99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
102#define DEBUG_TYPE "selectiondag"
106 cl::desc(
"Gang up loads and stores generated by inlining of memcpy"));
109 cl::desc(
"Number limit for gluing ld/st of memcpy."),
114 cl::desc(
"DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
153 if (
auto OptAPInt =
N->getOperand(0)->bitcastToAPInt()) {
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->
trunc(EltSize);
166 unsigned SplatBitSize;
168 unsigned EltSize =
N->getValueType(0).getVectorElementType().getSizeInBits();
173 const bool IsBigEndian =
false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
184 while (
N->getOpcode() == ISD::BITCAST)
185 N =
N->getOperand(0).getNode();
194 unsigned i = 0, e =
N->getNumOperands();
197 while (i != e &&
N->getOperand(i).isUndef())
201 if (i == e)
return false;
213 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
222 for (++i; i != e; ++i)
223 if (
N->getOperand(i) != NotZero && !
N->getOperand(i).isUndef())
230 while (
N->getOpcode() == ISD::BITCAST)
231 N =
N->getOperand(0).getNode();
240 bool IsAllUndef =
true;
253 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
254 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
303 assert(
N->getValueType(0).isVector() &&
"Expected a vector!");
305 unsigned EltSize =
N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
310 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
315 return (
N->getOperand(0).getValueType().getScalarSizeInBits() <=
328 APInt C =
Op->getAsAPIntVal().trunc(EltSize);
329 if (
Signed &&
C.trunc(NewEltSize).sext(EltSize) !=
C)
331 if (!
Signed &&
C.trunc(NewEltSize).zext(EltSize) !=
C)
342 if (
N->getNumOperands() == 0)
348 return N->getOpcode() ==
ISD::FREEZE &&
N->getOperand(0).isUndef();
351template <
typename ConstNodeType>
353 std::function<
bool(ConstNodeType *)> Match,
354 bool AllowUndefs,
bool AllowTruncation) {
364 EVT SVT =
Op.getValueType().getScalarType();
365 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs &&
Op.getOperand(i).isUndef()) {
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
388 bool AllowUndefs,
bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
395 return Match(LHSCst, RHSCst);
398 if (LHS.getOpcode() != RHS.getOpcode() ||
404 for (
unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
407 bool LHSUndef = AllowUndefs && LHSOp.
isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.
isUndef();
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
413 if (!AllowTypeMismatch && (LHSOp.
getValueType() != SVT ||
416 if (!Match(LHSCst, RHSCst))
438 switch (VecReduceOpcode) {
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
500#include "llvm/IR/VPIntrinsics.def"
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
549#include "llvm/IR/VPIntrinsics.def"
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
561#include "llvm/IR/VPIntrinsics.def"
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
633 bool isIntegerLike) {
658 bool IsInteger =
Type.isInteger();
663 unsigned Op = Op1 | Op2;
679 bool IsInteger =
Type.isInteger();
714 ID.AddPointer(VTList.
VTs);
720 for (
const auto &
Op :
Ops) {
721 ID.AddPointer(
Op.getNode());
722 ID.AddInteger(
Op.getResNo());
729 for (
const auto &
Op :
Ops) {
730 ID.AddPointer(
Op.getNode());
731 ID.AddInteger(
Op.getResNo());
744 switch (
N->getOpcode()) {
753 ID.AddPointer(
C->getConstantIntValue());
754 ID.AddBoolean(
C->isOpaque());
787 case ISD::PSEUDO_PROBE:
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(
ID);
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
840 case ISD::VP_LOAD_FF: {
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
848 case ISD::VP_STORE: {
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
870 case ISD::VP_GATHER: {
878 case ISD::VP_SCATTER: {
910 case ISD::MSCATTER: {
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
947 case ISD::ADDRSPACECAST: {
969 case ISD::MDNODE_SDNODE:
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
1003 if (
N->getValueType(0) == MVT::Glue)
1006 switch (
N->getOpcode()) {
1008 case ISD::HANDLENODE:
1014 for (
unsigned i = 1, e =
N->getNumValues(); i != e; ++i)
1015 if (
N->getValueType(i) == MVT::Glue)
1032 if (
Node.use_empty())
1047 while (!DeadNodes.
empty()) {
1056 DUL->NodeDeleted(
N,
nullptr);
1059 RemoveNodeFromCSEMaps(
N);
1090 RemoveNodeFromCSEMaps(
N);
1094 DeleteNodeNotInCSEMaps(
N);
1097void SelectionDAG::DeleteNodeNotInCSEMaps(
SDNode *
N) {
1098 assert(
N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(
N->use_empty() &&
"Cannot delete a node that is not dead!");
1109 assert(!(V->isVariadic() && isParameter));
1111 ByvalParmDbgValues.push_back(V);
1113 DbgValues.push_back(V);
1116 DbgValMap[
Node].push_back(V);
1120 DbgValMapType::iterator
I = DbgValMap.find(
Node);
1121 if (
I == DbgValMap.end())
1123 for (
auto &Val:
I->second)
1124 Val->setIsInvalidated();
1128void SelectionDAG::DeallocateNode(
SDNode *
N) {
1151void SelectionDAG::verifyNode(
SDNode *
N)
const {
1152 switch (
N->getOpcode()) {
1154 if (
N->isTargetOpcode())
1158 EVT VT =
N->getValueType(0);
1159 assert(
N->getNumValues() == 1 &&
"Too many results!");
1161 "Wrong return type!");
1162 assert(
N->getNumOperands() == 2 &&
"Wrong number of operands!");
1163 assert(
N->getOperand(0).getValueType() ==
N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1166 "Wrong operand type!");
1168 "Wrong return type size");
1172 assert(
N->getNumValues() == 1 &&
"Too many results!");
1173 assert(
N->getValueType(0).isVector() &&
"Wrong return type!");
1174 assert(
N->getNumOperands() ==
N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT =
N->getValueType(0).getVectorElementType();
1177 for (
const SDUse &
Op :
N->ops()) {
1178 assert((
Op.getValueType() == EltVT ||
1179 (EltVT.
isInteger() &&
Op.getValueType().isInteger() &&
1180 EltVT.
bitsLE(
Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(
Op.getValueType() ==
N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1195void SelectionDAG::InsertNode(SDNode *
N) {
1196 AllNodes.push_back(
N);
1198 N->PersistentId = NextPersistentId++;
1202 DUL->NodeInserted(
N);
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *
N) {
1210 bool Erased =
false;
1211 switch (
N->getOpcode()) {
1212 case ISD::HANDLENODE:
return false;
1215 "Cond code doesn't exist!");
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1247 Erased = CSEMap.RemoveNode(
N);
1254 if (!Erased &&
N->getValueType(
N->getNumValues()-1) != MVT::Glue &&
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *
N) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(
N);
1274 if (Existing !=
N) {
1285 DUL->NodeDeleted(
N, Existing);
1286 DeleteNodeNotInCSEMaps(
N);
1293 DUL->NodeUpdated(
N);
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
SDValue Op,
1306 FoldingSetNodeID
ID;
1309 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1311 Node->intersectFlagsWith(
N->getFlags());
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *
N,
1326 FoldingSetNodeID
ID;
1329 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1331 Node->intersectFlagsWith(
N->getFlags());
1344 FoldingSetNodeID
ID;
1347 SDNode *
Node = FindNodeOrInsertPos(
ID, SDLoc(
N), InsertPos);
1349 Node->intersectFlagsWith(
N->getFlags());
1362 : TM(tm), OptLevel(OL), EntryNode(
ISD::EntryToken, 0,
DebugLoc(),
1365 InsertNode(&EntryNode);
1376 SDAGISelPass = PassPtr;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1386 FnVarLocs = VarLocs;
1390 assert(!UpdateListeners &&
"Dangling registered DAGUpdateListeners");
1392 OperandRecycler.clear(OperandAllocator);
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1406 NextPersistentId = 0;
1412 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1414 switch (
N->getOpcode()) {
1419 "debug location. Use another overload.");
1426 const SDLoc &
DL,
void *&InsertPos) {
1427 SDNode *
N = CSEMap.FindNodeOrInsertPos(
ID, InsertPos);
1429 switch (
N->getOpcode()) {
1435 if (
N->getDebugLoc() !=
DL.getDebugLoc())
1442 if (
DL.getIROrder() &&
DL.getIROrder() <
N->getIROrder())
1443 N->setDebugLoc(
DL.getDebugLoc());
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1464 EntryNode.UseList =
nullptr;
1465 InsertNode(&EntryNode);
1471 return VT.
bitsGT(
Op.getValueType())
1477std::pair<SDValue, SDValue>
1481 "Strict no-op FP extend/round not allowed.");
1488 return std::pair<SDValue, SDValue>(Res,
SDValue(Res.
getNode(), 1));
1492 return VT.
bitsGT(
Op.getValueType()) ?
1498 return VT.
bitsGT(
Op.getValueType()) ?
1504 return VT.
bitsGT(
Op.getValueType()) ?
1512 auto Type =
Op.getValueType();
1516 auto Size =
Op.getValueSizeInBits();
1527 auto Type =
Op.getValueType();
1531 auto Size =
Op.getValueSizeInBits();
1542 auto Type =
Op.getValueType();
1546 auto Size =
Op.getValueSizeInBits();
1560 return getNode(TLI->getExtendForContent(BType), SL, VT,
Op);
1564 EVT OpVT =
Op.getValueType();
1566 "Cannot getZeroExtendInReg FP types");
1568 "getZeroExtendInReg type should be vector iff the operand "
1572 "Vector element counts must match in getZeroExtendInReg");
1584 EVT OpVT =
Op.getValueType();
1586 "Cannot getVPZeroExtendInReg FP types");
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1629 return getNode(ISD::VP_XOR,
DL, VT, Val, TrueValue, Mask, EVL);
1640 return getNode(ISD::VP_ZERO_EXTEND,
DL, VT,
Op, Mask, EVL);
1642 return getNode(ISD::VP_TRUNCATE,
DL, VT,
Op, Mask, EVL);
1651 switch (TLI->getBooleanContents(OpVT)) {
1662 bool isT,
bool isO) {
1668 bool isT,
bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val),
DL, VT, isT, isO);
1673 EVT VT,
bool isT,
bool isO) {
1690 EltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1696 Elt = ConstantInt::get(*
getContext(), NewVal);
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*
getContext(), EltVT);
1715 "Can only handle an even split!");
1719 for (
unsigned i = 0; i != Parts; ++i)
1721 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1722 ViaEltVT, isT, isO));
1727 unsigned ViaVecNumElts = VT.
getSizeInBits() / ViaEltSizeInBits;
1738 NewVal.
extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits),
DL,
1739 ViaEltVT, isT, isO));
1744 std::reverse(EltParts.
begin(), EltParts.
end());
1763 "APInt size does not match type size!");
1772 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(
N, IP);
1790 bool isT,
bool isO) {
1798 IsTarget, IsOpaque);
1830 EVT VT,
bool isTarget) {
1851 if ((
N = FindNodeOrInsertPos(
ID,
DL, IP)))
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(
N, IP);
1871 if (EltVT == MVT::f32)
1873 if (EltVT == MVT::f64)
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1887 EVT VT, int64_t
Offset,
bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1908 ID.AddInteger(TargetFlags);
1910 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
1913 auto *
N = newSDNode<GlobalAddressSDNode>(
1914 Opc,
DL.getIROrder(),
DL.getDebugLoc(), GV, VTs,
Offset, TargetFlags);
1915 CSEMap.InsertNode(
N, IP);
1927 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1930 auto *
N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(
N, IP);
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1945 ID.AddInteger(TargetFlags);
1947 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1950 auto *
N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(
N, IP);
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO,
DL, MVT::Glue, Chain,
1965 bool isTarget,
unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1976 ID.AddInteger(Alignment->value());
1979 ID.AddInteger(TargetFlags);
1981 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
1984 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
1986 CSEMap.InsertNode(
N, IP);
1995 bool isTarget,
unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
2004 ID.AddInteger(Alignment->value());
2006 C->addSelectionDAGCSEId(
ID);
2007 ID.AddInteger(TargetFlags);
2009 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2012 auto *
N = newSDNode<ConstantPoolSDNode>(isTarget,
C, VTs,
Offset, *Alignment,
2014 CSEMap.InsertNode(
N, IP);
2024 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2027 auto *
N = newSDNode<BasicBlockSDNode>(
MBB);
2028 CSEMap.InsertNode(
N, IP);
2035 ValueTypeNodes.size())
2042 N = newSDNode<VTSDNode>(VT);
2048 SDNode *&
N = ExternalSymbols[Sym];
2050 N = newSDNode<ExternalSymbolSDNode>(
false, Sym, 0,
getVTList(VT));
2059 N = newSDNode<MCSymbolSDNode>(Sym,
getVTList(VT));
2065 unsigned TargetFlags) {
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2069 N = newSDNode<ExternalSymbolSDNode>(
true, Sym, TargetFlags,
getVTList(VT));
2075 if ((
unsigned)
Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(
Cond+1);
2078 if (!CondCodeNodes[
Cond]) {
2079 auto *
N = newSDNode<CondCodeSDNode>(
Cond);
2080 CondCodeNodes[
Cond] =
N;
2088 bool ConstantFold) {
2090 "APInt size does not match type size!");
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2121 const APInt &StepVal) {
2145 "Must have the same number of vector elements as mask elements!");
2147 "Invalid VECTOR_SHUFFLE");
2155 int NElts = Mask.size();
2157 [&](
int M) {
return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2166 for (
int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2174 if (TLI->hasVectorBlend()) {
2183 for (
int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] <
Offset || MaskVec[i] >= (
Offset + NElts))
2188 if (UndefElements[MaskVec[i] -
Offset]) {
2194 if (!UndefElements[i])
2199 BlendSplat(N1BV, 0);
2201 BlendSplat(N2BV, NElts);
2206 bool AllLHS =
true, AllRHS =
true;
2208 for (
int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2214 }
else if (MaskVec[i] >= 0) {
2218 if (AllLHS && AllRHS)
2220 if (AllLHS && !N2Undef)
2233 bool Identity =
true, AllSame =
true;
2234 for (
int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity =
false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame =
false;
2238 if (Identity && NElts)
2247 while (V.getOpcode() == ISD::BITCAST)
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2279 NewBV =
getNode(ISD::BITCAST, dl, VT, NewBV);
2289 for (
int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2293 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2299 int *MaskAlloc = OperandAllocator.Allocate<
int>(NElts);
2302 auto *
N = newSDNode<ShuffleVectorSDNode>(VTs, dl.
getIROrder(),
2304 createOperands(
N,
Ops);
2306 CSEMap.InsertNode(
N, IP);
2327 ID.AddInteger(Reg.id());
2329 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2332 auto *
N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(
N, FLI, UA);
2334 CSEMap.InsertNode(
N, IP);
2342 ID.AddPointer(RegMask);
2344 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2347 auto *
N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(
N, IP);
2363 ID.AddPointer(Label);
2365 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2370 createOperands(
N,
Ops);
2372 CSEMap.InsertNode(
N, IP);
2378 int64_t
Offset,
bool isTarget,
2379 unsigned TargetFlags) {
2387 ID.AddInteger(TargetFlags);
2389 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2392 auto *
N = newSDNode<BlockAddressSDNode>(
Opc, VTs, BA,
Offset, TargetFlags);
2393 CSEMap.InsertNode(
N, IP);
2404 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2407 auto *
N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(
N, IP);
2419 if (
SDNode *E = FindNodeOrInsertPos(
ID, IP))
2422 auto *
N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(
N, IP);
2429 if (VT == V.getValueType())
2436 unsigned SrcAS,
unsigned DestAS) {
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2445 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
2449 VTs, SrcAS, DestAS);
2450 createOperands(
N,
Ops);
2452 CSEMap.InsertNode(
N, IP);
2464 EVT OpTy =
Op.getValueType();
2466 if (OpTy == ShTy || OpTy.
isVector())
return Op;
2481 if (
Op.getNode() != FPNode)
2485 while (!Worklist.
empty()) {
2496 if (
Node == FPNode ||
Node->getOpcode() == ISD::CALLSEQ_START)
2499 if (
Node->getOpcode() == ISD::CALLSEQ_END) {
2518 std::optional<unsigned> CallRetResNo) {
2520 EVT VT =
Node->getValueType(0);
2521 unsigned NumResults =
Node->getNumValues();
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2526 const char *LCName = TLI->getLibcallName(LC);
2530 auto getVecDesc = [&]() ->
VecDesc const * {
2531 for (
bool Masked : {
false,
true}) {
2542 if (VT.
isVector() && !(VD = getVecDesc()))
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.
getResNo();
2556 if (CallRetResNo == ResNo)
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2566 if (ST->getAlign() <
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2582 EVT ArgVT =
Op.getValueType();
2584 Args.emplace_back(
Op, ArgTy);
2591 if (ResNo == CallRetResNo)
2593 EVT ResVT =
Node->getValueType(ResNo);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr,
PointerTy);
2608 Type *RetType = CallRetResNo.has_value()
2609 ?
Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2618 auto [
Call, CallChain] = TLI->LowerCallTo(CLI);
2621 if (ResNo == CallRetResNo) {
2627 getLoad(
Node->getValueType(ResNo),
DL, CallChain, ResultPtr, PtrInfo);
2633 PtrInfo = ST->getPointerInfo();
2639 Results.push_back(LoadResult);
2649 EVT VT =
Node->getValueType(0);
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2696 Align RedAlign = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2698 if (TLI->isTypeLegal(VT) || !VT.
isVector())
2706 if (RedAlign > StackAlign) {
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*
getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2713 Align RedAlign2 = UseABI ?
DL.getABITypeAlign(Ty) :
DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2720 RedAlign = std::min(RedAlign, StackAlign);
2735 false,
nullptr, StackID);
2750 "Don't know how to choose the maximum size when creating a stack "
2759 Align Align = std::max(
DL.getPrefTypeAlign(Ty1),
DL.getPrefTypeAlign(Ty2));
2767 auto GetUndefBooleanConstant = [&]() {
2769 TLI->getBooleanContents(OpVT) ==
2806 return GetUndefBooleanConstant();
2811 return GetUndefBooleanConstant();
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2832 if (N1CFP && N2CFP) {
2837 return GetUndefBooleanConstant();
2842 return GetUndefBooleanConstant();
2848 return GetUndefBooleanConstant();
2853 return GetUndefBooleanConstant();
2858 return GetUndefBooleanConstant();
2864 return GetUndefBooleanConstant();
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.
getSimpleVT()))
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 }
else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2909 return GetUndefBooleanConstant();
2920 unsigned BitWidth =
Op.getScalarValueSizeInBits();
2928 unsigned Depth)
const {
2936 const APInt &DemandedElts,
2937 unsigned Depth)
const {
2944 unsigned Depth )
const {
2950 unsigned Depth)
const {
2955 const APInt &DemandedElts,
2956 unsigned Depth)
const {
2957 EVT VT =
Op.getValueType();
2964 for (
unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2969 KnownZeroElements.
setBit(EltIdx);
2971 return KnownZeroElements;
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2985 "scalable demanded bits are ignored");
2997 UndefElts = V.getOperand(0).isUndef()
3006 APInt UndefLHS, UndefRHS;
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *
this,
3046 for (
unsigned i = 0; i != NumElts; ++i) {
3052 if (!DemandedElts[i])
3054 if (Scl && Scl !=
Op)
3065 for (
int i = 0; i != (int)NumElts; ++i) {
3071 if (!DemandedElts[i])
3073 if (M < (
int)NumElts)
3076 DemandedRHS.
setBit(M - NumElts);
3088 auto CheckSplatSrc = [&](
SDValue Src,
const APInt &SrcElts) {
3090 return (SrcElts.popcount() == 1) ||
3092 (SrcElts & SrcUndefs).
isZero());
3094 if (!DemandedLHS.
isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3102 if (Src.getValueType().isScalableVector())
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3107 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3109 UndefElts = UndefSrcElts.
extractBits(NumElts, Idx);
3120 if (Src.getValueType().isScalableVector())
3124 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3126 UndefElts = UndefSrcElts.
trunc(NumElts);
3131 case ISD::BITCAST: {
3133 EVT SrcVT = Src.getValueType();
3143 if ((
BitWidth % SrcBitWidth) == 0) {
3145 unsigned Scale =
BitWidth / SrcBitWidth;
3147 APInt ScaledDemandedElts =
3149 for (
unsigned I = 0;
I != Scale; ++
I) {
3153 SubDemandedElts &= ScaledDemandedElts;
3157 if (!SubUndefElts.
isZero())
3171 EVT VT = V.getValueType();
3181 (AllowUndefs || !UndefElts);
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3209 SplatIdx = (UndefElts & DemandedElts).
countr_one();
3224 if (!SVN->isSplat())
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3244 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
3245 if (LegalSVT.
bitsLT(SVT))
3253std::optional<ConstantRange>
3255 unsigned Depth)
const {
3258 "Unknown shift node");
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3263 const APInt &ShAmt = Cst->getAPIntValue();
3265 return std::nullopt;
3270 const APInt *MinAmt =
nullptr, *MaxAmt =
nullptr;
3271 for (
unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3276 MinAmt = MaxAmt =
nullptr;
3279 const APInt &ShAmt = SA->getAPIntValue();
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->
ugt(ShAmt))
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3299 return std::nullopt;
3302std::optional<unsigned>
3304 unsigned Depth)
const {
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3310 if (
const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3324std::optional<unsigned>
3326 unsigned Depth)
const {
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3345std::optional<unsigned>
3347 unsigned Depth)
const {
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3370 EVT VT =
Op.getValueType();
3385 unsigned Depth)
const {
3386 unsigned BitWidth =
Op.getScalarValueSizeInBits();
3390 if (
auto OptAPInt =
Op->bitcastToAPInt()) {
3400 assert((!
Op.getValueType().isFixedLengthVector() ||
3401 NumElts ==
Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3407 unsigned Opcode =
Op.getOpcode();
3415 "Expected SPLAT_VECTOR implicit truncation");
3422 unsigned ScalarSize =
Op.getOperand(0).getScalarValueSizeInBits();
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3431 const APInt &Step =
Op.getConstantOperandAPInt(0);
3440 const APInt MinNumElts =
3446 .
umul_ov(MinNumElts, Overflow);
3450 const APInt MaxValue = (MaxNumElts - 1).
umul_ov(Step, Overflow);
3458 assert(!
Op.getValueType().isScalableVector());
3461 for (
unsigned i = 0, e =
Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3471 "Expected BUILD_VECTOR implicit truncation");
3484 assert(!
Op.getValueType().isScalableVector());
3487 APInt DemandedLHS, DemandedRHS;
3491 DemandedLHS, DemandedRHS))
3496 if (!!DemandedLHS) {
3504 if (!!DemandedRHS) {
3513 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
3518 if (
Op.getValueType().isScalableVector())
3522 EVT SubVectorVT =
Op.getOperand(0).getValueType();
3524 unsigned NumSubVectors =
Op.getNumOperands();
3525 for (
unsigned i = 0; i != NumSubVectors; ++i) {
3527 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
3528 if (!!DemandedSub) {
3540 if (
Op.getValueType().isScalableVector())
3547 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3549 APInt DemandedSrcElts = DemandedElts;
3550 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3554 if (!!DemandedSubElts) {
3559 if (!!DemandedSrcElts) {
3569 if (
Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3572 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3573 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3578 if (
Op.getValueType().isScalableVector())
3582 if (DemandedElts != 1)
3592 case ISD::BITCAST: {
3593 if (
Op.getValueType().isScalableVector())
3613 if ((
BitWidth % SubBitWidth) == 0) {
3620 unsigned SubScale =
BitWidth / SubBitWidth;
3621 APInt SubDemandedElts(NumElts * SubScale, 0);
3622 for (
unsigned i = 0; i != NumElts; ++i)
3623 if (DemandedElts[i])
3624 SubDemandedElts.
setBit(i * SubScale);
3626 for (
unsigned i = 0; i != SubScale; ++i) {
3629 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3630 Known.
insertBits(Known2, SubBitWidth * Shifts);
3635 if ((SubBitWidth %
BitWidth) == 0) {
3636 assert(
Op.getValueType().isVector() &&
"Expected bitcast to vector");
3641 unsigned SubScale = SubBitWidth /
BitWidth;
3642 APInt SubDemandedElts =
3647 for (
unsigned i = 0; i != NumElts; ++i)
3648 if (DemandedElts[i]) {
3649 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3680 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3684 Op.getOperand(0), DemandedElts,
false,
Depth + 1);
3690 if (
Op->getFlags().hasNoSignedWrap() &&
3691 Op.getOperand(0) ==
Op.getOperand(1) &&
3718 unsigned SignBits1 =
3722 unsigned SignBits0 =
3728 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3731 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3732 if (
Op.getResNo() == 0)
3739 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3742 bool SelfMultiply =
Op.getOperand(0) ==
Op.getOperand(1);
3743 if (
Op.getResNo() == 0)
3796 if (
Op.getResNo() != 1)
3802 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
3811 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
3813 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
3823 bool NUW =
Op->getFlags().hasNoUnsignedWrap();
3824 bool NSW =
Op->getFlags().hasNoSignedWrap();
3831 if (std::optional<unsigned> ShMinAmt =
3840 Op->getFlags().hasExact());
3843 if (std::optional<unsigned> ShMinAmt =
3851 Op->getFlags().hasExact());
3857 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3872 unsigned Amt =
C->getAPIntValue().urem(
BitWidth);
3878 DemandedElts,
Depth + 1);
3899 assert((
Op.getResNo() == 0 ||
Op.getResNo() == 1) &&
"Unknown result");
3902 unsigned LoBits =
Op.getOperand(0).getScalarValueSizeInBits();
3903 unsigned HiBits =
Op.getOperand(1).getScalarValueSizeInBits();
3906 Known = Known2.
concat(Known);
3920 if (
Op.getResNo() == 0)
3965 (Opcode == ISD::MGATHER)
3977 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3982 !
Op.getValueType().isScalableVector()) {
3996 for (
unsigned i = 0; i != NumElts; ++i) {
3997 if (!DemandedElts[i])
4007 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4026 }
else if (
Op.getResNo() == 0) {
4027 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4028 KnownBits KnownScalarMemory(ScalarMemorySize);
4029 if (
const MDNode *MD = LD->getRanges())
4040 Known = KnownScalarMemory;
4047 if (
Op.getValueType().isScalableVector())
4049 EVT InVT =
Op.getOperand(0).getValueType();
4061 if (
Op.getValueType().isScalableVector())
4063 EVT InVT =
Op.getOperand(0).getValueType();
4079 if (
Op.getValueType().isScalableVector())
4081 EVT InVT =
Op.getOperand(0).getValueType();
4101 Known.
Zero |= (~InMask);
4102 Known.
One &= (~Known.Zero);
4126 Op.getOpcode() ==
ISD::ADD, Flags.hasNoSignedWrap(),
4127 Flags.hasNoUnsignedWrap(), Known, Known2);
4134 if (
Op.getResNo() == 1) {
4136 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4145 "We only compute knownbits for the difference here.");
4152 Borrow = Borrow.
trunc(1);
4166 if (
Op.getResNo() == 1) {
4168 if (TLI->getBooleanContents(
Op.getOperand(0).getValueType()) ==
4177 assert(
Op.getResNo() == 0 &&
"We only compute knownbits for the sum here.");
4187 Carry = Carry.
trunc(1);
4223 const unsigned Index =
Op.getConstantOperandVal(1);
4224 const unsigned EltBitWidth =
Op.getValueSizeInBits();
4231 Known = Known.
trunc(EltBitWidth);
4247 Known = Known.
trunc(EltBitWidth);
4253 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4263 if (
Op.getValueType().isScalableVector())
4272 bool DemandedVal =
true;
4273 APInt DemandedVecElts = DemandedElts;
4275 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4276 unsigned EltIdx = CEltNo->getZExtValue();
4277 DemandedVal = !!DemandedElts[EltIdx];
4286 if (!!DemandedVecElts) {
4304 Known = Known2.
abs();
4337 if (CstLow && CstHigh) {
4342 const APInt &ValueHigh = CstHigh->getAPIntValue();
4343 if (ValueLow.
sle(ValueHigh)) {
4346 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4369 if (IsMax && CstLow) {
4397 case ISD::ATOMIC_LOAD: {
4399 if (
Op.getResNo() == 0) {
4401 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4402 KnownBits KnownScalarMemory(ScalarMemorySize);
4403 if (
const MDNode *MD = AT->getRanges())
4406 switch (AT->getExtensionType()) {
4414 switch (TLI->getExtendForAtomicOps()) {
4427 Known = KnownScalarMemory;
4434 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4435 if (
Op.getResNo() == 1) {
4440 if (TLI->getBooleanContents(
Op.getValueType().isVector(),
false) ==
4447 case ISD::ATOMIC_CMP_SWAP:
4448 case ISD::ATOMIC_SWAP:
4449 case ISD::ATOMIC_LOAD_ADD:
4450 case ISD::ATOMIC_LOAD_SUB:
4451 case ISD::ATOMIC_LOAD_AND:
4452 case ISD::ATOMIC_LOAD_CLR:
4453 case ISD::ATOMIC_LOAD_OR:
4454 case ISD::ATOMIC_LOAD_XOR:
4455 case ISD::ATOMIC_LOAD_NAND:
4456 case ISD::ATOMIC_LOAD_MIN:
4457 case ISD::ATOMIC_LOAD_MAX:
4458 case ISD::ATOMIC_LOAD_UMIN:
4459 case ISD::ATOMIC_LOAD_UMAX: {
4461 if (
Op.getResNo() == 0) {
4463 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4485 if (
Op.getValueType().isScalableVector())
4489 TLI->computeKnownBitsForTargetNode(
Op, Known, DemandedElts, *
this,
Depth);
4631 return C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2();
4639 if (
C &&
C->getAPIntValue() == 1)
4649 if (
C &&
C->getAPIntValue().isSignMask())
4661 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4662 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4670 if (
C->getAPIntValue().zextOrTrunc(
BitWidth).isPowerOf2())
4708 return C1->getValueAPF().getExactLog2Abs() >= 0;
4717 EVT VT =
Op.getValueType();
4729 unsigned Depth)
const {
4730 EVT VT =
Op.getValueType();
4735 unsigned FirstAnswer = 1;
4738 const APInt &Val =
C->getAPIntValue();
4748 unsigned Opcode =
Op.getOpcode();
4753 return VTBits-Tmp+1;
4762 unsigned NumSrcBits =
Op.getOperand(0).getValueSizeInBits();
4764 if (NumSrcSignBits > (NumSrcBits - VTBits))
4765 return NumSrcSignBits - (NumSrcBits - VTBits);
4771 for (
unsigned i = 0, e =
Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4772 if (!DemandedElts[i])
4779 APInt T =
C->getAPIntValue().trunc(VTBits);
4780 Tmp2 =
T.getNumSignBits();
4784 if (
SrcOp.getValueSizeInBits() != VTBits) {
4786 "Expected BUILD_VECTOR implicit truncation");
4787 unsigned ExtraBits =
SrcOp.getValueSizeInBits() - VTBits;
4788 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4791 Tmp = std::min(Tmp, Tmp2);
4798 APInt DemandedLHS, DemandedRHS;
4802 DemandedLHS, DemandedRHS))
4805 Tmp = std::numeric_limits<unsigned>::max();
4808 if (!!DemandedRHS) {
4810 Tmp = std::min(Tmp, Tmp2);
4815 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
4819 case ISD::BITCAST: {
4831 if (VTBits == SrcBits)
4837 if ((SrcBits % VTBits) == 0) {
4840 unsigned Scale = SrcBits / VTBits;
4841 APInt SrcDemandedElts =
4851 for (
unsigned i = 0; i != NumElts; ++i)
4852 if (DemandedElts[i]) {
4853 unsigned SubOffset = i % Scale;
4854 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4855 SubOffset = SubOffset * VTBits;
4856 if (Tmp <= SubOffset)
4858 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4868 return VTBits - Tmp + 1;
4870 Tmp = VTBits -
Op.getOperand(0).getScalarValueSizeInBits();
4877 return std::max(Tmp, Tmp2);
4882 EVT SrcVT = Src.getValueType();
4890 if (std::optional<unsigned> ShAmt =
4892 Tmp = std::min(Tmp + *ShAmt, VTBits);
4895 if (std::optional<ConstantRange> ShAmtRange =
4897 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4898 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4906 EVT ExtVT = Ext.getValueType();
4907 SDValue Extendee = Ext.getOperand(0);
4909 unsigned SizeDifference =
4911 if (SizeDifference <= MinShAmt) {
4912 Tmp = SizeDifference +
4915 return Tmp - MaxShAmt;
4921 return Tmp - MaxShAmt;
4931 FirstAnswer = std::min(Tmp, Tmp2);
4941 if (Tmp == 1)
return 1;
4943 return std::min(Tmp, Tmp2);
4946 if (Tmp == 1)
return 1;
4948 return std::min(Tmp, Tmp2);
4960 if (CstLow && CstHigh) {
4965 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4966 return std::min(Tmp, Tmp2);
4975 return std::min(Tmp, Tmp2);
4983 return std::min(Tmp, Tmp2);
4987 if (
Op.getResNo() == 0 &&
Op.getOperand(0) ==
Op.getOperand(1))
4998 if (
Op.getResNo() != 1)
5004 if (TLI->getBooleanContents(VT.
isVector(),
false) ==
5012 unsigned OpNo =
Op->isStrictFPOpcode() ? 1 : 0;
5014 if (TLI->getBooleanContents(
Op.getOperand(OpNo).getValueType()) ==
5029 unsigned RotAmt =
C->getAPIntValue().urem(VTBits);
5033 RotAmt = (VTBits - RotAmt) % VTBits;
5037 if (Tmp > (RotAmt + 1))
return (Tmp - RotAmt);
5045 if (Tmp == 1)
return 1;
5050 if (CRHS->isAllOnes()) {
5056 if ((Known.
Zero | 1).isAllOnes())
5066 if (Tmp2 == 1)
return 1;
5067 return std::min(Tmp, Tmp2) - 1;
5070 if (Tmp2 == 1)
return 1;
5075 if (CLHS->isZero()) {
5080 if ((Known.
Zero | 1).isAllOnes())
5094 if (Tmp == 1)
return 1;
5095 return std::min(Tmp, Tmp2) - 1;
5099 if (SignBitsOp0 == 1)
5102 if (SignBitsOp1 == 1)
5104 unsigned OutValidBits =
5105 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5106 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5114 return std::min(Tmp, Tmp2);
5123 unsigned NumSrcBits =
Op.getOperand(0).getScalarValueSizeInBits();
5125 if (NumSrcSignBits > (NumSrcBits - VTBits))
5126 return NumSrcSignBits - (NumSrcBits - VTBits);
5133 const int BitWidth =
Op.getValueSizeInBits();
5134 const int Items =
Op.getOperand(0).getValueSizeInBits() /
BitWidth;
5138 const int rIndex = Items - 1 -
Op.getConstantOperandVal(1);
5153 bool DemandedVal =
true;
5154 APInt DemandedVecElts = DemandedElts;
5156 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5157 unsigned EltIdx = CEltNo->getZExtValue();
5158 DemandedVal = !!DemandedElts[EltIdx];
5161 Tmp = std::numeric_limits<unsigned>::max();
5167 Tmp = std::min(Tmp, Tmp2);
5169 if (!!DemandedVecElts) {
5171 Tmp = std::min(Tmp, Tmp2);
5173 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5184 const unsigned BitWidth =
Op.getValueSizeInBits();
5185 const unsigned EltBitWidth =
Op.getOperand(0).getScalarValueSizeInBits();
5198 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5208 if (Src.getValueType().isScalableVector())
5211 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5212 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5220 Tmp = std::numeric_limits<unsigned>::max();
5221 EVT SubVectorVT =
Op.getOperand(0).getValueType();
5223 unsigned NumSubVectors =
Op.getNumOperands();
5224 for (
unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5226 DemandedElts.
extractBits(NumSubVectorElts, i * NumSubVectorElts);
5230 Tmp = std::min(Tmp, Tmp2);
5232 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5243 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5245 APInt DemandedSrcElts = DemandedElts;
5246 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5248 Tmp = std::numeric_limits<unsigned>::max();
5249 if (!!DemandedSubElts) {
5254 if (!!DemandedSrcElts) {
5256 Tmp = std::min(Tmp, Tmp2);
5258 assert(Tmp <= VTBits &&
"Failed to determine minimum sign bits");
5263 if (
const MDNode *Ranges = LD->getRanges()) {
5264 if (DemandedElts != 1)
5269 switch (LD->getExtensionType()) {
5289 case ISD::ATOMIC_CMP_SWAP:
5290 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5291 case ISD::ATOMIC_SWAP:
5292 case ISD::ATOMIC_LOAD_ADD:
5293 case ISD::ATOMIC_LOAD_SUB:
5294 case ISD::ATOMIC_LOAD_AND:
5295 case ISD::ATOMIC_LOAD_CLR:
5296 case ISD::ATOMIC_LOAD_OR:
5297 case ISD::ATOMIC_LOAD_XOR:
5298 case ISD::ATOMIC_LOAD_NAND:
5299 case ISD::ATOMIC_LOAD_MIN:
5300 case ISD::ATOMIC_LOAD_MAX:
5301 case ISD::ATOMIC_LOAD_UMIN:
5302 case ISD::ATOMIC_LOAD_UMAX:
5303 case ISD::ATOMIC_LOAD: {
5306 if (
Op.getResNo() == 0) {
5307 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5312 if (
Op->getOpcode() == ISD::ATOMIC_LOAD) {
5313 switch (AT->getExtensionType()) {
5317 return VTBits - Tmp + 1;
5319 return VTBits - Tmp;
5324 return VTBits - Tmp + 1;
5326 return VTBits - Tmp;
5333 if (
Op.getResNo() == 0) {
5336 unsigned ExtType = LD->getExtensionType();
5340 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5341 return VTBits - Tmp + 1;
5343 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5344 return VTBits - Tmp;
5346 if (
const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5349 Type *CstTy = Cst->getType();
5354 for (
unsigned i = 0; i != NumElts; ++i) {
5355 if (!DemandedElts[i])
5360 Tmp = std::min(Tmp,
Value.getNumSignBits());
5364 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5365 Tmp = std::min(Tmp,
Value.getNumSignBits());
5389 TLI->ComputeNumSignBitsForTargetNode(
Op, DemandedElts, *
this,
Depth);
5391 FirstAnswer = std::max(FirstAnswer, NumBits);
5402 unsigned Depth)
const {
5404 return Op.getScalarValueSizeInBits() - SignBits + 1;
5408 const APInt &DemandedElts,
5409 unsigned Depth)
const {
5411 return Op.getScalarValueSizeInBits() - SignBits + 1;
5415 unsigned Depth)
const {
5420 EVT VT =
Op.getValueType();
5428 const APInt &DemandedElts,
5430 unsigned Depth)
const {
5431 unsigned Opcode =
Op.getOpcode();
5460 for (
unsigned i = 0, e =
Op.getNumOperands(); i < e; ++i) {
5461 if (!DemandedElts[i])
5471 if (Src.getValueType().isScalableVector())
5474 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5475 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5481 if (
Op.getValueType().isScalableVector())
5486 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
5488 APInt DemandedSrcElts = DemandedElts;
5489 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
5503 EVT SrcVT = Src.getValueType();
5507 IndexC->getZExtValue());
5522 if (DemandedElts[IndexC->getZExtValue()] &&
5525 APInt InVecDemandedElts = DemandedElts;
5526 InVecDemandedElts.
clearBit(IndexC->getZExtValue());
5527 if (!!InVecDemandedElts &&
5552 APInt DemandedLHS, DemandedRHS;
5555 DemandedElts, DemandedLHS, DemandedRHS,
5558 if (!DemandedLHS.
isZero() &&
5562 if (!DemandedRHS.
isZero() &&
5610 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5611 PoisonOnly, Depth + 1);
5623 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5636 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5642 unsigned Depth)
const {
5643 EVT VT =
Op.getValueType();
5653 unsigned Depth)
const {
5654 if (ConsiderFlags &&
Op->hasPoisonGeneratingFlags())
5657 unsigned Opcode =
Op.getOpcode();
5737 if (
Op.getOperand(0).getValueType().isInteger())
5744 unsigned CCOp = Opcode ==
ISD::SETCC ? 2 : 4;
5746 if (((
unsigned)CCCode & 0x10U))
5769 case ISD::FP_EXTEND:
5795 EVT VecVT =
Op.getOperand(0).getValueType();
5804 for (
auto [Idx, Elt] :
enumerate(SVN->getMask()))
5805 if (Elt < 0 && DemandedElts[Idx])
5814 return TLI->canCreateUndefOrPoisonForTargetNode(
5824 unsigned Opcode =
Op.getOpcode();
5826 return Op->getFlags().hasDisjoint() ||
5839 unsigned Depth)
const {
5840 EVT VT =
Op.getValueType();
5853 bool SNaN,
unsigned Depth)
const {
5854 assert(!DemandedElts.
isZero() &&
"No demanded elements");
5865 return !
C->getValueAPF().isNaN() ||
5866 (SNaN && !
C->getValueAPF().isSignaling());
5869 unsigned Opcode =
Op.getOpcode();
5901 case ISD::FROUNDEVEN:
5907 case ISD::FNEARBYINT:
5921 case ISD::FP_EXTEND:
5943 case ISD::FMINIMUMNUM:
5944 case ISD::FMAXIMUMNUM: {
5950 case ISD::FMINNUM_IEEE:
5951 case ISD::FMAXNUM_IEEE: {
5962 case ISD::FMAXIMUM: {
5970 EVT SrcVT = Src.getValueType();
5974 Idx->getZExtValue());
5981 if (Src.getValueType().isFixedLengthVector()) {
5982 unsigned Idx =
Op.getConstantOperandVal(1);
5983 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5984 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
5994 unsigned Idx =
Op.getConstantOperandVal(2);
6000 APInt DemandedMask =
6002 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6005 bool NeverNaN =
true;
6006 if (!DemandedSrcElts.
isZero())
6009 if (NeverNaN && !DemandedSubElts.
isZero())
6018 unsigned NumElts =
Op.getNumOperands();
6019 for (
unsigned I = 0;
I != NumElts; ++
I)
6020 if (DemandedElts[
I] &&
6037 return TLI->isKnownNeverNaNForTargetNode(
Op, DemandedElts, *
this, SNaN,
6046 assert(
Op.getValueType().isFloatingPoint() &&
6047 "Floating point type expected");
6058 assert(!
Op.getValueType().isFloatingPoint() &&
6059 "Floating point types unsupported - use isKnownNeverZeroFloat");
6068 switch (
Op.getOpcode()) {
6082 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6086 if (ValKnown.
One[0])
6146 if (
Op->getFlags().hasExact())
6162 if (
Op->getFlags().hasExact())
6167 if (
Op->getFlags().hasNoUnsignedWrap())
6178 std::optional<bool> ne =
6185 if (
Op->getFlags().hasNoSignedWrap() ||
Op->getFlags().hasNoUnsignedWrap())
6196 const APInt &Multiplier =
Op.getConstantOperandAPInt(0);
6210 return !C1->isNegative();
6212 return Op.getOpcode() == ISD::FABS;
6217 if (
A ==
B)
return true;
6222 if (CA->isZero() && CB->isZero())
return true;
6257 NotOperand = NotOperand->getOperand(0);
6259 if (
Other == NotOperand)
6262 return NotOperand ==
Other->getOperand(0) ||
6263 NotOperand ==
Other->getOperand(1);
6269 A =
A->getOperand(0);
6272 B =
B->getOperand(0);
6275 return MatchNoCommonBitsPattern(
A->getOperand(0),
A->getOperand(1),
B) ||
6276 MatchNoCommonBitsPattern(
A->getOperand(1),
A->getOperand(0),
B);
6282 assert(
A.getValueType() ==
B.getValueType() &&
6283 "Values must have the same type");
6305 "BUILD_VECTOR cannot be used with scalable types");
6307 "Incorrect element count in BUILD_VECTOR!");
6315 bool IsIdentity =
true;
6316 for (
int i = 0; i !=
NumOps; ++i) {
6319 (IdentitySrc &&
Ops[i].getOperand(0) != IdentitySrc) ||
6321 Ops[i].getConstantOperandAPInt(1) != i) {
6325 IdentitySrc =
Ops[i].getOperand(0);
6338 assert(!
Ops.empty() &&
"Can't concatenate an empty list of vectors!");
6341 return Ops[0].getValueType() ==
Op.getValueType();
6343 "Concatenation of vectors with inconsistent value types!");
6346 "Incorrect element count in vector concatenation!");
6348 if (
Ops.size() == 1)
6359 bool IsIdentity =
true;
6360 for (
unsigned i = 0, e =
Ops.size(); i != e; ++i) {
6362 unsigned IdentityIndex = i *
Op.getValueType().getVectorMinNumElements();
6364 Op.getOperand(0).getValueType() != VT ||
6365 (IdentitySrc &&
Op.getOperand(0) != IdentitySrc) ||
6366 Op.getConstantOperandVal(1) != IdentityIndex) {
6370 assert((!IdentitySrc || IdentitySrc ==
Op.getOperand(0)) &&
6371 "Unexpected identity source vector for concat of extracts");
6372 IdentitySrc =
Op.getOperand(0);
6375 assert(IdentitySrc &&
"Failed to set source vector of extracts");
6390 EVT OpVT =
Op.getValueType();
6402 SVT = (SVT.
bitsLT(
Op.getValueType()) ?
Op.getValueType() : SVT);
6426 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
6429 auto *
N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6430 CSEMap.InsertNode(
N, IP);
6442 Flags = Inserter->getFlags();
6443 return getNode(Opcode,
DL, VT, N1, Flags);
6461 case ISD::FP_EXTEND:
6464 case ISD::FP_TO_FP16:
6465 case ISD::FP_TO_BF16:
6472 case ISD::FP16_TO_FP:
6473 case ISD::BF16_TO_FP:
6494 "STEP_VECTOR can only be used with scalable types");
6497 "Unexpected step operand");
6516 case ISD::FP_EXTEND:
6518 "Invalid FP cast!");
6522 "Vector element count mismatch!");
6540 "Invalid SIGN_EXTEND!");
6542 "SIGN_EXTEND result type type should be vector iff the operand "
6547 "Vector element count mismatch!");
6570 unsigned NumSignExtBits =
6581 "Invalid ZERO_EXTEND!");
6583 "ZERO_EXTEND result type type should be vector iff the operand "
6588 "Vector element count mismatch!");
6626 "Invalid ANY_EXTEND!");
6628 "ANY_EXTEND result type type should be vector iff the operand "
6633 "Vector element count mismatch!");
6658 "Invalid TRUNCATE!");
6660 "TRUNCATE result type type should be vector iff the operand "
6665 "Vector element count mismatch!");
6692 assert(VT.
isVector() &&
"This DAG node is restricted to vector types.");
6694 "The input must be the same size or smaller than the result.");
6697 "The destination vector type must have fewer lanes than the input.");
6707 "BSWAP types must be a multiple of 16 bits!");
6721 "Cannot BITCAST between types of different sizes!");
6723 if (OpOpcode == ISD::BITCAST)
6734 "Illegal SCALAR_TO_VECTOR node!");
6749 if (OpOpcode == ISD::FNEG)
6753 if (OpOpcode == ISD::FNEG)
6768 case ISD::VECREDUCE_ADD:
6770 return getNode(ISD::VECREDUCE_XOR,
DL, VT, N1);
6772 case ISD::VECREDUCE_SMIN:
6773 case ISD::VECREDUCE_UMAX:
6775 return getNode(ISD::VECREDUCE_OR,
DL, VT, N1);
6777 case ISD::VECREDUCE_SMAX:
6778 case ISD::VECREDUCE_UMIN:
6780 return getNode(ISD::VECREDUCE_AND,
DL, VT, N1);
6791 "Wrong operand type!");
6798 if (VT != MVT::Glue) {
6802 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
6803 E->intersectFlagsWith(Flags);
6807 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6809 createOperands(
N,
Ops);
6810 CSEMap.InsertNode(
N, IP);
6812 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
6813 createOperands(
N,
Ops);
6847 if (!C2.getBoolValue())
6851 if (!C2.getBoolValue())
6855 if (!C2.getBoolValue())
6859 if (!C2.getBoolValue())
6879 return std::nullopt;
6884 bool IsUndef1,
const APInt &C2,
6886 if (!(IsUndef1 || IsUndef2))
6894 return std::nullopt;
6902 if (!TLI->isOffsetFoldingLegal(GA))
6907 int64_t
Offset = C2->getSExtValue();
6927 assert(
Ops.size() == 2 &&
"Div/rem should have 2 operands");
6934 [](
SDValue V) { return V.isUndef() ||
6935 isNullConstant(V); });
6973 const APInt &Val =
C->getAPIntValue();
6977 C->isTargetOpcode(),
C->isOpaque());
6984 C->isTargetOpcode(),
C->isOpaque());
6989 C->isTargetOpcode(),
C->isOpaque());
6991 C->isTargetOpcode(),
C->isOpaque());
7019 case ISD::FP16_TO_FP:
7020 case ISD::BF16_TO_FP: {
7037 if (VT == MVT::f16 &&
C->getValueType(0) == MVT::i16)
7039 if (VT == MVT::f32 &&
C->getValueType(0) == MVT::i32)
7041 if (VT == MVT::f64 &&
C->getValueType(0) == MVT::i64)
7043 if (VT == MVT::f128 &&
C->getValueType(0) == MVT::i128)
7077 case ISD::FP_EXTEND: {
7096 case ISD::FP_TO_FP16:
7097 case ISD::FP_TO_BF16: {
7104 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7107 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::f16)
7110 if (VT == MVT::i16 &&
C->getValueType(0) == MVT::bf16)
7113 if (VT == MVT::i32 &&
C->getValueType(0) == MVT::f32)
7116 if (VT == MVT::i64 &&
C->getValueType(0) == MVT::f64)
7117 return getConstant(V.bitcastToAPInt().getZExtValue(),
DL, VT);
7123 if (Opcode == ISD::BITCAST)
7134 if (C1->isOpaque() || C2->isOpaque())
7137 std::optional<APInt> FoldAttempt =
7138 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7144 "Can't fold vectors ops with scalar operands");
7152 if (TLI->isCommutativeBinOp(Opcode))
7168 const APInt &Val = C1->getAPIntValue();
7169 return SignExtendInReg(Val, VT);
7182 ScalarOps.
push_back(SignExtendInReg(Val, OpVT));
7190 SignExtendInReg(
Ops[0].getConstantOperandAPInt(0),
7201 if (C1 && C2 && C3) {
7202 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7204 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7205 &V3 = C3->getAPIntValue();
7221 if (C1 && C2 && C3) {
7242 Ops[0].getValueType() == VT &&
Ops[1].getValueType() == VT &&
7243 (
Ops[0].getOpcode() == ISD::BITCAST ||
7244 Ops[1].getOpcode() == ISD::BITCAST)) {
7255 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7256 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7260 Opcode, RawBits1[
I], UndefElts1[
I], RawBits2[
I], UndefElts2[
I]);
7271 BVEltVT = BV1->getOperand(0).getValueType();
7274 BVEltVT = BV2->getOperand(0).getValueType();
7280 DstBits, RawBits, DstUndefs,
7283 for (
unsigned I = 0, E = DstBits.
size();
I != E; ++
I) {
7301 ?
Ops[0].getConstantOperandAPInt(0) * RHSVal
7302 :
Ops[0].getConstantOperandAPInt(0) << RHSVal;
7307 auto IsScalarOrSameVectorSize = [NumElts](
const SDValue &
Op) {
7308 return !
Op.getValueType().isVector() ||
7309 Op.getValueType().getVectorElementCount() == NumElts;
7312 auto IsBuildVectorSplatVectorOrUndef = [](
const SDValue &
Op) {
7338 LegalSVT = TLI->getTypeToTransformTo(*
getContext(), LegalSVT);
7350 for (
unsigned I = 0;
I != NumVectorElts;
I++) {
7353 EVT InSVT =
Op.getValueType().getScalarType();
7396 if (LegalSVT != SVT)
7397 ScalarResult =
getNode(ExtendCode,
DL, LegalSVT, ScalarResult);
7411 if (
Ops.size() != 2)
7422 if (N1CFP && N2CFP) {
7452 case ISD::FMINIMUMNUM:
7454 case ISD::FMAXIMUMNUM:
7473 if (N1C && N1C->getValueAPF().isNegZero() && N2.
isUndef())
7496 if (SrcEltVT == DstEltVT)
7504 if (SrcBitSize == DstBitSize) {
7509 if (
Op.getValueType() != SrcEltVT)
7552 for (
unsigned I = 0, E = RawBits.
size();
I != E; ++
I) {
7553 if (UndefElements[
I])
7574 ID.AddInteger(
A.value());
7577 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP))
7581 newSDNode<AssertAlignSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
A);
7582 createOperands(
N, {Val});
7584 CSEMap.InsertNode(
N, IP);
7596 Flags = Inserter->getFlags();
7597 return getNode(Opcode,
DL, VT, N1, N2, Flags);
7602 if (!TLI->isCommutativeBinOp(Opcode))
7611 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7625 "Operand is DELETED_NODE!");
7641 N2.
getValueType() == MVT::Other &&
"Invalid token factor!");
7645 if (N1 == N2)
return N1;
7661 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7663 N1.
getValueType() == VT &&
"Binary operator types must match!");
7666 if (N2CV && N2CV->
isZero())
7676 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7678 N1.
getValueType() == VT &&
"Binary operator types must match!");
7688 if (N2CV && N2CV->
isZero())
7702 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7704 N1.
getValueType() == VT &&
"Binary operator types must match!");
7707 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7709 const APInt &N2CImm = N2C->getAPIntValue();
7723 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7725 N1.
getValueType() == VT &&
"Binary operator types must match!");
7738 "Types of operands of UCMP/SCMP must match");
7740 "Operands and return type of must both be scalars or vectors");
7744 "Result and operands must have the same number of elements");
7750 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7752 N1.
getValueType() == VT &&
"Binary operator types must match!");
7756 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7758 N1.
getValueType() == VT &&
"Binary operator types must match!");
7764 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7766 N1.
getValueType() == VT &&
"Binary operator types must match!");
7772 assert(VT.
isInteger() &&
"This operator does not apply to FP types!");
7774 N1.
getValueType() == VT &&
"Binary operator types must match!");
7785 N1.
getValueType() == VT &&
"Binary operator types must match!");
7793 "Invalid FCOPYSIGN!");
7796 if (N2C && (N1.
getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7798 const APInt &ShiftImm = N2C->getAPIntValue();
7810 "Shift operators return type must be the same as their first arg");
7812 "Shifts only work on integers");
7814 "Vector shift amounts must be in the same as their first arg");
7821 "Invalid use of small shift amount with oversized value!");
7828 if (N2CV && N2CV->
isZero())
7834 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7840 "AssertNoFPClass is used for a non-floating type");
7845 "FPClassTest value too large");
7854 "Cannot *_EXTEND_INREG FP types");
7856 "AssertSExt/AssertZExt type should be the vector element type "
7857 "rather than the vector type!");
7866 "Cannot *_EXTEND_INREG FP types");
7868 "SIGN_EXTEND_INREG type should be vector iff the operand "
7872 "Vector element counts must match in SIGN_EXTEND_INREG");
7874 if (
EVT == VT)
return N1;
7882 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7886 "Vector element counts must match in FP_TO_*INT_SAT");
7888 "Type to saturate to must be a scalar.");
7895 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7896 element type of the vector.");
7918 N2C->getZExtValue() % Factor);
7927 "BUILD_VECTOR used for scalable vectors");
7950 if (N1Op2C && N2C) {
7980 assert(N2C && (
unsigned)N2C->getZExtValue() < 2 &&
"Bad EXTRACT_ELEMENT!");
7984 "Wrong types for EXTRACT_ELEMENT!");
7995 unsigned Shift = ElementSize * N2C->getZExtValue();
7996 const APInt &Val = N1C->getAPIntValue();
8003 "Extract subvector VTs must be vectors!");
8005 "Extract subvector VTs must have the same element type!");
8007 "Cannot extract a scalable vector from a fixed length vector!");
8010 "Extract subvector must be from larger vector to smaller vector!");
8011 assert(N2C &&
"Extract subvector index must be a constant");
8015 "Extract subvector overflow!");
8016 assert(N2C->getAPIntValue().getBitWidth() ==
8018 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8020 "Extract index is not a multiple of the output vector length");
8035 return N1.
getOperand(N2C->getZExtValue() / Factor);
8076 if (TLI->isCommutativeBinOp(Opcode)) {
8155 if (VT != MVT::Glue) {
8159 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8160 E->intersectFlagsWith(Flags);
8164 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8166 createOperands(
N,
Ops);
8167 CSEMap.InsertNode(
N, IP);
8169 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8170 createOperands(
N,
Ops);
8183 Flags = Inserter->getFlags();
8184 return getNode(Opcode,
DL, VT, N1, N2, N3, Flags);
8193 "Operand is DELETED_NODE!");
8212 "SETCC operands must have the same type!");
8214 "SETCC type should be vector iff the operand type is vector!");
8217 "SETCC vector element counts must match!");
8237 "INSERT_VECTOR_ELT vector type mismatch");
8239 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8242 "INSERT_VECTOR_ELT fp scalar type mismatch");
8245 "INSERT_VECTOR_ELT int scalar size mismatch");
8291 "Dest and insert subvector source types must match!");
8293 "Insert subvector VTs must be vectors!");
8295 "Insert subvector VTs must have the same element type!");
8297 "Cannot insert a scalable vector into a fixed length vector!");
8300 "Insert subvector must be from smaller vector to larger vector!");
8302 "Insert subvector index must be constant");
8306 "Insert subvector overflow!");
8309 "Constant index for INSERT_SUBVECTOR has an invalid size");
8353 case ISD::VP_TRUNCATE:
8354 case ISD::VP_SIGN_EXTEND:
8355 case ISD::VP_ZERO_EXTEND:
8364 assert(VT == VecVT &&
"Vector and result type don't match.");
8366 "All inputs must be vectors.");
8367 assert(VecVT == PassthruVT &&
"Vector and passthru types don't match.");
8369 "Vector and mask must have same number of elements.");
8376 case ISD::PARTIAL_REDUCE_UMLA:
8377 case ISD::PARTIAL_REDUCE_SMLA:
8378 case ISD::PARTIAL_REDUCE_SUMLA: {
8383 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8384 "node to have the same type!");
8386 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8387 "the same type as its result!");
8390 "Expected the element count of the second and third operands of the "
8391 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8392 "element count of the first operand and the result!");
8394 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8395 "node to have an element type which is the same as or smaller than "
8396 "the element type of the first operand and result!");
8418 if (VT != MVT::Glue) {
8422 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
8423 E->intersectFlagsWith(Flags);
8427 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8429 createOperands(
N,
Ops);
8430 CSEMap.InsertNode(
N, IP);
8432 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
8433 createOperands(
N,
Ops);
8453 Flags = Inserter->getFlags();
8454 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, Flags);
8469 Flags = Inserter->getFlags();
8470 return getNode(Opcode,
DL, VT, N1, N2, N3, N4, N5, Flags);
8487 if (FI->getIndex() < 0)
8502 assert(
C->getAPIntValue().getBitWidth() == 8);
8507 return DAG.
getConstant(Val, dl, VT,
false, IsOpaque);
8512 assert(
Value.getValueType() == MVT::i8 &&
"memset with non-byte fill value?");
8528 if (VT !=
Value.getValueType())
8541 if (Slice.Array ==
nullptr) {
8544 return DAG.
getNode(ISD::BITCAST, dl, VT,
8550 unsigned NumVTBytes = NumVTBits / 8;
8551 unsigned NumBytes = std::min(NumVTBytes,
unsigned(Slice.Length));
8553 APInt Val(NumVTBits, 0);
8555 for (
unsigned i = 0; i != NumBytes; ++i)
8558 for (
unsigned i = 0; i != NumBytes; ++i)
8559 Val |= (
uint64_t)(
unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8578 APInt(
Base.getValueSizeInBits().getFixedValue(),
8579 Offset.getKnownMinValue()));
8590 EVT BasePtrVT =
Ptr.getValueType();
8591 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8603 else if (Src.getOpcode() ==
ISD::ADD &&
8607 SrcDelta = Src.getConstantOperandVal(1);
8613 SrcDelta +
G->getOffset());
8629 assert(OutLoadChains.
size() &&
"Missing loads in memcpy inlining");
8630 assert(OutStoreChains.
size() &&
"Missing stores in memcpy inlining");
8632 for (
unsigned i = From; i < To; ++i) {
8634 GluedLoadChains.
push_back(OutLoadChains[i]);
8641 for (
unsigned i = From; i < To; ++i) {
8644 ST->getBasePtr(), ST->getMemoryVT(),
8645 ST->getMemOperand());
8667 std::vector<EVT> MemOps;
8668 bool DstAlignCanChange =
false;
8674 DstAlignCanChange =
true;
8676 if (!SrcAlign || Alignment > *SrcAlign)
8677 SrcAlign = Alignment;
8678 assert(SrcAlign &&
"SrcAlign must be set");
8682 bool isZeroConstant = CopyFromConstant && Slice.Array ==
nullptr;
8684 const MemOp Op = isZeroConstant
8688 *SrcAlign, isVol, CopyFromConstant);
8694 if (DstAlignCanChange) {
8695 Type *Ty = MemOps[0].getTypeForEVT(
C);
8696 Align NewAlign =
DL.getABITypeAlign(Ty);
8702 if (!
TRI->hasStackRealignment(MF))
8704 NewAlign = std::min(NewAlign, *StackAlign);
8706 if (NewAlign > Alignment) {
8710 Alignment = NewAlign;
8720 BatchAA && SrcVal &&
8728 unsigned NumMemOps = MemOps.size();
8730 for (
unsigned i = 0; i != NumMemOps; ++i) {
8735 if (VTSize >
Size) {
8738 assert(i == NumMemOps-1 && i != 0);
8739 SrcOff -= VTSize -
Size;
8740 DstOff -= VTSize -
Size;
8743 if (CopyFromConstant &&
8751 if (SrcOff < Slice.Length) {
8753 SubSlice.
move(SrcOff);
8756 SubSlice.
Array =
nullptr;
8758 SubSlice.
Length = VTSize;
8761 if (
Value.getNode()) {
8765 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8770 if (!Store.getNode()) {
8779 bool isDereferenceable =
8782 if (isDereferenceable)
8797 DstPtrInfo.
getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8807 unsigned NumLdStInMemcpy = OutStoreChains.
size();
8809 if (NumLdStInMemcpy) {
8815 for (
unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8821 if (NumLdStInMemcpy <= GluedLdStLimit) {
8823 NumLdStInMemcpy, OutLoadChains,
8826 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8827 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8828 unsigned GlueIter = 0;
8830 for (
unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8831 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8832 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8835 OutLoadChains, OutStoreChains);
8836 GlueIter += GluedLdStLimit;
8840 if (RemainingLdStInMemcpy) {
8842 RemainingLdStInMemcpy, OutLoadChains,
8854 bool isVol,
bool AlwaysInline,
8868 std::vector<EVT> MemOps;
8869 bool DstAlignCanChange =
false;
8875 DstAlignCanChange =
true;
8877 if (!SrcAlign || Alignment > *SrcAlign)
8878 SrcAlign = Alignment;
8879 assert(SrcAlign &&
"SrcAlign must be set");
8889 if (DstAlignCanChange) {
8890 Type *Ty = MemOps[0].getTypeForEVT(
C);
8891 Align NewAlign =
DL.getABITypeAlign(Ty);
8897 if (!
TRI->hasStackRealignment(MF))
8899 NewAlign = std::min(NewAlign, *StackAlign);
8901 if (NewAlign > Alignment) {
8905 Alignment = NewAlign;
8919 unsigned NumMemOps = MemOps.size();
8920 for (
unsigned i = 0; i < NumMemOps; i++) {
8925 bool isDereferenceable =
8928 if (isDereferenceable)
8934 SrcPtrInfo.
getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8941 for (
unsigned i = 0; i < NumMemOps; i++) {
8947 Chain, dl, LoadValues[i],
8949 DstPtrInfo.
getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8989 std::vector<EVT> MemOps;
8990 bool DstAlignCanChange =
false;
8997 DstAlignCanChange =
true;
9003 MemOp::Set(
Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9007 if (DstAlignCanChange) {
9010 Align NewAlign =
DL.getABITypeAlign(Ty);
9016 if (!
TRI->hasStackRealignment(MF))
9018 NewAlign = std::min(NewAlign, *StackAlign);
9020 if (NewAlign > Alignment) {
9024 Alignment = NewAlign;
9030 unsigned NumMemOps = MemOps.size();
9033 EVT LargestVT = MemOps[0];
9034 for (
unsigned i = 1; i < NumMemOps; i++)
9035 if (MemOps[i].bitsGT(LargestVT))
9036 LargestVT = MemOps[i];
9043 for (
unsigned i = 0; i < NumMemOps; i++) {
9046 if (VTSize >
Size) {
9049 assert(i == NumMemOps-1 && i != 0);
9050 DstOff -= VTSize -
Size;
9057 if (VT.
bitsLT(LargestVT)) {
9072 SDValue TailValue = DAG.
getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9077 assert(
Value.getValueType() == VT &&
"Value with wrong type.");
9104 bool AllowReturnsFirstArg) {
9110 AllowReturnsFirstArg &&
9114std::pair<SDValue, SDValue>
9117 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9134 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9140 return TLI->LowerCallTo(CLI);
9145 Align Alignment,
bool isVol,
bool AlwaysInline,
const CallInst *CI,
9154 if (ConstantSize->
isZero())
9158 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9159 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9160 if (Result.getNode())
9167 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9168 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline,
9169 DstPtrInfo, SrcPtrInfo);
9170 if (Result.getNode())
9177 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9179 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9180 isVol,
true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9195 Args.emplace_back(Dst, PtrTy);
9196 Args.emplace_back(Src, PtrTy);
9200 bool IsTailCall =
false;
9201 const char *MemCpyName = TLI->getMemcpyName();
9203 if (OverrideTailCall.has_value()) {
9204 IsTailCall = *OverrideTailCall;
9213 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9214 Dst.getValueType().getTypeForEVT(*
getContext()),
9220 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9221 return CallResult.second;
9226 Type *SizeTy,
unsigned ElemSz,
9233 Args.emplace_back(Dst, ArgTy);
9234 Args.emplace_back(Src, ArgTy);
9235 Args.emplace_back(
Size, SizeTy);
9237 RTLIB::Libcall LibraryCall =
9239 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9253 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9254 return CallResult.second;
9260 std::optional<bool> OverrideTailCall,
9270 if (ConstantSize->
isZero())
9274 *
this, dl, Chain, Dst, Src, ConstantSize->
getZExtValue(), Alignment,
9275 isVol,
false, DstPtrInfo, SrcPtrInfo, AAInfo);
9276 if (Result.getNode())
9284 TSI->EmitTargetCodeForMemmove(*
this, dl, Chain, Dst, Src,
Size,
9285 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9286 if (Result.getNode())
9299 Args.emplace_back(Dst, PtrTy);
9300 Args.emplace_back(Src, PtrTy);
9305 bool IsTailCall =
false;
9306 if (OverrideTailCall.has_value()) {
9307 IsTailCall = *OverrideTailCall;
9309 bool LowersToMemmove =
9310 TLI->getLibcallName(RTLIB::MEMMOVE) ==
StringRef(
"memmove");
9316 .
setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9317 Dst.getValueType().getTypeForEVT(*
getContext()),
9324 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9325 return CallResult.second;
9330 Type *SizeTy,
unsigned ElemSz,
9337 Args.emplace_back(Dst, IntPtrTy);
9338 Args.emplace_back(Src, IntPtrTy);
9339 Args.emplace_back(
Size, SizeTy);
9341 RTLIB::Libcall LibraryCall =
9343 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9357 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9358 return CallResult.second;
9363 bool isVol,
bool AlwaysInline,
9372 if (ConstantSize->
isZero())
9377 isVol,
false, DstPtrInfo, AAInfo);
9379 if (Result.getNode())
9386 SDValue Result = TSI->EmitTargetCodeForMemset(
9387 *
this, dl, Chain, Dst, Src,
Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9388 if (Result.getNode())
9395 assert(ConstantSize &&
"AlwaysInline requires a constant size!");
9398 isVol,
true, DstPtrInfo, AAInfo);
9400 "getMemsetStores must return a valid sequence when AlwaysInline");
9421 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9428 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9429 Args.emplace_back(
Size,
DL.getIntPtrType(Ctx));
9430 CLI.
setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9431 Dst.getValueType().getTypeForEVT(Ctx),
9433 TLI->getPointerTy(
DL)),
9436 bool LowersToMemset =
9437 TLI->getLibcallName(RTLIB::MEMSET) ==
StringRef(
"memset");
9447 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9448 return CallResult.second;
9453 Type *SizeTy,
unsigned ElemSz,
9460 Args.emplace_back(
Size, SizeTy);
9462 RTLIB::Libcall LibraryCall =
9464 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9478 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9479 return CallResult.second;
9489 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9490 dl.
getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9495 E->refineAlignment(MMO);
9496 E->refineRanges(MMO);
9501 VTList, MemVT, MMO, ExtType);
9502 createOperands(
N,
Ops);
9504 CSEMap.InsertNode(
N, IP);
9515 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9516 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9526 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9527 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9528 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9529 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9530 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9531 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9532 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9533 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9534 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9535 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9536 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9537 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9538 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9539 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9540 Opcode == ISD::ATOMIC_STORE) &&
9541 "Invalid Atomic Op");
9556 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs,
Ops, MMO, ExtType);
9561 if (
Ops.size() == 1)
9576 if (
Size.hasValue() && !
Size.getValue())
9581 MF.getMachineMemOperand(PtrInfo, Flags,
Size, Alignment, AAInfo);
9592 Opcode == ISD::PREFETCH ||
9593 (Opcode <= (
unsigned)std::numeric_limits<int>::max() &&
9595 "Opcode is not a memory-accessing opcode!");
9599 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
9602 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9603 Opcode, dl.
getIROrder(), VTList, MemVT, MMO));
9608 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9614 VTList, MemVT, MMO);
9615 createOperands(
N,
Ops);
9617 CSEMap.InsertNode(
N, IP);
9620 VTList, MemVT, MMO);
9621 createOperands(
N,
Ops);
9630 SDValue Chain,
int FrameIndex) {
9631 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9641 ID.AddInteger(FrameIndex);
9643 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
9648 createOperands(
N,
Ops);
9649 CSEMap.InsertNode(
N, IP);
9659 const unsigned Opcode = ISD::PSEUDO_PROBE;
9665 ID.AddInteger(Index);
9667 if (
SDNode *E = FindNodeOrInsertPos(
ID, Dl, IP))
9670 auto *
N = newSDNode<PseudoProbeSDNode>(
9672 createOperands(
N,
Ops);
9673 CSEMap.InsertNode(
N, IP);
9727 "Invalid chain type");
9739 Alignment, AAInfo, Ranges);
9750 assert(VT == MemVT &&
"Non-extending load from different memory type!");
9754 "Should only be an extending load, not truncating!");
9756 "Cannot convert from FP to Int or Int -> FP!");
9758 "Cannot use an ext load to convert to or from a vector!");
9761 "Cannot use an ext load to change the number of vector elements!");
9768 "Range metadata and load type must match!");
9779 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9780 dl.
getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9785 E->refineAlignment(MMO);
9786 E->refineRanges(MMO);
9790 ExtType, MemVT, MMO);
9791 createOperands(
N,
Ops);
9793 CSEMap.InsertNode(
N, IP);
9807 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9825 MemVT, Alignment, MMOFlags, AAInfo);
9840 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
9843 LD->getMemOperand()->getFlags() &
9846 LD->getChain(),
Base,
Offset, LD->getPointerInfo(),
9847 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9866 MF.getMachineMemOperand(PtrInfo, MMOFlags,
Size, Alignment, AAInfo);
9880 bool IsTruncating) {
9884 IsTruncating =
false;
9885 }
else if (!IsTruncating) {
9886 assert(VT == SVT &&
"No-truncating store from different memory type!");
9889 "Should only be a truncating store, not extending!");
9892 "Cannot use trunc store to convert to or from a vector!");
9895 "Cannot use trunc store to change the number of vector elements!");
9906 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9907 dl.
getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9911 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
9916 IsTruncating, SVT, MMO);
9917 createOperands(
N,
Ops);
9919 CSEMap.InsertNode(
N, IP);
9932 "Invalid chain type");
9942 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
9957 assert(ST->getOffset().isUndef() &&
"Store is already a indexed store!");
9959 ST->getMemoryVT(), ST->getMemOperand(), AM,
9960 ST->isTruncatingStore());
9968 const MDNode *Ranges,
bool IsExpanding) {
9981 Alignment, AAInfo, Ranges);
9982 return getLoadVP(AM, ExtType, VT, dl, Chain,
Ptr,
Offset, Mask, EVL, MemVT,
10001 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10002 dl.
getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10005 void *IP =
nullptr;
10007 E->refineAlignment(MMO);
10008 E->refineRanges(MMO);
10012 ExtType, IsExpanding, MemVT, MMO);
10013 createOperands(
N,
Ops);
10015 CSEMap.InsertNode(
N, IP);
10028 bool IsExpanding) {
10031 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10040 Mask, EVL, VT, MMO, IsExpanding);
10049 const AAMDNodes &AAInfo,
bool IsExpanding) {
10052 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo,
nullptr,
10062 EVL, MemVT, MMO, IsExpanding);
10069 assert(LD->getOffset().isUndef() &&
"Load is already a indexed load!");
10072 LD->getMemOperand()->getFlags() &
10075 LD->getChain(),
Base,
Offset, LD->getMask(),
10076 LD->getVectorLength(), LD->getPointerInfo(),
10077 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10078 nullptr, LD->isExpandingLoad());
10085 bool IsCompressing) {
10095 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10096 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10099 void *IP =
nullptr;
10100 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10105 IsTruncating, IsCompressing, MemVT, MMO);
10106 createOperands(
N,
Ops);
10108 CSEMap.InsertNode(
N, IP);
10121 bool IsCompressing) {
10132 PtrInfo, MMOFlags, SVT.
getStoreSize(), Alignment, AAInfo);
10141 bool IsCompressing) {
10148 false, IsCompressing);
10151 "Should only be a truncating store, not extending!");
10154 "Cannot use trunc store to convert to or from a vector!");
10157 "Cannot use trunc store to change the number of vector elements!");
10165 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10169 void *IP =
nullptr;
10170 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10177 createOperands(
N,
Ops);
10179 CSEMap.InsertNode(
N, IP);
10190 assert(ST->getOffset().isUndef() &&
"Store is already an indexed store!");
10193 Offset, ST->getMask(), ST->getVectorLength()};
10196 ID.AddInteger(ST->getMemoryVT().getRawBits());
10197 ID.AddInteger(ST->getRawSubclassData());
10198 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10199 ID.AddInteger(ST->getMemOperand()->getFlags());
10200 void *IP =
nullptr;
10201 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10204 auto *
N = newSDNode<VPStoreSDNode>(
10206 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10207 createOperands(
N,
Ops);
10209 CSEMap.InsertNode(
N, IP);
10229 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10230 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10233 void *IP =
nullptr;
10234 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10240 newSDNode<VPStridedLoadSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs, AM,
10241 ExtType, IsExpanding, MemVT, MMO);
10242 createOperands(
N,
Ops);
10243 CSEMap.InsertNode(
N, IP);
10254 bool IsExpanding) {
10257 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10266 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10275 bool IsTruncating,
bool IsCompressing) {
10285 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10286 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10288 void *IP =
nullptr;
10289 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10293 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10294 VTs, AM, IsTruncating,
10295 IsCompressing, MemVT, MMO);
10296 createOperands(
N,
Ops);
10298 CSEMap.InsertNode(
N, IP);
10310 bool IsCompressing) {
10317 false, IsCompressing);
10320 "Should only be a truncating store, not extending!");
10323 "Cannot use trunc store to convert to or from a vector!");
10326 "Cannot use trunc store to change the number of vector elements!");
10330 SDValue Ops[] = {Chain, Val,
Ptr, Undef, Stride, Mask, EVL};
10334 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10337 void *IP =
nullptr;
10338 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10342 auto *
N = newSDNode<VPStridedStoreSDNode>(
DL.getIROrder(),
DL.getDebugLoc(),
10344 IsCompressing, SVT, MMO);
10345 createOperands(
N,
Ops);
10347 CSEMap.InsertNode(
N, IP);
10357 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10362 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10366 void *IP =
nullptr;
10367 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10373 VT, MMO, IndexType);
10374 createOperands(
N,
Ops);
10376 assert(
N->getMask().getValueType().getVectorElementCount() ==
10377 N->getValueType(0).getVectorElementCount() &&
10378 "Vector width mismatch between mask and data");
10379 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10380 N->getValueType(0).getVectorElementCount().isScalable() &&
10381 "Scalable flags of index and data do not match");
10383 N->getIndex().getValueType().getVectorElementCount(),
10384 N->getValueType(0).getVectorElementCount()) &&
10385 "Vector width mismatch between index and data");
10387 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10388 "Scale should be a constant power of 2");
10390 CSEMap.InsertNode(
N, IP);
10401 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10406 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10410 void *IP =
nullptr;
10411 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10416 VT, MMO, IndexType);
10417 createOperands(
N,
Ops);
10419 assert(
N->getMask().getValueType().getVectorElementCount() ==
10420 N->getValue().getValueType().getVectorElementCount() &&
10421 "Vector width mismatch between mask and data");
10423 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10424 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10425 "Scalable flags of index and data do not match");
10427 N->getIndex().getValueType().getVectorElementCount(),
10428 N->getValue().getValueType().getVectorElementCount()) &&
10429 "Vector width mismatch between index and data");
10431 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10432 "Scale should be a constant power of 2");
10434 CSEMap.InsertNode(
N, IP);
10449 "Unindexed masked load with an offset!");
10456 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10457 dl.
getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10460 void *IP =
nullptr;
10461 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10466 AM, ExtTy, isExpanding, MemVT, MMO);
10467 createOperands(
N,
Ops);
10469 CSEMap.InsertNode(
N, IP);
10480 assert(LD->getOffset().isUndef() &&
"Masked load is already a indexed load!");
10482 Offset, LD->getMask(), LD->getPassThru(),
10483 LD->getMemoryVT(), LD->getMemOperand(), AM,
10484 LD->getExtensionType(), LD->isExpandingLoad());
10492 bool IsCompressing) {
10494 "Invalid chain type");
10497 "Unindexed masked store with an offset!");
10504 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10505 dl.
getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10508 void *IP =
nullptr;
10509 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10515 IsTruncating, IsCompressing, MemVT, MMO);
10516 createOperands(
N,
Ops);
10518 CSEMap.InsertNode(
N, IP);
10529 assert(ST->getOffset().isUndef() &&
10530 "Masked store is already a indexed store!");
10532 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10533 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10541 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10546 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10547 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10550 void *IP =
nullptr;
10551 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10557 VTs, MemVT, MMO, IndexType, ExtTy);
10558 createOperands(
N,
Ops);
10560 assert(
N->getPassThru().getValueType() ==
N->getValueType(0) &&
10561 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10562 assert(
N->getMask().getValueType().getVectorElementCount() ==
10563 N->getValueType(0).getVectorElementCount() &&
10564 "Vector width mismatch between mask and data");
10565 assert(
N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10566 N->getValueType(0).getVectorElementCount().isScalable() &&
10567 "Scalable flags of index and data do not match");
10569 N->getIndex().getValueType().getVectorElementCount(),
10570 N->getValueType(0).getVectorElementCount()) &&
10571 "Vector width mismatch between index and data");
10573 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10574 "Scale should be a constant power of 2");
10576 CSEMap.InsertNode(
N, IP);
10588 assert(
Ops.size() == 6 &&
"Incompatible number of operands");
10593 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10594 dl.
getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10597 void *IP =
nullptr;
10598 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10604 VTs, MemVT, MMO, IndexType, IsTrunc);
10605 createOperands(
N,
Ops);
10607 assert(
N->getMask().getValueType().getVectorElementCount() ==
10608 N->getValue().getValueType().getVectorElementCount() &&
10609 "Vector width mismatch between mask and data");
10611 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10612 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10613 "Scalable flags of index and data do not match");
10615 N->getIndex().getValueType().getVectorElementCount(),
10616 N->getValue().getValueType().getVectorElementCount()) &&
10617 "Vector width mismatch between index and data");
10619 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10620 "Scale should be a constant power of 2");
10622 CSEMap.InsertNode(
N, IP);
10633 assert(
Ops.size() == 7 &&
"Incompatible number of operands");
10638 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10639 dl.
getIROrder(), VTs, MemVT, MMO, IndexType));
10642 void *IP =
nullptr;
10643 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP)) {
10649 VTs, MemVT, MMO, IndexType);
10650 createOperands(
N,
Ops);
10652 assert(
N->getMask().getValueType().getVectorElementCount() ==
10653 N->getIndex().getValueType().getVectorElementCount() &&
10654 "Vector width mismatch between mask and data");
10656 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10657 "Scale should be a constant power of 2");
10658 assert(
N->getInc().getValueType().isInteger() &&
"Non integer update value");
10660 CSEMap.InsertNode(
N, IP);
10675 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(
DL.getIROrder(),
10679 void *IP =
nullptr;
10680 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10684 auto *
N = newSDNode<VPLoadFFSDNode>(
DL.getIROrder(),
DL.getDebugLoc(), VTs,
10686 createOperands(
N,
Ops);
10688 CSEMap.InsertNode(
N, IP);
10703 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10704 ISD::GET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10707 void *IP =
nullptr;
10708 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10711 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.
getIROrder(),
10713 createOperands(
N,
Ops);
10715 CSEMap.InsertNode(
N, IP);
10730 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10731 ISD::SET_FPENV_MEM, dl.
getIROrder(), VTs, MemVT, MMO));
10734 void *IP =
nullptr;
10735 if (
SDNode *E = FindNodeOrInsertPos(
ID, dl, IP))
10738 auto *
N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.
getIROrder(),
10740 createOperands(
N,
Ops);
10742 CSEMap.InsertNode(
N, IP);
10753 if (
Cond.isUndef())
10788 return !Val || Val->getAPIntValue().uge(
X.getScalarValueSizeInBits());
10794 if (
X.getValueType().getScalarType() == MVT::i1)
10807 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10809 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10812 if (Flags.hasNoNaNs() && (HasNan ||
X.isUndef() ||
Y.isUndef()))
10815 if (Flags.hasNoInfs() && (HasInf ||
X.isUndef() ||
Y.isUndef()))
10838 if (Opcode ==
ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10853 switch (
Ops.size()) {
10854 case 0:
return getNode(Opcode,
DL, VT);
10864 return getNode(Opcode,
DL, VT, NewOps);
10871 Flags = Inserter->getFlags();
10879 case 0:
return getNode(Opcode,
DL, VT);
10880 case 1:
return getNode(Opcode,
DL, VT,
Ops[0], Flags);
10887 for (
const auto &
Op :
Ops)
10889 "Operand is DELETED_NODE!");
10906 "LHS and RHS of condition must have same type!");
10908 "True and False arms of SelectCC must have same type!");
10910 "select_cc node must be of same type as true and false value!");
10914 "Expected select_cc with vector result to have the same sized "
10915 "comparison type!");
10920 "LHS/RHS of comparison should match types!");
10926 Opcode = ISD::VP_XOR;
10931 Opcode = ISD::VP_AND;
10933 case ISD::VP_REDUCE_MUL:
10936 Opcode = ISD::VP_REDUCE_AND;
10938 case ISD::VP_REDUCE_ADD:
10941 Opcode = ISD::VP_REDUCE_XOR;
10943 case ISD::VP_REDUCE_SMAX:
10944 case ISD::VP_REDUCE_UMIN:
10948 Opcode = ISD::VP_REDUCE_AND;
10950 case ISD::VP_REDUCE_SMIN:
10951 case ISD::VP_REDUCE_UMAX:
10955 Opcode = ISD::VP_REDUCE_OR;
10963 if (VT != MVT::Glue) {
10966 void *IP =
nullptr;
10968 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
10969 E->intersectFlagsWith(Flags);
10973 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
10974 createOperands(
N,
Ops);
10976 CSEMap.InsertNode(
N, IP);
10978 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
10979 createOperands(
N,
Ops);
10982 N->setFlags(Flags);
10993 Flags = Inserter->getFlags();
11007 Flags = Inserter->getFlags();
11017 for (
const auto &
Op :
Ops)
11019 "Operand is DELETED_NODE!");
11028 "Invalid add/sub overflow op!");
11030 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11031 Ops[0].getValueType() == VTList.
VTs[0] &&
11032 "Binary operator types must match!");
11039 if (N2CV && N2CV->
isZero()) {
11070 "Invalid add/sub overflow op!");
11072 Ops[0].getValueType() ==
Ops[1].getValueType() &&
11073 Ops[0].getValueType() == VTList.
VTs[0] &&
11074 Ops[2].getValueType() == VTList.
VTs[1] &&
11075 "Binary operator types must match!");
11079 assert(VTList.
NumVTs == 2 &&
Ops.size() == 2 &&
"Invalid mul lo/hi op!");
11081 VTList.
VTs[0] ==
Ops[0].getValueType() &&
11082 VTList.
VTs[0] ==
Ops[1].getValueType() &&
11083 "Binary operator types must match!");
11089 unsigned OutWidth = Width * 2;
11090 APInt Val = LHS->getAPIntValue();
11093 Val = Val.
sext(OutWidth);
11094 Mul =
Mul.sext(OutWidth);
11096 Val = Val.
zext(OutWidth);
11097 Mul =
Mul.zext(OutWidth);
11108 case ISD::FFREXP: {
11109 assert(VTList.
NumVTs == 2 &&
Ops.size() == 1 &&
"Invalid ffrexp op!");
11111 VTList.
VTs[0] ==
Ops[0].getValueType() &&
"frexp type mismatch");
11127 "Invalid STRICT_FP_EXTEND!");
11129 Ops[1].getValueType().isFloatingPoint() &&
"Invalid FP cast!");
11131 "STRICT_FP_EXTEND result type should be vector iff the operand "
11132 "type is vector!");
11135 Ops[1].getValueType().getVectorElementCount()) &&
11136 "Vector element count mismatch!");
11138 "Invalid fpext node, dst <= src!");
11141 assert(VTList.
NumVTs == 2 &&
Ops.size() == 3 &&
"Invalid STRICT_FP_ROUND!");
11143 "STRICT_FP_ROUND result type should be vector iff the operand "
11144 "type is vector!");
11147 Ops[1].getValueType().getVectorElementCount()) &&
11148 "Vector element count mismatch!");
11150 Ops[1].getValueType().isFloatingPoint() &&
11153 (
Ops[2]->getAsZExtVal() == 0 ||
Ops[2]->getAsZExtVal() == 1) &&
11154 "Invalid STRICT_FP_ROUND!");
11160 if (VTList.
VTs[VTList.
NumVTs-1] != MVT::Glue) {
11163 void *IP =
nullptr;
11164 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11165 E->intersectFlagsWith(Flags);
11169 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11170 createOperands(
N,
Ops);
11171 CSEMap.InsertNode(
N, IP);
11173 N = newSDNode<SDNode>(Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTList);
11174 createOperands(
N,
Ops);
11177 N->setFlags(Flags);
11224 return makeVTList(&(*EVTs.insert(VT).first), 1);
11233 void *IP =
nullptr;
11236 EVT *Array = Allocator.Allocate<
EVT>(2);
11239 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 2);
11240 VTListMap.InsertNode(Result, IP);
11242 return Result->getSDVTList();
11252 void *IP =
nullptr;
11255 EVT *Array = Allocator.Allocate<
EVT>(3);
11259 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 3);
11260 VTListMap.InsertNode(Result, IP);
11262 return Result->getSDVTList();
11273 void *IP =
nullptr;
11276 EVT *Array = Allocator.Allocate<
EVT>(4);
11281 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, 4);
11282 VTListMap.InsertNode(Result, IP);
11284 return Result->getSDVTList();
11288 unsigned NumVTs = VTs.
size();
11290 ID.AddInteger(NumVTs);
11291 for (
unsigned index = 0; index < NumVTs; index++) {
11292 ID.AddInteger(VTs[index].getRawBits());
11295 void *IP =
nullptr;
11298 EVT *Array = Allocator.Allocate<
EVT>(NumVTs);
11300 Result =
new (Allocator)
SDVTListNode(
ID.Intern(Allocator), Array, NumVTs);
11301 VTListMap.InsertNode(Result, IP);
11303 return Result->getSDVTList();
11314 assert(
N->getNumOperands() == 1 &&
"Update with wrong number of operands");
11317 if (
Op ==
N->getOperand(0))
return N;
11320 void *InsertPos =
nullptr;
11321 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Op, InsertPos))
11326 if (!RemoveNodeFromCSEMaps(
N))
11327 InsertPos =
nullptr;
11330 N->OperandList[0].set(
Op);
11334 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11339 assert(
N->getNumOperands() == 2 &&
"Update with wrong number of operands");
11342 if (Op1 ==
N->getOperand(0) && Op2 ==
N->getOperand(1))
11346 void *InsertPos =
nullptr;
11347 if (
SDNode *Existing = FindModifiedNodeSlot(
N, Op1, Op2, InsertPos))
11352 if (!RemoveNodeFromCSEMaps(
N))
11353 InsertPos =
nullptr;
11356 if (
N->OperandList[0] != Op1)
11357 N->OperandList[0].set(Op1);
11358 if (
N->OperandList[1] != Op2)
11359 N->OperandList[1].set(Op2);
11363 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11383 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11391 "Update with wrong number of operands");
11394 if (std::equal(
Ops.begin(),
Ops.end(),
N->op_begin()))
11398 void *InsertPos =
nullptr;
11399 if (
SDNode *Existing = FindModifiedNodeSlot(
N,
Ops, InsertPos))
11404 if (!RemoveNodeFromCSEMaps(
N))
11405 InsertPos =
nullptr;
11408 for (
unsigned i = 0; i !=
NumOps; ++i)
11409 if (
N->OperandList[i] !=
Ops[i])
11410 N->OperandList[i].set(
Ops[i]);
11414 if (InsertPos) CSEMap.InsertNode(
N, InsertPos);
11431 if (NewMemRefs.
empty()) {
11437 if (NewMemRefs.
size() == 1) {
11438 N->MemRefs = NewMemRefs[0];
11444 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.
size());
11446 N->MemRefs = MemRefsBuffer;
11447 N->NumMemRefs =
static_cast<int>(NewMemRefs.
size());
11519 New->setNodeId(-1);
11539 unsigned Order = std::min(
N->getIROrder(), OLoc.
getIROrder());
11540 N->setIROrder(Order);
11563 void *IP =
nullptr;
11564 if (VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue) {
11568 return UpdateSDLocOnMergeSDNode(ON,
SDLoc(
N));
11571 if (!RemoveNodeFromCSEMaps(
N))
11576 N->ValueList = VTs.
VTs;
11586 if (Used->use_empty())
11587 DeadNodeSet.
insert(Used);
11592 MN->clearMemRefs();
11596 createOperands(
N,
Ops);
11600 if (!DeadNodeSet.
empty()) {
11602 for (
SDNode *
N : DeadNodeSet)
11603 if (
N->use_empty())
11609 CSEMap.InsertNode(
N, IP);
11614 unsigned OrigOpc =
Node->getOpcode();
11619#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11620 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11621#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11622 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11623#include "llvm/IR/ConstrainedOps.def"
11626 assert(
Node->getNumValues() == 2 &&
"Unexpected number of results!");
11634 for (
unsigned i = 1, e =
Node->getNumOperands(); i != e; ++i)
11635 Ops.push_back(
Node->getOperand(i));
11752 bool DoCSE = VTs.
VTs[VTs.
NumVTs-1] != MVT::Glue;
11754 void *IP =
nullptr;
11760 if (
SDNode *E = FindNodeOrInsertPos(
ID,
DL, IP)) {
11766 N = newSDNode<MachineSDNode>(~Opcode,
DL.getIROrder(),
DL.getDebugLoc(), VTs);
11767 createOperands(
N,
Ops);
11770 CSEMap.InsertNode(
N, IP);
11783 VT, Operand, SRIdxVal);
11793 VT, Operand, Subreg, SRIdxVal);
11803 Flags = Inserter->getFlags();
11810 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11813 void *IP =
nullptr;
11815 E->intersectFlagsWith(Flags);
11825 if (VTList.
VTs[VTList.
NumVTs - 1] != MVT::Glue) {
11828 void *IP =
nullptr;
11829 if (FindNodeOrInsertPos(
ID,
SDLoc(), IP))
11839 SDNode *
N,
unsigned R,
bool IsIndirect,
11842 "Expected inlined-at fields to agree");
11843 return new (DbgInfo->getAlloc())
11845 {}, IsIndirect,
DL, O,
11855 "Expected inlined-at fields to agree");
11856 return new (DbgInfo->getAlloc())
11869 "Expected inlined-at fields to agree");
11881 "Expected inlined-at fields to agree");
11882 return new (DbgInfo->getAlloc())
11884 Dependencies, IsIndirect,
DL, O,
11893 "Expected inlined-at fields to agree");
11894 return new (DbgInfo->getAlloc())
11896 {}, IsIndirect,
DL, O,
11904 unsigned O,
bool IsVariadic) {
11906 "Expected inlined-at fields to agree");
11907 return new (DbgInfo->getAlloc())
11908 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11909 DL, O, IsVariadic);
11913 unsigned OffsetInBits,
unsigned SizeInBits,
11914 bool InvalidateDbg) {
11917 assert(FromNode && ToNode &&
"Can't modify dbg values");
11922 if (From == To || FromNode == ToNode)
11934 if (Dbg->isInvalidated())
11942 auto NewLocOps = Dbg->copyLocationOps();
11944 NewLocOps.begin(), NewLocOps.end(),
11946 bool Match = Op == FromLocOp;
11956 auto *Expr = Dbg->getExpression();
11962 if (
auto FI = Expr->getFragmentInfo())
11963 if (OffsetInBits + SizeInBits > FI->SizeInBits)
11972 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
11975 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
11976 Dbg->getDebugLoc(), std::max(ToNode->
getIROrder(), Dbg->getOrder()),
11977 Dbg->isVariadic());
11980 if (InvalidateDbg) {
11982 Dbg->setIsInvalidated();
11983 Dbg->setIsEmitted();
11989 "Transferred DbgValues should depend on the new SDNode");
11995 if (!
N.getHasDebugValue())
11998 auto GetLocationOperand = [](
SDNode *
Node,
unsigned ResNo) {
12006 if (DV->isInvalidated())
12008 switch (
N.getOpcode()) {
12018 Offset =
N.getConstantOperandVal(1);
12021 if (!RHSConstant && DV->isIndirect())
12028 auto *DIExpr = DV->getExpression();
12029 auto NewLocOps = DV->copyLocationOps();
12031 size_t OrigLocOpsSize = NewLocOps.size();
12032 for (
size_t i = 0; i < OrigLocOpsSize; ++i) {
12037 NewLocOps[i].getSDNode() != &
N)
12048 const auto *TmpDIExpr =
12056 NewLocOps.push_back(RHS);
12065 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12067 auto AdditionalDependencies = DV->getAdditionalDependencies();
12069 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12070 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12072 DV->setIsInvalidated();
12073 DV->setIsEmitted();
12075 N0.
getNode()->dumprFull(
this);
12076 dbgs() <<
" into " << *DIExpr <<
'\n');
12083 TypeSize ToSize =
N.getValueSizeInBits(0);
12087 auto NewLocOps = DV->copyLocationOps();
12089 for (
size_t i = 0; i < NewLocOps.size(); ++i) {
12091 NewLocOps[i].getSDNode() != &
N)
12103 DV->getAdditionalDependencies(), DV->isIndirect(),
12104 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12107 DV->setIsInvalidated();
12108 DV->setIsEmitted();
12110 dbgs() <<
" into " << *DbgExpression <<
'\n');
12117 assert((!Dbg->getSDNodes().empty() ||
12120 return Op.getKind() == SDDbgOperand::FRAMEIX;
12122 "Salvaged DbgValue should depend on a new SDNode");
12131 "Expected inlined-at fields to agree");
12132 return new (DbgInfo->getAlloc())
SDDbgLabel(Label,
DL, O);
12147 while (UI != UE &&
N == UI->
getUser())
12155 :
SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12168 "Cannot replace with this method!");
12169 assert(From != To.
getNode() &&
"Cannot replace uses of with self");
12184 RAUWUpdateListener Listener(*
this, UI, UE);
12189 RemoveNodeFromCSEMaps(
User);
12204 AddModifiedNodeToCSEMaps(
User);
12220 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12223 "Cannot use this version of ReplaceAllUsesWith!");
12231 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i)
12233 assert((i < To->getNumValues()) &&
"Invalid To location");
12242 RAUWUpdateListener Listener(*
this, UI, UE);
12247 RemoveNodeFromCSEMaps(
User);
12263 AddModifiedNodeToCSEMaps(
User);
12280 for (
unsigned i = 0, e = From->
getNumValues(); i != e; ++i) {
12290 RAUWUpdateListener Listener(*
this, UI, UE);
12295 RemoveNodeFromCSEMaps(
User);
12301 bool To_IsDivergent =
false;
12315 AddModifiedNodeToCSEMaps(
User);
12328 if (From == To)
return;
12344 RAUWUpdateListener Listener(*
this, UI, UE);
12347 bool UserRemovedFromCSEMaps =
false;
12364 if (!UserRemovedFromCSEMaps) {
12365 RemoveNodeFromCSEMaps(
User);
12366 UserRemovedFromCSEMaps =
true;
12376 if (!UserRemovedFromCSEMaps)
12381 AddModifiedNodeToCSEMaps(
User);
12400bool operator<(
const UseMemo &L,
const UseMemo &R) {
12401 return (intptr_t)L.User < (intptr_t)R.User;
12408 SmallVectorImpl<UseMemo> &
Uses;
12410 void NodeDeleted(SDNode *
N, SDNode *
E)
override {
12411 for (UseMemo &Memo :
Uses)
12412 if (Memo.User ==
N)
12413 Memo.User =
nullptr;
12417 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12418 : SelectionDAG::DAGUpdateListener(d),
Uses(uses) {}
12425 switch (
Node->getOpcode()) {
12437 if (TLI->isSDNodeAlwaysUniform(
N)) {
12438 assert(!TLI->isSDNodeSourceOfDivergence(
N, FLI, UA) &&
12439 "Conflicting divergence information!");
12442 if (TLI->isSDNodeSourceOfDivergence(
N, FLI, UA))
12444 for (
const auto &
Op :
N->ops()) {
12445 EVT VT =
Op.getValueType();
12448 if (VT != MVT::Other &&
Op.getNode()->isDivergent() &&
12460 if (
N->SDNodeBits.IsDivergent != IsDivergent) {
12461 N->SDNodeBits.IsDivergent = IsDivergent;
12464 }
while (!Worklist.
empty());
12467void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12469 Order.reserve(AllNodes.size());
12471 unsigned NOps =
N.getNumOperands();
12474 Order.push_back(&
N);
12476 for (
size_t I = 0;
I != Order.size(); ++
I) {
12478 for (
auto *U :
N->users()) {
12479 unsigned &UnsortedOps = Degree[U];
12480 if (0 == --UnsortedOps)
12481 Order.push_back(U);
12486#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12487void SelectionDAG::VerifyDAGDivergence() {
12488 std::vector<SDNode *> TopoOrder;
12489 CreateTopologicalOrder(TopoOrder);
12490 for (
auto *
N : TopoOrder) {
12492 "Divergence bit inconsistency detected");
12515 for (
unsigned i = 0; i != Num; ++i) {
12516 unsigned FromResNo = From[i].
getResNo();
12519 if (
Use.getResNo() == FromResNo) {
12521 Uses.push_back(Memo);
12528 RAUOVWUpdateListener Listener(*
this,
Uses);
12530 for (
unsigned UseIndex = 0, UseIndexEnd =
Uses.size();
12531 UseIndex != UseIndexEnd; ) {
12537 if (
User ==
nullptr) {
12543 RemoveNodeFromCSEMaps(
User);
12550 unsigned i =
Uses[UseIndex].Index;
12555 }
while (UseIndex != UseIndexEnd &&
Uses[UseIndex].
User ==
User);
12559 AddModifiedNodeToCSEMaps(
User);
12567 unsigned DAGSize = 0;
12583 unsigned Degree =
N.getNumOperands();
12586 N.setNodeId(DAGSize++);
12588 if (Q != SortedPos)
12589 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12590 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12594 N.setNodeId(Degree);
12606 unsigned Degree =
P->getNodeId();
12607 assert(Degree != 0 &&
"Invalid node degree");
12611 P->setNodeId(DAGSize++);
12612 if (
P->getIterator() != SortedPos)
12613 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(
P));
12614 assert(SortedPos != AllNodes.end() &&
"Overran node list");
12618 P->setNodeId(Degree);
12621 if (
Node.getIterator() == SortedPos) {
12625 dbgs() <<
"Overran sorted position:\n";
12627 dbgs() <<
"Checking if this is due to cycles\n";
12634 assert(SortedPos == AllNodes.end() &&
12635 "Topological sort incomplete!");
12637 "First node in topological sort is not the entry token!");
12638 assert(AllNodes.front().getNodeId() == 0 &&
12639 "First node in topological sort has non-zero id!");
12640 assert(AllNodes.front().getNumOperands() == 0 &&
12641 "First node in topological sort has operands!");
12642 assert(AllNodes.back().getNodeId() == (
int)DAGSize-1 &&
12643 "Last node in topologic sort has unexpected id!");
12644 assert(AllNodes.back().use_empty() &&
12645 "Last node in topologic sort has users!");
12653 for (
SDNode *SD : DB->getSDNodes()) {
12656 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12657 SD->setHasDebugValue(
true);
12659 DbgInfo->add(DB, isParameter);
12672 if (OldChain == NewMemOpChain || OldChain.
use_empty())
12673 return NewMemOpChain;
12676 OldChain, NewMemOpChain);
12679 return TokenFactor;
12698 if (OutFunction !=
nullptr)
12706 std::string ErrorStr;
12708 ErrorFormatter <<
"Undefined external symbol ";
12709 ErrorFormatter <<
'"' << Symbol <<
'"';
12719 return Const !=
nullptr && Const->isZero();
12728 return Const !=
nullptr && Const->isZero() && !Const->isNegative();
12733 return Const !=
nullptr && Const->isAllOnes();
12738 return Const !=
nullptr && Const->isOne();
12743 return Const !=
nullptr && Const->isMinSignedValue();
12747 unsigned OperandNo) {
12752 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12758 return Const.isZero();
12760 return Const.isOne();
12763 return Const.isAllOnes();
12765 return Const.isMinSignedValue();
12767 return Const.isMaxSignedValue();
12772 return OperandNo == 1 && Const.isZero();
12775 return OperandNo == 1 && Const.isOne();
12780 return ConstFP->isZero() &&
12781 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12783 return OperandNo == 1 && ConstFP->isZero() &&
12784 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12786 return ConstFP->isExactlyValue(1.0);
12788 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12790 case ISD::FMAXNUM: {
12792 EVT VT = V.getValueType();
12794 APFloat NeutralAF = !Flags.hasNoNaNs()
12796 : !Flags.hasNoInfs()
12799 if (Opcode == ISD::FMAXNUM)
12802 return ConstFP->isExactlyValue(NeutralAF);
12810 while (V.getOpcode() == ISD::BITCAST)
12816 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12835 !DemandedElts[IndexC->getZExtValue()]) {
12854 unsigned NumBits = V.getScalarValueSizeInBits();
12857 return C && (
C->getAPIntValue().
countr_one() >= NumBits);
12861 bool AllowTruncation) {
12862 EVT VT =
N.getValueType();
12871 bool AllowTruncation) {
12878 EVT VecEltVT =
N->getValueType(0).getVectorElementType();
12880 EVT CVT = CN->getValueType(0);
12881 assert(CVT.
bitsGE(VecEltVT) &&
"Illegal splat_vector element extension");
12882 if (AllowTruncation || CVT == VecEltVT)
12889 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12894 if (CN && (UndefElements.
none() || AllowUndefs)) {
12896 EVT NSVT =
N.getValueType().getScalarType();
12897 assert(CVT.
bitsGE(NSVT) &&
"Illegal build vector element extension");
12898 if (AllowTruncation || (CVT == NSVT))
12907 EVT VT =
N.getValueType();
12915 const APInt &DemandedElts,
12916 bool AllowUndefs) {
12923 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
12925 if (CN && (UndefElements.
none() || AllowUndefs))
12940 return C &&
C->isZero();
12946 return C &&
C->isOne();
12951 unsigned BitWidth =
N.getScalarValueSizeInBits();
12953 return C &&
C->isAllOnes() &&
C->getValueSizeInBits(0) ==
BitWidth;
12959 APInt(
C->getAPIntValue().getBitWidth(), 1));
12965 return C &&
C->isZero();
12974 :
SDNode(
Opc, Order, dl, VTs), MemoryVT(memvt),
MMO(mmo) {
12984 (!
MMO->getType().isValid() ||
12998 std::vector<EVT> VTs;
13011const EVT *SDNode::getValueTypeList(
MVT VT) {
13012 static EVTArray SimpleVTArray;
13015 return &SimpleVTArray.VTs[VT.
SimpleTy];
13024 if (U.getResNo() ==
Value)
13062 return any_of(
N->op_values(),
13063 [
this](
SDValue Op) { return this == Op.getNode(); });
13077 unsigned Depth)
const {
13078 if (*
this == Dest)
return true;
13082 if (
Depth == 0)
return false;
13102 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13108 if (Ld->isUnordered())
13109 return Ld->getChain().reachesChainWithoutSideEffects(Dest,
Depth-1);
13122 this->Flags &= Flags;
13128 bool AllowPartials) {
13143 unsigned CandidateBinOp =
Op.getOpcode();
13144 if (
Op.getValueType().isFloatingPoint()) {
13146 switch (CandidateBinOp) {
13148 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13158 auto PartialReduction = [&](
SDValue Op,
unsigned NumSubElts) {
13159 if (!AllowPartials || !
Op)
13161 EVT OpVT =
Op.getValueType();
13164 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13183 unsigned Stages =
Log2_32(
Op.getValueType().getVectorNumElements());
13185 for (
unsigned i = 0; i < Stages; ++i) {
13186 unsigned MaskEnd = (1 << i);
13188 if (
Op.getOpcode() != CandidateBinOp)
13189 return PartialReduction(PrevOp, MaskEnd);
13205 return PartialReduction(PrevOp, MaskEnd);
13208 for (
int Index = 0; Index < (int)MaskEnd; ++Index)
13209 if (Shuffle->
getMaskElt(Index) != (
int)(MaskEnd + Index))
13210 return PartialReduction(PrevOp, MaskEnd);
13217 while (
Op.getOpcode() == CandidateBinOp) {
13218 unsigned NumElts =
Op.getValueType().getVectorNumElements();
13227 if (NumSrcElts != (2 * NumElts))
13242 EVT VT =
N->getValueType(0);
13251 else if (NE > ResNE)
13254 if (
N->getNumValues() == 2) {
13257 EVT VT1 =
N->getValueType(1);
13261 for (i = 0; i != NE; ++i) {
13262 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13263 SDValue Operand =
N->getOperand(j);
13276 for (; i < ResNE; ++i) {
13288 assert(
N->getNumValues() == 1 &&
13289 "Can't unroll a vector with multiple results!");
13295 for (i= 0; i != NE; ++i) {
13296 for (
unsigned j = 0, e =
N->getNumOperands(); j != e; ++j) {
13297 SDValue Operand =
N->getOperand(j);
13309 switch (
N->getOpcode()) {
13334 case ISD::ADDRSPACECAST: {
13337 ASC->getSrcAddressSpace(),
13338 ASC->getDestAddressSpace()));
13344 for (; i < ResNE; ++i)
13353 unsigned Opcode =
N->getOpcode();
13357 "Expected an overflow opcode");
13359 EVT ResVT =
N->getValueType(0);
13360 EVT OvVT =
N->getValueType(1);
13369 else if (NE > ResNE)
13381 for (
unsigned i = 0; i < NE; ++i) {
13382 SDValue Res =
getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13405 if (LD->isVolatile() ||
Base->isVolatile())
13408 if (!LD->isSimple())
13410 if (LD->isIndexed() ||
Base->isIndexed())
13412 if (LD->getChain() !=
Base->getChain())
13414 EVT VT = LD->getMemoryVT();
13422 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *
this,
Offset))
13423 return (Dist * (int64_t)Bytes ==
Offset);
13432 int64_t GVOffset = 0;
13433 if (TLI->isGAPlusOffset(
Ptr.getNode(), GV, GVOffset)) {
13444 int FrameIdx = INT_MIN;
13445 int64_t FrameOffset = 0;
13447 FrameIdx = FI->getIndex();
13452 FrameOffset =
Ptr.getConstantOperandVal(1);
13455 if (FrameIdx != INT_MIN) {
13460 return std::nullopt;
13470 "Split node must be a scalar type");
13475 return std::make_pair(
Lo,
Hi);
13484 LoVT = HiVT = TLI->getTypeToTransformTo(*
getContext(), VT);
13488 return std::make_pair(LoVT, HiVT);
13496 bool *HiIsEmpty)
const {
13506 "Mixing fixed width and scalable vectors when enveloping a type");
13511 *HiIsEmpty =
false;
13519 return std::make_pair(LoVT, HiVT);
13524std::pair<SDValue, SDValue>
13529 "Splitting vector with an invalid mixture of fixed and scalable "
13532 N.getValueType().getVectorMinNumElements() &&
13533 "More vector elements requested than available!");
13542 return std::make_pair(
Lo,
Hi);
13549 EVT VT =
N.getValueType();
13551 "Expecting the mask to be an evenly-sized vector");
13559 return std::make_pair(
Lo,
Hi);
13564 EVT VT =
N.getValueType();
13572 unsigned Start,
unsigned Count,
13574 EVT VT =
Op.getValueType();
13577 if (EltVT ==
EVT())
13580 for (
unsigned i = Start, e = Start +
Count; i != e; ++i) {
13592 return Val.MachineCPVal->getType();
13593 return Val.ConstVal->getType();
13597 unsigned &SplatBitSize,
13598 bool &HasAnyUndefs,
13599 unsigned MinSplatBits,
13600 bool IsBigEndian)
const {
13604 if (MinSplatBits > VecWidth)
13609 SplatValue =
APInt(VecWidth, 0);
13610 SplatUndef =
APInt(VecWidth, 0);
13617 assert(
NumOps > 0 &&
"isConstantSplat has 0-size build vector");
13620 for (
unsigned j = 0; j <
NumOps; ++j) {
13621 unsigned i = IsBigEndian ?
NumOps - 1 - j : j;
13623 unsigned BitPos = j * EltWidth;
13626 SplatUndef.
setBits(BitPos, BitPos + EltWidth);
13628 SplatValue.
insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13630 SplatValue.
insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13637 HasAnyUndefs = (SplatUndef != 0);
13640 while (VecWidth > 8) {
13645 unsigned HalfSize = VecWidth / 2;
13652 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13653 MinSplatBits > HalfSize)
13656 SplatValue = HighValue | LowValue;
13657 SplatUndef = HighUndef & LowUndef;
13659 VecWidth = HalfSize;
13668 SplatBitSize = VecWidth;
13675 if (UndefElements) {
13676 UndefElements->
clear();
13683 for (
unsigned i = 0; i !=
NumOps; ++i) {
13684 if (!DemandedElts[i])
13687 if (
Op.isUndef()) {
13689 (*UndefElements)[i] =
true;
13690 }
else if (!Splatted) {
13692 }
else if (Splatted !=
Op) {
13698 unsigned FirstDemandedIdx = DemandedElts.
countr_zero();
13700 "Can only have a splat without a constant for all undefs.");
13717 if (UndefElements) {
13718 UndefElements->
clear();
13729 (*UndefElements)[
I] =
true;
13732 for (
unsigned SeqLen = 1; SeqLen <
NumOps; SeqLen *= 2) {
13733 Sequence.append(SeqLen,
SDValue());
13734 for (
unsigned I = 0;
I !=
NumOps; ++
I) {
13735 if (!DemandedElts[
I])
13737 SDValue &SeqOp = Sequence[
I % SeqLen];
13739 if (
Op.isUndef()) {
13744 if (SeqOp && !SeqOp.
isUndef() && SeqOp !=
Op) {
13750 if (!Sequence.empty())
13754 assert(Sequence.empty() &&
"Failed to empty non-repeating sequence pattern");
13795 const APFloat &APF = CN->getValueAPF();
13801 return IntVal.exactLogBase2();
13807 bool IsLittleEndian,
unsigned DstEltSizeInBits,
13815 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13816 "Invalid bitcast scale");
13821 BitVector SrcUndeElements(NumSrcOps,
false);
13823 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13825 if (
Op.isUndef()) {
13826 SrcUndeElements.
set(
I);
13831 assert((CInt || CFP) &&
"Unknown constant");
13832 SrcBitElements[
I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13833 : CFP->getValueAPF().bitcastToAPInt();
13837 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13838 SrcBitElements, UndefElements, SrcUndeElements);
13843 unsigned DstEltSizeInBits,
13848 unsigned NumSrcOps = SrcBitElements.
size();
13849 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13850 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13851 "Invalid bitcast scale");
13852 assert(NumSrcOps == SrcUndefElements.
size() &&
13853 "Vector size mismatch");
13855 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13856 DstUndefElements.
clear();
13857 DstUndefElements.
resize(NumDstOps,
false);
13861 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13862 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13863 for (
unsigned I = 0;
I != NumDstOps; ++
I) {
13864 DstUndefElements.
set(
I);
13865 APInt &DstBits = DstBitElements[
I];
13866 for (
unsigned J = 0; J != Scale; ++J) {
13867 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13868 if (SrcUndefElements[Idx])
13870 DstUndefElements.
reset(
I);
13871 const APInt &SrcBits = SrcBitElements[Idx];
13873 "Illegal constant bitwidths");
13874 DstBits.
insertBits(SrcBits, J * SrcEltSizeInBits);
13881 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13882 for (
unsigned I = 0;
I != NumSrcOps; ++
I) {
13883 if (SrcUndefElements[
I]) {
13884 DstUndefElements.
set(
I * Scale, (
I + 1) * Scale);
13887 const APInt &SrcBits = SrcBitElements[
I];
13888 for (
unsigned J = 0; J != Scale; ++J) {
13889 unsigned Idx = (
I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13890 APInt &DstBits = DstBitElements[Idx];
13891 DstBits = SrcBits.
extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13898 unsigned Opc =
Op.getOpcode();
13905std::optional<std::pair<APInt, APInt>>
13909 return std::nullopt;
13913 return std::nullopt;
13920 return std::nullopt;
13922 for (
unsigned i = 2; i <
NumOps; ++i) {
13924 return std::nullopt;
13927 if (Val != (Start + (Stride * i)))
13928 return std::nullopt;
13931 return std::make_pair(Start, Stride);
13937 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
13947 for (
int Idx = Mask[i]; i != e; ++i)
13948 if (Mask[i] >= 0 && Mask[i] != Idx)
13956 SDValue N,
bool AllowOpaques)
const {
13960 return AllowOpaques || !
C->isOpaque();
13969 TLI->isOffsetFoldingLegal(GA))
13997 return std::nullopt;
13999 EVT VT =
N->getValueType(0);
14001 switch (TLI->getBooleanContents(
N.getValueType())) {
14007 return std::nullopt;
14013 return std::nullopt;
14021 assert(!
Node->OperandList &&
"Node already has operands");
14023 "too many operands to fit into SDNode");
14024 SDUse *
Ops = OperandRecycler.allocate(
14027 bool IsDivergent =
false;
14028 for (
unsigned I = 0;
I != Vals.
size(); ++
I) {
14030 Ops[
I].setInitial(Vals[
I]);
14031 EVT VT =
Ops[
I].getValueType();
14034 if (VT != MVT::Other &&
14037 IsDivergent =
true;
14042 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14043 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14044 Node->SDNodeBits.IsDivergent = IsDivergent;
14052 while (Vals.
size() > Limit) {
14053 unsigned SliceIdx = Vals.
size() - Limit;
14088 case ISD::FMAXNUM: {
14094 if (Opcode == ISD::FMAXNUM)
14099 case ISD::FMINIMUM:
14100 case ISD::FMAXIMUM: {
14105 if (Opcode == ISD::FMAXIMUM)
14129 const SDLoc &DLoc) {
14133 RTLIB::Libcall LC =
static_cast<RTLIB::Libcall
>(
LibFunc);
14140 return TLI->LowerCallTo(CLI).second;
14144 assert(From && To &&
"Invalid SDNode; empty source SDValue?");
14145 auto I = SDEI.find(From);
14146 if (
I == SDEI.end())
14151 NodeExtraInfo NEI =
I->second;
14160 SDEI[To] = std::move(NEI);
14177 auto VisitFrom = [&](
auto &&Self,
const SDNode *
N,
int MaxDepth) {
14178 if (MaxDepth == 0) {
14184 if (!FromReach.
insert(
N).second)
14187 Self(Self,
Op.getNode(), MaxDepth - 1);
14192 auto DeepCopyTo = [&](
auto &&Self,
const SDNode *
N) {
14195 if (!Visited.
insert(
N).second)
14200 if (
N == To &&
Op.getNode() == EntrySDN) {
14205 if (!Self(Self,
Op.getNode()))
14219 for (
int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14220 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.
clear()) {
14225 for (
const SDNode *
N : StartFrom)
14226 VisitFrom(VisitFrom,
N, MaxDepth - PrevDepth);
14230 LLVM_DEBUG(
dbgs() << __func__ <<
": MaxDepth=" << MaxDepth <<
" too low\n");
14238 errs() <<
"warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14239 assert(
false &&
"From subgraph too complex - increase max. MaxDepth?");
14241 SDEI[To] = std::move(NEI);
14255 if (!Visited.
insert(
N).second) {
14256 errs() <<
"Detected cycle in SelectionDAG\n";
14257 dbgs() <<
"Offending node:\n";
14258 N->dumprFull(DAG);
dbgs() <<
"\n";
14274 bool check = force;
14275#ifdef EXPENSIVE_CHECKS
14279 assert(
N &&
"Checking nonexistent SDNode");
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
#define LLVM_LIKELY(EXPR)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
mir Rename Register Operands
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
opStatus divide(const APFloat &RHS, roundingMode RM)
void copySign(const APFloat &RHS)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
opStatus mod(const APFloat &RHS)
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
LLVM_ABI APInt usub_sat(const APInt &RHS) const
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
APInt abs() const
Get the absolute value.
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
LLVM_ABI APInt reverseBits() const
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
void setAllBits()
Set every bit to 1.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
LLVM_ABI APInt byteSwap() const
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
An arbitrary precision integer that knows its signedness.
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
void clear()
clear - Removes all bits from the bitvector.
bool none() const
none - Returns true if none of the bits are set.
size_type size() const
size - Returns the number of bits in this bitvector.
int64_t getOffset() const
unsigned getTargetFlags() const
const BlockAddress * getBlockAddress() const
The address of a basic block.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
const APFloat & getValue() const
This is the shared class of boolean and integer constants.
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
const APInt & getValue() const
Return the constant as an APInt value reference.
bool isMachineConstantPoolEntry() const
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
Implements a dense probed hash-table based set.
const char * getSymbol() const
unsigned getTargetFlags() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
const MDOperand & getOperand(unsigned I) const
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Pass interface - Implemented by all 'passes'.
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI void dump() const
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
int64_t getOffset() const
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
A Use represents the edge between a Value definition and its users.
LLVM_ABI void set(Value *Val)
User * getUser() const
Returns the User that contains this Use.
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
Provides info so a possible vectorization of a function can be computed.
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
A raw_ostream that writes to an std::string.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ C
The default llvm calling convention, compatible with C.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
@ POISON
POISON - A poison node.
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
@ SSUBO
Same for subtraction.
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ UNDEF
UNDEF - An undefined node.
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
@ BasicBlock
Various leaf nodes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool operator<(int64_t V1, const APSInt &V2)
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
auto cast_or_null(const Y &Val)
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
MDNode * TBAA
The tag for type-based alias analysis.
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
static constexpr roundingMode rmTowardNegative
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
static constexpr roundingMode rmTowardPositive
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
opStatus
IEEE-754R 7: Default exception handling.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
intptr_t getRawBits() const
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
DAGUpdateListener *const Next
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)