISD::ROTR:
7809 assert(VT == N1.getValueType() &&
7810 "Shift operators return type must be the same as their first arg");
7811 assert(VT.isInteger() && N2.getValueType().isInteger() &&
7812 "Shifts only work on integers");
7813 assert((!VT.isVector() || VT == N2.getValueType()) &&
7814 "Vector shift amounts must be in the same as their first arg");
7815 // Verify that the shift amount VT is big enough to hold valid shift
7816 // amounts. This catches things like trying to shift an i1024 value by an
7817 // i8, which is easy to fall into in generic code that uses
7818 // TLI.getShiftAmount().
7821 "Invalid use of small shift amount with oversized value!");
7822
7823 // Always fold shifts of i1 values so the code generator doesn't need to
7824 // handle them. Since we know the size of the shift has to be less than the
7825 // size of the value, the shift/rotate count is guaranteed to be zero.
7826 if (VT == MVT::i1)
7827 return N1;
7828 if (N2CV && N2CV->isZero())
7829 return N1;
7830 break;
7831 case ISD::FP_ROUND:
7833 VT.bitsLE(N1.getValueType()) && N2C &&
7834 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7835 N2.getOpcode() == ISD::TargetConstant && "Invalid FP_ROUND!");
7836 if (N1.getValueType() == VT) return N1; // noop conversion.
7837 break;
7838 case ISD::AssertNoFPClass: {
7840 "AssertNoFPClass is used for a non-floating type");
7841 assert(isa<ConstantSDNode>(N2) && "NoFPClass is not Constant");
7842 FPClassTest NoFPClass = static_cast<FPClassTest>(N2->getAsZExtVal());
7843 assert(llvm::to_underlying(NoFPClass) <=
7845 "FPClassTest value too large");
7846 (void)NoFPClass;
7847 break;
7848 }
7849 case ISD::AssertSext:
7850 case ISD::AssertZext: {
7851 EVT EVT = cast<VTSDNode>(N2)->getVT();
7852 assert(VT == N1.getValueType() && "Not an inreg extend!");
7853 assert(VT.isInteger() && EVT.isInteger() &&
7854 "Cannot *_EXTEND_INREG FP types");
7855 assert(!EVT.isVector() &&
7856 "AssertSExt/AssertZExt type should be the vector element type "
7857 "rather than the vector type!");
7858 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
7859 if (VT.getScalarType() == EVT) return N1; // noop assertion.
7860 break;
7861 }
7863 EVT EVT = cast<VTSDNode>(N2)->getVT();
7864 assert(VT == N1.getValueType() && "Not an inreg extend!");
7865 assert(VT.isInteger() && EVT.isInteger() &&
7866 "Cannot *_EXTEND_INREG FP types");
7867 assert(EVT.isVector() == VT.isVector() &&
7868 "SIGN_EXTEND_INREG type should be vector iff the operand "
7869 "type is vector!");
7870 assert((!EVT.isVector() ||
7872 "Vector element counts must match in SIGN_EXTEND_INREG");
7873 assert(EVT.bitsLE(VT) && "Not extending!");
7874 if (EVT == VT) return N1; // Not actually extending
7875 break;
7876 }
7878 case ISD::FP_TO_UINT_SAT: {
7879 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
7880 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
7881 assert(N1.getValueType().isVector() == VT.isVector() &&
7882 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7883 "vector!");
7884 assert((!VT.isVector() || VT.getVectorElementCount() ==
7886 "Vector element counts must match in FP_TO_*INT_SAT");
7887 assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
7888 "Type to saturate to must be a scalar.");
7889 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
7890 "Not extending!");
7891 break;
7892 }
7895 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7896 element type of the vector.");
7897
7898 // Extract from an undefined value or using an undefined index is undefined.
7899 if (N1.isUndef() || N2.isUndef())
7900 return getUNDEF(VT);
7901
7902 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
7903 // vectors. For scalable vectors we will provide appropriate support for
7904 // dealing with arbitrary indices.
7905 if (N2C && N1.getValueType().isFixedLengthVector() &&
7906 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
7907 return getUNDEF(VT);
7908
7909 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
7910 // expanding copies of large vectors from registers. This only works for
7911 // fixed length vectors, since we need to know the exact number of
7912 // elements.
7913 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
7915 unsigned Factor = N1.getOperand(0).getValueType().getVectorNumElements();
7916 return getExtractVectorElt(DL, VT,
7917 N1.getOperand(N2C->getZExtValue() / Factor),
7918 N2C->getZExtValue() % Factor);
7919 }
7920
7921 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
7922 // lowering is expanding large vector constants.
7923 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
7924 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
7927 "BUILD_VECTOR used for scalable vectors");
7928 unsigned Index =
7929 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
7930 SDValue Elt = N1.getOperand(Index);
7931
7932 if (VT != Elt.getValueType())
7933 // If the vector element type is not legal, the BUILD_VECTOR operands
7934 // are promoted and implicitly truncated, and the result implicitly
7935 // extended. Make that explicit here.
7936 Elt = getAnyExtOrTrunc(Elt, DL, VT);
7937
7938 return Elt;
7939 }
7940
7941 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
7942 // operations are lowered to scalars.
7943 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
7944 // If the indices are the same, return the inserted element else
7945 // if the indices are known different, extract the element from
7946 // the original vector.
7947 SDValue N1Op2 = N1.getOperand(2);
7949
7950 if (N1Op2C && N2C) {
7951 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
7952 if (VT == N1.getOperand(1).getValueType())
7953 return N1.getOperand(1);
7954 if (VT.isFloatingPoint()) {
7956 return getFPExtendOrRound(N1.getOperand(1), DL, VT);
7957 }
7958 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
7959 }
7960 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
7961 }
7962 }
7963
7964 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
7965 // when vector types are scalarized and v1iX is legal.
7966 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
7967 // Here we are completely ignoring the extract element index (N2),
7968 // which is fine for fixed width vectors, since any index other than 0
7969 // is undefined anyway. However, this cannot be ignored for scalable
7970 // vectors - in theory we could support this, but we don't want to do this
7971 // without a profitability check.
7972 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7974 N1.getValueType().getVectorNumElements() == 1) {
7975 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
7976 N1.getOperand(1));
7977 }
7978 break;
7980 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
7981 assert(!N1.getValueType().isVector() && !VT.isVector() &&
7982 (N1.getValueType().isInteger() == VT.isInteger()) &&
7983 N1.getValueType() != VT &&
7984 "Wrong types for EXTRACT_ELEMENT!");
7985
7986 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
7987 // 64-bit integers into 32-bit parts. Instead of building the extract of
7988 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
7989 if (N1.getOpcode() == ISD::BUILD_PAIR)
7990 return N1.getOperand(N2C->getZExtValue());
7991
7992 // EXTRACT_ELEMENT of a constant int is also very common.
7993 if (N1C) {
7994 unsigned ElementSize = VT.getSizeInBits();
7995 unsigned Shift = ElementSize * N2C->getZExtValue();
7996 const APInt &Val = N1C->getAPIntValue();
7997 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
7998 }
7999 break;
8001 EVT N1VT = N1.getValueType();
8002 assert(VT.isVector() && N1VT.isVector() &&
8003 "Extract subvector VTs must be vectors!");
8005 "Extract subvector VTs must have the same element type!");
8006 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
8007 "Cannot extract a scalable vector from a fixed length vector!");
8008 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8010 "Extract subvector must be from larger vector to smaller vector!");
8011 assert(N2C && "Extract subvector index must be a constant");
8012 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8013 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
8014 N1VT.getVectorMinNumElements()) &&
8015 "Extract subvector overflow!");
8016 assert(N2C->getAPIntValue().getBitWidth() ==
8017 TLI->getVectorIdxWidth(getDataLayout()) &&
8018 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8019 assert(N2C->getZExtValue() % VT.getVectorMinNumElements() == 0 &&
8020 "Extract index is not a multiple of the output vector length");
8021
8022 // Trivial extraction.
8023 if (VT == N1VT)
8024 return N1;
8025
8026 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
8027 if (N1.isUndef())
8028 return getUNDEF(VT);
8029
8030 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
8031 // the concat have the same type as the extract.
8032 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8033 VT == N1.getOperand(0).getValueType()) {
8034 unsigned Factor = VT.getVectorMinNumElements();
8035 return N1.getOperand(N2C->getZExtValue() / Factor);
8036 }
8037
8038 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
8039 // during shuffle legalization.
8040 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
8041 VT == N1.getOperand(1).getValueType())
8042 return N1.getOperand(1);
8043 break;
8044 }
8045 }
8046
8047 if (N1.getOpcode() == ISD::POISON || N2.getOpcode() == ISD::POISON) {
8048 switch (Opcode) {
8049 case ISD::XOR:
8050 case ISD::ADD:
8051 case ISD::PTRADD:
8052 case ISD::SUB:
8054 case ISD::UDIV:
8055 case ISD::SDIV:
8056 case ISD::UREM:
8057 case ISD::SREM:
8058 case ISD::MUL:
8059 case ISD::AND:
8060 case ISD::SSUBSAT:
8061 case ISD::USUBSAT:
8062 case ISD::UMIN:
8063 case ISD::OR:
8064 case ISD::SADDSAT:
8065 case ISD::UADDSAT:
8066 case ISD::UMAX:
8067 case ISD::SMAX:
8068 case ISD::SMIN:
8069 // fold op(arg1, poison) -> poison, fold op(poison, arg2) -> poison.
8070 return N2.getOpcode() == ISD::POISON ? N2 : N1;
8071 }
8072 }
8073
8074 // Canonicalize an UNDEF to the RHS, even over a constant.
8075 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() != ISD::UNDEF) {
8076 if (TLI->isCommutativeBinOp(Opcode)) {
8077 std::swap(N1, N2);
8078 } else {
8079 switch (Opcode) {
8080 case ISD::PTRADD:
8081 case ISD::SUB:
8082 // fold op(undef, non_undef_arg2) -> undef.
8083 return N1;
8085 case ISD::UDIV:
8086 case ISD::SDIV:
8087 case ISD::UREM:
8088 case ISD::SREM:
8089 case ISD::SSUBSAT:
8090 case ISD::USUBSAT:
8091 // fold op(undef, non_undef_arg2) -> 0.
8092 return getConstant(0, DL, VT);
8093 }
8094 }
8095 }
8096
8097 // Fold a bunch of operators when the RHS is undef.
8098 if (N2.getOpcode() == ISD::UNDEF) {
8099 switch (Opcode) {
8100 case ISD::XOR:
8101 if (N1.getOpcode() == ISD::UNDEF)
8102 // Handle undef ^ undef -> 0 special case. This is a common
8103 // idiom (misuse).
8104 return getConstant(0, DL, VT);
8105 [[fallthrough]];
8106 case ISD::ADD:
8107 case ISD::PTRADD:
8108 case ISD::SUB:
8109 // fold op(arg1, undef) -> undef.
8110 return N2;
8111 case ISD::UDIV:
8112 case ISD::SDIV:
8113 case ISD::UREM:
8114 case ISD::SREM:
8115 // fold op(arg1, undef) -> poison.
8116 return getPOISON(VT);
8117 case ISD::MUL:
8118 case ISD::AND:
8119 case ISD::SSUBSAT:
8120 case ISD::USUBSAT:
8121 case ISD::UMIN:
8122 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> 0.
8123 return N1.getOpcode() == ISD::UNDEF ? N2 : getConstant(0, DL, VT);
8124 case ISD::OR:
8125 case ISD::SADDSAT:
8126 case ISD::UADDSAT:
8127 case ISD::UMAX:
8128 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> -1.
8129 return N1.getOpcode() == ISD::UNDEF ? N2 : getAllOnesConstant(DL, VT);
8130 case ISD::SMAX:
8131 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MAX_INT.
8132 return N1.getOpcode() == ISD::UNDEF
8133 ? N2
8134 : getConstant(
8136 VT);
8137 case ISD::SMIN:
8138 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MIN_INT.
8139 return N1.getOpcode() == ISD::UNDEF
8140 ? N2
8141 : getConstant(
8143 VT);
8144 }
8145 }
8146
8147 // Perform trivial constant folding.
8148 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}, Flags))
8149 return SV;
8150
8151 // Memoize this node if possible.
8152 SDNode *N;
8153 SDVTList VTs = getVTList(VT);
8154 SDValue Ops[] = {N1, N2};
8155 if (VT != MVT::Glue) {
8157 AddNodeIDNode(ID, Opcode, VTs, Ops);
8158 void *IP = nullptr;
8159 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8160 E->intersectFlagsWith(Flags);
8161 return SDValue(E, 0);
8162 }
8163
8164 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8165 N->setFlags(Flags);
8166 createOperands(N, Ops);
8167 CSEMap.InsertNode(N, IP);
8168 } else {
8169 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8170 createOperands(N, Ops);
8171 }
8172
8173 InsertNode(N);
8174 SDValue V = SDValue(N, 0);
8175 NewSDValueDbgMsg(V, "Creating new node: ", this);
8176 return V;
8177}
8178
8179SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8180 SDValue N1, SDValue N2, SDValue N3) {
8181 SDNodeFlags Flags;
8182 if (Inserter)
8183 Flags = Inserter->getFlags();
8184 return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
8185}
8186
8187SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8188 SDValue N1, SDValue N2, SDValue N3,
8189 const SDNodeFlags Flags) {
8191 N2.getOpcode() != ISD::DELETED_NODE &&
8192 N3.getOpcode() != ISD::DELETED_NODE &&
8193 "Operand is DELETED_NODE!");
8194 // Perform various simplifications.
8195 switch (Opcode) {
8196 case ISD::BUILD_VECTOR: {
8197 // Attempt to simplify BUILD_VECTOR.
8198 SDValue Ops[] = {N1, N2, N3};
8199 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8200 return V;
8201 break;
8202 }
8203 case ISD::CONCAT_VECTORS: {
8204 SDValue Ops[] = {N1, N2, N3};
8205 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8206 return V;
8207 break;
8208 }
8209 case ISD::SETCC: {
8210 assert(VT.isInteger() && "SETCC result type must be an integer!");
8211 assert(N1.getValueType() == N2.getValueType() &&
8212 "SETCC operands must have the same type!");
8213 assert(VT.isVector() == N1.getValueType().isVector() &&
8214 "SETCC type should be vector iff the operand type is vector!");
8215 assert((!VT.isVector() || VT.getVectorElementCount() ==
8217 "SETCC vector element counts must match!");
8218 // Use FoldSetCC to simplify SETCC's.
8219 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
8220 return V;
8221 break;
8222 }
8223 case ISD::SELECT:
8224 case ISD::VSELECT:
8225 if (SDValue V = simplifySelect(N1, N2, N3))
8226 return V;
8227 break;
8229 llvm_unreachable("should use getVectorShuffle constructor!");
8230 case ISD::VECTOR_SPLICE: {
8231 if (cast<ConstantSDNode>(N3)->isZero())
8232 return N1;
8233 break;
8234 }
8236 assert(VT.isVector() && VT == N1.getValueType() &&
8237 "INSERT_VECTOR_ELT vector type mismatch");
8239 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8240 assert((!VT.isFloatingPoint() ||
8241 VT.getVectorElementType() == N2.getValueType()) &&
8242 "INSERT_VECTOR_ELT fp scalar type mismatch");
8243 assert((!VT.isInteger() ||
8245 "INSERT_VECTOR_ELT int scalar size mismatch");
8246
8247 auto *N3C = dyn_cast<ConstantSDNode>(N3);
8248 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
8249 // for scalable vectors where we will generate appropriate code to
8250 // deal with out-of-bounds cases correctly.
8251 if (N3C && VT.isFixedLengthVector() &&
8252 N3C->getZExtValue() >= VT.getVectorNumElements())
8253 return getUNDEF(VT);
8254
8255 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
8256 if (N3.isUndef())
8257 return getUNDEF(VT);
8258
8259 // If inserting poison, just use the input vector.
8260 if (N2.getOpcode() == ISD::POISON)
8261 return N1;
8262
8263 // Inserting undef into undef/poison is still undef.
8264 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8265 return getUNDEF(VT);
8266
8267 // If the inserted element is an UNDEF, just use the input vector.
8268 // But not if skipping the insert could make the result more poisonous.
8269 if (N2.isUndef()) {
8270 if (N3C && VT.isFixedLengthVector()) {
8271 APInt EltMask =
8272 APInt::getOneBitSet(VT.getVectorNumElements(), N3C->getZExtValue());
8273 if (isGuaranteedNotToBePoison(N1, EltMask))
8274 return N1;
8275 } else if (isGuaranteedNotToBePoison(N1))
8276 return N1;
8277 }
8278 break;
8279 }
8280 case ISD::INSERT_SUBVECTOR: {
8281 // If inserting poison, just use the input vector,
8282 if (N2.getOpcode() == ISD::POISON)
8283 return N1;
8284
8285 // Inserting undef into undef/poison is still undef.
8286 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8287 return getUNDEF(VT);
8288
8289 EVT N2VT = N2.getValueType();
8290 assert(VT == N1.getValueType() &&
8291 "Dest and insert subvector source types must match!");
8292 assert(VT.isVector() && N2VT.isVector() &&
8293 "Insert subvector VTs must be vectors!");
8295 "Insert subvector VTs must have the same element type!");
8296 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
8297 "Cannot insert a scalable vector into a fixed length vector!");
8298 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8300 "Insert subvector must be from smaller vector to larger vector!");
8302 "Insert subvector index must be constant");
8303 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8304 (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
8306 "Insert subvector overflow!");
8308 TLI->getVectorIdxWidth(getDataLayout()) &&
8309 "Constant index for INSERT_SUBVECTOR has an invalid size");
8310
8311 // Trivial insertion.
8312 if (VT == N2VT)
8313 return N2;
8314
8315 // If this is an insert of an extracted vector into an undef/poison vector,
8316 // we can just use the input to the extract. But not if skipping the
8317 // extract+insert could make the result more poisonous.
8318 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
8319 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) {
8320 if (N1.getOpcode() == ISD::POISON)
8321 return N2.getOperand(0);
8322 if (VT.isFixedLengthVector() && N2VT.isFixedLengthVector()) {
8323 unsigned LoBit = N3->getAsZExtVal();
8324 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8325 APInt EltMask =
8326 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8327 if (isGuaranteedNotToBePoison(N2.getOperand(0), ~EltMask))
8328 return N2.getOperand(0);
8329 } else if (isGuaranteedNotToBePoison(N2.getOperand(0)))
8330 return N2.getOperand(0);
8331 }
8332
8333 // If the inserted subvector is UNDEF, just use the input vector.
8334 // But not if skipping the insert could make the result more poisonous.
8335 if (N2.isUndef()) {
8336 if (VT.isFixedLengthVector()) {
8337 unsigned LoBit = N3->getAsZExtVal();
8338 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8339 APInt EltMask =
8340 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8341 if (isGuaranteedNotToBePoison(N1, EltMask))
8342 return N1;
8343 } else if (isGuaranteedNotToBePoison(N1))
8344 return N1;
8345 }
8346 break;
8347 }
8348 case ISD::BITCAST:
8349 // Fold bit_convert nodes from a type to themselves.
8350 if (N1.getValueType() == VT)
8351 return N1;
8352 break;
8353 case ISD::VP_TRUNCATE:
8354 case ISD::VP_SIGN_EXTEND:
8355 case ISD::VP_ZERO_EXTEND:
8356 // Don't create noop casts.
8357 if (N1.getValueType() == VT)
8358 return N1;
8359 break;
8360 case ISD::VECTOR_COMPRESS: {
8361 [[maybe_unused]] EVT VecVT = N1.getValueType();
8362 [[maybe_unused]] EVT MaskVT = N2.getValueType();
8363 [[maybe_unused]] EVT PassthruVT = N3.getValueType();
8364 assert(VT == VecVT && "Vector and result type don't match.");
8365 assert(VecVT.isVector() && MaskVT.isVector() && PassthruVT.isVector() &&
8366 "All inputs must be vectors.");
8367 assert(VecVT == PassthruVT && "Vector and passthru types don't match.");
8369 "Vector and mask must have same number of elements.");
8370
8371 if (N1.isUndef() || N2.isUndef())
8372 return N3;
8373
8374 break;
8375 }
8376 case ISD::PARTIAL_REDUCE_UMLA:
8377 case ISD::PARTIAL_REDUCE_SMLA:
8378 case ISD::PARTIAL_REDUCE_SUMLA: {
8379 [[maybe_unused]] EVT AccVT = N1.getValueType();
8380 [[maybe_unused]] EVT Input1VT = N2.getValueType();
8381 [[maybe_unused]] EVT Input2VT = N3.getValueType();
8382 assert(Input1VT.isVector() && Input1VT == Input2VT &&
8383 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8384 "node to have the same type!");
8385 assert(VT.isVector() && VT == AccVT &&
8386 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8387 "the same type as its result!");
8389 AccVT.getVectorElementCount()) &&
8390 "Expected the element count of the second and third operands of the "
8391 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8392 "element count of the first operand and the result!");
8394 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8395 "node to have an element type which is the same as or smaller than "
8396 "the element type of the first operand and result!");
8397 break;
8398 }
8399 }
8400
8401 // Perform trivial constant folding for arithmetic operators.
8402 switch (Opcode) {
8403 case ISD::FMA:
8404 case ISD::FMAD:
8405 case ISD::SETCC:
8406 case ISD::FSHL:
8407 case ISD::FSHR:
8408 if (SDValue SV =
8409 FoldConstantArithmetic(Opcode, DL, VT, {N1, N2, N3}, Flags))
8410 return SV;
8411 break;
8412 }
8413
8414 // Memoize node if it doesn't produce a glue result.
8415 SDNode *N;
8416 SDVTList VTs = getVTList(VT);
8417 SDValue Ops[] = {N1, N2, N3};
8418 if (VT != MVT::Glue) {
8420 AddNodeIDNode(ID, Opcode, VTs, Ops);
8421 void *IP = nullptr;
8422 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8423 E->intersectFlagsWith(Flags);
8424 return SDValue(E, 0);
8425 }
8426
8427 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8428 N->setFlags(Flags);
8429 createOperands(N, Ops);
8430 CSEMap.InsertNode(N, IP);
8431 } else {
8432 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8433 createOperands(N, Ops);
8434 }
8435
8436 InsertNode(N);
8437 SDValue V = SDValue(N, 0);
8438 NewSDValueDbgMsg(V, "Creating new node: ", this);
8439 return V;
8440}
8441
8442SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8443 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8444 const SDNodeFlags Flags) {
8445 SDValue Ops[] = { N1, N2, N3, N4 };
8446 return getNode(Opcode, DL, VT, Ops, Flags);
8447}
8448
8449SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8450 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8451 SDNodeFlags Flags;
8452 if (Inserter)
8453 Flags = Inserter->getFlags();
8454 return getNode(Opcode, DL, VT, N1, N2, N3, N4, Flags);
8455}
8456
8457SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8458 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8459 SDValue N5, const SDNodeFlags Flags) {
8460 SDValue Ops[] = { N1, N2, N3, N4, N5 };
8461 return getNode(Opcode, DL, VT, Ops, Flags);
8462}
8463
8464SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8465 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8466 SDValue N5) {
8467 SDNodeFlags Flags;
8468 if (Inserter)
8469 Flags = Inserter->getFlags();
8470 return getNode(Opcode, DL, VT, N1, N2, N3, N4, N5, Flags);
8471}
8472
8473/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
8474/// the incoming stack arguments to be loaded from the stack.
8476 SmallVector<SDValue, 8> ArgChains;
8477
8478 // Include the original chain at the beginning of the list. When this is
8479 // used by target LowerCall hooks, this helps legalize find the
8480 // CALLSEQ_BEGIN node.
8481 ArgChains.push_back(Chain);
8482
8483 // Add a chain value for each stack argument.
8484 for (SDNode *U : getEntryNode().getNode()->users())
8485 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
8486 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
8487 if (FI->getIndex() < 0)
8488 ArgChains.push_back(SDValue(L, 1));
8489
8490 // Build a tokenfactor for all the chains.
8491 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
8492}
8493
8494/// getMemsetValue - Vectorized representation of the memset value
8495/// operand.
8497 const SDLoc &dl) {
8498 assert(!Value.isUndef());
8499
8500 unsigned NumBits = VT.getScalarSizeInBits();
8502 assert(C->getAPIntValue().getBitWidth() == 8);
8503 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
8504 if (VT.isInteger()) {
8505 bool IsOpaque = VT.getSizeInBits() > 64 ||
8506 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
8507 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
8508 }
8509 return DAG.getConstantFP(APFloat(VT.getFltSemantics(), Val), dl, VT);
8510 }
8511
8512 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
8513 EVT IntVT = VT.getScalarType();
8514 if (!IntVT.isInteger())
8515 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
8516
8517 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
8518 if (NumBits > 8) {
8519 // Use a multiplication with 0x010101... to extend the input to the
8520 // required length.
8521 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
8522 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
8523 DAG.getConstant(Magic, dl, IntVT));
8524 }
8525
8526 if (VT != Value.getValueType() && !VT.isInteger())
8527 Value = DAG.getBitcast(VT.getScalarType(), Value);
8528 if (VT != Value.getValueType())
8529 Value = DAG.getSplatBuildVector(VT, dl, Value);
8530
8531 return Value;
8532}
8533
8534/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
8535/// used when a memcpy is turned into a memset when the source is a constant
8536/// string ptr.
8538 const TargetLowering &TLI,
8539 const ConstantDataArraySlice &Slice) {
8540 // Handle vector with all elements zero.
8541 if (Slice.Array == nullptr) {
8542 if (VT.isInteger())
8543 return DAG.getConstant(0, dl, VT);
8544 return DAG.getNode(ISD::BITCAST, dl, VT,
8545 DAG.getConstant(0, dl, VT.changeTypeToInteger()));
8546 }
8547
8548 assert(!VT.isVector() && "Can't handle vector type here!");
8549 unsigned NumVTBits = VT.getSizeInBits();
8550 unsigned NumVTBytes = NumVTBits / 8;
8551 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
8552
8553 APInt Val(NumVTBits, 0);
8554 if (DAG.getDataLayout().isLittleEndian()) {
8555 for (unsigned i = 0; i != NumBytes; ++i)
8556 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
8557 } else {
8558 for (unsigned i = 0; i != NumBytes; ++i)
8559 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8560 }
8561
8562 // If the "cost" of materializing the integer immediate is less than the cost
8563 // of a load, then it is cost effective to turn the load into the immediate.
8564 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
8565 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
8566 return DAG.getConstant(Val, dl, VT);
8567 return SDValue();
8568}
8569
8571 const SDLoc &DL,
8572 const SDNodeFlags Flags) {
8573 EVT VT = Base.getValueType();
8574 SDValue Index;
8575
8576 if (Offset.isScalable())
8577 Index = getVScale(DL, Base.getValueType(),
8578 APInt(Base.getValueSizeInBits().getFixedValue(),
8579 Offset.getKnownMinValue()));
8580 else
8581 Index = getConstant(Offset.getFixedValue(), DL, VT);
8582
8583 return getMemBasePlusOffset(Base, Index, DL, Flags);
8584}
8585
8587 const SDLoc &DL,
8588 const SDNodeFlags Flags) {
8589 assert(Offset.getValueType().isInteger());
8590 EVT BasePtrVT = Ptr.getValueType();
8591 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8592 BasePtrVT))
8593 return getNode(ISD::PTRADD, DL, BasePtrVT, Ptr, Offset, Flags);
8594 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
8595}
8596
8597/// Returns true if memcpy source is constant data.
8599 uint64_t SrcDelta = 0;
8600 GlobalAddressSDNode *G = nullptr;
8601 if (Src.getOpcode() == ISD::GlobalAddress)
8603 else if (Src.getOpcode() == ISD::ADD &&
8604 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
8605 Src.getOperand(1).getOpcode() == ISD::Constant) {
8606 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
8607 SrcDelta = Src.getConstantOperandVal(1);
8608 }
8609 if (!G)
8610 return false;
8611
8612 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
8613 SrcDelta + G->getOffset());
8614}
8615
8617 SelectionDAG &DAG) {
8618 // On Darwin, -Os means optimize for size without hurting performance, so
8619 // only really optimize for size when -Oz (MinSize) is used.
8621 return MF.getFunction().hasMinSize();
8622 return DAG.shouldOptForSize();
8623}
8624
8626 SmallVector<SDValue, 32> &OutChains, unsigned From,
8627 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
8628 SmallVector<SDValue, 16> &OutStoreChains) {
8629 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
8630 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
8631 SmallVector<SDValue, 16> GluedLoadChains;
8632 for (unsigned i = From; i < To; ++i) {
8633 OutChains.push_back(OutLoadChains[i]);
8634 GluedLoadChains.push_back(OutLoadChains[i]);
8635 }
8636
8637 // Chain for all loads.
8638 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8639 GluedLoadChains);
8640
8641 for (unsigned i = From; i < To; ++i) {
8642 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
8643 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
8644 ST->getBasePtr(), ST->getMemoryVT(),
8645 ST->getMemOperand());
8646 OutChains.push_back(NewStore);
8647 }
8648}
8649
8651 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
8652 uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline,
8653 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo,
8654 const AAMDNodes &AAInfo, BatchAAResults *BatchAA) {
8655 // Turn a memcpy of undef to nop.
8656 // FIXME: We need to honor volatile even is Src is undef.
8657 if (Src.isUndef())
8658 return Chain;
8659
8660 // Expand memcpy to a series of load and store ops if the size operand falls
8661 // below a certain threshold.
8662 // TODO: In the AlwaysInline case, if the size is big then generate a loop
8663 // rather than maybe a humongous number of loads and stores.
8664 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8665 const DataLayout &DL = DAG.getDataLayout();
8666 LLVMContext &C = *DAG.getContext();
8667 std::vector<EVT> MemOps;
8668 bool DstAlignCanChange = false;
8670 MachineFrameInfo &MFI = MF.getFrameInfo();
8671 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8673 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8674 DstAlignCanChange = true;
8675 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8676 if (!SrcAlign || Alignment > *SrcAlign)
8677 SrcAlign = Alignment;
8678 assert(SrcAlign && "SrcAlign must be set");
8680 // If marked as volatile, perform a copy even when marked as constant.
8681 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
8682 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
8683 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
8684 const MemOp Op = isZeroConstant
8685 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
8686 /*IsZeroMemset*/ true, isVol)
8687 : MemOp::Copy(Size, DstAlignCanChange, Alignment,
8688 *SrcAlign, isVol, CopyFromConstant);
8689 if (!TLI.findOptimalMemOpLowering(
8690 C, MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
8691 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
8692 return SDValue();
8693
8694 if (DstAlignCanChange) {
8695 Type *Ty = MemOps[0].getTypeForEVT(C);
8696 Align NewAlign = DL.getABITypeAlign(Ty);
8697
8698 // Don't promote to an alignment that would require dynamic stack
8699 // realignment which may conflict with optimizations such as tail call
8700 // optimization.
8702 if (!TRI->hasStackRealignment(MF))
8703 if (MaybeAlign StackAlign = DL.getStackAlignment())
8704 NewAlign = std::min(NewAlign, *StackAlign);
8705
8706 if (NewAlign > Alignment) {
8707 // Give the stack frame object a larger alignment if needed.
8708 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8709 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8710 Alignment = NewAlign;
8711 }
8712 }
8713
8714 // Prepare AAInfo for loads/stores after lowering this memcpy.
8715 AAMDNodes NewAAInfo = AAInfo;
8716 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8717
8718 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
8719 bool isConstant =
8720 BatchAA && SrcVal &&
8721 BatchAA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
8722
8723 MachineMemOperand::Flags MMOFlags =
8725 SmallVector<SDValue, 16> OutLoadChains;
8726 SmallVector<SDValue, 16> OutStoreChains;
8727 SmallVector<SDValue, 32> OutChains;
8728 unsigned NumMemOps = MemOps.size();
8729 uint64_t SrcOff = 0, DstOff = 0;
8730 for (unsigned i = 0; i != NumMemOps; ++i) {
8731 EVT VT = MemOps[i];
8732 unsigned VTSize = VT.getSizeInBits() / 8;
8733 SDValue Value, Store;
8734
8735 if (VTSize > Size) {
8736 // Issuing an unaligned load / store pair that overlaps with the previous
8737 // pair. Adjust the offset accordingly.
8738 assert(i == NumMemOps-1 && i != 0);
8739 SrcOff -= VTSize - Size;
8740 DstOff -= VTSize - Size;
8741 }
8742
8743 if (CopyFromConstant &&
8744 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
8745 // It's unlikely a store of a vector immediate can be done in a single
8746 // instruction. It would require a load from a constantpool first.
8747 // We only handle zero vectors here.
8748 // FIXME: Handle other cases where store of vector immediate is done in
8749 // a single instruction.
8750 ConstantDataArraySlice SubSlice;
8751 if (SrcOff < Slice.Length) {
8752 SubSlice = Slice;
8753 SubSlice.move(SrcOff);
8754 } else {
8755 // This is an out-of-bounds access and hence UB. Pretend we read zero.
8756 SubSlice.Array = nullptr;
8757 SubSlice.Offset = 0;
8758 SubSlice.Length = VTSize;
8759 }
8760 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
8761 if (Value.getNode()) {
8762 Store = DAG.getStore(
8763 Chain, dl, Value,
8764 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8765 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8766 OutChains.push_back(Store);
8767 }
8768 }
8769
8770 if (!Store.getNode()) {
8771 // The type might not be legal for the target. This should only happen
8772 // if the type is smaller than a legal type, as on PPC, so the right
8773 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
8774 // to Load/Store if NVT==VT.
8775 // FIXME does the case above also need this?
8776 EVT NVT = TLI.getTypeToTransformTo(C, VT);
8777 assert(NVT.bitsGE(VT));
8778
8779 bool isDereferenceable =
8780 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8781 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8782 if (isDereferenceable)
8784 if (isConstant)
8785 SrcMMOFlags |= MachineMemOperand::MOInvariant;
8786
8787 Value = DAG.getExtLoad(
8788 ISD::EXTLOAD, dl, NVT, Chain,
8789 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8790 SrcPtrInfo.getWithOffset(SrcOff), VT,
8791 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
8792 OutLoadChains.push_back(Value.getValue(1));
8793
8794 Store = DAG.getTruncStore(
8795 Chain, dl, Value,
8796 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8797 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8798 OutStoreChains.push_back(Store);
8799 }
8800 SrcOff += VTSize;
8801 DstOff += VTSize;
8802 Size -= VTSize;
8803 }
8804
8805 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
8807 unsigned NumLdStInMemcpy = OutStoreChains.size();
8808
8809 if (NumLdStInMemcpy) {
8810 // It may be that memcpy might be converted to memset if it's memcpy
8811 // of constants. In such a case, we won't have loads and stores, but
8812 // just stores. In the absence of loads, there is nothing to gang up.
8813 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
8814 // If target does not care, just leave as it.
8815 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8816 OutChains.push_back(OutLoadChains[i]);
8817 OutChains.push_back(OutStoreChains[i]);
8818 }
8819 } else {
8820 // Ld/St less than/equal limit set by target.
8821 if (NumLdStInMemcpy <= GluedLdStLimit) {
8822 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8823 NumLdStInMemcpy, OutLoadChains,
8824 OutStoreChains);
8825 } else {
8826 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8827 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8828 unsigned GlueIter = 0;
8829
8830 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8831 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8832 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8833
8834 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
8835 OutLoadChains, OutStoreChains);
8836 GlueIter += GluedLdStLimit;
8837 }
8838
8839 // Residual ld/st.
8840 if (RemainingLdStInMemcpy) {
8841 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8842 RemainingLdStInMemcpy, OutLoadChains,
8843 OutStoreChains);
8844 }
8845 }
8846 }
8847 }
8848 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8849}
8850
8852 SDValue Chain, SDValue Dst, SDValue Src,
8853 uint64_t Size, Align Alignment,
8854 bool isVol, bool AlwaysInline,
8855 MachinePointerInfo DstPtrInfo,
8856 MachinePointerInfo SrcPtrInfo,
8857 const AAMDNodes &AAInfo) {
8858 // Turn a memmove of undef to nop.
8859 // FIXME: We need to honor volatile even is Src is undef.
8860 if (Src.isUndef())
8861 return Chain;
8862
8863 // Expand memmove to a series of load and store ops if the size operand falls
8864 // below a certain threshold.
8865 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8866 const DataLayout &DL = DAG.getDataLayout();
8867 LLVMContext &C = *DAG.getContext();
8868 std::vector<EVT> MemOps;
8869 bool DstAlignCanChange = false;
8871 MachineFrameInfo &MFI = MF.getFrameInfo();
8872 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8874 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8875 DstAlignCanChange = true;
8876 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8877 if (!SrcAlign || Alignment > *SrcAlign)
8878 SrcAlign = Alignment;
8879 assert(SrcAlign && "SrcAlign must be set");
8880 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
8881 if (!TLI.findOptimalMemOpLowering(
8882 C, MemOps, Limit,
8883 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
8884 /*IsVolatile*/ true),
8885 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8886 MF.getFunction().getAttributes()))
8887 return SDValue();
8888
8889 if (DstAlignCanChange) {
8890 Type *Ty = MemOps[0].getTypeForEVT(C);
8891 Align NewAlign = DL.getABITypeAlign(Ty);
8892
8893 // Don't promote to an alignment that would require dynamic stack
8894 // realignment which may conflict with optimizations such as tail call
8895 // optimization.
8897 if (!TRI->hasStackRealignment(MF))
8898 if (MaybeAlign StackAlign = DL.getStackAlignment())
8899 NewAlign = std::min(NewAlign, *StackAlign);
8900
8901 if (NewAlign > Alignment) {
8902 // Give the stack frame object a larger alignment if needed.
8903 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8904 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8905 Alignment = NewAlign;
8906 }
8907 }
8908
8909 // Prepare AAInfo for loads/stores after lowering this memmove.
8910 AAMDNodes NewAAInfo = AAInfo;
8911 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8912
8913 MachineMemOperand::Flags MMOFlags =
8915 uint64_t SrcOff = 0, DstOff = 0;
8916 SmallVector<SDValue, 8> LoadValues;
8917 SmallVector<SDValue, 8> LoadChains;
8918 SmallVector<SDValue, 8> OutChains;
8919 unsigned NumMemOps = MemOps.size();
8920 for (unsigned i = 0; i < NumMemOps; i++) {
8921 EVT VT = MemOps[i];
8922 unsigned VTSize = VT.getSizeInBits() / 8;
8923 SDValue Value;
8924
8925 bool isDereferenceable =
8926 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8927 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8928 if (isDereferenceable)
8930
8931 Value = DAG.getLoad(
8932 VT, dl, Chain,
8933 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8934 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8935 LoadValues.push_back(Value);
8936 LoadChains.push_back(Value.getValue(1));
8937 SrcOff += VTSize;
8938 }
8939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8940 OutChains.clear();
8941 for (unsigned i = 0; i < NumMemOps; i++) {
8942 EVT VT = MemOps[i];
8943 unsigned VTSize = VT.getSizeInBits() / 8;
8944 SDValue Store;
8945
8946 Store = DAG.getStore(
8947 Chain, dl, LoadValues[i],
8948 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8949 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8950 OutChains.push_back(Store);
8951 DstOff += VTSize;
8952 }
8953
8954 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8955}
8956
8957/// Lower the call to 'memset' intrinsic function into a series of store
8958/// operations.
8959///
8960/// \param DAG Selection DAG where lowered code is placed.
8961/// \param dl Link to corresponding IR location.
8962/// \param Chain Control flow dependency.
8963/// \param Dst Pointer to destination memory location.
8964/// \param Src Value of byte to write into the memory.
8965/// \param Size Number of bytes to write.
8966/// \param Alignment Alignment of the destination in bytes.
8967/// \param isVol True if destination is volatile.
8968/// \param AlwaysInline Makes sure no function call is generated.
8969/// \param DstPtrInfo IR information on the memory pointer.
8970/// \returns New head in the control flow, if lowering was successful, empty
8971/// SDValue otherwise.
8972///
8973/// The function tries to replace 'llvm.memset' intrinsic with several store
8974/// operations and value calculation code. This is usually profitable for small
8975/// memory size or when the semantic requires inlining.
8977 SDValue Chain, SDValue Dst, SDValue Src,
8978 uint64_t Size, Align Alignment, bool isVol,
8979 bool AlwaysInline, MachinePointerInfo DstPtrInfo,
8980 const AAMDNodes &AAInfo) {
8981 // Turn a memset of undef to nop.
8982 // FIXME: We need to honor volatile even is Src is undef.
8983 if (Src.isUndef())
8984 return Chain;
8985
8986 // Expand memset to a series of load/store ops if the size operand
8987 // falls below a certain threshold.
8988 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8989 std::vector<EVT> MemOps;
8990 bool DstAlignCanChange = false;
8991 LLVMContext &C = *DAG.getContext();
8993 MachineFrameInfo &MFI = MF.getFrameInfo();
8994 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8996 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8997 DstAlignCanChange = true;
8998 bool IsZeroVal = isNullConstant(Src);
8999 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
9000
9001 if (!TLI.findOptimalMemOpLowering(
9002 C, MemOps, Limit,
9003 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9004 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
9005 return SDValue();
9006
9007 if (DstAlignCanChange) {
9008 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
9009 const DataLayout &DL = DAG.getDataLayout();
9010 Align NewAlign = DL.getABITypeAlign(Ty);
9011
9012 // Don't promote to an alignment that would require dynamic stack
9013 // realignment which may conflict with optimizations such as tail call
9014 // optimization.
9016 if (!TRI->hasStackRealignment(MF))
9017 if (MaybeAlign StackAlign = DL.getStackAlignment())
9018 NewAlign = std::min(NewAlign, *StackAlign);
9019
9020 if (NewAlign > Alignment) {
9021 // Give the stack frame object a larger alignment if needed.
9022 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
9023 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
9024 Alignment = NewAlign;
9025 }
9026 }
9027
9028 SmallVector<SDValue, 8> OutChains;
9029 uint64_t DstOff = 0;
9030 unsigned NumMemOps = MemOps.size();
9031
9032 // Find the largest store and generate the bit pattern for it.
9033 EVT LargestVT = MemOps[0];
9034 for (unsigned i = 1; i < NumMemOps; i++)
9035 if (MemOps[i].bitsGT(LargestVT))
9036 LargestVT = MemOps[i];
9037 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
9038
9039 // Prepare AAInfo for loads/stores after lowering this memset.
9040 AAMDNodes NewAAInfo = AAInfo;
9041 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
9042
9043 for (unsigned i = 0; i < NumMemOps; i++) {
9044 EVT VT = MemOps[i];
9045 unsigned VTSize = VT.getSizeInBits() / 8;
9046 if (VTSize > Size) {
9047 // Issuing an unaligned load / store pair that overlaps with the previous
9048 // pair. Adjust the offset accordingly.
9049 assert(i == NumMemOps-1 && i != 0);
9050 DstOff -= VTSize - Size;
9051 }
9052
9053 // If this store is smaller than the largest store see whether we can get
9054 // the smaller value for free with a truncate or extract vector element and
9055 // then store.
9056 SDValue Value = MemSetValue;
9057 if (VT.bitsLT(LargestVT)) {
9058 unsigned Index;
9059 unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
9060 EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
9061 if (!LargestVT.isVector() && !VT.isVector() &&
9062 TLI.isTruncateFree(LargestVT, VT))
9063 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
9064 else if (LargestVT.isVector() && !VT.isVector() &&
9066 LargestVT.getTypeForEVT(*DAG.getContext()),
9067 VT.getSizeInBits(), Index) &&
9068 TLI.isTypeLegal(SVT) &&
9069 LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
9070 // Target which can combine store(extractelement VectorTy, Idx) can get
9071 // the smaller value for free.
9072 SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9073 Value = DAG.getExtractVectorElt(dl, VT, TailValue, Index);
9074 } else
9075 Value = getMemsetValue(Src, VT, DAG, dl);
9076 }
9077 assert(Value.getValueType() == VT && "Value with wrong type.");
9078 SDValue Store = DAG.getStore(
9079 Chain, dl, Value,
9080 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
9081 DstPtrInfo.getWithOffset(DstOff), Alignment,
9083 NewAAInfo);
9084 OutChains.push_back(Store);
9085 DstOff += VT.getSizeInBits() / 8;
9086 Size -= VTSize;
9087 }
9088
9089 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
9090}
9091
9093 unsigned AS) {
9094 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
9095 // pointer operands can be losslessly bitcasted to pointers of address space 0
9096 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
9097 report_fatal_error("cannot lower memory intrinsic in address space " +
9098 Twine(AS));
9099 }
9100}
9101
9103 const SelectionDAG *SelDAG,
9104 bool AllowReturnsFirstArg) {
9105 if (!CI || !CI->isTailCall())
9106 return false;
9107 // TODO: Fix "returns-first-arg" determination so it doesn't depend on which
9108 // helper symbol we lower to.
9109 return isInTailCallPosition(*CI, SelDAG->getTarget(),
9110 AllowReturnsFirstArg &&
9112}
9113
9114std::pair<SDValue, SDValue>
9116 SDValue Mem1, SDValue Size, const CallInst *CI) {
9117 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9118 if (!LibCallName)
9119 return {};
9120
9123 {Mem0, PT},
9124 {Mem1, PT},
9126
9128 bool IsTailCall =
9129 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9130
9131 CLI.setDebugLoc(dl)
9132 .setChain(Chain)
9133 .setLibCallee(
9134 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9136 getExternalSymbol(LibCallName, TLI->getPointerTy(getDataLayout())),
9137 std::move(Args))
9138 .setTailCall(IsTailCall);
9139
9140 return TLI->LowerCallTo(CLI);
9141}
9142
9144 SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size,
9145 Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI,
9146 std::optional<bool> OverrideTailCall, MachinePointerInfo DstPtrInfo,
9147 MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo,
9148 BatchAAResults *BatchAA) {
9149 // Check to see if we should lower the memcpy to loads and stores first.
9150 // For cases within the target-specified limits, this is the best choice.
9152 if (ConstantSize) {
9153 // Memcpy with size zero? Just return the original chain.
9154 if (ConstantSize->isZero())
9155 return Chain;
9156
9158 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9159 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9160 if (Result.getNode())
9161 return Result;
9162 }
9163
9164 // Then check to see if we should lower the memcpy with target-specific
9165 // code. If the target chooses to do this, this is the next best.
9166 if (TSI) {
9167 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9168 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
9169 DstPtrInfo, SrcPtrInfo);
9170 if (Result.getNode())
9171 return Result;
9172 }
9173
9174 // If we really need inline code and the target declined to provide it,
9175 // use a (potentially long) sequence of loads and stores.
9176 if (AlwaysInline) {
9177 assert(ConstantSize && "AlwaysInline requires a constant size!");
9179 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9180 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9181 }
9182
9185
9186 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
9187 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
9188 // respect volatile, so they may do things like read or write memory
9189 // beyond the given memory regions. But fixing this isn't easy, and most
9190 // people don't care.
9191
9192 // Emit a library call.
9195 Args.emplace_back(Dst, PtrTy);
9196 Args.emplace_back(Src, PtrTy);
9197 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9198 // FIXME: pass in SDLoc
9200 bool IsTailCall = false;
9201 const char *MemCpyName = TLI->getMemcpyName();
9202
9203 if (OverrideTailCall.has_value()) {
9204 IsTailCall = *OverrideTailCall;
9205 } else {
9206 bool LowersToMemcpy = StringRef(MemCpyName) == StringRef("memcpy");
9207 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemcpy);
9208 }
9209
9210 CLI.setDebugLoc(dl)
9211 .setChain(Chain)
9212 .setLibCallee(
9213 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9214 Dst.getValueType().getTypeForEVT(*getContext()),
9215 getExternalSymbol(MemCpyName, TLI->getPointerTy(getDataLayout())),
9216 std::move(Args))
9218 .setTailCall(IsTailCall);
9219
9220 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9221 return CallResult.second;
9222}
9223
9225 SDValue Dst, SDValue Src, SDValue Size,
9226 Type *SizeTy, unsigned ElemSz,
9227 bool isTailCall,
9228 MachinePointerInfo DstPtrInfo,
9229 MachinePointerInfo SrcPtrInfo) {
9230 // Emit a library call.
9233 Args.emplace_back(Dst, ArgTy);
9234 Args.emplace_back(Src, ArgTy);
9235 Args.emplace_back(Size, SizeTy);
9236
9237 RTLIB::Libcall LibraryCall =
9239 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9240 report_fatal_error("Unsupported element size");
9241
9243 CLI.setDebugLoc(dl)
9244 .setChain(Chain)
9245 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9247 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9248 TLI->getPointerTy(getDataLayout())),
9249 std::move(Args))
9251 .setTailCall(isTailCall);
9252
9253 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9254 return CallResult.second;
9255}
9256
9258 SDValue Src, SDValue Size, Align Alignment,
9259 bool isVol, const CallInst *CI,
9260 std::optional<bool> OverrideTailCall,
9261 MachinePointerInfo DstPtrInfo,
9262 MachinePointerInfo SrcPtrInfo,
9263 const AAMDNodes &AAInfo,
9264 BatchAAResults *BatchAA) {
9265 // Check to see if we should lower the memmove to loads and stores first.
9266 // For cases within the target-specified limits, this is the best choice.
9268 if (ConstantSize) {
9269 // Memmove with size zero? Just return the original chain.
9270 if (ConstantSize->isZero())
9271 return Chain;
9272
9274 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9275 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
9276 if (Result.getNode())
9277 return Result;
9278 }
9279
9280 // Then check to see if we should lower the memmove with target-specific
9281 // code. If the target chooses to do this, this is the next best.
9282 if (TSI) {
9283 SDValue Result =
9284 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
9285 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9286 if (Result.getNode())
9287 return Result;
9288 }
9289
9292
9293 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
9294 // not be safe. See memcpy above for more details.
9295
9296 // Emit a library call.
9299 Args.emplace_back(Dst, PtrTy);
9300 Args.emplace_back(Src, PtrTy);
9301 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9302 // FIXME: pass in SDLoc
9304
9305 bool IsTailCall = false;
9306 if (OverrideTailCall.has_value()) {
9307 IsTailCall = *OverrideTailCall;
9308 } else {
9309 bool LowersToMemmove =
9310 TLI->getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove");
9311 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemmove);
9312 }
9313
9314 CLI.setDebugLoc(dl)
9315 .setChain(Chain)
9316 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9317 Dst.getValueType().getTypeForEVT(*getContext()),
9318 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
9319 TLI->getPointerTy(getDataLayout())),
9320 std::move(Args))
9322 .setTailCall(IsTailCall);
9323
9324 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9325 return CallResult.second;
9326}
9327
9329 SDValue Dst, SDValue Src, SDValue Size,
9330 Type *SizeTy, unsigned ElemSz,
9331 bool isTailCall,
9332 MachinePointerInfo DstPtrInfo,
9333 MachinePointerInfo SrcPtrInfo) {
9334 // Emit a library call.
9336 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
9337 Args.emplace_back(Dst, IntPtrTy);
9338 Args.emplace_back(Src, IntPtrTy);
9339 Args.emplace_back(Size, SizeTy);
9340
9341 RTLIB::Libcall LibraryCall =
9343 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9344 report_fatal_error("Unsupported element size");
9345
9347 CLI.setDebugLoc(dl)
9348 .setChain(Chain)
9349 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9351 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9352 TLI->getPointerTy(getDataLayout())),
9353 std::move(Args))
9355 .setTailCall(isTailCall);
9356
9357 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9358 return CallResult.second;
9359}
9360
9362 SDValue Src, SDValue Size, Align Alignment,
9363 bool isVol, bool AlwaysInline,
9364 const CallInst *CI,
9365 MachinePointerInfo DstPtrInfo,
9366 const AAMDNodes &AAInfo) {
9367 // Check to see if we should lower the memset to stores first.
9368 // For cases within the target-specified limits, this is the best choice.
9370 if (ConstantSize) {
9371 // Memset with size zero? Just return the original chain.
9372 if (ConstantSize->isZero())
9373 return Chain;
9374
9375 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9376 ConstantSize->getZExtValue(), Alignment,
9377 isVol, false, DstPtrInfo, AAInfo);
9378
9379 if (Result.getNode())
9380 return Result;
9381 }
9382
9383 // Then check to see if we should lower the memset with target-specific
9384 // code. If the target chooses to do this, this is the next best.
9385 if (TSI) {
9386 SDValue Result = TSI->EmitTargetCodeForMemset(
9387 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9388 if (Result.getNode())
9389 return Result;
9390 }
9391
9392 // If we really need inline code and the target declined to provide it,
9393 // use a (potentially long) sequence of loads and stores.
9394 if (AlwaysInline) {
9395 assert(ConstantSize && "AlwaysInline requires a constant size!");
9396 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9397 ConstantSize->getZExtValue(), Alignment,
9398 isVol, true, DstPtrInfo, AAInfo);
9399 assert(Result &&
9400 "getMemsetStores must return a valid sequence when AlwaysInline");
9401 return Result;
9402 }
9403
9405
9406 // Emit a library call.
9407 auto &Ctx = *getContext();
9408 const auto& DL = getDataLayout();
9409
9411 // FIXME: pass in SDLoc
9412 CLI.setDebugLoc(dl).setChain(Chain);
9413
9414 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
9415
9416 bool UseBZero = isNullConstant(Src) && BzeroName;
9417 // If zeroing out and bzero is present, use it.
9418 if (UseBZero) {
9420 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9421 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9422 CLI.setLibCallee(
9423 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
9424 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
9425 } else {
9427 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9428 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9429 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9430 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9431 Dst.getValueType().getTypeForEVT(Ctx),
9432 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
9433 TLI->getPointerTy(DL)),
9434 std::move(Args));
9435 }
9436 bool LowersToMemset =
9437 TLI->getLibcallName(RTLIB::MEMSET) == StringRef("memset");
9438 // If we're going to use bzero, make sure not to tail call unless the
9439 // subsequent return doesn't need a value, as bzero doesn't return the first
9440 // arg unlike memset.
9441 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI) && !UseBZero;
9442 bool IsTailCall =
9443 CI && CI->isTailCall() &&
9444 isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg && LowersToMemset);
9445 CLI.setDiscardResult().setTailCall(IsTailCall);
9446
9447 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9448 return CallResult.second;
9449}
9450
9453 Type *SizeTy, unsigned ElemSz,
9454 bool isTailCall,
9455 MachinePointerInfo DstPtrInfo) {
9456 // Emit a library call.
9458 Args.emplace_back(Dst, getDataLayout().getIntPtrType(*getContext()));
9459 Args.emplace_back(Value, Type::getInt8Ty(*getContext()));
9460 Args.emplace_back(Size, SizeTy);
9461
9462 RTLIB::Libcall LibraryCall =
9464 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9465 report_fatal_error("Unsupported element size");
9466
9468 CLI.setDebugLoc(dl)
9469 .setChain(Chain)
9470 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9472 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9473 TLI->getPointerTy(getDataLayout())),
9474 std::move(Args))
9476 .setTailCall(isTailCall);
9477
9478 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9479 return CallResult.second;
9480}
9481
9482SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9484 MachineMemOperand *MMO,
9485 ISD::LoadExtType ExtType) {
9487 AddNodeIDNode(ID, Opcode, VTList, Ops);
9488 ID.AddInteger(MemVT.getRawBits());
9489 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9490 dl.getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9491 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9492 ID.AddInteger(MMO->getFlags());
9493 void* IP = nullptr;
9494 if (auto *E = cast_or_null<AtomicSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9495 E->refineAlignment(MMO);
9496 E->refineRanges(MMO);
9497 return SDValue(E, 0);
9498 }
9499
9500 auto *N = newSDNode<AtomicSDNode>(dl.getIROrder(), dl.getDebugLoc(), Opcode,
9501 VTList, MemVT, MMO, ExtType);
9502 createOperands(N, Ops);
9503
9504 CSEMap.InsertNode(N, IP);
9505 InsertNode(N);
9506 SDValue V(N, 0);
9507 NewSDValueDbgMsg(V, "Creating new node: ", this);
9508 return V;
9509}
9510
9512 EVT MemVT, SDVTList VTs, SDValue Chain,
9513 SDValue Ptr, SDValue Cmp, SDValue Swp,
9514 MachineMemOperand *MMO) {
9515 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9516 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9517 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
9518
9519 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
9520 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9521}
9522
9523SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9524 SDValue Chain, SDValue Ptr, SDValue Val,
9525 MachineMemOperand *MMO) {
9526 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9527 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9528 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9529 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9530 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9531 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9532 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9533 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9534 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9535 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9536 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9537 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9538 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9539 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9540 Opcode == ISD::ATOMIC_STORE) &&
9541 "Invalid Atomic Op");
9542
9543 EVT VT = Val.getValueType();
9544
9545 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
9546 getVTList(VT, MVT::Other);
9547 SDValue Ops[] = {Chain, Ptr, Val};
9548 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9549}
9550
9552 EVT MemVT, EVT VT, SDValue Chain,
9554 SDVTList VTs = getVTList(VT, MVT::Other);
9555 SDValue Ops[] = {Chain, Ptr};
9556 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs, Ops, MMO, ExtType);
9557}
9558
9559/// getMergeValues - Create a MERGE_VALUES node from the given operands.
9561 if (Ops.size() == 1)
9562 return Ops[0];
9563
9565 VTs.reserve(Ops.size());
9566 for (const SDValue &Op : Ops)
9567 VTs.push_back(Op.getValueType());
9568 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
9569}
9570
9572 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
9573 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
9575 const AAMDNodes &AAInfo) {
9576 if (Size.hasValue() && !Size.getValue())
9578
9580 MachineMemOperand *MMO =
9581 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
9582
9583 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
9584}
9585
9587 SDVTList VTList,
9588 ArrayRef<SDValue> Ops, EVT MemVT,
9589 MachineMemOperand *MMO) {
9590 assert(
9591 (Opcode == ISD::INTRINSIC_VOID || Opcode == ISD::INTRINSIC_W_CHAIN ||
9592 Opcode == ISD::PREFETCH ||
9593 (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
9594 Opcode >= ISD::BUILTIN_OP_END && TSI->isTargetMemoryOpcode(Opcode))) &&
9595 "Opcode is not a memory-accessing opcode!");
9596
9597 // Memoize the node unless it returns a glue result.
9599 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9601 AddNodeIDNode(ID, Opcode, VTList, Ops);
9602 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9603 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
9604 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9605 ID.AddInteger(MMO->getFlags());
9606 ID.AddInteger(MemVT.getRawBits());
9607 void *IP = nullptr;
9608 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9609 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
9610 return SDValue(E, 0);
9611 }
9612
9613 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9614 VTList, MemVT, MMO);
9615 createOperands(N, Ops);
9616
9617 CSEMap.InsertNode(N, IP);
9618 } else {
9619 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9620 VTList, MemVT, MMO);
9621 createOperands(N, Ops);
9622 }
9623 InsertNode(N);
9624 SDValue V(N, 0);
9625 NewSDValueDbgMsg(V, "Creating new node: ", this);
9626 return V;
9627}
9628
9630 SDValue Chain, int FrameIndex) {
9631 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9632 const auto VTs = getVTList(MVT::Other);
9633 SDValue Ops[2] = {
9634 Chain,
9635 getFrameIndex(FrameIndex,
9636 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
9637 true)};
9638
9640 AddNodeIDNode(ID, Opcode, VTs, Ops);
9641 ID.AddInteger(FrameIndex);
9642 void *IP = nullptr;
9643 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9644 return SDValue(E, 0);
9645
9646 LifetimeSDNode *N =
9647 newSDNode<LifetimeSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs);
9648 createOperands(N, Ops);
9649 CSEMap.InsertNode(N, IP);
9650 InsertNode(N);
9651 SDValue V(N, 0);
9652 NewSDValueDbgMsg(V, "Creating new node: ", this);
9653 return V;
9654}
9655
9657 uint64_t Guid, uint64_t Index,
9658 uint32_t Attr) {
9659 const unsigned Opcode = ISD::PSEUDO_PROBE;
9660 const auto VTs = getVTList(MVT::Other);
9661 SDValue Ops[] = {Chain};
9663 AddNodeIDNode(ID, Opcode, VTs, Ops);
9664 ID.AddInteger(Guid);
9665 ID.AddInteger(Index);
9666 void *IP = nullptr;
9667 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
9668 return SDValue(E, 0);
9669
9670 auto *N = newSDNode<PseudoProbeSDNode>(
9671 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
9672 createOperands(N, Ops);
9673 CSEMap.InsertNode(N, IP);
9674 InsertNode(N);
9675 SDValue V(N, 0);
9676 NewSDValueDbgMsg(V, "Creating new node: ", this);
9677 return V;
9678}
9679
9680/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9681/// MachinePointerInfo record from it. This is particularly useful because the
9682/// code generator has many cases where it doesn't bother passing in a
9683/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9685 SelectionDAG &DAG, SDValue Ptr,
9686 int64_t Offset = 0) {
9687 // If this is FI+Offset, we can model it.
9690 FI->getIndex(), Offset);
9691
9692 // If this is (FI+Offset1)+Offset2, we can model it.
9693 if (Ptr.getOpcode() != ISD::ADD ||
9694 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
9695 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
9696 return Info;
9697
9698 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9700 DAG.getMachineFunction(), FI,
9701 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
9702}
9703
9704/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9705/// MachinePointerInfo record from it. This is particularly useful because the
9706/// code generator has many cases where it doesn't bother passing in a
9707/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9709 SelectionDAG &DAG, SDValue Ptr,
9710 SDValue OffsetOp) {
9711 // If the 'Offset' value isn't a constant, we can't handle this.
9713 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
9714 if (OffsetOp.isUndef())
9715 return InferPointerInfo(Info, DAG, Ptr);
9716 return Info;
9717}
9718
9720 EVT VT, const SDLoc &dl, SDValue Chain,
9722 MachinePointerInfo PtrInfo, EVT MemVT,
9723 Align Alignment,
9724 MachineMemOperand::Flags MMOFlags,
9725 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9726 assert(Chain.getValueType() == MVT::Other &&
9727 "Invalid chain type");
9728
9729 MMOFlags |= MachineMemOperand::MOLoad;
9730 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9731 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9732 // clients.
9733 if (PtrInfo.V.isNull())
9734 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9735
9736 TypeSize Size = MemVT.getStoreSize();
9738 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9739 Alignment, AAInfo, Ranges);
9740 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
9741}
9742
9744 EVT VT, const SDLoc &dl, SDValue Chain,
9745 SDValue Ptr, SDValue Offset, EVT MemVT,
9746 MachineMemOperand *MMO) {
9747 if (VT == MemVT) {
9748 ExtType = ISD::NON_EXTLOAD;
9749 } else if (ExtType == ISD::NON_EXTLOAD) {
9750 assert(VT == MemVT && "Non-extending load from different memory type!");
9751 } else {
9752 // Extending load.
9753 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
9754 "Should only be an extending load, not truncating!");
9755 assert(VT.isInteger() == MemVT.isInteger() &&
9756 "Cannot convert from FP to Int or Int -> FP!");
9757 assert(VT.isVector() == MemVT.isVector() &&
9758 "Cannot use an ext load to convert to or from a vector!");
9759 assert((!VT.isVector() ||
9761 "Cannot use an ext load to change the number of vector elements!");
9762 }
9763
9764 assert((!MMO->getRanges() ||
9766 ->getBitWidth() == MemVT.getScalarSizeInBits() &&
9767 MemVT.isInteger())) &&
9768 "Range metadata and load type must match!");
9769
9770 bool Indexed = AM != ISD::UNINDEXED;
9771 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9772
9773 SDVTList VTs = Indexed ?
9774 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
9775 SDValue Ops[] = { Chain, Ptr, Offset };
9777 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
9778 ID.AddInteger(MemVT.getRawBits());
9779 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9780 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9781 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9782 ID.AddInteger(MMO->getFlags());
9783 void *IP = nullptr;
9784 if (auto *E = cast_or_null<LoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9785 E->refineAlignment(MMO);
9786 E->refineRanges(MMO);
9787 return SDValue(E, 0);
9788 }
9789 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9790 ExtType, MemVT, MMO);
9791 createOperands(N, Ops);
9792
9793 CSEMap.InsertNode(N, IP);
9794 InsertNode(N);
9795 SDValue V(N, 0);
9796 NewSDValueDbgMsg(V, "Creating new node: ", this);
9797 return V;
9798}
9799
9802 MaybeAlign Alignment,
9803 MachineMemOperand::Flags MMOFlags,
9804 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9805 SDValue Undef = getUNDEF(Ptr.getValueType());
9806 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9807 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9808}
9809
9812 SDValue Undef = getUNDEF(Ptr.getValueType());
9813 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9814 VT, MMO);
9815}
9816
9818 EVT VT, SDValue Chain, SDValue Ptr,
9819 MachinePointerInfo PtrInfo, EVT MemVT,
9820 MaybeAlign Alignment,
9821 MachineMemOperand::Flags MMOFlags,
9822 const AAMDNodes &AAInfo) {
9823 SDValue Undef = getUNDEF(Ptr.getValueType());
9824 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
9825 MemVT, Alignment, MMOFlags, AAInfo);
9826}
9827
9829 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
9830 MachineMemOperand *MMO) {
9831 SDValue Undef = getUNDEF(Ptr.getValueType());
9832 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
9833 MemVT, MMO);
9834}
9835
9839 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
9840 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9841 // Don't propagate the invariant or dereferenceable flags.
9842 auto MMOFlags =
9843 LD->getMemOperand()->getFlags() &
9845 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9846 LD->getChain(), Base, Offset, LD->getPointerInfo(),
9847 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9848}
9849
9852 Align Alignment,
9853 MachineMemOperand::Flags MMOFlags,
9854 const AAMDNodes &AAInfo) {
9855 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9856
9857 MMOFlags |= MachineMemOperand::MOStore;
9858 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9859
9860 if (PtrInfo.V.isNull())
9861 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9862
9865 MachineMemOperand *MMO =
9866 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
9867 return getStore(Chain, dl, Val, Ptr, MMO);
9868}
9869
9872 SDValue Undef = getUNDEF(Ptr.getValueType());
9873 return getStore(Chain, dl, Val, Ptr, Undef, Val.getValueType(), MMO,
9875}
9876
9880 bool IsTruncating) {
9881 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9882 EVT VT = Val.getValueType();
9883 if (VT == SVT) {
9884 IsTruncating = false;
9885 } else if (!IsTruncating) {
9886 assert(VT == SVT && "No-truncating store from different memory type!");
9887 } else {
9889 "Should only be a truncating store, not extending!");
9890 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9891 assert(VT.isVector() == SVT.isVector() &&
9892 "Cannot use trunc store to convert to or from a vector!");
9893 assert((!VT.isVector() ||
9895 "Cannot use trunc store to change the number of vector elements!");
9896 }
9897
9898 bool Indexed = AM != ISD::UNINDEXED;
9899 assert((Indexed || Offset.isUndef()) && "Unindexed store with an offset!");
9900 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9901 : getVTList(MVT::Other);
9902 SDValue Ops[] = {Chain, Val, Ptr, Offset};
9904 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9905 ID.AddInteger(SVT.getRawBits());
9906 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9907 dl.getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9908 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9909 ID.AddInteger(MMO->getFlags());
9910 void *IP = nullptr;
9911 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9912 cast<StoreSDNode>(E)->refineAlignment(MMO);
9913 return SDValue(E, 0);
9914 }
9915 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9916 IsTruncating, SVT, MMO);
9917 createOperands(N, Ops);
9918
9919 CSEMap.InsertNode(N, IP);
9920 InsertNode(N);
9921 SDValue V(N, 0);
9922 NewSDValueDbgMsg(V, "Creating new node: ", this);
9923 return V;
9924}
9925
9928 EVT SVT, Align Alignment,
9929 MachineMemOperand::Flags MMOFlags,
9930 const AAMDNodes &AAInfo) {
9931 assert(Chain.getValueType() == MVT::Other &&
9932 "Invalid chain type");
9933
9934 MMOFlags |= MachineMemOperand::MOStore;
9935 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9936
9937 if (PtrInfo.V.isNull())
9938 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9939
9941 MachineMemOperand *MMO = MF.getMachineMemOperand(
9942 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
9943 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
9944}
9945
9947 SDValue Ptr, EVT SVT,
9948 MachineMemOperand *MMO) {
9949 SDValue Undef = getUNDEF(Ptr.getValueType());
9950 return getStore(Chain, dl, Val, Ptr, Undef, SVT, MMO, ISD::UNINDEXED, true);
9951}
9952
9956 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
9957 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
9958 return getStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
9959 ST->getMemoryVT(), ST->getMemOperand(), AM,
9960 ST->isTruncatingStore());
9961}
9962
9964 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
9965 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
9966 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
9967 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
9968 const MDNode *Ranges, bool IsExpanding) {
9969 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9970
9971 MMOFlags |= MachineMemOperand::MOLoad;
9972 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9973 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9974 // clients.
9975 if (PtrInfo.V.isNull())
9976 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9977
9978 TypeSize Size = MemVT.getStoreSize();
9980 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9981 Alignment, AAInfo, Ranges);
9982 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
9983 MMO, IsExpanding);
9984}
9985
9987 ISD::LoadExtType ExtType, EVT VT,
9988 const SDLoc &dl, SDValue Chain, SDValue Ptr,
9989 SDValue Offset, SDValue Mask, SDValue EVL,
9990 EVT MemVT, MachineMemOperand *MMO,
9991 bool IsExpanding) {
9992 bool Indexed = AM != ISD::UNINDEXED;
9993 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9994
9995 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
9996 : getVTList(VT, MVT::Other);
9997 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
9999 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
10000 ID.AddInteger(MemVT.getRawBits());
10001 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10002 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10003 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10004 ID.AddInteger(MMO->getFlags());
10005 void *IP = nullptr;
10006 if (auto *E = cast_or_null<VPLoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
10007 E->refineAlignment(MMO);
10008 E->refineRanges(MMO);
10009 return SDValue(E, 0);
10010 }
10011 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10012 ExtType, IsExpanding, MemVT, MMO);
10013 createOperands(N, Ops);
10014
10015 CSEMap.InsertNode(N, IP);
10016 InsertNode(N);
10017 SDValue V(N, 0);
10018 NewSDValueDbgMsg(V, "Creating new node: ", this);
10019 return V;
10020}
10021
10023 SDValue Ptr, SDValue Mask, SDValue EVL,
10024 MachinePointerInfo PtrInfo,
10025 MaybeAlign Alignment,
10026 MachineMemOperand::Flags MMOFlags,
10027 const AAMDNodes &AAInfo, const MDNode *Ranges,
10028 bool IsExpanding) {
10029 SDValue Undef = getUNDEF(Ptr.getValueType());
10030 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10031 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10032 IsExpanding);
10033}
10034
10036 SDValue Ptr, SDValue Mask, SDValue EVL,
10037 MachineMemOperand *MMO, bool IsExpanding) {
10038 SDValue Undef = getUNDEF(Ptr.getValueType());
10039 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10040 Mask, EVL, VT, MMO, IsExpanding);
10041}
10042
10044 EVT VT, SDValue Chain, SDValue Ptr,
10045 SDValue Mask, SDValue EVL,
10046 MachinePointerInfo PtrInfo, EVT MemVT,
10047 MaybeAlign Alignment,
10048 MachineMemOperand::Flags MMOFlags,
10049 const AAMDNodes &AAInfo, bool IsExpanding) {
10050 SDValue Undef = getUNDEF(Ptr.getValueType());
10051 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10052 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
10053 IsExpanding);
10054}
10055
10057 EVT VT, SDValue Chain, SDValue Ptr,
10058 SDValue Mask, SDValue EVL, EVT MemVT,
10059 MachineMemOperand *MMO, bool IsExpanding) {
10060 SDValue Undef = getUNDEF(Ptr.getValueType());
10061 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10062 EVL, MemVT, MMO, IsExpanding);
10063}
10064
10068 auto *LD = cast<VPLoadSDNode>(OrigLoad);
10069 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
10070 // Don't propagate the invariant or dereferenceable flags.
10071 auto MMOFlags =
10072 LD->getMemOperand()->getFlags() &
10074 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
10075 LD->getChain(), Base, Offset, LD->getMask(),
10076 LD->getVectorLength(), LD->getPointerInfo(),
10077 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10078 nullptr, LD->isExpandingLoad());
10079}
10080
10083 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
10084 ISD::MemIndexedMode AM, bool IsTruncating,
10085 bool IsCompressing) {
10086 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10087 bool Indexed = AM != ISD::UNINDEXED;
10088 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10089 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10090 : getVTList(MVT::Other);
10091 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
10093 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10094 ID.AddInteger(MemVT.getRawBits());
10095 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10096 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10097 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10098 ID.AddInteger(MMO->getFlags());
10099 void *IP = nullptr;
10100 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10101 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10102 return SDValue(E, 0);
10103 }
10104 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10105 IsTruncating, IsCompressing, MemVT, MMO);
10106 createOperands(N, Ops);
10107
10108 CSEMap.InsertNode(N, IP);
10109 InsertNode(N);
10110 SDValue V(N, 0);
10111 NewSDValueDbgMsg(V, "Creating new node: ", this);
10112 return V;
10113}
10114
10116 SDValue Val, SDValue Ptr, SDValue Mask,
10117 SDValue EVL, MachinePointerInfo PtrInfo,
10118 EVT SVT, Align Alignment,
10119 MachineMemOperand::Flags MMOFlags,
10120 const AAMDNodes &AAInfo,
10121 bool IsCompressing) {
10122 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10123
10124 MMOFlags |= MachineMemOperand::MOStore;
10125 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
10126
10127 if (PtrInfo.V.isNull())
10128 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
10129
10131 MachineMemOperand *MMO = MF.getMachineMemOperand(
10132 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
10133 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
10134 IsCompressing);
10135}
10136
10138 SDValue Val, SDValue Ptr, SDValue Mask,
10139 SDValue EVL, EVT SVT,
10140 MachineMemOperand *MMO,
10141 bool IsCompressing) {
10142 EVT VT = Val.getValueType();
10143
10144 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10145 if (VT == SVT)
10146 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
10147 EVL, VT, MMO, ISD::UNINDEXED,
10148 /*IsTruncating*/ false, IsCompressing);
10149
10151 "Should only be a truncating store, not extending!");
10152 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10153 assert(VT.isVector() == SVT.isVector() &&
10154 "Cannot use trunc store to convert to or from a vector!");
10155 assert((!VT.isVector() ||
10157 "Cannot use trunc store to change the number of vector elements!");
10158
10159 SDVTList VTs = getVTList(MVT::Other);
10160 SDValue Undef = getUNDEF(Ptr.getValueType());
10161 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10163 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10164 ID.AddInteger(SVT.getRawBits());
10165 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10166 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10167 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10168 ID.AddInteger(MMO->getFlags());
10169 void *IP = nullptr;
10170 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10171 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10172 return SDValue(E, 0);
10173 }
10174 auto *N =
10175 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10176 ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
10177 createOperands(N, Ops);
10178
10179 CSEMap.InsertNode(N, IP);
10180 InsertNode(N);
10181 SDValue V(N, 0);
10182 NewSDValueDbgMsg(V, "Creating new node: ", this);
10183 return V;
10184}
10185
10189 auto *ST = cast<VPStoreSDNode>(OrigStore);
10190 assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
10191 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
10192 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
10193 Offset, ST->getMask(), ST->getVectorLength()};
10195 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10196 ID.AddInteger(ST->getMemoryVT().getRawBits());
10197 ID.AddInteger(ST->getRawSubclassData());
10198 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10199 ID.AddInteger(ST->getMemOperand()->getFlags());
10200 void *IP = nullptr;
10201 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10202 return SDValue(E, 0);
10203
10204 auto *N = newSDNode<VPStoreSDNode>(
10205 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
10206 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10207 createOperands(N, Ops);
10208
10209 CSEMap.InsertNode(N, IP);
10210 InsertNode(N);
10211 SDValue V(N, 0);
10212 NewSDValueDbgMsg(V, "Creating new node: ", this);
10213 return V;
10214}
10215
10217 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
10218 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
10219 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
10220 bool Indexed = AM != ISD::UNINDEXED;
10221 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10222
10223 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
10224 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10225 : getVTList(VT, MVT::Other);
10227 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
10228 ID.AddInteger(VT.getRawBits());
10229 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10230 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10231 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10232
10233 void *IP = nullptr;
10234 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10235 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
10236 return SDValue(E, 0);
10237 }
10238
10239 auto *N =
10240 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
10241 ExtType, IsExpanding, MemVT, MMO);
10242 createOperands(N, Ops);
10243 CSEMap.InsertNode(N, IP);
10244 InsertNode(N);
10245 SDValue V(N, 0);
10246 NewSDValueDbgMsg(V, "Creating new node: ", this);
10247 return V;
10248}
10249
10251 SDValue Ptr, SDValue Stride,
10252 SDValue Mask, SDValue EVL,
10253 MachineMemOperand *MMO,
10254 bool IsExpanding) {
10255 SDValue Undef = getUNDEF(Ptr.getValueType());
10257 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10258}
10259
10261 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
10262 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
10263 MachineMemOperand *MMO, bool IsExpanding) {
10264 SDValue Undef = getUNDEF(Ptr.getValueType());
10265 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
10266 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10267}
10268
10270 SDValue Val, SDValue Ptr,
10271 SDValue Offset, SDValue Stride,
10272 SDValue Mask, SDValue EVL, EVT MemVT,
10273 MachineMemOperand *MMO,
10275 bool IsTruncating, bool IsCompressing) {
10276 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10277 bool Indexed = AM != ISD::UNINDEXED;
10278 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10279 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10280 : getVTList(MVT::Other);
10281 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
10283 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10284 ID.AddInteger(MemVT.getRawBits());
10285 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10286 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10287 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10288 void *IP = nullptr;
10289 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10290 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10291 return SDValue(E, 0);
10292 }
10293 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10294 VTs, AM, IsTruncating,
10295 IsCompressing, MemVT, MMO);
10296 createOperands(N, Ops);
10297
10298 CSEMap.InsertNode(N, IP);
10299 InsertNode(N);
10300 SDValue V(N, 0);
10301 NewSDValueDbgMsg(V, "Creating new node: ", this);
10302 return V;
10303}
10304
10306 SDValue Val, SDValue Ptr,
10307 SDValue Stride, SDValue Mask,
10308 SDValue EVL, EVT SVT,
10309 MachineMemOperand *MMO,
10310 bool IsCompressing) {
10311 EVT VT = Val.getValueType();
10312
10313 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10314 if (VT == SVT)
10315 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
10316 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
10317 /*IsTruncating*/ false, IsCompressing);
10318
10320 "Should only be a truncating store, not extending!");
10321 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10322 assert(VT.isVector() == SVT.isVector() &&
10323 "Cannot use trunc store to convert to or from a vector!");
10324 assert((!VT.isVector() ||
10326 "Cannot use trunc store to change the number of vector elements!");
10327
10328 SDVTList VTs = getVTList(MVT::Other);
10329 SDValue Undef = getUNDEF(Ptr.getValueType());
10330 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10332 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10333 ID.AddInteger(SVT.getRawBits());
10334 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10335 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10336 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10337 void *IP = nullptr;
10338 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10339 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10340 return SDValue(E, 0);
10341 }
10342 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10343 VTs, ISD::UNINDEXED, true,
10344 IsCompressing, SVT, MMO);
10345 createOperands(N, Ops);
10346
10347 CSEMap.InsertNode(N, IP);
10348 InsertNode(N);
10349 SDValue V(N, 0);
10350 NewSDValueDbgMsg(V, "Creating new node: ", this);
10351 return V;
10352}
10353
10356 ISD::MemIndexType IndexType) {
10357 assert(Ops.size() == 6 && "Incompatible number of operands");
10358
10360 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
10361 ID.AddInteger(VT.getRawBits());
10362 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10363 dl.getIROrder(), VTs, VT, MMO, IndexType));
10364 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10365 ID.AddInteger(MMO->getFlags());
10366 void *IP = nullptr;
10367 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10368 cast<VPGatherSDNode>(E)->refineAlignment(MMO);
10369 return SDValue(E, 0);
10370 }
10371
10372 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10373 VT, MMO, IndexType);
10374 createOperands(N, Ops);
10375
10376 assert(N->getMask().getValueType().getVectorElementCount() ==
10377 N->getValueType(0).getVectorElementCount() &&
10378 "Vector width mismatch between mask and data");
10379 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10380 N->getValueType(0).getVectorElementCount().isScalable() &&
10381 "Scalable flags of index and data do not match");
10383 N->getIndex().getValueType().getVectorElementCount(),
10384 N->getValueType(0).getVectorElementCount()) &&
10385 "Vector width mismatch between index and data");
10386 assert(isa<ConstantSDNode>(N->getScale()) &&
10387 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10388 "Scale should be a constant power of 2");
10389
10390 CSEMap.InsertNode(N, IP);
10391 InsertNode(N);
10392 SDValue V(N, 0);
10393 NewSDValueDbgMsg(V, "Creating new node: ", this);
10394 return V;
10395}
10396
10399 MachineMemOperand *MMO,
10400 ISD::MemIndexType IndexType) {
10401 assert(Ops.size() == 7 && "Incompatible number of operands");
10402
10404 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
10405 ID.AddInteger(VT.getRawBits());
10406 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10407 dl.getIROrder(), VTs, VT, MMO, IndexType));
10408 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10409 ID.AddInteger(MMO->getFlags());
10410 void *IP = nullptr;
10411 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10412 cast<VPScatterSDNode>(E)->refineAlignment(MMO);
10413 return SDValue(E, 0);
10414 }
10415 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10416 VT, MMO, IndexType);
10417 createOperands(N, Ops);
10418
10419 assert(N->getMask().getValueType().getVectorElementCount() ==
10420 N->getValue().getValueType().getVectorElementCount() &&
10421 "Vector width mismatch between mask and data");
10422 assert(
10423 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10424 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10425 "Scalable flags of index and data do not match");
10427 N->getIndex().getValueType().getVectorElementCount(),
10428 N->getValue().getValueType().getVectorElementCount()) &&
10429 "Vector width mismatch between index and data");
10430 assert(isa<ConstantSDNode>(N->getScale()) &&
10431 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10432 "Scale should be a constant power of 2");
10433
10434 CSEMap.InsertNode(N, IP);
10435 InsertNode(N);
10436 SDValue V(N, 0);
10437 NewSDValueDbgMsg(V, "Creating new node: ", this);
10438 return V;
10439}
10440
10443 SDValue PassThru, EVT MemVT,
10444 MachineMemOperand *MMO,
10446 ISD::LoadExtType ExtTy, bool isExpanding) {
10447 bool Indexed = AM != ISD::UNINDEXED;
10448 assert((Indexed || Offset.isUndef()) &&
10449 "Unindexed masked load with an offset!");
10450 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
10451 : getVTList(VT, MVT::Other);
10452 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
10454 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
10455 ID.AddInteger(MemVT.getRawBits());
10456 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10457 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10458 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10459 ID.AddInteger(MMO->getFlags());
10460 void *IP = nullptr;
10461 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10462 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
10463 return SDValue(E, 0);
10464 }
10465 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10466 AM, ExtTy, isExpanding, MemVT, MMO);
10467 createOperands(N, Ops);
10468
10469 CSEMap.InsertNode(N, IP);
10470 InsertNode(N);
10471 SDValue V(N, 0);
10472 NewSDValueDbgMsg(V, "Creating new node: ", this);
10473 return V;
10474}
10475
10480 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
10481 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
10482 Offset, LD->getMask(), LD->getPassThru(),
10483 LD->getMemoryVT(), LD->getMemOperand(), AM,
10484 LD->getExtensionType(), LD->isExpandingLoad());
10485}
10486
10489 SDValue Mask, EVT MemVT,
10490 MachineMemOperand *MMO,
10491 ISD::MemIndexedMode AM, bool IsTruncating,
10492 bool IsCompressing) {
10493 assert(Chain.getValueType() == MVT::Other &&
10494 "Invalid chain type");
10495 bool Indexed = AM != ISD::UNINDEXED;
10496 assert((Indexed || Offset.isUndef()) &&
10497 "Unindexed masked store with an offset!");
10498 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
10499 : getVTList(MVT::Other);
10500 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
10502 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
10503 ID.AddInteger(MemVT.getRawBits());
10504 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10505 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10506 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10507 ID.AddInteger(MMO->getFlags());
10508 void *IP = nullptr;
10509 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10510 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
10511 return SDValue(E, 0);
10512 }
10513 auto *N =
10514 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10515 IsTruncating, IsCompressing, MemVT, MMO);
10516 createOperands(N, Ops);
10517
10518 CSEMap.InsertNode(N, IP);
10519 InsertNode(N);
10520 SDValue V(N, 0);
10521 NewSDValueDbgMsg(V, "Creating new node: ", this);
10522 return V;
10523}
10524
10529 assert(ST->getOffset().isUndef() &&
10530 "Masked store is already a indexed store!");
10531 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10532 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10533 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10534}
10535
10538 MachineMemOperand *MMO,
10539 ISD::MemIndexType IndexType,
10540 ISD::LoadExtType ExtTy) {
10541 assert(Ops.size() == 6 && "Incompatible number of operands");
10542
10544 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
10545 ID.AddInteger(MemVT.getRawBits());
10546 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10547 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10548 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10549 ID.AddInteger(MMO->getFlags());
10550 void *IP = nullptr;
10551 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10552 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10553 return SDValue(E, 0);
10554 }
10555
10556 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10557 VTs, MemVT, MMO, IndexType, ExtTy);
10558 createOperands(N, Ops);
10559
10560 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
10561 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10562 assert(N->getMask().getValueType().getVectorElementCount() ==
10563 N->getValueType(0).getVectorElementCount() &&
10564 "Vector width mismatch between mask and data");
10565 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10566 N->getValueType(0).getVectorElementCount().isScalable() &&
10567 "Scalable flags of index and data do not match");
10569 N->getIndex().getValueType().getVectorElementCount(),
10570 N->getValueType(0).getVectorElementCount()) &&
10571 "Vector width mismatch between index and data");
10572 assert(isa<ConstantSDNode>(N->getScale()) &&
10573 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10574 "Scale should be a constant power of 2");
10575
10576 CSEMap.InsertNode(N, IP);
10577 InsertNode(N);
10578 SDValue V(N, 0);
10579 NewSDValueDbgMsg(V, "Creating new node: ", this);
10580 return V;
10581}
10582
10585 MachineMemOperand *MMO,
10586 ISD::MemIndexType IndexType,
10587 bool IsTrunc) {
10588 assert(Ops.size() == 6 && "Incompatible number of operands");
10589
10591 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
10592 ID.AddInteger(MemVT.getRawBits());
10593 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10594 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10595 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10596 ID.AddInteger(MMO->getFlags());
10597 void *IP = nullptr;
10598 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10599 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
10600 return SDValue(E, 0);
10601 }
10602
10603 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10604 VTs, MemVT, MMO, IndexType, IsTrunc);
10605 createOperands(N, Ops);
10606
10607 assert(N->getMask().getValueType().getVectorElementCount() ==
10608 N->getValue().getValueType().getVectorElementCount() &&
10609 "Vector width mismatch between mask and data");
10610 assert(
10611 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10612 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10613 "Scalable flags of index and data do not match");
10615 N->getIndex().getValueType().getVectorElementCount(),
10616 N->getValue().getValueType().getVectorElementCount()) &&
10617 "Vector width mismatch between index and data");
10618 assert(isa<ConstantSDNode>(N->getScale()) &&
10619 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10620 "Scale should be a constant power of 2");
10621
10622 CSEMap.InsertNode(N, IP);
10623 InsertNode(N);
10624 SDValue V(N, 0);
10625 NewSDValueDbgMsg(V, "Creating new node: ", this);
10626 return V;
10627}
10628
10630 const SDLoc &dl, ArrayRef<SDValue> Ops,
10631 MachineMemOperand *MMO,
10632 ISD::MemIndexType IndexType) {
10633 assert(Ops.size() == 7 && "Incompatible number of operands");
10634
10636 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, VTs, Ops);
10637 ID.AddInteger(MemVT.getRawBits());
10638 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10639 dl.getIROrder(), VTs, MemVT, MMO, IndexType));
10640 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10641 ID.AddInteger(MMO->getFlags());
10642 void *IP = nullptr;
10643 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10644 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10645 return SDValue(E, 0);
10646 }
10647
10648 auto *N = newSDNode<MaskedHistogramSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10649 VTs, MemVT, MMO, IndexType);
10650 createOperands(N, Ops);
10651
10652 assert(N->getMask().getValueType().getVectorElementCount() ==
10653 N->getIndex().getValueType().getVectorElementCount() &&
10654 "Vector width mismatch between mask and data");
10655 assert(isa<ConstantSDNode>(N->getScale()) &&
10656 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10657 "Scale should be a constant power of 2");
10658 assert(N->getInc().getValueType().isInteger() && "Non integer update value");
10659
10660 CSEMap.InsertNode(N, IP);
10661 InsertNode(N);
10662 SDValue V(N, 0);
10663 NewSDValueDbgMsg(V, "Creating new node: ", this);
10664 return V;
10665}
10666
10668 SDValue Ptr, SDValue Mask, SDValue EVL,
10669 MachineMemOperand *MMO) {
10670 SDVTList VTs = getVTList(VT, EVL.getValueType(), MVT::Other);
10671 SDValue Ops[] = {Chain, Ptr, Mask, EVL};
10673 AddNodeIDNode(ID, ISD::VP_LOAD_FF, VTs, Ops);
10674 ID.AddInteger(VT.getRawBits());
10675 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(DL.getIROrder(),
10676 VTs, VT, MMO));
10677 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10678 ID.AddInteger(MMO->getFlags());
10679 void *IP = nullptr;
10680 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10681 cast<VPLoadFFSDNode>(E)->refineAlignment(MMO);
10682 return SDValue(E, 0);
10683 }
10684 auto *N = newSDNode<VPLoadFFSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs,
10685 VT, MMO);
10686 createOperands(N, Ops);
10687
10688 CSEMap.InsertNode(N, IP);
10689 InsertNode(N);
10690 SDValue V(N, 0);
10691 NewSDValueDbgMsg(V, "Creating new node: ", this);
10692 return V;
10693}
10694
10696 EVT MemVT, MachineMemOperand *MMO) {
10697 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10698 SDVTList VTs = getVTList(MVT::Other);
10699 SDValue Ops[] = {Chain, Ptr};
10701 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
10702 ID.AddInteger(MemVT.getRawBits());
10703 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10704 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10705 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10706 ID.AddInteger(MMO->getFlags());
10707 void *IP = nullptr;
10708 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10709 return SDValue(E, 0);
10710
10711 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
10712 dl.getDebugLoc(), VTs, MemVT, MMO);
10713 createOperands(N, Ops);
10714
10715 CSEMap.InsertNode(N, IP);
10716 InsertNode(N);
10717 SDValue V(N, 0);
10718 NewSDValueDbgMsg(V, "Creating new node: ", this);
10719 return V;
10720}
10721
10723 EVT MemVT, MachineMemOperand *MMO) {
10724 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10725 SDVTList VTs = getVTList(MVT::Other);
10726 SDValue Ops[] = {Chain, Ptr};
10728 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
10729 ID.AddInteger(MemVT.getRawBits());
10730 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10731 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10732 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10733 ID.AddInteger(MMO->getFlags());
10734 void *IP = nullptr;
10735 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10736 return SDValue(E, 0);
10737
10738 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
10739 dl.getDebugLoc(), VTs, MemVT, MMO);
10740 createOperands(N, Ops);
10741
10742 CSEMap.InsertNode(N, IP);
10743 InsertNode(N);
10744 SDValue V(N, 0);
10745 NewSDValueDbgMsg(V, "Creating new node: ", this);
10746 return V;
10747}
10748
10750 // select undef, T, F --> T (if T is a constant), otherwise F
10751 // select, ?, undef, F --> F
10752 // select, ?, T, undef --> T
10753 if (Cond.isUndef())
10754 return isConstantValueOfAnyType(T) ? T : F;
10755 if (T.isUndef())
10756 return F;
10757 if (F.isUndef())
10758 return T;
10759
10760 // select true, T, F --> T
10761 // select false, T, F --> F
10762 if (auto C = isBoolConstant(Cond))
10763 return *C ? T : F;
10764
10765 // select ?, T, T --> T
10766 if (T == F)
10767 return T;
10768
10769 return SDValue();
10770}
10771
10773 // shift undef, Y --> 0 (can always assume that the undef value is 0)
10774 if (X.isUndef())
10775 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
10776 // shift X, undef --> undef (because it may shift by the bitwidth)
10777 if (Y.isUndef())
10778 return getUNDEF(X.getValueType());
10779
10780 // shift 0, Y --> 0
10781 // shift X, 0 --> X
10783 return X;
10784
10785 // shift X, C >= bitwidth(X) --> undef
10786 // All vector elements must be too big (or undef) to avoid partial undefs.
10787 auto isShiftTooBig = [X](ConstantSDNode *Val) {
10788 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
10789 };
10790 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
10791 return getUNDEF(X.getValueType());
10792
10793 // shift i1/vXi1 X, Y --> X (any non-zero shift amount is undefined).
10794 if (X.getValueType().getScalarType() == MVT::i1)
10795 return X;
10796
10797 return SDValue();
10798}
10799
10801 SDNodeFlags Flags) {
10802 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
10803 // (an undef operand can be chosen to be Nan/Inf), then the result of this
10804 // operation is poison. That result can be relaxed to undef.
10805 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
10806 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
10807 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10808 (YC && YC->getValueAPF().isNaN());
10809 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10810 (YC && YC->getValueAPF().isInfinity());
10811
10812 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
10813 return getUNDEF(X.getValueType());
10814
10815 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
10816 return getUNDEF(X.getValueType());
10817
10818 if (!YC)
10819 return SDValue();
10820
10821 // X + -0.0 --> X
10822 if (Opcode == ISD::FADD)
10823 if (YC->getValueAPF().isNegZero())
10824 return X;
10825
10826 // X - +0.0 --> X
10827 if (Opcode == ISD::FSUB)
10828 if (YC->getValueAPF().isPosZero())
10829 return X;
10830
10831 // X * 1.0 --> X
10832 // X / 1.0 --> X
10833 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
10834 if (YC->getValueAPF().isExactlyValue(1.0))
10835 return X;
10836
10837 // X * 0.0 --> 0.0
10838 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10839 if (YC->getValueAPF().isZero())
10840 return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
10841
10842 return SDValue();
10843}
10844
10846 SDValue Ptr, SDValue SV, unsigned Align) {
10847 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
10848 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
10849}
10850
10851SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10853 switch (Ops.size()) {
10854 case 0: return getNode(Opcode, DL, VT);
10855 case 1: return getNode(Opcode, DL, VT, Ops[0].get());
10856 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
10857 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
10858 default: break;
10859 }
10860
10861 // Copy from an SDUse array into an SDValue array for use with
10862 // the regular getNode logic.
10864 return getNode(Opcode, DL, VT, NewOps);
10865}
10866
10867SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10869 SDNodeFlags Flags;
10870 if (Inserter)
10871 Flags = Inserter->getFlags();
10872 return getNode(Opcode, DL, VT, Ops, Flags);
10873}
10874
10875SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10876 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10877 unsigned NumOps = Ops.size();
10878 switch (NumOps) {
10879 case 0: return getNode(Opcode, DL, VT);
10880 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
10881 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
10882 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
10883 default: break;
10884 }
10885
10886#ifndef NDEBUG
10887 for (const auto &Op : Ops)
10888 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10889 "Operand is DELETED_NODE!");
10890#endif
10891
10892 switch (Opcode) {
10893 default: break;
10894 case ISD::BUILD_VECTOR:
10895 // Attempt to simplify BUILD_VECTOR.
10896 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
10897 return V;
10898 break;
10900 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
10901 return V;
10902 break;
10903 case ISD::SELECT_CC:
10904 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
10905 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
10906 "LHS and RHS of condition must have same type!");
10907 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10908 "True and False arms of SelectCC must have same type!");
10909 assert(Ops[2].getValueType() == VT &&
10910 "select_cc node must be of same type as true and false value!");
10911 assert((!Ops[0].getValueType().isVector() ||
10912 Ops[0].getValueType().getVectorElementCount() ==
10913 VT.getVectorElementCount()) &&
10914 "Expected select_cc with vector result to have the same sized "
10915 "comparison type!");
10916 break;
10917 case ISD::BR_CC:
10918 assert(NumOps == 5 && "BR_CC takes 5 operands!");
10919 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10920 "LHS/RHS of comparison should match types!");
10921 break;
10922 case ISD::VP_ADD:
10923 case ISD::VP_SUB:
10924 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
10925 if (VT.getScalarType() == MVT::i1)
10926 Opcode = ISD::VP_XOR;
10927 break;
10928 case ISD::VP_MUL:
10929 // If it is VP_MUL mask operation then turn it to VP_AND
10930 if (VT.getScalarType() == MVT::i1)
10931 Opcode = ISD::VP_AND;
10932 break;
10933 case ISD::VP_REDUCE_MUL:
10934 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
10935 if (VT == MVT::i1)
10936 Opcode = ISD::VP_REDUCE_AND;
10937 break;
10938 case ISD::VP_REDUCE_ADD:
10939 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
10940 if (VT == MVT::i1)
10941 Opcode = ISD::VP_REDUCE_XOR;
10942 break;
10943 case ISD::VP_REDUCE_SMAX:
10944 case ISD::VP_REDUCE_UMIN:
10945 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
10946 // VP_REDUCE_AND.
10947 if (VT == MVT::i1)
10948 Opcode = ISD::VP_REDUCE_AND;
10949 break;
10950 case ISD::VP_REDUCE_SMIN:
10951 case ISD::VP_REDUCE_UMAX:
10952 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
10953 // VP_REDUCE_OR.
10954 if (VT == MVT::i1)
10955 Opcode = ISD::VP_REDUCE_OR;
10956 break;
10957 }
10958
10959 // Memoize nodes.
10960 SDNode *N;
10961 SDVTList VTs = getVTList(VT);
10962
10963 if (VT != MVT::Glue) {
10965 AddNodeIDNode(ID, Opcode, VTs, Ops);
10966 void *IP = nullptr;
10967
10968 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10969 E->intersectFlagsWith(Flags);
10970 return SDValue(E, 0);
10971 }
10972
10973 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10974 createOperands(N, Ops);
10975
10976 CSEMap.InsertNode(N, IP);
10977 } else {
10978 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10979 createOperands(N, Ops);
10980 }
10981
10982 N->setFlags(Flags);
10983 InsertNode(N);
10984 SDValue V(N, 0);
10985 NewSDValueDbgMsg(V, "Creating new node: ", this);
10986 return V;
10987}
10988
10989SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10990 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
10991 SDNodeFlags Flags;
10992 if (Inserter)
10993 Flags = Inserter->getFlags();
10994 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
10995}
10996
10997SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10999 const SDNodeFlags Flags) {
11000 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11001}
11002
11003SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11005 SDNodeFlags Flags;
11006 if (Inserter)
11007 Flags = Inserter->getFlags();
11008 return getNode(Opcode, DL, VTList, Ops, Flags);
11009}
11010
11011SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11012 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
11013 if (VTList.NumVTs == 1)
11014 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
11015
11016#ifndef NDEBUG
11017 for (const auto &Op : Ops)
11018 assert(Op.getOpcode() != ISD::DELETED_NODE &&
11019 "Operand is DELETED_NODE!");
11020#endif
11021
11022 switch (Opcode) {
11023 case ISD::SADDO:
11024 case ISD::UADDO:
11025 case ISD::SSUBO:
11026 case ISD::USUBO: {
11027 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11028 "Invalid add/sub overflow op!");
11029 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11030 Ops[0].getValueType() == Ops[1].getValueType() &&
11031 Ops[0].getValueType() == VTList.VTs[0] &&
11032 "Binary operator types must match!");
11033 SDValue N1 = Ops[0], N2 = Ops[1];
11034 canonicalizeCommutativeBinop(Opcode, N1, N2);
11035
11036 // (X +- 0) -> X with zero-overflow.
11037 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
11038 /*AllowTruncation*/ true);
11039 if (N2CV && N2CV->isZero()) {
11040 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
11041 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
11042 }
11043
11044 if (VTList.VTs[0].getScalarType() == MVT::i1 &&
11045 VTList.VTs[1].getScalarType() == MVT::i1) {
11046 SDValue F1 = getFreeze(N1);
11047 SDValue F2 = getFreeze(N2);
11048 // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
11049 if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
11050 return getNode(ISD::MERGE_VALUES, DL, VTList,
11051 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11052 getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
11053 Flags);
11054 // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
11055 if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
11056 SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
11057 return getNode(ISD::MERGE_VALUES, DL, VTList,
11058 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11059 getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
11060 Flags);
11061 }
11062 }
11063 break;
11064 }
11065 case ISD::SADDO_CARRY:
11066 case ISD::UADDO_CARRY:
11067 case ISD::SSUBO_CARRY:
11068 case ISD::USUBO_CARRY:
11069 assert(VTList.NumVTs == 2 && Ops.size() == 3 &&
11070 "Invalid add/sub overflow op!");
11071 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11072 Ops[0].getValueType() == Ops[1].getValueType() &&
11073 Ops[0].getValueType() == VTList.VTs[0] &&
11074 Ops[2].getValueType() == VTList.VTs[1] &&
11075 "Binary operator types must match!");
11076 break;
11077 case ISD::SMUL_LOHI:
11078 case ISD::UMUL_LOHI: {
11079 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
11080 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
11081 VTList.VTs[0] == Ops[0].getValueType() &&
11082 VTList.VTs[0] == Ops[1].getValueType() &&
11083 "Binary operator types must match!");
11084 // Constant fold.
11087 if (LHS && RHS) {
11088 unsigned Width = VTList.VTs[0].getScalarSizeInBits();
11089 unsigned OutWidth = Width * 2;
11090 APInt Val = LHS->getAPIntValue();
11091 APInt Mul = RHS->getAPIntValue();
11092 if (Opcode == ISD::SMUL_LOHI) {
11093 Val = Val.sext(OutWidth);
11094 Mul = Mul.sext(OutWidth);
11095 } else {
11096 Val = Val.zext(OutWidth);
11097 Mul = Mul.zext(OutWidth);
11098 }
11099 Val *= Mul;
11100
11101 SDValue Hi =
11102 getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
11103 SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
11104 return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
11105 }
11106 break;
11107 }
11108 case ISD::FFREXP: {
11109 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
11110 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
11111 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
11112
11114 int FrexpExp;
11115 APFloat FrexpMant =
11116 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
11117 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
11118 SDValue Result1 =
11119 getConstant(FrexpMant.isFinite() ? FrexpExp : 0, DL, VTList.VTs[1]);
11120 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
11121 }
11122
11123 break;
11124 }
11126 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11127 "Invalid STRICT_FP_EXTEND!");
11128 assert(VTList.VTs[0].isFloatingPoint() &&
11129 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
11130 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11131 "STRICT_FP_EXTEND result type should be vector iff the operand "
11132 "type is vector!");
11133 assert((!VTList.VTs[0].isVector() ||
11134 VTList.VTs[0].getVectorElementCount() ==
11135 Ops[1].getValueType().getVectorElementCount()) &&
11136 "Vector element count mismatch!");
11137 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
11138 "Invalid fpext node, dst <= src!");
11139 break;
11141 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
11142 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11143 "STRICT_FP_ROUND result type should be vector iff the operand "
11144 "type is vector!");
11145 assert((!VTList.VTs[0].isVector() ||
11146 VTList.VTs[0].getVectorElementCount() ==
11147 Ops[1].getValueType().getVectorElementCount()) &&
11148 "Vector element count mismatch!");
11149 assert(VTList.VTs[0].isFloatingPoint() &&
11150 Ops[1].getValueType().isFloatingPoint() &&
11151 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
11152 Ops[2].getOpcode() == ISD::TargetConstant &&
11153 (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
11154 "Invalid STRICT_FP_ROUND!");
11155 break;
11156 }
11157
11158 // Memoize the node unless it returns a glue result.
11159 SDNode *N;
11160 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
11162 AddNodeIDNode(ID, Opcode, VTList, Ops);
11163 void *IP = nullptr;
11164 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11165 E->intersectFlagsWith(Flags);
11166 return SDValue(E, 0);
11167 }
11168
11169 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11170 createOperands(N, Ops);
11171 CSEMap.InsertNode(N, IP);
11172 } else {
11173 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11174 createOperands(N, Ops);
11175 }
11176
11177 N->setFlags(Flags);
11178 InsertNode(N);
11179 SDValue V(N, 0);
11180 NewSDValueDbgMsg(V, "Creating new node: ", this);
11181 return V;
11182}
11183
11184SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11185 SDVTList VTList) {
11186 return getNode(Opcode, DL, VTList, ArrayRef<SDValue>());
11187}
11188
11189SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11190 SDValue N1) {
11191 SDValue Ops[] = { N1 };
11192 return getNode(Opcode, DL, VTList, Ops);
11193}
11194
11195SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11196 SDValue N1, SDValue N2) {
11197 SDValue Ops[] = { N1, N2 };
11198 return getNode(Opcode, DL, VTList, Ops);
11199}
11200
11201SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11202 SDValue N1, SDValue N2, SDValue N3) {
11203 SDValue Ops[] = { N1, N2, N3 };
11204 return getNode(Opcode, DL, VTList, Ops);
11205}
11206
11207SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11208 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
11209 SDValue Ops[] = { N1, N2, N3, N4 };
11210 return getNode(Opcode, DL, VTList, Ops);
11211}
11212
11213SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11214 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
11215 SDValue N5) {
11216 SDValue Ops[] = { N1, N2, N3, N4, N5 };
11217 return getNode(Opcode, DL, VTList, Ops);
11218}
11219
11221 if (!VT.isExtended())
11222 return makeVTList(SDNode::getValueTypeList(VT.getSimpleVT()), 1);
11223
11224 return makeVTList(&(*EVTs.insert(VT).first), 1);
11225}
11226
11229 ID.AddInteger(2U);
11230 ID.AddInteger(VT1.getRawBits());
11231 ID.AddInteger(VT2.getRawBits());
11232
11233 void *IP = nullptr;
11234 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11235 if (!Result) {
11236 EVT *Array = Allocator.Allocate<EVT>(2);
11237 Array[0] = VT1;
11238 Array[1] = VT2;
11239 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
11240 VTListMap.InsertNode(Result, IP);
11241 }
11242 return Result->getSDVTList();
11243}
11244
11247 ID.AddInteger(3U);
11248 ID.AddInteger(VT1.getRawBits());
11249 ID.AddInteger(VT2.getRawBits());
11250 ID.AddInteger(VT3.getRawBits());
11251
11252 void *IP = nullptr;
11253 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11254 if (!Result) {
11255 EVT *Array = Allocator.Allocate<EVT>(3);
11256 Array[0] = VT1;
11257 Array[1] = VT2;
11258 Array[2] = VT3;
11259 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
11260 VTListMap.InsertNode(Result, IP);
11261 }
11262 return Result->getSDVTList();
11263}
11264
11267 ID.AddInteger(4U);
11268 ID.AddInteger(VT1.getRawBits());
11269 ID.AddInteger(VT2.getRawBits());
11270 ID.AddInteger(VT3.getRawBits());
11271 ID.AddInteger(VT4.getRawBits());
11272
11273 void *IP = nullptr;
11274 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11275 if (!Result) {
11276 EVT *Array = Allocator.Allocate<EVT>(4);
11277 Array[0] = VT1;
11278 Array[1] = VT2;
11279 Array[2] = VT3;
11280 Array[3] = VT4;
11281 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
11282 VTListMap.InsertNode(Result, IP);
11283 }
11284 return Result->getSDVTList();
11285}
11286
11288 unsigned NumVTs = VTs.size();
11290 ID.AddInteger(NumVTs);
11291 for (unsigned index = 0; index < NumVTs; index++) {
11292 ID.AddInteger(VTs[index].getRawBits());
11293 }
11294
11295 void *IP = nullptr;
11296 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11297 if (!Result) {
11298 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
11299 llvm::copy(VTs, Array);
11300 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
11301 VTListMap.InsertNode(Result, IP);
11302 }
11303 return Result->getSDVTList();
11304}
11305
11306
11307/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
11308/// specified operands. If the resultant node already exists in the DAG,
11309/// this does not modify the specified node, instead it returns the node that
11310/// already exists. If the resultant node does not exist in the DAG, the
11311/// input node is returned. As a degenerate case, if you specify the same
11312/// input operands as the node already has, the input node is returned.
11314 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
11315
11316 // Check to see if there is no change.
11317 if (Op == N->getOperand(0)) return N;
11318
11319 // See if the modified node already exists.
11320 void *InsertPos = nullptr;
11321 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
11322 return Existing;
11323
11324 // Nope it doesn't. Remove the node from its current place in the maps.
11325 if (InsertPos)
11326 if (!RemoveNodeFromCSEMaps(N))
11327 InsertPos = nullptr;
11328
11329 // Now we update the operands.
11330 N->OperandList[0].set(Op);
11331
11333 // If this gets put into a CSE map, add it.
11334 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11335 return N;
11336}
11337
11339 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
11340
11341 // Check to see if there is no change.
11342 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
11343 return N; // No operands changed, just return the input node.
11344
11345 // See if the modified node already exists.
11346 void *InsertPos = nullptr;
11347 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
11348 return Existing;
11349
11350 // Nope it doesn't. Remove the node from its current place in the maps.
11351 if (InsertPos)
11352 if (!RemoveNodeFromCSEMaps(N))
11353 InsertPos = nullptr;
11354
11355 // Now we update the operands.
11356 if (N->OperandList[0] != Op1)
11357 N->OperandList[0].set(Op1);
11358 if (N->OperandList[1] != Op2)
11359 N->OperandList[1].set(Op2);
11360
11362 // If this gets put into a CSE map, add it.
11363 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11364 return N;
11365}
11366
11369 SDValue Ops[] = { Op1, Op2, Op3 };
11370 return UpdateNodeOperands(N, Ops);
11371}
11372
11375 SDValue Op3, SDValue Op4) {
11376 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
11377 return UpdateNodeOperands(N, Ops);
11378}
11379
11382 SDValue Op3, SDValue Op4, SDValue Op5) {
11383 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11384 return UpdateNodeOperands(N, Ops);
11385}
11386
11389 unsigned NumOps = Ops.size();
11390 assert(N->getNumOperands() == NumOps &&
11391 "Update with wrong number of operands");
11392
11393 // If no operands changed just return the input node.
11394 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
11395 return N;
11396
11397 // See if the modified node already exists.
11398 void *InsertPos = nullptr;
11399 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
11400 return Existing;
11401
11402 // Nope it doesn't. Remove the node from its current place in the maps.
11403 if (InsertPos)
11404 if (!RemoveNodeFromCSEMaps(N))
11405 InsertPos = nullptr;
11406
11407 // Now we update the operands.
11408 for (unsigned i = 0; i != NumOps; ++i)
11409 if (N->OperandList[i] != Ops[i])
11410 N->OperandList[i].set(Ops[i]);
11411
11413 // If this gets put into a CSE map, add it.
11414 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11415 return N;
11416}
11417
11418/// DropOperands - Release the operands and set this node to have
11419/// zero operands.
11421 // Unlike the code in MorphNodeTo that does this, we don't need to
11422 // watch for dead nodes here.
11423 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
11424 SDUse &Use = *I++;
11425 Use.set(SDValue());
11426 }
11427}
11428
11430 ArrayRef<MachineMemOperand *> NewMemRefs) {
11431 if (NewMemRefs.empty()) {
11432 N->clearMemRefs();
11433 return;
11434 }
11435
11436 // Check if we can avoid allocating by storing a single reference directly.
11437 if (NewMemRefs.size() == 1) {
11438 N->MemRefs = NewMemRefs[0];
11439 N->NumMemRefs = 1;
11440 return;
11441 }
11442
11443 MachineMemOperand **MemRefsBuffer =
11444 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
11445 llvm::copy(NewMemRefs, MemRefsBuffer);
11446 N->MemRefs = MemRefsBuffer;
11447 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
11448}
11449
11450/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
11451/// machine opcode.
11452///
11454 EVT VT) {
11455 SDVTList VTs = getVTList(VT);
11456 return SelectNodeTo(N, MachineOpc, VTs, {});
11457}
11458
11460 EVT VT, SDValue Op1) {
11461 SDVTList VTs = getVTList(VT);
11462 SDValue Ops[] = { Op1 };
11463 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11464}
11465
11467 EVT VT, SDValue Op1,
11468 SDValue Op2) {
11469 SDVTList VTs = getVTList(VT);
11470 SDValue Ops[] = { Op1, Op2 };
11471 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11472}
11473
11475 EVT VT, SDValue Op1,
11476 SDValue Op2, SDValue Op3) {
11477 SDVTList VTs = getVTList(VT);
11478 SDValue Ops[] = { Op1, Op2, Op3 };
11479 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11480}
11481
11484 SDVTList VTs = getVTList(VT);
11485 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11486}
11487
11489 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
11490 SDVTList VTs = getVTList(VT1, VT2);
11491 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11492}
11493
11495 EVT VT1, EVT VT2) {
11496 SDVTList VTs = getVTList(VT1, VT2);
11497 return SelectNodeTo(N, MachineOpc, VTs, {});
11498}
11499
11501 EVT VT1, EVT VT2, EVT VT3,
11503 SDVTList VTs = getVTList(VT1, VT2, VT3);
11504 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11505}
11506
11508 EVT VT1, EVT VT2,
11509 SDValue Op1, SDValue Op2) {
11510 SDVTList VTs = getVTList(VT1, VT2);
11511 SDValue Ops[] = { Op1, Op2 };
11512 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11513}
11514
11517 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
11518 // Reset the NodeID to -1.
11519 New->setNodeId(-1);
11520 if (New != N) {
11521 ReplaceAllUsesWith(N, New);
11523 }
11524 return New;
11525}
11526
11527/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
11528/// the line number information on the merged node since it is not possible to
11529/// preserve the information that operation is associated with multiple lines.
11530/// This will make the debugger working better at -O0, were there is a higher
11531/// probability having other instructions associated with that line.
11532///
11533/// For IROrder, we keep the smaller of the two
11534SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
11535 DebugLoc NLoc = N->getDebugLoc();
11536 if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
11537 N->setDebugLoc(DebugLoc());
11538 }
11539 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
11540 N->setIROrder(Order);
11541 return N;
11542}
11543
11544/// MorphNodeTo - This *mutates* the specified node to have the specified
11545/// return type, opcode, and operands.
11546///
11547/// Note that MorphNodeTo returns the resultant node. If there is already a
11548/// node of the specified opcode and operands, it returns that node instead of
11549/// the current one. Note that the SDLoc need not be the same.
11550///
11551/// Using MorphNodeTo is faster than creating a new node and swapping it in
11552/// with ReplaceAllUsesWith both because it often avoids allocating a new
11553/// node, and because it doesn't require CSE recalculation for any of
11554/// the node's users.
11555///
11556/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
11557/// As a consequence it isn't appropriate to use from within the DAG combiner or
11558/// the legalizer which maintain worklists that would need to be updated when
11559/// deleting things.
11562 // If an identical node already exists, use it.
11563 void *IP = nullptr;
11564 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
11566 AddNodeIDNode(ID, Opc, VTs, Ops);
11567 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
11568 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
11569 }
11570
11571 if (!RemoveNodeFromCSEMaps(N))
11572 IP = nullptr;
11573
11574 // Start the morphing.
11575 N->NodeType = Opc;
11576 N->ValueList = VTs.VTs;
11577 N->NumValues = VTs.NumVTs;
11578
11579 // Clear the operands list, updating used nodes to remove this from their
11580 // use list. Keep track of any operands that become dead as a result.
11581 SmallPtrSet<SDNode*, 16> DeadNodeSet;
11582 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
11583 SDUse &Use = *I++;
11584 SDNode *Used = Use.getNode();
11585 Use.set(SDValue());
11586 if (Used->use_empty())
11587 DeadNodeSet.insert(Used);
11588 }
11589
11590 // For MachineNode, initialize the memory references information.
11592 MN->clearMemRefs();
11593
11594 // Swap for an appropriately sized array from the recycler.
11595 removeOperands(N);
11596 createOperands(N, Ops);
11597
11598 // Delete any nodes that are still dead after adding the uses for the
11599 // new operands.
11600 if (!DeadNodeSet.empty()) {
11601 SmallVector<SDNode *, 16> DeadNodes;
11602 for (SDNode *N : DeadNodeSet)
11603 if (N->use_empty())
11604 DeadNodes.push_back(N);
11605 RemoveDeadNodes(DeadNodes);
11606 }
11607
11608 if (IP)
11609 CSEMap.InsertNode(N, IP); // Memoize the new node.
11610 return N;
11611}
11612
11614 unsigned OrigOpc = Node->getOpcode();
11615 unsigned NewOpc;
11616 switch (OrigOpc) {
11617 default:
11618 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
11619#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11620 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11621#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11622 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11623#include "llvm/IR/ConstrainedOps.def"
11624 }
11625
11626 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
11627
11628 // We're taking this node out of the chain, so we need to re-link things.
11629 SDValue InputChain = Node->getOperand(0);
11630 SDValue OutputChain = SDValue(Node, 1);
11631 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
11632
11634 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
11635 Ops.push_back(Node->getOperand(i));
11636
11637 SDVTList VTs = getVTList(Node->getValueType(0));
11638 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
11639
11640 // MorphNodeTo can operate in two ways: if an existing node with the
11641 // specified operands exists, it can just return it. Otherwise, it
11642 // updates the node in place to have the requested operands.
11643 if (Res == Node) {
11644 // If we updated the node in place, reset the node ID. To the isel,
11645 // this should be just like a newly allocated machine node.
11646 Res->setNodeId(-1);
11647 } else {
11650 }
11651
11652 return Res;
11653}
11654
11655/// getMachineNode - These are used for target selectors to create a new node
11656/// with specified return type(s), MachineInstr opcode, and operands.
11657///
11658/// Note that getMachineNode returns the resultant node. If there is already a
11659/// node of the specified opcode and operands, it returns that node instead of
11660/// the current one.
11662 EVT VT) {
11663 SDVTList VTs = getVTList(VT);
11664 return getMachineNode(Opcode, dl, VTs, {});
11665}
11666
11668 EVT VT, SDValue Op1) {
11669 SDVTList VTs = getVTList(VT);
11670 SDValue Ops[] = { Op1 };
11671 return getMachineNode(Opcode, dl, VTs, Ops);
11672}
11673
11675 EVT VT, SDValue Op1, SDValue Op2) {
11676 SDVTList VTs = getVTList(VT);
11677 SDValue Ops[] = { Op1, Op2 };
11678 return getMachineNode(Opcode, dl, VTs, Ops);
11679}
11680
11682 EVT VT, SDValue Op1, SDValue Op2,
11683 SDValue Op3) {
11684 SDVTList VTs = getVTList(VT);
11685 SDValue Ops[] = { Op1, Op2, Op3 };
11686 return getMachineNode(Opcode, dl, VTs, Ops);
11687}
11688
11691 SDVTList VTs = getVTList(VT);
11692 return getMachineNode(Opcode, dl, VTs, Ops);
11693}
11694
11696 EVT VT1, EVT VT2, SDValue Op1,
11697 SDValue Op2) {
11698 SDVTList VTs = getVTList(VT1, VT2);
11699 SDValue Ops[] = { Op1, Op2 };
11700 return getMachineNode(Opcode, dl, VTs, Ops);
11701}
11702
11704 EVT VT1, EVT VT2, SDValue Op1,
11705 SDValue Op2, SDValue Op3) {
11706 SDVTList VTs = getVTList(VT1, VT2);
11707 SDValue Ops[] = { Op1, Op2, Op3 };
11708 return getMachineNode(Opcode, dl, VTs, Ops);
11709}
11710
11712 EVT VT1, EVT VT2,
11714 SDVTList VTs = getVTList(VT1, VT2);
11715 return getMachineNode(Opcode, dl, VTs, Ops);
11716}
11717
11719 EVT VT1, EVT VT2, EVT VT3,
11720 SDValue Op1, SDValue Op2) {
11721 SDVTList VTs = getVTList(VT1, VT2, VT3);
11722 SDValue Ops[] = { Op1, Op2 };
11723 return getMachineNode(Opcode, dl, VTs, Ops);
11724}
11725
11727 EVT VT1, EVT VT2, EVT VT3,
11728 SDValue Op1, SDValue Op2,
11729 SDValue Op3) {
11730 SDVTList VTs = getVTList(VT1, VT2, VT3);
11731 SDValue Ops[] = { Op1, Op2, Op3 };
11732 return getMachineNode(Opcode, dl, VTs, Ops);
11733}
11734
11736 EVT VT1, EVT VT2, EVT VT3,
11738 SDVTList VTs = getVTList(VT1, VT2, VT3);
11739 return getMachineNode(Opcode, dl, VTs, Ops);
11740}
11741
11743 ArrayRef<EVT> ResultTys,
11745 SDVTList VTs = getVTList(ResultTys);
11746 return getMachineNode(Opcode, dl, VTs, Ops);
11747}
11748
11750 SDVTList VTs,
11752 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
11754 void *IP = nullptr;
11755
11756 if (DoCSE) {
11758 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
11759 IP = nullptr;
11760 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11761 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
11762 }
11763 }
11764
11765 // Allocate a new MachineSDNode.
11766 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11767 createOperands(N, Ops);
11768
11769 if (DoCSE)
11770 CSEMap.InsertNode(N, IP);
11771
11772 InsertNode(N);
11773 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
11774 return N;
11775}
11776
11777/// getTargetExtractSubreg - A convenience function for creating
11778/// TargetOpcode::EXTRACT_SUBREG nodes.
11780 SDValue Operand) {
11781 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11782 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
11783 VT, Operand, SRIdxVal);
11784 return SDValue(Subreg, 0);
11785}
11786
11787/// getTargetInsertSubreg - A convenience function for creating
11788/// TargetOpcode::INSERT_SUBREG nodes.
11790 SDValue Operand, SDValue Subreg) {
11791 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11792 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
11793 VT, Operand, Subreg, SRIdxVal);
11794 return SDValue(Result, 0);
11795}
11796
11797/// getNodeIfExists - Get the specified node if it's already available, or
11798/// else return NULL.
11801 SDNodeFlags Flags;
11802 if (Inserter)
11803 Flags = Inserter->getFlags();
11804 return getNodeIfExists(Opcode, VTList, Ops, Flags);
11805}
11806
11809 const SDNodeFlags Flags) {
11810 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11812 AddNodeIDNode(ID, Opcode, VTList, Ops);
11813 void *IP = nullptr;
11814 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
11815 E->intersectFlagsWith(Flags);
11816 return E;
11817 }
11818 }
11819 return nullptr;
11820}
11821
11822/// doesNodeExist - Check if a node exists without modifying its flags.
11823bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
11825 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11827 AddNodeIDNode(ID, Opcode, VTList, Ops);
11828 void *IP = nullptr;
11829 if (FindNodeOrInsertPos(ID, SDLoc(), IP))
11830 return true;
11831 }
11832 return false;
11833}
11834
11835/// getDbgValue - Creates a SDDbgValue node.
11836///
11837/// SDNode
11839 SDNode *N, unsigned R, bool IsIndirect,
11840 const DebugLoc &DL, unsigned O) {
11841 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11842 "Expected inlined-at fields to agree");
11843 return new (DbgInfo->getAlloc())
11844 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
11845 {}, IsIndirect, DL, O,
11846 /*IsVariadic=*/false);
11847}
11848
11849/// Constant
11851 DIExpression *Expr,
11852 const Value *C,
11853 const DebugLoc &DL, unsigned O) {
11854 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11855 "Expected inlined-at fields to agree");
11856 return new (DbgInfo->getAlloc())
11857 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
11858 /*IsIndirect=*/false, DL, O,
11859 /*IsVariadic=*/false);
11860}
11861
11862/// FrameIndex
11864 DIExpression *Expr, unsigned FI,
11865 bool IsIndirect,
11866 const DebugLoc &DL,
11867 unsigned O) {
11868 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11869 "Expected inlined-at fields to agree");
11870 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
11871}
11872
11873/// FrameIndex with dependencies
11875 DIExpression *Expr, unsigned FI,
11876 ArrayRef<SDNode *> Dependencies,
11877 bool IsIndirect,
11878 const DebugLoc &DL,
11879 unsigned O) {
11880 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11881 "Expected inlined-at fields to agree");
11882 return new (DbgInfo->getAlloc())
11883 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
11884 Dependencies, IsIndirect, DL, O,
11885 /*IsVariadic=*/false);
11886}
11887
11888/// VReg
11890 Register VReg, bool IsIndirect,
11891 const DebugLoc &DL, unsigned O) {
11892 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11893 "Expected inlined-at fields to agree");
11894 return new (DbgInfo->getAlloc())
11895 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
11896 {}, IsIndirect, DL, O,
11897 /*IsVariadic=*/false);
11898}
11899
11902 ArrayRef<SDNode *> Dependencies,
11903 bool IsIndirect, const DebugLoc &DL,
11904 unsigned O, bool IsVariadic) {
11905 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11906 "Expected inlined-at fields to agree");
11907 return new (DbgInfo->getAlloc())
11908 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11909 DL, O, IsVariadic);
11910}
11911
11913 unsigned OffsetInBits, unsigned SizeInBits,
11914 bool InvalidateDbg) {
11915 SDNode *FromNode = From.getNode();
11916 SDNode *ToNode = To.getNode();
11917 assert(FromNode && ToNode && "Can't modify dbg values");
11918
11919 // PR35338
11920 // TODO: assert(From != To && "Redundant dbg value transfer");
11921 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
11922 if (From == To || FromNode == ToNode)
11923 return;
11924
11925 if (!FromNode->getHasDebugValue())
11926 return;
11927
11928 SDDbgOperand FromLocOp =
11929 SDDbgOperand::fromNode(From.getNode(), From.getResNo());
11931
11933 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
11934 if (Dbg->isInvalidated())
11935 continue;
11936
11937 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
11938
11939 // Create a new location ops vector that is equal to the old vector, but
11940 // with each instance of FromLocOp replaced with ToLocOp.
11941 bool Changed = false;
11942 auto NewLocOps = Dbg->copyLocationOps();
11943 std::replace_if(
11944 NewLocOps.begin(), NewLocOps.end(),
11945 [&Changed, FromLocOp](const SDDbgOperand &Op) {
11946 bool Match = Op == FromLocOp;
11947 Changed |= Match;
11948 return Match;
11949 },
11950 ToLocOp);
11951 // Ignore this SDDbgValue if we didn't find a matching location.
11952 if (!Changed)
11953 continue;
11954
11955 DIVariable *Var = Dbg->getVariable();
11956 auto *Expr = Dbg->getExpression();
11957 // If a fragment is requested, update the expression.
11958 if (SizeInBits) {
11959 // When splitting a larger (e.g., sign-extended) value whose
11960 // lower bits are described with an SDDbgValue, do not attempt
11961 // to transfer the SDDbgValue to the upper bits.
11962 if (auto FI = Expr->getFragmentInfo())
11963 if (OffsetInBits + SizeInBits > FI->SizeInBits)
11964 continue;
11965 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
11966 SizeInBits);
11967 if (!Fragment)
11968 continue;
11969 Expr = *Fragment;
11970 }
11971
11972 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
11973 // Clone the SDDbgValue and move it to To.
11974 SDDbgValue *Clone = getDbgValueList(
11975 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
11976 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
11977 Dbg->isVariadic());
11978 ClonedDVs.push_back(Clone);
11979
11980 if (InvalidateDbg) {
11981 // Invalidate value and indicate the SDDbgValue should not be emitted.
11982 Dbg->setIsInvalidated();
11983 Dbg->setIsEmitted();
11984 }
11985 }
11986
11987 for (SDDbgValue *Dbg : ClonedDVs) {
11988 assert(is_contained(Dbg->getSDNodes(), ToNode) &&
11989 "Transferred DbgValues should depend on the new SDNode");
11990 AddDbgValue(Dbg, false);
11991 }
11992}
11993
11995 if (!N.getHasDebugValue())
11996 return;
11997
11998 auto GetLocationOperand = [](SDNode *Node, unsigned ResNo) {
11999 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(Node))
12000 return SDDbgOperand::fromFrameIdx(FISDN->getIndex());
12001 return SDDbgOperand::fromNode(Node, ResNo);
12002 };
12003
12005 for (auto *DV : GetDbgValues(&N)) {
12006 if (DV->isInvalidated())
12007 continue;
12008 switch (N.getOpcode()) {
12009 default:
12010 break;
12011 case ISD::ADD: {
12012 SDValue N0 = N.getOperand(0);
12013 SDValue N1 = N.getOperand(1);
12014 if (!isa<ConstantSDNode>(N0)) {
12015 bool RHSConstant = isa<ConstantSDNode>(N1);
12017 if (RHSConstant)
12018 Offset = N.getConstantOperandVal(1);
12019 // We are not allowed to turn indirect debug values variadic, so
12020 // don't salvage those.
12021 if (!RHSConstant && DV->isIndirect())
12022 continue;
12023
12024 // Rewrite an ADD constant node into a DIExpression. Since we are
12025 // performing arithmetic to compute the variable's *value* in the
12026 // DIExpression, we need to mark the expression with a
12027 // DW_OP_stack_value.
12028 auto *DIExpr = DV->getExpression();
12029 auto NewLocOps = DV->copyLocationOps();
12030 bool Changed = false;
12031 size_t OrigLocOpsSize = NewLocOps.size();
12032 for (size_t i = 0; i < OrigLocOpsSize; ++i) {
12033 // We're not given a ResNo to compare against because the whole
12034 // node is going away. We know that any ISD::ADD only has one
12035 // result, so we can assume any node match is using the result.
12036 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12037 NewLocOps[i].getSDNode() != &N)
12038 continue;
12039 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12040 if (RHSConstant) {
12043 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
12044 } else {
12045 // Convert to a variadic expression (if not already).
12046 // convertToVariadicExpression() returns a const pointer, so we use
12047 // a temporary const variable here.
12048 const auto *TmpDIExpr =
12052 ExprOps.push_back(NewLocOps.size());
12053 ExprOps.push_back(dwarf::DW_OP_plus);
12054 SDDbgOperand RHS =
12056 NewLocOps.push_back(RHS);
12057 DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
12058 }
12059 Changed = true;
12060 }
12061 (void)Changed;
12062 assert(Changed && "Salvage target doesn't use N");
12063
12064 bool IsVariadic =
12065 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12066
12067 auto AdditionalDependencies = DV->getAdditionalDependencies();
12068 SDDbgValue *Clone = getDbgValueList(
12069 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12070 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12071 ClonedDVs.push_back(Clone);
12072 DV->setIsInvalidated();
12073 DV->setIsEmitted();
12074 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
12075 N0.getNode()->dumprFull(this);
12076 dbgs() << " into " << *DIExpr << '\n');
12077 }
12078 break;
12079 }
12080 case ISD::TRUNCATE: {
12081 SDValue N0 = N.getOperand(0);
12082 TypeSize FromSize = N0.getValueSizeInBits();
12083 TypeSize ToSize = N.getValueSizeInBits(0);
12084
12085 DIExpression *DbgExpression = DV->getExpression();
12086 auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
12087 auto NewLocOps = DV->copyLocationOps();
12088 bool Changed = false;
12089 for (size_t i = 0; i < NewLocOps.size(); ++i) {
12090 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12091 NewLocOps[i].getSDNode() != &N)
12092 continue;
12093
12094 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12095 DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
12096 Changed = true;
12097 }
12098 assert(Changed && "Salvage target doesn't use N");
12099 (void)Changed;
12100
12101 SDDbgValue *Clone =
12102 getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
12103 DV->getAdditionalDependencies(), DV->isIndirect(),
12104 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12105
12106 ClonedDVs.push_back(Clone);
12107 DV->setIsInvalidated();
12108 DV->setIsEmitted();
12109 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
12110 dbgs() << " into " << *DbgExpression << '\n');
12111 break;
12112 }
12113 }
12114 }
12115
12116 for (SDDbgValue *Dbg : ClonedDVs) {
12117 assert((!Dbg->getSDNodes().empty() ||
12118 llvm::any_of(Dbg->getLocationOps(),
12119 [&](const SDDbgOperand &Op) {
12120 return Op.getKind() == SDDbgOperand::FRAMEIX;
12121 })) &&
12122 "Salvaged DbgValue should depend on a new SDNode");
12123 AddDbgValue(Dbg, false);
12124 }
12125}
12126
12127/// Creates a SDDbgLabel node.
12129 const DebugLoc &DL, unsigned O) {
12130 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
12131 "Expected inlined-at fields to agree");
12132 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
12133}
12134
12135namespace {
12136
12137/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
12138/// pointed to by a use iterator is deleted, increment the use iterator
12139/// so that it doesn't dangle.
12140///
12141class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
12144
12145 void NodeDeleted(SDNode *N, SDNode *E) override {
12146 // Increment the iterator as needed.
12147 while (UI != UE && N == UI->getUser())
12148 ++UI;
12149 }
12150
12151public:
12152 RAUWUpdateListener(SelectionDAG &d,
12155 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12156};
12157
12158} // end anonymous namespace
12159
12160/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12161/// This can cause recursive merging of nodes in the DAG.
12162///
12163/// This version assumes From has a single result value.
12164///
12166 SDNode *From = FromN.getNode();
12167 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
12168 "Cannot replace with this method!");
12169 assert(From != To.getNode() && "Cannot replace uses of with self");
12170
12171 // Preserve Debug Values
12172 transferDbgValues(FromN, To);
12173 // Preserve extra info.
12174 copyExtraInfo(From, To.getNode());
12175
12176 // Iterate over all the existing uses of From. New uses will be added
12177 // to the beginning of the use list, which we avoid visiting.
12178 // This specifically avoids visiting uses of From that arise while the
12179 // replacement is happening, because any such uses would be the result
12180 // of CSE: If an existing node looks like From after one of its operands
12181 // is replaced by To, we don't want to replace of all its users with To
12182 // too. See PR3018 for more info.
12183 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12184 RAUWUpdateListener Listener(*this, UI, UE);
12185 while (UI != UE) {
12186 SDNode *User = UI->getUser();
12187
12188 // This node is about to morph, remove its old self from the CSE maps.
12189 RemoveNodeFromCSEMaps(User);
12190
12191 // A user can appear in a use list multiple times, and when this
12192 // happens the uses are usually next to each other in the list.
12193 // To help reduce the number of CSE recomputations, process all
12194 // the uses of this user that we can find this way.
12195 do {
12196 SDUse &Use = *UI;
12197 ++UI;
12198 Use.set(To);
12199 if (To->isDivergent() != From->isDivergent())
12201 } while (UI != UE && UI->getUser() == User);
12202 // Now that we have modified User, add it back to the CSE maps. If it
12203 // already exists there, recursively merge the results together.
12204 AddModifiedNodeToCSEMaps(User);
12205 }
12206
12207 // If we just RAUW'd the root, take note.
12208 if (FromN == getRoot())
12209 setRoot(To);
12210}
12211
12212/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12213/// This can cause recursive merging of nodes in the DAG.
12214///
12215/// This version assumes that for each value of From, there is a
12216/// corresponding value in To in the same position with the same type.
12217///
12219#ifndef NDEBUG
12220 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12221 assert((!From->hasAnyUseOfValue(i) ||
12222 From->getValueType(i) == To->getValueType(i)) &&
12223 "Cannot use this version of ReplaceAllUsesWith!");
12224#endif
12225
12226 // Handle the trivial case.
12227 if (From == To)
12228 return;
12229
12230 // Preserve Debug Info. Only do this if there's a use.
12231 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12232 if (From->hasAnyUseOfValue(i)) {
12233 assert((i < To->getNumValues()) && "Invalid To location");
12234 transferDbgValues(SDValue(From, i), SDValue(To, i));
12235 }
12236 // Preserve extra info.
12237 copyExtraInfo(From, To);
12238
12239 // Iterate over just the existing users of From. See the comments in
12240 // the ReplaceAllUsesWith above.
12241 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12242 RAUWUpdateListener Listener(*this, UI, UE);
12243 while (UI != UE) {
12244 SDNode *User = UI->getUser();
12245
12246 // This node is about to morph, remove its old self from the CSE maps.
12247 RemoveNodeFromCSEMaps(User);
12248
12249 // A user can appear in a use list multiple times, and when this
12250 // happens the uses are usually next to each other in the list.
12251 // To help reduce the number of CSE recomputations, process all
12252 // the uses of this user that we can find this way.
12253 do {
12254 SDUse &Use = *UI;
12255 ++UI;
12256 Use.setNode(To);
12257 if (To->isDivergent() != From->isDivergent())
12259 } while (UI != UE && UI->getUser() == User);
12260
12261 // Now that we have modified User, add it back to the CSE maps. If it
12262 // already exists there, recursively merge the results together.
12263 AddModifiedNodeToCSEMaps(User);
12264 }
12265
12266 // If we just RAUW'd the root, take note.
12267 if (From == getRoot().getNode())
12268 setRoot(SDValue(To, getRoot().getResNo()));
12269}
12270
12271/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12272/// This can cause recursive merging of nodes in the DAG.
12273///
12274/// This version can replace From with any result values. To must match the
12275/// number and types of values returned by From.
12277 if (From->getNumValues() == 1) // Handle the simple case efficiently.
12278 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
12279
12280 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
12281 // Preserve Debug Info.
12282 transferDbgValues(SDValue(From, i), To[i]);
12283 // Preserve extra info.
12284 copyExtraInfo(From, To[i].getNode());
12285 }
12286
12287 // Iterate over just the existing users of From. See the comments in
12288 // the ReplaceAllUsesWith above.
12289 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12290 RAUWUpdateListener Listener(*this, UI, UE);
12291 while (UI != UE) {
12292 SDNode *User = UI->getUser();
12293
12294 // This node is about to morph, remove its old self from the CSE maps.
12295 RemoveNodeFromCSEMaps(User);
12296
12297 // A user can appear in a use list multiple times, and when this happens the
12298 // uses are usually next to each other in the list. To help reduce the
12299 // number of CSE and divergence recomputations, process all the uses of this
12300 // user that we can find this way.
12301 bool To_IsDivergent = false;
12302 do {
12303 SDUse &Use = *UI;
12304 const SDValue &ToOp = To[Use.getResNo()];
12305 ++UI;
12306 Use.set(ToOp);
12307 To_IsDivergent |= ToOp->isDivergent();
12308 } while (UI != UE && UI->getUser() == User);
12309
12310 if (To_IsDivergent != From->isDivergent())
12312
12313 // Now that we have modified User, add it back to the CSE maps. If it
12314 // already exists there, recursively merge the results together.
12315 AddModifiedNodeToCSEMaps(User);
12316 }
12317
12318 // If we just RAUW'd the root, take note.
12319 if (From == getRoot().getNode())
12320 setRoot(SDValue(To[getRoot().getResNo()]));
12321}
12322
12323/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
12324/// uses of other values produced by From.getNode() alone. The Deleted
12325/// vector is handled the same way as for ReplaceAllUsesWith.
12327 // Handle the really simple, really trivial case efficiently.
12328 if (From == To) return;
12329
12330 // Handle the simple, trivial, case efficiently.
12331 if (From.getNode()->getNumValues() == 1) {
12332 ReplaceAllUsesWith(From, To);
12333 return;
12334 }
12335
12336 // Preserve Debug Info.
12337 transferDbgValues(From, To);
12338 copyExtraInfo(From.getNode(), To.getNode());
12339
12340 // Iterate over just the existing users of From. See the comments in
12341 // the ReplaceAllUsesWith above.
12342 SDNode::use_iterator UI = From.getNode()->use_begin(),
12343 UE = From.getNode()->use_end();
12344 RAUWUpdateListener Listener(*this, UI, UE);
12345 while (UI != UE) {
12346 SDNode *User = UI->getUser();
12347 bool UserRemovedFromCSEMaps = false;
12348
12349 // A user can appear in a use list multiple times, and when this
12350 // happens the uses are usually next to each other in the list.
12351 // To help reduce the number of CSE recomputations, process all
12352 // the uses of this user that we can find this way.
12353 do {
12354 SDUse &Use = *UI;
12355
12356 // Skip uses of different values from the same node.
12357 if (Use.getResNo() != From.getResNo()) {
12358 ++UI;
12359 continue;
12360 }
12361
12362 // If this node hasn't been modified yet, it's still in the CSE maps,
12363 // so remove its old self from the CSE maps.
12364 if (!UserRemovedFromCSEMaps) {
12365 RemoveNodeFromCSEMaps(User);
12366 UserRemovedFromCSEMaps = true;
12367 }
12368
12369 ++UI;
12370 Use.set(To);
12371 if (To->isDivergent() != From->isDivergent())
12373 } while (UI != UE && UI->getUser() == User);
12374 // We are iterating over all uses of the From node, so if a use
12375 // doesn't use the specific value, no changes are made.
12376 if (!UserRemovedFromCSEMaps)
12377 continue;
12378
12379 // Now that we have modified User, add it back to the CSE maps. If it
12380 // already exists there, recursively merge the results together.
12381 AddModifiedNodeToCSEMaps(User);
12382 }
12383
12384 // If we just RAUW'd the root, take note.
12385 if (From == getRoot())
12386 setRoot(To);
12387}
12388
12389namespace {
12390
12391/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
12392/// to record information about a use.
12393struct UseMemo {
12394 SDNode *User;
12395 unsigned Index;
12396 SDUse *Use;
12397};
12398
12399/// operator< - Sort Memos by User.
12400bool operator<(const UseMemo &L, const UseMemo &R) {
12401 return (intptr_t)L.User < (intptr_t)R.User;
12402}
12403
12404/// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
12405/// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
12406/// the node already has been taken care of recursively.
12407class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
12408 SmallVectorImpl<UseMemo> &Uses;
12409
12410 void NodeDeleted(SDNode *N, SDNode *E) override {
12411 for (UseMemo &Memo : Uses)
12412 if (Memo.User == N)
12413 Memo.User = nullptr;
12414 }
12415
12416public:
12417 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12418 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
12419};
12420
12421} // end anonymous namespace
12422
12423/// Return true if a glue output should propagate divergence information.
12425 switch (Node->getOpcode()) {
12426 case ISD::CopyFromReg:
12427 case ISD::CopyToReg:
12428 return false;
12429 default:
12430 return true;
12431 }
12432
12433 llvm_unreachable("covered opcode switch");
12434}
12435
12437 if (TLI->isSDNodeAlwaysUniform(N)) {
12438 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
12439 "Conflicting divergence information!");
12440 return false;
12441 }
12442 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
12443 return true;
12444 for (const auto &Op : N->ops()) {
12445 EVT VT = Op.getValueType();
12446
12447 // Skip Chain. It does not carry divergence.
12448 if (VT != MVT::Other && Op.getNode()->isDivergent() &&
12449 (VT != MVT::Glue || gluePropagatesDivergence(Op.getNode())))
12450 return true;
12451 }
12452 return false;
12453}
12454
12456 SmallVector<SDNode *, 16> Worklist(1, N);
12457 do {
12458 N = Worklist.pop_back_val();
12459 bool IsDivergent = calculateDivergence(N);
12460 if (N->SDNodeBits.IsDivergent != IsDivergent) {
12461 N->SDNodeBits.IsDivergent = IsDivergent;
12462 llvm::append_range(Worklist, N->users());
12463 }
12464 } while (!Worklist.empty());
12465}
12466
12467void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12469 Order.reserve(AllNodes.size());
12470 for (auto &N : allnodes()) {
12471 unsigned NOps = N.getNumOperands();
12472 Degree[&N] = NOps;
12473 if (0 == NOps)
12474 Order.push_back(&N);
12475 }
12476 for (size_t I = 0; I != Order.size(); ++I) {
12477 SDNode *N = Order[I];
12478 for (auto *U : N->users()) {
12479 unsigned &UnsortedOps = Degree[U];
12480 if (0 == --UnsortedOps)
12481 Order.push_back(U);
12482 }
12483 }
12484}
12485
12486#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12487void SelectionDAG::VerifyDAGDivergence() {
12488 std::vector<SDNode *> TopoOrder;
12489 CreateTopologicalOrder(TopoOrder);
12490 for (auto *N : TopoOrder) {
12491 assert(calculateDivergence(N) == N->isDivergent() &&
12492 "Divergence bit inconsistency detected");
12493 }
12494}
12495#endif
12496
12497/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
12498/// uses of other values produced by From.getNode() alone. The same value
12499/// may appear in both the From and To list. The Deleted vector is
12500/// handled the same way as for ReplaceAllUsesWith.
12502 const SDValue *To,
12503 unsigned Num){
12504 // Handle the simple, trivial case efficiently.
12505 if (Num == 1)
12506 return ReplaceAllUsesOfValueWith(*From, *To);
12507
12508 transferDbgValues(*From, *To);
12509 copyExtraInfo(From->getNode(), To->getNode());
12510
12511 // Read up all the uses and make records of them. This helps
12512 // processing new uses that are introduced during the
12513 // replacement process.
12515 for (unsigned i = 0; i != Num; ++i) {
12516 unsigned FromResNo = From[i].getResNo();
12517 SDNode *FromNode = From[i].getNode();
12518 for (SDUse &Use : FromNode->uses()) {
12519 if (Use.getResNo() == FromResNo) {
12520 UseMemo Memo = {Use.getUser(), i, &Use};
12521 Uses.push_back(Memo);
12522 }
12523 }
12524 }
12525
12526 // Sort the uses, so that all the uses from a given User are together.
12528 RAUOVWUpdateListener Listener(*this, Uses);
12529
12530 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
12531 UseIndex != UseIndexEnd; ) {
12532 // We know that this user uses some value of From. If it is the right
12533 // value, update it.
12534 SDNode *User = Uses[UseIndex].User;
12535 // If the node has been deleted by recursive CSE updates when updating
12536 // another node, then just skip this entry.
12537 if (User == nullptr) {
12538 ++UseIndex;
12539 continue;
12540 }
12541
12542 // This node is about to morph, remove its old self from the CSE maps.
12543 RemoveNodeFromCSEMaps(User);
12544
12545 // The Uses array is sorted, so all the uses for a given User
12546 // are next to each other in the list.
12547 // To help reduce the number of CSE recomputations, process all
12548 // the uses of this user that we can find this way.
12549 do {
12550 unsigned i = Uses[UseIndex].Index;
12551 SDUse &Use = *Uses[UseIndex].Use;
12552 ++UseIndex;
12553
12554 Use.set(To[i]);
12555 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
12556
12557 // Now that we have modified User, add it back to the CSE maps. If it
12558 // already exists there, recursively merge the results together.
12559 AddModifiedNodeToCSEMaps(User);
12560 }
12561}
12562
12563/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
12564/// based on their topological order. It returns the maximum id and a vector
12565/// of the SDNodes* in assigned order by reference.
12567 unsigned DAGSize = 0;
12568
12569 // SortedPos tracks the progress of the algorithm. Nodes before it are
12570 // sorted, nodes after it are unsorted. When the algorithm completes
12571 // it is at the end of the list.
12572 allnodes_iterator SortedPos = allnodes_begin();
12573
12574 // Visit all the nodes. Move nodes with no operands to the front of
12575 // the list immediately. Annotate nodes that do have operands with their
12576 // operand count. Before we do this, the Node Id fields of the nodes
12577 // may contain arbitrary values. After, the Node Id fields for nodes
12578 // before SortedPos will contain the topological sort index, and the
12579 // Node Id fields for nodes At SortedPos and after will contain the
12580 // count of outstanding operands.
12582 checkForCycles(&N, this);
12583 unsigned Degree = N.getNumOperands();
12584 if (Degree == 0) {
12585 // A node with no uses, add it to the result array immediately.
12586 N.setNodeId(DAGSize++);
12587 allnodes_iterator Q(&N);
12588 if (Q != SortedPos)
12589 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12590 assert(SortedPos != AllNodes.end() && "Overran node list");
12591 ++SortedPos;
12592 } else {
12593 // Temporarily use the Node Id as scratch space for the degree count.
12594 N.setNodeId(Degree);
12595 }
12596 }
12597
12598 // Visit all the nodes. As we iterate, move nodes into sorted order,
12599 // such that by the time the end is reached all nodes will be sorted.
12600 for (SDNode &Node : allnodes()) {
12601 SDNode *N = &Node;
12602 checkForCycles(N, this);
12603 // N is in sorted position, so all its uses have one less operand
12604 // that needs to be sorted.
12605 for (SDNode *P : N->users()) {
12606 unsigned Degree = P->getNodeId();
12607 assert(Degree != 0 && "Invalid node degree");
12608 --Degree;
12609 if (Degree == 0) {
12610 // All of P's operands are sorted, so P may sorted now.
12611 P->setNodeId(DAGSize++);
12612 if (P->getIterator() != SortedPos)
12613 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
12614 assert(SortedPos != AllNodes.end() && "Overran node list");
12615 ++SortedPos;
12616 } else {
12617 // Update P's outstanding operand count.
12618 P->setNodeId(Degree);
12619 }
12620 }
12621 if (Node.getIterator() == SortedPos) {
12622#ifndef NDEBUG
12624 SDNode *S = &*++I;
12625 dbgs() << "Overran sorted position:\n";
12626 S->dumprFull(this); dbgs() << "\n";
12627 dbgs() << "Checking if this is due to cycles\n";
12628 checkForCycles(this, true);
12629#endif
12630 llvm_unreachable(nullptr);
12631 }
12632 }
12633
12634 assert(SortedPos == AllNodes.end() &&
12635 "Topological sort incomplete!");
12636 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
12637 "First node in topological sort is not the entry token!");
12638 assert(AllNodes.front().getNodeId() == 0 &&
12639 "First node in topological sort has non-zero id!");
12640 assert(AllNodes.front().getNumOperands() == 0 &&
12641 "First node in topological sort has operands!");
12642 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
12643 "Last node in topologic sort has unexpected id!");
12644 assert(AllNodes.back().use_empty() &&
12645 "Last node in topologic sort has users!");
12646 assert(DAGSize == allnodes_size() && "Node count mismatch!");
12647 return DAGSize;
12648}
12649
12650/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
12651/// value is produced by SD.
12652void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
12653 for (SDNode *SD : DB->getSDNodes()) {
12654 if (!SD)
12655 continue;
12656 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12657 SD->setHasDebugValue(true);
12658 }
12659 DbgInfo->add(DB, isParameter);
12660}
12661
12662void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
12663
12665 SDValue NewMemOpChain) {
12666 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
12667 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
12668 // The new memory operation must have the same position as the old load in
12669 // terms of memory dependency. Create a TokenFactor for the old load and new
12670 // memory operation and update uses of the old load's output chain to use that
12671 // TokenFactor.
12672 if (OldChain == NewMemOpChain || OldChain.use_empty())
12673 return NewMemOpChain;
12674
12675 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
12676 OldChain, NewMemOpChain);
12677 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
12678 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
12679 return TokenFactor;
12680}
12681
12683 SDValue NewMemOp) {
12684 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
12685 SDValue OldChain = SDValue(OldLoad, 1);
12686 SDValue NewMemOpChain = NewMemOp.getValue(1);
12687 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
12688}
12689
12691 Function **OutFunction) {
12692 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
12693
12694 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12695 auto *Module = MF->getFunction().getParent();
12696 auto *Function = Module->getFunction(Symbol);
12697
12698 if (OutFunction != nullptr)
12699 *OutFunction = Function;
12700
12701 if (Function != nullptr) {
12702 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
12703 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
12704 }
12705
12706 std::string ErrorStr;
12707 raw_string_ostream ErrorFormatter(ErrorStr);
12708 ErrorFormatter << "Undefined external symbol ";
12709 ErrorFormatter << '"' << Symbol << '"';
12710 report_fatal_error(Twine(ErrorStr));
12711}
12712
12713//===----------------------------------------------------------------------===//
12714// SDNode Class
12715//===----------------------------------------------------------------------===//
12716
12719 return Const != nullptr && Const->isZero();
12720}
12721
12723 return V.isUndef() || isNullConstant(V);
12724}
12725
12728 return Const != nullptr && Const->isZero() && !Const->isNegative();
12729}
12730
12733 return Const != nullptr && Const->isAllOnes();
12734}
12735
12738 return Const != nullptr && Const->isOne();
12739}
12740
12743 return Const != nullptr && Const->isMinSignedValue();
12744}
12745
12746bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
12747 unsigned OperandNo) {
12748 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
12749 // TODO: Target-specific opcodes could be added.
12750 if (auto *ConstV = isConstOrConstSplat(V, /*AllowUndefs*/ false,
12751 /*AllowTruncation*/ true)) {
12752 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12753 switch (Opcode) {
12754 case ISD::ADD:
12755 case ISD::OR:
12756 case ISD::XOR:
12757 case ISD::UMAX:
12758 return Const.isZero();
12759 case ISD::MUL:
12760 return Const.isOne();
12761 case ISD::AND:
12762 case ISD::UMIN:
12763 return Const.isAllOnes();
12764 case ISD::SMAX:
12765 return Const.isMinSignedValue();
12766 case ISD::SMIN:
12767 return Const.isMaxSignedValue();
12768 case ISD::SUB:
12769 case ISD::SHL:
12770 case ISD::SRA:
12771 case ISD::SRL:
12772 return OperandNo == 1 && Const.isZero();
12773 case ISD::UDIV:
12774 case ISD::SDIV:
12775 return OperandNo == 1 && Const.isOne();
12776 }
12777 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
12778 switch (Opcode) {
12779 case ISD::FADD:
12780 return ConstFP->isZero() &&
12781 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12782 case ISD::FSUB:
12783 return OperandNo == 1 && ConstFP->isZero() &&
12784 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12785 case ISD::FMUL:
12786 return ConstFP->isExactlyValue(1.0);
12787 case ISD::FDIV:
12788 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12789 case ISD::FMINNUM:
12790 case ISD::FMAXNUM: {
12791 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12792 EVT VT = V.getValueType();
12793 const fltSemantics &Semantics = VT.getFltSemantics();
12794 APFloat NeutralAF = !Flags.hasNoNaNs()
12795 ? APFloat::getQNaN(Semantics)
12796 : !Flags.hasNoInfs()
12797 ? APFloat::getInf(Semantics)
12798 : APFloat::getLargest(Semantics);
12799 if (Opcode == ISD::FMAXNUM)
12800 NeutralAF.changeSign();
12801
12802 return ConstFP->isExactlyValue(NeutralAF);
12803 }
12804 }
12805 }
12806 return false;
12807}
12808
12810 while (V.getOpcode() == ISD::BITCAST)
12811 V = V.getOperand(0);
12812 return V;
12813}
12814
12816 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12817 V = V.getOperand(0);
12818 return V;
12819}
12820
12822 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12823 V = V.getOperand(0);
12824 return V;
12825}
12826
12828 while (V.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12829 SDValue InVec = V.getOperand(0);
12830 SDValue EltNo = V.getOperand(2);
12831 EVT VT = InVec.getValueType();
12832 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
12833 if (IndexC && VT.isFixedLengthVector() &&
12834 IndexC->getAPIntValue().ult(VT.getVectorNumElements()) &&
12835 !DemandedElts[IndexC->getZExtValue()]) {
12836 V = InVec;
12837 continue;
12838 }
12839 break;
12840 }
12841 return V;
12842}
12843
12845 while (V.getOpcode() == ISD::TRUNCATE)
12846 V = V.getOperand(0);
12847 return V;
12848}
12849
12850bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
12851 if (V.getOpcode() != ISD::XOR)
12852 return false;
12853 V = peekThroughBitcasts(V.getOperand(1));
12854 unsigned NumBits = V.getScalarValueSizeInBits();
12855 ConstantSDNode *C =
12856 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
12857 return C && (C->getAPIntValue().countr_one() >= NumBits);
12858}
12859
12861 bool AllowTruncation) {
12862 EVT VT = N.getValueType();
12863 APInt DemandedElts = VT.isFixedLengthVector()
12865 : APInt(1, 1);
12866 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
12867}
12868
12870 bool AllowUndefs,
12871 bool AllowTruncation) {
12873 return CN;
12874
12875 // SplatVectors can truncate their operands. Ignore that case here unless
12876 // AllowTruncation is set.
12877 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
12878 EVT VecEltVT = N->getValueType(0).getVectorElementType();
12879 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12880 EVT CVT = CN->getValueType(0);
12881 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
12882 if (AllowTruncation || CVT == VecEltVT)
12883 return CN;
12884 }
12885 }
12886
12888 BitVector UndefElements;
12889 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12890
12891 // BuildVectors can truncate their operands. Ignore that case here unless
12892 // AllowTruncation is set.
12893 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12894 if (CN && (UndefElements.none() || AllowUndefs)) {
12895 EVT CVT = CN->getValueType(0);
12896 EVT NSVT = N.getValueType().getScalarType();
12897 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
12898 if (AllowTruncation || (CVT == NSVT))
12899 return CN;
12900 }
12901 }
12902
12903 return nullptr;
12904}
12905
12907 EVT VT = N.getValueType();
12908 APInt DemandedElts = VT.isFixedLengthVector()
12910 : APInt(1, 1);
12911 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
12912}
12913
12915 const APInt &DemandedElts,
12916 bool AllowUndefs) {
12918 return CN;
12919
12921 BitVector UndefElements;
12922 ConstantFPSDNode *CN =
12923 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
12924 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12925 if (CN && (UndefElements.none() || AllowUndefs))
12926 return CN;
12927 }
12928
12929 if (N.getOpcode() == ISD::SPLAT_VECTOR)
12930 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
12931 return CN;
12932
12933 return nullptr;
12934}
12935
12936bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
12937 // TODO: may want to use peekThroughBitcast() here.
12938 ConstantSDNode *C =
12939 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
12940 return C && C->isZero();
12941}
12942
12943bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
12944 ConstantSDNode *C =
12945 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
12946 return C && C->isOne();
12947}
12948
12949bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
12951 unsigned BitWidth = N.getScalarValueSizeInBits();
12952 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
12953 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
12954}
12955
12956bool llvm::isOnesOrOnesSplat(SDValue N, bool AllowUndefs) {
12957 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
12958 return C && APInt::isSameValue(C->getAPIntValue(),
12959 APInt(C->getAPIntValue().getBitWidth(), 1));
12960}
12961
12962bool llvm::isZeroOrZeroSplat(SDValue N, bool AllowUndefs) {
12964 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs, true);
12965 return C && C->isZero();
12966}
12967
12971
12972MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
12973 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
12974 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
12975 MemSDNodeBits.IsVolatile = MMO->isVolatile();
12976 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
12977 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
12978 MemSDNodeBits.IsInvariant = MMO->isInvariant();
12979
12980 // We check here that the size of the memory operand fits within the size of
12981 // the MMO. This is because the MMO might indicate only a possible address
12982 // range instead of specifying the affected memory addresses precisely.
12983 assert(
12984 (!MMO->getType().isValid() ||
12985 TypeSize::isKnownLE(memvt.getStoreSize(), MMO->getSize().getValue())) &&
12986 "Size mismatch!");
12987}
12988
12989/// Profile - Gather unique data for the node.
12990///
12992 AddNodeIDNode(ID, this);
12993}
12994
12995namespace {
12996
12997 struct EVTArray {
12998 std::vector<EVT> VTs;
12999
13000 EVTArray() {
13001 VTs.reserve(MVT::VALUETYPE_SIZE);
13002 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
13003 VTs.push_back(MVT((MVT::SimpleValueType)i));
13004 }
13005 };
13006
13007} // end anonymous namespace
13008
13009/// getValueTypeList - Return a pointer to the specified value type.
13010///
13011const EVT *SDNode::getValueTypeList(MVT VT) {
13012 static EVTArray SimpleVTArray;
13013
13014 assert(VT < MVT::VALUETYPE_SIZE && "Value type out of range!");
13015 return &SimpleVTArray.VTs[VT.SimpleTy];
13016}
13017
13018/// hasAnyUseOfValue - Return true if there are any use of the indicated
13019/// value. This method ignores uses of other values defined by this operation.
13020bool SDNode::hasAnyUseOfValue(unsigned Value) const {
13021 assert(Value < getNumValues() && "Bad value!");
13022
13023 for (SDUse &U : uses())
13024 if (U.getResNo() == Value)
13025 return true;
13026
13027 return false;
13028}
13029
13030/// isOnlyUserOf - Return true if this node is the only use of N.
13031bool SDNode::isOnlyUserOf(const SDNode *N) const {
13032 bool Seen = false;
13033 for (const SDNode *User : N->users()) {
13034 if (User == this)
13035 Seen = true;
13036 else
13037 return false;
13038 }
13039
13040 return Seen;
13041}
13042
13043/// Return true if the only users of N are contained in Nodes.
13045 bool Seen = false;
13046 for (const SDNode *User : N->users()) {
13047 if (llvm::is_contained(Nodes, User))
13048 Seen = true;
13049 else
13050 return false;
13051 }
13052
13053 return Seen;
13054}
13055
13056/// Return true if the referenced return value is an operand of N.
13057bool SDValue::isOperandOf(const SDNode *N) const {
13058 return is_contained(N->op_values(), *this);
13059}
13060
13061bool SDNode::isOperandOf(const SDNode *N) const {
13062 return any_of(N->op_values(),
13063 [this](SDValue Op) { return this == Op.getNode(); });
13064}
13065
13066/// reachesChainWithoutSideEffects - Return true if this operand (which must
13067/// be a chain) reaches the specified operand without crossing any
13068/// side-effecting instructions on any chain path. In practice, this looks
13069/// through token factors and non-volatile loads. In order to remain efficient,
13070/// this only looks a couple of nodes in, it does not do an exhaustive search.
13071///
13072/// Note that we only need to examine chains when we're searching for
13073/// side-effects; SelectionDAG requires that all side-effects are represented
13074/// by chains, even if another operand would force a specific ordering. This
13075/// constraint is necessary to allow transformations like splitting loads.
13077 unsigned Depth) const {
13078 if (*this == Dest) return true;
13079
13080 // Don't search too deeply, we just want to be able to see through
13081 // TokenFactor's etc.
13082 if (Depth == 0) return false;
13083
13084 // If this is a token factor, all inputs to the TF happen in parallel.
13085 if (getOpcode() == ISD::TokenFactor) {
13086 // First, try a shallow search.
13087 if (is_contained((*this)->ops(), Dest)) {
13088 // We found the chain we want as an operand of this TokenFactor.
13089 // Essentially, we reach the chain without side-effects if we could
13090 // serialize the TokenFactor into a simple chain of operations with
13091 // Dest as the last operation. This is automatically true if the
13092 // chain has one use: there are no other ordering constraints.
13093 // If the chain has more than one use, we give up: some other
13094 // use of Dest might force a side-effect between Dest and the current
13095 // node.
13096 if (Dest.hasOneUse())
13097 return true;
13098 }
13099 // Next, try a deep search: check whether every operand of the TokenFactor
13100 // reaches Dest.
13101 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
13102 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13103 });
13104 }
13105
13106 // Loads don't have side effects, look through them.
13107 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
13108 if (Ld->isUnordered())
13109 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
13110 }
13111 return false;
13112}
13113
13114bool SDNode::hasPredecessor(const SDNode *N) const {
13117 Worklist.push_back(this);
13118 return hasPredecessorHelper(N, Visited, Worklist);
13119}
13120
13122 this->Flags &= Flags;
13123}
13124
13125SDValue
13127 ArrayRef<ISD::NodeType> CandidateBinOps,
13128 bool AllowPartials) {
13129 // The pattern must end in an extract from index 0.
13130 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13131 !isNullConstant(Extract->getOperand(1)))
13132 return SDValue();
13133
13134 // Match against one of the candidate binary ops.
13135 SDValue Op = Extract->getOperand(0);
13136 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
13137 return Op.getOpcode() == unsigned(BinOp);
13138 }))
13139 return SDValue();
13140
13141 // Floating-point reductions may require relaxed constraints on the final step
13142 // of the reduction because they may reorder intermediate operations.
13143 unsigned CandidateBinOp = Op.getOpcode();
13144 if (Op.getValueType().isFloatingPoint()) {
13145 SDNodeFlags Flags = Op->getFlags();
13146 switch (CandidateBinOp) {
13147 case ISD::FADD:
13148 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13149 return SDValue();
13150 break;
13151 default:
13152 llvm_unreachable("Unhandled FP opcode for binop reduction");
13153 }
13154 }
13155
13156 // Matching failed - attempt to see if we did enough stages that a partial
13157 // reduction from a subvector is possible.
13158 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
13159 if (!AllowPartials || !Op)
13160 return SDValue();
13161 EVT OpVT = Op.getValueType();
13162 EVT OpSVT = OpVT.getScalarType();
13163 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
13164 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13165 return SDValue();
13166 BinOp = (ISD::NodeType)CandidateBinOp;
13167 return getExtractSubvector(SDLoc(Op), SubVT, Op, 0);
13168 };
13169
13170 // At each stage, we're looking for something that looks like:
13171 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
13172 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
13173 // i32 undef, i32 undef, i32 undef, i32 undef>
13174 // %a = binop <8 x i32> %op, %s
13175 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
13176 // we expect something like:
13177 // <4,5,6,7,u,u,u,u>
13178 // <2,3,u,u,u,u,u,u>
13179 // <1,u,u,u,u,u,u,u>
13180 // While a partial reduction match would be:
13181 // <2,3,u,u,u,u,u,u>
13182 // <1,u,u,u,u,u,u,u>
13183 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
13184 SDValue PrevOp;
13185 for (unsigned i = 0; i < Stages; ++i) {
13186 unsigned MaskEnd = (1 << i);
13187
13188 if (Op.getOpcode() != CandidateBinOp)
13189 return PartialReduction(PrevOp, MaskEnd);
13190
13191 SDValue Op0 = Op.getOperand(0);
13192 SDValue Op1 = Op.getOperand(1);
13193
13195 if (Shuffle) {
13196 Op = Op1;
13197 } else {
13198 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
13199 Op = Op0;
13200 }
13201
13202 // The first operand of the shuffle should be the same as the other operand
13203 // of the binop.
13204 if (!Shuffle || Shuffle->getOperand(0) != Op)
13205 return PartialReduction(PrevOp, MaskEnd);
13206
13207 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
13208 for (int Index = 0; Index < (int)MaskEnd; ++Index)
13209 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
13210 return PartialReduction(PrevOp, MaskEnd);
13211
13212 PrevOp = Op;
13213 }
13214
13215 // Handle subvector reductions, which tend to appear after the shuffle
13216 // reduction stages.
13217 while (Op.getOpcode() == CandidateBinOp) {
13218 unsigned NumElts = Op.getValueType().getVectorNumElements();
13219 SDValue Op0 = Op.getOperand(0);
13220 SDValue Op1 = Op.getOperand(1);
13221 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
13223 Op0.getOperand(0) != Op1.getOperand(0))
13224 break;
13225 SDValue Src = Op0.getOperand(0);
13226 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
13227 if (NumSrcElts != (2 * NumElts))
13228 break;
13229 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
13230 Op1.getConstantOperandAPInt(1) == NumElts) &&
13231 !(Op1.getConstantOperandAPInt(1) == 0 &&
13232 Op0.getConstantOperandAPInt(1) == NumElts))
13233 break;
13234 Op = Src;
13235 }
13236
13237 BinOp = (ISD::NodeType)CandidateBinOp;
13238 return Op;
13239}
13240
13242 EVT VT = N->getValueType(0);
13243 EVT EltVT = VT.getVectorElementType();
13244 unsigned NE = VT.getVectorNumElements();
13245
13246 SDLoc dl(N);
13247
13248 // If ResNE is 0, fully unroll the vector op.
13249 if (ResNE == 0)
13250 ResNE = NE;
13251 else if (NE > ResNE)
13252 NE = ResNE;
13253
13254 if (N->getNumValues() == 2) {
13255 SmallVector<SDValue, 8> Scalars0, Scalars1;
13256 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13257 EVT VT1 = N->getValueType(1);
13258 EVT EltVT1 = VT1.getVectorElementType();
13259
13260 unsigned i;
13261 for (i = 0; i != NE; ++i) {
13262 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13263 SDValue Operand = N->getOperand(j);
13264 EVT OperandVT = Operand.getValueType();
13265
13266 // A vector operand; extract a single element.
13267 EVT OperandEltVT = OperandVT.getVectorElementType();
13268 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13269 }
13270
13271 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13272 Scalars0.push_back(EltOp);
13273 Scalars1.push_back(EltOp.getValue(1));
13274 }
13275
13276 for (; i < ResNE; ++i) {
13277 Scalars0.push_back(getUNDEF(EltVT));
13278 Scalars1.push_back(getUNDEF(EltVT1));
13279 }
13280
13281 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13282 EVT VecVT1 = EVT::getVectorVT(*getContext(), EltVT1, ResNE);
13283 SDValue Vec0 = getBuildVector(VecVT, dl, Scalars0);
13284 SDValue Vec1 = getBuildVector(VecVT1, dl, Scalars1);
13285 return getMergeValues({Vec0, Vec1}, dl);
13286 }
13287
13288 assert(N->getNumValues() == 1 &&
13289 "Can't unroll a vector with multiple results!");
13290
13292 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13293
13294 unsigned i;
13295 for (i= 0; i != NE; ++i) {
13296 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13297 SDValue Operand = N->getOperand(j);
13298 EVT OperandVT = Operand.getValueType();
13299 if (OperandVT.isVector()) {
13300 // A vector operand; extract a single element.
13301 EVT OperandEltVT = OperandVT.getVectorElementType();
13302 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13303 } else {
13304 // A scalar operand; just use it as is.
13305 Operands[j] = Operand;
13306 }
13307 }
13308
13309 switch (N->getOpcode()) {
13310 default: {
13311 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
13312 N->getFlags()));
13313 break;
13314 }
13315 case ISD::VSELECT:
13316 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
13317 break;
13318 case ISD::SHL:
13319 case ISD::SRA:
13320 case ISD::SRL:
13321 case ISD::ROTL:
13322 case ISD::ROTR:
13323 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
13325 Operands[1])));
13326 break;
13328 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
13329 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
13330 Operands[0],
13331 getValueType(ExtVT)));
13332 break;
13333 }
13334 case ISD::ADDRSPACECAST: {
13335 const auto *ASC = cast<AddrSpaceCastSDNode>(N);
13336 Scalars.push_back(getAddrSpaceCast(dl, EltVT, Operands[0],
13337 ASC->getSrcAddressSpace(),
13338 ASC->getDestAddressSpace()));
13339 break;
13340 }
13341 }
13342 }
13343
13344 for (; i < ResNE; ++i)
13345 Scalars.push_back(getUNDEF(EltVT));
13346
13347 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13348 return getBuildVector(VecVT, dl, Scalars);
13349}
13350
13351std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
13352 SDNode *N, unsigned ResNE) {
13353 unsigned Opcode = N->getOpcode();
13354 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
13355 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
13356 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
13357 "Expected an overflow opcode");
13358
13359 EVT ResVT = N->getValueType(0);
13360 EVT OvVT = N->getValueType(1);
13361 EVT ResEltVT = ResVT.getVectorElementType();
13362 EVT OvEltVT = OvVT.getVectorElementType();
13363 SDLoc dl(N);
13364
13365 // If ResNE is 0, fully unroll the vector op.
13366 unsigned NE = ResVT.getVectorNumElements();
13367 if (ResNE == 0)
13368 ResNE = NE;
13369 else if (NE > ResNE)
13370 NE = ResNE;
13371
13372 SmallVector<SDValue, 8> LHSScalars;
13373 SmallVector<SDValue, 8> RHSScalars;
13374 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
13375 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
13376
13377 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
13378 SDVTList VTs = getVTList(ResEltVT, SVT);
13379 SmallVector<SDValue, 8> ResScalars;
13380 SmallVector<SDValue, 8> OvScalars;
13381 for (unsigned i = 0; i < NE; ++i) {
13382 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13383 SDValue Ov =
13384 getSelect(dl, OvEltVT, Res.getValue(1),
13385 getBoolConstant(true, dl, OvEltVT, ResVT),
13386 getConstant(0, dl, OvEltVT));
13387
13388 ResScalars.push_back(Res);
13389 OvScalars.push_back(Ov);
13390 }
13391
13392 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
13393 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
13394
13395 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
13396 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
13397 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
13398 getBuildVector(NewOvVT, dl, OvScalars));
13399}
13400
13403 unsigned Bytes,
13404 int Dist) const {
13405 if (LD->isVolatile() || Base->isVolatile())
13406 return false;
13407 // TODO: probably too restrictive for atomics, revisit
13408 if (!LD->isSimple())
13409 return false;
13410 if (LD->isIndexed() || Base->isIndexed())
13411 return false;
13412 if (LD->getChain() != Base->getChain())
13413 return false;
13414 EVT VT = LD->getMemoryVT();
13415 if (VT.getSizeInBits() / 8 != Bytes)
13416 return false;
13417
13418 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
13419 auto LocDecomp = BaseIndexOffset::match(LD, *this);
13420
13421 int64_t Offset = 0;
13422 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
13423 return (Dist * (int64_t)Bytes == Offset);
13424 return false;
13425}
13426
13427/// InferPtrAlignment - Infer alignment of a load / store address. Return
13428/// std::nullopt if it cannot be inferred.
13430 // If this is a GlobalAddress + cst, return the alignment.
13431 const GlobalValue *GV = nullptr;
13432 int64_t GVOffset = 0;
13433 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
13434 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
13435 KnownBits Known(PtrWidth);
13437 unsigned AlignBits = Known.countMinTrailingZeros();
13438 if (AlignBits)
13439 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
13440 }
13441
13442 // If this is a direct reference to a stack slot, use information about the
13443 // stack slot's alignment.
13444 int FrameIdx = INT_MIN;
13445 int64_t FrameOffset = 0;
13447 FrameIdx = FI->getIndex();
13448 } else if (isBaseWithConstantOffset(Ptr) &&
13449 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
13450 // Handle FI+Cst
13451 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
13452 FrameOffset = Ptr.getConstantOperandVal(1);
13453 }
13454
13455 if (FrameIdx != INT_MIN) {
13457 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
13458 }
13459
13460 return std::nullopt;
13461}
13462
13463/// Split the scalar node with EXTRACT_ELEMENT using the provided
13464/// VTs and return the low/high part.
13465std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
13466 const SDLoc &DL,
13467 const EVT &LoVT,
13468 const EVT &HiVT) {
13469 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
13470 "Split node must be a scalar type");
13471 SDValue Lo =
13473 SDValue Hi =
13475 return std::make_pair(Lo, Hi);
13476}
13477
13478/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
13479/// which is split (or expanded) into two not necessarily identical pieces.
13480std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
13481 // Currently all types are split in half.
13482 EVT LoVT, HiVT;
13483 if (!VT.isVector())
13484 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
13485 else
13486 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
13487
13488 return std::make_pair(LoVT, HiVT);
13489}
13490
13491/// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
13492/// type, dependent on an enveloping VT that has been split into two identical
13493/// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
13494std::pair<EVT, EVT>
13496 bool *HiIsEmpty) const {
13497 EVT EltTp = VT.getVectorElementType();
13498 // Examples:
13499 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
13500 // custom VL=9 with enveloping VL=8/8 yields 8/1
13501 // custom VL=10 with enveloping VL=8/8 yields 8/2
13502 // etc.
13503 ElementCount VTNumElts = VT.getVectorElementCount();
13504 ElementCount EnvNumElts = EnvVT.getVectorElementCount();
13505 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
13506 "Mixing fixed width and scalable vectors when enveloping a type");
13507 EVT LoVT, HiVT;
13508 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
13509 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13510 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
13511 *HiIsEmpty = false;
13512 } else {
13513 // Flag that hi type has zero storage size, but return split envelop type
13514 // (this would be easier if vector types with zero elements were allowed).
13515 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
13516 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13517 *HiIsEmpty = true;
13518 }
13519 return std::make_pair(LoVT, HiVT);
13520}
13521
13522/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
13523/// low/high part.
13524std::pair<SDValue, SDValue>
13525SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
13526 const EVT &HiVT) {
13527 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
13528 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
13529 "Splitting vector with an invalid mixture of fixed and scalable "
13530 "vector types");
13532 N.getValueType().getVectorMinNumElements() &&
13533 "More vector elements requested than available!");
13534 SDValue Lo, Hi;
13535 Lo = getExtractSubvector(DL, LoVT, N, 0);
13536 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
13537 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
13538 // IDX with the runtime scaling factor of the result vector type. For
13539 // fixed-width result vectors, that runtime scaling factor is 1.
13542 return std::make_pair(Lo, Hi);
13543}
13544
13545std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
13546 const SDLoc &DL) {
13547 // Split the vector length parameter.
13548 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
13549 EVT VT = N.getValueType();
13551 "Expecting the mask to be an evenly-sized vector");
13552 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
13553 SDValue HalfNumElts =
13554 VecVT.isFixedLengthVector()
13555 ? getConstant(HalfMinNumElts, DL, VT)
13556 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
13557 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
13558 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
13559 return std::make_pair(Lo, Hi);
13560}
13561
13562/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
13564 EVT VT = N.getValueType();
13567 return getInsertSubvector(DL, getUNDEF(WideVT), N, 0);
13568}
13569
13572 unsigned Start, unsigned Count,
13573 EVT EltVT) {
13574 EVT VT = Op.getValueType();
13575 if (Count == 0)
13577 if (EltVT == EVT())
13578 EltVT = VT.getVectorElementType();
13579 SDLoc SL(Op);
13580 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
13581 Args.push_back(getExtractVectorElt(SL, EltVT, Op, i));
13582 }
13583}
13584
13585// getAddressSpace - Return the address space this GlobalAddress belongs to.
13587 return getGlobal()->getType()->getAddressSpace();
13588}
13589
13592 return Val.MachineCPVal->getType();
13593 return Val.ConstVal->getType();
13594}
13595
13596bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
13597 unsigned &SplatBitSize,
13598 bool &HasAnyUndefs,
13599 unsigned MinSplatBits,
13600 bool IsBigEndian) const {
13601 EVT VT = getValueType(0);
13602 assert(VT.isVector() && "Expected a vector type");
13603 unsigned VecWidth = VT.getSizeInBits();
13604 if (MinSplatBits > VecWidth)
13605 return false;
13606
13607 // FIXME: The widths are based on this node's type, but build vectors can
13608 // truncate their operands.
13609 SplatValue = APInt(VecWidth, 0);
13610 SplatUndef = APInt(VecWidth, 0);
13611
13612 // Get the bits. Bits with undefined values (when the corresponding element
13613 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
13614 // in SplatValue. If any of the values are not constant, give up and return
13615 // false.
13616 unsigned int NumOps = getNumOperands();
13617 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
13618 unsigned EltWidth = VT.getScalarSizeInBits();
13619
13620 for (unsigned j = 0; j < NumOps; ++j) {
13621 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
13622 SDValue OpVal = getOperand(i);
13623 unsigned BitPos = j * EltWidth;
13624
13625 if (OpVal.isUndef())
13626 SplatUndef.setBits(BitPos, BitPos + EltWidth);
13627 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
13628 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13629 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
13630 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13631 else
13632 return false;
13633 }
13634
13635 // The build_vector is all constants or undefs. Find the smallest element
13636 // size that splats the vector.
13637 HasAnyUndefs = (SplatUndef != 0);
13638
13639 // FIXME: This does not work for vectors with elements less than 8 bits.
13640 while (VecWidth > 8) {
13641 // If we can't split in half, stop here.
13642 if (VecWidth & 1)
13643 break;
13644
13645 unsigned HalfSize = VecWidth / 2;
13646 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
13647 APInt LowValue = SplatValue.extractBits(HalfSize, 0);
13648 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
13649 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
13650
13651 // If the two halves do not match (ignoring undef bits), stop here.
13652 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13653 MinSplatBits > HalfSize)
13654 break;
13655
13656 SplatValue = HighValue | LowValue;
13657 SplatUndef = HighUndef & LowUndef;
13658
13659 VecWidth = HalfSize;
13660 }
13661
13662 // FIXME: The loop above only tries to split in halves. But if the input
13663 // vector for example is <3 x i16> it wouldn't be able to detect a
13664 // SplatBitSize of 16. No idea if that is a design flaw currently limiting
13665 // optimizations. I guess that back in the days when this helper was created
13666 // vectors normally was power-of-2 sized.
13667
13668 SplatBitSize = VecWidth;
13669 return true;
13670}
13671
13673 BitVector *UndefElements) const {
13674 unsigned NumOps = getNumOperands();
13675 if (UndefElements) {
13676 UndefElements->clear();
13677 UndefElements->resize(NumOps);
13678 }
13679 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13680 if (!DemandedElts)
13681 return SDValue();
13682 SDValue Splatted;
13683 for (unsigned i = 0; i != NumOps; ++i) {
13684 if (!DemandedElts[i])
13685 continue;
13686 SDValue Op = getOperand(i);
13687 if (Op.isUndef()) {
13688 if (UndefElements)
13689 (*UndefElements)[i] = true;
13690 } else if (!Splatted) {
13691 Splatted = Op;
13692 } else if (Splatted != Op) {
13693 return SDValue();
13694 }
13695 }
13696
13697 if (!Splatted) {
13698 unsigned FirstDemandedIdx = DemandedElts.countr_zero();
13699 assert(getOperand(FirstDemandedIdx).isUndef() &&
13700 "Can only have a splat without a constant for all undefs.");
13701 return getOperand(FirstDemandedIdx);
13702 }
13703
13704 return Splatted;
13705}
13706
13708 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13709 return getSplatValue(DemandedElts, UndefElements);
13710}
13711
13713 SmallVectorImpl<SDValue> &Sequence,
13714 BitVector *UndefElements) const {
13715 unsigned NumOps = getNumOperands();
13716 Sequence.clear();
13717 if (UndefElements) {
13718 UndefElements->clear();
13719 UndefElements->resize(NumOps);
13720 }
13721 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13722 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
13723 return false;
13724
13725 // Set the undefs even if we don't find a sequence (like getSplatValue).
13726 if (UndefElements)
13727 for (unsigned I = 0; I != NumOps; ++I)
13728 if (DemandedElts[I] && getOperand(I).isUndef())
13729 (*UndefElements)[I] = true;
13730
13731 // Iteratively widen the sequence length looking for repetitions.
13732 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
13733 Sequence.append(SeqLen, SDValue());
13734 for (unsigned I = 0; I != NumOps; ++I) {
13735 if (!DemandedElts[I])
13736 continue;
13737 SDValue &SeqOp = Sequence[I % SeqLen];
13739 if (Op.isUndef()) {
13740 if (!SeqOp)
13741 SeqOp = Op;
13742 continue;
13743 }
13744 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
13745 Sequence.clear();
13746 break;
13747 }
13748 SeqOp = Op;
13749 }
13750 if (!Sequence.empty())
13751 return true;
13752 }
13753
13754 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
13755 return false;
13756}
13757
13759 BitVector *UndefElements) const {
13760 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13761 return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
13762}
13763
13766 BitVector *UndefElements) const {
13768 getSplatValue(DemandedElts, UndefElements));
13769}
13770
13773 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
13774}
13775
13778 BitVector *UndefElements) const {
13780 getSplatValue(DemandedElts, UndefElements));
13781}
13782
13787
13788int32_t
13790 uint32_t BitWidth) const {
13791 if (ConstantFPSDNode *CN =
13793 bool IsExact;
13794 APSInt IntVal(BitWidth);
13795 const APFloat &APF = CN->getValueAPF();
13796 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
13797 APFloat::opOK ||
13798 !IsExact)
13799 return -1;
13800
13801 return IntVal.exactLogBase2();
13802 }
13803 return -1;
13804}
13805
13807 bool IsLittleEndian, unsigned DstEltSizeInBits,
13808 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
13809 // Early-out if this contains anything but Undef/Constant/ConstantFP.
13810 if (!isConstant())
13811 return false;
13812
13813 unsigned NumSrcOps = getNumOperands();
13814 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
13815 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13816 "Invalid bitcast scale");
13817
13818 // Extract raw src bits.
13819 SmallVector<APInt> SrcBitElements(NumSrcOps,
13820 APInt::getZero(SrcEltSizeInBits));
13821 BitVector SrcUndeElements(NumSrcOps, false);
13822
13823 for (unsigned I = 0; I != NumSrcOps; ++I) {
13825 if (Op.isUndef()) {
13826 SrcUndeElements.set(I);
13827 continue;
13828 }
13829 auto *CInt = dyn_cast<ConstantSDNode>(Op);
13830 auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
13831 assert((CInt || CFP) && "Unknown constant");
13832 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13833 : CFP->getValueAPF().bitcastToAPInt();
13834 }
13835
13836 // Recast to dst width.
13837 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13838 SrcBitElements, UndefElements, SrcUndeElements);
13839 return true;
13840}
13841
13842void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
13843 unsigned DstEltSizeInBits,
13844 SmallVectorImpl<APInt> &DstBitElements,
13845 ArrayRef<APInt> SrcBitElements,
13846 BitVector &DstUndefElements,
13847 const BitVector &SrcUndefElements) {
13848 unsigned NumSrcOps = SrcBitElements.size();
13849 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13850 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13851 "Invalid bitcast scale");
13852 assert(NumSrcOps == SrcUndefElements.size() &&
13853 "Vector size mismatch");
13854
13855 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13856 DstUndefElements.clear();
13857 DstUndefElements.resize(NumDstOps, false);
13858 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
13859
13860 // Concatenate src elements constant bits together into dst element.
13861 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13862 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13863 for (unsigned I = 0; I != NumDstOps; ++I) {
13864 DstUndefElements.set(I);
13865 APInt &DstBits = DstBitElements[I];
13866 for (unsigned J = 0; J != Scale; ++J) {
13867 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13868 if (SrcUndefElements[Idx])
13869 continue;
13870 DstUndefElements.reset(I);
13871 const APInt &SrcBits = SrcBitElements[Idx];
13872 assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
13873 "Illegal constant bitwidths");
13874 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
13875 }
13876 }
13877 return;
13878 }
13879
13880 // Split src element constant bits into dst elements.
13881 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13882 for (unsigned I = 0; I != NumSrcOps; ++I) {
13883 if (SrcUndefElements[I]) {
13884 DstUndefElements.set(I * Scale, (I + 1) * Scale);
13885 continue;
13886 }
13887 const APInt &SrcBits = SrcBitElements[I];
13888 for (unsigned J = 0; J != Scale; ++J) {
13889 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13890 APInt &DstBits = DstBitElements[Idx];
13891 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13892 }
13893 }
13894}
13895
13897 for (const SDValue &Op : op_values()) {
13898 unsigned Opc = Op.getOpcode();
13899 if (!Op.isUndef() && Opc != ISD::Constant && Opc != ISD::ConstantFP)
13900 return false;
13901 }
13902 return true;
13903}
13904
13905std::optional<std::pair<APInt, APInt>>
13907 unsigned NumOps = getNumOperands();
13908 if (NumOps < 2)
13909 return std::nullopt;
13910
13913 return std::nullopt;
13914
13915 unsigned EltSize = getValueType(0).getScalarSizeInBits();
13916 APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
13917 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
13918
13919 if (Stride.isZero())
13920 return std::nullopt;
13921
13922 for (unsigned i = 2; i < NumOps; ++i) {
13924 return std::nullopt;
13925
13926 APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
13927 if (Val != (Start + (Stride * i)))
13928 return std::nullopt;
13929 }
13930
13931 return std::make_pair(Start, Stride);
13932}
13933
13935 // Find the first non-undef value in the shuffle mask.
13936 unsigned i, e;
13937 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
13938 /* search */;
13939
13940 // If all elements are undefined, this shuffle can be considered a splat
13941 // (although it should eventually get simplified away completely).
13942 if (i == e)
13943 return true;
13944
13945 // Make sure all remaining elements are either undef or the same as the first
13946 // non-undef value.
13947 for (int Idx = Mask[i]; i != e; ++i)
13948 if (Mask[i] >= 0 && Mask[i] != Idx)
13949 return false;
13950 return true;
13951}
13952
13953// Returns true if it is a constant integer BuildVector or constant integer,
13954// possibly hidden by a bitcast.
13956 SDValue N, bool AllowOpaques) const {
13958
13959 if (auto *C = dyn_cast<ConstantSDNode>(N))
13960 return AllowOpaques || !C->isOpaque();
13961
13963 return true;
13964
13965 // Treat a GlobalAddress supporting constant offset folding as a
13966 // constant integer.
13967 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N))
13968 if (GA->getOpcode() == ISD::GlobalAddress &&
13969 TLI->isOffsetFoldingLegal(GA))
13970 return true;
13971
13972 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
13973 isa<ConstantSDNode>(N.getOperand(0)))
13974 return true;
13975 return false;
13976}
13977
13978// Returns true if it is a constant float BuildVector or constant float.
13981 return true;
13982
13984 return true;
13985
13986 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
13987 isa<ConstantFPSDNode>(N.getOperand(0)))
13988 return true;
13989
13990 return false;
13991}
13992
13993std::optional<bool> SelectionDAG::isBoolConstant(SDValue N) const {
13994 ConstantSDNode *Const =
13995 isConstOrConstSplat(N, false, /*AllowTruncation=*/true);
13996 if (!Const)
13997 return std::nullopt;
13998
13999 EVT VT = N->getValueType(0);
14000 const APInt CVal = Const->getAPIntValue().trunc(VT.getScalarSizeInBits());
14001 switch (TLI->getBooleanContents(N.getValueType())) {
14003 if (CVal.isOne())
14004 return true;
14005 if (CVal.isZero())
14006 return false;
14007 return std::nullopt;
14009 if (CVal.isAllOnes())
14010 return true;
14011 if (CVal.isZero())
14012 return false;
14013 return std::nullopt;
14015 return CVal[0];
14016 }
14017 llvm_unreachable("Unknown BooleanContent enum");
14018}
14019
14020void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
14021 assert(!Node->OperandList && "Node already has operands");
14023 "too many operands to fit into SDNode");
14024 SDUse *Ops = OperandRecycler.allocate(
14025 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
14026
14027 bool IsDivergent = false;
14028 for (unsigned I = 0; I != Vals.size(); ++I) {
14029 Ops[I].setUser(Node);
14030 Ops[I].setInitial(Vals[I]);
14031 EVT VT = Ops[I].getValueType();
14032
14033 // Skip Chain. It does not carry divergence.
14034 if (VT != MVT::Other &&
14035 (VT != MVT::Glue || gluePropagatesDivergence(Ops[I].getNode())) &&
14036 Ops[I].getNode()->isDivergent()) {
14037 IsDivergent = true;
14038 }
14039 }
14040 Node->NumOperands = Vals.size();
14041 Node->OperandList = Ops;
14042 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14043 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14044 Node->SDNodeBits.IsDivergent = IsDivergent;
14045 }
14046 checkForCycles(Node);
14047}
14048
14051 size_t Limit = SDNode::getMaxNumOperands();
14052 while (Vals.size() > Limit) {
14053 unsigned SliceIdx = Vals.size() - Limit;
14054 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
14055 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
14056 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
14057 Vals.emplace_back(NewTF);
14058 }
14059 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
14060}
14061
14063 EVT VT, SDNodeFlags Flags) {
14064 switch (Opcode) {
14065 default:
14066 return SDValue();
14067 case ISD::ADD:
14068 case ISD::OR:
14069 case ISD::XOR:
14070 case ISD::UMAX:
14071 return getConstant(0, DL, VT);
14072 case ISD::MUL:
14073 return getConstant(1, DL, VT);
14074 case ISD::AND:
14075 case ISD::UMIN:
14076 return getAllOnesConstant(DL, VT);
14077 case ISD::SMAX:
14079 case ISD::SMIN:
14081 case ISD::FADD:
14082 // If flags allow, prefer positive zero since it's generally cheaper
14083 // to materialize on most targets.
14084 return getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, VT);
14085 case ISD::FMUL:
14086 return getConstantFP(1.0, DL, VT);
14087 case ISD::FMINNUM:
14088 case ISD::FMAXNUM: {
14089 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
14090 const fltSemantics &Semantics = VT.getFltSemantics();
14091 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
14092 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
14093 APFloat::getLargest(Semantics);
14094 if (Opcode == ISD::FMAXNUM)
14095 NeutralAF.changeSign();
14096
14097 return getConstantFP(NeutralAF, DL, VT);
14098 }
14099 case ISD::FMINIMUM:
14100 case ISD::FMAXIMUM: {
14101 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
14102 const fltSemantics &Semantics = VT.getFltSemantics();
14103 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
14104 : APFloat::getLargest(Semantics);
14105 if (Opcode == ISD::FMAXIMUM)
14106 NeutralAF.changeSign();
14107
14108 return getConstantFP(NeutralAF, DL, VT);
14109 }
14110
14111 }
14112}
14113
14114/// Helper used to make a call to a library function that has one argument of
14115/// pointer type.
14116///
14117/// Such functions include 'fegetmode', 'fesetenv' and some others, which are
14118/// used to get or set floating-point state. They have one argument of pointer
14119/// type, which points to the memory region containing bits of the
14120/// floating-point state. The value returned by such function is ignored in the
14121/// created call.
14122///
14123/// \param LibFunc Reference to library function (value of RTLIB::Libcall).
14124/// \param Ptr Pointer used to save/load state.
14125/// \param InChain Ingoing token chain.
14126/// \returns Outgoing chain token.
14128 SDValue InChain,
14129 const SDLoc &DLoc) {
14130 assert(InChain.getValueType() == MVT::Other && "Expected token chain");
14132 Args.emplace_back(Ptr, Ptr.getValueType().getTypeForEVT(*getContext()));
14133 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
14134 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
14135 TLI->getPointerTy(getDataLayout()));
14137 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
14138 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
14139 std::move(Args));
14140 return TLI->LowerCallTo(CLI).second;
14141}
14142
14144 assert(From && To && "Invalid SDNode; empty source SDValue?");
14145 auto I = SDEI.find(From);
14146 if (I == SDEI.end())
14147 return;
14148
14149 // Use of operator[] on the DenseMap may cause an insertion, which invalidates
14150 // the iterator, hence the need to make a copy to prevent a use-after-free.
14151 NodeExtraInfo NEI = I->second;
14152 if (LLVM_LIKELY(!NEI.PCSections)) {
14153 // No deep copy required for the types of extra info set.
14154 //
14155 // FIXME: Investigate if other types of extra info also need deep copy. This
14156 // depends on the types of nodes they can be attached to: if some extra info
14157 // is only ever attached to nodes where a replacement To node is always the
14158 // node where later use and propagation of the extra info has the intended
14159 // semantics, no deep copy is required.
14160 SDEI[To] = std::move(NEI);
14161 return;
14162 }
14163
14164 const SDNode *EntrySDN = getEntryNode().getNode();
14165
14166 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
14167 // through the replacement of From with To. Otherwise, replacements of a node
14168 // (From) with more complex nodes (To and its operands) may result in lost
14169 // extra info where the root node (To) is insignificant in further propagating
14170 // and using extra info when further lowering to MIR.
14171 //
14172 // In the first step pre-populate the visited set with the nodes reachable
14173 // from the old From node. This avoids copying NodeExtraInfo to parts of the
14174 // DAG that is not new and should be left untouched.
14175 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
14176 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
14177 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
14178 if (MaxDepth == 0) {
14179 // Remember this node in case we need to increase MaxDepth and continue
14180 // populating FromReach from this node.
14181 Leafs.emplace_back(N);
14182 return;
14183 }
14184 if (!FromReach.insert(N).second)
14185 return;
14186 for (const SDValue &Op : N->op_values())
14187 Self(Self, Op.getNode(), MaxDepth - 1);
14188 };
14189
14190 // Copy extra info to To and all its transitive operands (that are new).
14192 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
14193 if (FromReach.contains(N))
14194 return true;
14195 if (!Visited.insert(N).second)
14196 return true;
14197 if (EntrySDN == N)
14198 return false;
14199 for (const SDValue &Op : N->op_values()) {
14200 if (N == To && Op.getNode() == EntrySDN) {
14201 // Special case: New node's operand is the entry node; just need to
14202 // copy extra info to new node.
14203 break;
14204 }
14205 if (!Self(Self, Op.getNode()))
14206 return false;
14207 }
14208 // Copy only if entry node was not reached.
14209 SDEI[N] = NEI;
14210 return true;
14211 };
14212
14213 // We first try with a lower MaxDepth, assuming that the path to common
14214 // operands between From and To is relatively short. This significantly
14215 // improves performance in the common case. The initial MaxDepth is big
14216 // enough to avoid retry in the common case; the last MaxDepth is large
14217 // enough to avoid having to use the fallback below (and protects from
14218 // potential stack exhaustion from recursion).
14219 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14220 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
14221 // StartFrom is the previous (or initial) set of leafs reachable at the
14222 // previous maximum depth.
14224 std::swap(StartFrom, Leafs);
14225 for (const SDNode *N : StartFrom)
14226 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
14227 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
14228 return;
14229 // This should happen very rarely (reached the entry node).
14230 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
14231 assert(!Leafs.empty());
14232 }
14233
14234 // This should not happen - but if it did, that means the subgraph reachable
14235 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
14236 // could not visit all reachable common operands. Consequently, we were able
14237 // to reach the entry node.
14238 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14239 assert(false && "From subgraph too complex - increase max. MaxDepth?");
14240 // Best-effort fallback if assertions disabled.
14241 SDEI[To] = std::move(NEI);
14242}
14243
14244#ifndef NDEBUG
14245static void checkForCyclesHelper(const SDNode *N,
14248 const llvm::SelectionDAG *DAG) {
14249 // If this node has already been checked, don't check it again.
14250 if (Checked.count(N))
14251 return;
14252
14253 // If a node has already been visited on this depth-first walk, reject it as
14254 // a cycle.
14255 if (!Visited.insert(N).second) {
14256 errs() << "Detected cycle in SelectionDAG\n";
14257 dbgs() << "Offending node:\n";
14258 N->dumprFull(DAG); dbgs() << "\n";
14259 abort();
14260 }
14261
14262 for (const SDValue &Op : N->op_values())
14263 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
14264
14265 Checked.insert(N);
14266 Visited.erase(N);
14267}
14268#endif
14269
14271 const llvm::SelectionDAG *DAG,
14272 bool force) {
14273#ifndef NDEBUG
14274 bool check = force;
14275#ifdef EXPENSIVE_CHECKS
14276 check = true;
14277#endif // EXPENSIVE_CHECKS
14278 if (check) {
14279 assert(N && "Checking nonexistent SDNode");
14282 checkForCyclesHelper(N, visited, checked, DAG);
14283 }
14284#endif // !NDEBUG
14285}
14286
14287void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
14288 checkForCycles(DAG->getRoot().getNode(), DAG, force);
14289}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
Definition Compiler.h:569
#define LLVM_LIKELY(EXPR)
Definition Compiler.h:335
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
#define _
iv users
Definition IVUsers.cpp:48
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
mir Rename Register Operands
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define P(N)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1208
void copySign(const APFloat &RHS)
Definition APFloat.h:1302
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6057
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
bool isFinite() const
Definition APFloat.h:1454
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1347
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1199
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1235
bool isZero() const
Definition APFloat.h:1445
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1138
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1332
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1098
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1226
bool isPosZero() const
Definition APFloat.h:1460
bool isNegZero() const
Definition APFloat.h:1461
void changeSign()
Definition APFloat.h:1297
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1109
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1406
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:229
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1391
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1670
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition APInt.cpp:1644
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1396
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
Definition APInt.cpp:1154
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:834
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition APInt.h:1166
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition APInt.h:1628
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
Definition APInt.cpp:2086
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
Definition APInt.cpp:2100
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
Definition APInt.cpp:1141
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1435
unsigned logBase2() const
Definition APInt.h:1761
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
void setAllBits()
Set every bit to 1.
Definition APInt.h:1319
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:334
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1367
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
LLVM_ABI APInt byteSwap() const
Definition APInt.cpp:746
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition APInt.h:553
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1417
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1388
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1237
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
BitVector & reset()
Definition BitVector.h:392
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition BitVector.h:341
void clear()
clear - Removes all bits from the bitvector.
Definition BitVector.h:335
BitVector & set()
Definition BitVector.h:351
bool none() const
none - Returns true if none of the bits are set.
Definition BitVector.h:188
size_type size() const
size - Returns the number of bits in this bitvector.
Definition BitVector.h:159
const BlockAddress * getBlockAddress() const
The address of a basic block.
Definition Constants.h:899
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValue() const
Definition Constants.h:321
This is the shared class of boolean and integer constants.
Definition Constants.h:87
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition Constants.h:157
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
DWARF expression.
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:198
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
A debug info location.
Definition DebugLoc.h:124
Implements a dense probed hash-table based set.
Definition DenseSet.h:269
const char * getSymbol() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1077
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1445
Machine Value Type.
SimpleValueType SimpleTy
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
The optimization diagnostic interface.
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool isDivergent() const
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
SDValue()=default
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI void dump() const
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:148
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetOptions Options
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Definition Triple.h:611
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Provides info so a possible vectorization of a function can be computed.
bool isMasked() const
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:169
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
Definition TypeSize.h:177
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
A raw_ostream that writes to an std::string.
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
Definition APInt.cpp:3131
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
Definition APInt.cpp:3118
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
Definition APInt.cpp:3108
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
Definition APInt.cpp:3182
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
Definition APInt.cpp:3123
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
Definition APInt.h:2268
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
Definition APInt.cpp:3173
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
Definition APInt.h:2273
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
Definition APInt.cpp:3103
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
Definition APInt.cpp:3113
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
Definition ISDOpcodes.h:24
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:801
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:774
@ TargetConstantPool
Definition ISDOpcodes.h:184
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:525
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:587
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:765
@ TargetBlockAddress
Definition ISDOpcodes.h:186
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:835
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:862
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:571
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:738
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:892
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ GlobalTLSAddress
Definition ISDOpcodes.h:89
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:826
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:706
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:656
@ TargetExternalSymbol
Definition ISDOpcodes.h:185
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:773
@ TargetJumpTable
Definition ISDOpcodes.h:183
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
Definition ISDOpcodes.h:193
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:809
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:682
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:528
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:778
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:663
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition ISDOpcodes.h:180
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:695
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:756
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:636
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:601
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:563
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:832
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:793
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:881
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:870
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:718
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:787
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:908
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:498
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:730
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:701
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition ISDOpcodes.h:672
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:552
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:648
@ ExternalSymbol
Definition ISDOpcodes.h:93
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:941
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:690
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:903
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:927
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:838
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:815
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:521
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:713
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ TargetGlobalTLSAddress
Definition ISDOpcodes.h:181
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:543
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:666
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:355
@ Offset
Definition DWP.cpp:477
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1705
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1607
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2452
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:279
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:738
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition bit.h:289
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1643
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2116
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:252
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:634
auto cast_or_null(const Y &Val)
Definition Casting.h:720
void * PointerTy
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1589
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1555
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1712
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1598
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:342
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1624
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1629
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1719
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1579
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1815
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
Definition Analysis.cpp:723
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1877
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:212
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition MathExtras.h:583
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:208
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1616
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1656
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:384
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:853
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:760
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
Definition Metadata.h:780
MDNode * TBAA
The tag for type-based alias analysis.
Definition Metadata.h:777
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition APFloat.h:294
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:307
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static constexpr roundingMode rmTowardZero
Definition APFloat.h:308
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
Definition APFloat.cpp:268
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:306
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
Definition APFloat.cpp:265
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:320
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
intptr_t getRawBits() const
Definition ValueTypes.h:512
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:294
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:248
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:101
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
void makeNonNegative()
Make this value non-negative.
Definition KnownBits.h:117
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:235
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:267
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
Definition KnownBits.h:112
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:154
KnownBits byteSwap() const
Definition KnownBits.h:507
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:282
void setAllZero()
Make all bits known to be zero and discard any previous information.
Definition KnownBits.h:86
KnownBits reverseBits() const
Definition KnownBits.h:511
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:226
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:165
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:314
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:104
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
Definition KnownBits.h:218
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:304
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:173
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
Definition KnownBits.h:189
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:138
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
Definition KnownBits.h:107
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
Definition KnownBits.h:319
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:98
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
Definition KnownBits.cpp:53
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:273
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:212
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:160
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:117
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)