LLVM 22.0.0git
SelectionDAG.cpp
Go to the documentation of this file.
1//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAG class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/FoldingSet.h"
22#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Twine.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugLoc.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/GlobalValue.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Type.h"
64#include "llvm/Support/Debug.h"
73#include <algorithm>
74#include <cassert>
75#include <cstdint>
76#include <cstdlib>
77#include <limits>
78#include <optional>
79#include <set>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85using namespace llvm::SDPatternMatch;
86
87/// makeVTList - Return an instance of the SDVTList struct initialized with the
88/// specified members.
89static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
90 SDVTList Res = {VTs, NumVTs};
91 return Res;
92}
93
94// Default null implementations of the callbacks.
98
99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101
102#define DEBUG_TYPE "selectiondag"
103
104static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
105 cl::Hidden, cl::init(true),
106 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
107
108static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
109 cl::desc("Number limit for gluing ld/st of memcpy."),
110 cl::Hidden, cl::init(0));
111
113 MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192),
114 cl::desc("DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
116
118 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
119}
120
122
123//===----------------------------------------------------------------------===//
124// ConstantFPSDNode Class
125//===----------------------------------------------------------------------===//
126
127/// isExactlyValue - We don't rely on operator== working on double values, as
128/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
129/// As such, this method can be used to do an exact bit-for-bit comparison of
130/// two floating point values.
132 return getValueAPF().bitwiseIsEqual(V);
133}
134
136 const APFloat& Val) {
137 assert(VT.isFloatingPoint() && "Can only convert between FP types");
138
139 // convert modifies in place, so make a copy.
140 APFloat Val2 = APFloat(Val);
141 bool losesInfo;
143 &losesInfo);
144 return !losesInfo;
145}
146
147//===----------------------------------------------------------------------===//
148// ISD Namespace
149//===----------------------------------------------------------------------===//
150
151bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
152 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
153 if (auto OptAPInt = N->getOperand(0)->bitcastToAPInt()) {
154 unsigned EltSize =
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->trunc(EltSize);
157 return true;
158 }
159 }
160
161 auto *BV = dyn_cast<BuildVectorSDNode>(N);
162 if (!BV)
163 return false;
164
165 APInt SplatUndef;
166 unsigned SplatBitSize;
167 bool HasUndefs;
168 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
169 // Endianness does not matter here. We are checking for a splat given the
170 // element size of the vector, and if we find such a splat for little endian
171 // layout, then that should be valid also for big endian (as the full vector
172 // size is known to be a multiple of the element size).
173 const bool IsBigEndian = false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
177}
178
179// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
180// specializations of the more general isConstantSplatVector()?
181
182bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
183 // Look through a bit convert.
184 while (N->getOpcode() == ISD::BITCAST)
185 N = N->getOperand(0).getNode();
186
187 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
188 APInt SplatVal;
189 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
190 }
191
192 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
193
194 unsigned i = 0, e = N->getNumOperands();
195
196 // Skip over all of the undef values.
197 while (i != e && N->getOperand(i).isUndef())
198 ++i;
199
200 // Do not accept an all-undef vector.
201 if (i == e) return false;
202
203 // Do not accept build_vectors that aren't all constants or which have non-~0
204 // elements. We have to be a bit careful here, as the type of the constant
205 // may not be the same as the type of the vector elements due to type
206 // legalization (the elements are promoted to a legal type for the target and
207 // a vector of a type may be legal when the base element type is not).
208 // We only want to check enough bits to cover the vector elements, because
209 // we care if the resultant vector is all ones, not whether the individual
210 // constants are.
211 SDValue NotZero = N->getOperand(i);
212 if (auto OptAPInt = NotZero->bitcastToAPInt()) {
213 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
215 return false;
216 } else
217 return false;
218
219 // Okay, we have at least one ~0 value, check to see if the rest match or are
220 // undefs. Even with the above element type twiddling, this should be OK, as
221 // the same type legalization should have applied to all the elements.
222 for (++i; i != e; ++i)
223 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
224 return false;
225 return true;
226}
227
228bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
229 // Look through a bit convert.
230 while (N->getOpcode() == ISD::BITCAST)
231 N = N->getOperand(0).getNode();
232
233 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
234 APInt SplatVal;
235 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
236 }
237
238 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
239
240 bool IsAllUndef = true;
241 for (const SDValue &Op : N->op_values()) {
242 if (Op.isUndef())
243 continue;
244 IsAllUndef = false;
245 // Do not accept build_vectors that aren't all constants or which have non-0
246 // elements. We have to be a bit careful here, as the type of the constant
247 // may not be the same as the type of the vector elements due to type
248 // legalization (the elements are promoted to a legal type for the target
249 // and a vector of a type may be legal when the base element type is not).
250 // We only want to check enough bits to cover the vector elements, because
251 // we care if the resultant vector is all zeros, not whether the individual
252 // constants are.
253 if (auto OptAPInt = Op->bitcastToAPInt()) {
254 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
256 return false;
257 } else
258 return false;
259 }
260
261 // Do not accept an all-undef vector.
262 if (IsAllUndef)
263 return false;
264 return true;
265}
266
268 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
269}
270
272 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
273}
274
276 if (N->getOpcode() != ISD::BUILD_VECTOR)
277 return false;
278
279 for (const SDValue &Op : N->op_values()) {
280 if (Op.isUndef())
281 continue;
283 return false;
284 }
285 return true;
286}
287
289 if (N->getOpcode() != ISD::BUILD_VECTOR)
290 return false;
291
292 for (const SDValue &Op : N->op_values()) {
293 if (Op.isUndef())
294 continue;
296 return false;
297 }
298 return true;
299}
300
301bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
302 bool Signed) {
303 assert(N->getValueType(0).isVector() && "Expected a vector!");
304
305 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
307 return false;
308
309 if (N->getOpcode() == ISD::ZERO_EXTEND) {
310 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
311 NewEltSize) &&
312 !Signed;
313 }
314 if (N->getOpcode() == ISD::SIGN_EXTEND) {
315 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
316 NewEltSize) &&
317 Signed;
318 }
319 if (N->getOpcode() != ISD::BUILD_VECTOR)
320 return false;
321
322 for (const SDValue &Op : N->op_values()) {
323 if (Op.isUndef())
324 continue;
326 return false;
327
328 APInt C = Op->getAsAPIntVal().trunc(EltSize);
329 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
330 return false;
331 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
332 return false;
333 }
334
335 return true;
336}
337
339 // Return false if the node has no operands.
340 // This is "logically inconsistent" with the definition of "all" but
341 // is probably the desired behavior.
342 if (N->getNumOperands() == 0)
343 return false;
344 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
345}
346
348 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
349}
350
351template <typename ConstNodeType>
353 std::function<bool(ConstNodeType *)> Match,
354 bool AllowUndefs, bool AllowTruncation) {
355 // FIXME: Add support for scalar UNDEF cases?
356 if (auto *C = dyn_cast<ConstNodeType>(Op))
357 return Match(C);
358
359 // FIXME: Add support for vector UNDEF cases?
360 if (ISD::BUILD_VECTOR != Op.getOpcode() &&
361 ISD::SPLAT_VECTOR != Op.getOpcode())
362 return false;
363
364 EVT SVT = Op.getValueType().getScalarType();
365 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs && Op.getOperand(i).isUndef()) {
367 if (!Match(nullptr))
368 return false;
369 continue;
370 }
371
372 auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
374 !Match(Cst))
375 return false;
376 }
377 return true;
378}
379// Build used template types.
381 SDValue, std::function<bool(ConstantSDNode *)>, bool, bool);
383 SDValue, std::function<bool(ConstantFPSDNode *)>, bool, bool);
384
386 SDValue LHS, SDValue RHS,
387 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
388 bool AllowUndefs, bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
390 return false;
391
392 // TODO: Add support for scalar UNDEF cases?
393 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
394 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
395 return Match(LHSCst, RHSCst);
396
397 // TODO: Add support for vector UNDEF cases?
398 if (LHS.getOpcode() != RHS.getOpcode() ||
399 (LHS.getOpcode() != ISD::BUILD_VECTOR &&
400 LHS.getOpcode() != ISD::SPLAT_VECTOR))
401 return false;
402
403 EVT SVT = LHS.getValueType().getScalarType();
404 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
405 SDValue LHSOp = LHS.getOperand(i);
406 SDValue RHSOp = RHS.getOperand(i);
407 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
409 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
410 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 return false;
413 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
414 LHSOp.getValueType() != RHSOp.getValueType()))
415 return false;
416 if (!Match(LHSCst, RHSCst))
417 return false;
418 }
419 return true;
420}
421
423 switch (MinMaxOpc) {
424 default:
425 llvm_unreachable("unrecognized opcode");
426 case ISD::UMIN:
427 return ISD::UMAX;
428 case ISD::UMAX:
429 return ISD::UMIN;
430 case ISD::SMIN:
431 return ISD::SMAX;
432 case ISD::SMAX:
433 return ISD::SMIN;
434 }
435}
436
438 switch (VecReduceOpcode) {
439 default:
440 llvm_unreachable("Expected VECREDUCE opcode");
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
445 return ISD::FADD;
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
450 return ISD::FMUL;
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
453 return ISD::ADD;
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
456 return ISD::MUL;
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
459 return ISD::AND;
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
462 return ISD::OR;
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
465 return ISD::XOR;
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
468 return ISD::SMAX;
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
471 return ISD::SMIN;
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
474 return ISD::UMAX;
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
477 return ISD::UMIN;
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
480 return ISD::FMAXNUM;
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
483 return ISD::FMINNUM;
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
490 }
491}
492
493bool ISD::isVPOpcode(unsigned Opcode) {
494 switch (Opcode) {
495 default:
496 return false;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
498 case ISD::VPSD: \
499 return true;
500#include "llvm/IR/VPIntrinsics.def"
501 }
502}
503
504bool ISD::isVPBinaryOp(unsigned Opcode) {
505 switch (Opcode) {
506 default:
507 break;
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
512 }
513 return false;
514}
515
516bool ISD::isVPReduction(unsigned Opcode) {
517 switch (Opcode) {
518 default:
519 return false;
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
537 return true;
538 }
539}
540
541/// The operand position of the vector mask.
542std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
543 switch (Opcode) {
544 default:
545 return std::nullopt;
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
547 case ISD::VPSD: \
548 return MASKPOS;
549#include "llvm/IR/VPIntrinsics.def"
550 }
551}
552
553/// The operand position of the explicit vector length parameter.
554std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
555 switch (Opcode) {
556 default:
557 return std::nullopt;
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
559 case ISD::VPSD: \
560 return EVLPOS;
561#include "llvm/IR/VPIntrinsics.def"
562 }
563}
564
565std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
566 bool hasFPExcept) {
567 // FIXME: Return strict opcodes in case of fp exceptions.
568 switch (VPOpcode) {
569 default:
570 return std::nullopt;
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
575 }
576 return std::nullopt;
577}
578
579std::optional<unsigned> ISD::getVPForBaseOpcode(unsigned Opcode) {
580 switch (Opcode) {
581 default:
582 return std::nullopt;
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
587 }
588}
589
591 switch (ExtType) {
592 case ISD::EXTLOAD:
593 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
594 case ISD::SEXTLOAD:
595 return ISD::SIGN_EXTEND;
596 case ISD::ZEXTLOAD:
597 return ISD::ZERO_EXTEND;
598 default:
599 break;
600 }
601
602 llvm_unreachable("Invalid LoadExtType");
603}
604
606 // To perform this operation, we just need to swap the L and G bits of the
607 // operation.
608 unsigned OldL = (Operation >> 2) & 1;
609 unsigned OldG = (Operation >> 1) & 1;
610 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
611 (OldL << 1) | // New G bit
612 (OldG << 2)); // New L bit.
613}
614
616 unsigned Operation = Op;
617 if (isIntegerLike)
618 Operation ^= 7; // Flip L, G, E bits, but not U.
619 else
620 Operation ^= 15; // Flip all of the condition bits.
621
623 Operation &= ~8; // Don't let N and U bits get set.
624
625 return ISD::CondCode(Operation);
626}
627
631
633 bool isIntegerLike) {
634 return getSetCCInverseImpl(Op, isIntegerLike);
635}
636
637/// For an integer comparison, return 1 if the comparison is a signed operation
638/// and 2 if the result is an unsigned comparison. Return zero if the operation
639/// does not depend on the sign of the input (setne and seteq).
640static int isSignedOp(ISD::CondCode Opcode) {
641 switch (Opcode) {
642 default: llvm_unreachable("Illegal integer setcc operation!");
643 case ISD::SETEQ:
644 case ISD::SETNE: return 0;
645 case ISD::SETLT:
646 case ISD::SETLE:
647 case ISD::SETGT:
648 case ISD::SETGE: return 1;
649 case ISD::SETULT:
650 case ISD::SETULE:
651 case ISD::SETUGT:
652 case ISD::SETUGE: return 2;
653 }
654}
655
657 EVT Type) {
658 bool IsInteger = Type.isInteger();
659 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
660 // Cannot fold a signed integer setcc with an unsigned integer setcc.
661 return ISD::SETCC_INVALID;
662
663 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
664
665 // If the N and U bits get set, then the resultant comparison DOES suddenly
666 // care about orderedness, and it is true when ordered.
667 if (Op > ISD::SETTRUE2)
668 Op &= ~16; // Clear the U bit if the N bit is set.
669
670 // Canonicalize illegal integer setcc's.
671 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
672 Op = ISD::SETNE;
673
674 return ISD::CondCode(Op);
675}
676
678 EVT Type) {
679 bool IsInteger = Type.isInteger();
680 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
681 // Cannot fold a signed setcc with an unsigned setcc.
682 return ISD::SETCC_INVALID;
683
684 // Combine all of the condition bits.
685 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
686
687 // Canonicalize illegal integer setcc's.
688 if (IsInteger) {
689 switch (Result) {
690 default: break;
691 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
692 case ISD::SETOEQ: // SETEQ & SETU[LG]E
693 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
694 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
695 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
696 }
697 }
698
699 return Result;
700}
701
702//===----------------------------------------------------------------------===//
703// SDNode Profile Support
704//===----------------------------------------------------------------------===//
705
706/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
707static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
708 ID.AddInteger(OpC);
709}
710
711/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
712/// solely with their pointer.
714 ID.AddPointer(VTList.VTs);
715}
716
717/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
720 for (const auto &Op : Ops) {
721 ID.AddPointer(Op.getNode());
722 ID.AddInteger(Op.getResNo());
723 }
724}
725
726/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
729 for (const auto &Op : Ops) {
730 ID.AddPointer(Op.getNode());
731 ID.AddInteger(Op.getResNo());
732 }
733}
734
735static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
736 SDVTList VTList, ArrayRef<SDValue> OpList) {
737 AddNodeIDOpcode(ID, OpC);
738 AddNodeIDValueTypes(ID, VTList);
739 AddNodeIDOperands(ID, OpList);
740}
741
742/// If this is an SDNode with special info, add this info to the NodeID data.
744 switch (N->getOpcode()) {
747 case ISD::MCSymbol:
748 llvm_unreachable("Should only be used on nodes with operands");
749 default: break; // Normal nodes don't need extra info.
751 case ISD::Constant: {
753 ID.AddPointer(C->getConstantIntValue());
754 ID.AddBoolean(C->isOpaque());
755 break;
756 }
758 case ISD::ConstantFP:
759 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
760 break;
766 ID.AddPointer(GA->getGlobal());
767 ID.AddInteger(GA->getOffset());
768 ID.AddInteger(GA->getTargetFlags());
769 break;
770 }
771 case ISD::BasicBlock:
773 break;
774 case ISD::Register:
775 ID.AddInteger(cast<RegisterSDNode>(N)->getReg().id());
776 break;
778 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
779 break;
780 case ISD::SRCVALUE:
781 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
782 break;
783 case ISD::FrameIndex:
785 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
786 break;
787 case ISD::PSEUDO_PROBE:
788 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
789 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
790 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
791 break;
792 case ISD::JumpTable:
794 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
795 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
796 break;
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
804 else
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
807 break;
808 }
809 case ISD::TargetIndex: {
811 ID.AddInteger(TI->getIndex());
812 ID.AddInteger(TI->getOffset());
813 ID.AddInteger(TI->getTargetFlags());
814 break;
815 }
816 case ISD::LOAD: {
817 const LoadSDNode *LD = cast<LoadSDNode>(N);
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
822 break;
823 }
824 case ISD::STORE: {
825 const StoreSDNode *ST = cast<StoreSDNode>(N);
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
830 break;
831 }
832 case ISD::VP_LOAD: {
833 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
834 ID.AddInteger(ELD->getMemoryVT().getRawBits());
835 ID.AddInteger(ELD->getRawSubclassData());
836 ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
837 ID.AddInteger(ELD->getMemOperand()->getFlags());
838 break;
839 }
840 case ISD::VP_LOAD_FF: {
841 const auto *LD = cast<VPLoadFFSDNode>(N);
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
846 break;
847 }
848 case ISD::VP_STORE: {
849 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
850 ID.AddInteger(EST->getMemoryVT().getRawBits());
851 ID.AddInteger(EST->getRawSubclassData());
852 ID.AddInteger(EST->getPointerInfo().getAddrSpace());
853 ID.AddInteger(EST->getMemOperand()->getFlags());
854 break;
855 }
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
858 ID.AddInteger(SLD->getMemoryVT().getRawBits());
859 ID.AddInteger(SLD->getRawSubclassData());
860 ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
861 break;
862 }
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
865 ID.AddInteger(SST->getMemoryVT().getRawBits());
866 ID.AddInteger(SST->getRawSubclassData());
867 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
868 break;
869 }
870 case ISD::VP_GATHER: {
872 ID.AddInteger(EG->getMemoryVT().getRawBits());
873 ID.AddInteger(EG->getRawSubclassData());
874 ID.AddInteger(EG->getPointerInfo().getAddrSpace());
875 ID.AddInteger(EG->getMemOperand()->getFlags());
876 break;
877 }
878 case ISD::VP_SCATTER: {
880 ID.AddInteger(ES->getMemoryVT().getRawBits());
881 ID.AddInteger(ES->getRawSubclassData());
882 ID.AddInteger(ES->getPointerInfo().getAddrSpace());
883 ID.AddInteger(ES->getMemOperand()->getFlags());
884 break;
885 }
886 case ISD::MLOAD: {
888 ID.AddInteger(MLD->getMemoryVT().getRawBits());
889 ID.AddInteger(MLD->getRawSubclassData());
890 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
891 ID.AddInteger(MLD->getMemOperand()->getFlags());
892 break;
893 }
894 case ISD::MSTORE: {
896 ID.AddInteger(MST->getMemoryVT().getRawBits());
897 ID.AddInteger(MST->getRawSubclassData());
898 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
899 ID.AddInteger(MST->getMemOperand()->getFlags());
900 break;
901 }
902 case ISD::MGATHER: {
904 ID.AddInteger(MG->getMemoryVT().getRawBits());
905 ID.AddInteger(MG->getRawSubclassData());
906 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
907 ID.AddInteger(MG->getMemOperand()->getFlags());
908 break;
909 }
910 case ISD::MSCATTER: {
912 ID.AddInteger(MS->getMemoryVT().getRawBits());
913 ID.AddInteger(MS->getRawSubclassData());
914 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
915 ID.AddInteger(MS->getMemOperand()->getFlags());
916 break;
917 }
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
934 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
935 ID.AddInteger(AT->getMemoryVT().getRawBits());
936 ID.AddInteger(AT->getRawSubclassData());
937 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
938 ID.AddInteger(AT->getMemOperand()->getFlags());
939 break;
940 }
941 case ISD::VECTOR_SHUFFLE: {
942 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
943 for (int M : Mask)
944 ID.AddInteger(M);
945 break;
946 }
947 case ISD::ADDRSPACECAST: {
949 ID.AddInteger(ASC->getSrcAddressSpace());
950 ID.AddInteger(ASC->getDestAddressSpace());
951 break;
952 }
954 case ISD::BlockAddress: {
956 ID.AddPointer(BA->getBlockAddress());
957 ID.AddInteger(BA->getOffset());
958 ID.AddInteger(BA->getTargetFlags());
959 break;
960 }
961 case ISD::AssertAlign:
962 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
963 break;
964 case ISD::PREFETCH:
967 // Handled by MemIntrinsicSDNode check after the switch.
968 break;
969 case ISD::MDNODE_SDNODE:
970 ID.AddPointer(cast<MDNodeSDNode>(N)->getMD());
971 break;
972 } // end switch (N->getOpcode())
973
974 // MemIntrinsic nodes could also have subclass data, address spaces, and flags
975 // to check.
976 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
981 }
982}
983
984/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
985/// data.
986static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
987 AddNodeIDOpcode(ID, N->getOpcode());
988 // Add the return value info.
989 AddNodeIDValueTypes(ID, N->getVTList());
990 // Add the operand info.
991 AddNodeIDOperands(ID, N->ops());
992
993 // Handle SDNode leafs with special info.
995}
996
997//===----------------------------------------------------------------------===//
998// SelectionDAG Class
999//===----------------------------------------------------------------------===//
1000
1001/// doNotCSE - Return true if CSE should not be performed for this node.
1002static bool doNotCSE(SDNode *N) {
1003 if (N->getValueType(0) == MVT::Glue)
1004 return true; // Never CSE anything that produces a glue result.
1005
1006 switch (N->getOpcode()) {
1007 default: break;
1008 case ISD::HANDLENODE:
1009 case ISD::EH_LABEL:
1010 return true; // Never CSE these nodes.
1011 }
1012
1013 // Check that remaining values produced are not flags.
1014 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
1015 if (N->getValueType(i) == MVT::Glue)
1016 return true; // Never CSE anything that produces a glue result.
1017
1018 return false;
1019}
1020
1021/// RemoveDeadNodes - This method deletes all unreachable nodes in the
1022/// SelectionDAG.
1024 // Create a dummy node (which is not added to allnodes), that adds a reference
1025 // to the root node, preventing it from being deleted.
1026 HandleSDNode Dummy(getRoot());
1027
1028 SmallVector<SDNode*, 128> DeadNodes;
1029
1030 // Add all obviously-dead nodes to the DeadNodes worklist.
1031 for (SDNode &Node : allnodes())
1032 if (Node.use_empty())
1033 DeadNodes.push_back(&Node);
1034
1035 RemoveDeadNodes(DeadNodes);
1036
1037 // If the root changed (e.g. it was a dead load, update the root).
1038 setRoot(Dummy.getValue());
1039}
1040
1041/// RemoveDeadNodes - This method deletes the unreachable nodes in the
1042/// given list, and any nodes that become unreachable as a result.
1044
1045 // Process the worklist, deleting the nodes and adding their uses to the
1046 // worklist.
1047 while (!DeadNodes.empty()) {
1048 SDNode *N = DeadNodes.pop_back_val();
1049 // Skip to next node if we've already managed to delete the node. This could
1050 // happen if replacing a node causes a node previously added to the node to
1051 // be deleted.
1052 if (N->getOpcode() == ISD::DELETED_NODE)
1053 continue;
1054
1055 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1056 DUL->NodeDeleted(N, nullptr);
1057
1058 // Take the node out of the appropriate CSE map.
1059 RemoveNodeFromCSEMaps(N);
1060
1061 // Next, brutally remove the operand list. This is safe to do, as there are
1062 // no cycles in the graph.
1063 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1064 SDUse &Use = *I++;
1065 SDNode *Operand = Use.getNode();
1066 Use.set(SDValue());
1067
1068 // Now that we removed this operand, see if there are no uses of it left.
1069 if (Operand->use_empty())
1070 DeadNodes.push_back(Operand);
1071 }
1072
1073 DeallocateNode(N);
1074 }
1075}
1076
1078 SmallVector<SDNode*, 16> DeadNodes(1, N);
1079
1080 // Create a dummy node that adds a reference to the root node, preventing
1081 // it from being deleted. (This matters if the root is an operand of the
1082 // dead node.)
1083 HandleSDNode Dummy(getRoot());
1084
1085 RemoveDeadNodes(DeadNodes);
1086}
1087
1089 // First take this out of the appropriate CSE map.
1090 RemoveNodeFromCSEMaps(N);
1091
1092 // Finally, remove uses due to operands of this node, remove from the
1093 // AllNodes list, and delete the node.
1094 DeleteNodeNotInCSEMaps(N);
1095}
1096
1097void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1098 assert(N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(N->use_empty() && "Cannot delete a node that is not dead!");
1101
1102 // Drop all of the operands and decrement used node's use counts.
1103 N->DropOperands();
1104
1105 DeallocateNode(N);
1106}
1107
1108void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1109 assert(!(V->isVariadic() && isParameter));
1110 if (isParameter)
1111 ByvalParmDbgValues.push_back(V);
1112 else
1113 DbgValues.push_back(V);
1114 for (const SDNode *Node : V->getSDNodes())
1115 if (Node)
1116 DbgValMap[Node].push_back(V);
1117}
1118
1120 DbgValMapType::iterator I = DbgValMap.find(Node);
1121 if (I == DbgValMap.end())
1122 return;
1123 for (auto &Val: I->second)
1124 Val->setIsInvalidated();
1125 DbgValMap.erase(I);
1126}
1127
1128void SelectionDAG::DeallocateNode(SDNode *N) {
1129 // If we have operands, deallocate them.
1131
1132 NodeAllocator.Deallocate(AllNodes.remove(N));
1133
1134 // Set the opcode to DELETED_NODE to help catch bugs when node
1135 // memory is reallocated.
1136 // FIXME: There are places in SDag that have grown a dependency on the opcode
1137 // value in the released node.
1138 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1139 N->NodeType = ISD::DELETED_NODE;
1140
1141 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1142 // them and forget about that node.
1143 DbgInfo->erase(N);
1144
1145 // Invalidate extra info.
1146 SDEI.erase(N);
1147}
1148
1149#ifndef NDEBUG
1150/// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
1151void SelectionDAG::verifyNode(SDNode *N) const {
1152 switch (N->getOpcode()) {
1153 default:
1154 if (N->isTargetOpcode())
1156 break;
1157 case ISD::BUILD_PAIR: {
1158 EVT VT = N->getValueType(0);
1159 assert(N->getNumValues() == 1 && "Too many results!");
1160 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1161 "Wrong return type!");
1162 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1163 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1165 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1166 "Wrong operand type!");
1167 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1168 "Wrong return type size");
1169 break;
1170 }
1171 case ISD::BUILD_VECTOR: {
1172 assert(N->getNumValues() == 1 && "Too many results!");
1173 assert(N->getValueType(0).isVector() && "Wrong return type!");
1174 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT = N->getValueType(0).getVectorElementType();
1177 for (const SDUse &Op : N->ops()) {
1178 assert((Op.getValueType() == EltVT ||
1179 (EltVT.isInteger() && Op.getValueType().isInteger() &&
1180 EltVT.bitsLE(Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1184 }
1185 break;
1186 }
1187 }
1188}
1189#endif // NDEBUG
1190
1191/// Insert a newly allocated node into the DAG.
1192///
1193/// Handles insertion into the all nodes list and CSE map, as well as
1194/// verification and other common operations when a new node is allocated.
1195void SelectionDAG::InsertNode(SDNode *N) {
1196 AllNodes.push_back(N);
1197#ifndef NDEBUG
1198 N->PersistentId = NextPersistentId++;
1199 verifyNode(N);
1200#endif
1201 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1202 DUL->NodeInserted(N);
1203}
1204
1205/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1206/// correspond to it. This is useful when we're about to delete or repurpose
1207/// the node. We don't want future request for structurally identical nodes
1208/// to return N anymore.
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1210 bool Erased = false;
1211 switch (N->getOpcode()) {
1212 case ISD::HANDLENODE: return false; // noop.
1213 case ISD::CONDCODE:
1214 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1215 "Cond code doesn't exist!");
1216 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1217 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1218 break;
1220 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1221 break;
1223 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1225 ESN->getSymbol(), ESN->getTargetFlags()));
1226 break;
1227 }
1228 case ISD::MCSymbol: {
1229 auto *MCSN = cast<MCSymbolSDNode>(N);
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1231 break;
1232 }
1233 case ISD::VALUETYPE: {
1234 EVT VT = cast<VTSDNode>(N)->getVT();
1235 if (VT.isExtended()) {
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1237 } else {
1238 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1239 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1240 }
1241 break;
1242 }
1243 default:
1244 // Remove it from the CSE Map.
1245 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1246 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1247 Erased = CSEMap.RemoveNode(N);
1248 break;
1249 }
1250#ifndef NDEBUG
1251 // Verify that the node was actually in one of the CSE maps, unless it has a
1252 // glue result (which cannot be CSE'd) or is one of the special cases that are
1253 // not subject to CSE.
1254 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1255 !N->isMachineOpcode() && !doNotCSE(N)) {
1256 N->dump(this);
1257 dbgs() << "\n";
1258 llvm_unreachable("Node is not in map!");
1259 }
1260#endif
1261 return Erased;
1262}
1263
1264/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1265/// maps and modified in place. Add it back to the CSE maps, unless an identical
1266/// node already exists, in which case transfer all its users to the existing
1267/// node. This transfer can potentially trigger recursive merging.
1268void
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1270 // For node types that aren't CSE'd, just act as if no identical node
1271 // already exists.
1272 if (!doNotCSE(N)) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(N);
1274 if (Existing != N) {
1275 // If there was already an existing matching node, use ReplaceAllUsesWith
1276 // to replace the dead one with the existing one. This can cause
1277 // recursive merging of other unrelated nodes down the line.
1278 Existing->intersectFlagsWith(N->getFlags());
1279 if (auto *MemNode = dyn_cast<MemSDNode>(Existing))
1280 MemNode->refineRanges(cast<MemSDNode>(N)->getMemOperand());
1281 ReplaceAllUsesWith(N, Existing);
1282
1283 // N is now dead. Inform the listeners and delete it.
1284 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1285 DUL->NodeDeleted(N, Existing);
1286 DeleteNodeNotInCSEMaps(N);
1287 return;
1288 }
1289 }
1290
1291 // If the node doesn't already exist, we updated it. Inform listeners.
1292 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1293 DUL->NodeUpdated(N);
1294}
1295
1296/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1297/// were replaced with those specified. If this node is never memoized,
1298/// return null, otherwise return a pointer to the slot it would take. If a
1299/// node already exists with these operands, the slot will be non-null.
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1301 void *&InsertPos) {
1302 if (doNotCSE(N))
1303 return nullptr;
1304
1305 SDValue Ops[] = { Op };
1306 FoldingSetNodeID ID;
1307 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1309 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1310 if (Node)
1311 Node->intersectFlagsWith(N->getFlags());
1312 return Node;
1313}
1314
1315/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1316/// were replaced with those specified. If this node is never memoized,
1317/// return null, otherwise return a pointer to the slot it would take. If a
1318/// node already exists with these operands, the slot will be non-null.
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1320 SDValue Op1, SDValue Op2,
1321 void *&InsertPos) {
1322 if (doNotCSE(N))
1323 return nullptr;
1324
1325 SDValue Ops[] = { Op1, Op2 };
1326 FoldingSetNodeID ID;
1327 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1329 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1330 if (Node)
1331 Node->intersectFlagsWith(N->getFlags());
1332 return Node;
1333}
1334
1335/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1336/// were replaced with those specified. If this node is never memoized,
1337/// return null, otherwise return a pointer to the slot it would take. If a
1338/// node already exists with these operands, the slot will be non-null.
1339SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1340 void *&InsertPos) {
1341 if (doNotCSE(N))
1342 return nullptr;
1343
1344 FoldingSetNodeID ID;
1345 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1347 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1348 if (Node)
1349 Node->intersectFlagsWith(N->getFlags());
1350 return Node;
1351}
1352
1354 Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1355 : VT.getTypeForEVT(*getContext());
1356
1357 return getDataLayout().getABITypeAlign(Ty);
1358}
1359
1360// EntryNode could meaningfully have debug info if we can find it...
1362 : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1363 getVTList(MVT::Other, MVT::Glue)),
1364 Root(getEntryNode()) {
1365 InsertNode(&EntryNode);
1366 DbgInfo = new SDDbgInfo();
1367}
1368
1370 OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1371 const TargetLibraryInfo *LibraryInfo,
1372 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1374 FunctionVarLocs const *VarLocs) {
1375 MF = &NewMF;
1376 SDAGISelPass = PassPtr;
1377 ORE = &NewORE;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1382 UA = NewUA;
1383 PSI = PSIin;
1384 BFI = BFIin;
1385 MMI = &MMIin;
1386 FnVarLocs = VarLocs;
1387}
1388
1390 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1391 allnodes_clear();
1392 OperandRecycler.clear(OperandAllocator);
1393 delete DbgInfo;
1394}
1395
1397 return llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1398}
1399
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1405#ifndef NDEBUG
1406 NextPersistentId = 0;
1407#endif
1408}
1409
1410SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1411 void *&InsertPos) {
1412 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1413 if (N) {
1414 switch (N->getOpcode()) {
1415 default: break;
1416 case ISD::Constant:
1417 case ISD::ConstantFP:
1418 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1419 "debug location. Use another overload.");
1420 }
1421 }
1422 return N;
1423}
1424
1425SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1426 const SDLoc &DL, void *&InsertPos) {
1427 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1428 if (N) {
1429 switch (N->getOpcode()) {
1430 case ISD::Constant:
1431 case ISD::ConstantFP:
1432 // Erase debug location from the node if the node is used at several
1433 // different places. Do not propagate one location to all uses as it
1434 // will cause a worse single stepping debugging experience.
1435 if (N->getDebugLoc() != DL.getDebugLoc())
1436 N->setDebugLoc(DebugLoc());
1437 break;
1438 default:
1439 // When the node's point of use is located earlier in the instruction
1440 // sequence than its prior point of use, update its debug info to the
1441 // earlier location.
1442 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1443 N->setDebugLoc(DL.getDebugLoc());
1444 break;
1445 }
1446 }
1447 return N;
1448}
1449
1451 allnodes_clear();
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1454 CSEMap.clear();
1455
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1459 MCSymbols.clear();
1460 SDEI.clear();
1461 llvm::fill(CondCodeNodes, nullptr);
1462 llvm::fill(ValueTypeNodes, nullptr);
1463
1464 EntryNode.UseList = nullptr;
1465 InsertNode(&EntryNode);
1466 Root = getEntryNode();
1467 DbgInfo->clear();
1468}
1469
1471 return VT.bitsGT(Op.getValueType())
1472 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1473 : getNode(ISD::FP_ROUND, DL, VT, Op,
1474 getIntPtrConstant(0, DL, /*isTarget=*/true));
1475}
1476
1477std::pair<SDValue, SDValue>
1479 const SDLoc &DL, EVT VT) {
1480 assert(!VT.bitsEq(Op.getValueType()) &&
1481 "Strict no-op FP extend/round not allowed.");
1482 SDValue Res =
1483 VT.bitsGT(Op.getValueType())
1484 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1485 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1486 {Chain, Op, getIntPtrConstant(0, DL, /*isTarget=*/true)});
1487
1488 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1489}
1490
1492 return VT.bitsGT(Op.getValueType()) ?
1493 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1494 getNode(ISD::TRUNCATE, DL, VT, Op);
1495}
1496
1498 return VT.bitsGT(Op.getValueType()) ?
1499 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1500 getNode(ISD::TRUNCATE, DL, VT, Op);
1501}
1502
1504 return VT.bitsGT(Op.getValueType()) ?
1505 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1506 getNode(ISD::TRUNCATE, DL, VT, Op);
1507}
1508
1510 EVT VT) {
1511 assert(!VT.isVector());
1512 auto Type = Op.getValueType();
1513 SDValue DestOp;
1514 if (Type == VT)
1515 return Op;
1516 auto Size = Op.getValueSizeInBits();
1517 DestOp = getBitcast(EVT::getIntegerVT(*Context, Size), Op);
1518 if (DestOp.getValueType() == VT)
1519 return DestOp;
1520
1521 return getAnyExtOrTrunc(DestOp, DL, VT);
1522}
1523
1525 EVT VT) {
1526 assert(!VT.isVector());
1527 auto Type = Op.getValueType();
1528 SDValue DestOp;
1529 if (Type == VT)
1530 return Op;
1531 auto Size = Op.getValueSizeInBits();
1532 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1533 if (DestOp.getValueType() == VT)
1534 return DestOp;
1535
1536 return getSExtOrTrunc(DestOp, DL, VT);
1537}
1538
1540 EVT VT) {
1541 assert(!VT.isVector());
1542 auto Type = Op.getValueType();
1543 SDValue DestOp;
1544 if (Type == VT)
1545 return Op;
1546 auto Size = Op.getValueSizeInBits();
1547 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1548 if (DestOp.getValueType() == VT)
1549 return DestOp;
1550
1551 return getZExtOrTrunc(DestOp, DL, VT);
1552}
1553
1555 EVT OpVT) {
1556 if (VT.bitsLE(Op.getValueType()))
1557 return getNode(ISD::TRUNCATE, SL, VT, Op);
1558
1559 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1560 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1561}
1562
1564 EVT OpVT = Op.getValueType();
1565 assert(VT.isInteger() && OpVT.isInteger() &&
1566 "Cannot getZeroExtendInReg FP types");
1567 assert(VT.isVector() == OpVT.isVector() &&
1568 "getZeroExtendInReg type should be vector iff the operand "
1569 "type is vector!");
1570 assert((!VT.isVector() ||
1572 "Vector element counts must match in getZeroExtendInReg");
1573 assert(VT.bitsLE(OpVT) && "Not extending!");
1574 if (OpVT == VT)
1575 return Op;
1577 VT.getScalarSizeInBits());
1578 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1579}
1580
1582 SDValue EVL, const SDLoc &DL,
1583 EVT VT) {
1584 EVT OpVT = Op.getValueType();
1585 assert(VT.isInteger() && OpVT.isInteger() &&
1586 "Cannot getVPZeroExtendInReg FP types");
1587 assert(VT.isVector() && OpVT.isVector() &&
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1591 assert(VT.bitsLE(OpVT) && "Not extending!");
1592 if (OpVT == VT)
1593 return Op;
1595 VT.getScalarSizeInBits());
1596 return getNode(ISD::VP_AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT), Mask,
1597 EVL);
1598}
1599
1601 // Only unsigned pointer semantics are supported right now. In the future this
1602 // might delegate to TLI to check pointer signedness.
1603 return getZExtOrTrunc(Op, DL, VT);
1604}
1605
1607 // Only unsigned pointer semantics are supported right now. In the future this
1608 // might delegate to TLI to check pointer signedness.
1609 return getZeroExtendInReg(Op, DL, VT);
1610}
1611
1613 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1614}
1615
1616/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1618 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1619}
1620
1622 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1623 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1624}
1625
1627 SDValue Mask, SDValue EVL, EVT VT) {
1628 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1629 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1630}
1631
1633 SDValue Mask, SDValue EVL) {
1634 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1635}
1636
1638 SDValue Mask, SDValue EVL) {
1639 if (VT.bitsGT(Op.getValueType()))
1640 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1641 if (VT.bitsLT(Op.getValueType()))
1642 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1643 return Op;
1644}
1645
1647 EVT OpVT) {
1648 if (!V)
1649 return getConstant(0, DL, VT);
1650
1651 switch (TLI->getBooleanContents(OpVT)) {
1654 return getConstant(1, DL, VT);
1656 return getAllOnesConstant(DL, VT);
1657 }
1658 llvm_unreachable("Unexpected boolean content enum!");
1659}
1660
1662 bool isT, bool isO) {
1663 return getConstant(APInt(VT.getScalarSizeInBits(), Val, /*isSigned=*/false),
1664 DL, VT, isT, isO);
1665}
1666
1668 bool isT, bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1670}
1671
1673 EVT VT, bool isT, bool isO) {
1674 assert(VT.isInteger() && "Cannot create FP integer constant!");
1675
1676 EVT EltVT = VT.getScalarType();
1677 const ConstantInt *Elt = &Val;
1678
1679 // Vector splats are explicit within the DAG, with ConstantSDNode holding the
1680 // to-be-splatted scalar ConstantInt.
1681 if (isa<VectorType>(Elt->getType()))
1682 Elt = ConstantInt::get(*getContext(), Elt->getValue());
1683
1684 // In some cases the vector type is legal but the element type is illegal and
1685 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1686 // inserted value (the type does not need to match the vector element type).
1687 // Any extra bits introduced will be truncated away.
1688 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1690 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1691 APInt NewVal;
1692 if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1693 NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1694 else
1695 NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1696 Elt = ConstantInt::get(*getContext(), NewVal);
1697 }
1698 // In other cases the element type is illegal and needs to be expanded, for
1699 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1700 // the value into n parts and use a vector type with n-times the elements.
1701 // Then bitcast to the type requested.
1702 // Legalizing constants too early makes the DAGCombiner's job harder so we
1703 // only legalize if the DAG tells us we must produce legal types.
1704 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1705 TLI->getTypeAction(*getContext(), EltVT) ==
1707 const APInt &NewVal = Elt->getValue();
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1709 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1710
1711 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1712 if (VT.isScalableVector() ||
1713 TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1714 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1715 "Can only handle an even split!");
1716 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1717
1718 SmallVector<SDValue, 2> ScalarParts;
1719 for (unsigned i = 0; i != Parts; ++i)
1720 ScalarParts.push_back(getConstant(
1721 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1722 ViaEltVT, isT, isO));
1723
1724 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1725 }
1726
1727 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1728 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1729
1730 // Check the temporary vector is the correct size. If this fails then
1731 // getTypeToTransformTo() probably returned a type whose size (in bits)
1732 // isn't a power-of-2 factor of the requested type size.
1733 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1734
1735 SmallVector<SDValue, 2> EltParts;
1736 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1737 EltParts.push_back(getConstant(
1738 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1739 ViaEltVT, isT, isO));
1740
1741 // EltParts is currently in little endian order. If we actually want
1742 // big-endian order then reverse it now.
1743 if (getDataLayout().isBigEndian())
1744 std::reverse(EltParts.begin(), EltParts.end());
1745
1746 // The elements must be reversed when the element order is different
1747 // to the endianness of the elements (because the BITCAST is itself a
1748 // vector shuffle in this situation). However, we do not need any code to
1749 // perform this reversal because getConstant() is producing a vector
1750 // splat.
1751 // This situation occurs in MIPS MSA.
1752
1754 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1755 llvm::append_range(Ops, EltParts);
1756
1757 SDValue V =
1758 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1759 return V;
1760 }
1761
1762 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1763 "APInt size does not match type size!");
1764 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1765 SDVTList VTs = getVTList(EltVT);
1767 AddNodeIDNode(ID, Opc, VTs, {});
1768 ID.AddPointer(Elt);
1769 ID.AddBoolean(isO);
1770 void *IP = nullptr;
1771 SDNode *N = nullptr;
1772 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1773 if (!VT.isVector())
1774 return SDValue(N, 0);
1775
1776 if (!N) {
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(N, IP);
1779 InsertNode(N);
1780 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1781 }
1782
1783 SDValue Result(N, 0);
1784 if (VT.isVector())
1785 Result = getSplat(VT, DL, Result);
1786 return Result;
1787}
1788
1790 bool isT, bool isO) {
1791 unsigned Size = VT.getScalarSizeInBits();
1792 return getConstant(APInt(Size, Val, /*isSigned=*/true), DL, VT, isT, isO);
1793}
1794
1796 bool IsOpaque) {
1798 IsTarget, IsOpaque);
1799}
1800
1802 bool isTarget) {
1803 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1804}
1805
1807 const SDLoc &DL) {
1808 assert(VT.isInteger() && "Shift amount is not an integer type!");
1809 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout());
1810 return getConstant(Val, DL, ShiftVT);
1811}
1812
1814 const SDLoc &DL) {
1815 assert(Val.ult(VT.getScalarSizeInBits()) && "Out of range shift");
1816 return getShiftAmountConstant(Val.getZExtValue(), VT, DL);
1817}
1818
1820 bool isTarget) {
1821 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1822}
1823
1825 bool isTarget) {
1826 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1827}
1828
1830 EVT VT, bool isTarget) {
1831 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1832
1833 EVT EltVT = VT.getScalarType();
1834 const ConstantFP *Elt = &V;
1835
1836 // Vector splats are explicit within the DAG, with ConstantFPSDNode holding
1837 // the to-be-splatted scalar ConstantFP.
1838 if (isa<VectorType>(Elt->getType()))
1839 Elt = ConstantFP::get(*getContext(), Elt->getValue());
1840
1841 // Do the map lookup using the actual bit pattern for the floating point
1842 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1843 // we don't have issues with SNANs.
1844 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1845 SDVTList VTs = getVTList(EltVT);
1847 AddNodeIDNode(ID, Opc, VTs, {});
1848 ID.AddPointer(Elt);
1849 void *IP = nullptr;
1850 SDNode *N = nullptr;
1851 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1852 if (!VT.isVector())
1853 return SDValue(N, 0);
1854
1855 if (!N) {
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(N, IP);
1858 InsertNode(N);
1859 }
1860
1861 SDValue Result(N, 0);
1862 if (VT.isVector())
1863 Result = getSplat(VT, DL, Result);
1864 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1865 return Result;
1866}
1867
1869 bool isTarget) {
1870 EVT EltVT = VT.getScalarType();
1871 if (EltVT == MVT::f32)
1872 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1873 if (EltVT == MVT::f64)
1874 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1877 bool Ignored;
1878 APFloat APF = APFloat(Val);
1880 &Ignored);
1881 return getConstantFP(APF, DL, VT, isTarget);
1882 }
1883 llvm_unreachable("Unsupported type in getConstantFP");
1884}
1885
1887 EVT VT, int64_t Offset, bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1891
1892 // Truncate (with sign-extension) the offset value to the pointer size.
1894 if (BitWidth < 64)
1896
1897 unsigned Opc;
1898 if (GV->isThreadLocal())
1900 else
1902
1903 SDVTList VTs = getVTList(VT);
1905 AddNodeIDNode(ID, Opc, VTs, {});
1906 ID.AddPointer(GV);
1907 ID.AddInteger(Offset);
1908 ID.AddInteger(TargetFlags);
1909 void *IP = nullptr;
1910 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1911 return SDValue(E, 0);
1912
1913 auto *N = newSDNode<GlobalAddressSDNode>(
1914 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VTs, Offset, TargetFlags);
1915 CSEMap.InsertNode(N, IP);
1916 InsertNode(N);
1917 return SDValue(N, 0);
1918}
1919
1920SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1921 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1922 SDVTList VTs = getVTList(VT);
1924 AddNodeIDNode(ID, Opc, VTs, {});
1925 ID.AddInteger(FI);
1926 void *IP = nullptr;
1927 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1928 return SDValue(E, 0);
1929
1930 auto *N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(N, IP);
1932 InsertNode(N);
1933 return SDValue(N, 0);
1934}
1935
1936SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1940 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1941 SDVTList VTs = getVTList(VT);
1943 AddNodeIDNode(ID, Opc, VTs, {});
1944 ID.AddInteger(JTI);
1945 ID.AddInteger(TargetFlags);
1946 void *IP = nullptr;
1947 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1948 return SDValue(E, 0);
1949
1950 auto *N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(N, IP);
1952 InsertNode(N);
1953 return SDValue(N, 0);
1954}
1955
1957 const SDLoc &DL) {
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1960 getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1961}
1962
1964 MaybeAlign Alignment, int Offset,
1965 bool isTarget, unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1968 if (!Alignment)
1969 Alignment = shouldOptForSize()
1970 ? getDataLayout().getABITypeAlign(C->getType())
1971 : getDataLayout().getPrefTypeAlign(C->getType());
1972 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1973 SDVTList VTs = getVTList(VT);
1975 AddNodeIDNode(ID, Opc, VTs, {});
1976 ID.AddInteger(Alignment->value());
1977 ID.AddInteger(Offset);
1978 ID.AddPointer(C);
1979 ID.AddInteger(TargetFlags);
1980 void *IP = nullptr;
1981 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1982 return SDValue(E, 0);
1983
1984 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1985 TargetFlags);
1986 CSEMap.InsertNode(N, IP);
1987 InsertNode(N);
1988 SDValue V = SDValue(N, 0);
1989 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1990 return V;
1991}
1992
1994 MaybeAlign Alignment, int Offset,
1995 bool isTarget, unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
1998 if (!Alignment)
1999 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
2000 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
2001 SDVTList VTs = getVTList(VT);
2003 AddNodeIDNode(ID, Opc, VTs, {});
2004 ID.AddInteger(Alignment->value());
2005 ID.AddInteger(Offset);
2006 C->addSelectionDAGCSEId(ID);
2007 ID.AddInteger(TargetFlags);
2008 void *IP = nullptr;
2009 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2010 return SDValue(E, 0);
2011
2012 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
2013 TargetFlags);
2014 CSEMap.InsertNode(N, IP);
2015 InsertNode(N);
2016 return SDValue(N, 0);
2017}
2018
2021 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), {});
2022 ID.AddPointer(MBB);
2023 void *IP = nullptr;
2024 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2025 return SDValue(E, 0);
2026
2027 auto *N = newSDNode<BasicBlockSDNode>(MBB);
2028 CSEMap.InsertNode(N, IP);
2029 InsertNode(N);
2030 return SDValue(N, 0);
2031}
2032
2034 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
2035 ValueTypeNodes.size())
2036 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
2037
2038 SDNode *&N = VT.isExtended() ?
2039 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
2040
2041 if (N) return SDValue(N, 0);
2042 N = newSDNode<VTSDNode>(VT);
2043 InsertNode(N);
2044 return SDValue(N, 0);
2045}
2046
2048 SDNode *&N = ExternalSymbols[Sym];
2049 if (N) return SDValue(N, 0);
2050 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, getVTList(VT));
2051 InsertNode(N);
2052 return SDValue(N, 0);
2053}
2054
2056 SDNode *&N = MCSymbols[Sym];
2057 if (N)
2058 return SDValue(N, 0);
2059 N = newSDNode<MCSymbolSDNode>(Sym, getVTList(VT));
2060 InsertNode(N);
2061 return SDValue(N, 0);
2062}
2063
2065 unsigned TargetFlags) {
2066 SDNode *&N =
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2068 if (N) return SDValue(N, 0);
2069 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, getVTList(VT));
2070 InsertNode(N);
2071 return SDValue(N, 0);
2072}
2073
2075 if ((unsigned)Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(Cond+1);
2077
2078 if (!CondCodeNodes[Cond]) {
2079 auto *N = newSDNode<CondCodeSDNode>(Cond);
2080 CondCodeNodes[Cond] = N;
2081 InsertNode(N);
2082 }
2083
2084 return SDValue(CondCodeNodes[Cond], 0);
2085}
2086
2088 bool ConstantFold) {
2089 assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
2090 "APInt size does not match type size!");
2091
2092 if (MulImm == 0)
2093 return getConstant(0, DL, VT);
2094
2095 if (ConstantFold) {
2096 const MachineFunction &MF = getMachineFunction();
2097 const Function &F = MF.getFunction();
2098 ConstantRange CR = getVScaleRange(&F, 64);
2099 if (const APInt *C = CR.getSingleElement())
2100 return getConstant(MulImm * C->getZExtValue(), DL, VT);
2101 }
2102
2103 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2104}
2105
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2109 return getVScale(DL, VT,
2110 APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2111
2112 return getConstant(EC.getKnownMinValue(), DL, VT);
2113}
2114
2116 APInt One(ResVT.getScalarSizeInBits(), 1);
2117 return getStepVector(DL, ResVT, One);
2118}
2119
2121 const APInt &StepVal) {
2122 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2123 if (ResVT.isScalableVector())
2124 return getNode(
2125 ISD::STEP_VECTOR, DL, ResVT,
2126 getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2127
2128 SmallVector<SDValue, 16> OpsStepConstants;
2129 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2130 OpsStepConstants.push_back(
2131 getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2132 return getBuildVector(ResVT, DL, OpsStepConstants);
2133}
2134
2135/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2136/// point at N1 to point at N2 and indices that point at N2 to point at N1.
2141
2143 SDValue N2, ArrayRef<int> Mask) {
2144 assert(VT.getVectorNumElements() == Mask.size() &&
2145 "Must have the same number of vector elements as mask elements!");
2146 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2147 "Invalid VECTOR_SHUFFLE");
2148
2149 // Canonicalize shuffle undef, undef -> undef
2150 if (N1.isUndef() && N2.isUndef())
2151 return getUNDEF(VT);
2152
2153 // Validate that all indices in Mask are within the range of the elements
2154 // input to the shuffle.
2155 int NElts = Mask.size();
2156 assert(llvm::all_of(Mask,
2157 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2159
2160 // Copy the mask so we can do any needed cleanup.
2161 SmallVector<int, 8> MaskVec(Mask);
2162
2163 // Canonicalize shuffle v, v -> v, undef
2164 if (N1 == N2) {
2165 N2 = getUNDEF(VT);
2166 for (int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2168 }
2169
2170 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
2171 if (N1.isUndef())
2172 commuteShuffle(N1, N2, MaskVec);
2173
2174 if (TLI->hasVectorBlend()) {
2175 // If shuffling a splat, try to blend the splat instead. We do this here so
2176 // that even when this arises during lowering we don't have to re-handle it.
2177 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2178 BitVector UndefElements;
2179 SDValue Splat = BV->getSplatValue(&UndefElements);
2180 if (!Splat)
2181 return;
2182
2183 for (int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2185 continue;
2186
2187 // If this input comes from undef, mark it as such.
2188 if (UndefElements[MaskVec[i] - Offset]) {
2189 MaskVec[i] = -1;
2190 continue;
2191 }
2192
2193 // If we can blend a non-undef lane, use that instead.
2194 if (!UndefElements[i])
2195 MaskVec[i] = i + Offset;
2196 }
2197 };
2198 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2199 BlendSplat(N1BV, 0);
2200 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2201 BlendSplat(N2BV, NElts);
2202 }
2203
2204 // Canonicalize all index into lhs, -> shuffle lhs, undef
2205 // Canonicalize all index into rhs, -> shuffle rhs, undef
2206 bool AllLHS = true, AllRHS = true;
2207 bool N2Undef = N2.isUndef();
2208 for (int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2210 if (N2Undef)
2211 MaskVec[i] = -1;
2212 else
2213 AllLHS = false;
2214 } else if (MaskVec[i] >= 0) {
2215 AllRHS = false;
2216 }
2217 }
2218 if (AllLHS && AllRHS)
2219 return getUNDEF(VT);
2220 if (AllLHS && !N2Undef)
2221 N2 = getUNDEF(VT);
2222 if (AllRHS) {
2223 N1 = getUNDEF(VT);
2224 commuteShuffle(N1, N2, MaskVec);
2225 }
2226 // Reset our undef status after accounting for the mask.
2227 N2Undef = N2.isUndef();
2228 // Re-check whether both sides ended up undef.
2229 if (N1.isUndef() && N2Undef)
2230 return getUNDEF(VT);
2231
2232 // If Identity shuffle return that node.
2233 bool Identity = true, AllSame = true;
2234 for (int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame = false;
2237 }
2238 if (Identity && NElts)
2239 return N1;
2240
2241 // Shuffling a constant splat doesn't change the result.
2242 if (N2Undef) {
2243 SDValue V = N1;
2244
2245 // Look through any bitcasts. We check that these don't change the number
2246 // (and size) of elements and just changes their types.
2247 while (V.getOpcode() == ISD::BITCAST)
2248 V = V->getOperand(0);
2249
2250 // A splat should always show up as a build vector node.
2251 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2252 BitVector UndefElements;
2253 SDValue Splat = BV->getSplatValue(&UndefElements);
2254 // If this is a splat of an undef, shuffling it is also undef.
2255 if (Splat && Splat.isUndef())
2256 return getUNDEF(VT);
2257
2258 bool SameNumElts =
2259 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2260
2261 // We only have a splat which can skip shuffles if there is a splatted
2262 // value and no undef lanes rearranged by the shuffle.
2263 if (Splat && UndefElements.none()) {
2264 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2265 // number of elements match or the value splatted is a zero constant.
2266 if (SameNumElts || isNullConstant(Splat))
2267 return N1;
2268 }
2269
2270 // If the shuffle itself creates a splat, build the vector directly.
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2273 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2274 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2275
2276 // We may have jumped through bitcasts, so the type of the
2277 // BUILD_VECTOR may not match the type of the shuffle.
2278 if (BuildVT != VT)
2279 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2280 return NewBV;
2281 }
2282 }
2283 }
2284
2285 SDVTList VTs = getVTList(VT);
2287 SDValue Ops[2] = { N1, N2 };
2289 for (int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2291
2292 void* IP = nullptr;
2293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2294 return SDValue(E, 0);
2295
2296 // Allocate the mask array for the node out of the BumpPtrAllocator, since
2297 // SDNode doesn't have access to it. This memory will be "leaked" when
2298 // the node is deallocated, but recovered when the NodeAllocator is released.
2299 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2300 llvm::copy(MaskVec, MaskAlloc);
2301
2302 auto *N = newSDNode<ShuffleVectorSDNode>(VTs, dl.getIROrder(),
2303 dl.getDebugLoc(), MaskAlloc);
2304 createOperands(N, Ops);
2305
2306 CSEMap.InsertNode(N, IP);
2307 InsertNode(N);
2308 SDValue V = SDValue(N, 0);
2309 NewSDValueDbgMsg(V, "Creating new node: ", this);
2310 return V;
2311}
2312
2314 EVT VT = SV.getValueType(0);
2315 SmallVector<int, 8> MaskVec(SV.getMask());
2317
2318 SDValue Op0 = SV.getOperand(0);
2319 SDValue Op1 = SV.getOperand(1);
2320 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2321}
2322
2324 SDVTList VTs = getVTList(VT);
2326 AddNodeIDNode(ID, ISD::Register, VTs, {});
2327 ID.AddInteger(Reg.id());
2328 void *IP = nullptr;
2329 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2330 return SDValue(E, 0);
2331
2332 auto *N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2334 CSEMap.InsertNode(N, IP);
2335 InsertNode(N);
2336 return SDValue(N, 0);
2337}
2338
2341 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), {});
2342 ID.AddPointer(RegMask);
2343 void *IP = nullptr;
2344 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2345 return SDValue(E, 0);
2346
2347 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(N, IP);
2349 InsertNode(N);
2350 return SDValue(N, 0);
2351}
2352
2354 MCSymbol *Label) {
2355 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2356}
2357
2358SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2359 SDValue Root, MCSymbol *Label) {
2361 SDValue Ops[] = { Root };
2362 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2363 ID.AddPointer(Label);
2364 void *IP = nullptr;
2365 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2366 return SDValue(E, 0);
2367
2368 auto *N =
2369 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2370 createOperands(N, Ops);
2371
2372 CSEMap.InsertNode(N, IP);
2373 InsertNode(N);
2374 return SDValue(N, 0);
2375}
2376
2378 int64_t Offset, bool isTarget,
2379 unsigned TargetFlags) {
2380 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2381 SDVTList VTs = getVTList(VT);
2382
2384 AddNodeIDNode(ID, Opc, VTs, {});
2385 ID.AddPointer(BA);
2386 ID.AddInteger(Offset);
2387 ID.AddInteger(TargetFlags);
2388 void *IP = nullptr;
2389 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2390 return SDValue(E, 0);
2391
2392 auto *N = newSDNode<BlockAddressSDNode>(Opc, VTs, BA, Offset, TargetFlags);
2393 CSEMap.InsertNode(N, IP);
2394 InsertNode(N);
2395 return SDValue(N, 0);
2396}
2397
2400 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), {});
2401 ID.AddPointer(V);
2402
2403 void *IP = nullptr;
2404 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2405 return SDValue(E, 0);
2406
2407 auto *N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(N, IP);
2409 InsertNode(N);
2410 return SDValue(N, 0);
2411}
2412
2415 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), {});
2416 ID.AddPointer(MD);
2417
2418 void *IP = nullptr;
2419 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2420 return SDValue(E, 0);
2421
2422 auto *N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(N, IP);
2424 InsertNode(N);
2425 return SDValue(N, 0);
2426}
2427
2429 if (VT == V.getValueType())
2430 return V;
2431
2432 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2433}
2434
2436 unsigned SrcAS, unsigned DestAS) {
2437 SDVTList VTs = getVTList(VT);
2438 SDValue Ops[] = {Ptr};
2440 AddNodeIDNode(ID, ISD::ADDRSPACECAST, VTs, Ops);
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2443
2444 void *IP = nullptr;
2445 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2446 return SDValue(E, 0);
2447
2448 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2449 VTs, SrcAS, DestAS);
2450 createOperands(N, Ops);
2451
2452 CSEMap.InsertNode(N, IP);
2453 InsertNode(N);
2454 return SDValue(N, 0);
2455}
2456
2458 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2459}
2460
2461/// getShiftAmountOperand - Return the specified value casted to
2462/// the target's desired shift amount type.
2464 EVT OpTy = Op.getValueType();
2465 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2466 if (OpTy == ShTy || OpTy.isVector()) return Op;
2467
2468 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2469}
2470
2471/// Given a store node \p StoreNode, return true if it is safe to fold that node
2472/// into \p FPNode, which expands to a library call with output pointers.
2474 SDNode *FPNode) {
2476 SmallVector<const SDNode *, 8> DeferredNodes;
2478
2479 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
2480 for (SDValue Op : StoreNode->ops())
2481 if (Op.getNode() != FPNode)
2482 Worklist.push_back(Op.getNode());
2483
2485 while (!Worklist.empty()) {
2486 const SDNode *Node = Worklist.pop_back_val();
2487 auto [_, Inserted] = Visited.insert(Node);
2488 if (!Inserted)
2489 continue;
2490
2491 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
2492 return false;
2493
2494 // Reached the FPNode (would result in a cycle).
2495 // OR Reached CALLSEQ_START (would result in nested call sequences).
2496 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
2497 return false;
2498
2499 if (Node->getOpcode() == ISD::CALLSEQ_END) {
2500 // Defer looking into call sequences (so we can check we're outside one).
2501 // We still need to look through these for the predecessor check.
2502 DeferredNodes.push_back(Node);
2503 continue;
2504 }
2505
2506 for (SDValue Op : Node->ops())
2507 Worklist.push_back(Op.getNode());
2508 }
2509
2510 // True if we're outside a call sequence and don't have the FPNode as a
2511 // predecessor. No cycles or nested call sequences possible.
2512 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
2513 MaxSteps);
2514}
2515
2517 RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl<SDValue> &Results,
2518 std::optional<unsigned> CallRetResNo) {
2519 LLVMContext &Ctx = *getContext();
2520 EVT VT = Node->getValueType(0);
2521 unsigned NumResults = Node->getNumValues();
2522
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2524 return false;
2525
2526 const char *LCName = TLI->getLibcallName(LC);
2527 if (!LCName)
2528 return false;
2529
2530 auto getVecDesc = [&]() -> VecDesc const * {
2531 for (bool Masked : {false, true}) {
2532 if (VecDesc const *VD = getLibInfo().getVectorMappingInfo(
2533 LCName, VT.getVectorElementCount(), Masked)) {
2534 return VD;
2535 }
2536 }
2537 return nullptr;
2538 };
2539
2540 // For vector types, we must find a vector mapping for the libcall.
2541 VecDesc const *VD = nullptr;
2542 if (VT.isVector() && !(VD = getVecDesc()))
2543 return false;
2544
2545 // Find users of the node that store the results (and share input chains). The
2546 // destination pointers can be used instead of creating stack allocations.
2547 SDValue StoresInChain;
2548 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
2549 for (SDNode *User : Node->users()) {
2551 continue;
2552 auto *ST = cast<StoreSDNode>(User);
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.getResNo();
2555 // Ensure the store corresponds to an output pointer.
2556 if (CallRetResNo == ResNo)
2557 continue;
2558 // Ensure the store to the default address space and not atomic or volatile.
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2560 continue;
2561 // Ensure all store chains are the same (so they don't alias).
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2563 continue;
2564 // Ensure the store is properly aligned.
2565 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
2566 if (ST->getAlign() <
2567 getDataLayout().getABITypeAlign(StoreType->getScalarType()))
2568 continue;
2569 // Avoid:
2570 // 1. Creating cyclic dependencies.
2571 // 2. Expanding the node to a call within a call sequence.
2573 continue;
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2576 }
2577
2579
2580 // Pass the arguments.
2581 for (const SDValue &Op : Node->op_values()) {
2582 EVT ArgVT = Op.getValueType();
2583 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
2584 Args.emplace_back(Op, ArgTy);
2585 }
2586
2587 // Pass the output pointers.
2588 SmallVector<SDValue, 2> ResultPtrs(NumResults);
2590 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
2591 if (ResNo == CallRetResNo)
2592 continue;
2593 EVT ResVT = Node->getValueType(ResNo);
2594 SDValue ResultPtr = ST ? ST->getBasePtr() : CreateStackTemporary(ResVT);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr, PointerTy);
2597 }
2598
2599 SDLoc DL(Node);
2600
2601 // Pass the vector mask (if required).
2602 if (VD && VD->isMasked()) {
2603 EVT MaskVT = TLI->getSetCCResultType(getDataLayout(), Ctx, VT);
2604 SDValue Mask = getBoolConstant(true, DL, MaskVT, VT);
2605 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
2606 }
2607
2608 Type *RetType = CallRetResNo.has_value()
2609 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2610 : Type::getVoidTy(Ctx);
2611 SDValue InChain = StoresInChain ? StoresInChain : getEntryNode();
2612 SDValue Callee = getExternalSymbol(VD ? VD->getVectorFnName().data() : LCName,
2613 TLI->getPointerTy(getDataLayout()));
2615 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2617
2618 auto [Call, CallChain] = TLI->LowerCallTo(CLI);
2619
2620 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
2621 if (ResNo == CallRetResNo) {
2622 Results.push_back(Call);
2623 continue;
2624 }
2625 MachinePointerInfo PtrInfo;
2626 SDValue LoadResult =
2627 getLoad(Node->getValueType(ResNo), DL, CallChain, ResultPtr, PtrInfo);
2628 SDValue OutChain = LoadResult.getValue(1);
2629
2630 if (StoreSDNode *ST = ResultStores[ResNo]) {
2631 // Replace store with the library call.
2632 ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
2633 PtrInfo = ST->getPointerInfo();
2634 } else {
2636 getMachineFunction(), cast<FrameIndexSDNode>(ResultPtr)->getIndex());
2637 }
2638
2639 Results.push_back(LoadResult);
2640 }
2641
2642 return true;
2643}
2644
2646 SDLoc dl(Node);
2648 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2649 EVT VT = Node->getValueType(0);
2650 SDValue Tmp1 = Node->getOperand(0);
2651 SDValue Tmp2 = Node->getOperand(1);
2652 const MaybeAlign MA(Node->getConstantOperandVal(3));
2653
2654 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2655 Tmp2, MachinePointerInfo(V));
2656 SDValue VAList = VAListLoad;
2657
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2659 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2660 getConstant(MA->value() - 1, dl, VAList.getValueType()));
2661
2662 VAList = getNode(
2663 ISD::AND, dl, VAList.getValueType(), VAList,
2664 getSignedConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2665 }
2666
2667 // Increment the pointer, VAList, to the next vaarg
2668 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2669 getConstant(getDataLayout().getTypeAllocSize(
2670 VT.getTypeForEVT(*getContext())),
2671 dl, VAList.getValueType()));
2672 // Store the incremented VAList to the legalized pointer
2673 Tmp1 =
2674 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2675 // Load the actual argument out of the pointer VAList
2676 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2677}
2678
2680 SDLoc dl(Node);
2682 // This defaults to loading a pointer from the input and storing it to the
2683 // output, returning the chain.
2684 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2685 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2686 SDValue Tmp1 =
2687 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2688 Node->getOperand(2), MachinePointerInfo(VS));
2689 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2690 MachinePointerInfo(VD));
2691}
2692
2694 const DataLayout &DL = getDataLayout();
2695 Type *Ty = VT.getTypeForEVT(*getContext());
2696 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2697
2698 if (TLI->isTypeLegal(VT) || !VT.isVector())
2699 return RedAlign;
2700
2701 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2702 const Align StackAlign = TFI->getStackAlign();
2703
2704 // See if we can choose a smaller ABI alignment in cases where it's an
2705 // illegal vector type that will get broken down.
2706 if (RedAlign > StackAlign) {
2707 EVT IntermediateVT;
2708 MVT RegisterVT;
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2712 Ty = IntermediateVT.getTypeForEVT(*getContext());
2713 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2716
2717 if (!getMachineFunction().getFrameInfo().isStackRealignable())
2718 // If the stack is not realignable, the alignment should be limited to the
2719 // StackAlignment
2720 RedAlign = std::min(RedAlign, StackAlign);
2721 }
2722
2723 return RedAlign;
2724}
2725
2727 MachineFrameInfo &MFI = MF->getFrameInfo();
2728 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2729 int StackID = 0;
2730 if (Bytes.isScalable())
2731 StackID = TFI->getStackIDForScalableVectors();
2732 // The stack id gives an indication of whether the object is scalable or
2733 // not, so it's safe to pass in the minimum size here.
2734 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2735 false, nullptr, StackID);
2736 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2737}
2738
2740 Type *Ty = VT.getTypeForEVT(*getContext());
2741 Align StackAlign =
2742 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2743 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2744}
2745
2747 TypeSize VT1Size = VT1.getStoreSize();
2748 TypeSize VT2Size = VT2.getStoreSize();
2749 assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2750 "Don't know how to choose the maximum size when creating a stack "
2751 "temporary");
2752 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2753 ? VT1Size
2754 : VT2Size;
2755
2756 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2757 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2758 const DataLayout &DL = getDataLayout();
2759 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2760 return CreateStackTemporary(Bytes, Align);
2761}
2762
2764 ISD::CondCode Cond, const SDLoc &dl) {
2765 EVT OpVT = N1.getValueType();
2766
2767 auto GetUndefBooleanConstant = [&]() {
2768 if (VT.getScalarType() == MVT::i1 ||
2769 TLI->getBooleanContents(OpVT) ==
2771 return getUNDEF(VT);
2772 // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2773 // so we cannot use getUNDEF(). Return zero instead.
2774 return getConstant(0, dl, VT);
2775 };
2776
2777 // These setcc operations always fold.
2778 switch (Cond) {
2779 default: break;
2780 case ISD::SETFALSE:
2781 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2782 case ISD::SETTRUE:
2783 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2784
2785 case ISD::SETOEQ:
2786 case ISD::SETOGT:
2787 case ISD::SETOGE:
2788 case ISD::SETOLT:
2789 case ISD::SETOLE:
2790 case ISD::SETONE:
2791 case ISD::SETO:
2792 case ISD::SETUO:
2793 case ISD::SETUEQ:
2794 case ISD::SETUNE:
2795 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2796 break;
2797 }
2798
2799 if (OpVT.isInteger()) {
2800 // For EQ and NE, we can always pick a value for the undef to make the
2801 // predicate pass or fail, so we can return undef.
2802 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2803 // icmp eq/ne X, undef -> undef.
2804 if ((N1.isUndef() || N2.isUndef()) &&
2805 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2806 return GetUndefBooleanConstant();
2807
2808 // If both operands are undef, we can return undef for int comparison.
2809 // icmp undef, undef -> undef.
2810 if (N1.isUndef() && N2.isUndef())
2811 return GetUndefBooleanConstant();
2812
2813 // icmp X, X -> true/false
2814 // icmp X, undef -> true/false because undef could be X.
2815 if (N1.isUndef() || N2.isUndef() || N1 == N2)
2816 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2817 }
2818
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2823
2825 dl, VT, OpVT);
2826 }
2827 }
2828
2829 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2830 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2831
2832 if (N1CFP && N2CFP) {
2833 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2834 switch (Cond) {
2835 default: break;
2836 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2837 return GetUndefBooleanConstant();
2838 [[fallthrough]];
2839 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2840 OpVT);
2841 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2842 return GetUndefBooleanConstant();
2843 [[fallthrough]];
2845 R==APFloat::cmpLessThan, dl, VT,
2846 OpVT);
2847 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2848 return GetUndefBooleanConstant();
2849 [[fallthrough]];
2850 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2851 OpVT);
2852 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2853 return GetUndefBooleanConstant();
2854 [[fallthrough]];
2856 VT, OpVT);
2857 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2858 return GetUndefBooleanConstant();
2859 [[fallthrough]];
2861 R==APFloat::cmpEqual, dl, VT,
2862 OpVT);
2863 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2864 return GetUndefBooleanConstant();
2865 [[fallthrough]];
2867 R==APFloat::cmpEqual, dl, VT, OpVT);
2868 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2869 OpVT);
2870 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2871 OpVT);
2873 R==APFloat::cmpEqual, dl, VT,
2874 OpVT);
2875 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2876 OpVT);
2878 R==APFloat::cmpLessThan, dl, VT,
2879 OpVT);
2881 R==APFloat::cmpUnordered, dl, VT,
2882 OpVT);
2884 VT, OpVT);
2885 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2886 OpVT);
2887 }
2888 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2889 // Ensure that the constant occurs on the RHS.
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2892 return SDValue();
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2895 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2896 // If an operand is known to be a nan (or undef that could be a nan), we can
2897 // fold it.
2898 // Choosing NaN for the undef will always make unordered comparison succeed
2899 // and ordered comparison fails.
2900 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2901 switch (ISD::getUnorderedFlavor(Cond)) {
2902 default:
2903 llvm_unreachable("Unknown flavor!");
2904 case 0: // Known false.
2905 return getBoolConstant(false, dl, VT, OpVT);
2906 case 1: // Known true.
2907 return getBoolConstant(true, dl, VT, OpVT);
2908 case 2: // Undefined.
2909 return GetUndefBooleanConstant();
2910 }
2911 }
2912
2913 // Could not fold it.
2914 return SDValue();
2915}
2916
2917/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2918/// use this predicate to simplify operations downstream.
2920 unsigned BitWidth = Op.getScalarValueSizeInBits();
2922}
2923
2924/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2925/// this predicate to simplify operations downstream. Mask is known to be zero
2926/// for bits that V cannot have.
2928 unsigned Depth) const {
2929 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2930}
2931
2932/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2933/// DemandedElts. We use this predicate to simplify operations downstream.
2934/// Mask is known to be zero for bits that V cannot have.
2936 const APInt &DemandedElts,
2937 unsigned Depth) const {
2938 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2939}
2940
2941/// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2942/// DemandedElts. We use this predicate to simplify operations downstream.
2944 unsigned Depth /* = 0 */) const {
2945 return computeKnownBits(V, DemandedElts, Depth).isZero();
2946}
2947
2948/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2950 unsigned Depth) const {
2951 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2952}
2953
2955 const APInt &DemandedElts,
2956 unsigned Depth) const {
2957 EVT VT = Op.getValueType();
2958 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2959
2960 unsigned NumElts = VT.getVectorNumElements();
2961 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2962
2963 APInt KnownZeroElements = APInt::getZero(NumElts);
2964 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2966 continue; // Don't query elements that are not demanded.
2967 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2968 if (MaskedVectorIsZero(Op, Mask, Depth))
2969 KnownZeroElements.setBit(EltIdx);
2970 }
2971 return KnownZeroElements;
2972}
2973
2974/// isSplatValue - Return true if the vector V has the same value
2975/// across all DemandedElts. For scalable vectors, we don't know the
2976/// number of lanes at compile time. Instead, we use a 1 bit APInt
2977/// to represent a conservative value for all lanes; that is, that
2978/// one bit value is implicitly splatted across all lanes.
2979bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2980 APInt &UndefElts, unsigned Depth) const {
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2983 assert(VT.isVector() && "Vector type expected");
2984 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2985 "scalable demanded bits are ignored");
2986
2987 if (!DemandedElts)
2988 return false; // No demanded elts, better to assume we don't know anything.
2989
2990 if (Depth >= MaxRecursionDepth)
2991 return false; // Limit search depth.
2992
2993 // Deal with some common cases here that work for both fixed and scalable
2994 // vector types.
2995 switch (Opcode) {
2996 case ISD::SPLAT_VECTOR:
2997 UndefElts = V.getOperand(0).isUndef()
2998 ? APInt::getAllOnes(DemandedElts.getBitWidth())
2999 : APInt(DemandedElts.getBitWidth(), 0);
3000 return true;
3001 case ISD::ADD:
3002 case ISD::SUB:
3003 case ISD::AND:
3004 case ISD::XOR:
3005 case ISD::OR: {
3006 APInt UndefLHS, UndefRHS;
3007 SDValue LHS = V.getOperand(0);
3008 SDValue RHS = V.getOperand(1);
3009 // Only recognize splats with the same demanded undef elements for both
3010 // operands, otherwise we might fail to handle binop-specific undef
3011 // handling.
3012 // e.g. (and undef, 0) -> 0 etc.
3013 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
3014 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1) &&
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3017 return true;
3018 }
3019 return false;
3020 }
3021 case ISD::ABS:
3022 case ISD::TRUNCATE:
3023 case ISD::SIGN_EXTEND:
3024 case ISD::ZERO_EXTEND:
3025 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
3026 default:
3027 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
3028 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
3030 Depth);
3031 break;
3032 }
3033
3034 // We don't support other cases than those above for scalable vectors at
3035 // the moment.
3036 if (VT.isScalableVector())
3037 return false;
3038
3039 unsigned NumElts = VT.getVectorNumElements();
3040 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
3041 UndefElts = APInt::getZero(NumElts);
3042
3043 switch (Opcode) {
3044 case ISD::BUILD_VECTOR: {
3045 SDValue Scl;
3046 for (unsigned i = 0; i != NumElts; ++i) {
3047 SDValue Op = V.getOperand(i);
3048 if (Op.isUndef()) {
3049 UndefElts.setBit(i);
3050 continue;
3051 }
3052 if (!DemandedElts[i])
3053 continue;
3054 if (Scl && Scl != Op)
3055 return false;
3056 Scl = Op;
3057 }
3058 return true;
3059 }
3060 case ISD::VECTOR_SHUFFLE: {
3061 // Check if this is a shuffle node doing a splat or a shuffle of a splat.
3062 APInt DemandedLHS = APInt::getZero(NumElts);
3063 APInt DemandedRHS = APInt::getZero(NumElts);
3064 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
3065 for (int i = 0; i != (int)NumElts; ++i) {
3066 int M = Mask[i];
3067 if (M < 0) {
3068 UndefElts.setBit(i);
3069 continue;
3070 }
3071 if (!DemandedElts[i])
3072 continue;
3073 if (M < (int)NumElts)
3074 DemandedLHS.setBit(M);
3075 else
3076 DemandedRHS.setBit(M - NumElts);
3077 }
3078
3079 // If we aren't demanding either op, assume there's no splat.
3080 // If we are demanding both ops, assume there's no splat.
3081 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
3082 (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
3083 return false;
3084
3085 // See if the demanded elts of the source op is a splat or we only demand
3086 // one element, which should always be a splat.
3087 // TODO: Handle source ops splats with undefs.
3088 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
3089 APInt SrcUndefs;
3090 return (SrcElts.popcount() == 1) ||
3091 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
3092 (SrcElts & SrcUndefs).isZero());
3093 };
3094 if (!DemandedLHS.isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3097 }
3099 // Offset the demanded elts by the subvector index.
3100 SDValue Src = V.getOperand(0);
3101 // We don't support scalable vectors at the moment.
3102 if (Src.getValueType().isScalableVector())
3103 return false;
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3106 APInt UndefSrcElts;
3107 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3108 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3109 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
3110 return true;
3111 }
3112 break;
3113 }
3117 // Widen the demanded elts by the src element count.
3118 SDValue Src = V.getOperand(0);
3119 // We don't support scalable vectors at the moment.
3120 if (Src.getValueType().isScalableVector())
3121 return false;
3122 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3123 APInt UndefSrcElts;
3124 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3125 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3126 UndefElts = UndefSrcElts.trunc(NumElts);
3127 return true;
3128 }
3129 break;
3130 }
3131 case ISD::BITCAST: {
3132 SDValue Src = V.getOperand(0);
3133 EVT SrcVT = Src.getValueType();
3134 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
3135 unsigned BitWidth = VT.getScalarSizeInBits();
3136
3137 // Ignore bitcasts from unsupported types.
3138 // TODO: Add fp support?
3139 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
3140 break;
3141
3142 // Bitcast 'small element' vector to 'large element' vector.
3143 if ((BitWidth % SrcBitWidth) == 0) {
3144 // See if each sub element is a splat.
3145 unsigned Scale = BitWidth / SrcBitWidth;
3146 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3147 APInt ScaledDemandedElts =
3148 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3149 for (unsigned I = 0; I != Scale; ++I) {
3150 APInt SubUndefElts;
3151 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
3152 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
3153 SubDemandedElts &= ScaledDemandedElts;
3154 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
3155 return false;
3156 // TODO: Add support for merging sub undef elements.
3157 if (!SubUndefElts.isZero())
3158 return false;
3159 }
3160 return true;
3161 }
3162 break;
3163 }
3164 }
3165
3166 return false;
3167}
3168
3169/// Helper wrapper to main isSplatValue function.
3170bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
3171 EVT VT = V.getValueType();
3172 assert(VT.isVector() && "Vector type expected");
3173
3174 APInt UndefElts;
3175 // Since the number of lanes in a scalable vector is unknown at compile time,
3176 // we track one bit which is implicitly broadcast to all lanes. This means
3177 // that all lanes in a scalable vector are considered demanded.
3178 APInt DemandedElts
3180 return isSplatValue(V, DemandedElts, UndefElts) &&
3181 (AllowUndefs || !UndefElts);
3182}
3183
3186
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3189 switch (Opcode) {
3190 default: {
3191 APInt UndefElts;
3192 // Since the number of lanes in a scalable vector is unknown at compile time,
3193 // we track one bit which is implicitly broadcast to all lanes. This means
3194 // that all lanes in a scalable vector are considered demanded.
3195 APInt DemandedElts
3197
3198 if (isSplatValue(V, DemandedElts, UndefElts)) {
3199 if (VT.isScalableVector()) {
3200 // DemandedElts and UndefElts are ignored for scalable vectors, since
3201 // the only supported cases are SPLAT_VECTOR nodes.
3202 SplatIdx = 0;
3203 } else {
3204 // Handle case where all demanded elements are UNDEF.
3205 if (DemandedElts.isSubsetOf(UndefElts)) {
3206 SplatIdx = 0;
3207 return getUNDEF(VT);
3208 }
3209 SplatIdx = (UndefElts & DemandedElts).countr_one();
3210 }
3211 return V;
3212 }
3213 break;
3214 }
3215 case ISD::SPLAT_VECTOR:
3216 SplatIdx = 0;
3217 return V;
3218 case ISD::VECTOR_SHUFFLE: {
3219 assert(!VT.isScalableVector());
3220 // Check if this is a shuffle node doing a splat.
3221 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
3222 // getTargetVShiftNode currently struggles without the splat source.
3223 auto *SVN = cast<ShuffleVectorSDNode>(V);
3224 if (!SVN->isSplat())
3225 break;
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3230 }
3231 }
3232
3233 return SDValue();
3234}
3235
3237 int SplatIdx;
3238 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
3239 EVT SVT = SrcVector.getValueType().getScalarType();
3240 EVT LegalSVT = SVT;
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3242 if (!SVT.isInteger())
3243 return SDValue();
3244 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3245 if (LegalSVT.bitsLT(SVT))
3246 return SDValue();
3247 }
3248 return getExtractVectorElt(SDLoc(V), LegalSVT, SrcVector, SplatIdx);
3249 }
3250 return SDValue();
3251}
3252
3253std::optional<ConstantRange>
3255 unsigned Depth) const {
3256 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3257 V.getOpcode() == ISD::SRA) &&
3258 "Unknown shift node");
3259 // Shifting more than the bitwidth is not valid.
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3261
3262 if (auto *Cst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3263 const APInt &ShAmt = Cst->getAPIntValue();
3264 if (ShAmt.uge(BitWidth))
3265 return std::nullopt;
3266 return ConstantRange(ShAmt);
3267 }
3268
3269 if (auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1))) {
3270 const APInt *MinAmt = nullptr, *MaxAmt = nullptr;
3271 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3273 continue;
3274 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3275 if (!SA) {
3276 MinAmt = MaxAmt = nullptr;
3277 break;
3278 }
3279 const APInt &ShAmt = SA->getAPIntValue();
3280 if (ShAmt.uge(BitWidth))
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->ugt(ShAmt))
3283 MinAmt = &ShAmt;
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3285 MaxAmt = &ShAmt;
3286 }
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3290 return ConstantRange(*MinAmt, *MaxAmt + 1);
3291 }
3292
3293 // Use computeKnownBits to find a hidden constant/knownbits (usually type
3294 // legalized). e.g. Hidden behind multiple bitcasts/build_vector/casts etc.
3295 KnownBits KnownAmt = computeKnownBits(V.getOperand(1), DemandedElts, Depth);
3296 if (KnownAmt.getMaxValue().ult(BitWidth))
3297 return ConstantRange::fromKnownBits(KnownAmt, /*IsSigned=*/false);
3298
3299 return std::nullopt;
3300}
3301
3302std::optional<unsigned>
3304 unsigned Depth) const {
3305 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3306 V.getOpcode() == ISD::SRA) &&
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3309 getValidShiftAmountRange(V, DemandedElts, Depth))
3310 if (const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3313}
3314
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3318 APInt DemandedElts = VT.isFixedLengthVector()
3320 : APInt(1, 1);
3321 return getValidShiftAmount(V, DemandedElts, Depth);
3322}
3323
3324std::optional<unsigned>
3326 unsigned Depth) const {
3327 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3328 V.getOpcode() == ISD::SRA) &&
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3331 getValidShiftAmountRange(V, DemandedElts, Depth))
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3334}
3335
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3339 APInt DemandedElts = VT.isFixedLengthVector()
3341 : APInt(1, 1);
3342 return getValidMinimumShiftAmount(V, DemandedElts, Depth);
3343}
3344
3345std::optional<unsigned>
3347 unsigned Depth) const {
3348 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3349 V.getOpcode() == ISD::SRA) &&
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3352 getValidShiftAmountRange(V, DemandedElts, Depth))
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3355}
3356
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3360 APInt DemandedElts = VT.isFixedLengthVector()
3362 : APInt(1, 1);
3363 return getValidMaximumShiftAmount(V, DemandedElts, Depth);
3364}
3365
3366/// Determine which bits of Op are known to be either zero or one and return
3367/// them in Known. For vectors, the known bits are those that are shared by
3368/// every vector element.
3370 EVT VT = Op.getValueType();
3371
3372 // Since the number of lanes in a scalable vector is unknown at compile time,
3373 // we track one bit which is implicitly broadcast to all lanes. This means
3374 // that all lanes in a scalable vector are considered demanded.
3375 APInt DemandedElts = VT.isFixedLengthVector()
3377 : APInt(1, 1);
3378 return computeKnownBits(Op, DemandedElts, Depth);
3379}
3380
3381/// Determine which bits of Op are known to be either zero or one and return
3382/// them in Known. The DemandedElts argument allows us to only collect the known
3383/// bits that are shared by the requested vector elements.
3385 unsigned Depth) const {
3386 unsigned BitWidth = Op.getScalarValueSizeInBits();
3387
3388 KnownBits Known(BitWidth); // Don't know anything.
3389
3390 if (auto OptAPInt = Op->bitcastToAPInt()) {
3391 // We know all of the bits for a constant!
3392 return KnownBits::makeConstant(*std::move(OptAPInt));
3393 }
3394
3395 if (Depth >= MaxRecursionDepth)
3396 return Known; // Limit search depth.
3397
3398 KnownBits Known2;
3399 unsigned NumElts = DemandedElts.getBitWidth();
3400 assert((!Op.getValueType().isFixedLengthVector() ||
3401 NumElts == Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3403
3404 if (!DemandedElts)
3405 return Known; // No demanded elts, better to assume we don't know anything.
3406
3407 unsigned Opcode = Op.getOpcode();
3408 switch (Opcode) {
3409 case ISD::MERGE_VALUES:
3410 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3411 Depth + 1);
3412 case ISD::SPLAT_VECTOR: {
3413 SDValue SrcOp = Op.getOperand(0);
3414 assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3415 "Expected SPLAT_VECTOR implicit truncation");
3416 // Implicitly truncate the bits to match the official semantics of
3417 // SPLAT_VECTOR.
3418 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3419 break;
3420 }
3422 unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3423 assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3425 for (auto [I, SrcOp] : enumerate(Op->ops())) {
3426 Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3427 }
3428 break;
3429 }
3430 case ISD::STEP_VECTOR: {
3431 const APInt &Step = Op.getConstantOperandAPInt(0);
3432
3433 if (Step.isPowerOf2())
3434 Known.Zero.setLowBits(Step.logBase2());
3435
3437
3438 if (!isUIntN(BitWidth, Op.getValueType().getVectorMinNumElements()))
3439 break;
3440 const APInt MinNumElts =
3441 APInt(BitWidth, Op.getValueType().getVectorMinNumElements());
3442
3443 bool Overflow;
3444 const APInt MaxNumElts = getVScaleRange(&F, BitWidth)
3446 .umul_ov(MinNumElts, Overflow);
3447 if (Overflow)
3448 break;
3449
3450 const APInt MaxValue = (MaxNumElts - 1).umul_ov(Step, Overflow);
3451 if (Overflow)
3452 break;
3453
3454 Known.Zero.setHighBits(MaxValue.countl_zero());
3455 break;
3456 }
3457 case ISD::BUILD_VECTOR:
3458 assert(!Op.getValueType().isScalableVector());
3459 // Collect the known bits that are shared by every demanded vector element.
3460 Known.Zero.setAllBits(); Known.One.setAllBits();
3461 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3463 continue;
3464
3465 SDValue SrcOp = Op.getOperand(i);
3466 Known2 = computeKnownBits(SrcOp, Depth + 1);
3467
3468 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3469 if (SrcOp.getValueSizeInBits() != BitWidth) {
3470 assert(SrcOp.getValueSizeInBits() > BitWidth &&
3471 "Expected BUILD_VECTOR implicit truncation");
3472 Known2 = Known2.trunc(BitWidth);
3473 }
3474
3475 // Known bits are the values that are shared by every demanded element.
3476 Known = Known.intersectWith(Known2);
3477
3478 // If we don't know any bits, early out.
3479 if (Known.isUnknown())
3480 break;
3481 }
3482 break;
3483 case ISD::VECTOR_SHUFFLE: {
3484 assert(!Op.getValueType().isScalableVector());
3485 // Collect the known bits that are shared by every vector element referenced
3486 // by the shuffle.
3487 APInt DemandedLHS, DemandedRHS;
3489 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3490 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3491 DemandedLHS, DemandedRHS))
3492 break;
3493
3494 // Known bits are the values that are shared by every demanded element.
3495 Known.Zero.setAllBits(); Known.One.setAllBits();
3496 if (!!DemandedLHS) {
3497 SDValue LHS = Op.getOperand(0);
3498 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3499 Known = Known.intersectWith(Known2);
3500 }
3501 // If we don't know any bits, early out.
3502 if (Known.isUnknown())
3503 break;
3504 if (!!DemandedRHS) {
3505 SDValue RHS = Op.getOperand(1);
3506 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3507 Known = Known.intersectWith(Known2);
3508 }
3509 break;
3510 }
3511 case ISD::VSCALE: {
3513 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3514 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3515 break;
3516 }
3517 case ISD::CONCAT_VECTORS: {
3518 if (Op.getValueType().isScalableVector())
3519 break;
3520 // Split DemandedElts and test each of the demanded subvectors.
3521 Known.Zero.setAllBits(); Known.One.setAllBits();
3522 EVT SubVectorVT = Op.getOperand(0).getValueType();
3523 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3524 unsigned NumSubVectors = Op.getNumOperands();
3525 for (unsigned i = 0; i != NumSubVectors; ++i) {
3526 APInt DemandedSub =
3527 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3528 if (!!DemandedSub) {
3529 SDValue Sub = Op.getOperand(i);
3530 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3531 Known = Known.intersectWith(Known2);
3532 }
3533 // If we don't know any bits, early out.
3534 if (Known.isUnknown())
3535 break;
3536 }
3537 break;
3538 }
3539 case ISD::INSERT_SUBVECTOR: {
3540 if (Op.getValueType().isScalableVector())
3541 break;
3542 // Demand any elements from the subvector and the remainder from the src its
3543 // inserted into.
3544 SDValue Src = Op.getOperand(0);
3545 SDValue Sub = Op.getOperand(1);
3546 uint64_t Idx = Op.getConstantOperandVal(2);
3547 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3548 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3549 APInt DemandedSrcElts = DemandedElts;
3550 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3551
3552 Known.One.setAllBits();
3553 Known.Zero.setAllBits();
3554 if (!!DemandedSubElts) {
3555 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3556 if (Known.isUnknown())
3557 break; // early-out.
3558 }
3559 if (!!DemandedSrcElts) {
3560 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3561 Known = Known.intersectWith(Known2);
3562 }
3563 break;
3564 }
3566 // Offset the demanded elts by the subvector index.
3567 SDValue Src = Op.getOperand(0);
3568 // Bail until we can represent demanded elements for scalable vectors.
3569 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3570 break;
3571 uint64_t Idx = Op.getConstantOperandVal(1);
3572 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3573 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3574 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3575 break;
3576 }
3577 case ISD::SCALAR_TO_VECTOR: {
3578 if (Op.getValueType().isScalableVector())
3579 break;
3580 // We know about scalar_to_vector as much as we know about it source,
3581 // which becomes the first element of otherwise unknown vector.
3582 if (DemandedElts != 1)
3583 break;
3584
3585 SDValue N0 = Op.getOperand(0);
3586 Known = computeKnownBits(N0, Depth + 1);
3587 if (N0.getValueSizeInBits() != BitWidth)
3588 Known = Known.trunc(BitWidth);
3589
3590 break;
3591 }
3592 case ISD::BITCAST: {
3593 if (Op.getValueType().isScalableVector())
3594 break;
3595
3596 SDValue N0 = Op.getOperand(0);
3597 EVT SubVT = N0.getValueType();
3598 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3599
3600 // Ignore bitcasts from unsupported types.
3601 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3602 break;
3603
3604 // Fast handling of 'identity' bitcasts.
3605 if (BitWidth == SubBitWidth) {
3606 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3607 break;
3608 }
3609
3610 bool IsLE = getDataLayout().isLittleEndian();
3611
3612 // Bitcast 'small element' vector to 'large element' scalar/vector.
3613 if ((BitWidth % SubBitWidth) == 0) {
3614 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3615
3616 // Collect known bits for the (larger) output by collecting the known
3617 // bits from each set of sub elements and shift these into place.
3618 // We need to separately call computeKnownBits for each set of
3619 // sub elements as the knownbits for each is likely to be different.
3620 unsigned SubScale = BitWidth / SubBitWidth;
3621 APInt SubDemandedElts(NumElts * SubScale, 0);
3622 for (unsigned i = 0; i != NumElts; ++i)
3623 if (DemandedElts[i])
3624 SubDemandedElts.setBit(i * SubScale);
3625
3626 for (unsigned i = 0; i != SubScale; ++i) {
3627 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3628 Depth + 1);
3629 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3630 Known.insertBits(Known2, SubBitWidth * Shifts);
3631 }
3632 }
3633
3634 // Bitcast 'large element' scalar/vector to 'small element' vector.
3635 if ((SubBitWidth % BitWidth) == 0) {
3636 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3637
3638 // Collect known bits for the (smaller) output by collecting the known
3639 // bits from the overlapping larger input elements and extracting the
3640 // sub sections we actually care about.
3641 unsigned SubScale = SubBitWidth / BitWidth;
3642 APInt SubDemandedElts =
3643 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3644 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3645
3646 Known.Zero.setAllBits(); Known.One.setAllBits();
3647 for (unsigned i = 0; i != NumElts; ++i)
3648 if (DemandedElts[i]) {
3649 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3650 unsigned Offset = (Shifts % SubScale) * BitWidth;
3651 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3652 // If we don't know any bits, early out.
3653 if (Known.isUnknown())
3654 break;
3655 }
3656 }
3657 break;
3658 }
3659 case ISD::AND:
3660 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3661 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3662
3663 Known &= Known2;
3664 break;
3665 case ISD::OR:
3666 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3667 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3668
3669 Known |= Known2;
3670 break;
3671 case ISD::XOR:
3672 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3673 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3674
3675 Known ^= Known2;
3676 break;
3677 case ISD::MUL: {
3678 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3679 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3680 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3681 // TODO: SelfMultiply can be poison, but not undef.
3682 if (SelfMultiply)
3683 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3684 Op.getOperand(0), DemandedElts, false, Depth + 1);
3685 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3686
3687 // If the multiplication is known not to overflow, the product of a number
3688 // with itself is non-negative. Only do this if we didn't already computed
3689 // the opposite value for the sign bit.
3690 if (Op->getFlags().hasNoSignedWrap() &&
3691 Op.getOperand(0) == Op.getOperand(1) &&
3692 !Known.isNegative())
3693 Known.makeNonNegative();
3694 break;
3695 }
3696 case ISD::MULHU: {
3697 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3698 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3699 Known = KnownBits::mulhu(Known, Known2);
3700 break;
3701 }
3702 case ISD::MULHS: {
3703 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3704 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3705 Known = KnownBits::mulhs(Known, Known2);
3706 break;
3707 }
3708 case ISD::ABDU: {
3709 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3710 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3711 Known = KnownBits::abdu(Known, Known2);
3712 break;
3713 }
3714 case ISD::ABDS: {
3715 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3716 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3717 Known = KnownBits::abds(Known, Known2);
3718 unsigned SignBits1 =
3719 ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3720 if (SignBits1 == 1)
3721 break;
3722 unsigned SignBits0 =
3723 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3724 Known.Zero.setHighBits(std::min(SignBits0, SignBits1) - 1);
3725 break;
3726 }
3727 case ISD::UMUL_LOHI: {
3728 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3729 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3730 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3731 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3732 if (Op.getResNo() == 0)
3733 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3734 else
3735 Known = KnownBits::mulhu(Known, Known2);
3736 break;
3737 }
3738 case ISD::SMUL_LOHI: {
3739 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3740 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3741 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3742 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3743 if (Op.getResNo() == 0)
3744 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3745 else
3746 Known = KnownBits::mulhs(Known, Known2);
3747 break;
3748 }
3749 case ISD::AVGFLOORU: {
3750 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3751 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3752 Known = KnownBits::avgFloorU(Known, Known2);
3753 break;
3754 }
3755 case ISD::AVGCEILU: {
3756 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3757 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3758 Known = KnownBits::avgCeilU(Known, Known2);
3759 break;
3760 }
3761 case ISD::AVGFLOORS: {
3762 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3763 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3764 Known = KnownBits::avgFloorS(Known, Known2);
3765 break;
3766 }
3767 case ISD::AVGCEILS: {
3768 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3769 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3770 Known = KnownBits::avgCeilS(Known, Known2);
3771 break;
3772 }
3773 case ISD::SELECT:
3774 case ISD::VSELECT:
3775 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3776 // If we don't know any bits, early out.
3777 if (Known.isUnknown())
3778 break;
3779 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3780
3781 // Only known if known in both the LHS and RHS.
3782 Known = Known.intersectWith(Known2);
3783 break;
3784 case ISD::SELECT_CC:
3785 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3786 // If we don't know any bits, early out.
3787 if (Known.isUnknown())
3788 break;
3789 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3790
3791 // Only known if known in both the LHS and RHS.
3792 Known = Known.intersectWith(Known2);
3793 break;
3794 case ISD::SMULO:
3795 case ISD::UMULO:
3796 if (Op.getResNo() != 1)
3797 break;
3798 // The boolean result conforms to getBooleanContents.
3799 // If we know the result of a setcc has the top bits zero, use this info.
3800 // We know that we have an integer-based boolean since these operations
3801 // are only available for integer.
3802 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3804 BitWidth > 1)
3805 Known.Zero.setBitsFrom(1);
3806 break;
3807 case ISD::SETCC:
3808 case ISD::SETCCCARRY:
3809 case ISD::STRICT_FSETCC:
3810 case ISD::STRICT_FSETCCS: {
3811 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3812 // If we know the result of a setcc has the top bits zero, use this info.
3813 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3815 BitWidth > 1)
3816 Known.Zero.setBitsFrom(1);
3817 break;
3818 }
3819 case ISD::SHL: {
3820 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3821 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3822
3823 bool NUW = Op->getFlags().hasNoUnsignedWrap();
3824 bool NSW = Op->getFlags().hasNoSignedWrap();
3825
3826 bool ShAmtNonZero = Known2.isNonZero();
3827
3828 Known = KnownBits::shl(Known, Known2, NUW, NSW, ShAmtNonZero);
3829
3830 // Minimum shift low bits are known zero.
3831 if (std::optional<unsigned> ShMinAmt =
3832 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3833 Known.Zero.setLowBits(*ShMinAmt);
3834 break;
3835 }
3836 case ISD::SRL:
3837 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3838 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3839 Known = KnownBits::lshr(Known, Known2, /*ShAmtNonZero=*/false,
3840 Op->getFlags().hasExact());
3841
3842 // Minimum shift high bits are known zero.
3843 if (std::optional<unsigned> ShMinAmt =
3844 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3845 Known.Zero.setHighBits(*ShMinAmt);
3846 break;
3847 case ISD::SRA:
3848 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3849 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3850 Known = KnownBits::ashr(Known, Known2, /*ShAmtNonZero=*/false,
3851 Op->getFlags().hasExact());
3852 break;
3853 case ISD::ROTL:
3854 case ISD::ROTR:
3855 if (ConstantSDNode *C =
3856 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3857 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3858
3859 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3860
3861 // Canonicalize to ROTR.
3862 if (Opcode == ISD::ROTL && Amt != 0)
3863 Amt = BitWidth - Amt;
3864
3865 Known.Zero = Known.Zero.rotr(Amt);
3866 Known.One = Known.One.rotr(Amt);
3867 }
3868 break;
3869 case ISD::FSHL:
3870 case ISD::FSHR:
3871 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3872 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3873
3874 // For fshl, 0-shift returns the 1st arg.
3875 // For fshr, 0-shift returns the 2nd arg.
3876 if (Amt == 0) {
3877 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3878 DemandedElts, Depth + 1);
3879 break;
3880 }
3881
3882 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3883 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3884 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3885 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3886 if (Opcode == ISD::FSHL) {
3887 Known <<= Amt;
3888 Known2 >>= BitWidth - Amt;
3889 } else {
3890 Known <<= BitWidth - Amt;
3891 Known2 >>= Amt;
3892 }
3893 Known = Known.unionWith(Known2);
3894 }
3895 break;
3896 case ISD::SHL_PARTS:
3897 case ISD::SRA_PARTS:
3898 case ISD::SRL_PARTS: {
3899 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3900
3901 // Collect lo/hi source values and concatenate.
3902 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3903 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3904 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3905 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3906 Known = Known2.concat(Known);
3907
3908 // Collect shift amount.
3909 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3910
3911 if (Opcode == ISD::SHL_PARTS)
3912 Known = KnownBits::shl(Known, Known2);
3913 else if (Opcode == ISD::SRA_PARTS)
3914 Known = KnownBits::ashr(Known, Known2);
3915 else // if (Opcode == ISD::SRL_PARTS)
3916 Known = KnownBits::lshr(Known, Known2);
3917
3918 // TODO: Minimum shift low/high bits are known zero.
3919
3920 if (Op.getResNo() == 0)
3921 Known = Known.extractBits(LoBits, 0);
3922 else
3923 Known = Known.extractBits(HiBits, LoBits);
3924 break;
3925 }
3927 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3928 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3929 Known = Known.sextInReg(EVT.getScalarSizeInBits());
3930 break;
3931 }
3932 case ISD::CTTZ:
3933 case ISD::CTTZ_ZERO_UNDEF: {
3934 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3935 // If we have a known 1, its position is our upper bound.
3936 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3937 unsigned LowBits = llvm::bit_width(PossibleTZ);
3938 Known.Zero.setBitsFrom(LowBits);
3939 break;
3940 }
3941 case ISD::CTLZ:
3942 case ISD::CTLZ_ZERO_UNDEF: {
3943 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3944 // If we have a known 1, its position is our upper bound.
3945 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3946 unsigned LowBits = llvm::bit_width(PossibleLZ);
3947 Known.Zero.setBitsFrom(LowBits);
3948 break;
3949 }
3950 case ISD::CTPOP: {
3951 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3952 // If we know some of the bits are zero, they can't be one.
3953 unsigned PossibleOnes = Known2.countMaxPopulation();
3954 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3955 break;
3956 }
3957 case ISD::PARITY: {
3958 // Parity returns 0 everywhere but the LSB.
3959 Known.Zero.setBitsFrom(1);
3960 break;
3961 }
3962 case ISD::MGATHER:
3963 case ISD::MLOAD: {
3964 ISD::LoadExtType ETy =
3965 (Opcode == ISD::MGATHER)
3966 ? cast<MaskedGatherSDNode>(Op)->getExtensionType()
3967 : cast<MaskedLoadSDNode>(Op)->getExtensionType();
3968 if (ETy == ISD::ZEXTLOAD) {
3969 EVT MemVT = cast<MemSDNode>(Op)->getMemoryVT();
3970 KnownBits Known0(MemVT.getScalarSizeInBits());
3971 return Known0.zext(BitWidth);
3972 }
3973 break;
3974 }
3975 case ISD::LOAD: {
3977 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3978 if (ISD::isNON_EXTLoad(LD) && Cst) {
3979 // Determine any common known bits from the loaded constant pool value.
3980 Type *CstTy = Cst->getType();
3981 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3982 !Op.getValueType().isScalableVector()) {
3983 // If its a vector splat, then we can (quickly) reuse the scalar path.
3984 // NOTE: We assume all elements match and none are UNDEF.
3985 if (CstTy->isVectorTy()) {
3986 if (const Constant *Splat = Cst->getSplatValue()) {
3987 Cst = Splat;
3988 CstTy = Cst->getType();
3989 }
3990 }
3991 // TODO - do we need to handle different bitwidths?
3992 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
3993 // Iterate across all vector elements finding common known bits.
3994 Known.One.setAllBits();
3995 Known.Zero.setAllBits();
3996 for (unsigned i = 0; i != NumElts; ++i) {
3997 if (!DemandedElts[i])
3998 continue;
3999 if (Constant *Elt = Cst->getAggregateElement(i)) {
4000 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4001 const APInt &Value = CInt->getValue();
4002 Known.One &= Value;
4003 Known.Zero &= ~Value;
4004 continue;
4005 }
4006 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4007 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4008 Known.One &= Value;
4009 Known.Zero &= ~Value;
4010 continue;
4011 }
4012 }
4013 Known.One.clearAllBits();
4014 Known.Zero.clearAllBits();
4015 break;
4016 }
4017 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
4018 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
4019 Known = KnownBits::makeConstant(CInt->getValue());
4020 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
4021 Known =
4022 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
4023 }
4024 }
4025 }
4026 } else if (Op.getResNo() == 0) {
4027 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4028 KnownBits KnownScalarMemory(ScalarMemorySize);
4029 if (const MDNode *MD = LD->getRanges())
4030 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4031
4032 // Extend the Known bits from memory to the size of the scalar result.
4033 if (ISD::isZEXTLoad(Op.getNode()))
4034 Known = KnownScalarMemory.zext(BitWidth);
4035 else if (ISD::isSEXTLoad(Op.getNode()))
4036 Known = KnownScalarMemory.sext(BitWidth);
4037 else if (ISD::isEXTLoad(Op.getNode()))
4038 Known = KnownScalarMemory.anyext(BitWidth);
4039 else
4040 Known = KnownScalarMemory;
4041 assert(Known.getBitWidth() == BitWidth);
4042 return Known;
4043 }
4044 break;
4045 }
4047 if (Op.getValueType().isScalableVector())
4048 break;
4049 EVT InVT = Op.getOperand(0).getValueType();
4050 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4051 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4052 Known = Known.zext(BitWidth);
4053 break;
4054 }
4055 case ISD::ZERO_EXTEND: {
4056 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4057 Known = Known.zext(BitWidth);
4058 break;
4059 }
4061 if (Op.getValueType().isScalableVector())
4062 break;
4063 EVT InVT = Op.getOperand(0).getValueType();
4064 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4065 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4066 // If the sign bit is known to be zero or one, then sext will extend
4067 // it to the top bits, else it will just zext.
4068 Known = Known.sext(BitWidth);
4069 break;
4070 }
4071 case ISD::SIGN_EXTEND: {
4072 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4073 // If the sign bit is known to be zero or one, then sext will extend
4074 // it to the top bits, else it will just zext.
4075 Known = Known.sext(BitWidth);
4076 break;
4077 }
4079 if (Op.getValueType().isScalableVector())
4080 break;
4081 EVT InVT = Op.getOperand(0).getValueType();
4082 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4083 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4084 Known = Known.anyext(BitWidth);
4085 break;
4086 }
4087 case ISD::ANY_EXTEND: {
4088 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4089 Known = Known.anyext(BitWidth);
4090 break;
4091 }
4092 case ISD::TRUNCATE: {
4093 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4094 Known = Known.trunc(BitWidth);
4095 break;
4096 }
4097 case ISD::AssertZext: {
4098 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4100 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4101 Known.Zero |= (~InMask);
4102 Known.One &= (~Known.Zero);
4103 break;
4104 }
4105 case ISD::AssertAlign: {
4106 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
4107 assert(LogOfAlign != 0);
4108
4109 // TODO: Should use maximum with source
4110 // If a node is guaranteed to be aligned, set low zero bits accordingly as
4111 // well as clearing one bits.
4112 Known.Zero.setLowBits(LogOfAlign);
4113 Known.One.clearLowBits(LogOfAlign);
4114 break;
4115 }
4116 case ISD::FGETSIGN:
4117 // All bits are zero except the low bit.
4118 Known.Zero.setBitsFrom(1);
4119 break;
4120 case ISD::ADD:
4121 case ISD::SUB: {
4122 SDNodeFlags Flags = Op.getNode()->getFlags();
4123 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4124 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4126 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
4127 Flags.hasNoUnsignedWrap(), Known, Known2);
4128 break;
4129 }
4130 case ISD::USUBO:
4131 case ISD::SSUBO:
4132 case ISD::USUBO_CARRY:
4133 case ISD::SSUBO_CARRY:
4134 if (Op.getResNo() == 1) {
4135 // If we know the result of a setcc has the top bits zero, use this info.
4136 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4138 BitWidth > 1)
4139 Known.Zero.setBitsFrom(1);
4140 break;
4141 }
4142 [[fallthrough]];
4143 case ISD::SUBC: {
4144 assert(Op.getResNo() == 0 &&
4145 "We only compute knownbits for the difference here.");
4146
4147 // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
4148 KnownBits Borrow(1);
4149 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
4150 Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4151 // Borrow has bit width 1
4152 Borrow = Borrow.trunc(1);
4153 } else {
4154 Borrow.setAllZero();
4155 }
4156
4157 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4158 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4159 Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
4160 break;
4161 }
4162 case ISD::UADDO:
4163 case ISD::SADDO:
4164 case ISD::UADDO_CARRY:
4165 case ISD::SADDO_CARRY:
4166 if (Op.getResNo() == 1) {
4167 // If we know the result of a setcc has the top bits zero, use this info.
4168 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4170 BitWidth > 1)
4171 Known.Zero.setBitsFrom(1);
4172 break;
4173 }
4174 [[fallthrough]];
4175 case ISD::ADDC:
4176 case ISD::ADDE: {
4177 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
4178
4179 // With ADDE and UADDO_CARRY, a carry bit may be added in.
4180 KnownBits Carry(1);
4181 if (Opcode == ISD::ADDE)
4182 // Can't track carry from glue, set carry to unknown.
4183 Carry.resetAll();
4184 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
4185 Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4186 // Carry has bit width 1
4187 Carry = Carry.trunc(1);
4188 } else {
4189 Carry.setAllZero();
4190 }
4191
4192 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4193 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4194 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
4195 break;
4196 }
4197 case ISD::UDIV: {
4198 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4199 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4200 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
4201 break;
4202 }
4203 case ISD::SDIV: {
4204 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4205 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4206 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
4207 break;
4208 }
4209 case ISD::SREM: {
4210 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4211 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4212 Known = KnownBits::srem(Known, Known2);
4213 break;
4214 }
4215 case ISD::UREM: {
4216 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4217 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4218 Known = KnownBits::urem(Known, Known2);
4219 break;
4220 }
4221 case ISD::EXTRACT_ELEMENT: {
4222 Known = computeKnownBits(Op.getOperand(0), Depth+1);
4223 const unsigned Index = Op.getConstantOperandVal(1);
4224 const unsigned EltBitWidth = Op.getValueSizeInBits();
4225
4226 // Remove low part of known bits mask
4227 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4228 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4229
4230 // Remove high part of known bit mask
4231 Known = Known.trunc(EltBitWidth);
4232 break;
4233 }
4235 SDValue InVec = Op.getOperand(0);
4236 SDValue EltNo = Op.getOperand(1);
4237 EVT VecVT = InVec.getValueType();
4238 // computeKnownBits not yet implemented for scalable vectors.
4239 if (VecVT.isScalableVector())
4240 break;
4241 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
4242 const unsigned NumSrcElts = VecVT.getVectorNumElements();
4243
4244 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
4245 // anything about the extended bits.
4246 if (BitWidth > EltBitWidth)
4247 Known = Known.trunc(EltBitWidth);
4248
4249 // If we know the element index, just demand that vector element, else for
4250 // an unknown element index, ignore DemandedElts and demand them all.
4251 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4252 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4253 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4254 DemandedSrcElts =
4255 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4256
4257 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
4258 if (BitWidth > EltBitWidth)
4259 Known = Known.anyext(BitWidth);
4260 break;
4261 }
4263 if (Op.getValueType().isScalableVector())
4264 break;
4265
4266 // If we know the element index, split the demand between the
4267 // source vector and the inserted element, otherwise assume we need
4268 // the original demanded vector elements and the value.
4269 SDValue InVec = Op.getOperand(0);
4270 SDValue InVal = Op.getOperand(1);
4271 SDValue EltNo = Op.getOperand(2);
4272 bool DemandedVal = true;
4273 APInt DemandedVecElts = DemandedElts;
4274 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4275 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4276 unsigned EltIdx = CEltNo->getZExtValue();
4277 DemandedVal = !!DemandedElts[EltIdx];
4278 DemandedVecElts.clearBit(EltIdx);
4279 }
4280 Known.One.setAllBits();
4281 Known.Zero.setAllBits();
4282 if (DemandedVal) {
4283 Known2 = computeKnownBits(InVal, Depth + 1);
4284 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
4285 }
4286 if (!!DemandedVecElts) {
4287 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
4288 Known = Known.intersectWith(Known2);
4289 }
4290 break;
4291 }
4292 case ISD::BITREVERSE: {
4293 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4294 Known = Known2.reverseBits();
4295 break;
4296 }
4297 case ISD::BSWAP: {
4298 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4299 Known = Known2.byteSwap();
4300 break;
4301 }
4302 case ISD::ABS: {
4303 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4304 Known = Known2.abs();
4305 Known.Zero.setHighBits(
4306 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1) - 1);
4307 break;
4308 }
4309 case ISD::USUBSAT: {
4310 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4311 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4312 Known = KnownBits::usub_sat(Known, Known2);
4313 break;
4314 }
4315 case ISD::UMIN: {
4316 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4317 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4318 Known = KnownBits::umin(Known, Known2);
4319 break;
4320 }
4321 case ISD::UMAX: {
4322 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4323 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4324 Known = KnownBits::umax(Known, Known2);
4325 break;
4326 }
4327 case ISD::SMIN:
4328 case ISD::SMAX: {
4329 // If we have a clamp pattern, we know that the number of sign bits will be
4330 // the minimum of the clamp min/max range.
4331 bool IsMax = (Opcode == ISD::SMAX);
4332 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4333 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4334 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4335 CstHigh =
4336 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4337 if (CstLow && CstHigh) {
4338 if (!IsMax)
4339 std::swap(CstLow, CstHigh);
4340
4341 const APInt &ValueLow = CstLow->getAPIntValue();
4342 const APInt &ValueHigh = CstHigh->getAPIntValue();
4343 if (ValueLow.sle(ValueHigh)) {
4344 unsigned LowSignBits = ValueLow.getNumSignBits();
4345 unsigned HighSignBits = ValueHigh.getNumSignBits();
4346 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4347 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
4348 Known.One.setHighBits(MinSignBits);
4349 break;
4350 }
4351 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
4352 Known.Zero.setHighBits(MinSignBits);
4353 break;
4354 }
4355 }
4356 }
4357
4358 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4359 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4360 if (IsMax)
4361 Known = KnownBits::smax(Known, Known2);
4362 else
4363 Known = KnownBits::smin(Known, Known2);
4364
4365 // For SMAX, if CstLow is non-negative we know the result will be
4366 // non-negative and thus all sign bits are 0.
4367 // TODO: There's an equivalent of this for smin with negative constant for
4368 // known ones.
4369 if (IsMax && CstLow) {
4370 const APInt &ValueLow = CstLow->getAPIntValue();
4371 if (ValueLow.isNonNegative()) {
4372 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4373 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
4374 }
4375 }
4376
4377 break;
4378 }
4379 case ISD::UINT_TO_FP: {
4380 Known.makeNonNegative();
4381 break;
4382 }
4383 case ISD::SINT_TO_FP: {
4384 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4385 if (Known2.isNonNegative())
4386 Known.makeNonNegative();
4387 else if (Known2.isNegative())
4388 Known.makeNegative();
4389 break;
4390 }
4391 case ISD::FP_TO_UINT_SAT: {
4392 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
4393 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4395 break;
4396 }
4397 case ISD::ATOMIC_LOAD: {
4398 // If we are looking at the loaded value.
4399 if (Op.getResNo() == 0) {
4400 auto *AT = cast<AtomicSDNode>(Op);
4401 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4402 KnownBits KnownScalarMemory(ScalarMemorySize);
4403 if (const MDNode *MD = AT->getRanges())
4404 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4405
4406 switch (AT->getExtensionType()) {
4407 case ISD::ZEXTLOAD:
4408 Known = KnownScalarMemory.zext(BitWidth);
4409 break;
4410 case ISD::SEXTLOAD:
4411 Known = KnownScalarMemory.sext(BitWidth);
4412 break;
4413 case ISD::EXTLOAD:
4414 switch (TLI->getExtendForAtomicOps()) {
4415 case ISD::ZERO_EXTEND:
4416 Known = KnownScalarMemory.zext(BitWidth);
4417 break;
4418 case ISD::SIGN_EXTEND:
4419 Known = KnownScalarMemory.sext(BitWidth);
4420 break;
4421 default:
4422 Known = KnownScalarMemory.anyext(BitWidth);
4423 break;
4424 }
4425 break;
4426 case ISD::NON_EXTLOAD:
4427 Known = KnownScalarMemory;
4428 break;
4429 }
4430 assert(Known.getBitWidth() == BitWidth);
4431 }
4432 break;
4433 }
4434 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4435 if (Op.getResNo() == 1) {
4436 // The boolean result conforms to getBooleanContents.
4437 // If we know the result of a setcc has the top bits zero, use this info.
4438 // We know that we have an integer-based boolean since these operations
4439 // are only available for integer.
4440 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
4442 BitWidth > 1)
4443 Known.Zero.setBitsFrom(1);
4444 break;
4445 }
4446 [[fallthrough]];
4447 case ISD::ATOMIC_CMP_SWAP:
4448 case ISD::ATOMIC_SWAP:
4449 case ISD::ATOMIC_LOAD_ADD:
4450 case ISD::ATOMIC_LOAD_SUB:
4451 case ISD::ATOMIC_LOAD_AND:
4452 case ISD::ATOMIC_LOAD_CLR:
4453 case ISD::ATOMIC_LOAD_OR:
4454 case ISD::ATOMIC_LOAD_XOR:
4455 case ISD::ATOMIC_LOAD_NAND:
4456 case ISD::ATOMIC_LOAD_MIN:
4457 case ISD::ATOMIC_LOAD_MAX:
4458 case ISD::ATOMIC_LOAD_UMIN:
4459 case ISD::ATOMIC_LOAD_UMAX: {
4460 // If we are looking at the loaded value.
4461 if (Op.getResNo() == 0) {
4462 auto *AT = cast<AtomicSDNode>(Op);
4463 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4464
4465 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4466 Known.Zero.setBitsFrom(MemBits);
4467 }
4468 break;
4469 }
4470 case ISD::FrameIndex:
4472 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4473 Known, getMachineFunction());
4474 break;
4475
4476 default:
4477 if (Opcode < ISD::BUILTIN_OP_END)
4478 break;
4479 [[fallthrough]];
4483 // TODO: Probably okay to remove after audit; here to reduce change size
4484 // in initial enablement patch for scalable vectors
4485 if (Op.getValueType().isScalableVector())
4486 break;
4487
4488 // Allow the target to implement this method for its nodes.
4489 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4490 break;
4491 }
4492
4493 return Known;
4494}
4495
4496/// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4509
4512 // X + 0 never overflow
4513 if (isNullConstant(N1))
4514 return OFK_Never;
4515
4516 // If both operands each have at least two sign bits, the addition
4517 // cannot overflow.
4518 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4519 return OFK_Never;
4520
4521 // TODO: Add ConstantRange::signedAddMayOverflow handling.
4522 return OFK_Sometime;
4523}
4524
4527 // X + 0 never overflow
4528 if (isNullConstant(N1))
4529 return OFK_Never;
4530
4531 // mulhi + 1 never overflow
4532 KnownBits N1Known = computeKnownBits(N1);
4533 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4534 N1Known.getMaxValue().ult(2))
4535 return OFK_Never;
4536
4537 KnownBits N0Known = computeKnownBits(N0);
4538 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4539 N0Known.getMaxValue().ult(2))
4540 return OFK_Never;
4541
4542 // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4543 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4544 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4545 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4546}
4547
4550 // X - 0 never overflow
4551 if (isNullConstant(N1))
4552 return OFK_Never;
4553
4554 // If both operands each have at least two sign bits, the subtraction
4555 // cannot overflow.
4556 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4557 return OFK_Never;
4558
4559 KnownBits N0Known = computeKnownBits(N0);
4560 KnownBits N1Known = computeKnownBits(N1);
4561 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4562 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4563 return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4564}
4565
4568 // X - 0 never overflow
4569 if (isNullConstant(N1))
4570 return OFK_Never;
4571
4572 KnownBits N0Known = computeKnownBits(N0);
4573 KnownBits N1Known = computeKnownBits(N1);
4574 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4575 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4576 return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4577}
4578
4581 // X * 0 and X * 1 never overflow.
4582 if (isNullConstant(N1) || isOneConstant(N1))
4583 return OFK_Never;
4584
4585 KnownBits N0Known = computeKnownBits(N0);
4586 KnownBits N1Known = computeKnownBits(N1);
4587 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4588 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4589 return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4590}
4591
4594 // X * 0 and X * 1 never overflow.
4595 if (isNullConstant(N1) || isOneConstant(N1))
4596 return OFK_Never;
4597
4598 // Get the size of the result.
4599 unsigned BitWidth = N0.getScalarValueSizeInBits();
4600
4601 // Sum of the sign bits.
4602 unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4603
4604 // If we have enough sign bits, then there's no overflow.
4605 if (SignBits > BitWidth + 1)
4606 return OFK_Never;
4607
4608 if (SignBits == BitWidth + 1) {
4609 // The overflow occurs when the true multiplication of the
4610 // the operands is the minimum negative number.
4611 KnownBits N0Known = computeKnownBits(N0);
4612 KnownBits N1Known = computeKnownBits(N1);
4613 // If one of the operands is non-negative, then there's no
4614 // overflow.
4615 if (N0Known.isNonNegative() || N1Known.isNonNegative())
4616 return OFK_Never;
4617 }
4618
4619 return OFK_Sometime;
4620}
4621
4623 if (Depth >= MaxRecursionDepth)
4624 return false; // Limit search depth.
4625
4626 EVT OpVT = Val.getValueType();
4627 unsigned BitWidth = OpVT.getScalarSizeInBits();
4628
4629 // Is the constant a known power of 2?
4631 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4632 }))
4633 return true;
4634
4635 // A left-shift of a constant one will have exactly one bit set because
4636 // shifting the bit off the end is undefined.
4637 if (Val.getOpcode() == ISD::SHL) {
4638 auto *C = isConstOrConstSplat(Val.getOperand(0));
4639 if (C && C->getAPIntValue() == 1)
4640 return true;
4641 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4642 isKnownNeverZero(Val, Depth);
4643 }
4644
4645 // Similarly, a logical right-shift of a constant sign-bit will have exactly
4646 // one bit set.
4647 if (Val.getOpcode() == ISD::SRL) {
4648 auto *C = isConstOrConstSplat(Val.getOperand(0));
4649 if (C && C->getAPIntValue().isSignMask())
4650 return true;
4651 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4652 isKnownNeverZero(Val, Depth);
4653 }
4654
4655 if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4656 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4657
4658 // Are all operands of a build vector constant powers of two?
4659 if (Val.getOpcode() == ISD::BUILD_VECTOR)
4660 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4661 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4662 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4663 return false;
4664 }))
4665 return true;
4666
4667 // Is the operand of a splat vector a constant power of two?
4668 if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4670 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4671 return true;
4672
4673 // vscale(power-of-two) is a power-of-two for some targets
4674 if (Val.getOpcode() == ISD::VSCALE &&
4675 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4677 return true;
4678
4679 if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4680 Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4681 return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4683
4684 if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4685 return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4687
4688 // Looking for `x & -x` pattern:
4689 // If x == 0:
4690 // x & -x -> 0
4691 // If x != 0:
4692 // x & -x -> non-zero pow2
4693 // so if we find the pattern return whether we know `x` is non-zero.
4694 SDValue X;
4695 if (sd_match(Val, m_And(m_Value(X), m_Neg(m_Deferred(X)))))
4696 return isKnownNeverZero(X, Depth);
4697
4698 if (Val.getOpcode() == ISD::ZERO_EXTEND)
4699 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4700
4701 // More could be done here, though the above checks are enough
4702 // to handle some common cases.
4703 return false;
4704}
4705
4707 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Val, true))
4708 return C1->getValueAPF().getExactLog2Abs() >= 0;
4709
4710 if (Val.getOpcode() == ISD::UINT_TO_FP || Val.getOpcode() == ISD::SINT_TO_FP)
4711 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4712
4713 return false;
4714}
4715
4717 EVT VT = Op.getValueType();
4718
4719 // Since the number of lanes in a scalable vector is unknown at compile time,
4720 // we track one bit which is implicitly broadcast to all lanes. This means
4721 // that all lanes in a scalable vector are considered demanded.
4722 APInt DemandedElts = VT.isFixedLengthVector()
4724 : APInt(1, 1);
4725 return ComputeNumSignBits(Op, DemandedElts, Depth);
4726}
4727
4728unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4729 unsigned Depth) const {
4730 EVT VT = Op.getValueType();
4731 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4732 unsigned VTBits = VT.getScalarSizeInBits();
4733 unsigned NumElts = DemandedElts.getBitWidth();
4734 unsigned Tmp, Tmp2;
4735 unsigned FirstAnswer = 1;
4736
4737 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4738 const APInt &Val = C->getAPIntValue();
4739 return Val.getNumSignBits();
4740 }
4741
4742 if (Depth >= MaxRecursionDepth)
4743 return 1; // Limit search depth.
4744
4745 if (!DemandedElts)
4746 return 1; // No demanded elts, better to assume we don't know anything.
4747
4748 unsigned Opcode = Op.getOpcode();
4749 switch (Opcode) {
4750 default: break;
4751 case ISD::AssertSext:
4752 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4753 return VTBits-Tmp+1;
4754 case ISD::AssertZext:
4755 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4756 return VTBits-Tmp;
4757 case ISD::MERGE_VALUES:
4758 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4759 Depth + 1);
4760 case ISD::SPLAT_VECTOR: {
4761 // Check if the sign bits of source go down as far as the truncated value.
4762 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4763 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4764 if (NumSrcSignBits > (NumSrcBits - VTBits))
4765 return NumSrcSignBits - (NumSrcBits - VTBits);
4766 break;
4767 }
4768 case ISD::BUILD_VECTOR:
4769 assert(!VT.isScalableVector());
4770 Tmp = VTBits;
4771 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4772 if (!DemandedElts[i])
4773 continue;
4774
4775 SDValue SrcOp = Op.getOperand(i);
4776 // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4777 // for constant nodes to ensure we only look at the sign bits.
4779 APInt T = C->getAPIntValue().trunc(VTBits);
4780 Tmp2 = T.getNumSignBits();
4781 } else {
4782 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4783
4784 if (SrcOp.getValueSizeInBits() != VTBits) {
4785 assert(SrcOp.getValueSizeInBits() > VTBits &&
4786 "Expected BUILD_VECTOR implicit truncation");
4787 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4788 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4789 }
4790 }
4791 Tmp = std::min(Tmp, Tmp2);
4792 }
4793 return Tmp;
4794
4795 case ISD::VECTOR_SHUFFLE: {
4796 // Collect the minimum number of sign bits that are shared by every vector
4797 // element referenced by the shuffle.
4798 APInt DemandedLHS, DemandedRHS;
4800 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4801 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4802 DemandedLHS, DemandedRHS))
4803 return 1;
4804
4805 Tmp = std::numeric_limits<unsigned>::max();
4806 if (!!DemandedLHS)
4807 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4808 if (!!DemandedRHS) {
4809 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4810 Tmp = std::min(Tmp, Tmp2);
4811 }
4812 // If we don't know anything, early out and try computeKnownBits fall-back.
4813 if (Tmp == 1)
4814 break;
4815 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4816 return Tmp;
4817 }
4818
4819 case ISD::BITCAST: {
4820 if (VT.isScalableVector())
4821 break;
4822 SDValue N0 = Op.getOperand(0);
4823 EVT SrcVT = N0.getValueType();
4824 unsigned SrcBits = SrcVT.getScalarSizeInBits();
4825
4826 // Ignore bitcasts from unsupported types..
4827 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4828 break;
4829
4830 // Fast handling of 'identity' bitcasts.
4831 if (VTBits == SrcBits)
4832 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4833
4834 bool IsLE = getDataLayout().isLittleEndian();
4835
4836 // Bitcast 'large element' scalar/vector to 'small element' vector.
4837 if ((SrcBits % VTBits) == 0) {
4838 assert(VT.isVector() && "Expected bitcast to vector");
4839
4840 unsigned Scale = SrcBits / VTBits;
4841 APInt SrcDemandedElts =
4842 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4843
4844 // Fast case - sign splat can be simply split across the small elements.
4845 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4846 if (Tmp == SrcBits)
4847 return VTBits;
4848
4849 // Slow case - determine how far the sign extends into each sub-element.
4850 Tmp2 = VTBits;
4851 for (unsigned i = 0; i != NumElts; ++i)
4852 if (DemandedElts[i]) {
4853 unsigned SubOffset = i % Scale;
4854 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4855 SubOffset = SubOffset * VTBits;
4856 if (Tmp <= SubOffset)
4857 return 1;
4858 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4859 }
4860 return Tmp2;
4861 }
4862 break;
4863 }
4864
4866 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4867 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4868 return VTBits - Tmp + 1;
4869 case ISD::SIGN_EXTEND:
4870 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4871 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4873 // Max of the input and what this extends.
4874 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4875 Tmp = VTBits-Tmp+1;
4876 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4877 return std::max(Tmp, Tmp2);
4879 if (VT.isScalableVector())
4880 break;
4881 SDValue Src = Op.getOperand(0);
4882 EVT SrcVT = Src.getValueType();
4883 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4884 Tmp = VTBits - SrcVT.getScalarSizeInBits();
4885 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4886 }
4887 case ISD::SRA:
4888 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4889 // SRA X, C -> adds C sign bits.
4890 if (std::optional<unsigned> ShAmt =
4891 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
4892 Tmp = std::min(Tmp + *ShAmt, VTBits);
4893 return Tmp;
4894 case ISD::SHL:
4895 if (std::optional<ConstantRange> ShAmtRange =
4896 getValidShiftAmountRange(Op, DemandedElts, Depth + 1)) {
4897 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4898 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4899 // Try to look through ZERO/SIGN/ANY_EXTEND. If all extended bits are
4900 // shifted out, then we can compute the number of sign bits for the
4901 // operand being extended. A future improvement could be to pass along the
4902 // "shifted left by" information in the recursive calls to
4903 // ComputeKnownSignBits. Allowing us to handle this more generically.
4904 if (ISD::isExtOpcode(Op.getOperand(0).getOpcode())) {
4905 SDValue Ext = Op.getOperand(0);
4906 EVT ExtVT = Ext.getValueType();
4907 SDValue Extendee = Ext.getOperand(0);
4908 EVT ExtendeeVT = Extendee.getValueType();
4909 unsigned SizeDifference =
4910 ExtVT.getScalarSizeInBits() - ExtendeeVT.getScalarSizeInBits();
4911 if (SizeDifference <= MinShAmt) {
4912 Tmp = SizeDifference +
4913 ComputeNumSignBits(Extendee, DemandedElts, Depth + 1);
4914 if (MaxShAmt < Tmp)
4915 return Tmp - MaxShAmt;
4916 }
4917 }
4918 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4919 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4920 if (MaxShAmt < Tmp)
4921 return Tmp - MaxShAmt;
4922 }
4923 break;
4924 case ISD::AND:
4925 case ISD::OR:
4926 case ISD::XOR: // NOT is handled here.
4927 // Logical binary ops preserve the number of sign bits at the worst.
4928 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4929 if (Tmp != 1) {
4930 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4931 FirstAnswer = std::min(Tmp, Tmp2);
4932 // We computed what we know about the sign bits as our first
4933 // answer. Now proceed to the generic code that uses
4934 // computeKnownBits, and pick whichever answer is better.
4935 }
4936 break;
4937
4938 case ISD::SELECT:
4939 case ISD::VSELECT:
4940 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4941 if (Tmp == 1) return 1; // Early out.
4942 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4943 return std::min(Tmp, Tmp2);
4944 case ISD::SELECT_CC:
4945 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4946 if (Tmp == 1) return 1; // Early out.
4947 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4948 return std::min(Tmp, Tmp2);
4949
4950 case ISD::SMIN:
4951 case ISD::SMAX: {
4952 // If we have a clamp pattern, we know that the number of sign bits will be
4953 // the minimum of the clamp min/max range.
4954 bool IsMax = (Opcode == ISD::SMAX);
4955 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4956 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4957 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4958 CstHigh =
4959 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4960 if (CstLow && CstHigh) {
4961 if (!IsMax)
4962 std::swap(CstLow, CstHigh);
4963 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4964 Tmp = CstLow->getAPIntValue().getNumSignBits();
4965 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4966 return std::min(Tmp, Tmp2);
4967 }
4968 }
4969
4970 // Fallback - just get the minimum number of sign bits of the operands.
4971 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4972 if (Tmp == 1)
4973 return 1; // Early out.
4974 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4975 return std::min(Tmp, Tmp2);
4976 }
4977 case ISD::UMIN:
4978 case ISD::UMAX:
4979 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4980 if (Tmp == 1)
4981 return 1; // Early out.
4982 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4983 return std::min(Tmp, Tmp2);
4984 case ISD::SSUBO_CARRY:
4985 case ISD::USUBO_CARRY:
4986 // sub_carry(x,x,c) -> 0/-1 (sext carry)
4987 if (Op.getResNo() == 0 && Op.getOperand(0) == Op.getOperand(1))
4988 return VTBits;
4989 [[fallthrough]];
4990 case ISD::SADDO:
4991 case ISD::UADDO:
4992 case ISD::SADDO_CARRY:
4993 case ISD::UADDO_CARRY:
4994 case ISD::SSUBO:
4995 case ISD::USUBO:
4996 case ISD::SMULO:
4997 case ISD::UMULO:
4998 if (Op.getResNo() != 1)
4999 break;
5000 // The boolean result conforms to getBooleanContents. Fall through.
5001 // If setcc returns 0/-1, all bits are sign bits.
5002 // We know that we have an integer-based boolean since these operations
5003 // are only available for integer.
5004 if (TLI->getBooleanContents(VT.isVector(), false) ==
5006 return VTBits;
5007 break;
5008 case ISD::SETCC:
5009 case ISD::SETCCCARRY:
5010 case ISD::STRICT_FSETCC:
5011 case ISD::STRICT_FSETCCS: {
5012 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
5013 // If setcc returns 0/-1, all bits are sign bits.
5014 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
5016 return VTBits;
5017 break;
5018 }
5019 case ISD::ROTL:
5020 case ISD::ROTR:
5021 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5022
5023 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
5024 if (Tmp == VTBits)
5025 return VTBits;
5026
5027 if (ConstantSDNode *C =
5028 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
5029 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
5030
5031 // Handle rotate right by N like a rotate left by 32-N.
5032 if (Opcode == ISD::ROTR)
5033 RotAmt = (VTBits - RotAmt) % VTBits;
5034
5035 // If we aren't rotating out all of the known-in sign bits, return the
5036 // number that are left. This handles rotl(sext(x), 1) for example.
5037 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
5038 }
5039 break;
5040 case ISD::ADD:
5041 case ISD::ADDC:
5042 // Add can have at most one carry bit. Thus we know that the output
5043 // is, at worst, one more bit than the inputs.
5044 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5045 if (Tmp == 1) return 1; // Early out.
5046
5047 // Special case decrementing a value (ADD X, -1):
5048 if (ConstantSDNode *CRHS =
5049 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
5050 if (CRHS->isAllOnes()) {
5051 KnownBits Known =
5052 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5053
5054 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5055 // sign bits set.
5056 if ((Known.Zero | 1).isAllOnes())
5057 return VTBits;
5058
5059 // If we are subtracting one from a positive number, there is no carry
5060 // out of the result.
5061 if (Known.isNonNegative())
5062 return Tmp;
5063 }
5064
5065 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5066 if (Tmp2 == 1) return 1; // Early out.
5067 return std::min(Tmp, Tmp2) - 1;
5068 case ISD::SUB:
5069 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5070 if (Tmp2 == 1) return 1; // Early out.
5071
5072 // Handle NEG.
5073 if (ConstantSDNode *CLHS =
5074 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
5075 if (CLHS->isZero()) {
5076 KnownBits Known =
5077 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5078 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5079 // sign bits set.
5080 if ((Known.Zero | 1).isAllOnes())
5081 return VTBits;
5082
5083 // If the input is known to be positive (the sign bit is known clear),
5084 // the output of the NEG has the same number of sign bits as the input.
5085 if (Known.isNonNegative())
5086 return Tmp2;
5087
5088 // Otherwise, we treat this like a SUB.
5089 }
5090
5091 // Sub can have at most one carry bit. Thus we know that the output
5092 // is, at worst, one more bit than the inputs.
5093 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5094 if (Tmp == 1) return 1; // Early out.
5095 return std::min(Tmp, Tmp2) - 1;
5096 case ISD::MUL: {
5097 // The output of the Mul can be at most twice the valid bits in the inputs.
5098 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5099 if (SignBitsOp0 == 1)
5100 break;
5101 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
5102 if (SignBitsOp1 == 1)
5103 break;
5104 unsigned OutValidBits =
5105 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5106 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5107 }
5108 case ISD::AVGCEILS:
5109 case ISD::AVGFLOORS:
5110 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5111 if (Tmp == 1)
5112 return 1; // Early out.
5113 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5114 return std::min(Tmp, Tmp2);
5115 case ISD::SREM:
5116 // The sign bit is the LHS's sign bit, except when the result of the
5117 // remainder is zero. The magnitude of the result should be less than or
5118 // equal to the magnitude of the LHS. Therefore, the result should have
5119 // at least as many sign bits as the left hand side.
5120 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5121 case ISD::TRUNCATE: {
5122 // Check if the sign bits of source go down as far as the truncated value.
5123 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
5124 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5125 if (NumSrcSignBits > (NumSrcBits - VTBits))
5126 return NumSrcSignBits - (NumSrcBits - VTBits);
5127 break;
5128 }
5129 case ISD::EXTRACT_ELEMENT: {
5130 if (VT.isScalableVector())
5131 break;
5132 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
5133 const int BitWidth = Op.getValueSizeInBits();
5134 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
5135
5136 // Get reverse index (starting from 1), Op1 value indexes elements from
5137 // little end. Sign starts at big end.
5138 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
5139
5140 // If the sign portion ends in our element the subtraction gives correct
5141 // result. Otherwise it gives either negative or > bitwidth result
5142 return std::clamp(KnownSign - rIndex * BitWidth, 1, BitWidth);
5143 }
5145 if (VT.isScalableVector())
5146 break;
5147 // If we know the element index, split the demand between the
5148 // source vector and the inserted element, otherwise assume we need
5149 // the original demanded vector elements and the value.
5150 SDValue InVec = Op.getOperand(0);
5151 SDValue InVal = Op.getOperand(1);
5152 SDValue EltNo = Op.getOperand(2);
5153 bool DemandedVal = true;
5154 APInt DemandedVecElts = DemandedElts;
5155 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
5156 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5157 unsigned EltIdx = CEltNo->getZExtValue();
5158 DemandedVal = !!DemandedElts[EltIdx];
5159 DemandedVecElts.clearBit(EltIdx);
5160 }
5161 Tmp = std::numeric_limits<unsigned>::max();
5162 if (DemandedVal) {
5163 // TODO - handle implicit truncation of inserted elements.
5164 if (InVal.getScalarValueSizeInBits() != VTBits)
5165 break;
5166 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
5167 Tmp = std::min(Tmp, Tmp2);
5168 }
5169 if (!!DemandedVecElts) {
5170 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
5171 Tmp = std::min(Tmp, Tmp2);
5172 }
5173 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5174 return Tmp;
5175 }
5177 assert(!VT.isScalableVector());
5178 SDValue InVec = Op.getOperand(0);
5179 SDValue EltNo = Op.getOperand(1);
5180 EVT VecVT = InVec.getValueType();
5181 // ComputeNumSignBits not yet implemented for scalable vectors.
5182 if (VecVT.isScalableVector())
5183 break;
5184 const unsigned BitWidth = Op.getValueSizeInBits();
5185 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
5186 const unsigned NumSrcElts = VecVT.getVectorNumElements();
5187
5188 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
5189 // anything about sign bits. But if the sizes match we can derive knowledge
5190 // about sign bits from the vector operand.
5191 if (BitWidth != EltBitWidth)
5192 break;
5193
5194 // If we know the element index, just demand that vector element, else for
5195 // an unknown element index, ignore DemandedElts and demand them all.
5196 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
5197 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
5198 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5199 DemandedSrcElts =
5200 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
5201
5202 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
5203 }
5205 // Offset the demanded elts by the subvector index.
5206 SDValue Src = Op.getOperand(0);
5207 // Bail until we can represent demanded elements for scalable vectors.
5208 if (Src.getValueType().isScalableVector())
5209 break;
5210 uint64_t Idx = Op.getConstantOperandVal(1);
5211 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5212 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5213 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5214 }
5215 case ISD::CONCAT_VECTORS: {
5216 if (VT.isScalableVector())
5217 break;
5218 // Determine the minimum number of sign bits across all demanded
5219 // elts of the input vectors. Early out if the result is already 1.
5220 Tmp = std::numeric_limits<unsigned>::max();
5221 EVT SubVectorVT = Op.getOperand(0).getValueType();
5222 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
5223 unsigned NumSubVectors = Op.getNumOperands();
5224 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5225 APInt DemandedSub =
5226 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
5227 if (!DemandedSub)
5228 continue;
5229 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
5230 Tmp = std::min(Tmp, Tmp2);
5231 }
5232 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5233 return Tmp;
5234 }
5235 case ISD::INSERT_SUBVECTOR: {
5236 if (VT.isScalableVector())
5237 break;
5238 // Demand any elements from the subvector and the remainder from the src its
5239 // inserted into.
5240 SDValue Src = Op.getOperand(0);
5241 SDValue Sub = Op.getOperand(1);
5242 uint64_t Idx = Op.getConstantOperandVal(2);
5243 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5244 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5245 APInt DemandedSrcElts = DemandedElts;
5246 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5247
5248 Tmp = std::numeric_limits<unsigned>::max();
5249 if (!!DemandedSubElts) {
5250 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
5251 if (Tmp == 1)
5252 return 1; // early-out
5253 }
5254 if (!!DemandedSrcElts) {
5255 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5256 Tmp = std::min(Tmp, Tmp2);
5257 }
5258 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5259 return Tmp;
5260 }
5261 case ISD::LOAD: {
5263 if (const MDNode *Ranges = LD->getRanges()) {
5264 if (DemandedElts != 1)
5265 break;
5266
5268 if (VTBits > CR.getBitWidth()) {
5269 switch (LD->getExtensionType()) {
5270 case ISD::SEXTLOAD:
5271 CR = CR.signExtend(VTBits);
5272 break;
5273 case ISD::ZEXTLOAD:
5274 CR = CR.zeroExtend(VTBits);
5275 break;
5276 default:
5277 break;
5278 }
5279 }
5280
5281 if (VTBits != CR.getBitWidth())
5282 break;
5283 return std::min(CR.getSignedMin().getNumSignBits(),
5285 }
5286
5287 break;
5288 }
5289 case ISD::ATOMIC_CMP_SWAP:
5290 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5291 case ISD::ATOMIC_SWAP:
5292 case ISD::ATOMIC_LOAD_ADD:
5293 case ISD::ATOMIC_LOAD_SUB:
5294 case ISD::ATOMIC_LOAD_AND:
5295 case ISD::ATOMIC_LOAD_CLR:
5296 case ISD::ATOMIC_LOAD_OR:
5297 case ISD::ATOMIC_LOAD_XOR:
5298 case ISD::ATOMIC_LOAD_NAND:
5299 case ISD::ATOMIC_LOAD_MIN:
5300 case ISD::ATOMIC_LOAD_MAX:
5301 case ISD::ATOMIC_LOAD_UMIN:
5302 case ISD::ATOMIC_LOAD_UMAX:
5303 case ISD::ATOMIC_LOAD: {
5304 auto *AT = cast<AtomicSDNode>(Op);
5305 // If we are looking at the loaded value.
5306 if (Op.getResNo() == 0) {
5307 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5308 if (Tmp == VTBits)
5309 return 1; // early-out
5310
5311 // For atomic_load, prefer to use the extension type.
5312 if (Op->getOpcode() == ISD::ATOMIC_LOAD) {
5313 switch (AT->getExtensionType()) {
5314 default:
5315 break;
5316 case ISD::SEXTLOAD:
5317 return VTBits - Tmp + 1;
5318 case ISD::ZEXTLOAD:
5319 return VTBits - Tmp;
5320 }
5321 }
5322
5323 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
5324 return VTBits - Tmp + 1;
5325 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
5326 return VTBits - Tmp;
5327 }
5328 break;
5329 }
5330 }
5331
5332 // If we are looking at the loaded value of the SDNode.
5333 if (Op.getResNo() == 0) {
5334 // Handle LOADX separately here. EXTLOAD case will fallthrough.
5335 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
5336 unsigned ExtType = LD->getExtensionType();
5337 switch (ExtType) {
5338 default: break;
5339 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
5340 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5341 return VTBits - Tmp + 1;
5342 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
5343 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5344 return VTBits - Tmp;
5345 case ISD::NON_EXTLOAD:
5346 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5347 // We only need to handle vectors - computeKnownBits should handle
5348 // scalar cases.
5349 Type *CstTy = Cst->getType();
5350 if (CstTy->isVectorTy() && !VT.isScalableVector() &&
5351 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
5352 VTBits == CstTy->getScalarSizeInBits()) {
5353 Tmp = VTBits;
5354 for (unsigned i = 0; i != NumElts; ++i) {
5355 if (!DemandedElts[i])
5356 continue;
5357 if (Constant *Elt = Cst->getAggregateElement(i)) {
5358 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
5359 const APInt &Value = CInt->getValue();
5360 Tmp = std::min(Tmp, Value.getNumSignBits());
5361 continue;
5362 }
5363 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
5364 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5365 Tmp = std::min(Tmp, Value.getNumSignBits());
5366 continue;
5367 }
5368 }
5369 // Unknown type. Conservatively assume no bits match sign bit.
5370 return 1;
5371 }
5372 return Tmp;
5373 }
5374 }
5375 break;
5376 }
5377 }
5378 }
5379
5380 // Allow the target to implement this method for its nodes.
5381 if (Opcode >= ISD::BUILTIN_OP_END ||
5382 Opcode == ISD::INTRINSIC_WO_CHAIN ||
5383 Opcode == ISD::INTRINSIC_W_CHAIN ||
5384 Opcode == ISD::INTRINSIC_VOID) {
5385 // TODO: This can probably be removed once target code is audited. This
5386 // is here purely to reduce patch size and review complexity.
5387 if (!VT.isScalableVector()) {
5388 unsigned NumBits =
5389 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
5390 if (NumBits > 1)
5391 FirstAnswer = std::max(FirstAnswer, NumBits);
5392 }
5393 }
5394
5395 // Finally, if we can prove that the top bits of the result are 0's or 1's,
5396 // use this information.
5397 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
5398 return std::max(FirstAnswer, Known.countMinSignBits());
5399}
5400
5402 unsigned Depth) const {
5403 unsigned SignBits = ComputeNumSignBits(Op, Depth);
5404 return Op.getScalarValueSizeInBits() - SignBits + 1;
5405}
5406
5408 const APInt &DemandedElts,
5409 unsigned Depth) const {
5410 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
5411 return Op.getScalarValueSizeInBits() - SignBits + 1;
5412}
5413
5415 unsigned Depth) const {
5416 // Early out for FREEZE.
5417 if (Op.getOpcode() == ISD::FREEZE)
5418 return true;
5419
5420 EVT VT = Op.getValueType();
5421 APInt DemandedElts = VT.isFixedLengthVector()
5423 : APInt(1, 1);
5424 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
5425}
5426
5428 const APInt &DemandedElts,
5429 bool PoisonOnly,
5430 unsigned Depth) const {
5431 unsigned Opcode = Op.getOpcode();
5432
5433 // Early out for FREEZE.
5434 if (Opcode == ISD::FREEZE)
5435 return true;
5436
5437 if (Depth >= MaxRecursionDepth)
5438 return false; // Limit search depth.
5439
5440 if (isIntOrFPConstant(Op))
5441 return true;
5442
5443 switch (Opcode) {
5444 case ISD::CONDCODE:
5445 case ISD::VALUETYPE:
5446 case ISD::FrameIndex:
5448 case ISD::CopyFromReg:
5449 return true;
5450
5451 case ISD::POISON:
5452 return false;
5453
5454 case ISD::UNDEF:
5455 return PoisonOnly;
5456
5457 case ISD::BUILD_VECTOR:
5458 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
5459 // this shouldn't affect the result.
5460 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
5461 if (!DemandedElts[i])
5462 continue;
5464 Depth + 1))
5465 return false;
5466 }
5467 return true;
5468
5470 SDValue Src = Op.getOperand(0);
5471 if (Src.getValueType().isScalableVector())
5472 break;
5473 uint64_t Idx = Op.getConstantOperandVal(1);
5474 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5475 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5476 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5477 Depth + 1);
5478 }
5479
5480 case ISD::INSERT_SUBVECTOR: {
5481 if (Op.getValueType().isScalableVector())
5482 break;
5483 SDValue Src = Op.getOperand(0);
5484 SDValue Sub = Op.getOperand(1);
5485 uint64_t Idx = Op.getConstantOperandVal(2);
5486 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5487 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5488 APInt DemandedSrcElts = DemandedElts;
5489 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5490
5491 if (!!DemandedSubElts && !isGuaranteedNotToBeUndefOrPoison(
5492 Sub, DemandedSubElts, PoisonOnly, Depth + 1))
5493 return false;
5494 if (!!DemandedSrcElts && !isGuaranteedNotToBeUndefOrPoison(
5495 Src, DemandedSrcElts, PoisonOnly, Depth + 1))
5496 return false;
5497 return true;
5498 }
5499
5501 SDValue Src = Op.getOperand(0);
5502 auto *IndexC = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5503 EVT SrcVT = Src.getValueType();
5504 if (SrcVT.isFixedLengthVector() && IndexC &&
5505 IndexC->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5506 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5507 IndexC->getZExtValue());
5508 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5509 Depth + 1);
5510 }
5511 break;
5512 }
5513
5515 SDValue InVec = Op.getOperand(0);
5516 SDValue InVal = Op.getOperand(1);
5517 SDValue EltNo = Op.getOperand(2);
5518 EVT VT = InVec.getValueType();
5519 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
5520 if (IndexC && VT.isFixedLengthVector() &&
5521 IndexC->getAPIntValue().ult(VT.getVectorNumElements())) {
5522 if (DemandedElts[IndexC->getZExtValue()] &&
5524 return false;
5525 APInt InVecDemandedElts = DemandedElts;
5526 InVecDemandedElts.clearBit(IndexC->getZExtValue());
5527 if (!!InVecDemandedElts &&
5528 !isGuaranteedNotToBeUndefOrPoison(InVec, InVecDemandedElts,
5529 PoisonOnly, Depth + 1))
5530 return false;
5531 return true;
5532 }
5533 break;
5534 }
5535
5537 // Check upper (known undef) elements.
5538 if (DemandedElts.ugt(1) && !PoisonOnly)
5539 return false;
5540 // Check element zero.
5541 if (DemandedElts[0] && !isGuaranteedNotToBeUndefOrPoison(
5542 Op.getOperand(0), PoisonOnly, Depth + 1))
5543 return false;
5544 return true;
5545
5546 case ISD::SPLAT_VECTOR:
5547 return isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), PoisonOnly,
5548 Depth + 1);
5549
5550 case ISD::VECTOR_SHUFFLE: {
5551 APInt DemandedLHS, DemandedRHS;
5552 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5553 if (!getShuffleDemandedElts(DemandedElts.getBitWidth(), SVN->getMask(),
5554 DemandedElts, DemandedLHS, DemandedRHS,
5555 /*AllowUndefElts=*/false))
5556 return false;
5557 if (!DemandedLHS.isZero() &&
5558 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedLHS,
5559 PoisonOnly, Depth + 1))
5560 return false;
5561 if (!DemandedRHS.isZero() &&
5562 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedRHS,
5563 PoisonOnly, Depth + 1))
5564 return false;
5565 return true;
5566 }
5567
5568 case ISD::SHL:
5569 case ISD::SRL:
5570 case ISD::SRA:
5571 // Shift amount operand is checked by canCreateUndefOrPoison. So it is
5572 // enough to check operand 0 if Op can't create undef/poison.
5573 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5574 /*ConsiderFlags*/ true, Depth) &&
5575 isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
5576 PoisonOnly, Depth + 1);
5577
5578 case ISD::BSWAP:
5579 case ISD::CTPOP:
5580 case ISD::BITREVERSE:
5581 case ISD::AND:
5582 case ISD::OR:
5583 case ISD::XOR:
5584 case ISD::ADD:
5585 case ISD::SUB:
5586 case ISD::MUL:
5587 case ISD::SADDSAT:
5588 case ISD::UADDSAT:
5589 case ISD::SSUBSAT:
5590 case ISD::USUBSAT:
5591 case ISD::SSHLSAT:
5592 case ISD::USHLSAT:
5593 case ISD::SMIN:
5594 case ISD::SMAX:
5595 case ISD::UMIN:
5596 case ISD::UMAX:
5597 case ISD::ZERO_EXTEND:
5598 case ISD::SIGN_EXTEND:
5599 case ISD::ANY_EXTEND:
5600 case ISD::TRUNCATE:
5601 case ISD::VSELECT: {
5602 // If Op can't create undef/poison and none of its operands are undef/poison
5603 // then Op is never undef/poison. A difference from the more common check
5604 // below, outside the switch, is that we handle elementwise operations for
5605 // which the DemandedElts mask is valid for all operands here.
5606 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5607 /*ConsiderFlags*/ true, Depth) &&
5608 all_of(Op->ops(), [&](SDValue V) {
5609 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5610 PoisonOnly, Depth + 1);
5611 });
5612 }
5613
5614 // TODO: Search for noundef attributes from library functions.
5615
5616 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
5617
5618 default:
5619 // Allow the target to implement this method for its nodes.
5620 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5621 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5622 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5623 Op, DemandedElts, *this, PoisonOnly, Depth);
5624 break;
5625 }
5626
5627 // If Op can't create undef/poison and none of its operands are undef/poison
5628 // then Op is never undef/poison.
5629 // NOTE: TargetNodes can handle this in themselves in
5630 // isGuaranteedNotToBeUndefOrPoisonForTargetNode or let
5631 // TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode handle it.
5632 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
5633 Depth) &&
5634 all_of(Op->ops(), [&](SDValue V) {
5635 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5636 });
5637}
5638
5640 bool ConsiderFlags,
5641 unsigned Depth) const {
5642 EVT VT = Op.getValueType();
5643 APInt DemandedElts = VT.isFixedLengthVector()
5645 : APInt(1, 1);
5646 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5647 Depth);
5648}
5649
5651 bool PoisonOnly, bool ConsiderFlags,
5652 unsigned Depth) const {
5653 if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5654 return true;
5655
5656 unsigned Opcode = Op.getOpcode();
5657 switch (Opcode) {
5658 case ISD::AssertSext:
5659 case ISD::AssertZext:
5660 case ISD::AssertAlign:
5662 // Assertion nodes can create poison if the assertion fails.
5663 return true;
5664
5665 case ISD::FREEZE:
5669 case ISD::SADDSAT:
5670 case ISD::UADDSAT:
5671 case ISD::SSUBSAT:
5672 case ISD::USUBSAT:
5673 case ISD::MULHU:
5674 case ISD::MULHS:
5675 case ISD::AVGFLOORS:
5676 case ISD::AVGFLOORU:
5677 case ISD::AVGCEILS:
5678 case ISD::AVGCEILU:
5679 case ISD::ABDU:
5680 case ISD::ABDS:
5681 case ISD::SMIN:
5682 case ISD::SMAX:
5683 case ISD::SCMP:
5684 case ISD::UMIN:
5685 case ISD::UMAX:
5686 case ISD::UCMP:
5687 case ISD::AND:
5688 case ISD::XOR:
5689 case ISD::ROTL:
5690 case ISD::ROTR:
5691 case ISD::FSHL:
5692 case ISD::FSHR:
5693 case ISD::BSWAP:
5694 case ISD::CTTZ:
5695 case ISD::CTLZ:
5696 case ISD::CTPOP:
5697 case ISD::BITREVERSE:
5698 case ISD::PARITY:
5699 case ISD::SIGN_EXTEND:
5700 case ISD::TRUNCATE:
5704 case ISD::BITCAST:
5705 case ISD::BUILD_VECTOR:
5706 case ISD::BUILD_PAIR:
5707 case ISD::SPLAT_VECTOR:
5708 case ISD::FABS:
5709 return false;
5710
5711 case ISD::ABS:
5712 // ISD::ABS defines abs(INT_MIN) -> INT_MIN and never generates poison.
5713 // Different to Intrinsic::abs.
5714 return false;
5715
5716 case ISD::ADDC:
5717 case ISD::SUBC:
5718 case ISD::ADDE:
5719 case ISD::SUBE:
5720 case ISD::SADDO:
5721 case ISD::SSUBO:
5722 case ISD::SMULO:
5723 case ISD::SADDO_CARRY:
5724 case ISD::SSUBO_CARRY:
5725 case ISD::UADDO:
5726 case ISD::USUBO:
5727 case ISD::UMULO:
5728 case ISD::UADDO_CARRY:
5729 case ISD::USUBO_CARRY:
5730 // No poison on result or overflow flags.
5731 return false;
5732
5733 case ISD::SELECT_CC:
5734 case ISD::SETCC: {
5735 // Integer setcc cannot create undef or poison.
5736 if (Op.getOperand(0).getValueType().isInteger())
5737 return false;
5738
5739 // FP compares are more complicated. They can create poison for nan/infinity
5740 // based on options and flags. The options and flags also cause special
5741 // nonan condition codes to be used. Those condition codes may be preserved
5742 // even if the nonan flag is dropped somewhere.
5743 unsigned CCOp = Opcode == ISD::SETCC ? 2 : 4;
5744 ISD::CondCode CCCode = cast<CondCodeSDNode>(Op.getOperand(CCOp))->get();
5745 if (((unsigned)CCCode & 0x10U))
5746 return true;
5747
5749 return Options.NoNaNsFPMath || Options.NoInfsFPMath;
5750 }
5751
5752 case ISD::OR:
5753 case ISD::ZERO_EXTEND:
5754 case ISD::SELECT:
5755 case ISD::VSELECT:
5756 case ISD::ADD:
5757 case ISD::SUB:
5758 case ISD::MUL:
5759 case ISD::FNEG:
5760 case ISD::FADD:
5761 case ISD::FSUB:
5762 case ISD::FMUL:
5763 case ISD::FDIV:
5764 case ISD::FREM:
5765 case ISD::FCOPYSIGN:
5766 case ISD::FMA:
5767 case ISD::FMAD:
5768 case ISD::FP_EXTEND:
5771 // No poison except from flags (which is handled above)
5772 return false;
5773
5774 case ISD::SHL:
5775 case ISD::SRL:
5776 case ISD::SRA:
5777 // If the max shift amount isn't in range, then the shift can
5778 // create poison.
5779 return !getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1);
5780
5783 // If the amount is zero then the result will be poison.
5784 // TODO: Add isKnownNeverZero DemandedElts handling.
5785 return !isKnownNeverZero(Op.getOperand(0), Depth + 1);
5786
5788 // Check if we demand any upper (undef) elements.
5789 return !PoisonOnly && DemandedElts.ugt(1);
5790
5793 // Ensure that the element index is in bounds.
5794 EVT VecVT = Op.getOperand(0).getValueType();
5795 SDValue Idx = Op.getOperand(Opcode == ISD::INSERT_VECTOR_ELT ? 2 : 1);
5796 KnownBits KnownIdx = computeKnownBits(Idx, Depth + 1);
5797 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5798 }
5799
5800 case ISD::VECTOR_SHUFFLE: {
5801 // Check for any demanded shuffle element that is undef.
5802 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5803 for (auto [Idx, Elt] : enumerate(SVN->getMask()))
5804 if (Elt < 0 && DemandedElts[Idx])
5805 return true;
5806 return false;
5807 }
5808
5809 default:
5810 // Allow the target to implement this method for its nodes.
5811 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5812 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5813 return TLI->canCreateUndefOrPoisonForTargetNode(
5814 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5815 break;
5816 }
5817
5818 // Be conservative and return true.
5819 return true;
5820}
5821
5822bool SelectionDAG::isADDLike(SDValue Op, bool NoWrap) const {
5823 unsigned Opcode = Op.getOpcode();
5824 if (Opcode == ISD::OR)
5825 return Op->getFlags().hasDisjoint() ||
5826 haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5827 if (Opcode == ISD::XOR)
5828 return !NoWrap && isMinSignedConstant(Op.getOperand(1));
5829 return false;
5830}
5831
5833 return Op.getNumOperands() == 2 && isa<ConstantSDNode>(Op.getOperand(1)) &&
5834 (Op.isAnyAdd() || isADDLike(Op));
5835}
5836
5838 unsigned Depth) const {
5839 EVT VT = Op.getValueType();
5840
5841 // Since the number of lanes in a scalable vector is unknown at compile time,
5842 // we track one bit which is implicitly broadcast to all lanes. This means
5843 // that all lanes in a scalable vector are considered demanded.
5844 APInt DemandedElts = VT.isFixedLengthVector()
5846 : APInt(1, 1);
5847
5848 return isKnownNeverNaN(Op, DemandedElts, SNaN, Depth);
5849}
5850
5852 bool SNaN, unsigned Depth) const {
5853 assert(!DemandedElts.isZero() && "No demanded elements");
5854
5855 // If we're told that NaNs won't happen, assume they won't.
5856 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5857 return true;
5858
5859 if (Depth >= MaxRecursionDepth)
5860 return false; // Limit search depth.
5861
5862 // If the value is a constant, we can obviously see if it is a NaN or not.
5864 return !C->getValueAPF().isNaN() ||
5865 (SNaN && !C->getValueAPF().isSignaling());
5866 }
5867
5868 unsigned Opcode = Op.getOpcode();
5869 switch (Opcode) {
5870 case ISD::FADD:
5871 case ISD::FSUB:
5872 case ISD::FMUL:
5873 case ISD::FDIV:
5874 case ISD::FREM:
5875 case ISD::FSIN:
5876 case ISD::FCOS:
5877 case ISD::FTAN:
5878 case ISD::FASIN:
5879 case ISD::FACOS:
5880 case ISD::FATAN:
5881 case ISD::FATAN2:
5882 case ISD::FSINH:
5883 case ISD::FCOSH:
5884 case ISD::FTANH:
5885 case ISD::FMA:
5886 case ISD::FMAD: {
5887 if (SNaN)
5888 return true;
5889 // TODO: Need isKnownNeverInfinity
5890 return false;
5891 }
5892 case ISD::FCANONICALIZE:
5893 case ISD::FEXP:
5894 case ISD::FEXP2:
5895 case ISD::FEXP10:
5896 case ISD::FTRUNC:
5897 case ISD::FFLOOR:
5898 case ISD::FCEIL:
5899 case ISD::FROUND:
5900 case ISD::FROUNDEVEN:
5901 case ISD::LROUND:
5902 case ISD::LLROUND:
5903 case ISD::FRINT:
5904 case ISD::LRINT:
5905 case ISD::LLRINT:
5906 case ISD::FNEARBYINT:
5907 case ISD::FLDEXP: {
5908 if (SNaN)
5909 return true;
5910 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5911 }
5912 case ISD::FABS:
5913 case ISD::FNEG:
5914 case ISD::FCOPYSIGN: {
5915 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5916 }
5917 case ISD::SELECT:
5918 return isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1) &&
5919 isKnownNeverNaN(Op.getOperand(2), DemandedElts, SNaN, Depth + 1);
5920 case ISD::FP_EXTEND:
5921 case ISD::FP_ROUND: {
5922 if (SNaN)
5923 return true;
5924 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5925 }
5926 case ISD::SINT_TO_FP:
5927 case ISD::UINT_TO_FP:
5928 return true;
5929 case ISD::FSQRT: // Need is known positive
5930 case ISD::FLOG:
5931 case ISD::FLOG2:
5932 case ISD::FLOG10:
5933 case ISD::FPOWI:
5934 case ISD::FPOW: {
5935 if (SNaN)
5936 return true;
5937 // TODO: Refine on operand
5938 return false;
5939 }
5940 case ISD::FMINNUM:
5941 case ISD::FMAXNUM:
5942 case ISD::FMINIMUMNUM:
5943 case ISD::FMAXIMUMNUM: {
5944 // Only one needs to be known not-nan, since it will be returned if the
5945 // other ends up being one.
5946 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) ||
5947 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5948 }
5949 case ISD::FMINNUM_IEEE:
5950 case ISD::FMAXNUM_IEEE: {
5951 if (SNaN)
5952 return true;
5953 // This can return a NaN if either operand is an sNaN, or if both operands
5954 // are NaN.
5955 return (isKnownNeverNaN(Op.getOperand(0), DemandedElts, false, Depth + 1) &&
5956 isKnownNeverSNaN(Op.getOperand(1), DemandedElts, Depth + 1)) ||
5957 (isKnownNeverNaN(Op.getOperand(1), DemandedElts, false, Depth + 1) &&
5958 isKnownNeverSNaN(Op.getOperand(0), DemandedElts, Depth + 1));
5959 }
5960 case ISD::FMINIMUM:
5961 case ISD::FMAXIMUM: {
5962 // TODO: Does this quiet or return the origina NaN as-is?
5963 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) &&
5964 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5965 }
5967 SDValue Src = Op.getOperand(0);
5968 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5969 EVT SrcVT = Src.getValueType();
5970 if (SrcVT.isFixedLengthVector() && Idx &&
5971 Idx->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5972 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5973 Idx->getZExtValue());
5974 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
5975 }
5976 return isKnownNeverNaN(Src, SNaN, Depth + 1);
5977 }
5979 SDValue Src = Op.getOperand(0);
5980 if (Src.getValueType().isFixedLengthVector()) {
5981 unsigned Idx = Op.getConstantOperandVal(1);
5982 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5983 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5984 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
5985 }
5986 return isKnownNeverNaN(Src, SNaN, Depth + 1);
5987 }
5988 case ISD::INSERT_SUBVECTOR: {
5989 SDValue BaseVector = Op.getOperand(0);
5990 SDValue SubVector = Op.getOperand(1);
5991 EVT BaseVectorVT = BaseVector.getValueType();
5992 if (BaseVectorVT.isFixedLengthVector()) {
5993 unsigned Idx = Op.getConstantOperandVal(2);
5994 unsigned NumBaseElts = BaseVectorVT.getVectorNumElements();
5995 unsigned NumSubElts = SubVector.getValueType().getVectorNumElements();
5996
5997 // Clear/Extract the bits at the position where the subvector will be
5998 // inserted.
5999 APInt DemandedMask =
6000 APInt::getBitsSet(NumBaseElts, Idx, Idx + NumSubElts);
6001 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6002 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
6003
6004 bool NeverNaN = true;
6005 if (!DemandedSrcElts.isZero())
6006 NeverNaN &=
6007 isKnownNeverNaN(BaseVector, DemandedSrcElts, SNaN, Depth + 1);
6008 if (NeverNaN && !DemandedSubElts.isZero())
6009 NeverNaN &=
6010 isKnownNeverNaN(SubVector, DemandedSubElts, SNaN, Depth + 1);
6011 return NeverNaN;
6012 }
6013 return isKnownNeverNaN(BaseVector, SNaN, Depth + 1) &&
6014 isKnownNeverNaN(SubVector, SNaN, Depth + 1);
6015 }
6016 case ISD::BUILD_VECTOR: {
6017 unsigned NumElts = Op.getNumOperands();
6018 for (unsigned I = 0; I != NumElts; ++I)
6019 if (DemandedElts[I] &&
6020 !isKnownNeverNaN(Op.getOperand(I), SNaN, Depth + 1))
6021 return false;
6022 return true;
6023 }
6024 case ISD::AssertNoFPClass: {
6025 FPClassTest NoFPClass =
6026 static_cast<FPClassTest>(Op.getConstantOperandVal(1));
6027 if ((NoFPClass & fcNan) == fcNan)
6028 return true;
6029 if (SNaN && (NoFPClass & fcSNan) == fcSNan)
6030 return true;
6031 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
6032 }
6033 default:
6034 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
6035 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) {
6036 return TLI->isKnownNeverNaNForTargetNode(Op, DemandedElts, *this, SNaN,
6037 Depth);
6038 }
6039
6040 return false;
6041 }
6042}
6043
6045 assert(Op.getValueType().isFloatingPoint() &&
6046 "Floating point type expected");
6047
6048 // If the value is a constant, we can obviously see if it is a zero or not.
6050 Op, [](ConstantFPSDNode *C) { return !C->isZero(); });
6051}
6052
6054 if (Depth >= MaxRecursionDepth)
6055 return false; // Limit search depth.
6056
6057 assert(!Op.getValueType().isFloatingPoint() &&
6058 "Floating point types unsupported - use isKnownNeverZeroFloat");
6059
6060 // If the value is a constant, we can obviously see if it is a zero or not.
6062 [](ConstantSDNode *C) { return !C->isZero(); }))
6063 return true;
6064
6065 // TODO: Recognize more cases here. Most of the cases are also incomplete to
6066 // some degree.
6067 switch (Op.getOpcode()) {
6068 default:
6069 break;
6070
6071 case ISD::OR:
6072 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6073 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6074
6075 case ISD::VSELECT:
6076 case ISD::SELECT:
6077 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6078 isKnownNeverZero(Op.getOperand(2), Depth + 1);
6079
6080 case ISD::SHL: {
6081 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6082 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6083 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6084 // 1 << X is never zero.
6085 if (ValKnown.One[0])
6086 return true;
6087 // If max shift cnt of known ones is non-zero, result is non-zero.
6088 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6089 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6090 !ValKnown.One.shl(MaxCnt).isZero())
6091 return true;
6092 break;
6093 }
6094 case ISD::UADDSAT:
6095 case ISD::UMAX:
6096 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6097 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6098
6099 // For smin/smax: If either operand is known negative/positive
6100 // respectively we don't need the other to be known at all.
6101 case ISD::SMAX: {
6102 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6103 if (Op1.isStrictlyPositive())
6104 return true;
6105
6106 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6107 if (Op0.isStrictlyPositive())
6108 return true;
6109
6110 if (Op1.isNonZero() && Op0.isNonZero())
6111 return true;
6112
6113 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6114 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6115 }
6116 case ISD::SMIN: {
6117 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6118 if (Op1.isNegative())
6119 return true;
6120
6121 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6122 if (Op0.isNegative())
6123 return true;
6124
6125 if (Op1.isNonZero() && Op0.isNonZero())
6126 return true;
6127
6128 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6129 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6130 }
6131 case ISD::UMIN:
6132 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6133 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6134
6135 case ISD::ROTL:
6136 case ISD::ROTR:
6137 case ISD::BITREVERSE:
6138 case ISD::BSWAP:
6139 case ISD::CTPOP:
6140 case ISD::ABS:
6141 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6142
6143 case ISD::SRA:
6144 case ISD::SRL: {
6145 if (Op->getFlags().hasExact())
6146 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6147 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6148 if (ValKnown.isNegative())
6149 return true;
6150 // If max shift cnt of known ones is non-zero, result is non-zero.
6151 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6152 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6153 !ValKnown.One.lshr(MaxCnt).isZero())
6154 return true;
6155 break;
6156 }
6157 case ISD::UDIV:
6158 case ISD::SDIV:
6159 // div exact can only produce a zero if the dividend is zero.
6160 // TODO: For udiv this is also true if Op1 u<= Op0
6161 if (Op->getFlags().hasExact())
6162 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6163 break;
6164
6165 case ISD::ADD:
6166 if (Op->getFlags().hasNoUnsignedWrap())
6167 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6168 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6169 return true;
6170 // TODO: There are a lot more cases we can prove for add.
6171 break;
6172
6173 case ISD::SUB: {
6174 if (isNullConstant(Op.getOperand(0)))
6175 return isKnownNeverZero(Op.getOperand(1), Depth + 1);
6176
6177 std::optional<bool> ne =
6178 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
6179 computeKnownBits(Op.getOperand(1), Depth + 1));
6180 return ne && *ne;
6181 }
6182
6183 case ISD::MUL:
6184 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6185 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6186 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6187 return true;
6188 break;
6189
6190 case ISD::ZERO_EXTEND:
6191 case ISD::SIGN_EXTEND:
6192 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6193 case ISD::VSCALE: {
6195 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
6196 ConstantRange CR =
6197 getVScaleRange(&F, Op.getScalarValueSizeInBits()).multiply(Multiplier);
6198 if (!CR.contains(APInt(CR.getBitWidth(), 0)))
6199 return true;
6200 break;
6201 }
6202 }
6203
6205}
6206
6208 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Op, true))
6209 return !C1->isNegative();
6210
6211 return Op.getOpcode() == ISD::FABS;
6212}
6213
6215 // Check the obvious case.
6216 if (A == B) return true;
6217
6218 // For negative and positive zero.
6221 if (CA->isZero() && CB->isZero()) return true;
6222
6223 // Otherwise they may not be equal.
6224 return false;
6225}
6226
6227// Only bits set in Mask must be negated, other bits may be arbitrary.
6229 if (isBitwiseNot(V, AllowUndefs))
6230 return V.getOperand(0);
6231
6232 // Handle any_extend (not (truncate X)) pattern, where Mask only sets
6233 // bits in the non-extended part.
6234 ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
6235 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
6236 return SDValue();
6237 SDValue ExtArg = V.getOperand(0);
6238 if (ExtArg.getScalarValueSizeInBits() >=
6239 MaskC->getAPIntValue().getActiveBits() &&
6240 isBitwiseNot(ExtArg, AllowUndefs) &&
6241 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6242 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
6243 return ExtArg.getOperand(0).getOperand(0);
6244 return SDValue();
6245}
6246
6248 // Match masked merge pattern (X & ~M) op (Y & M)
6249 // Including degenerate case (X & ~M) op M
6250 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
6251 SDValue Other) {
6252 if (SDValue NotOperand =
6253 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
6254 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
6255 NotOperand->getOpcode() == ISD::TRUNCATE)
6256 NotOperand = NotOperand->getOperand(0);
6257
6258 if (Other == NotOperand)
6259 return true;
6260 if (Other->getOpcode() == ISD::AND)
6261 return NotOperand == Other->getOperand(0) ||
6262 NotOperand == Other->getOperand(1);
6263 }
6264 return false;
6265 };
6266
6267 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
6268 A = A->getOperand(0);
6269
6270 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
6271 B = B->getOperand(0);
6272
6273 if (A->getOpcode() == ISD::AND)
6274 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
6275 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
6276 return false;
6277}
6278
6279// FIXME: unify with llvm::haveNoCommonBitsSet.
6281 assert(A.getValueType() == B.getValueType() &&
6282 "Values must have the same type");
6285 return true;
6288}
6289
6290static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
6291 SelectionDAG &DAG) {
6292 if (cast<ConstantSDNode>(Step)->isZero())
6293 return DAG.getConstant(0, DL, VT);
6294
6295 return SDValue();
6296}
6297
6300 SelectionDAG &DAG) {
6301 int NumOps = Ops.size();
6302 assert(NumOps != 0 && "Can't build an empty vector!");
6303 assert(!VT.isScalableVector() &&
6304 "BUILD_VECTOR cannot be used with scalable types");
6305 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
6306 "Incorrect element count in BUILD_VECTOR!");
6307
6308 // BUILD_VECTOR of UNDEFs is UNDEF.
6309 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6310 return DAG.getUNDEF(VT);
6311
6312 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
6313 SDValue IdentitySrc;
6314 bool IsIdentity = true;
6315 for (int i = 0; i != NumOps; ++i) {
6317 Ops[i].getOperand(0).getValueType() != VT ||
6318 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
6319 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
6320 Ops[i].getConstantOperandAPInt(1) != i) {
6321 IsIdentity = false;
6322 break;
6323 }
6324 IdentitySrc = Ops[i].getOperand(0);
6325 }
6326 if (IsIdentity)
6327 return IdentitySrc;
6328
6329 return SDValue();
6330}
6331
6332/// Try to simplify vector concatenation to an input value, undef, or build
6333/// vector.
6336 SelectionDAG &DAG) {
6337 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
6339 [Ops](SDValue Op) {
6340 return Ops[0].getValueType() == Op.getValueType();
6341 }) &&
6342 "Concatenation of vectors with inconsistent value types!");
6343 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
6344 VT.getVectorElementCount() &&
6345 "Incorrect element count in vector concatenation!");
6346
6347 if (Ops.size() == 1)
6348 return Ops[0];
6349
6350 // Concat of UNDEFs is UNDEF.
6351 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6352 return DAG.getUNDEF(VT);
6353
6354 // Scan the operands and look for extract operations from a single source
6355 // that correspond to insertion at the same location via this concatenation:
6356 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
6357 SDValue IdentitySrc;
6358 bool IsIdentity = true;
6359 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
6360 SDValue Op = Ops[i];
6361 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
6362 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
6363 Op.getOperand(0).getValueType() != VT ||
6364 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
6365 Op.getConstantOperandVal(1) != IdentityIndex) {
6366 IsIdentity = false;
6367 break;
6368 }
6369 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
6370 "Unexpected identity source vector for concat of extracts");
6371 IdentitySrc = Op.getOperand(0);
6372 }
6373 if (IsIdentity) {
6374 assert(IdentitySrc && "Failed to set source vector of extracts");
6375 return IdentitySrc;
6376 }
6377
6378 // The code below this point is only designed to work for fixed width
6379 // vectors, so we bail out for now.
6380 if (VT.isScalableVector())
6381 return SDValue();
6382
6383 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
6384 // simplified to one big BUILD_VECTOR.
6385 // FIXME: Add support for SCALAR_TO_VECTOR as well.
6386 EVT SVT = VT.getScalarType();
6388 for (SDValue Op : Ops) {
6389 EVT OpVT = Op.getValueType();
6390 if (Op.isUndef())
6391 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
6392 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
6393 Elts.append(Op->op_begin(), Op->op_end());
6394 else
6395 return SDValue();
6396 }
6397
6398 // BUILD_VECTOR requires all inputs to be of the same type, find the
6399 // maximum type and extend them all.
6400 for (SDValue Op : Elts)
6401 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
6402
6403 if (SVT.bitsGT(VT.getScalarType())) {
6404 for (SDValue &Op : Elts) {
6405 if (Op.isUndef())
6406 Op = DAG.getUNDEF(SVT);
6407 else
6408 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
6409 ? DAG.getZExtOrTrunc(Op, DL, SVT)
6410 : DAG.getSExtOrTrunc(Op, DL, SVT);
6411 }
6412 }
6413
6414 SDValue V = DAG.getBuildVector(VT, DL, Elts);
6415 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
6416 return V;
6417}
6418
6419/// Gets or creates the specified node.
6420SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
6421 SDVTList VTs = getVTList(VT);
6423 AddNodeIDNode(ID, Opcode, VTs, {});
6424 void *IP = nullptr;
6425 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6426 return SDValue(E, 0);
6427
6428 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6429 CSEMap.InsertNode(N, IP);
6430
6431 InsertNode(N);
6432 SDValue V = SDValue(N, 0);
6433 NewSDValueDbgMsg(V, "Creating new node: ", this);
6434 return V;
6435}
6436
6437SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6438 SDValue N1) {
6439 SDNodeFlags Flags;
6440 if (Inserter)
6441 Flags = Inserter->getFlags();
6442 return getNode(Opcode, DL, VT, N1, Flags);
6443}
6444
6445SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6446 SDValue N1, const SDNodeFlags Flags) {
6447 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
6448
6449 // Constant fold unary operations with a vector integer or float operand.
6450 switch (Opcode) {
6451 default:
6452 // FIXME: Entirely reasonable to perform folding of other unary
6453 // operations here as the need arises.
6454 break;
6455 case ISD::FNEG:
6456 case ISD::FABS:
6457 case ISD::FCEIL:
6458 case ISD::FTRUNC:
6459 case ISD::FFLOOR:
6460 case ISD::FP_EXTEND:
6461 case ISD::FP_TO_SINT:
6462 case ISD::FP_TO_UINT:
6463 case ISD::FP_TO_FP16:
6464 case ISD::FP_TO_BF16:
6465 case ISD::TRUNCATE:
6466 case ISD::ANY_EXTEND:
6467 case ISD::ZERO_EXTEND:
6468 case ISD::SIGN_EXTEND:
6469 case ISD::UINT_TO_FP:
6470 case ISD::SINT_TO_FP:
6471 case ISD::FP16_TO_FP:
6472 case ISD::BF16_TO_FP:
6473 case ISD::BITCAST:
6474 case ISD::ABS:
6475 case ISD::BITREVERSE:
6476 case ISD::BSWAP:
6477 case ISD::CTLZ:
6479 case ISD::CTTZ:
6481 case ISD::CTPOP:
6482 case ISD::STEP_VECTOR: {
6483 SDValue Ops = {N1};
6484 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
6485 return Fold;
6486 }
6487 }
6488
6489 unsigned OpOpcode = N1.getNode()->getOpcode();
6490 switch (Opcode) {
6491 case ISD::STEP_VECTOR:
6492 assert(VT.isScalableVector() &&
6493 "STEP_VECTOR can only be used with scalable types");
6494 assert(OpOpcode == ISD::TargetConstant &&
6495 VT.getVectorElementType() == N1.getValueType() &&
6496 "Unexpected step operand");
6497 break;
6498 case ISD::FREEZE:
6499 assert(VT == N1.getValueType() && "Unexpected VT!");
6500 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly=*/false))
6501 return N1;
6502 break;
6503 case ISD::TokenFactor:
6504 case ISD::MERGE_VALUES:
6506 return N1; // Factor, merge or concat of one node? No need.
6507 case ISD::BUILD_VECTOR: {
6508 // Attempt to simplify BUILD_VECTOR.
6509 SDValue Ops[] = {N1};
6510 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6511 return V;
6512 break;
6513 }
6514 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
6515 case ISD::FP_EXTEND:
6517 "Invalid FP cast!");
6518 if (N1.getValueType() == VT) return N1; // noop conversion.
6519 assert((!VT.isVector() || VT.getVectorElementCount() ==
6521 "Vector element count mismatch!");
6522 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
6523 if (N1.isUndef())
6524 return getUNDEF(VT);
6525 break;
6526 case ISD::FP_TO_SINT:
6527 case ISD::FP_TO_UINT:
6528 if (N1.isUndef())
6529 return getUNDEF(VT);
6530 break;
6531 case ISD::SINT_TO_FP:
6532 case ISD::UINT_TO_FP:
6533 // [us]itofp(undef) = 0, because the result value is bounded.
6534 if (N1.isUndef())
6535 return getConstantFP(0.0, DL, VT);
6536 break;
6537 case ISD::SIGN_EXTEND:
6538 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6539 "Invalid SIGN_EXTEND!");
6540 assert(VT.isVector() == N1.getValueType().isVector() &&
6541 "SIGN_EXTEND result type type should be vector iff the operand "
6542 "type is vector!");
6543 if (N1.getValueType() == VT) return N1; // noop extension
6544 assert((!VT.isVector() || VT.getVectorElementCount() ==
6546 "Vector element count mismatch!");
6547 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
6548 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) {
6549 SDNodeFlags Flags;
6550 if (OpOpcode == ISD::ZERO_EXTEND)
6551 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6552 SDValue NewVal = getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6553 transferDbgValues(N1, NewVal);
6554 return NewVal;
6555 }
6556
6557 if (OpOpcode == ISD::POISON)
6558 return getPOISON(VT);
6559
6560 if (N1.isUndef())
6561 // sext(undef) = 0, because the top bits will all be the same.
6562 return getConstant(0, DL, VT);
6563
6564 // Skip unnecessary sext_inreg pattern:
6565 // (sext (trunc x)) -> x iff the upper bits are all signbits.
6566 if (OpOpcode == ISD::TRUNCATE) {
6567 SDValue OpOp = N1.getOperand(0);
6568 if (OpOp.getValueType() == VT) {
6569 unsigned NumSignExtBits =
6571 if (ComputeNumSignBits(OpOp) > NumSignExtBits) {
6572 transferDbgValues(N1, OpOp);
6573 return OpOp;
6574 }
6575 }
6576 }
6577 break;
6578 case ISD::ZERO_EXTEND:
6579 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6580 "Invalid ZERO_EXTEND!");
6581 assert(VT.isVector() == N1.getValueType().isVector() &&
6582 "ZERO_EXTEND result type type should be vector iff the operand "
6583 "type is vector!");
6584 if (N1.getValueType() == VT) return N1; // noop extension
6585 assert((!VT.isVector() || VT.getVectorElementCount() ==
6587 "Vector element count mismatch!");
6588 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
6589 if (OpOpcode == ISD::ZERO_EXTEND) { // (zext (zext x)) -> (zext x)
6590 SDNodeFlags Flags;
6591 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6592 SDValue NewVal =
6593 getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0), Flags);
6594 transferDbgValues(N1, NewVal);
6595 return NewVal;
6596 }
6597
6598 if (OpOpcode == ISD::POISON)
6599 return getPOISON(VT);
6600
6601 if (N1.isUndef())
6602 // zext(undef) = 0, because the top bits will be zero.
6603 return getConstant(0, DL, VT);
6604
6605 // Skip unnecessary zext_inreg pattern:
6606 // (zext (trunc x)) -> x iff the upper bits are known zero.
6607 // TODO: Remove (zext (trunc (and x, c))) exception which some targets
6608 // use to recognise zext_inreg patterns.
6609 if (OpOpcode == ISD::TRUNCATE) {
6610 SDValue OpOp = N1.getOperand(0);
6611 if (OpOp.getValueType() == VT) {
6612 if (OpOp.getOpcode() != ISD::AND) {
6615 if (MaskedValueIsZero(OpOp, HiBits)) {
6616 transferDbgValues(N1, OpOp);
6617 return OpOp;
6618 }
6619 }
6620 }
6621 }
6622 break;
6623 case ISD::ANY_EXTEND:
6624 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6625 "Invalid ANY_EXTEND!");
6626 assert(VT.isVector() == N1.getValueType().isVector() &&
6627 "ANY_EXTEND result type type should be vector iff the operand "
6628 "type is vector!");
6629 if (N1.getValueType() == VT) return N1; // noop extension
6630 assert((!VT.isVector() || VT.getVectorElementCount() ==
6632 "Vector element count mismatch!");
6633 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
6634
6635 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6636 OpOpcode == ISD::ANY_EXTEND) {
6637 SDNodeFlags Flags;
6638 if (OpOpcode == ISD::ZERO_EXTEND)
6639 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6640 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
6641 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6642 }
6643 if (N1.isUndef())
6644 return getUNDEF(VT);
6645
6646 // (ext (trunc x)) -> x
6647 if (OpOpcode == ISD::TRUNCATE) {
6648 SDValue OpOp = N1.getOperand(0);
6649 if (OpOp.getValueType() == VT) {
6650 transferDbgValues(N1, OpOp);
6651 return OpOp;
6652 }
6653 }
6654 break;
6655 case ISD::TRUNCATE:
6656 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6657 "Invalid TRUNCATE!");
6658 assert(VT.isVector() == N1.getValueType().isVector() &&
6659 "TRUNCATE result type type should be vector iff the operand "
6660 "type is vector!");
6661 if (N1.getValueType() == VT) return N1; // noop truncate
6662 assert((!VT.isVector() || VT.getVectorElementCount() ==
6664 "Vector element count mismatch!");
6665 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
6666 if (OpOpcode == ISD::TRUNCATE)
6667 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6668 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6669 OpOpcode == ISD::ANY_EXTEND) {
6670 // If the source is smaller than the dest, we still need an extend.
6672 VT.getScalarType())) {
6673 SDNodeFlags Flags;
6674 if (OpOpcode == ISD::ZERO_EXTEND)
6675 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6676 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6677 }
6678 if (N1.getOperand(0).getValueType().bitsGT(VT))
6679 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6680 return N1.getOperand(0);
6681 }
6682 if (N1.isUndef())
6683 return getUNDEF(VT);
6684 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
6685 return getVScale(DL, VT,
6687 break;
6691 assert(VT.isVector() && "This DAG node is restricted to vector types.");
6692 assert(N1.getValueType().bitsLE(VT) &&
6693 "The input must be the same size or smaller than the result.");
6696 "The destination vector type must have fewer lanes than the input.");
6697 break;
6698 case ISD::ABS:
6699 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
6700 if (N1.isUndef())
6701 return getConstant(0, DL, VT);
6702 break;
6703 case ISD::BSWAP:
6704 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
6705 assert((VT.getScalarSizeInBits() % 16 == 0) &&
6706 "BSWAP types must be a multiple of 16 bits!");
6707 if (N1.isUndef())
6708 return getUNDEF(VT);
6709 // bswap(bswap(X)) -> X.
6710 if (OpOpcode == ISD::BSWAP)
6711 return N1.getOperand(0);
6712 break;
6713 case ISD::BITREVERSE:
6714 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
6715 if (N1.isUndef())
6716 return getUNDEF(VT);
6717 break;
6718 case ISD::BITCAST:
6720 "Cannot BITCAST between types of different sizes!");
6721 if (VT == N1.getValueType()) return N1; // noop conversion.
6722 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
6723 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
6724 if (N1.isUndef())
6725 return getUNDEF(VT);
6726 break;
6728 assert(VT.isVector() && !N1.getValueType().isVector() &&
6729 (VT.getVectorElementType() == N1.getValueType() ||
6731 N1.getValueType().isInteger() &&
6733 "Illegal SCALAR_TO_VECTOR node!");
6734 if (N1.isUndef())
6735 return getUNDEF(VT);
6736 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
6737 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
6739 N1.getConstantOperandVal(1) == 0 &&
6740 N1.getOperand(0).getValueType() == VT)
6741 return N1.getOperand(0);
6742 break;
6743 case ISD::FNEG:
6744 // Negation of an unknown bag of bits is still completely undefined.
6745 if (N1.isUndef())
6746 return getUNDEF(VT);
6747
6748 if (OpOpcode == ISD::FNEG) // --X -> X
6749 return N1.getOperand(0);
6750 break;
6751 case ISD::FABS:
6752 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
6753 return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
6754 break;
6755 case ISD::VSCALE:
6756 assert(VT == N1.getValueType() && "Unexpected VT!");
6757 break;
6758 case ISD::CTPOP:
6759 if (N1.getValueType().getScalarType() == MVT::i1)
6760 return N1;
6761 break;
6762 case ISD::CTLZ:
6763 case ISD::CTTZ:
6764 if (N1.getValueType().getScalarType() == MVT::i1)
6765 return getNOT(DL, N1, N1.getValueType());
6766 break;
6767 case ISD::VECREDUCE_ADD:
6768 if (N1.getValueType().getScalarType() == MVT::i1)
6769 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
6770 break;
6771 case ISD::VECREDUCE_SMIN:
6772 case ISD::VECREDUCE_UMAX:
6773 if (N1.getValueType().getScalarType() == MVT::i1)
6774 return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
6775 break;
6776 case ISD::VECREDUCE_SMAX:
6777 case ISD::VECREDUCE_UMIN:
6778 if (N1.getValueType().getScalarType() == MVT::i1)
6779 return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
6780 break;
6781 case ISD::SPLAT_VECTOR:
6782 assert(VT.isVector() && "Wrong return type!");
6783 // FIXME: Hexagon uses i32 scalar for a floating point zero vector so allow
6784 // that for now.
6786 (VT.isFloatingPoint() && N1.getValueType() == MVT::i32) ||
6788 N1.getValueType().isInteger() &&
6790 "Wrong operand type!");
6791 break;
6792 }
6793
6794 SDNode *N;
6795 SDVTList VTs = getVTList(VT);
6796 SDValue Ops[] = {N1};
6797 if (VT != MVT::Glue) { // Don't CSE glue producing nodes
6799 AddNodeIDNode(ID, Opcode, VTs, Ops);
6800 void *IP = nullptr;
6801 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6802 E->intersectFlagsWith(Flags);
6803 return SDValue(E, 0);
6804 }
6805
6806 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6807 N->setFlags(Flags);
6808 createOperands(N, Ops);
6809 CSEMap.InsertNode(N, IP);
6810 } else {
6811 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6812 createOperands(N, Ops);
6813 }
6814
6815 InsertNode(N);
6816 SDValue V = SDValue(N, 0);
6817 NewSDValueDbgMsg(V, "Creating new node: ", this);
6818 return V;
6819}
6820
6821static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
6822 const APInt &C2) {
6823 switch (Opcode) {
6824 case ISD::ADD: return C1 + C2;
6825 case ISD::SUB: return C1 - C2;
6826 case ISD::MUL: return C1 * C2;
6827 case ISD::AND: return C1 & C2;
6828 case ISD::OR: return C1 | C2;
6829 case ISD::XOR: return C1 ^ C2;
6830 case ISD::SHL: return C1 << C2;
6831 case ISD::SRL: return C1.lshr(C2);
6832 case ISD::SRA: return C1.ashr(C2);
6833 case ISD::ROTL: return C1.rotl(C2);
6834 case ISD::ROTR: return C1.rotr(C2);
6835 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
6836 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
6837 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
6838 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
6839 case ISD::SADDSAT: return C1.sadd_sat(C2);
6840 case ISD::UADDSAT: return C1.uadd_sat(C2);
6841 case ISD::SSUBSAT: return C1.ssub_sat(C2);
6842 case ISD::USUBSAT: return C1.usub_sat(C2);
6843 case ISD::SSHLSAT: return C1.sshl_sat(C2);
6844 case ISD::USHLSAT: return C1.ushl_sat(C2);
6845 case ISD::UDIV:
6846 if (!C2.getBoolValue())
6847 break;
6848 return C1.udiv(C2);
6849 case ISD::UREM:
6850 if (!C2.getBoolValue())
6851 break;
6852 return C1.urem(C2);
6853 case ISD::SDIV:
6854 if (!C2.getBoolValue())
6855 break;
6856 return C1.sdiv(C2);
6857 case ISD::SREM:
6858 if (!C2.getBoolValue())
6859 break;
6860 return C1.srem(C2);
6861 case ISD::AVGFLOORS:
6862 return APIntOps::avgFloorS(C1, C2);
6863 case ISD::AVGFLOORU:
6864 return APIntOps::avgFloorU(C1, C2);
6865 case ISD::AVGCEILS:
6866 return APIntOps::avgCeilS(C1, C2);
6867 case ISD::AVGCEILU:
6868 return APIntOps::avgCeilU(C1, C2);
6869 case ISD::ABDS:
6870 return APIntOps::abds(C1, C2);
6871 case ISD::ABDU:
6872 return APIntOps::abdu(C1, C2);
6873 case ISD::MULHS:
6874 return APIntOps::mulhs(C1, C2);
6875 case ISD::MULHU:
6876 return APIntOps::mulhu(C1, C2);
6877 }
6878 return std::nullopt;
6879}
6880// Handle constant folding with UNDEF.
6881// TODO: Handle more cases.
6882static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6883 bool IsUndef1, const APInt &C2,
6884 bool IsUndef2) {
6885 if (!(IsUndef1 || IsUndef2))
6886 return FoldValue(Opcode, C1, C2);
6887
6888 // Fold and(x, undef) -> 0
6889 // Fold mul(x, undef) -> 0
6890 if (Opcode == ISD::AND || Opcode == ISD::MUL)
6891 return APInt::getZero(C1.getBitWidth());
6892
6893 return std::nullopt;
6894}
6895
6897 const GlobalAddressSDNode *GA,
6898 const SDNode *N2) {
6899 if (GA->getOpcode() != ISD::GlobalAddress)
6900 return SDValue();
6901 if (!TLI->isOffsetFoldingLegal(GA))
6902 return SDValue();
6903 auto *C2 = dyn_cast<ConstantSDNode>(N2);
6904 if (!C2)
6905 return SDValue();
6906 int64_t Offset = C2->getSExtValue();
6907 switch (Opcode) {
6908 case ISD::ADD:
6909 case ISD::PTRADD:
6910 break;
6911 case ISD::SUB: Offset = -uint64_t(Offset); break;
6912 default: return SDValue();
6913 }
6914 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6915 GA->getOffset() + uint64_t(Offset));
6916}
6917
6919 switch (Opcode) {
6920 case ISD::SDIV:
6921 case ISD::UDIV:
6922 case ISD::SREM:
6923 case ISD::UREM: {
6924 // If a divisor is zero/undef or any element of a divisor vector is
6925 // zero/undef, the whole op is undef.
6926 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6927 SDValue Divisor = Ops[1];
6928 if (Divisor.isUndef() || isNullConstant(Divisor))
6929 return true;
6930
6931 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6932 llvm::any_of(Divisor->op_values(),
6933 [](SDValue V) { return V.isUndef() ||
6934 isNullConstant(V); });
6935 // TODO: Handle signed overflow.
6936 }
6937 // TODO: Handle oversized shifts.
6938 default:
6939 return false;
6940 }
6941}
6942
6945 SDNodeFlags Flags) {
6946 // If the opcode is a target-specific ISD node, there's nothing we can
6947 // do here and the operand rules may not line up with the below, so
6948 // bail early.
6949 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6950 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6951 // foldCONCAT_VECTORS in getNode before this is called.
6952 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6953 return SDValue();
6954
6955 unsigned NumOps = Ops.size();
6956 if (NumOps == 0)
6957 return SDValue();
6958
6959 if (isUndef(Opcode, Ops))
6960 return getUNDEF(VT);
6961
6962 // Handle unary special cases.
6963 if (NumOps == 1) {
6964 SDValue N1 = Ops[0];
6965
6966 // Constant fold unary operations with an integer constant operand. Even
6967 // opaque constant will be folded, because the folding of unary operations
6968 // doesn't create new constants with different values. Nevertheless, the
6969 // opaque flag is preserved during folding to prevent future folding with
6970 // other constants.
6971 if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
6972 const APInt &Val = C->getAPIntValue();
6973 switch (Opcode) {
6974 case ISD::SIGN_EXTEND:
6975 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6976 C->isTargetOpcode(), C->isOpaque());
6977 case ISD::TRUNCATE:
6978 if (C->isOpaque())
6979 break;
6980 [[fallthrough]];
6981 case ISD::ZERO_EXTEND:
6982 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6983 C->isTargetOpcode(), C->isOpaque());
6984 case ISD::ANY_EXTEND:
6985 // Some targets like RISCV prefer to sign extend some types.
6986 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
6987 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6988 C->isTargetOpcode(), C->isOpaque());
6989 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
6990 C->isTargetOpcode(), C->isOpaque());
6991 case ISD::ABS:
6992 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
6993 C->isOpaque());
6994 case ISD::BITREVERSE:
6995 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
6996 C->isOpaque());
6997 case ISD::BSWAP:
6998 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
6999 C->isOpaque());
7000 case ISD::CTPOP:
7001 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
7002 C->isOpaque());
7003 case ISD::CTLZ:
7005 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
7006 C->isOpaque());
7007 case ISD::CTTZ:
7009 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
7010 C->isOpaque());
7011 case ISD::UINT_TO_FP:
7012 case ISD::SINT_TO_FP: {
7014 (void)FPV.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
7016 return getConstantFP(FPV, DL, VT);
7017 }
7018 case ISD::FP16_TO_FP:
7019 case ISD::BF16_TO_FP: {
7020 bool Ignored;
7021 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
7022 : APFloat::BFloat(),
7023 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
7024
7025 // This can return overflow, underflow, or inexact; we don't care.
7026 // FIXME need to be more flexible about rounding mode.
7028 &Ignored);
7029 return getConstantFP(FPV, DL, VT);
7030 }
7031 case ISD::STEP_VECTOR:
7032 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
7033 return V;
7034 break;
7035 case ISD::BITCAST:
7036 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
7037 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
7038 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
7039 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
7040 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
7041 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
7042 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
7043 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
7044 break;
7045 }
7046 }
7047
7048 // Constant fold unary operations with a floating point constant operand.
7049 if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
7050 APFloat V = C->getValueAPF(); // make copy
7051 switch (Opcode) {
7052 case ISD::FNEG:
7053 V.changeSign();
7054 return getConstantFP(V, DL, VT);
7055 case ISD::FABS:
7056 V.clearSign();
7057 return getConstantFP(V, DL, VT);
7058 case ISD::FCEIL: {
7059 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
7061 return getConstantFP(V, DL, VT);
7062 return SDValue();
7063 }
7064 case ISD::FTRUNC: {
7065 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
7067 return getConstantFP(V, DL, VT);
7068 return SDValue();
7069 }
7070 case ISD::FFLOOR: {
7071 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
7073 return getConstantFP(V, DL, VT);
7074 return SDValue();
7075 }
7076 case ISD::FP_EXTEND: {
7077 bool ignored;
7078 // This can return overflow, underflow, or inexact; we don't care.
7079 // FIXME need to be more flexible about rounding mode.
7080 (void)V.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
7081 &ignored);
7082 return getConstantFP(V, DL, VT);
7083 }
7084 case ISD::FP_TO_SINT:
7085 case ISD::FP_TO_UINT: {
7086 bool ignored;
7087 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
7088 // FIXME need to be more flexible about rounding mode.
7090 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
7091 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
7092 break;
7093 return getConstant(IntVal, DL, VT);
7094 }
7095 case ISD::FP_TO_FP16:
7096 case ISD::FP_TO_BF16: {
7097 bool Ignored;
7098 // This can return overflow, underflow, or inexact; we don't care.
7099 // FIXME need to be more flexible about rounding mode.
7100 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
7101 : APFloat::BFloat(),
7103 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7104 }
7105 case ISD::BITCAST:
7106 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
7107 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7108 VT);
7109 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
7110 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7111 VT);
7112 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
7113 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
7114 VT);
7115 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
7116 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7117 break;
7118 }
7119 }
7120
7121 // Early-out if we failed to constant fold a bitcast.
7122 if (Opcode == ISD::BITCAST)
7123 return SDValue();
7124 }
7125
7126 // Handle binops special cases.
7127 if (NumOps == 2) {
7128 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
7129 return CFP;
7130
7131 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7132 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
7133 if (C1->isOpaque() || C2->isOpaque())
7134 return SDValue();
7135
7136 std::optional<APInt> FoldAttempt =
7137 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7138 if (!FoldAttempt)
7139 return SDValue();
7140
7141 SDValue Folded = getConstant(*FoldAttempt, DL, VT);
7142 assert((!Folded || !VT.isVector()) &&
7143 "Can't fold vectors ops with scalar operands");
7144 return Folded;
7145 }
7146 }
7147
7148 // fold (add Sym, c) -> Sym+c
7150 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
7151 if (TLI->isCommutativeBinOp(Opcode))
7153 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
7154
7155 // fold (sext_in_reg c1) -> c2
7156 if (Opcode == ISD::SIGN_EXTEND_INREG) {
7157 EVT EVT = cast<VTSDNode>(Ops[1])->getVT();
7158
7159 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
7160 unsigned FromBits = EVT.getScalarSizeInBits();
7161 Val <<= Val.getBitWidth() - FromBits;
7162 Val.ashrInPlace(Val.getBitWidth() - FromBits);
7163 return getConstant(Val, DL, ConstantVT);
7164 };
7165
7166 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7167 const APInt &Val = C1->getAPIntValue();
7168 return SignExtendInReg(Val, VT);
7169 }
7170
7172 SmallVector<SDValue, 8> ScalarOps;
7173 llvm::EVT OpVT = Ops[0].getOperand(0).getValueType();
7174 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
7175 SDValue Op = Ops[0].getOperand(I);
7176 if (Op.isUndef()) {
7177 ScalarOps.push_back(getUNDEF(OpVT));
7178 continue;
7179 }
7180 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
7181 ScalarOps.push_back(SignExtendInReg(Val, OpVT));
7182 }
7183 return getBuildVector(VT, DL, ScalarOps);
7184 }
7185
7186 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR &&
7187 isa<ConstantSDNode>(Ops[0].getOperand(0)))
7188 return getNode(ISD::SPLAT_VECTOR, DL, VT,
7189 SignExtendInReg(Ops[0].getConstantOperandAPInt(0),
7190 Ops[0].getOperand(0).getValueType()));
7191 }
7192 }
7193
7194 // Handle fshl/fshr special cases.
7195 if (Opcode == ISD::FSHL || Opcode == ISD::FSHR) {
7196 auto *C1 = dyn_cast<ConstantSDNode>(Ops[0]);
7197 auto *C2 = dyn_cast<ConstantSDNode>(Ops[1]);
7198 auto *C3 = dyn_cast<ConstantSDNode>(Ops[2]);
7199
7200 if (C1 && C2 && C3) {
7201 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7202 return SDValue();
7203 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7204 &V3 = C3->getAPIntValue();
7205
7206 APInt FoldedVal = Opcode == ISD::FSHL ? APIntOps::fshl(V1, V2, V3)
7207 : APIntOps::fshr(V1, V2, V3);
7208 return getConstant(FoldedVal, DL, VT);
7209 }
7210 }
7211
7212 // Handle fma/fmad special cases.
7213 if (Opcode == ISD::FMA || Opcode == ISD::FMAD) {
7214 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7215 assert(Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7216 Ops[2].getValueType() == VT && "FMA types must match!");
7220 if (C1 && C2 && C3) {
7221 APFloat V1 = C1->getValueAPF();
7222 const APFloat &V2 = C2->getValueAPF();
7223 const APFloat &V3 = C3->getValueAPF();
7224 if (Opcode == ISD::FMAD) {
7227 } else
7229 return getConstantFP(V1, DL, VT);
7230 }
7231 }
7232
7233 // This is for vector folding only from here on.
7234 if (!VT.isVector())
7235 return SDValue();
7236
7237 ElementCount NumElts = VT.getVectorElementCount();
7238
7239 // See if we can fold through any bitcasted integer ops.
7240 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
7241 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7242 (Ops[0].getOpcode() == ISD::BITCAST ||
7243 Ops[1].getOpcode() == ISD::BITCAST)) {
7246 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
7247 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
7248 if (BV1 && BV2 && N1.getValueType().isInteger() &&
7249 N2.getValueType().isInteger()) {
7250 bool IsLE = getDataLayout().isLittleEndian();
7251 unsigned EltBits = VT.getScalarSizeInBits();
7252 SmallVector<APInt> RawBits1, RawBits2;
7253 BitVector UndefElts1, UndefElts2;
7254 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7255 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7256 SmallVector<APInt> RawBits;
7257 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
7258 std::optional<APInt> Fold = FoldValueWithUndef(
7259 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
7260 if (!Fold)
7261 break;
7262 RawBits.push_back(*Fold);
7263 }
7264 if (RawBits.size() == NumElts.getFixedValue()) {
7265 // We have constant folded, but we might need to cast this again back
7266 // to the original (possibly legalized) type.
7267 EVT BVVT, BVEltVT;
7268 if (N1.getValueType() == VT) {
7269 BVVT = N1.getValueType();
7270 BVEltVT = BV1->getOperand(0).getValueType();
7271 } else {
7272 BVVT = N2.getValueType();
7273 BVEltVT = BV2->getOperand(0).getValueType();
7274 }
7275 unsigned BVEltBits = BVEltVT.getSizeInBits();
7276 SmallVector<APInt> DstBits;
7277 BitVector DstUndefs;
7279 DstBits, RawBits, DstUndefs,
7280 BitVector(RawBits.size(), false));
7281 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
7282 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
7283 if (DstUndefs[I])
7284 continue;
7285 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
7286 }
7287 return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
7288 }
7289 }
7290 }
7291 }
7292
7293 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
7294 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
7295 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
7296 Ops[0].getOpcode() == ISD::STEP_VECTOR) {
7297 APInt RHSVal;
7298 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
7299 APInt NewStep = Opcode == ISD::MUL
7300 ? Ops[0].getConstantOperandAPInt(0) * RHSVal
7301 : Ops[0].getConstantOperandAPInt(0) << RHSVal;
7302 return getStepVector(DL, VT, NewStep);
7303 }
7304 }
7305
7306 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
7307 return !Op.getValueType().isVector() ||
7308 Op.getValueType().getVectorElementCount() == NumElts;
7309 };
7310
7311 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
7312 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
7313 Op.getOpcode() == ISD::BUILD_VECTOR ||
7314 Op.getOpcode() == ISD::SPLAT_VECTOR;
7315 };
7316
7317 // All operands must be vector types with the same number of elements as
7318 // the result type and must be either UNDEF or a build/splat vector
7319 // or UNDEF scalars.
7320 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
7321 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
7322 return SDValue();
7323
7324 // If we are comparing vectors, then the result needs to be a i1 boolean that
7325 // is then extended back to the legal result type depending on how booleans
7326 // are represented.
7327 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
7328 ISD::NodeType ExtendCode =
7329 (Opcode == ISD::SETCC && SVT != VT.getScalarType())
7330 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
7332
7333 // Find legal integer scalar type for constant promotion and
7334 // ensure that its scalar size is at least as large as source.
7335 EVT LegalSVT = VT.getScalarType();
7336 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
7337 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
7338 if (LegalSVT.bitsLT(VT.getScalarType()))
7339 return SDValue();
7340 }
7341
7342 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
7343 // only have one operand to check. For fixed-length vector types we may have
7344 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
7345 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
7346
7347 // Constant fold each scalar lane separately.
7348 SmallVector<SDValue, 4> ScalarResults;
7349 for (unsigned I = 0; I != NumVectorElts; I++) {
7350 SmallVector<SDValue, 4> ScalarOps;
7351 for (SDValue Op : Ops) {
7352 EVT InSVT = Op.getValueType().getScalarType();
7353 if (Op.getOpcode() != ISD::BUILD_VECTOR &&
7354 Op.getOpcode() != ISD::SPLAT_VECTOR) {
7355 if (Op.isUndef())
7356 ScalarOps.push_back(getUNDEF(InSVT));
7357 else
7358 ScalarOps.push_back(Op);
7359 continue;
7360 }
7361
7362 SDValue ScalarOp =
7363 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
7364 EVT ScalarVT = ScalarOp.getValueType();
7365
7366 // Build vector (integer) scalar operands may need implicit
7367 // truncation - do this before constant folding.
7368 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
7369 // Don't create illegally-typed nodes unless they're constants or undef
7370 // - if we fail to constant fold we can't guarantee the (dead) nodes
7371 // we're creating will be cleaned up before being visited for
7372 // legalization.
7373 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
7374 !isa<ConstantSDNode>(ScalarOp) &&
7375 TLI->getTypeAction(*getContext(), InSVT) !=
7377 return SDValue();
7378 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
7379 }
7380
7381 ScalarOps.push_back(ScalarOp);
7382 }
7383
7384 // Constant fold the scalar operands.
7385 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
7386
7387 // Scalar folding only succeeded if the result is a constant or UNDEF.
7388 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
7389 ScalarResult.getOpcode() != ISD::ConstantFP)
7390 return SDValue();
7391
7392 // Legalize the (integer) scalar constant if necessary. We only do
7393 // this once we know the folding succeeded, since otherwise we would
7394 // get a node with illegal type which has a user.
7395 if (LegalSVT != SVT)
7396 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
7397
7398 ScalarResults.push_back(ScalarResult);
7399 }
7400
7401 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
7402 : getBuildVector(VT, DL, ScalarResults);
7403 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
7404 return V;
7405}
7406
7409 // TODO: Add support for unary/ternary fp opcodes.
7410 if (Ops.size() != 2)
7411 return SDValue();
7412
7413 // TODO: We don't do any constant folding for strict FP opcodes here, but we
7414 // should. That will require dealing with a potentially non-default
7415 // rounding mode, checking the "opStatus" return value from the APFloat
7416 // math calculations, and possibly other variations.
7417 SDValue N1 = Ops[0];
7418 SDValue N2 = Ops[1];
7419 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
7420 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
7421 if (N1CFP && N2CFP) {
7422 APFloat C1 = N1CFP->getValueAPF(); // make copy
7423 const APFloat &C2 = N2CFP->getValueAPF();
7424 switch (Opcode) {
7425 case ISD::FADD:
7427 return getConstantFP(C1, DL, VT);
7428 case ISD::FSUB:
7430 return getConstantFP(C1, DL, VT);
7431 case ISD::FMUL:
7433 return getConstantFP(C1, DL, VT);
7434 case ISD::FDIV:
7436 return getConstantFP(C1, DL, VT);
7437 case ISD::FREM:
7438 C1.mod(C2);
7439 return getConstantFP(C1, DL, VT);
7440 case ISD::FCOPYSIGN:
7441 C1.copySign(C2);
7442 return getConstantFP(C1, DL, VT);
7443 case ISD::FMINNUM:
7444 return getConstantFP(minnum(C1, C2), DL, VT);
7445 case ISD::FMAXNUM:
7446 return getConstantFP(maxnum(C1, C2), DL, VT);
7447 case ISD::FMINIMUM:
7448 return getConstantFP(minimum(C1, C2), DL, VT);
7449 case ISD::FMAXIMUM:
7450 return getConstantFP(maximum(C1, C2), DL, VT);
7451 case ISD::FMINIMUMNUM:
7452 return getConstantFP(minimumnum(C1, C2), DL, VT);
7453 case ISD::FMAXIMUMNUM:
7454 return getConstantFP(maximumnum(C1, C2), DL, VT);
7455 default: break;
7456 }
7457 }
7458 if (N1CFP && Opcode == ISD::FP_ROUND) {
7459 APFloat C1 = N1CFP->getValueAPF(); // make copy
7460 bool Unused;
7461 // This can return overflow, underflow, or inexact; we don't care.
7462 // FIXME need to be more flexible about rounding mode.
7464 &Unused);
7465 return getConstantFP(C1, DL, VT);
7466 }
7467
7468 switch (Opcode) {
7469 case ISD::FSUB:
7470 // -0.0 - undef --> undef (consistent with "fneg undef")
7471 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
7472 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
7473 return getUNDEF(VT);
7474 [[fallthrough]];
7475
7476 case ISD::FADD:
7477 case ISD::FMUL:
7478 case ISD::FDIV:
7479 case ISD::FREM:
7480 // If both operands are undef, the result is undef. If 1 operand is undef,
7481 // the result is NaN. This should match the behavior of the IR optimizer.
7482 if (N1.isUndef() && N2.isUndef())
7483 return getUNDEF(VT);
7484 if (N1.isUndef() || N2.isUndef())
7486 }
7487 return SDValue();
7488}
7489
7491 const SDLoc &DL, EVT DstEltVT) {
7492 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7493
7494 // If this is already the right type, we're done.
7495 if (SrcEltVT == DstEltVT)
7496 return SDValue(BV, 0);
7497
7498 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7499 unsigned DstBitSize = DstEltVT.getSizeInBits();
7500
7501 // If this is a conversion of N elements of one type to N elements of another
7502 // type, convert each element. This handles FP<->INT cases.
7503 if (SrcBitSize == DstBitSize) {
7505 for (SDValue Op : BV->op_values()) {
7506 // If the vector element type is not legal, the BUILD_VECTOR operands
7507 // are promoted and implicitly truncated. Make that explicit here.
7508 if (Op.getValueType() != SrcEltVT)
7509 Op = getNode(ISD::TRUNCATE, DL, SrcEltVT, Op);
7510 Ops.push_back(getBitcast(DstEltVT, Op));
7511 }
7512 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT,
7514 return getBuildVector(VT, DL, Ops);
7515 }
7516
7517 // Otherwise, we're growing or shrinking the elements. To avoid having to
7518 // handle annoying details of growing/shrinking FP values, we convert them to
7519 // int first.
7520 if (SrcEltVT.isFloatingPoint()) {
7521 // Convert the input float vector to a int vector where the elements are the
7522 // same sizes.
7523 EVT IntEltVT = EVT::getIntegerVT(*getContext(), SrcEltVT.getSizeInBits());
7524 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7526 DstEltVT);
7527 return SDValue();
7528 }
7529
7530 // Now we know the input is an integer vector. If the output is a FP type,
7531 // convert to integer first, then to FP of the right size.
7532 if (DstEltVT.isFloatingPoint()) {
7533 EVT IntEltVT = EVT::getIntegerVT(*getContext(), DstEltVT.getSizeInBits());
7534 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7536 DstEltVT);
7537 return SDValue();
7538 }
7539
7540 // Okay, we know the src/dst types are both integers of differing types.
7541 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7542
7543 // Extract the constant raw bit data.
7544 BitVector UndefElements;
7545 SmallVector<APInt> RawBits;
7546 bool IsLE = getDataLayout().isLittleEndian();
7547 if (!BV->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements))
7548 return SDValue();
7549
7551 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) {
7552 if (UndefElements[I])
7553 Ops.push_back(getUNDEF(DstEltVT));
7554 else
7555 Ops.push_back(getConstant(RawBits[I], DL, DstEltVT));
7556 }
7557
7558 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT, Ops.size());
7559 return getBuildVector(VT, DL, Ops);
7560}
7561
7563 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
7564
7565 // There's no need to assert on a byte-aligned pointer. All pointers are at
7566 // least byte aligned.
7567 if (A == Align(1))
7568 return Val;
7569
7570 SDVTList VTs = getVTList(Val.getValueType());
7572 AddNodeIDNode(ID, ISD::AssertAlign, VTs, {Val});
7573 ID.AddInteger(A.value());
7574
7575 void *IP = nullptr;
7576 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7577 return SDValue(E, 0);
7578
7579 auto *N =
7580 newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, A);
7581 createOperands(N, {Val});
7582
7583 CSEMap.InsertNode(N, IP);
7584 InsertNode(N);
7585
7586 SDValue V(N, 0);
7587 NewSDValueDbgMsg(V, "Creating new node: ", this);
7588 return V;
7589}
7590
7591SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7592 SDValue N1, SDValue N2) {
7593 SDNodeFlags Flags;
7594 if (Inserter)
7595 Flags = Inserter->getFlags();
7596 return getNode(Opcode, DL, VT, N1, N2, Flags);
7597}
7598
7600 SDValue &N2) const {
7601 if (!TLI->isCommutativeBinOp(Opcode))
7602 return;
7603
7604 // Canonicalize:
7605 // binop(const, nonconst) -> binop(nonconst, const)
7608 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
7609 bool N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
7610 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7611 std::swap(N1, N2);
7612
7613 // Canonicalize:
7614 // binop(splat(x), step_vector) -> binop(step_vector, splat(x))
7615 else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
7617 std::swap(N1, N2);
7618}
7619
7620SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7621 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
7623 N2.getOpcode() != ISD::DELETED_NODE &&
7624 "Operand is DELETED_NODE!");
7625
7626 canonicalizeCommutativeBinop(Opcode, N1, N2);
7627
7628 auto *N1C = dyn_cast<ConstantSDNode>(N1);
7629 auto *N2C = dyn_cast<ConstantSDNode>(N2);
7630
7631 // Don't allow undefs in vector splats - we might be returning N2 when folding
7632 // to zero etc.
7633 ConstantSDNode *N2CV =
7634 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
7635
7636 switch (Opcode) {
7637 default: break;
7638 case ISD::TokenFactor:
7639 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
7640 N2.getValueType() == MVT::Other && "Invalid token factor!");
7641 // Fold trivial token factors.
7642 if (N1.getOpcode() == ISD::EntryToken) return N2;
7643 if (N2.getOpcode() == ISD::EntryToken) return N1;
7644 if (N1 == N2) return N1;
7645 break;
7646 case ISD::BUILD_VECTOR: {
7647 // Attempt to simplify BUILD_VECTOR.
7648 SDValue Ops[] = {N1, N2};
7649 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7650 return V;
7651 break;
7652 }
7653 case ISD::CONCAT_VECTORS: {
7654 SDValue Ops[] = {N1, N2};
7655 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7656 return V;
7657 break;
7658 }
7659 case ISD::AND:
7660 assert(VT.isInteger() && "This operator does not apply to FP types!");
7661 assert(N1.getValueType() == N2.getValueType() &&
7662 N1.getValueType() == VT && "Binary operator types must match!");
7663 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
7664 // worth handling here.
7665 if (N2CV && N2CV->isZero())
7666 return N2;
7667 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
7668 return N1;
7669 break;
7670 case ISD::OR:
7671 case ISD::XOR:
7672 case ISD::ADD:
7673 case ISD::PTRADD:
7674 case ISD::SUB:
7675 assert(VT.isInteger() && "This operator does not apply to FP types!");
7676 assert(N1.getValueType() == N2.getValueType() &&
7677 N1.getValueType() == VT && "Binary operator types must match!");
7678 // The equal operand types requirement is unnecessarily strong for PTRADD.
7679 // However, the SelectionDAGBuilder does not generate PTRADDs with different
7680 // operand types, and we'd need to re-implement GEP's non-standard wrapping
7681 // logic everywhere where PTRADDs may be folded or combined to properly
7682 // support them. If/when we introduce pointer types to the SDAG, we will
7683 // need to relax this constraint.
7684
7685 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
7686 // it's worth handling here.
7687 if (N2CV && N2CV->isZero())
7688 return N1;
7689 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) &&
7690 VT.getScalarType() == MVT::i1)
7691 return getNode(ISD::XOR, DL, VT, N1, N2);
7692 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
7693 if (Opcode == ISD::ADD && N1.getOpcode() == ISD::VSCALE &&
7694 N2.getOpcode() == ISD::VSCALE) {
7695 const APInt &C1 = N1->getConstantOperandAPInt(0);
7696 const APInt &C2 = N2->getConstantOperandAPInt(0);
7697 return getVScale(DL, VT, C1 + C2);
7698 }
7699 break;
7700 case ISD::MUL:
7701 assert(VT.isInteger() && "This operator does not apply to FP types!");
7702 assert(N1.getValueType() == N2.getValueType() &&
7703 N1.getValueType() == VT && "Binary operator types must match!");
7704 if (VT.getScalarType() == MVT::i1)
7705 return getNode(ISD::AND, DL, VT, N1, N2);
7706 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7707 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7708 const APInt &N2CImm = N2C->getAPIntValue();
7709 return getVScale(DL, VT, MulImm * N2CImm);
7710 }
7711 break;
7712 case ISD::UDIV:
7713 case ISD::UREM:
7714 case ISD::MULHU:
7715 case ISD::MULHS:
7716 case ISD::SDIV:
7717 case ISD::SREM:
7718 case ISD::SADDSAT:
7719 case ISD::SSUBSAT:
7720 case ISD::UADDSAT:
7721 case ISD::USUBSAT:
7722 assert(VT.isInteger() && "This operator does not apply to FP types!");
7723 assert(N1.getValueType() == N2.getValueType() &&
7724 N1.getValueType() == VT && "Binary operator types must match!");
7725 if (VT.getScalarType() == MVT::i1) {
7726 // fold (add_sat x, y) -> (or x, y) for bool types.
7727 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
7728 return getNode(ISD::OR, DL, VT, N1, N2);
7729 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
7730 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
7731 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
7732 }
7733 break;
7734 case ISD::SCMP:
7735 case ISD::UCMP:
7736 assert(N1.getValueType() == N2.getValueType() &&
7737 "Types of operands of UCMP/SCMP must match");
7738 assert(N1.getValueType().isVector() == VT.isVector() &&
7739 "Operands and return type of must both be scalars or vectors");
7740 if (VT.isVector())
7743 "Result and operands must have the same number of elements");
7744 break;
7745 case ISD::AVGFLOORS:
7746 case ISD::AVGFLOORU:
7747 case ISD::AVGCEILS:
7748 case ISD::AVGCEILU:
7749 assert(VT.isInteger() && "This operator does not apply to FP types!");
7750 assert(N1.getValueType() == N2.getValueType() &&
7751 N1.getValueType() == VT && "Binary operator types must match!");
7752 break;
7753 case ISD::ABDS:
7754 case ISD::ABDU:
7755 assert(VT.isInteger() && "This operator does not apply to FP types!");
7756 assert(N1.getValueType() == N2.getValueType() &&
7757 N1.getValueType() == VT && "Binary operator types must match!");
7758 if (VT.getScalarType() == MVT::i1)
7759 return getNode(ISD::XOR, DL, VT, N1, N2);
7760 break;
7761 case ISD::SMIN:
7762 case ISD::UMAX:
7763 assert(VT.isInteger() && "This operator does not apply to FP types!");
7764 assert(N1.getValueType() == N2.getValueType() &&
7765 N1.getValueType() == VT && "Binary operator types must match!");
7766 if (VT.getScalarType() == MVT::i1)
7767 return getNode(ISD::OR, DL, VT, N1, N2);
7768 break;
7769 case ISD::SMAX:
7770 case ISD::UMIN:
7771 assert(VT.isInteger() && "This operator does not apply to FP types!");
7772 assert(N1.getValueType() == N2.getValueType() &&
7773 N1.getValueType() == VT && "Binary operator types must match!");
7774 if (VT.getScalarType() == MVT::i1)
7775 return getNode(ISD::AND, DL, VT, N1, N2);
7776 break;
7777 case ISD::FADD:
7778 case ISD::FSUB:
7779 case ISD::FMUL:
7780 case ISD::FDIV:
7781 case ISD::FREM:
7782 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7783 assert(N1.getValueType() == N2.getValueType() &&
7784 N1.getValueType() == VT && "Binary operator types must match!");
7785 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
7786 return V;
7787 break;
7788 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
7789 assert(N1.getValueType() == VT &&
7792 "Invalid FCOPYSIGN!");
7793 break;
7794 case ISD::SHL:
7795 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7796 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7797 const APInt &ShiftImm = N2C->getAPIntValue();
7798 return getVScale(DL, VT, MulImm << ShiftImm);
7799 }
7800 [[fallthrough]];
7801 case ISD::SRA:
7802 case ISD::SRL:
7803 if (SDValue V = simplifyShift(N1, N2))
7804 return V;
7805 [[fallthrough]];
7806 case ISD::ROTL:
7807 case ISD::ROTR:
7808 assert(VT == N1.getValueType() &&
7809 "Shift operators return type must be the same as their first arg");
7810 assert(VT.isInteger() && N2.getValueType().isInteger() &&
7811 "Shifts only work on integers");
7812 assert((!VT.isVector() || VT == N2.getValueType()) &&
7813 "Vector shift amounts must be in the same as their first arg");
7814 // Verify that the shift amount VT is big enough to hold valid shift
7815 // amounts. This catches things like trying to shift an i1024 value by an
7816 // i8, which is easy to fall into in generic code that uses
7817 // TLI.getShiftAmount().
7820 "Invalid use of small shift amount with oversized value!");
7821
7822 // Always fold shifts of i1 values so the code generator doesn't need to
7823 // handle them. Since we know the size of the shift has to be less than the
7824 // size of the value, the shift/rotate count is guaranteed to be zero.
7825 if (VT == MVT::i1)
7826 return N1;
7827 if (N2CV && N2CV->isZero())
7828 return N1;
7829 break;
7830 case ISD::FP_ROUND:
7832 VT.bitsLE(N1.getValueType()) && N2C &&
7833 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7834 N2.getOpcode() == ISD::TargetConstant && "Invalid FP_ROUND!");
7835 if (N1.getValueType() == VT) return N1; // noop conversion.
7836 break;
7837 case ISD::AssertNoFPClass: {
7839 "AssertNoFPClass is used for a non-floating type");
7840 assert(isa<ConstantSDNode>(N2) && "NoFPClass is not Constant");
7841 FPClassTest NoFPClass = static_cast<FPClassTest>(N2->getAsZExtVal());
7842 assert(llvm::to_underlying(NoFPClass) <=
7844 "FPClassTest value too large");
7845 (void)NoFPClass;
7846 break;
7847 }
7848 case ISD::AssertSext:
7849 case ISD::AssertZext: {
7850 EVT EVT = cast<VTSDNode>(N2)->getVT();
7851 assert(VT == N1.getValueType() && "Not an inreg extend!");
7852 assert(VT.isInteger() && EVT.isInteger() &&
7853 "Cannot *_EXTEND_INREG FP types");
7854 assert(!EVT.isVector() &&
7855 "AssertSExt/AssertZExt type should be the vector element type "
7856 "rather than the vector type!");
7857 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
7858 if (VT.getScalarType() == EVT) return N1; // noop assertion.
7859 break;
7860 }
7862 EVT EVT = cast<VTSDNode>(N2)->getVT();
7863 assert(VT == N1.getValueType() && "Not an inreg extend!");
7864 assert(VT.isInteger() && EVT.isInteger() &&
7865 "Cannot *_EXTEND_INREG FP types");
7866 assert(EVT.isVector() == VT.isVector() &&
7867 "SIGN_EXTEND_INREG type should be vector iff the operand "
7868 "type is vector!");
7869 assert((!EVT.isVector() ||
7871 "Vector element counts must match in SIGN_EXTEND_INREG");
7872 assert(EVT.bitsLE(VT) && "Not extending!");
7873 if (EVT == VT) return N1; // Not actually extending
7874 break;
7875 }
7877 case ISD::FP_TO_UINT_SAT: {
7878 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
7879 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
7880 assert(N1.getValueType().isVector() == VT.isVector() &&
7881 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7882 "vector!");
7883 assert((!VT.isVector() || VT.getVectorElementCount() ==
7885 "Vector element counts must match in FP_TO_*INT_SAT");
7886 assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
7887 "Type to saturate to must be a scalar.");
7888 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
7889 "Not extending!");
7890 break;
7891 }
7894 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7895 element type of the vector.");
7896
7897 // Extract from an undefined value or using an undefined index is undefined.
7898 if (N1.isUndef() || N2.isUndef())
7899 return getUNDEF(VT);
7900
7901 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
7902 // vectors. For scalable vectors we will provide appropriate support for
7903 // dealing with arbitrary indices.
7904 if (N2C && N1.getValueType().isFixedLengthVector() &&
7905 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
7906 return getUNDEF(VT);
7907
7908 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
7909 // expanding copies of large vectors from registers. This only works for
7910 // fixed length vectors, since we need to know the exact number of
7911 // elements.
7912 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
7914 unsigned Factor = N1.getOperand(0).getValueType().getVectorNumElements();
7915 return getExtractVectorElt(DL, VT,
7916 N1.getOperand(N2C->getZExtValue() / Factor),
7917 N2C->getZExtValue() % Factor);
7918 }
7919
7920 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
7921 // lowering is expanding large vector constants.
7922 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
7923 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
7926 "BUILD_VECTOR used for scalable vectors");
7927 unsigned Index =
7928 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
7929 SDValue Elt = N1.getOperand(Index);
7930
7931 if (VT != Elt.getValueType())
7932 // If the vector element type is not legal, the BUILD_VECTOR operands
7933 // are promoted and implicitly truncated, and the result implicitly
7934 // extended. Make that explicit here.
7935 Elt = getAnyExtOrTrunc(Elt, DL, VT);
7936
7937 return Elt;
7938 }
7939
7940 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
7941 // operations are lowered to scalars.
7942 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
7943 // If the indices are the same, return the inserted element else
7944 // if the indices are known different, extract the element from
7945 // the original vector.
7946 SDValue N1Op2 = N1.getOperand(2);
7948
7949 if (N1Op2C && N2C) {
7950 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
7951 if (VT == N1.getOperand(1).getValueType())
7952 return N1.getOperand(1);
7953 if (VT.isFloatingPoint()) {
7955 return getFPExtendOrRound(N1.getOperand(1), DL, VT);
7956 }
7957 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
7958 }
7959 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
7960 }
7961 }
7962
7963 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
7964 // when vector types are scalarized and v1iX is legal.
7965 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
7966 // Here we are completely ignoring the extract element index (N2),
7967 // which is fine for fixed width vectors, since any index other than 0
7968 // is undefined anyway. However, this cannot be ignored for scalable
7969 // vectors - in theory we could support this, but we don't want to do this
7970 // without a profitability check.
7971 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7973 N1.getValueType().getVectorNumElements() == 1) {
7974 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
7975 N1.getOperand(1));
7976 }
7977 break;
7979 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
7980 assert(!N1.getValueType().isVector() && !VT.isVector() &&
7981 (N1.getValueType().isInteger() == VT.isInteger()) &&
7982 N1.getValueType() != VT &&
7983 "Wrong types for EXTRACT_ELEMENT!");
7984
7985 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
7986 // 64-bit integers into 32-bit parts. Instead of building the extract of
7987 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
7988 if (N1.getOpcode() == ISD::BUILD_PAIR)
7989 return N1.getOperand(N2C->getZExtValue());
7990
7991 // EXTRACT_ELEMENT of a constant int is also very common.
7992 if (N1C) {
7993 unsigned ElementSize = VT.getSizeInBits();
7994 unsigned Shift = ElementSize * N2C->getZExtValue();
7995 const APInt &Val = N1C->getAPIntValue();
7996 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
7997 }
7998 break;
8000 EVT N1VT = N1.getValueType();
8001 assert(VT.isVector() && N1VT.isVector() &&
8002 "Extract subvector VTs must be vectors!");
8004 "Extract subvector VTs must have the same element type!");
8005 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
8006 "Cannot extract a scalable vector from a fixed length vector!");
8007 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8009 "Extract subvector must be from larger vector to smaller vector!");
8010 assert(N2C && "Extract subvector index must be a constant");
8011 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8012 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
8013 N1VT.getVectorMinNumElements()) &&
8014 "Extract subvector overflow!");
8015 assert(N2C->getAPIntValue().getBitWidth() ==
8016 TLI->getVectorIdxWidth(getDataLayout()) &&
8017 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8018 assert(N2C->getZExtValue() % VT.getVectorMinNumElements() == 0 &&
8019 "Extract index is not a multiple of the output vector length");
8020
8021 // Trivial extraction.
8022 if (VT == N1VT)
8023 return N1;
8024
8025 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
8026 if (N1.isUndef())
8027 return getUNDEF(VT);
8028
8029 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
8030 // the concat have the same type as the extract.
8031 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8032 VT == N1.getOperand(0).getValueType()) {
8033 unsigned Factor = VT.getVectorMinNumElements();
8034 return N1.getOperand(N2C->getZExtValue() / Factor);
8035 }
8036
8037 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
8038 // during shuffle legalization.
8039 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
8040 VT == N1.getOperand(1).getValueType())
8041 return N1.getOperand(1);
8042 break;
8043 }
8044 }
8045
8046 if (N1.getOpcode() == ISD::POISON || N2.getOpcode() == ISD::POISON) {
8047 switch (Opcode) {
8048 case ISD::XOR:
8049 case ISD::ADD:
8050 case ISD::PTRADD:
8051 case ISD::SUB:
8053 case ISD::UDIV:
8054 case ISD::SDIV:
8055 case ISD::UREM:
8056 case ISD::SREM:
8057 case ISD::MUL:
8058 case ISD::AND:
8059 case ISD::SSUBSAT:
8060 case ISD::USUBSAT:
8061 case ISD::UMIN:
8062 case ISD::OR:
8063 case ISD::SADDSAT:
8064 case ISD::UADDSAT:
8065 case ISD::UMAX:
8066 case ISD::SMAX:
8067 case ISD::SMIN:
8068 // fold op(arg1, poison) -> poison, fold op(poison, arg2) -> poison.
8069 return N2.getOpcode() == ISD::POISON ? N2 : N1;
8070 }
8071 }
8072
8073 // Canonicalize an UNDEF to the RHS, even over a constant.
8074 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() != ISD::UNDEF) {
8075 if (TLI->isCommutativeBinOp(Opcode)) {
8076 std::swap(N1, N2);
8077 } else {
8078 switch (Opcode) {
8079 case ISD::PTRADD:
8080 case ISD::SUB:
8081 // fold op(undef, non_undef_arg2) -> undef.
8082 return N1;
8084 case ISD::UDIV:
8085 case ISD::SDIV:
8086 case ISD::UREM:
8087 case ISD::SREM:
8088 case ISD::SSUBSAT:
8089 case ISD::USUBSAT:
8090 // fold op(undef, non_undef_arg2) -> 0.
8091 return getConstant(0, DL, VT);
8092 }
8093 }
8094 }
8095
8096 // Fold a bunch of operators when the RHS is undef.
8097 if (N2.getOpcode() == ISD::UNDEF) {
8098 switch (Opcode) {
8099 case ISD::XOR:
8100 if (N1.getOpcode() == ISD::UNDEF)
8101 // Handle undef ^ undef -> 0 special case. This is a common
8102 // idiom (misuse).
8103 return getConstant(0, DL, VT);
8104 [[fallthrough]];
8105 case ISD::ADD:
8106 case ISD::PTRADD:
8107 case ISD::SUB:
8108 // fold op(arg1, undef) -> undef.
8109 return N2;
8110 case ISD::UDIV:
8111 case ISD::SDIV:
8112 case ISD::UREM:
8113 case ISD::SREM:
8114 // fold op(arg1, undef) -> poison.
8115 return getPOISON(VT);
8116 case ISD::MUL:
8117 case ISD::AND:
8118 case ISD::SSUBSAT:
8119 case ISD::USUBSAT:
8120 case ISD::UMIN:
8121 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> 0.
8122 return N1.getOpcode() == ISD::UNDEF ? N2 : getConstant(0, DL, VT);
8123 case ISD::OR:
8124 case ISD::SADDSAT:
8125 case ISD::UADDSAT:
8126 case ISD::UMAX:
8127 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> -1.
8128 return N1.getOpcode() == ISD::UNDEF ? N2 : getAllOnesConstant(DL, VT);
8129 case ISD::SMAX:
8130 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MAX_INT.
8131 return N1.getOpcode() == ISD::UNDEF
8132 ? N2
8133 : getConstant(
8135 VT);
8136 case ISD::SMIN:
8137 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MIN_INT.
8138 return N1.getOpcode() == ISD::UNDEF
8139 ? N2
8140 : getConstant(
8142 VT);
8143 }
8144 }
8145
8146 // Perform trivial constant folding.
8147 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}, Flags))
8148 return SV;
8149
8150 // Memoize this node if possible.
8151 SDNode *N;
8152 SDVTList VTs = getVTList(VT);
8153 SDValue Ops[] = {N1, N2};
8154 if (VT != MVT::Glue) {
8156 AddNodeIDNode(ID, Opcode, VTs, Ops);
8157 void *IP = nullptr;
8158 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8159 E->intersectFlagsWith(Flags);
8160 return SDValue(E, 0);
8161 }
8162
8163 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8164 N->setFlags(Flags);
8165 createOperands(N, Ops);
8166 CSEMap.InsertNode(N, IP);
8167 } else {
8168 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8169 createOperands(N, Ops);
8170 }
8171
8172 InsertNode(N);
8173 SDValue V = SDValue(N, 0);
8174 NewSDValueDbgMsg(V, "Creating new node: ", this);
8175 return V;
8176}
8177
8178SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8179 SDValue N1, SDValue N2, SDValue N3) {
8180 SDNodeFlags Flags;
8181 if (Inserter)
8182 Flags = Inserter->getFlags();
8183 return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
8184}
8185
8186SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8187 SDValue N1, SDValue N2, SDValue N3,
8188 const SDNodeFlags Flags) {
8190 N2.getOpcode() != ISD::DELETED_NODE &&
8191 N3.getOpcode() != ISD::DELETED_NODE &&
8192 "Operand is DELETED_NODE!");
8193 // Perform various simplifications.
8194 switch (Opcode) {
8195 case ISD::BUILD_VECTOR: {
8196 // Attempt to simplify BUILD_VECTOR.
8197 SDValue Ops[] = {N1, N2, N3};
8198 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8199 return V;
8200 break;
8201 }
8202 case ISD::CONCAT_VECTORS: {
8203 SDValue Ops[] = {N1, N2, N3};
8204 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8205 return V;
8206 break;
8207 }
8208 case ISD::SETCC: {
8209 assert(VT.isInteger() && "SETCC result type must be an integer!");
8210 assert(N1.getValueType() == N2.getValueType() &&
8211 "SETCC operands must have the same type!");
8212 assert(VT.isVector() == N1.getValueType().isVector() &&
8213 "SETCC type should be vector iff the operand type is vector!");
8214 assert((!VT.isVector() || VT.getVectorElementCount() ==
8216 "SETCC vector element counts must match!");
8217 // Use FoldSetCC to simplify SETCC's.
8218 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
8219 return V;
8220 break;
8221 }
8222 case ISD::SELECT:
8223 case ISD::VSELECT:
8224 if (SDValue V = simplifySelect(N1, N2, N3))
8225 return V;
8226 break;
8228 llvm_unreachable("should use getVectorShuffle constructor!");
8229 case ISD::VECTOR_SPLICE: {
8230 if (cast<ConstantSDNode>(N3)->isZero())
8231 return N1;
8232 break;
8233 }
8235 assert(VT.isVector() && VT == N1.getValueType() &&
8236 "INSERT_VECTOR_ELT vector type mismatch");
8238 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8239 assert((!VT.isFloatingPoint() ||
8240 VT.getVectorElementType() == N2.getValueType()) &&
8241 "INSERT_VECTOR_ELT fp scalar type mismatch");
8242 assert((!VT.isInteger() ||
8244 "INSERT_VECTOR_ELT int scalar size mismatch");
8245
8246 auto *N3C = dyn_cast<ConstantSDNode>(N3);
8247 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
8248 // for scalable vectors where we will generate appropriate code to
8249 // deal with out-of-bounds cases correctly.
8250 if (N3C && N1.getValueType().isFixedLengthVector() &&
8251 N3C->getZExtValue() >= N1.getValueType().getVectorNumElements())
8252 return getUNDEF(VT);
8253
8254 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
8255 if (N3.isUndef())
8256 return getUNDEF(VT);
8257
8258 // If the inserted element is an UNDEF, just use the input vector.
8259 if (N2.isUndef())
8260 return N1;
8261
8262 break;
8263 }
8264 case ISD::INSERT_SUBVECTOR: {
8265 // Inserting undef into undef is still undef.
8266 if (N1.isUndef() && N2.isUndef())
8267 return getUNDEF(VT);
8268
8269 EVT N2VT = N2.getValueType();
8270 assert(VT == N1.getValueType() &&
8271 "Dest and insert subvector source types must match!");
8272 assert(VT.isVector() && N2VT.isVector() &&
8273 "Insert subvector VTs must be vectors!");
8275 "Insert subvector VTs must have the same element type!");
8276 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
8277 "Cannot insert a scalable vector into a fixed length vector!");
8278 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8280 "Insert subvector must be from smaller vector to larger vector!");
8282 "Insert subvector index must be constant");
8283 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8284 (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
8286 "Insert subvector overflow!");
8288 TLI->getVectorIdxWidth(getDataLayout()) &&
8289 "Constant index for INSERT_SUBVECTOR has an invalid size");
8290
8291 // Trivial insertion.
8292 if (VT == N2VT)
8293 return N2;
8294
8295 // If this is an insert of an extracted vector into an undef vector, we
8296 // can just use the input to the extract.
8297 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
8298 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT)
8299 return N2.getOperand(0);
8300 break;
8301 }
8302 case ISD::BITCAST:
8303 // Fold bit_convert nodes from a type to themselves.
8304 if (N1.getValueType() == VT)
8305 return N1;
8306 break;
8307 case ISD::VP_TRUNCATE:
8308 case ISD::VP_SIGN_EXTEND:
8309 case ISD::VP_ZERO_EXTEND:
8310 // Don't create noop casts.
8311 if (N1.getValueType() == VT)
8312 return N1;
8313 break;
8314 case ISD::VECTOR_COMPRESS: {
8315 [[maybe_unused]] EVT VecVT = N1.getValueType();
8316 [[maybe_unused]] EVT MaskVT = N2.getValueType();
8317 [[maybe_unused]] EVT PassthruVT = N3.getValueType();
8318 assert(VT == VecVT && "Vector and result type don't match.");
8319 assert(VecVT.isVector() && MaskVT.isVector() && PassthruVT.isVector() &&
8320 "All inputs must be vectors.");
8321 assert(VecVT == PassthruVT && "Vector and passthru types don't match.");
8323 "Vector and mask must have same number of elements.");
8324
8325 if (N1.isUndef() || N2.isUndef())
8326 return N3;
8327
8328 break;
8329 }
8330 case ISD::PARTIAL_REDUCE_UMLA:
8331 case ISD::PARTIAL_REDUCE_SMLA:
8332 case ISD::PARTIAL_REDUCE_SUMLA: {
8333 [[maybe_unused]] EVT AccVT = N1.getValueType();
8334 [[maybe_unused]] EVT Input1VT = N2.getValueType();
8335 [[maybe_unused]] EVT Input2VT = N3.getValueType();
8336 assert(Input1VT.isVector() && Input1VT == Input2VT &&
8337 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8338 "node to have the same type!");
8339 assert(VT.isVector() && VT == AccVT &&
8340 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8341 "the same type as its result!");
8343 AccVT.getVectorElementCount()) &&
8344 "Expected the element count of the second and third operands of the "
8345 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8346 "element count of the first operand and the result!");
8348 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8349 "node to have an element type which is the same as or smaller than "
8350 "the element type of the first operand and result!");
8351 break;
8352 }
8353 }
8354
8355 // Perform trivial constant folding for arithmetic operators.
8356 switch (Opcode) {
8357 case ISD::FMA:
8358 case ISD::FMAD:
8359 case ISD::SETCC:
8360 case ISD::FSHL:
8361 case ISD::FSHR:
8362 if (SDValue SV =
8363 FoldConstantArithmetic(Opcode, DL, VT, {N1, N2, N3}, Flags))
8364 return SV;
8365 break;
8366 }
8367
8368 // Memoize node if it doesn't produce a glue result.
8369 SDNode *N;
8370 SDVTList VTs = getVTList(VT);
8371 SDValue Ops[] = {N1, N2, N3};
8372 if (VT != MVT::Glue) {
8374 AddNodeIDNode(ID, Opcode, VTs, Ops);
8375 void *IP = nullptr;
8376 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8377 E->intersectFlagsWith(Flags);
8378 return SDValue(E, 0);
8379 }
8380
8381 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8382 N->setFlags(Flags);
8383 createOperands(N, Ops);
8384 CSEMap.InsertNode(N, IP);
8385 } else {
8386 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8387 createOperands(N, Ops);
8388 }
8389
8390 InsertNode(N);
8391 SDValue V = SDValue(N, 0);
8392 NewSDValueDbgMsg(V, "Creating new node: ", this);
8393 return V;
8394}
8395
8396SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8397 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8398 const SDNodeFlags Flags) {
8399 SDValue Ops[] = { N1, N2, N3, N4 };
8400 return getNode(Opcode, DL, VT, Ops, Flags);
8401}
8402
8403SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8404 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8405 SDNodeFlags Flags;
8406 if (Inserter)
8407 Flags = Inserter->getFlags();
8408 return getNode(Opcode, DL, VT, N1, N2, N3, N4, Flags);
8409}
8410
8411SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8412 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8413 SDValue N5, const SDNodeFlags Flags) {
8414 SDValue Ops[] = { N1, N2, N3, N4, N5 };
8415 return getNode(Opcode, DL, VT, Ops, Flags);
8416}
8417
8418SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8419 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8420 SDValue N5) {
8421 SDNodeFlags Flags;
8422 if (Inserter)
8423 Flags = Inserter->getFlags();
8424 return getNode(Opcode, DL, VT, N1, N2, N3, N4, N5, Flags);
8425}
8426
8427/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
8428/// the incoming stack arguments to be loaded from the stack.
8430 SmallVector<SDValue, 8> ArgChains;
8431
8432 // Include the original chain at the beginning of the list. When this is
8433 // used by target LowerCall hooks, this helps legalize find the
8434 // CALLSEQ_BEGIN node.
8435 ArgChains.push_back(Chain);
8436
8437 // Add a chain value for each stack argument.
8438 for (SDNode *U : getEntryNode().getNode()->users())
8439 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
8440 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
8441 if (FI->getIndex() < 0)
8442 ArgChains.push_back(SDValue(L, 1));
8443
8444 // Build a tokenfactor for all the chains.
8445 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
8446}
8447
8448/// getMemsetValue - Vectorized representation of the memset value
8449/// operand.
8451 const SDLoc &dl) {
8452 assert(!Value.isUndef());
8453
8454 unsigned NumBits = VT.getScalarSizeInBits();
8456 assert(C->getAPIntValue().getBitWidth() == 8);
8457 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
8458 if (VT.isInteger()) {
8459 bool IsOpaque = VT.getSizeInBits() > 64 ||
8460 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
8461 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
8462 }
8463 return DAG.getConstantFP(APFloat(VT.getFltSemantics(), Val), dl, VT);
8464 }
8465
8466 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
8467 EVT IntVT = VT.getScalarType();
8468 if (!IntVT.isInteger())
8469 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
8470
8471 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
8472 if (NumBits > 8) {
8473 // Use a multiplication with 0x010101... to extend the input to the
8474 // required length.
8475 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
8476 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
8477 DAG.getConstant(Magic, dl, IntVT));
8478 }
8479
8480 if (VT != Value.getValueType() && !VT.isInteger())
8481 Value = DAG.getBitcast(VT.getScalarType(), Value);
8482 if (VT != Value.getValueType())
8483 Value = DAG.getSplatBuildVector(VT, dl, Value);
8484
8485 return Value;
8486}
8487
8488/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
8489/// used when a memcpy is turned into a memset when the source is a constant
8490/// string ptr.
8492 const TargetLowering &TLI,
8493 const ConstantDataArraySlice &Slice) {
8494 // Handle vector with all elements zero.
8495 if (Slice.Array == nullptr) {
8496 if (VT.isInteger())
8497 return DAG.getConstant(0, dl, VT);
8498 return DAG.getNode(ISD::BITCAST, dl, VT,
8499 DAG.getConstant(0, dl, VT.changeTypeToInteger()));
8500 }
8501
8502 assert(!VT.isVector() && "Can't handle vector type here!");
8503 unsigned NumVTBits = VT.getSizeInBits();
8504 unsigned NumVTBytes = NumVTBits / 8;
8505 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
8506
8507 APInt Val(NumVTBits, 0);
8508 if (DAG.getDataLayout().isLittleEndian()) {
8509 for (unsigned i = 0; i != NumBytes; ++i)
8510 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
8511 } else {
8512 for (unsigned i = 0; i != NumBytes; ++i)
8513 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8514 }
8515
8516 // If the "cost" of materializing the integer immediate is less than the cost
8517 // of a load, then it is cost effective to turn the load into the immediate.
8518 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
8519 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
8520 return DAG.getConstant(Val, dl, VT);
8521 return SDValue();
8522}
8523
8525 const SDLoc &DL,
8526 const SDNodeFlags Flags) {
8527 EVT VT = Base.getValueType();
8528 SDValue Index;
8529
8530 if (Offset.isScalable())
8531 Index = getVScale(DL, Base.getValueType(),
8532 APInt(Base.getValueSizeInBits().getFixedValue(),
8533 Offset.getKnownMinValue()));
8534 else
8535 Index = getConstant(Offset.getFixedValue(), DL, VT);
8536
8537 return getMemBasePlusOffset(Base, Index, DL, Flags);
8538}
8539
8541 const SDLoc &DL,
8542 const SDNodeFlags Flags) {
8543 assert(Offset.getValueType().isInteger());
8544 EVT BasePtrVT = Ptr.getValueType();
8545 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8546 BasePtrVT))
8547 return getNode(ISD::PTRADD, DL, BasePtrVT, Ptr, Offset, Flags);
8548 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
8549}
8550
8551/// Returns true if memcpy source is constant data.
8553 uint64_t SrcDelta = 0;
8554 GlobalAddressSDNode *G = nullptr;
8555 if (Src.getOpcode() == ISD::GlobalAddress)
8557 else if (Src.getOpcode() == ISD::ADD &&
8558 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
8559 Src.getOperand(1).getOpcode() == ISD::Constant) {
8560 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
8561 SrcDelta = Src.getConstantOperandVal(1);
8562 }
8563 if (!G)
8564 return false;
8565
8566 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
8567 SrcDelta + G->getOffset());
8568}
8569
8571 SelectionDAG &DAG) {
8572 // On Darwin, -Os means optimize for size without hurting performance, so
8573 // only really optimize for size when -Oz (MinSize) is used.
8575 return MF.getFunction().hasMinSize();
8576 return DAG.shouldOptForSize();
8577}
8578
8580 SmallVector<SDValue, 32> &OutChains, unsigned From,
8581 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
8582 SmallVector<SDValue, 16> &OutStoreChains) {
8583 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
8584 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
8585 SmallVector<SDValue, 16> GluedLoadChains;
8586 for (unsigned i = From; i < To; ++i) {
8587 OutChains.push_back(OutLoadChains[i]);
8588 GluedLoadChains.push_back(OutLoadChains[i]);
8589 }
8590
8591 // Chain for all loads.
8592 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8593 GluedLoadChains);
8594
8595 for (unsigned i = From; i < To; ++i) {
8596 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
8597 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
8598 ST->getBasePtr(), ST->getMemoryVT(),
8599 ST->getMemOperand());
8600 OutChains.push_back(NewStore);
8601 }
8602}
8603
8605 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
8606 uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline,
8607 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo,
8608 const AAMDNodes &AAInfo, BatchAAResults *BatchAA) {
8609 // Turn a memcpy of undef to nop.
8610 // FIXME: We need to honor volatile even is Src is undef.
8611 if (Src.isUndef())
8612 return Chain;
8613
8614 // Expand memcpy to a series of load and store ops if the size operand falls
8615 // below a certain threshold.
8616 // TODO: In the AlwaysInline case, if the size is big then generate a loop
8617 // rather than maybe a humongous number of loads and stores.
8618 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8619 const DataLayout &DL = DAG.getDataLayout();
8620 LLVMContext &C = *DAG.getContext();
8621 std::vector<EVT> MemOps;
8622 bool DstAlignCanChange = false;
8624 MachineFrameInfo &MFI = MF.getFrameInfo();
8625 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8627 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8628 DstAlignCanChange = true;
8629 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8630 if (!SrcAlign || Alignment > *SrcAlign)
8631 SrcAlign = Alignment;
8632 assert(SrcAlign && "SrcAlign must be set");
8634 // If marked as volatile, perform a copy even when marked as constant.
8635 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
8636 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
8637 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
8638 const MemOp Op = isZeroConstant
8639 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
8640 /*IsZeroMemset*/ true, isVol)
8641 : MemOp::Copy(Size, DstAlignCanChange, Alignment,
8642 *SrcAlign, isVol, CopyFromConstant);
8643 if (!TLI.findOptimalMemOpLowering(
8644 C, MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
8645 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
8646 return SDValue();
8647
8648 if (DstAlignCanChange) {
8649 Type *Ty = MemOps[0].getTypeForEVT(C);
8650 Align NewAlign = DL.getABITypeAlign(Ty);
8651
8652 // Don't promote to an alignment that would require dynamic stack
8653 // realignment which may conflict with optimizations such as tail call
8654 // optimization.
8656 if (!TRI->hasStackRealignment(MF))
8657 if (MaybeAlign StackAlign = DL.getStackAlignment())
8658 NewAlign = std::min(NewAlign, *StackAlign);
8659
8660 if (NewAlign > Alignment) {
8661 // Give the stack frame object a larger alignment if needed.
8662 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8663 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8664 Alignment = NewAlign;
8665 }
8666 }
8667
8668 // Prepare AAInfo for loads/stores after lowering this memcpy.
8669 AAMDNodes NewAAInfo = AAInfo;
8670 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8671
8672 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
8673 bool isConstant =
8674 BatchAA && SrcVal &&
8675 BatchAA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
8676
8677 MachineMemOperand::Flags MMOFlags =
8679 SmallVector<SDValue, 16> OutLoadChains;
8680 SmallVector<SDValue, 16> OutStoreChains;
8681 SmallVector<SDValue, 32> OutChains;
8682 unsigned NumMemOps = MemOps.size();
8683 uint64_t SrcOff = 0, DstOff = 0;
8684 for (unsigned i = 0; i != NumMemOps; ++i) {
8685 EVT VT = MemOps[i];
8686 unsigned VTSize = VT.getSizeInBits() / 8;
8687 SDValue Value, Store;
8688
8689 if (VTSize > Size) {
8690 // Issuing an unaligned load / store pair that overlaps with the previous
8691 // pair. Adjust the offset accordingly.
8692 assert(i == NumMemOps-1 && i != 0);
8693 SrcOff -= VTSize - Size;
8694 DstOff -= VTSize - Size;
8695 }
8696
8697 if (CopyFromConstant &&
8698 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
8699 // It's unlikely a store of a vector immediate can be done in a single
8700 // instruction. It would require a load from a constantpool first.
8701 // We only handle zero vectors here.
8702 // FIXME: Handle other cases where store of vector immediate is done in
8703 // a single instruction.
8704 ConstantDataArraySlice SubSlice;
8705 if (SrcOff < Slice.Length) {
8706 SubSlice = Slice;
8707 SubSlice.move(SrcOff);
8708 } else {
8709 // This is an out-of-bounds access and hence UB. Pretend we read zero.
8710 SubSlice.Array = nullptr;
8711 SubSlice.Offset = 0;
8712 SubSlice.Length = VTSize;
8713 }
8714 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
8715 if (Value.getNode()) {
8716 Store = DAG.getStore(
8717 Chain, dl, Value,
8718 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8719 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8720 OutChains.push_back(Store);
8721 }
8722 }
8723
8724 if (!Store.getNode()) {
8725 // The type might not be legal for the target. This should only happen
8726 // if the type is smaller than a legal type, as on PPC, so the right
8727 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
8728 // to Load/Store if NVT==VT.
8729 // FIXME does the case above also need this?
8730 EVT NVT = TLI.getTypeToTransformTo(C, VT);
8731 assert(NVT.bitsGE(VT));
8732
8733 bool isDereferenceable =
8734 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8735 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8736 if (isDereferenceable)
8738 if (isConstant)
8739 SrcMMOFlags |= MachineMemOperand::MOInvariant;
8740
8741 Value = DAG.getExtLoad(
8742 ISD::EXTLOAD, dl, NVT, Chain,
8743 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8744 SrcPtrInfo.getWithOffset(SrcOff), VT,
8745 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
8746 OutLoadChains.push_back(Value.getValue(1));
8747
8748 Store = DAG.getTruncStore(
8749 Chain, dl, Value,
8750 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8751 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8752 OutStoreChains.push_back(Store);
8753 }
8754 SrcOff += VTSize;
8755 DstOff += VTSize;
8756 Size -= VTSize;
8757 }
8758
8759 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
8761 unsigned NumLdStInMemcpy = OutStoreChains.size();
8762
8763 if (NumLdStInMemcpy) {
8764 // It may be that memcpy might be converted to memset if it's memcpy
8765 // of constants. In such a case, we won't have loads and stores, but
8766 // just stores. In the absence of loads, there is nothing to gang up.
8767 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
8768 // If target does not care, just leave as it.
8769 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8770 OutChains.push_back(OutLoadChains[i]);
8771 OutChains.push_back(OutStoreChains[i]);
8772 }
8773 } else {
8774 // Ld/St less than/equal limit set by target.
8775 if (NumLdStInMemcpy <= GluedLdStLimit) {
8776 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8777 NumLdStInMemcpy, OutLoadChains,
8778 OutStoreChains);
8779 } else {
8780 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8781 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8782 unsigned GlueIter = 0;
8783
8784 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8785 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8786 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8787
8788 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
8789 OutLoadChains, OutStoreChains);
8790 GlueIter += GluedLdStLimit;
8791 }
8792
8793 // Residual ld/st.
8794 if (RemainingLdStInMemcpy) {
8795 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8796 RemainingLdStInMemcpy, OutLoadChains,
8797 OutStoreChains);
8798 }
8799 }
8800 }
8801 }
8802 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8803}
8804
8806 SDValue Chain, SDValue Dst, SDValue Src,
8807 uint64_t Size, Align Alignment,
8808 bool isVol, bool AlwaysInline,
8809 MachinePointerInfo DstPtrInfo,
8810 MachinePointerInfo SrcPtrInfo,
8811 const AAMDNodes &AAInfo) {
8812 // Turn a memmove of undef to nop.
8813 // FIXME: We need to honor volatile even is Src is undef.
8814 if (Src.isUndef())
8815 return Chain;
8816
8817 // Expand memmove to a series of load and store ops if the size operand falls
8818 // below a certain threshold.
8819 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8820 const DataLayout &DL = DAG.getDataLayout();
8821 LLVMContext &C = *DAG.getContext();
8822 std::vector<EVT> MemOps;
8823 bool DstAlignCanChange = false;
8825 MachineFrameInfo &MFI = MF.getFrameInfo();
8826 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8828 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8829 DstAlignCanChange = true;
8830 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8831 if (!SrcAlign || Alignment > *SrcAlign)
8832 SrcAlign = Alignment;
8833 assert(SrcAlign && "SrcAlign must be set");
8834 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
8835 if (!TLI.findOptimalMemOpLowering(
8836 C, MemOps, Limit,
8837 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
8838 /*IsVolatile*/ true),
8839 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8840 MF.getFunction().getAttributes()))
8841 return SDValue();
8842
8843 if (DstAlignCanChange) {
8844 Type *Ty = MemOps[0].getTypeForEVT(C);
8845 Align NewAlign = DL.getABITypeAlign(Ty);
8846
8847 // Don't promote to an alignment that would require dynamic stack
8848 // realignment which may conflict with optimizations such as tail call
8849 // optimization.
8851 if (!TRI->hasStackRealignment(MF))
8852 if (MaybeAlign StackAlign = DL.getStackAlignment())
8853 NewAlign = std::min(NewAlign, *StackAlign);
8854
8855 if (NewAlign > Alignment) {
8856 // Give the stack frame object a larger alignment if needed.
8857 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8858 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8859 Alignment = NewAlign;
8860 }
8861 }
8862
8863 // Prepare AAInfo for loads/stores after lowering this memmove.
8864 AAMDNodes NewAAInfo = AAInfo;
8865 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8866
8867 MachineMemOperand::Flags MMOFlags =
8869 uint64_t SrcOff = 0, DstOff = 0;
8870 SmallVector<SDValue, 8> LoadValues;
8871 SmallVector<SDValue, 8> LoadChains;
8872 SmallVector<SDValue, 8> OutChains;
8873 unsigned NumMemOps = MemOps.size();
8874 for (unsigned i = 0; i < NumMemOps; i++) {
8875 EVT VT = MemOps[i];
8876 unsigned VTSize = VT.getSizeInBits() / 8;
8877 SDValue Value;
8878
8879 bool isDereferenceable =
8880 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8881 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8882 if (isDereferenceable)
8884
8885 Value = DAG.getLoad(
8886 VT, dl, Chain,
8887 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8888 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8889 LoadValues.push_back(Value);
8890 LoadChains.push_back(Value.getValue(1));
8891 SrcOff += VTSize;
8892 }
8893 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8894 OutChains.clear();
8895 for (unsigned i = 0; i < NumMemOps; i++) {
8896 EVT VT = MemOps[i];
8897 unsigned VTSize = VT.getSizeInBits() / 8;
8898 SDValue Store;
8899
8900 Store = DAG.getStore(
8901 Chain, dl, LoadValues[i],
8902 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8903 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8904 OutChains.push_back(Store);
8905 DstOff += VTSize;
8906 }
8907
8908 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8909}
8910
8911/// Lower the call to 'memset' intrinsic function into a series of store
8912/// operations.
8913///
8914/// \param DAG Selection DAG where lowered code is placed.
8915/// \param dl Link to corresponding IR location.
8916/// \param Chain Control flow dependency.
8917/// \param Dst Pointer to destination memory location.
8918/// \param Src Value of byte to write into the memory.
8919/// \param Size Number of bytes to write.
8920/// \param Alignment Alignment of the destination in bytes.
8921/// \param isVol True if destination is volatile.
8922/// \param AlwaysInline Makes sure no function call is generated.
8923/// \param DstPtrInfo IR information on the memory pointer.
8924/// \returns New head in the control flow, if lowering was successful, empty
8925/// SDValue otherwise.
8926///
8927/// The function tries to replace 'llvm.memset' intrinsic with several store
8928/// operations and value calculation code. This is usually profitable for small
8929/// memory size or when the semantic requires inlining.
8931 SDValue Chain, SDValue Dst, SDValue Src,
8932 uint64_t Size, Align Alignment, bool isVol,
8933 bool AlwaysInline, MachinePointerInfo DstPtrInfo,
8934 const AAMDNodes &AAInfo) {
8935 // Turn a memset of undef to nop.
8936 // FIXME: We need to honor volatile even is Src is undef.
8937 if (Src.isUndef())
8938 return Chain;
8939
8940 // Expand memset to a series of load/store ops if the size operand
8941 // falls below a certain threshold.
8942 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8943 std::vector<EVT> MemOps;
8944 bool DstAlignCanChange = false;
8945 LLVMContext &C = *DAG.getContext();
8947 MachineFrameInfo &MFI = MF.getFrameInfo();
8948 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8950 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8951 DstAlignCanChange = true;
8952 bool IsZeroVal = isNullConstant(Src);
8953 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
8954
8955 if (!TLI.findOptimalMemOpLowering(
8956 C, MemOps, Limit,
8957 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
8958 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
8959 return SDValue();
8960
8961 if (DstAlignCanChange) {
8962 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
8963 const DataLayout &DL = DAG.getDataLayout();
8964 Align NewAlign = DL.getABITypeAlign(Ty);
8965
8966 // Don't promote to an alignment that would require dynamic stack
8967 // realignment which may conflict with optimizations such as tail call
8968 // optimization.
8970 if (!TRI->hasStackRealignment(MF))
8971 if (MaybeAlign StackAlign = DL.getStackAlignment())
8972 NewAlign = std::min(NewAlign, *StackAlign);
8973
8974 if (NewAlign > Alignment) {
8975 // Give the stack frame object a larger alignment if needed.
8976 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8977 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8978 Alignment = NewAlign;
8979 }
8980 }
8981
8982 SmallVector<SDValue, 8> OutChains;
8983 uint64_t DstOff = 0;
8984 unsigned NumMemOps = MemOps.size();
8985
8986 // Find the largest store and generate the bit pattern for it.
8987 EVT LargestVT = MemOps[0];
8988 for (unsigned i = 1; i < NumMemOps; i++)
8989 if (MemOps[i].bitsGT(LargestVT))
8990 LargestVT = MemOps[i];
8991 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
8992
8993 // Prepare AAInfo for loads/stores after lowering this memset.
8994 AAMDNodes NewAAInfo = AAInfo;
8995 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8996
8997 for (unsigned i = 0; i < NumMemOps; i++) {
8998 EVT VT = MemOps[i];
8999 unsigned VTSize = VT.getSizeInBits() / 8;
9000 if (VTSize > Size) {
9001 // Issuing an unaligned load / store pair that overlaps with the previous
9002 // pair. Adjust the offset accordingly.
9003 assert(i == NumMemOps-1 && i != 0);
9004 DstOff -= VTSize - Size;
9005 }
9006
9007 // If this store is smaller than the largest store see whether we can get
9008 // the smaller value for free with a truncate or extract vector element and
9009 // then store.
9010 SDValue Value = MemSetValue;
9011 if (VT.bitsLT(LargestVT)) {
9012 unsigned Index;
9013 unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
9014 EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
9015 if (!LargestVT.isVector() && !VT.isVector() &&
9016 TLI.isTruncateFree(LargestVT, VT))
9017 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
9018 else if (LargestVT.isVector() && !VT.isVector() &&
9020 LargestVT.getTypeForEVT(*DAG.getContext()),
9021 VT.getSizeInBits(), Index) &&
9022 TLI.isTypeLegal(SVT) &&
9023 LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
9024 // Target which can combine store(extractelement VectorTy, Idx) can get
9025 // the smaller value for free.
9026 SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9027 Value = DAG.getExtractVectorElt(dl, VT, TailValue, Index);
9028 } else
9029 Value = getMemsetValue(Src, VT, DAG, dl);
9030 }
9031 assert(Value.getValueType() == VT && "Value with wrong type.");
9032 SDValue Store = DAG.getStore(
9033 Chain, dl, Value,
9034 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
9035 DstPtrInfo.getWithOffset(DstOff), Alignment,
9037 NewAAInfo);
9038 OutChains.push_back(Store);
9039 DstOff += VT.getSizeInBits() / 8;
9040 Size -= VTSize;
9041 }
9042
9043 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
9044}
9045
9047 unsigned AS) {
9048 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
9049 // pointer operands can be losslessly bitcasted to pointers of address space 0
9050 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
9051 report_fatal_error("cannot lower memory intrinsic in address space " +
9052 Twine(AS));
9053 }
9054}
9055
9057 const SelectionDAG *SelDAG,
9058 bool AllowReturnsFirstArg) {
9059 if (!CI || !CI->isTailCall())
9060 return false;
9061 // TODO: Fix "returns-first-arg" determination so it doesn't depend on which
9062 // helper symbol we lower to.
9063 return isInTailCallPosition(*CI, SelDAG->getTarget(),
9064 AllowReturnsFirstArg &&
9066}
9067
9068std::pair<SDValue, SDValue>
9070 SDValue Mem1, SDValue Size, const CallInst *CI) {
9071 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9072 if (!LibCallName)
9073 return {};
9074
9077 {Mem0, PT},
9078 {Mem1, PT},
9080
9082 bool IsTailCall =
9083 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9084
9085 CLI.setDebugLoc(dl)
9086 .setChain(Chain)
9087 .setLibCallee(
9088 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9090 getExternalSymbol(LibCallName, TLI->getPointerTy(getDataLayout())),
9091 std::move(Args))
9092 .setTailCall(IsTailCall);
9093
9094 return TLI->LowerCallTo(CLI);
9095}
9096
9098 SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size,
9099 Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI,
9100 std::optional<bool> OverrideTailCall, MachinePointerInfo DstPtrInfo,
9101 MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo,
9102 BatchAAResults *BatchAA) {
9103 // Check to see if we should lower the memcpy to loads and stores first.
9104 // For cases within the target-specified limits, this is the best choice.
9106 if (ConstantSize) {
9107 // Memcpy with size zero? Just return the original chain.
9108 if (ConstantSize->isZero())
9109 return Chain;
9110
9112 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9113 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9114 if (Result.getNode())
9115 return Result;
9116 }
9117
9118 // Then check to see if we should lower the memcpy with target-specific
9119 // code. If the target chooses to do this, this is the next best.
9120 if (TSI) {
9121 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9122 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
9123 DstPtrInfo, SrcPtrInfo);
9124 if (Result.getNode())
9125 return Result;
9126 }
9127
9128 // If we really need inline code and the target declined to provide it,
9129 // use a (potentially long) sequence of loads and stores.
9130 if (AlwaysInline) {
9131 assert(ConstantSize && "AlwaysInline requires a constant size!");
9133 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9134 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9135 }
9136
9139
9140 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
9141 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
9142 // respect volatile, so they may do things like read or write memory
9143 // beyond the given memory regions. But fixing this isn't easy, and most
9144 // people don't care.
9145
9146 // Emit a library call.
9149 Args.emplace_back(Dst, PtrTy);
9150 Args.emplace_back(Src, PtrTy);
9151 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9152 // FIXME: pass in SDLoc
9154 bool IsTailCall = false;
9155 const char *MemCpyName = TLI->getMemcpyName();
9156
9157 if (OverrideTailCall.has_value()) {
9158 IsTailCall = *OverrideTailCall;
9159 } else {
9160 bool LowersToMemcpy = StringRef(MemCpyName) == StringRef("memcpy");
9161 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemcpy);
9162 }
9163
9164 CLI.setDebugLoc(dl)
9165 .setChain(Chain)
9166 .setLibCallee(
9167 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9168 Dst.getValueType().getTypeForEVT(*getContext()),
9169 getExternalSymbol(MemCpyName, TLI->getPointerTy(getDataLayout())),
9170 std::move(Args))
9172 .setTailCall(IsTailCall);
9173
9174 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9175 return CallResult.second;
9176}
9177
9179 SDValue Dst, SDValue Src, SDValue Size,
9180 Type *SizeTy, unsigned ElemSz,
9181 bool isTailCall,
9182 MachinePointerInfo DstPtrInfo,
9183 MachinePointerInfo SrcPtrInfo) {
9184 // Emit a library call.
9187 Args.emplace_back(Dst, ArgTy);
9188 Args.emplace_back(Src, ArgTy);
9189 Args.emplace_back(Size, SizeTy);
9190
9191 RTLIB::Libcall LibraryCall =
9193 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9194 report_fatal_error("Unsupported element size");
9195
9197 CLI.setDebugLoc(dl)
9198 .setChain(Chain)
9199 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9201 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9202 TLI->getPointerTy(getDataLayout())),
9203 std::move(Args))
9205 .setTailCall(isTailCall);
9206
9207 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9208 return CallResult.second;
9209}
9210
9212 SDValue Src, SDValue Size, Align Alignment,
9213 bool isVol, const CallInst *CI,
9214 std::optional<bool> OverrideTailCall,
9215 MachinePointerInfo DstPtrInfo,
9216 MachinePointerInfo SrcPtrInfo,
9217 const AAMDNodes &AAInfo,
9218 BatchAAResults *BatchAA) {
9219 // Check to see if we should lower the memmove to loads and stores first.
9220 // For cases within the target-specified limits, this is the best choice.
9222 if (ConstantSize) {
9223 // Memmove with size zero? Just return the original chain.
9224 if (ConstantSize->isZero())
9225 return Chain;
9226
9228 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9229 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
9230 if (Result.getNode())
9231 return Result;
9232 }
9233
9234 // Then check to see if we should lower the memmove with target-specific
9235 // code. If the target chooses to do this, this is the next best.
9236 if (TSI) {
9237 SDValue Result =
9238 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
9239 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9240 if (Result.getNode())
9241 return Result;
9242 }
9243
9246
9247 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
9248 // not be safe. See memcpy above for more details.
9249
9250 // Emit a library call.
9253 Args.emplace_back(Dst, PtrTy);
9254 Args.emplace_back(Src, PtrTy);
9255 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9256 // FIXME: pass in SDLoc
9258
9259 bool IsTailCall = false;
9260 if (OverrideTailCall.has_value()) {
9261 IsTailCall = *OverrideTailCall;
9262 } else {
9263 bool LowersToMemmove =
9264 TLI->getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove");
9265 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemmove);
9266 }
9267
9268 CLI.setDebugLoc(dl)
9269 .setChain(Chain)
9270 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9271 Dst.getValueType().getTypeForEVT(*getContext()),
9272 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
9273 TLI->getPointerTy(getDataLayout())),
9274 std::move(Args))
9276 .setTailCall(IsTailCall);
9277
9278 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9279 return CallResult.second;
9280}
9281
9283 SDValue Dst, SDValue Src, SDValue Size,
9284 Type *SizeTy, unsigned ElemSz,
9285 bool isTailCall,
9286 MachinePointerInfo DstPtrInfo,
9287 MachinePointerInfo SrcPtrInfo) {
9288 // Emit a library call.
9290 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
9291 Args.emplace_back(Dst, IntPtrTy);
9292 Args.emplace_back(Src, IntPtrTy);
9293 Args.emplace_back(Size, SizeTy);
9294
9295 RTLIB::Libcall LibraryCall =
9297 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9298 report_fatal_error("Unsupported element size");
9299
9301 CLI.setDebugLoc(dl)
9302 .setChain(Chain)
9303 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9305 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9306 TLI->getPointerTy(getDataLayout())),
9307 std::move(Args))
9309 .setTailCall(isTailCall);
9310
9311 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9312 return CallResult.second;
9313}
9314
9316 SDValue Src, SDValue Size, Align Alignment,
9317 bool isVol, bool AlwaysInline,
9318 const CallInst *CI,
9319 MachinePointerInfo DstPtrInfo,
9320 const AAMDNodes &AAInfo) {
9321 // Check to see if we should lower the memset to stores first.
9322 // For cases within the target-specified limits, this is the best choice.
9324 if (ConstantSize) {
9325 // Memset with size zero? Just return the original chain.
9326 if (ConstantSize->isZero())
9327 return Chain;
9328
9329 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9330 ConstantSize->getZExtValue(), Alignment,
9331 isVol, false, DstPtrInfo, AAInfo);
9332
9333 if (Result.getNode())
9334 return Result;
9335 }
9336
9337 // Then check to see if we should lower the memset with target-specific
9338 // code. If the target chooses to do this, this is the next best.
9339 if (TSI) {
9340 SDValue Result = TSI->EmitTargetCodeForMemset(
9341 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9342 if (Result.getNode())
9343 return Result;
9344 }
9345
9346 // If we really need inline code and the target declined to provide it,
9347 // use a (potentially long) sequence of loads and stores.
9348 if (AlwaysInline) {
9349 assert(ConstantSize && "AlwaysInline requires a constant size!");
9350 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9351 ConstantSize->getZExtValue(), Alignment,
9352 isVol, true, DstPtrInfo, AAInfo);
9353 assert(Result &&
9354 "getMemsetStores must return a valid sequence when AlwaysInline");
9355 return Result;
9356 }
9357
9359
9360 // Emit a library call.
9361 auto &Ctx = *getContext();
9362 const auto& DL = getDataLayout();
9363
9365 // FIXME: pass in SDLoc
9366 CLI.setDebugLoc(dl).setChain(Chain);
9367
9368 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
9369
9370 bool UseBZero = isNullConstant(Src) && BzeroName;
9371 // If zeroing out and bzero is present, use it.
9372 if (UseBZero) {
9374 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9375 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9376 CLI.setLibCallee(
9377 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
9378 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
9379 } else {
9381 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9382 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9383 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9384 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9385 Dst.getValueType().getTypeForEVT(Ctx),
9386 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
9387 TLI->getPointerTy(DL)),
9388 std::move(Args));
9389 }
9390 bool LowersToMemset =
9391 TLI->getLibcallName(RTLIB::MEMSET) == StringRef("memset");
9392 // If we're going to use bzero, make sure not to tail call unless the
9393 // subsequent return doesn't need a value, as bzero doesn't return the first
9394 // arg unlike memset.
9395 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI) && !UseBZero;
9396 bool IsTailCall =
9397 CI && CI->isTailCall() &&
9398 isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg && LowersToMemset);
9399 CLI.setDiscardResult().setTailCall(IsTailCall);
9400
9401 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9402 return CallResult.second;
9403}
9404
9407 Type *SizeTy, unsigned ElemSz,
9408 bool isTailCall,
9409 MachinePointerInfo DstPtrInfo) {
9410 // Emit a library call.
9412 Args.emplace_back(Dst, getDataLayout().getIntPtrType(*getContext()));
9413 Args.emplace_back(Value, Type::getInt8Ty(*getContext()));
9414 Args.emplace_back(Size, SizeTy);
9415
9416 RTLIB::Libcall LibraryCall =
9418 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9419 report_fatal_error("Unsupported element size");
9420
9422 CLI.setDebugLoc(dl)
9423 .setChain(Chain)
9424 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9426 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9427 TLI->getPointerTy(getDataLayout())),
9428 std::move(Args))
9430 .setTailCall(isTailCall);
9431
9432 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9433 return CallResult.second;
9434}
9435
9436SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9438 MachineMemOperand *MMO,
9439 ISD::LoadExtType ExtType) {
9441 AddNodeIDNode(ID, Opcode, VTList, Ops);
9442 ID.AddInteger(MemVT.getRawBits());
9443 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9444 dl.getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9445 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9446 ID.AddInteger(MMO->getFlags());
9447 void* IP = nullptr;
9448 if (auto *E = cast_or_null<AtomicSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9449 E->refineAlignment(MMO);
9450 E->refineRanges(MMO);
9451 return SDValue(E, 0);
9452 }
9453
9454 auto *N = newSDNode<AtomicSDNode>(dl.getIROrder(), dl.getDebugLoc(), Opcode,
9455 VTList, MemVT, MMO, ExtType);
9456 createOperands(N, Ops);
9457
9458 CSEMap.InsertNode(N, IP);
9459 InsertNode(N);
9460 SDValue V(N, 0);
9461 NewSDValueDbgMsg(V, "Creating new node: ", this);
9462 return V;
9463}
9464
9466 EVT MemVT, SDVTList VTs, SDValue Chain,
9467 SDValue Ptr, SDValue Cmp, SDValue Swp,
9468 MachineMemOperand *MMO) {
9469 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9470 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9471 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
9472
9473 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
9474 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9475}
9476
9477SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9478 SDValue Chain, SDValue Ptr, SDValue Val,
9479 MachineMemOperand *MMO) {
9480 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9481 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9482 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9483 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9484 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9485 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9486 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9487 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9488 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9489 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9490 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9491 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9492 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9493 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9494 Opcode == ISD::ATOMIC_STORE) &&
9495 "Invalid Atomic Op");
9496
9497 EVT VT = Val.getValueType();
9498
9499 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
9500 getVTList(VT, MVT::Other);
9501 SDValue Ops[] = {Chain, Ptr, Val};
9502 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9503}
9504
9506 EVT MemVT, EVT VT, SDValue Chain,
9508 SDVTList VTs = getVTList(VT, MVT::Other);
9509 SDValue Ops[] = {Chain, Ptr};
9510 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs, Ops, MMO, ExtType);
9511}
9512
9513/// getMergeValues - Create a MERGE_VALUES node from the given operands.
9515 if (Ops.size() == 1)
9516 return Ops[0];
9517
9519 VTs.reserve(Ops.size());
9520 for (const SDValue &Op : Ops)
9521 VTs.push_back(Op.getValueType());
9522 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
9523}
9524
9526 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
9527 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
9529 const AAMDNodes &AAInfo) {
9530 if (Size.hasValue() && !Size.getValue())
9532
9534 MachineMemOperand *MMO =
9535 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
9536
9537 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
9538}
9539
9541 SDVTList VTList,
9542 ArrayRef<SDValue> Ops, EVT MemVT,
9543 MachineMemOperand *MMO) {
9544 assert(
9545 (Opcode == ISD::INTRINSIC_VOID || Opcode == ISD::INTRINSIC_W_CHAIN ||
9546 Opcode == ISD::PREFETCH ||
9547 (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
9548 Opcode >= ISD::BUILTIN_OP_END && TSI->isTargetMemoryOpcode(Opcode))) &&
9549 "Opcode is not a memory-accessing opcode!");
9550
9551 // Memoize the node unless it returns a glue result.
9553 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9555 AddNodeIDNode(ID, Opcode, VTList, Ops);
9556 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9557 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
9558 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9559 ID.AddInteger(MMO->getFlags());
9560 ID.AddInteger(MemVT.getRawBits());
9561 void *IP = nullptr;
9562 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9563 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
9564 return SDValue(E, 0);
9565 }
9566
9567 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9568 VTList, MemVT, MMO);
9569 createOperands(N, Ops);
9570
9571 CSEMap.InsertNode(N, IP);
9572 } else {
9573 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9574 VTList, MemVT, MMO);
9575 createOperands(N, Ops);
9576 }
9577 InsertNode(N);
9578 SDValue V(N, 0);
9579 NewSDValueDbgMsg(V, "Creating new node: ", this);
9580 return V;
9581}
9582
9584 SDValue Chain, int FrameIndex) {
9585 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9586 const auto VTs = getVTList(MVT::Other);
9587 SDValue Ops[2] = {
9588 Chain,
9589 getFrameIndex(FrameIndex,
9590 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
9591 true)};
9592
9594 AddNodeIDNode(ID, Opcode, VTs, Ops);
9595 ID.AddInteger(FrameIndex);
9596 void *IP = nullptr;
9597 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9598 return SDValue(E, 0);
9599
9600 LifetimeSDNode *N =
9601 newSDNode<LifetimeSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs);
9602 createOperands(N, Ops);
9603 CSEMap.InsertNode(N, IP);
9604 InsertNode(N);
9605 SDValue V(N, 0);
9606 NewSDValueDbgMsg(V, "Creating new node: ", this);
9607 return V;
9608}
9609
9611 uint64_t Guid, uint64_t Index,
9612 uint32_t Attr) {
9613 const unsigned Opcode = ISD::PSEUDO_PROBE;
9614 const auto VTs = getVTList(MVT::Other);
9615 SDValue Ops[] = {Chain};
9617 AddNodeIDNode(ID, Opcode, VTs, Ops);
9618 ID.AddInteger(Guid);
9619 ID.AddInteger(Index);
9620 void *IP = nullptr;
9621 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
9622 return SDValue(E, 0);
9623
9624 auto *N = newSDNode<PseudoProbeSDNode>(
9625 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
9626 createOperands(N, Ops);
9627 CSEMap.InsertNode(N, IP);
9628 InsertNode(N);
9629 SDValue V(N, 0);
9630 NewSDValueDbgMsg(V, "Creating new node: ", this);
9631 return V;
9632}
9633
9634/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9635/// MachinePointerInfo record from it. This is particularly useful because the
9636/// code generator has many cases where it doesn't bother passing in a
9637/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9639 SelectionDAG &DAG, SDValue Ptr,
9640 int64_t Offset = 0) {
9641 // If this is FI+Offset, we can model it.
9644 FI->getIndex(), Offset);
9645
9646 // If this is (FI+Offset1)+Offset2, we can model it.
9647 if (Ptr.getOpcode() != ISD::ADD ||
9648 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
9649 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
9650 return Info;
9651
9652 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9654 DAG.getMachineFunction(), FI,
9655 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
9656}
9657
9658/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9659/// MachinePointerInfo record from it. This is particularly useful because the
9660/// code generator has many cases where it doesn't bother passing in a
9661/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9663 SelectionDAG &DAG, SDValue Ptr,
9664 SDValue OffsetOp) {
9665 // If the 'Offset' value isn't a constant, we can't handle this.
9667 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
9668 if (OffsetOp.isUndef())
9669 return InferPointerInfo(Info, DAG, Ptr);
9670 return Info;
9671}
9672
9674 EVT VT, const SDLoc &dl, SDValue Chain,
9676 MachinePointerInfo PtrInfo, EVT MemVT,
9677 Align Alignment,
9678 MachineMemOperand::Flags MMOFlags,
9679 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9680 assert(Chain.getValueType() == MVT::Other &&
9681 "Invalid chain type");
9682
9683 MMOFlags |= MachineMemOperand::MOLoad;
9684 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9685 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9686 // clients.
9687 if (PtrInfo.V.isNull())
9688 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9689
9690 TypeSize Size = MemVT.getStoreSize();
9692 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9693 Alignment, AAInfo, Ranges);
9694 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
9695}
9696
9698 EVT VT, const SDLoc &dl, SDValue Chain,
9699 SDValue Ptr, SDValue Offset, EVT MemVT,
9700 MachineMemOperand *MMO) {
9701 if (VT == MemVT) {
9702 ExtType = ISD::NON_EXTLOAD;
9703 } else if (ExtType == ISD::NON_EXTLOAD) {
9704 assert(VT == MemVT && "Non-extending load from different memory type!");
9705 } else {
9706 // Extending load.
9707 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
9708 "Should only be an extending load, not truncating!");
9709 assert(VT.isInteger() == MemVT.isInteger() &&
9710 "Cannot convert from FP to Int or Int -> FP!");
9711 assert(VT.isVector() == MemVT.isVector() &&
9712 "Cannot use an ext load to convert to or from a vector!");
9713 assert((!VT.isVector() ||
9715 "Cannot use an ext load to change the number of vector elements!");
9716 }
9717
9718 assert((!MMO->getRanges() ||
9720 ->getBitWidth() == MemVT.getScalarSizeInBits() &&
9721 MemVT.isInteger())) &&
9722 "Range metadata and load type must match!");
9723
9724 bool Indexed = AM != ISD::UNINDEXED;
9725 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9726
9727 SDVTList VTs = Indexed ?
9728 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
9729 SDValue Ops[] = { Chain, Ptr, Offset };
9731 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
9732 ID.AddInteger(MemVT.getRawBits());
9733 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9734 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9735 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9736 ID.AddInteger(MMO->getFlags());
9737 void *IP = nullptr;
9738 if (auto *E = cast_or_null<LoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9739 E->refineAlignment(MMO);
9740 E->refineRanges(MMO);
9741 return SDValue(E, 0);
9742 }
9743 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9744 ExtType, MemVT, MMO);
9745 createOperands(N, Ops);
9746
9747 CSEMap.InsertNode(N, IP);
9748 InsertNode(N);
9749 SDValue V(N, 0);
9750 NewSDValueDbgMsg(V, "Creating new node: ", this);
9751 return V;
9752}
9753
9756 MaybeAlign Alignment,
9757 MachineMemOperand::Flags MMOFlags,
9758 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9759 SDValue Undef = getUNDEF(Ptr.getValueType());
9760 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9761 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9762}
9763
9766 SDValue Undef = getUNDEF(Ptr.getValueType());
9767 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9768 VT, MMO);
9769}
9770
9772 EVT VT, SDValue Chain, SDValue Ptr,
9773 MachinePointerInfo PtrInfo, EVT MemVT,
9774 MaybeAlign Alignment,
9775 MachineMemOperand::Flags MMOFlags,
9776 const AAMDNodes &AAInfo) {
9777 SDValue Undef = getUNDEF(Ptr.getValueType());
9778 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
9779 MemVT, Alignment, MMOFlags, AAInfo);
9780}
9781
9783 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
9784 MachineMemOperand *MMO) {
9785 SDValue Undef = getUNDEF(Ptr.getValueType());
9786 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
9787 MemVT, MMO);
9788}
9789
9793 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
9794 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9795 // Don't propagate the invariant or dereferenceable flags.
9796 auto MMOFlags =
9797 LD->getMemOperand()->getFlags() &
9799 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9800 LD->getChain(), Base, Offset, LD->getPointerInfo(),
9801 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9802}
9803
9806 Align Alignment,
9807 MachineMemOperand::Flags MMOFlags,
9808 const AAMDNodes &AAInfo) {
9809 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9810
9811 MMOFlags |= MachineMemOperand::MOStore;
9812 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9813
9814 if (PtrInfo.V.isNull())
9815 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9816
9819 MachineMemOperand *MMO =
9820 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
9821 return getStore(Chain, dl, Val, Ptr, MMO);
9822}
9823
9826 SDValue Undef = getUNDEF(Ptr.getValueType());
9827 return getStore(Chain, dl, Val, Ptr, Undef, Val.getValueType(), MMO,
9829}
9830
9834 bool IsTruncating) {
9835 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9836 EVT VT = Val.getValueType();
9837 if (VT == SVT) {
9838 IsTruncating = false;
9839 } else if (!IsTruncating) {
9840 assert(VT == SVT && "No-truncating store from different memory type!");
9841 } else {
9843 "Should only be a truncating store, not extending!");
9844 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9845 assert(VT.isVector() == SVT.isVector() &&
9846 "Cannot use trunc store to convert to or from a vector!");
9847 assert((!VT.isVector() ||
9849 "Cannot use trunc store to change the number of vector elements!");
9850 }
9851
9852 bool Indexed = AM != ISD::UNINDEXED;
9853 assert((Indexed || Offset.isUndef()) && "Unindexed store with an offset!");
9854 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9855 : getVTList(MVT::Other);
9856 SDValue Ops[] = {Chain, Val, Ptr, Offset};
9858 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9859 ID.AddInteger(SVT.getRawBits());
9860 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9861 dl.getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9862 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9863 ID.AddInteger(MMO->getFlags());
9864 void *IP = nullptr;
9865 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9866 cast<StoreSDNode>(E)->refineAlignment(MMO);
9867 return SDValue(E, 0);
9868 }
9869 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9870 IsTruncating, SVT, MMO);
9871 createOperands(N, Ops);
9872
9873 CSEMap.InsertNode(N, IP);
9874 InsertNode(N);
9875 SDValue V(N, 0);
9876 NewSDValueDbgMsg(V, "Creating new node: ", this);
9877 return V;
9878}
9879
9882 EVT SVT, Align Alignment,
9883 MachineMemOperand::Flags MMOFlags,
9884 const AAMDNodes &AAInfo) {
9885 assert(Chain.getValueType() == MVT::Other &&
9886 "Invalid chain type");
9887
9888 MMOFlags |= MachineMemOperand::MOStore;
9889 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9890
9891 if (PtrInfo.V.isNull())
9892 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9893
9895 MachineMemOperand *MMO = MF.getMachineMemOperand(
9896 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
9897 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
9898}
9899
9901 SDValue Ptr, EVT SVT,
9902 MachineMemOperand *MMO) {
9903 SDValue Undef = getUNDEF(Ptr.getValueType());
9904 return getStore(Chain, dl, Val, Ptr, Undef, SVT, MMO, ISD::UNINDEXED, true);
9905}
9906
9910 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
9911 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
9912 return getStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
9913 ST->getMemoryVT(), ST->getMemOperand(), AM,
9914 ST->isTruncatingStore());
9915}
9916
9918 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
9919 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
9920 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
9921 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
9922 const MDNode *Ranges, bool IsExpanding) {
9923 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9924
9925 MMOFlags |= MachineMemOperand::MOLoad;
9926 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9927 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9928 // clients.
9929 if (PtrInfo.V.isNull())
9930 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9931
9932 TypeSize Size = MemVT.getStoreSize();
9934 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9935 Alignment, AAInfo, Ranges);
9936 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
9937 MMO, IsExpanding);
9938}
9939
9941 ISD::LoadExtType ExtType, EVT VT,
9942 const SDLoc &dl, SDValue Chain, SDValue Ptr,
9943 SDValue Offset, SDValue Mask, SDValue EVL,
9944 EVT MemVT, MachineMemOperand *MMO,
9945 bool IsExpanding) {
9946 bool Indexed = AM != ISD::UNINDEXED;
9947 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9948
9949 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
9950 : getVTList(VT, MVT::Other);
9951 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
9953 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
9954 ID.AddInteger(MemVT.getRawBits());
9955 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
9956 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
9957 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9958 ID.AddInteger(MMO->getFlags());
9959 void *IP = nullptr;
9960 if (auto *E = cast_or_null<VPLoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9961 E->refineAlignment(MMO);
9962 E->refineRanges(MMO);
9963 return SDValue(E, 0);
9964 }
9965 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9966 ExtType, IsExpanding, MemVT, MMO);
9967 createOperands(N, Ops);
9968
9969 CSEMap.InsertNode(N, IP);
9970 InsertNode(N);
9971 SDValue V(N, 0);
9972 NewSDValueDbgMsg(V, "Creating new node: ", this);
9973 return V;
9974}
9975
9977 SDValue Ptr, SDValue Mask, SDValue EVL,
9978 MachinePointerInfo PtrInfo,
9979 MaybeAlign Alignment,
9980 MachineMemOperand::Flags MMOFlags,
9981 const AAMDNodes &AAInfo, const MDNode *Ranges,
9982 bool IsExpanding) {
9983 SDValue Undef = getUNDEF(Ptr.getValueType());
9984 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9985 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
9986 IsExpanding);
9987}
9988
9990 SDValue Ptr, SDValue Mask, SDValue EVL,
9991 MachineMemOperand *MMO, bool IsExpanding) {
9992 SDValue Undef = getUNDEF(Ptr.getValueType());
9993 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9994 Mask, EVL, VT, MMO, IsExpanding);
9995}
9996
9998 EVT VT, SDValue Chain, SDValue Ptr,
9999 SDValue Mask, SDValue EVL,
10000 MachinePointerInfo PtrInfo, EVT MemVT,
10001 MaybeAlign Alignment,
10002 MachineMemOperand::Flags MMOFlags,
10003 const AAMDNodes &AAInfo, bool IsExpanding) {
10004 SDValue Undef = getUNDEF(Ptr.getValueType());
10005 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10006 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
10007 IsExpanding);
10008}
10009
10011 EVT VT, SDValue Chain, SDValue Ptr,
10012 SDValue Mask, SDValue EVL, EVT MemVT,
10013 MachineMemOperand *MMO, bool IsExpanding) {
10014 SDValue Undef = getUNDEF(Ptr.getValueType());
10015 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10016 EVL, MemVT, MMO, IsExpanding);
10017}
10018
10022 auto *LD = cast<VPLoadSDNode>(OrigLoad);
10023 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
10024 // Don't propagate the invariant or dereferenceable flags.
10025 auto MMOFlags =
10026 LD->getMemOperand()->getFlags() &
10028 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
10029 LD->getChain(), Base, Offset, LD->getMask(),
10030 LD->getVectorLength(), LD->getPointerInfo(),
10031 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10032 nullptr, LD->isExpandingLoad());
10033}
10034
10037 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
10038 ISD::MemIndexedMode AM, bool IsTruncating,
10039 bool IsCompressing) {
10040 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10041 bool Indexed = AM != ISD::UNINDEXED;
10042 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10043 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10044 : getVTList(MVT::Other);
10045 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
10047 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10048 ID.AddInteger(MemVT.getRawBits());
10049 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10050 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10051 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10052 ID.AddInteger(MMO->getFlags());
10053 void *IP = nullptr;
10054 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10055 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10056 return SDValue(E, 0);
10057 }
10058 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10059 IsTruncating, IsCompressing, MemVT, MMO);
10060 createOperands(N, Ops);
10061
10062 CSEMap.InsertNode(N, IP);
10063 InsertNode(N);
10064 SDValue V(N, 0);
10065 NewSDValueDbgMsg(V, "Creating new node: ", this);
10066 return V;
10067}
10068
10070 SDValue Val, SDValue Ptr, SDValue Mask,
10071 SDValue EVL, MachinePointerInfo PtrInfo,
10072 EVT SVT, Align Alignment,
10073 MachineMemOperand::Flags MMOFlags,
10074 const AAMDNodes &AAInfo,
10075 bool IsCompressing) {
10076 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10077
10078 MMOFlags |= MachineMemOperand::MOStore;
10079 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
10080
10081 if (PtrInfo.V.isNull())
10082 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
10083
10085 MachineMemOperand *MMO = MF.getMachineMemOperand(
10086 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
10087 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
10088 IsCompressing);
10089}
10090
10092 SDValue Val, SDValue Ptr, SDValue Mask,
10093 SDValue EVL, EVT SVT,
10094 MachineMemOperand *MMO,
10095 bool IsCompressing) {
10096 EVT VT = Val.getValueType();
10097
10098 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10099 if (VT == SVT)
10100 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
10101 EVL, VT, MMO, ISD::UNINDEXED,
10102 /*IsTruncating*/ false, IsCompressing);
10103
10105 "Should only be a truncating store, not extending!");
10106 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10107 assert(VT.isVector() == SVT.isVector() &&
10108 "Cannot use trunc store to convert to or from a vector!");
10109 assert((!VT.isVector() ||
10111 "Cannot use trunc store to change the number of vector elements!");
10112
10113 SDVTList VTs = getVTList(MVT::Other);
10114 SDValue Undef = getUNDEF(Ptr.getValueType());
10115 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10117 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10118 ID.AddInteger(SVT.getRawBits());
10119 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10120 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10121 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10122 ID.AddInteger(MMO->getFlags());
10123 void *IP = nullptr;
10124 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10125 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10126 return SDValue(E, 0);
10127 }
10128 auto *N =
10129 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10130 ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
10131 createOperands(N, Ops);
10132
10133 CSEMap.InsertNode(N, IP);
10134 InsertNode(N);
10135 SDValue V(N, 0);
10136 NewSDValueDbgMsg(V, "Creating new node: ", this);
10137 return V;
10138}
10139
10143 auto *ST = cast<VPStoreSDNode>(OrigStore);
10144 assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
10145 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
10146 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
10147 Offset, ST->getMask(), ST->getVectorLength()};
10149 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10150 ID.AddInteger(ST->getMemoryVT().getRawBits());
10151 ID.AddInteger(ST->getRawSubclassData());
10152 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10153 ID.AddInteger(ST->getMemOperand()->getFlags());
10154 void *IP = nullptr;
10155 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10156 return SDValue(E, 0);
10157
10158 auto *N = newSDNode<VPStoreSDNode>(
10159 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
10160 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10161 createOperands(N, Ops);
10162
10163 CSEMap.InsertNode(N, IP);
10164 InsertNode(N);
10165 SDValue V(N, 0);
10166 NewSDValueDbgMsg(V, "Creating new node: ", this);
10167 return V;
10168}
10169
10171 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
10172 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
10173 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
10174 bool Indexed = AM != ISD::UNINDEXED;
10175 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10176
10177 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
10178 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10179 : getVTList(VT, MVT::Other);
10181 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
10182 ID.AddInteger(VT.getRawBits());
10183 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10184 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10185 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10186
10187 void *IP = nullptr;
10188 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10189 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
10190 return SDValue(E, 0);
10191 }
10192
10193 auto *N =
10194 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
10195 ExtType, IsExpanding, MemVT, MMO);
10196 createOperands(N, Ops);
10197 CSEMap.InsertNode(N, IP);
10198 InsertNode(N);
10199 SDValue V(N, 0);
10200 NewSDValueDbgMsg(V, "Creating new node: ", this);
10201 return V;
10202}
10203
10205 SDValue Ptr, SDValue Stride,
10206 SDValue Mask, SDValue EVL,
10207 MachineMemOperand *MMO,
10208 bool IsExpanding) {
10209 SDValue Undef = getUNDEF(Ptr.getValueType());
10211 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10212}
10213
10215 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
10216 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
10217 MachineMemOperand *MMO, bool IsExpanding) {
10218 SDValue Undef = getUNDEF(Ptr.getValueType());
10219 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
10220 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10221}
10222
10224 SDValue Val, SDValue Ptr,
10225 SDValue Offset, SDValue Stride,
10226 SDValue Mask, SDValue EVL, EVT MemVT,
10227 MachineMemOperand *MMO,
10229 bool IsTruncating, bool IsCompressing) {
10230 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10231 bool Indexed = AM != ISD::UNINDEXED;
10232 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10233 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10234 : getVTList(MVT::Other);
10235 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
10237 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10238 ID.AddInteger(MemVT.getRawBits());
10239 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10240 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10241 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10242 void *IP = nullptr;
10243 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10244 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10245 return SDValue(E, 0);
10246 }
10247 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10248 VTs, AM, IsTruncating,
10249 IsCompressing, MemVT, MMO);
10250 createOperands(N, Ops);
10251
10252 CSEMap.InsertNode(N, IP);
10253 InsertNode(N);
10254 SDValue V(N, 0);
10255 NewSDValueDbgMsg(V, "Creating new node: ", this);
10256 return V;
10257}
10258
10260 SDValue Val, SDValue Ptr,
10261 SDValue Stride, SDValue Mask,
10262 SDValue EVL, EVT SVT,
10263 MachineMemOperand *MMO,
10264 bool IsCompressing) {
10265 EVT VT = Val.getValueType();
10266
10267 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10268 if (VT == SVT)
10269 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
10270 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
10271 /*IsTruncating*/ false, IsCompressing);
10272
10274 "Should only be a truncating store, not extending!");
10275 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10276 assert(VT.isVector() == SVT.isVector() &&
10277 "Cannot use trunc store to convert to or from a vector!");
10278 assert((!VT.isVector() ||
10280 "Cannot use trunc store to change the number of vector elements!");
10281
10282 SDVTList VTs = getVTList(MVT::Other);
10283 SDValue Undef = getUNDEF(Ptr.getValueType());
10284 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10286 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10287 ID.AddInteger(SVT.getRawBits());
10288 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10289 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10290 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10291 void *IP = nullptr;
10292 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10293 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10294 return SDValue(E, 0);
10295 }
10296 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10297 VTs, ISD::UNINDEXED, true,
10298 IsCompressing, SVT, MMO);
10299 createOperands(N, Ops);
10300
10301 CSEMap.InsertNode(N, IP);
10302 InsertNode(N);
10303 SDValue V(N, 0);
10304 NewSDValueDbgMsg(V, "Creating new node: ", this);
10305 return V;
10306}
10307
10310 ISD::MemIndexType IndexType) {
10311 assert(Ops.size() == 6 && "Incompatible number of operands");
10312
10314 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
10315 ID.AddInteger(VT.getRawBits());
10316 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10317 dl.getIROrder(), VTs, VT, MMO, IndexType));
10318 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10319 ID.AddInteger(MMO->getFlags());
10320 void *IP = nullptr;
10321 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10322 cast<VPGatherSDNode>(E)->refineAlignment(MMO);
10323 return SDValue(E, 0);
10324 }
10325
10326 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10327 VT, MMO, IndexType);
10328 createOperands(N, Ops);
10329
10330 assert(N->getMask().getValueType().getVectorElementCount() ==
10331 N->getValueType(0).getVectorElementCount() &&
10332 "Vector width mismatch between mask and data");
10333 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10334 N->getValueType(0).getVectorElementCount().isScalable() &&
10335 "Scalable flags of index and data do not match");
10337 N->getIndex().getValueType().getVectorElementCount(),
10338 N->getValueType(0).getVectorElementCount()) &&
10339 "Vector width mismatch between index and data");
10340 assert(isa<ConstantSDNode>(N->getScale()) &&
10341 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10342 "Scale should be a constant power of 2");
10343
10344 CSEMap.InsertNode(N, IP);
10345 InsertNode(N);
10346 SDValue V(N, 0);
10347 NewSDValueDbgMsg(V, "Creating new node: ", this);
10348 return V;
10349}
10350
10353 MachineMemOperand *MMO,
10354 ISD::MemIndexType IndexType) {
10355 assert(Ops.size() == 7 && "Incompatible number of operands");
10356
10358 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
10359 ID.AddInteger(VT.getRawBits());
10360 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10361 dl.getIROrder(), VTs, VT, MMO, IndexType));
10362 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10363 ID.AddInteger(MMO->getFlags());
10364 void *IP = nullptr;
10365 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10366 cast<VPScatterSDNode>(E)->refineAlignment(MMO);
10367 return SDValue(E, 0);
10368 }
10369 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10370 VT, MMO, IndexType);
10371 createOperands(N, Ops);
10372
10373 assert(N->getMask().getValueType().getVectorElementCount() ==
10374 N->getValue().getValueType().getVectorElementCount() &&
10375 "Vector width mismatch between mask and data");
10376 assert(
10377 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10378 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10379 "Scalable flags of index and data do not match");
10381 N->getIndex().getValueType().getVectorElementCount(),
10382 N->getValue().getValueType().getVectorElementCount()) &&
10383 "Vector width mismatch between index and data");
10384 assert(isa<ConstantSDNode>(N->getScale()) &&
10385 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10386 "Scale should be a constant power of 2");
10387
10388 CSEMap.InsertNode(N, IP);
10389 InsertNode(N);
10390 SDValue V(N, 0);
10391 NewSDValueDbgMsg(V, "Creating new node: ", this);
10392 return V;
10393}
10394
10397 SDValue PassThru, EVT MemVT,
10398 MachineMemOperand *MMO,
10400 ISD::LoadExtType ExtTy, bool isExpanding) {
10401 bool Indexed = AM != ISD::UNINDEXED;
10402 assert((Indexed || Offset.isUndef()) &&
10403 "Unindexed masked load with an offset!");
10404 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
10405 : getVTList(VT, MVT::Other);
10406 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
10408 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
10409 ID.AddInteger(MemVT.getRawBits());
10410 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10411 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10412 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10413 ID.AddInteger(MMO->getFlags());
10414 void *IP = nullptr;
10415 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10416 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
10417 return SDValue(E, 0);
10418 }
10419 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10420 AM, ExtTy, isExpanding, MemVT, MMO);
10421 createOperands(N, Ops);
10422
10423 CSEMap.InsertNode(N, IP);
10424 InsertNode(N);
10425 SDValue V(N, 0);
10426 NewSDValueDbgMsg(V, "Creating new node: ", this);
10427 return V;
10428}
10429
10434 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
10435 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
10436 Offset, LD->getMask(), LD->getPassThru(),
10437 LD->getMemoryVT(), LD->getMemOperand(), AM,
10438 LD->getExtensionType(), LD->isExpandingLoad());
10439}
10440
10443 SDValue Mask, EVT MemVT,
10444 MachineMemOperand *MMO,
10445 ISD::MemIndexedMode AM, bool IsTruncating,
10446 bool IsCompressing) {
10447 assert(Chain.getValueType() == MVT::Other &&
10448 "Invalid chain type");
10449 bool Indexed = AM != ISD::UNINDEXED;
10450 assert((Indexed || Offset.isUndef()) &&
10451 "Unindexed masked store with an offset!");
10452 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
10453 : getVTList(MVT::Other);
10454 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
10456 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
10457 ID.AddInteger(MemVT.getRawBits());
10458 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10459 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10460 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10461 ID.AddInteger(MMO->getFlags());
10462 void *IP = nullptr;
10463 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10464 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
10465 return SDValue(E, 0);
10466 }
10467 auto *N =
10468 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10469 IsTruncating, IsCompressing, MemVT, MMO);
10470 createOperands(N, Ops);
10471
10472 CSEMap.InsertNode(N, IP);
10473 InsertNode(N);
10474 SDValue V(N, 0);
10475 NewSDValueDbgMsg(V, "Creating new node: ", this);
10476 return V;
10477}
10478
10483 assert(ST->getOffset().isUndef() &&
10484 "Masked store is already a indexed store!");
10485 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10486 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10487 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10488}
10489
10492 MachineMemOperand *MMO,
10493 ISD::MemIndexType IndexType,
10494 ISD::LoadExtType ExtTy) {
10495 assert(Ops.size() == 6 && "Incompatible number of operands");
10496
10498 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
10499 ID.AddInteger(MemVT.getRawBits());
10500 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10501 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10502 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10503 ID.AddInteger(MMO->getFlags());
10504 void *IP = nullptr;
10505 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10506 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10507 return SDValue(E, 0);
10508 }
10509
10510 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10511 VTs, MemVT, MMO, IndexType, ExtTy);
10512 createOperands(N, Ops);
10513
10514 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
10515 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10516 assert(N->getMask().getValueType().getVectorElementCount() ==
10517 N->getValueType(0).getVectorElementCount() &&
10518 "Vector width mismatch between mask and data");
10519 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10520 N->getValueType(0).getVectorElementCount().isScalable() &&
10521 "Scalable flags of index and data do not match");
10523 N->getIndex().getValueType().getVectorElementCount(),
10524 N->getValueType(0).getVectorElementCount()) &&
10525 "Vector width mismatch between index and data");
10526 assert(isa<ConstantSDNode>(N->getScale()) &&
10527 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10528 "Scale should be a constant power of 2");
10529
10530 CSEMap.InsertNode(N, IP);
10531 InsertNode(N);
10532 SDValue V(N, 0);
10533 NewSDValueDbgMsg(V, "Creating new node: ", this);
10534 return V;
10535}
10536
10539 MachineMemOperand *MMO,
10540 ISD::MemIndexType IndexType,
10541 bool IsTrunc) {
10542 assert(Ops.size() == 6 && "Incompatible number of operands");
10543
10545 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
10546 ID.AddInteger(MemVT.getRawBits());
10547 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10548 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10549 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10550 ID.AddInteger(MMO->getFlags());
10551 void *IP = nullptr;
10552 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10553 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
10554 return SDValue(E, 0);
10555 }
10556
10557 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10558 VTs, MemVT, MMO, IndexType, IsTrunc);
10559 createOperands(N, Ops);
10560
10561 assert(N->getMask().getValueType().getVectorElementCount() ==
10562 N->getValue().getValueType().getVectorElementCount() &&
10563 "Vector width mismatch between mask and data");
10564 assert(
10565 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10566 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10567 "Scalable flags of index and data do not match");
10569 N->getIndex().getValueType().getVectorElementCount(),
10570 N->getValue().getValueType().getVectorElementCount()) &&
10571 "Vector width mismatch between index and data");
10572 assert(isa<ConstantSDNode>(N->getScale()) &&
10573 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10574 "Scale should be a constant power of 2");
10575
10576 CSEMap.InsertNode(N, IP);
10577 InsertNode(N);
10578 SDValue V(N, 0);
10579 NewSDValueDbgMsg(V, "Creating new node: ", this);
10580 return V;
10581}
10582
10584 const SDLoc &dl, ArrayRef<SDValue> Ops,
10585 MachineMemOperand *MMO,
10586 ISD::MemIndexType IndexType) {
10587 assert(Ops.size() == 7 && "Incompatible number of operands");
10588
10590 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, VTs, Ops);
10591 ID.AddInteger(MemVT.getRawBits());
10592 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10593 dl.getIROrder(), VTs, MemVT, MMO, IndexType));
10594 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10595 ID.AddInteger(MMO->getFlags());
10596 void *IP = nullptr;
10597 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10598 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10599 return SDValue(E, 0);
10600 }
10601
10602 auto *N = newSDNode<MaskedHistogramSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10603 VTs, MemVT, MMO, IndexType);
10604 createOperands(N, Ops);
10605
10606 assert(N->getMask().getValueType().getVectorElementCount() ==
10607 N->getIndex().getValueType().getVectorElementCount() &&
10608 "Vector width mismatch between mask and data");
10609 assert(isa<ConstantSDNode>(N->getScale()) &&
10610 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10611 "Scale should be a constant power of 2");
10612 assert(N->getInc().getValueType().isInteger() && "Non integer update value");
10613
10614 CSEMap.InsertNode(N, IP);
10615 InsertNode(N);
10616 SDValue V(N, 0);
10617 NewSDValueDbgMsg(V, "Creating new node: ", this);
10618 return V;
10619}
10620
10622 SDValue Ptr, SDValue Mask, SDValue EVL,
10623 MachineMemOperand *MMO) {
10624 SDVTList VTs = getVTList(VT, EVL.getValueType(), MVT::Other);
10625 SDValue Ops[] = {Chain, Ptr, Mask, EVL};
10627 AddNodeIDNode(ID, ISD::VP_LOAD_FF, VTs, Ops);
10628 ID.AddInteger(VT.getRawBits());
10629 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(DL.getIROrder(),
10630 VTs, VT, MMO));
10631 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10632 ID.AddInteger(MMO->getFlags());
10633 void *IP = nullptr;
10634 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10635 cast<VPLoadFFSDNode>(E)->refineAlignment(MMO);
10636 return SDValue(E, 0);
10637 }
10638 auto *N = newSDNode<VPLoadFFSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs,
10639 VT, MMO);
10640 createOperands(N, Ops);
10641
10642 CSEMap.InsertNode(N, IP);
10643 InsertNode(N);
10644 SDValue V(N, 0);
10645 NewSDValueDbgMsg(V, "Creating new node: ", this);
10646 return V;
10647}
10648
10650 EVT MemVT, MachineMemOperand *MMO) {
10651 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10652 SDVTList VTs = getVTList(MVT::Other);
10653 SDValue Ops[] = {Chain, Ptr};
10655 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
10656 ID.AddInteger(MemVT.getRawBits());
10657 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10658 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10659 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10660 ID.AddInteger(MMO->getFlags());
10661 void *IP = nullptr;
10662 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10663 return SDValue(E, 0);
10664
10665 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
10666 dl.getDebugLoc(), VTs, MemVT, MMO);
10667 createOperands(N, Ops);
10668
10669 CSEMap.InsertNode(N, IP);
10670 InsertNode(N);
10671 SDValue V(N, 0);
10672 NewSDValueDbgMsg(V, "Creating new node: ", this);
10673 return V;
10674}
10675
10677 EVT MemVT, MachineMemOperand *MMO) {
10678 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10679 SDVTList VTs = getVTList(MVT::Other);
10680 SDValue Ops[] = {Chain, Ptr};
10682 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
10683 ID.AddInteger(MemVT.getRawBits());
10684 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10685 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10686 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10687 ID.AddInteger(MMO->getFlags());
10688 void *IP = nullptr;
10689 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10690 return SDValue(E, 0);
10691
10692 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
10693 dl.getDebugLoc(), VTs, MemVT, MMO);
10694 createOperands(N, Ops);
10695
10696 CSEMap.InsertNode(N, IP);
10697 InsertNode(N);
10698 SDValue V(N, 0);
10699 NewSDValueDbgMsg(V, "Creating new node: ", this);
10700 return V;
10701}
10702
10704 // select undef, T, F --> T (if T is a constant), otherwise F
10705 // select, ?, undef, F --> F
10706 // select, ?, T, undef --> T
10707 if (Cond.isUndef())
10708 return isConstantValueOfAnyType(T) ? T : F;
10709 if (T.isUndef())
10710 return F;
10711 if (F.isUndef())
10712 return T;
10713
10714 // select true, T, F --> T
10715 // select false, T, F --> F
10716 if (auto C = isBoolConstant(Cond))
10717 return *C ? T : F;
10718
10719 // select ?, T, T --> T
10720 if (T == F)
10721 return T;
10722
10723 return SDValue();
10724}
10725
10727 // shift undef, Y --> 0 (can always assume that the undef value is 0)
10728 if (X.isUndef())
10729 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
10730 // shift X, undef --> undef (because it may shift by the bitwidth)
10731 if (Y.isUndef())
10732 return getUNDEF(X.getValueType());
10733
10734 // shift 0, Y --> 0
10735 // shift X, 0 --> X
10737 return X;
10738
10739 // shift X, C >= bitwidth(X) --> undef
10740 // All vector elements must be too big (or undef) to avoid partial undefs.
10741 auto isShiftTooBig = [X](ConstantSDNode *Val) {
10742 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
10743 };
10744 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
10745 return getUNDEF(X.getValueType());
10746
10747 // shift i1/vXi1 X, Y --> X (any non-zero shift amount is undefined).
10748 if (X.getValueType().getScalarType() == MVT::i1)
10749 return X;
10750
10751 return SDValue();
10752}
10753
10755 SDNodeFlags Flags) {
10756 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
10757 // (an undef operand can be chosen to be Nan/Inf), then the result of this
10758 // operation is poison. That result can be relaxed to undef.
10759 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
10760 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
10761 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10762 (YC && YC->getValueAPF().isNaN());
10763 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10764 (YC && YC->getValueAPF().isInfinity());
10765
10766 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
10767 return getUNDEF(X.getValueType());
10768
10769 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
10770 return getUNDEF(X.getValueType());
10771
10772 if (!YC)
10773 return SDValue();
10774
10775 // X + -0.0 --> X
10776 if (Opcode == ISD::FADD)
10777 if (YC->getValueAPF().isNegZero())
10778 return X;
10779
10780 // X - +0.0 --> X
10781 if (Opcode == ISD::FSUB)
10782 if (YC->getValueAPF().isPosZero())
10783 return X;
10784
10785 // X * 1.0 --> X
10786 // X / 1.0 --> X
10787 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
10788 if (YC->getValueAPF().isExactlyValue(1.0))
10789 return X;
10790
10791 // X * 0.0 --> 0.0
10792 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10793 if (YC->getValueAPF().isZero())
10794 return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
10795
10796 return SDValue();
10797}
10798
10800 SDValue Ptr, SDValue SV, unsigned Align) {
10801 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
10802 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
10803}
10804
10805SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10807 switch (Ops.size()) {
10808 case 0: return getNode(Opcode, DL, VT);
10809 case 1: return getNode(Opcode, DL, VT, Ops[0].get());
10810 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
10811 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
10812 default: break;
10813 }
10814
10815 // Copy from an SDUse array into an SDValue array for use with
10816 // the regular getNode logic.
10818 return getNode(Opcode, DL, VT, NewOps);
10819}
10820
10821SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10823 SDNodeFlags Flags;
10824 if (Inserter)
10825 Flags = Inserter->getFlags();
10826 return getNode(Opcode, DL, VT, Ops, Flags);
10827}
10828
10829SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10830 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10831 unsigned NumOps = Ops.size();
10832 switch (NumOps) {
10833 case 0: return getNode(Opcode, DL, VT);
10834 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
10835 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
10836 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
10837 default: break;
10838 }
10839
10840#ifndef NDEBUG
10841 for (const auto &Op : Ops)
10842 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10843 "Operand is DELETED_NODE!");
10844#endif
10845
10846 switch (Opcode) {
10847 default: break;
10848 case ISD::BUILD_VECTOR:
10849 // Attempt to simplify BUILD_VECTOR.
10850 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
10851 return V;
10852 break;
10854 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
10855 return V;
10856 break;
10857 case ISD::SELECT_CC:
10858 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
10859 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
10860 "LHS and RHS of condition must have same type!");
10861 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10862 "True and False arms of SelectCC must have same type!");
10863 assert(Ops[2].getValueType() == VT &&
10864 "select_cc node must be of same type as true and false value!");
10865 assert((!Ops[0].getValueType().isVector() ||
10866 Ops[0].getValueType().getVectorElementCount() ==
10867 VT.getVectorElementCount()) &&
10868 "Expected select_cc with vector result to have the same sized "
10869 "comparison type!");
10870 break;
10871 case ISD::BR_CC:
10872 assert(NumOps == 5 && "BR_CC takes 5 operands!");
10873 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10874 "LHS/RHS of comparison should match types!");
10875 break;
10876 case ISD::VP_ADD:
10877 case ISD::VP_SUB:
10878 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
10879 if (VT.getScalarType() == MVT::i1)
10880 Opcode = ISD::VP_XOR;
10881 break;
10882 case ISD::VP_MUL:
10883 // If it is VP_MUL mask operation then turn it to VP_AND
10884 if (VT.getScalarType() == MVT::i1)
10885 Opcode = ISD::VP_AND;
10886 break;
10887 case ISD::VP_REDUCE_MUL:
10888 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
10889 if (VT == MVT::i1)
10890 Opcode = ISD::VP_REDUCE_AND;
10891 break;
10892 case ISD::VP_REDUCE_ADD:
10893 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
10894 if (VT == MVT::i1)
10895 Opcode = ISD::VP_REDUCE_XOR;
10896 break;
10897 case ISD::VP_REDUCE_SMAX:
10898 case ISD::VP_REDUCE_UMIN:
10899 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
10900 // VP_REDUCE_AND.
10901 if (VT == MVT::i1)
10902 Opcode = ISD::VP_REDUCE_AND;
10903 break;
10904 case ISD::VP_REDUCE_SMIN:
10905 case ISD::VP_REDUCE_UMAX:
10906 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
10907 // VP_REDUCE_OR.
10908 if (VT == MVT::i1)
10909 Opcode = ISD::VP_REDUCE_OR;
10910 break;
10911 }
10912
10913 // Memoize nodes.
10914 SDNode *N;
10915 SDVTList VTs = getVTList(VT);
10916
10917 if (VT != MVT::Glue) {
10919 AddNodeIDNode(ID, Opcode, VTs, Ops);
10920 void *IP = nullptr;
10921
10922 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10923 E->intersectFlagsWith(Flags);
10924 return SDValue(E, 0);
10925 }
10926
10927 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10928 createOperands(N, Ops);
10929
10930 CSEMap.InsertNode(N, IP);
10931 } else {
10932 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
10933 createOperands(N, Ops);
10934 }
10935
10936 N->setFlags(Flags);
10937 InsertNode(N);
10938 SDValue V(N, 0);
10939 NewSDValueDbgMsg(V, "Creating new node: ", this);
10940 return V;
10941}
10942
10943SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10944 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
10945 SDNodeFlags Flags;
10946 if (Inserter)
10947 Flags = Inserter->getFlags();
10948 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
10949}
10950
10951SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
10953 const SDNodeFlags Flags) {
10954 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
10955}
10956
10957SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10959 SDNodeFlags Flags;
10960 if (Inserter)
10961 Flags = Inserter->getFlags();
10962 return getNode(Opcode, DL, VTList, Ops, Flags);
10963}
10964
10965SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
10966 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10967 if (VTList.NumVTs == 1)
10968 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
10969
10970#ifndef NDEBUG
10971 for (const auto &Op : Ops)
10972 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10973 "Operand is DELETED_NODE!");
10974#endif
10975
10976 switch (Opcode) {
10977 case ISD::SADDO:
10978 case ISD::UADDO:
10979 case ISD::SSUBO:
10980 case ISD::USUBO: {
10981 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
10982 "Invalid add/sub overflow op!");
10983 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
10984 Ops[0].getValueType() == Ops[1].getValueType() &&
10985 Ops[0].getValueType() == VTList.VTs[0] &&
10986 "Binary operator types must match!");
10987 SDValue N1 = Ops[0], N2 = Ops[1];
10988 canonicalizeCommutativeBinop(Opcode, N1, N2);
10989
10990 // (X +- 0) -> X with zero-overflow.
10991 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
10992 /*AllowTruncation*/ true);
10993 if (N2CV && N2CV->isZero()) {
10994 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
10995 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
10996 }
10997
10998 if (VTList.VTs[0].getScalarType() == MVT::i1 &&
10999 VTList.VTs[1].getScalarType() == MVT::i1) {
11000 SDValue F1 = getFreeze(N1);
11001 SDValue F2 = getFreeze(N2);
11002 // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
11003 if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
11004 return getNode(ISD::MERGE_VALUES, DL, VTList,
11005 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11006 getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
11007 Flags);
11008 // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
11009 if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
11010 SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
11011 return getNode(ISD::MERGE_VALUES, DL, VTList,
11012 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11013 getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
11014 Flags);
11015 }
11016 }
11017 break;
11018 }
11019 case ISD::SADDO_CARRY:
11020 case ISD::UADDO_CARRY:
11021 case ISD::SSUBO_CARRY:
11022 case ISD::USUBO_CARRY:
11023 assert(VTList.NumVTs == 2 && Ops.size() == 3 &&
11024 "Invalid add/sub overflow op!");
11025 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11026 Ops[0].getValueType() == Ops[1].getValueType() &&
11027 Ops[0].getValueType() == VTList.VTs[0] &&
11028 Ops[2].getValueType() == VTList.VTs[1] &&
11029 "Binary operator types must match!");
11030 break;
11031 case ISD::SMUL_LOHI:
11032 case ISD::UMUL_LOHI: {
11033 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
11034 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
11035 VTList.VTs[0] == Ops[0].getValueType() &&
11036 VTList.VTs[0] == Ops[1].getValueType() &&
11037 "Binary operator types must match!");
11038 // Constant fold.
11041 if (LHS && RHS) {
11042 unsigned Width = VTList.VTs[0].getScalarSizeInBits();
11043 unsigned OutWidth = Width * 2;
11044 APInt Val = LHS->getAPIntValue();
11045 APInt Mul = RHS->getAPIntValue();
11046 if (Opcode == ISD::SMUL_LOHI) {
11047 Val = Val.sext(OutWidth);
11048 Mul = Mul.sext(OutWidth);
11049 } else {
11050 Val = Val.zext(OutWidth);
11051 Mul = Mul.zext(OutWidth);
11052 }
11053 Val *= Mul;
11054
11055 SDValue Hi =
11056 getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
11057 SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
11058 return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
11059 }
11060 break;
11061 }
11062 case ISD::FFREXP: {
11063 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
11064 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
11065 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
11066
11068 int FrexpExp;
11069 APFloat FrexpMant =
11070 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
11071 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
11072 SDValue Result1 =
11073 getConstant(FrexpMant.isFinite() ? FrexpExp : 0, DL, VTList.VTs[1]);
11074 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
11075 }
11076
11077 break;
11078 }
11080 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11081 "Invalid STRICT_FP_EXTEND!");
11082 assert(VTList.VTs[0].isFloatingPoint() &&
11083 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
11084 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11085 "STRICT_FP_EXTEND result type should be vector iff the operand "
11086 "type is vector!");
11087 assert((!VTList.VTs[0].isVector() ||
11088 VTList.VTs[0].getVectorElementCount() ==
11089 Ops[1].getValueType().getVectorElementCount()) &&
11090 "Vector element count mismatch!");
11091 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
11092 "Invalid fpext node, dst <= src!");
11093 break;
11095 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
11096 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11097 "STRICT_FP_ROUND result type should be vector iff the operand "
11098 "type is vector!");
11099 assert((!VTList.VTs[0].isVector() ||
11100 VTList.VTs[0].getVectorElementCount() ==
11101 Ops[1].getValueType().getVectorElementCount()) &&
11102 "Vector element count mismatch!");
11103 assert(VTList.VTs[0].isFloatingPoint() &&
11104 Ops[1].getValueType().isFloatingPoint() &&
11105 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
11106 Ops[2].getOpcode() == ISD::TargetConstant &&
11107 (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
11108 "Invalid STRICT_FP_ROUND!");
11109 break;
11110 }
11111
11112 // Memoize the node unless it returns a glue result.
11113 SDNode *N;
11114 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
11116 AddNodeIDNode(ID, Opcode, VTList, Ops);
11117 void *IP = nullptr;
11118 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11119 E->intersectFlagsWith(Flags);
11120 return SDValue(E, 0);
11121 }
11122
11123 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11124 createOperands(N, Ops);
11125 CSEMap.InsertNode(N, IP);
11126 } else {
11127 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11128 createOperands(N, Ops);
11129 }
11130
11131 N->setFlags(Flags);
11132 InsertNode(N);
11133 SDValue V(N, 0);
11134 NewSDValueDbgMsg(V, "Creating new node: ", this);
11135 return V;
11136}
11137
11138SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11139 SDVTList VTList) {
11140 return getNode(Opcode, DL, VTList, ArrayRef<SDValue>());
11141}
11142
11143SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11144 SDValue N1) {
11145 SDValue Ops[] = { N1 };
11146 return getNode(Opcode, DL, VTList, Ops);
11147}
11148
11149SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11150 SDValue N1, SDValue N2) {
11151 SDValue Ops[] = { N1, N2 };
11152 return getNode(Opcode, DL, VTList, Ops);
11153}
11154
11155SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11156 SDValue N1, SDValue N2, SDValue N3) {
11157 SDValue Ops[] = { N1, N2, N3 };
11158 return getNode(Opcode, DL, VTList, Ops);
11159}
11160
11161SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11162 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
11163 SDValue Ops[] = { N1, N2, N3, N4 };
11164 return getNode(Opcode, DL, VTList, Ops);
11165}
11166
11167SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11168 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
11169 SDValue N5) {
11170 SDValue Ops[] = { N1, N2, N3, N4, N5 };
11171 return getNode(Opcode, DL, VTList, Ops);
11172}
11173
11175 if (!VT.isExtended())
11176 return makeVTList(SDNode::getValueTypeList(VT.getSimpleVT()), 1);
11177
11178 return makeVTList(&(*EVTs.insert(VT).first), 1);
11179}
11180
11183 ID.AddInteger(2U);
11184 ID.AddInteger(VT1.getRawBits());
11185 ID.AddInteger(VT2.getRawBits());
11186
11187 void *IP = nullptr;
11188 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11189 if (!Result) {
11190 EVT *Array = Allocator.Allocate<EVT>(2);
11191 Array[0] = VT1;
11192 Array[1] = VT2;
11193 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
11194 VTListMap.InsertNode(Result, IP);
11195 }
11196 return Result->getSDVTList();
11197}
11198
11201 ID.AddInteger(3U);
11202 ID.AddInteger(VT1.getRawBits());
11203 ID.AddInteger(VT2.getRawBits());
11204 ID.AddInteger(VT3.getRawBits());
11205
11206 void *IP = nullptr;
11207 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11208 if (!Result) {
11209 EVT *Array = Allocator.Allocate<EVT>(3);
11210 Array[0] = VT1;
11211 Array[1] = VT2;
11212 Array[2] = VT3;
11213 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
11214 VTListMap.InsertNode(Result, IP);
11215 }
11216 return Result->getSDVTList();
11217}
11218
11221 ID.AddInteger(4U);
11222 ID.AddInteger(VT1.getRawBits());
11223 ID.AddInteger(VT2.getRawBits());
11224 ID.AddInteger(VT3.getRawBits());
11225 ID.AddInteger(VT4.getRawBits());
11226
11227 void *IP = nullptr;
11228 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11229 if (!Result) {
11230 EVT *Array = Allocator.Allocate<EVT>(4);
11231 Array[0] = VT1;
11232 Array[1] = VT2;
11233 Array[2] = VT3;
11234 Array[3] = VT4;
11235 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
11236 VTListMap.InsertNode(Result, IP);
11237 }
11238 return Result->getSDVTList();
11239}
11240
11242 unsigned NumVTs = VTs.size();
11244 ID.AddInteger(NumVTs);
11245 for (unsigned index = 0; index < NumVTs; index++) {
11246 ID.AddInteger(VTs[index].getRawBits());
11247 }
11248
11249 void *IP = nullptr;
11250 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11251 if (!Result) {
11252 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
11253 llvm::copy(VTs, Array);
11254 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
11255 VTListMap.InsertNode(Result, IP);
11256 }
11257 return Result->getSDVTList();
11258}
11259
11260
11261/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
11262/// specified operands. If the resultant node already exists in the DAG,
11263/// this does not modify the specified node, instead it returns the node that
11264/// already exists. If the resultant node does not exist in the DAG, the
11265/// input node is returned. As a degenerate case, if you specify the same
11266/// input operands as the node already has, the input node is returned.
11268 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
11269
11270 // Check to see if there is no change.
11271 if (Op == N->getOperand(0)) return N;
11272
11273 // See if the modified node already exists.
11274 void *InsertPos = nullptr;
11275 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
11276 return Existing;
11277
11278 // Nope it doesn't. Remove the node from its current place in the maps.
11279 if (InsertPos)
11280 if (!RemoveNodeFromCSEMaps(N))
11281 InsertPos = nullptr;
11282
11283 // Now we update the operands.
11284 N->OperandList[0].set(Op);
11285
11287 // If this gets put into a CSE map, add it.
11288 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11289 return N;
11290}
11291
11293 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
11294
11295 // Check to see if there is no change.
11296 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
11297 return N; // No operands changed, just return the input node.
11298
11299 // See if the modified node already exists.
11300 void *InsertPos = nullptr;
11301 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
11302 return Existing;
11303
11304 // Nope it doesn't. Remove the node from its current place in the maps.
11305 if (InsertPos)
11306 if (!RemoveNodeFromCSEMaps(N))
11307 InsertPos = nullptr;
11308
11309 // Now we update the operands.
11310 if (N->OperandList[0] != Op1)
11311 N->OperandList[0].set(Op1);
11312 if (N->OperandList[1] != Op2)
11313 N->OperandList[1].set(Op2);
11314
11316 // If this gets put into a CSE map, add it.
11317 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11318 return N;
11319}
11320
11323 SDValue Ops[] = { Op1, Op2, Op3 };
11324 return UpdateNodeOperands(N, Ops);
11325}
11326
11329 SDValue Op3, SDValue Op4) {
11330 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
11331 return UpdateNodeOperands(N, Ops);
11332}
11333
11336 SDValue Op3, SDValue Op4, SDValue Op5) {
11337 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11338 return UpdateNodeOperands(N, Ops);
11339}
11340
11343 unsigned NumOps = Ops.size();
11344 assert(N->getNumOperands() == NumOps &&
11345 "Update with wrong number of operands");
11346
11347 // If no operands changed just return the input node.
11348 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
11349 return N;
11350
11351 // See if the modified node already exists.
11352 void *InsertPos = nullptr;
11353 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
11354 return Existing;
11355
11356 // Nope it doesn't. Remove the node from its current place in the maps.
11357 if (InsertPos)
11358 if (!RemoveNodeFromCSEMaps(N))
11359 InsertPos = nullptr;
11360
11361 // Now we update the operands.
11362 for (unsigned i = 0; i != NumOps; ++i)
11363 if (N->OperandList[i] != Ops[i])
11364 N->OperandList[i].set(Ops[i]);
11365
11367 // If this gets put into a CSE map, add it.
11368 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11369 return N;
11370}
11371
11372/// DropOperands - Release the operands and set this node to have
11373/// zero operands.
11375 // Unlike the code in MorphNodeTo that does this, we don't need to
11376 // watch for dead nodes here.
11377 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
11378 SDUse &Use = *I++;
11379 Use.set(SDValue());
11380 }
11381}
11382
11384 ArrayRef<MachineMemOperand *> NewMemRefs) {
11385 if (NewMemRefs.empty()) {
11386 N->clearMemRefs();
11387 return;
11388 }
11389
11390 // Check if we can avoid allocating by storing a single reference directly.
11391 if (NewMemRefs.size() == 1) {
11392 N->MemRefs = NewMemRefs[0];
11393 N->NumMemRefs = 1;
11394 return;
11395 }
11396
11397 MachineMemOperand **MemRefsBuffer =
11398 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
11399 llvm::copy(NewMemRefs, MemRefsBuffer);
11400 N->MemRefs = MemRefsBuffer;
11401 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
11402}
11403
11404/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
11405/// machine opcode.
11406///
11408 EVT VT) {
11409 SDVTList VTs = getVTList(VT);
11410 return SelectNodeTo(N, MachineOpc, VTs, {});
11411}
11412
11414 EVT VT, SDValue Op1) {
11415 SDVTList VTs = getVTList(VT);
11416 SDValue Ops[] = { Op1 };
11417 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11418}
11419
11421 EVT VT, SDValue Op1,
11422 SDValue Op2) {
11423 SDVTList VTs = getVTList(VT);
11424 SDValue Ops[] = { Op1, Op2 };
11425 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11426}
11427
11429 EVT VT, SDValue Op1,
11430 SDValue Op2, SDValue Op3) {
11431 SDVTList VTs = getVTList(VT);
11432 SDValue Ops[] = { Op1, Op2, Op3 };
11433 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11434}
11435
11438 SDVTList VTs = getVTList(VT);
11439 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11440}
11441
11443 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
11444 SDVTList VTs = getVTList(VT1, VT2);
11445 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11446}
11447
11449 EVT VT1, EVT VT2) {
11450 SDVTList VTs = getVTList(VT1, VT2);
11451 return SelectNodeTo(N, MachineOpc, VTs, {});
11452}
11453
11455 EVT VT1, EVT VT2, EVT VT3,
11457 SDVTList VTs = getVTList(VT1, VT2, VT3);
11458 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11459}
11460
11462 EVT VT1, EVT VT2,
11463 SDValue Op1, SDValue Op2) {
11464 SDVTList VTs = getVTList(VT1, VT2);
11465 SDValue Ops[] = { Op1, Op2 };
11466 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11467}
11468
11471 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
11472 // Reset the NodeID to -1.
11473 New->setNodeId(-1);
11474 if (New != N) {
11475 ReplaceAllUsesWith(N, New);
11477 }
11478 return New;
11479}
11480
11481/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
11482/// the line number information on the merged node since it is not possible to
11483/// preserve the information that operation is associated with multiple lines.
11484/// This will make the debugger working better at -O0, were there is a higher
11485/// probability having other instructions associated with that line.
11486///
11487/// For IROrder, we keep the smaller of the two
11488SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
11489 DebugLoc NLoc = N->getDebugLoc();
11490 if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
11491 N->setDebugLoc(DebugLoc());
11492 }
11493 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
11494 N->setIROrder(Order);
11495 return N;
11496}
11497
11498/// MorphNodeTo - This *mutates* the specified node to have the specified
11499/// return type, opcode, and operands.
11500///
11501/// Note that MorphNodeTo returns the resultant node. If there is already a
11502/// node of the specified opcode and operands, it returns that node instead of
11503/// the current one. Note that the SDLoc need not be the same.
11504///
11505/// Using MorphNodeTo is faster than creating a new node and swapping it in
11506/// with ReplaceAllUsesWith both because it often avoids allocating a new
11507/// node, and because it doesn't require CSE recalculation for any of
11508/// the node's users.
11509///
11510/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
11511/// As a consequence it isn't appropriate to use from within the DAG combiner or
11512/// the legalizer which maintain worklists that would need to be updated when
11513/// deleting things.
11516 // If an identical node already exists, use it.
11517 void *IP = nullptr;
11518 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
11520 AddNodeIDNode(ID, Opc, VTs, Ops);
11521 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
11522 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
11523 }
11524
11525 if (!RemoveNodeFromCSEMaps(N))
11526 IP = nullptr;
11527
11528 // Start the morphing.
11529 N->NodeType = Opc;
11530 N->ValueList = VTs.VTs;
11531 N->NumValues = VTs.NumVTs;
11532
11533 // Clear the operands list, updating used nodes to remove this from their
11534 // use list. Keep track of any operands that become dead as a result.
11535 SmallPtrSet<SDNode*, 16> DeadNodeSet;
11536 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
11537 SDUse &Use = *I++;
11538 SDNode *Used = Use.getNode();
11539 Use.set(SDValue());
11540 if (Used->use_empty())
11541 DeadNodeSet.insert(Used);
11542 }
11543
11544 // For MachineNode, initialize the memory references information.
11546 MN->clearMemRefs();
11547
11548 // Swap for an appropriately sized array from the recycler.
11549 removeOperands(N);
11550 createOperands(N, Ops);
11551
11552 // Delete any nodes that are still dead after adding the uses for the
11553 // new operands.
11554 if (!DeadNodeSet.empty()) {
11555 SmallVector<SDNode *, 16> DeadNodes;
11556 for (SDNode *N : DeadNodeSet)
11557 if (N->use_empty())
11558 DeadNodes.push_back(N);
11559 RemoveDeadNodes(DeadNodes);
11560 }
11561
11562 if (IP)
11563 CSEMap.InsertNode(N, IP); // Memoize the new node.
11564 return N;
11565}
11566
11568 unsigned OrigOpc = Node->getOpcode();
11569 unsigned NewOpc;
11570 switch (OrigOpc) {
11571 default:
11572 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
11573#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11574 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11575#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11576 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11577#include "llvm/IR/ConstrainedOps.def"
11578 }
11579
11580 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
11581
11582 // We're taking this node out of the chain, so we need to re-link things.
11583 SDValue InputChain = Node->getOperand(0);
11584 SDValue OutputChain = SDValue(Node, 1);
11585 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
11586
11588 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
11589 Ops.push_back(Node->getOperand(i));
11590
11591 SDVTList VTs = getVTList(Node->getValueType(0));
11592 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
11593
11594 // MorphNodeTo can operate in two ways: if an existing node with the
11595 // specified operands exists, it can just return it. Otherwise, it
11596 // updates the node in place to have the requested operands.
11597 if (Res == Node) {
11598 // If we updated the node in place, reset the node ID. To the isel,
11599 // this should be just like a newly allocated machine node.
11600 Res->setNodeId(-1);
11601 } else {
11604 }
11605
11606 return Res;
11607}
11608
11609/// getMachineNode - These are used for target selectors to create a new node
11610/// with specified return type(s), MachineInstr opcode, and operands.
11611///
11612/// Note that getMachineNode returns the resultant node. If there is already a
11613/// node of the specified opcode and operands, it returns that node instead of
11614/// the current one.
11616 EVT VT) {
11617 SDVTList VTs = getVTList(VT);
11618 return getMachineNode(Opcode, dl, VTs, {});
11619}
11620
11622 EVT VT, SDValue Op1) {
11623 SDVTList VTs = getVTList(VT);
11624 SDValue Ops[] = { Op1 };
11625 return getMachineNode(Opcode, dl, VTs, Ops);
11626}
11627
11629 EVT VT, SDValue Op1, SDValue Op2) {
11630 SDVTList VTs = getVTList(VT);
11631 SDValue Ops[] = { Op1, Op2 };
11632 return getMachineNode(Opcode, dl, VTs, Ops);
11633}
11634
11636 EVT VT, SDValue Op1, SDValue Op2,
11637 SDValue Op3) {
11638 SDVTList VTs = getVTList(VT);
11639 SDValue Ops[] = { Op1, Op2, Op3 };
11640 return getMachineNode(Opcode, dl, VTs, Ops);
11641}
11642
11645 SDVTList VTs = getVTList(VT);
11646 return getMachineNode(Opcode, dl, VTs, Ops);
11647}
11648
11650 EVT VT1, EVT VT2, SDValue Op1,
11651 SDValue Op2) {
11652 SDVTList VTs = getVTList(VT1, VT2);
11653 SDValue Ops[] = { Op1, Op2 };
11654 return getMachineNode(Opcode, dl, VTs, Ops);
11655}
11656
11658 EVT VT1, EVT VT2, SDValue Op1,
11659 SDValue Op2, SDValue Op3) {
11660 SDVTList VTs = getVTList(VT1, VT2);
11661 SDValue Ops[] = { Op1, Op2, Op3 };
11662 return getMachineNode(Opcode, dl, VTs, Ops);
11663}
11664
11666 EVT VT1, EVT VT2,
11668 SDVTList VTs = getVTList(VT1, VT2);
11669 return getMachineNode(Opcode, dl, VTs, Ops);
11670}
11671
11673 EVT VT1, EVT VT2, EVT VT3,
11674 SDValue Op1, SDValue Op2) {
11675 SDVTList VTs = getVTList(VT1, VT2, VT3);
11676 SDValue Ops[] = { Op1, Op2 };
11677 return getMachineNode(Opcode, dl, VTs, Ops);
11678}
11679
11681 EVT VT1, EVT VT2, EVT VT3,
11682 SDValue Op1, SDValue Op2,
11683 SDValue Op3) {
11684 SDVTList VTs = getVTList(VT1, VT2, VT3);
11685 SDValue Ops[] = { Op1, Op2, Op3 };
11686 return getMachineNode(Opcode, dl, VTs, Ops);
11687}
11688
11690 EVT VT1, EVT VT2, EVT VT3,
11692 SDVTList VTs = getVTList(VT1, VT2, VT3);
11693 return getMachineNode(Opcode, dl, VTs, Ops);
11694}
11695
11697 ArrayRef<EVT> ResultTys,
11699 SDVTList VTs = getVTList(ResultTys);
11700 return getMachineNode(Opcode, dl, VTs, Ops);
11701}
11702
11704 SDVTList VTs,
11706 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
11708 void *IP = nullptr;
11709
11710 if (DoCSE) {
11712 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
11713 IP = nullptr;
11714 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11715 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
11716 }
11717 }
11718
11719 // Allocate a new MachineSDNode.
11720 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11721 createOperands(N, Ops);
11722
11723 if (DoCSE)
11724 CSEMap.InsertNode(N, IP);
11725
11726 InsertNode(N);
11727 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
11728 return N;
11729}
11730
11731/// getTargetExtractSubreg - A convenience function for creating
11732/// TargetOpcode::EXTRACT_SUBREG nodes.
11734 SDValue Operand) {
11735 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11736 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
11737 VT, Operand, SRIdxVal);
11738 return SDValue(Subreg, 0);
11739}
11740
11741/// getTargetInsertSubreg - A convenience function for creating
11742/// TargetOpcode::INSERT_SUBREG nodes.
11744 SDValue Operand, SDValue Subreg) {
11745 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11746 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
11747 VT, Operand, Subreg, SRIdxVal);
11748 return SDValue(Result, 0);
11749}
11750
11751/// getNodeIfExists - Get the specified node if it's already available, or
11752/// else return NULL.
11755 SDNodeFlags Flags;
11756 if (Inserter)
11757 Flags = Inserter->getFlags();
11758 return getNodeIfExists(Opcode, VTList, Ops, Flags);
11759}
11760
11763 const SDNodeFlags Flags) {
11764 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11766 AddNodeIDNode(ID, Opcode, VTList, Ops);
11767 void *IP = nullptr;
11768 if (SDNode *E = FindNodeOrInsertPos(ID, SDLoc(), IP)) {
11769 E->intersectFlagsWith(Flags);
11770 return E;
11771 }
11772 }
11773 return nullptr;
11774}
11775
11776/// doesNodeExist - Check if a node exists without modifying its flags.
11777bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
11779 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11781 AddNodeIDNode(ID, Opcode, VTList, Ops);
11782 void *IP = nullptr;
11783 if (FindNodeOrInsertPos(ID, SDLoc(), IP))
11784 return true;
11785 }
11786 return false;
11787}
11788
11789/// getDbgValue - Creates a SDDbgValue node.
11790///
11791/// SDNode
11793 SDNode *N, unsigned R, bool IsIndirect,
11794 const DebugLoc &DL, unsigned O) {
11795 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11796 "Expected inlined-at fields to agree");
11797 return new (DbgInfo->getAlloc())
11798 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
11799 {}, IsIndirect, DL, O,
11800 /*IsVariadic=*/false);
11801}
11802
11803/// Constant
11805 DIExpression *Expr,
11806 const Value *C,
11807 const DebugLoc &DL, unsigned O) {
11808 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11809 "Expected inlined-at fields to agree");
11810 return new (DbgInfo->getAlloc())
11811 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
11812 /*IsIndirect=*/false, DL, O,
11813 /*IsVariadic=*/false);
11814}
11815
11816/// FrameIndex
11818 DIExpression *Expr, unsigned FI,
11819 bool IsIndirect,
11820 const DebugLoc &DL,
11821 unsigned O) {
11822 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11823 "Expected inlined-at fields to agree");
11824 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
11825}
11826
11827/// FrameIndex with dependencies
11829 DIExpression *Expr, unsigned FI,
11830 ArrayRef<SDNode *> Dependencies,
11831 bool IsIndirect,
11832 const DebugLoc &DL,
11833 unsigned O) {
11834 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11835 "Expected inlined-at fields to agree");
11836 return new (DbgInfo->getAlloc())
11837 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
11838 Dependencies, IsIndirect, DL, O,
11839 /*IsVariadic=*/false);
11840}
11841
11842/// VReg
11844 Register VReg, bool IsIndirect,
11845 const DebugLoc &DL, unsigned O) {
11846 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11847 "Expected inlined-at fields to agree");
11848 return new (DbgInfo->getAlloc())
11849 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
11850 {}, IsIndirect, DL, O,
11851 /*IsVariadic=*/false);
11852}
11853
11856 ArrayRef<SDNode *> Dependencies,
11857 bool IsIndirect, const DebugLoc &DL,
11858 unsigned O, bool IsVariadic) {
11859 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11860 "Expected inlined-at fields to agree");
11861 return new (DbgInfo->getAlloc())
11862 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11863 DL, O, IsVariadic);
11864}
11865
11867 unsigned OffsetInBits, unsigned SizeInBits,
11868 bool InvalidateDbg) {
11869 SDNode *FromNode = From.getNode();
11870 SDNode *ToNode = To.getNode();
11871 assert(FromNode && ToNode && "Can't modify dbg values");
11872
11873 // PR35338
11874 // TODO: assert(From != To && "Redundant dbg value transfer");
11875 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
11876 if (From == To || FromNode == ToNode)
11877 return;
11878
11879 if (!FromNode->getHasDebugValue())
11880 return;
11881
11882 SDDbgOperand FromLocOp =
11883 SDDbgOperand::fromNode(From.getNode(), From.getResNo());
11885
11887 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
11888 if (Dbg->isInvalidated())
11889 continue;
11890
11891 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
11892
11893 // Create a new location ops vector that is equal to the old vector, but
11894 // with each instance of FromLocOp replaced with ToLocOp.
11895 bool Changed = false;
11896 auto NewLocOps = Dbg->copyLocationOps();
11897 std::replace_if(
11898 NewLocOps.begin(), NewLocOps.end(),
11899 [&Changed, FromLocOp](const SDDbgOperand &Op) {
11900 bool Match = Op == FromLocOp;
11901 Changed |= Match;
11902 return Match;
11903 },
11904 ToLocOp);
11905 // Ignore this SDDbgValue if we didn't find a matching location.
11906 if (!Changed)
11907 continue;
11908
11909 DIVariable *Var = Dbg->getVariable();
11910 auto *Expr = Dbg->getExpression();
11911 // If a fragment is requested, update the expression.
11912 if (SizeInBits) {
11913 // When splitting a larger (e.g., sign-extended) value whose
11914 // lower bits are described with an SDDbgValue, do not attempt
11915 // to transfer the SDDbgValue to the upper bits.
11916 if (auto FI = Expr->getFragmentInfo())
11917 if (OffsetInBits + SizeInBits > FI->SizeInBits)
11918 continue;
11919 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
11920 SizeInBits);
11921 if (!Fragment)
11922 continue;
11923 Expr = *Fragment;
11924 }
11925
11926 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
11927 // Clone the SDDbgValue and move it to To.
11928 SDDbgValue *Clone = getDbgValueList(
11929 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
11930 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
11931 Dbg->isVariadic());
11932 ClonedDVs.push_back(Clone);
11933
11934 if (InvalidateDbg) {
11935 // Invalidate value and indicate the SDDbgValue should not be emitted.
11936 Dbg->setIsInvalidated();
11937 Dbg->setIsEmitted();
11938 }
11939 }
11940
11941 for (SDDbgValue *Dbg : ClonedDVs) {
11942 assert(is_contained(Dbg->getSDNodes(), ToNode) &&
11943 "Transferred DbgValues should depend on the new SDNode");
11944 AddDbgValue(Dbg, false);
11945 }
11946}
11947
11949 if (!N.getHasDebugValue())
11950 return;
11951
11952 auto GetLocationOperand = [](SDNode *Node, unsigned ResNo) {
11953 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(Node))
11954 return SDDbgOperand::fromFrameIdx(FISDN->getIndex());
11955 return SDDbgOperand::fromNode(Node, ResNo);
11956 };
11957
11959 for (auto *DV : GetDbgValues(&N)) {
11960 if (DV->isInvalidated())
11961 continue;
11962 switch (N.getOpcode()) {
11963 default:
11964 break;
11965 case ISD::ADD: {
11966 SDValue N0 = N.getOperand(0);
11967 SDValue N1 = N.getOperand(1);
11968 if (!isa<ConstantSDNode>(N0)) {
11969 bool RHSConstant = isa<ConstantSDNode>(N1);
11971 if (RHSConstant)
11972 Offset = N.getConstantOperandVal(1);
11973 // We are not allowed to turn indirect debug values variadic, so
11974 // don't salvage those.
11975 if (!RHSConstant && DV->isIndirect())
11976 continue;
11977
11978 // Rewrite an ADD constant node into a DIExpression. Since we are
11979 // performing arithmetic to compute the variable's *value* in the
11980 // DIExpression, we need to mark the expression with a
11981 // DW_OP_stack_value.
11982 auto *DIExpr = DV->getExpression();
11983 auto NewLocOps = DV->copyLocationOps();
11984 bool Changed = false;
11985 size_t OrigLocOpsSize = NewLocOps.size();
11986 for (size_t i = 0; i < OrigLocOpsSize; ++i) {
11987 // We're not given a ResNo to compare against because the whole
11988 // node is going away. We know that any ISD::ADD only has one
11989 // result, so we can assume any node match is using the result.
11990 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
11991 NewLocOps[i].getSDNode() != &N)
11992 continue;
11993 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
11994 if (RHSConstant) {
11997 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
11998 } else {
11999 // Convert to a variadic expression (if not already).
12000 // convertToVariadicExpression() returns a const pointer, so we use
12001 // a temporary const variable here.
12002 const auto *TmpDIExpr =
12006 ExprOps.push_back(NewLocOps.size());
12007 ExprOps.push_back(dwarf::DW_OP_plus);
12008 SDDbgOperand RHS =
12010 NewLocOps.push_back(RHS);
12011 DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
12012 }
12013 Changed = true;
12014 }
12015 (void)Changed;
12016 assert(Changed && "Salvage target doesn't use N");
12017
12018 bool IsVariadic =
12019 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12020
12021 auto AdditionalDependencies = DV->getAdditionalDependencies();
12022 SDDbgValue *Clone = getDbgValueList(
12023 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12024 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12025 ClonedDVs.push_back(Clone);
12026 DV->setIsInvalidated();
12027 DV->setIsEmitted();
12028 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
12029 N0.getNode()->dumprFull(this);
12030 dbgs() << " into " << *DIExpr << '\n');
12031 }
12032 break;
12033 }
12034 case ISD::TRUNCATE: {
12035 SDValue N0 = N.getOperand(0);
12036 TypeSize FromSize = N0.getValueSizeInBits();
12037 TypeSize ToSize = N.getValueSizeInBits(0);
12038
12039 DIExpression *DbgExpression = DV->getExpression();
12040 auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
12041 auto NewLocOps = DV->copyLocationOps();
12042 bool Changed = false;
12043 for (size_t i = 0; i < NewLocOps.size(); ++i) {
12044 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12045 NewLocOps[i].getSDNode() != &N)
12046 continue;
12047
12048 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12049 DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
12050 Changed = true;
12051 }
12052 assert(Changed && "Salvage target doesn't use N");
12053 (void)Changed;
12054
12055 SDDbgValue *Clone =
12056 getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
12057 DV->getAdditionalDependencies(), DV->isIndirect(),
12058 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12059
12060 ClonedDVs.push_back(Clone);
12061 DV->setIsInvalidated();
12062 DV->setIsEmitted();
12063 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
12064 dbgs() << " into " << *DbgExpression << '\n');
12065 break;
12066 }
12067 }
12068 }
12069
12070 for (SDDbgValue *Dbg : ClonedDVs) {
12071 assert((!Dbg->getSDNodes().empty() ||
12072 llvm::any_of(Dbg->getLocationOps(),
12073 [&](const SDDbgOperand &Op) {
12074 return Op.getKind() == SDDbgOperand::FRAMEIX;
12075 })) &&
12076 "Salvaged DbgValue should depend on a new SDNode");
12077 AddDbgValue(Dbg, false);
12078 }
12079}
12080
12081/// Creates a SDDbgLabel node.
12083 const DebugLoc &DL, unsigned O) {
12084 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
12085 "Expected inlined-at fields to agree");
12086 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
12087}
12088
12089namespace {
12090
12091/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
12092/// pointed to by a use iterator is deleted, increment the use iterator
12093/// so that it doesn't dangle.
12094///
12095class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
12098
12099 void NodeDeleted(SDNode *N, SDNode *E) override {
12100 // Increment the iterator as needed.
12101 while (UI != UE && N == UI->getUser())
12102 ++UI;
12103 }
12104
12105public:
12106 RAUWUpdateListener(SelectionDAG &d,
12109 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12110};
12111
12112} // end anonymous namespace
12113
12114/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12115/// This can cause recursive merging of nodes in the DAG.
12116///
12117/// This version assumes From has a single result value.
12118///
12120 SDNode *From = FromN.getNode();
12121 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
12122 "Cannot replace with this method!");
12123 assert(From != To.getNode() && "Cannot replace uses of with self");
12124
12125 // Preserve Debug Values
12126 transferDbgValues(FromN, To);
12127 // Preserve extra info.
12128 copyExtraInfo(From, To.getNode());
12129
12130 // Iterate over all the existing uses of From. New uses will be added
12131 // to the beginning of the use list, which we avoid visiting.
12132 // This specifically avoids visiting uses of From that arise while the
12133 // replacement is happening, because any such uses would be the result
12134 // of CSE: If an existing node looks like From after one of its operands
12135 // is replaced by To, we don't want to replace of all its users with To
12136 // too. See PR3018 for more info.
12137 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12138 RAUWUpdateListener Listener(*this, UI, UE);
12139 while (UI != UE) {
12140 SDNode *User = UI->getUser();
12141
12142 // This node is about to morph, remove its old self from the CSE maps.
12143 RemoveNodeFromCSEMaps(User);
12144
12145 // A user can appear in a use list multiple times, and when this
12146 // happens the uses are usually next to each other in the list.
12147 // To help reduce the number of CSE recomputations, process all
12148 // the uses of this user that we can find this way.
12149 do {
12150 SDUse &Use = *UI;
12151 ++UI;
12152 Use.set(To);
12153 if (To->isDivergent() != From->isDivergent())
12155 } while (UI != UE && UI->getUser() == User);
12156 // Now that we have modified User, add it back to the CSE maps. If it
12157 // already exists there, recursively merge the results together.
12158 AddModifiedNodeToCSEMaps(User);
12159 }
12160
12161 // If we just RAUW'd the root, take note.
12162 if (FromN == getRoot())
12163 setRoot(To);
12164}
12165
12166/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12167/// This can cause recursive merging of nodes in the DAG.
12168///
12169/// This version assumes that for each value of From, there is a
12170/// corresponding value in To in the same position with the same type.
12171///
12173#ifndef NDEBUG
12174 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12175 assert((!From->hasAnyUseOfValue(i) ||
12176 From->getValueType(i) == To->getValueType(i)) &&
12177 "Cannot use this version of ReplaceAllUsesWith!");
12178#endif
12179
12180 // Handle the trivial case.
12181 if (From == To)
12182 return;
12183
12184 // Preserve Debug Info. Only do this if there's a use.
12185 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12186 if (From->hasAnyUseOfValue(i)) {
12187 assert((i < To->getNumValues()) && "Invalid To location");
12188 transferDbgValues(SDValue(From, i), SDValue(To, i));
12189 }
12190 // Preserve extra info.
12191 copyExtraInfo(From, To);
12192
12193 // Iterate over just the existing users of From. See the comments in
12194 // the ReplaceAllUsesWith above.
12195 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12196 RAUWUpdateListener Listener(*this, UI, UE);
12197 while (UI != UE) {
12198 SDNode *User = UI->getUser();
12199
12200 // This node is about to morph, remove its old self from the CSE maps.
12201 RemoveNodeFromCSEMaps(User);
12202
12203 // A user can appear in a use list multiple times, and when this
12204 // happens the uses are usually next to each other in the list.
12205 // To help reduce the number of CSE recomputations, process all
12206 // the uses of this user that we can find this way.
12207 do {
12208 SDUse &Use = *UI;
12209 ++UI;
12210 Use.setNode(To);
12211 if (To->isDivergent() != From->isDivergent())
12213 } while (UI != UE && UI->getUser() == User);
12214
12215 // Now that we have modified User, add it back to the CSE maps. If it
12216 // already exists there, recursively merge the results together.
12217 AddModifiedNodeToCSEMaps(User);
12218 }
12219
12220 // If we just RAUW'd the root, take note.
12221 if (From == getRoot().getNode())
12222 setRoot(SDValue(To, getRoot().getResNo()));
12223}
12224
12225/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12226/// This can cause recursive merging of nodes in the DAG.
12227///
12228/// This version can replace From with any result values. To must match the
12229/// number and types of values returned by From.
12231 if (From->getNumValues() == 1) // Handle the simple case efficiently.
12232 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
12233
12234 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
12235 // Preserve Debug Info.
12236 transferDbgValues(SDValue(From, i), To[i]);
12237 // Preserve extra info.
12238 copyExtraInfo(From, To[i].getNode());
12239 }
12240
12241 // Iterate over just the existing users of From. See the comments in
12242 // the ReplaceAllUsesWith above.
12243 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12244 RAUWUpdateListener Listener(*this, UI, UE);
12245 while (UI != UE) {
12246 SDNode *User = UI->getUser();
12247
12248 // This node is about to morph, remove its old self from the CSE maps.
12249 RemoveNodeFromCSEMaps(User);
12250
12251 // A user can appear in a use list multiple times, and when this happens the
12252 // uses are usually next to each other in the list. To help reduce the
12253 // number of CSE and divergence recomputations, process all the uses of this
12254 // user that we can find this way.
12255 bool To_IsDivergent = false;
12256 do {
12257 SDUse &Use = *UI;
12258 const SDValue &ToOp = To[Use.getResNo()];
12259 ++UI;
12260 Use.set(ToOp);
12261 To_IsDivergent |= ToOp->isDivergent();
12262 } while (UI != UE && UI->getUser() == User);
12263
12264 if (To_IsDivergent != From->isDivergent())
12266
12267 // Now that we have modified User, add it back to the CSE maps. If it
12268 // already exists there, recursively merge the results together.
12269 AddModifiedNodeToCSEMaps(User);
12270 }
12271
12272 // If we just RAUW'd the root, take note.
12273 if (From == getRoot().getNode())
12274 setRoot(SDValue(To[getRoot().getResNo()]));
12275}
12276
12277/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
12278/// uses of other values produced by From.getNode() alone. The Deleted
12279/// vector is handled the same way as for ReplaceAllUsesWith.
12281 // Handle the really simple, really trivial case efficiently.
12282 if (From == To) return;
12283
12284 // Handle the simple, trivial, case efficiently.
12285 if (From.getNode()->getNumValues() == 1) {
12286 ReplaceAllUsesWith(From, To);
12287 return;
12288 }
12289
12290 // Preserve Debug Info.
12291 transferDbgValues(From, To);
12292 copyExtraInfo(From.getNode(), To.getNode());
12293
12294 // Iterate over just the existing users of From. See the comments in
12295 // the ReplaceAllUsesWith above.
12296 SDNode::use_iterator UI = From.getNode()->use_begin(),
12297 UE = From.getNode()->use_end();
12298 RAUWUpdateListener Listener(*this, UI, UE);
12299 while (UI != UE) {
12300 SDNode *User = UI->getUser();
12301 bool UserRemovedFromCSEMaps = false;
12302
12303 // A user can appear in a use list multiple times, and when this
12304 // happens the uses are usually next to each other in the list.
12305 // To help reduce the number of CSE recomputations, process all
12306 // the uses of this user that we can find this way.
12307 do {
12308 SDUse &Use = *UI;
12309
12310 // Skip uses of different values from the same node.
12311 if (Use.getResNo() != From.getResNo()) {
12312 ++UI;
12313 continue;
12314 }
12315
12316 // If this node hasn't been modified yet, it's still in the CSE maps,
12317 // so remove its old self from the CSE maps.
12318 if (!UserRemovedFromCSEMaps) {
12319 RemoveNodeFromCSEMaps(User);
12320 UserRemovedFromCSEMaps = true;
12321 }
12322
12323 ++UI;
12324 Use.set(To);
12325 if (To->isDivergent() != From->isDivergent())
12327 } while (UI != UE && UI->getUser() == User);
12328 // We are iterating over all uses of the From node, so if a use
12329 // doesn't use the specific value, no changes are made.
12330 if (!UserRemovedFromCSEMaps)
12331 continue;
12332
12333 // Now that we have modified User, add it back to the CSE maps. If it
12334 // already exists there, recursively merge the results together.
12335 AddModifiedNodeToCSEMaps(User);
12336 }
12337
12338 // If we just RAUW'd the root, take note.
12339 if (From == getRoot())
12340 setRoot(To);
12341}
12342
12343namespace {
12344
12345/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
12346/// to record information about a use.
12347struct UseMemo {
12348 SDNode *User;
12349 unsigned Index;
12350 SDUse *Use;
12351};
12352
12353/// operator< - Sort Memos by User.
12354bool operator<(const UseMemo &L, const UseMemo &R) {
12355 return (intptr_t)L.User < (intptr_t)R.User;
12356}
12357
12358/// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
12359/// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
12360/// the node already has been taken care of recursively.
12361class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
12362 SmallVectorImpl<UseMemo> &Uses;
12363
12364 void NodeDeleted(SDNode *N, SDNode *E) override {
12365 for (UseMemo &Memo : Uses)
12366 if (Memo.User == N)
12367 Memo.User = nullptr;
12368 }
12369
12370public:
12371 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12372 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
12373};
12374
12375} // end anonymous namespace
12376
12377/// Return true if a glue output should propagate divergence information.
12379 switch (Node->getOpcode()) {
12380 case ISD::CopyFromReg:
12381 case ISD::CopyToReg:
12382 return false;
12383 default:
12384 return true;
12385 }
12386
12387 llvm_unreachable("covered opcode switch");
12388}
12389
12391 if (TLI->isSDNodeAlwaysUniform(N)) {
12392 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
12393 "Conflicting divergence information!");
12394 return false;
12395 }
12396 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
12397 return true;
12398 for (const auto &Op : N->ops()) {
12399 EVT VT = Op.getValueType();
12400
12401 // Skip Chain. It does not carry divergence.
12402 if (VT != MVT::Other && Op.getNode()->isDivergent() &&
12403 (VT != MVT::Glue || gluePropagatesDivergence(Op.getNode())))
12404 return true;
12405 }
12406 return false;
12407}
12408
12410 SmallVector<SDNode *, 16> Worklist(1, N);
12411 do {
12412 N = Worklist.pop_back_val();
12413 bool IsDivergent = calculateDivergence(N);
12414 if (N->SDNodeBits.IsDivergent != IsDivergent) {
12415 N->SDNodeBits.IsDivergent = IsDivergent;
12416 llvm::append_range(Worklist, N->users());
12417 }
12418 } while (!Worklist.empty());
12419}
12420
12421void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12423 Order.reserve(AllNodes.size());
12424 for (auto &N : allnodes()) {
12425 unsigned NOps = N.getNumOperands();
12426 Degree[&N] = NOps;
12427 if (0 == NOps)
12428 Order.push_back(&N);
12429 }
12430 for (size_t I = 0; I != Order.size(); ++I) {
12431 SDNode *N = Order[I];
12432 for (auto *U : N->users()) {
12433 unsigned &UnsortedOps = Degree[U];
12434 if (0 == --UnsortedOps)
12435 Order.push_back(U);
12436 }
12437 }
12438}
12439
12440#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12441void SelectionDAG::VerifyDAGDivergence() {
12442 std::vector<SDNode *> TopoOrder;
12443 CreateTopologicalOrder(TopoOrder);
12444 for (auto *N : TopoOrder) {
12445 assert(calculateDivergence(N) == N->isDivergent() &&
12446 "Divergence bit inconsistency detected");
12447 }
12448}
12449#endif
12450
12451/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
12452/// uses of other values produced by From.getNode() alone. The same value
12453/// may appear in both the From and To list. The Deleted vector is
12454/// handled the same way as for ReplaceAllUsesWith.
12456 const SDValue *To,
12457 unsigned Num){
12458 // Handle the simple, trivial case efficiently.
12459 if (Num == 1)
12460 return ReplaceAllUsesOfValueWith(*From, *To);
12461
12462 transferDbgValues(*From, *To);
12463 copyExtraInfo(From->getNode(), To->getNode());
12464
12465 // Read up all the uses and make records of them. This helps
12466 // processing new uses that are introduced during the
12467 // replacement process.
12469 for (unsigned i = 0; i != Num; ++i) {
12470 unsigned FromResNo = From[i].getResNo();
12471 SDNode *FromNode = From[i].getNode();
12472 for (SDUse &Use : FromNode->uses()) {
12473 if (Use.getResNo() == FromResNo) {
12474 UseMemo Memo = {Use.getUser(), i, &Use};
12475 Uses.push_back(Memo);
12476 }
12477 }
12478 }
12479
12480 // Sort the uses, so that all the uses from a given User are together.
12482 RAUOVWUpdateListener Listener(*this, Uses);
12483
12484 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
12485 UseIndex != UseIndexEnd; ) {
12486 // We know that this user uses some value of From. If it is the right
12487 // value, update it.
12488 SDNode *User = Uses[UseIndex].User;
12489 // If the node has been deleted by recursive CSE updates when updating
12490 // another node, then just skip this entry.
12491 if (User == nullptr) {
12492 ++UseIndex;
12493 continue;
12494 }
12495
12496 // This node is about to morph, remove its old self from the CSE maps.
12497 RemoveNodeFromCSEMaps(User);
12498
12499 // The Uses array is sorted, so all the uses for a given User
12500 // are next to each other in the list.
12501 // To help reduce the number of CSE recomputations, process all
12502 // the uses of this user that we can find this way.
12503 do {
12504 unsigned i = Uses[UseIndex].Index;
12505 SDUse &Use = *Uses[UseIndex].Use;
12506 ++UseIndex;
12507
12508 Use.set(To[i]);
12509 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
12510
12511 // Now that we have modified User, add it back to the CSE maps. If it
12512 // already exists there, recursively merge the results together.
12513 AddModifiedNodeToCSEMaps(User);
12514 }
12515}
12516
12517/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
12518/// based on their topological order. It returns the maximum id and a vector
12519/// of the SDNodes* in assigned order by reference.
12521 unsigned DAGSize = 0;
12522
12523 // SortedPos tracks the progress of the algorithm. Nodes before it are
12524 // sorted, nodes after it are unsorted. When the algorithm completes
12525 // it is at the end of the list.
12526 allnodes_iterator SortedPos = allnodes_begin();
12527
12528 // Visit all the nodes. Move nodes with no operands to the front of
12529 // the list immediately. Annotate nodes that do have operands with their
12530 // operand count. Before we do this, the Node Id fields of the nodes
12531 // may contain arbitrary values. After, the Node Id fields for nodes
12532 // before SortedPos will contain the topological sort index, and the
12533 // Node Id fields for nodes At SortedPos and after will contain the
12534 // count of outstanding operands.
12536 checkForCycles(&N, this);
12537 unsigned Degree = N.getNumOperands();
12538 if (Degree == 0) {
12539 // A node with no uses, add it to the result array immediately.
12540 N.setNodeId(DAGSize++);
12541 allnodes_iterator Q(&N);
12542 if (Q != SortedPos)
12543 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12544 assert(SortedPos != AllNodes.end() && "Overran node list");
12545 ++SortedPos;
12546 } else {
12547 // Temporarily use the Node Id as scratch space for the degree count.
12548 N.setNodeId(Degree);
12549 }
12550 }
12551
12552 // Visit all the nodes. As we iterate, move nodes into sorted order,
12553 // such that by the time the end is reached all nodes will be sorted.
12554 for (SDNode &Node : allnodes()) {
12555 SDNode *N = &Node;
12556 checkForCycles(N, this);
12557 // N is in sorted position, so all its uses have one less operand
12558 // that needs to be sorted.
12559 for (SDNode *P : N->users()) {
12560 unsigned Degree = P->getNodeId();
12561 assert(Degree != 0 && "Invalid node degree");
12562 --Degree;
12563 if (Degree == 0) {
12564 // All of P's operands are sorted, so P may sorted now.
12565 P->setNodeId(DAGSize++);
12566 if (P->getIterator() != SortedPos)
12567 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
12568 assert(SortedPos != AllNodes.end() && "Overran node list");
12569 ++SortedPos;
12570 } else {
12571 // Update P's outstanding operand count.
12572 P->setNodeId(Degree);
12573 }
12574 }
12575 if (Node.getIterator() == SortedPos) {
12576#ifndef NDEBUG
12578 SDNode *S = &*++I;
12579 dbgs() << "Overran sorted position:\n";
12580 S->dumprFull(this); dbgs() << "\n";
12581 dbgs() << "Checking if this is due to cycles\n";
12582 checkForCycles(this, true);
12583#endif
12584 llvm_unreachable(nullptr);
12585 }
12586 }
12587
12588 assert(SortedPos == AllNodes.end() &&
12589 "Topological sort incomplete!");
12590 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
12591 "First node in topological sort is not the entry token!");
12592 assert(AllNodes.front().getNodeId() == 0 &&
12593 "First node in topological sort has non-zero id!");
12594 assert(AllNodes.front().getNumOperands() == 0 &&
12595 "First node in topological sort has operands!");
12596 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
12597 "Last node in topologic sort has unexpected id!");
12598 assert(AllNodes.back().use_empty() &&
12599 "Last node in topologic sort has users!");
12600 assert(DAGSize == allnodes_size() && "Node count mismatch!");
12601 return DAGSize;
12602}
12603
12604/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
12605/// value is produced by SD.
12606void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
12607 for (SDNode *SD : DB->getSDNodes()) {
12608 if (!SD)
12609 continue;
12610 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12611 SD->setHasDebugValue(true);
12612 }
12613 DbgInfo->add(DB, isParameter);
12614}
12615
12616void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
12617
12619 SDValue NewMemOpChain) {
12620 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
12621 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
12622 // The new memory operation must have the same position as the old load in
12623 // terms of memory dependency. Create a TokenFactor for the old load and new
12624 // memory operation and update uses of the old load's output chain to use that
12625 // TokenFactor.
12626 if (OldChain == NewMemOpChain || OldChain.use_empty())
12627 return NewMemOpChain;
12628
12629 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
12630 OldChain, NewMemOpChain);
12631 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
12632 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
12633 return TokenFactor;
12634}
12635
12637 SDValue NewMemOp) {
12638 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
12639 SDValue OldChain = SDValue(OldLoad, 1);
12640 SDValue NewMemOpChain = NewMemOp.getValue(1);
12641 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
12642}
12643
12645 Function **OutFunction) {
12646 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
12647
12648 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12649 auto *Module = MF->getFunction().getParent();
12650 auto *Function = Module->getFunction(Symbol);
12651
12652 if (OutFunction != nullptr)
12653 *OutFunction = Function;
12654
12655 if (Function != nullptr) {
12656 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
12657 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
12658 }
12659
12660 std::string ErrorStr;
12661 raw_string_ostream ErrorFormatter(ErrorStr);
12662 ErrorFormatter << "Undefined external symbol ";
12663 ErrorFormatter << '"' << Symbol << '"';
12664 report_fatal_error(Twine(ErrorStr));
12665}
12666
12667//===----------------------------------------------------------------------===//
12668// SDNode Class
12669//===----------------------------------------------------------------------===//
12670
12673 return Const != nullptr && Const->isZero();
12674}
12675
12677 return V.isUndef() || isNullConstant(V);
12678}
12679
12682 return Const != nullptr && Const->isZero() && !Const->isNegative();
12683}
12684
12687 return Const != nullptr && Const->isAllOnes();
12688}
12689
12692 return Const != nullptr && Const->isOne();
12693}
12694
12697 return Const != nullptr && Const->isMinSignedValue();
12698}
12699
12700bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
12701 unsigned OperandNo) {
12702 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
12703 // TODO: Target-specific opcodes could be added.
12704 if (auto *ConstV = isConstOrConstSplat(V, /*AllowUndefs*/ false,
12705 /*AllowTruncation*/ true)) {
12706 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12707 switch (Opcode) {
12708 case ISD::ADD:
12709 case ISD::OR:
12710 case ISD::XOR:
12711 case ISD::UMAX:
12712 return Const.isZero();
12713 case ISD::MUL:
12714 return Const.isOne();
12715 case ISD::AND:
12716 case ISD::UMIN:
12717 return Const.isAllOnes();
12718 case ISD::SMAX:
12719 return Const.isMinSignedValue();
12720 case ISD::SMIN:
12721 return Const.isMaxSignedValue();
12722 case ISD::SUB:
12723 case ISD::SHL:
12724 case ISD::SRA:
12725 case ISD::SRL:
12726 return OperandNo == 1 && Const.isZero();
12727 case ISD::UDIV:
12728 case ISD::SDIV:
12729 return OperandNo == 1 && Const.isOne();
12730 }
12731 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
12732 switch (Opcode) {
12733 case ISD::FADD:
12734 return ConstFP->isZero() &&
12735 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12736 case ISD::FSUB:
12737 return OperandNo == 1 && ConstFP->isZero() &&
12738 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12739 case ISD::FMUL:
12740 return ConstFP->isExactlyValue(1.0);
12741 case ISD::FDIV:
12742 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12743 case ISD::FMINNUM:
12744 case ISD::FMAXNUM: {
12745 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12746 EVT VT = V.getValueType();
12747 const fltSemantics &Semantics = VT.getFltSemantics();
12748 APFloat NeutralAF = !Flags.hasNoNaNs()
12749 ? APFloat::getQNaN(Semantics)
12750 : !Flags.hasNoInfs()
12751 ? APFloat::getInf(Semantics)
12752 : APFloat::getLargest(Semantics);
12753 if (Opcode == ISD::FMAXNUM)
12754 NeutralAF.changeSign();
12755
12756 return ConstFP->isExactlyValue(NeutralAF);
12757 }
12758 }
12759 }
12760 return false;
12761}
12762
12764 while (V.getOpcode() == ISD::BITCAST)
12765 V = V.getOperand(0);
12766 return V;
12767}
12768
12770 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12771 V = V.getOperand(0);
12772 return V;
12773}
12774
12776 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12777 V = V.getOperand(0);
12778 return V;
12779}
12780
12782 while (V.getOpcode() == ISD::TRUNCATE)
12783 V = V.getOperand(0);
12784 return V;
12785}
12786
12787bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
12788 if (V.getOpcode() != ISD::XOR)
12789 return false;
12790 V = peekThroughBitcasts(V.getOperand(1));
12791 unsigned NumBits = V.getScalarValueSizeInBits();
12792 ConstantSDNode *C =
12793 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
12794 return C && (C->getAPIntValue().countr_one() >= NumBits);
12795}
12796
12798 bool AllowTruncation) {
12799 EVT VT = N.getValueType();
12800 APInt DemandedElts = VT.isFixedLengthVector()
12802 : APInt(1, 1);
12803 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
12804}
12805
12807 bool AllowUndefs,
12808 bool AllowTruncation) {
12810 return CN;
12811
12812 // SplatVectors can truncate their operands. Ignore that case here unless
12813 // AllowTruncation is set.
12814 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
12815 EVT VecEltVT = N->getValueType(0).getVectorElementType();
12816 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12817 EVT CVT = CN->getValueType(0);
12818 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
12819 if (AllowTruncation || CVT == VecEltVT)
12820 return CN;
12821 }
12822 }
12823
12825 BitVector UndefElements;
12826 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12827
12828 // BuildVectors can truncate their operands. Ignore that case here unless
12829 // AllowTruncation is set.
12830 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12831 if (CN && (UndefElements.none() || AllowUndefs)) {
12832 EVT CVT = CN->getValueType(0);
12833 EVT NSVT = N.getValueType().getScalarType();
12834 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
12835 if (AllowTruncation || (CVT == NSVT))
12836 return CN;
12837 }
12838 }
12839
12840 return nullptr;
12841}
12842
12844 EVT VT = N.getValueType();
12845 APInt DemandedElts = VT.isFixedLengthVector()
12847 : APInt(1, 1);
12848 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
12849}
12850
12852 const APInt &DemandedElts,
12853 bool AllowUndefs) {
12855 return CN;
12856
12858 BitVector UndefElements;
12859 ConstantFPSDNode *CN =
12860 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
12861 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12862 if (CN && (UndefElements.none() || AllowUndefs))
12863 return CN;
12864 }
12865
12866 if (N.getOpcode() == ISD::SPLAT_VECTOR)
12867 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
12868 return CN;
12869
12870 return nullptr;
12871}
12872
12873bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
12874 // TODO: may want to use peekThroughBitcast() here.
12875 ConstantSDNode *C =
12876 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
12877 return C && C->isZero();
12878}
12879
12880bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
12881 ConstantSDNode *C =
12882 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
12883 return C && C->isOne();
12884}
12885
12886bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
12888 unsigned BitWidth = N.getScalarValueSizeInBits();
12889 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
12890 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
12891}
12892
12893bool llvm::isOnesOrOnesSplat(SDValue N, bool AllowUndefs) {
12894 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
12895 return C && APInt::isSameValue(C->getAPIntValue(),
12896 APInt(C->getAPIntValue().getBitWidth(), 1));
12897}
12898
12899bool llvm::isZeroOrZeroSplat(SDValue N, bool AllowUndefs) {
12901 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs, true);
12902 return C && C->isZero();
12903}
12904
12908
12909MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
12910 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
12911 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
12912 MemSDNodeBits.IsVolatile = MMO->isVolatile();
12913 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
12914 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
12915 MemSDNodeBits.IsInvariant = MMO->isInvariant();
12916
12917 // We check here that the size of the memory operand fits within the size of
12918 // the MMO. This is because the MMO might indicate only a possible address
12919 // range instead of specifying the affected memory addresses precisely.
12920 assert(
12921 (!MMO->getType().isValid() ||
12922 TypeSize::isKnownLE(memvt.getStoreSize(), MMO->getSize().getValue())) &&
12923 "Size mismatch!");
12924}
12925
12926/// Profile - Gather unique data for the node.
12927///
12929 AddNodeIDNode(ID, this);
12930}
12931
12932namespace {
12933
12934 struct EVTArray {
12935 std::vector<EVT> VTs;
12936
12937 EVTArray() {
12938 VTs.reserve(MVT::VALUETYPE_SIZE);
12939 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
12940 VTs.push_back(MVT((MVT::SimpleValueType)i));
12941 }
12942 };
12943
12944} // end anonymous namespace
12945
12946/// getValueTypeList - Return a pointer to the specified value type.
12947///
12948const EVT *SDNode::getValueTypeList(MVT VT) {
12949 static EVTArray SimpleVTArray;
12950
12951 assert(VT < MVT::VALUETYPE_SIZE && "Value type out of range!");
12952 return &SimpleVTArray.VTs[VT.SimpleTy];
12953}
12954
12955/// hasAnyUseOfValue - Return true if there are any use of the indicated
12956/// value. This method ignores uses of other values defined by this operation.
12957bool SDNode::hasAnyUseOfValue(unsigned Value) const {
12958 assert(Value < getNumValues() && "Bad value!");
12959
12960 for (SDUse &U : uses())
12961 if (U.getResNo() == Value)
12962 return true;
12963
12964 return false;
12965}
12966
12967/// isOnlyUserOf - Return true if this node is the only use of N.
12968bool SDNode::isOnlyUserOf(const SDNode *N) const {
12969 bool Seen = false;
12970 for (const SDNode *User : N->users()) {
12971 if (User == this)
12972 Seen = true;
12973 else
12974 return false;
12975 }
12976
12977 return Seen;
12978}
12979
12980/// Return true if the only users of N are contained in Nodes.
12982 bool Seen = false;
12983 for (const SDNode *User : N->users()) {
12984 if (llvm::is_contained(Nodes, User))
12985 Seen = true;
12986 else
12987 return false;
12988 }
12989
12990 return Seen;
12991}
12992
12993/// Return true if the referenced return value is an operand of N.
12994bool SDValue::isOperandOf(const SDNode *N) const {
12995 return is_contained(N->op_values(), *this);
12996}
12997
12998bool SDNode::isOperandOf(const SDNode *N) const {
12999 return any_of(N->op_values(),
13000 [this](SDValue Op) { return this == Op.getNode(); });
13001}
13002
13003/// reachesChainWithoutSideEffects - Return true if this operand (which must
13004/// be a chain) reaches the specified operand without crossing any
13005/// side-effecting instructions on any chain path. In practice, this looks
13006/// through token factors and non-volatile loads. In order to remain efficient,
13007/// this only looks a couple of nodes in, it does not do an exhaustive search.
13008///
13009/// Note that we only need to examine chains when we're searching for
13010/// side-effects; SelectionDAG requires that all side-effects are represented
13011/// by chains, even if another operand would force a specific ordering. This
13012/// constraint is necessary to allow transformations like splitting loads.
13014 unsigned Depth) const {
13015 if (*this == Dest) return true;
13016
13017 // Don't search too deeply, we just want to be able to see through
13018 // TokenFactor's etc.
13019 if (Depth == 0) return false;
13020
13021 // If this is a token factor, all inputs to the TF happen in parallel.
13022 if (getOpcode() == ISD::TokenFactor) {
13023 // First, try a shallow search.
13024 if (is_contained((*this)->ops(), Dest)) {
13025 // We found the chain we want as an operand of this TokenFactor.
13026 // Essentially, we reach the chain without side-effects if we could
13027 // serialize the TokenFactor into a simple chain of operations with
13028 // Dest as the last operation. This is automatically true if the
13029 // chain has one use: there are no other ordering constraints.
13030 // If the chain has more than one use, we give up: some other
13031 // use of Dest might force a side-effect between Dest and the current
13032 // node.
13033 if (Dest.hasOneUse())
13034 return true;
13035 }
13036 // Next, try a deep search: check whether every operand of the TokenFactor
13037 // reaches Dest.
13038 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
13039 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13040 });
13041 }
13042
13043 // Loads don't have side effects, look through them.
13044 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
13045 if (Ld->isUnordered())
13046 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
13047 }
13048 return false;
13049}
13050
13051bool SDNode::hasPredecessor(const SDNode *N) const {
13054 Worklist.push_back(this);
13055 return hasPredecessorHelper(N, Visited, Worklist);
13056}
13057
13059 this->Flags &= Flags;
13060}
13061
13062SDValue
13064 ArrayRef<ISD::NodeType> CandidateBinOps,
13065 bool AllowPartials) {
13066 // The pattern must end in an extract from index 0.
13067 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13068 !isNullConstant(Extract->getOperand(1)))
13069 return SDValue();
13070
13071 // Match against one of the candidate binary ops.
13072 SDValue Op = Extract->getOperand(0);
13073 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
13074 return Op.getOpcode() == unsigned(BinOp);
13075 }))
13076 return SDValue();
13077
13078 // Floating-point reductions may require relaxed constraints on the final step
13079 // of the reduction because they may reorder intermediate operations.
13080 unsigned CandidateBinOp = Op.getOpcode();
13081 if (Op.getValueType().isFloatingPoint()) {
13082 SDNodeFlags Flags = Op->getFlags();
13083 switch (CandidateBinOp) {
13084 case ISD::FADD:
13085 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13086 return SDValue();
13087 break;
13088 default:
13089 llvm_unreachable("Unhandled FP opcode for binop reduction");
13090 }
13091 }
13092
13093 // Matching failed - attempt to see if we did enough stages that a partial
13094 // reduction from a subvector is possible.
13095 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
13096 if (!AllowPartials || !Op)
13097 return SDValue();
13098 EVT OpVT = Op.getValueType();
13099 EVT OpSVT = OpVT.getScalarType();
13100 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
13101 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13102 return SDValue();
13103 BinOp = (ISD::NodeType)CandidateBinOp;
13104 return getExtractSubvector(SDLoc(Op), SubVT, Op, 0);
13105 };
13106
13107 // At each stage, we're looking for something that looks like:
13108 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
13109 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
13110 // i32 undef, i32 undef, i32 undef, i32 undef>
13111 // %a = binop <8 x i32> %op, %s
13112 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
13113 // we expect something like:
13114 // <4,5,6,7,u,u,u,u>
13115 // <2,3,u,u,u,u,u,u>
13116 // <1,u,u,u,u,u,u,u>
13117 // While a partial reduction match would be:
13118 // <2,3,u,u,u,u,u,u>
13119 // <1,u,u,u,u,u,u,u>
13120 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
13121 SDValue PrevOp;
13122 for (unsigned i = 0; i < Stages; ++i) {
13123 unsigned MaskEnd = (1 << i);
13124
13125 if (Op.getOpcode() != CandidateBinOp)
13126 return PartialReduction(PrevOp, MaskEnd);
13127
13128 SDValue Op0 = Op.getOperand(0);
13129 SDValue Op1 = Op.getOperand(1);
13130
13132 if (Shuffle) {
13133 Op = Op1;
13134 } else {
13135 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
13136 Op = Op0;
13137 }
13138
13139 // The first operand of the shuffle should be the same as the other operand
13140 // of the binop.
13141 if (!Shuffle || Shuffle->getOperand(0) != Op)
13142 return PartialReduction(PrevOp, MaskEnd);
13143
13144 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
13145 for (int Index = 0; Index < (int)MaskEnd; ++Index)
13146 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
13147 return PartialReduction(PrevOp, MaskEnd);
13148
13149 PrevOp = Op;
13150 }
13151
13152 // Handle subvector reductions, which tend to appear after the shuffle
13153 // reduction stages.
13154 while (Op.getOpcode() == CandidateBinOp) {
13155 unsigned NumElts = Op.getValueType().getVectorNumElements();
13156 SDValue Op0 = Op.getOperand(0);
13157 SDValue Op1 = Op.getOperand(1);
13158 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
13160 Op0.getOperand(0) != Op1.getOperand(0))
13161 break;
13162 SDValue Src = Op0.getOperand(0);
13163 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
13164 if (NumSrcElts != (2 * NumElts))
13165 break;
13166 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
13167 Op1.getConstantOperandAPInt(1) == NumElts) &&
13168 !(Op1.getConstantOperandAPInt(1) == 0 &&
13169 Op0.getConstantOperandAPInt(1) == NumElts))
13170 break;
13171 Op = Src;
13172 }
13173
13174 BinOp = (ISD::NodeType)CandidateBinOp;
13175 return Op;
13176}
13177
13179 EVT VT = N->getValueType(0);
13180 EVT EltVT = VT.getVectorElementType();
13181 unsigned NE = VT.getVectorNumElements();
13182
13183 SDLoc dl(N);
13184
13185 // If ResNE is 0, fully unroll the vector op.
13186 if (ResNE == 0)
13187 ResNE = NE;
13188 else if (NE > ResNE)
13189 NE = ResNE;
13190
13191 if (N->getNumValues() == 2) {
13192 SmallVector<SDValue, 8> Scalars0, Scalars1;
13193 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13194 EVT VT1 = N->getValueType(1);
13195 EVT EltVT1 = VT1.getVectorElementType();
13196
13197 unsigned i;
13198 for (i = 0; i != NE; ++i) {
13199 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13200 SDValue Operand = N->getOperand(j);
13201 EVT OperandVT = Operand.getValueType();
13202
13203 // A vector operand; extract a single element.
13204 EVT OperandEltVT = OperandVT.getVectorElementType();
13205 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13206 }
13207
13208 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13209 Scalars0.push_back(EltOp);
13210 Scalars1.push_back(EltOp.getValue(1));
13211 }
13212
13213 for (; i < ResNE; ++i) {
13214 Scalars0.push_back(getUNDEF(EltVT));
13215 Scalars1.push_back(getUNDEF(EltVT1));
13216 }
13217
13218 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13219 EVT VecVT1 = EVT::getVectorVT(*getContext(), EltVT1, ResNE);
13220 SDValue Vec0 = getBuildVector(VecVT, dl, Scalars0);
13221 SDValue Vec1 = getBuildVector(VecVT1, dl, Scalars1);
13222 return getMergeValues({Vec0, Vec1}, dl);
13223 }
13224
13225 assert(N->getNumValues() == 1 &&
13226 "Can't unroll a vector with multiple results!");
13227
13229 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13230
13231 unsigned i;
13232 for (i= 0; i != NE; ++i) {
13233 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13234 SDValue Operand = N->getOperand(j);
13235 EVT OperandVT = Operand.getValueType();
13236 if (OperandVT.isVector()) {
13237 // A vector operand; extract a single element.
13238 EVT OperandEltVT = OperandVT.getVectorElementType();
13239 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13240 } else {
13241 // A scalar operand; just use it as is.
13242 Operands[j] = Operand;
13243 }
13244 }
13245
13246 switch (N->getOpcode()) {
13247 default: {
13248 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
13249 N->getFlags()));
13250 break;
13251 }
13252 case ISD::VSELECT:
13253 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
13254 break;
13255 case ISD::SHL:
13256 case ISD::SRA:
13257 case ISD::SRL:
13258 case ISD::ROTL:
13259 case ISD::ROTR:
13260 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
13262 Operands[1])));
13263 break;
13265 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
13266 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
13267 Operands[0],
13268 getValueType(ExtVT)));
13269 break;
13270 }
13271 case ISD::ADDRSPACECAST: {
13272 const auto *ASC = cast<AddrSpaceCastSDNode>(N);
13273 Scalars.push_back(getAddrSpaceCast(dl, EltVT, Operands[0],
13274 ASC->getSrcAddressSpace(),
13275 ASC->getDestAddressSpace()));
13276 break;
13277 }
13278 }
13279 }
13280
13281 for (; i < ResNE; ++i)
13282 Scalars.push_back(getUNDEF(EltVT));
13283
13284 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13285 return getBuildVector(VecVT, dl, Scalars);
13286}
13287
13288std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
13289 SDNode *N, unsigned ResNE) {
13290 unsigned Opcode = N->getOpcode();
13291 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
13292 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
13293 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
13294 "Expected an overflow opcode");
13295
13296 EVT ResVT = N->getValueType(0);
13297 EVT OvVT = N->getValueType(1);
13298 EVT ResEltVT = ResVT.getVectorElementType();
13299 EVT OvEltVT = OvVT.getVectorElementType();
13300 SDLoc dl(N);
13301
13302 // If ResNE is 0, fully unroll the vector op.
13303 unsigned NE = ResVT.getVectorNumElements();
13304 if (ResNE == 0)
13305 ResNE = NE;
13306 else if (NE > ResNE)
13307 NE = ResNE;
13308
13309 SmallVector<SDValue, 8> LHSScalars;
13310 SmallVector<SDValue, 8> RHSScalars;
13311 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
13312 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
13313
13314 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
13315 SDVTList VTs = getVTList(ResEltVT, SVT);
13316 SmallVector<SDValue, 8> ResScalars;
13317 SmallVector<SDValue, 8> OvScalars;
13318 for (unsigned i = 0; i < NE; ++i) {
13319 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13320 SDValue Ov =
13321 getSelect(dl, OvEltVT, Res.getValue(1),
13322 getBoolConstant(true, dl, OvEltVT, ResVT),
13323 getConstant(0, dl, OvEltVT));
13324
13325 ResScalars.push_back(Res);
13326 OvScalars.push_back(Ov);
13327 }
13328
13329 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
13330 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
13331
13332 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
13333 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
13334 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
13335 getBuildVector(NewOvVT, dl, OvScalars));
13336}
13337
13340 unsigned Bytes,
13341 int Dist) const {
13342 if (LD->isVolatile() || Base->isVolatile())
13343 return false;
13344 // TODO: probably too restrictive for atomics, revisit
13345 if (!LD->isSimple())
13346 return false;
13347 if (LD->isIndexed() || Base->isIndexed())
13348 return false;
13349 if (LD->getChain() != Base->getChain())
13350 return false;
13351 EVT VT = LD->getMemoryVT();
13352 if (VT.getSizeInBits() / 8 != Bytes)
13353 return false;
13354
13355 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
13356 auto LocDecomp = BaseIndexOffset::match(LD, *this);
13357
13358 int64_t Offset = 0;
13359 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
13360 return (Dist * (int64_t)Bytes == Offset);
13361 return false;
13362}
13363
13364/// InferPtrAlignment - Infer alignment of a load / store address. Return
13365/// std::nullopt if it cannot be inferred.
13367 // If this is a GlobalAddress + cst, return the alignment.
13368 const GlobalValue *GV = nullptr;
13369 int64_t GVOffset = 0;
13370 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
13371 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
13372 KnownBits Known(PtrWidth);
13374 unsigned AlignBits = Known.countMinTrailingZeros();
13375 if (AlignBits)
13376 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
13377 }
13378
13379 // If this is a direct reference to a stack slot, use information about the
13380 // stack slot's alignment.
13381 int FrameIdx = INT_MIN;
13382 int64_t FrameOffset = 0;
13384 FrameIdx = FI->getIndex();
13385 } else if (isBaseWithConstantOffset(Ptr) &&
13386 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
13387 // Handle FI+Cst
13388 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
13389 FrameOffset = Ptr.getConstantOperandVal(1);
13390 }
13391
13392 if (FrameIdx != INT_MIN) {
13394 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
13395 }
13396
13397 return std::nullopt;
13398}
13399
13400/// Split the scalar node with EXTRACT_ELEMENT using the provided
13401/// VTs and return the low/high part.
13402std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
13403 const SDLoc &DL,
13404 const EVT &LoVT,
13405 const EVT &HiVT) {
13406 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
13407 "Split node must be a scalar type");
13408 SDValue Lo =
13410 SDValue Hi =
13412 return std::make_pair(Lo, Hi);
13413}
13414
13415/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
13416/// which is split (or expanded) into two not necessarily identical pieces.
13417std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
13418 // Currently all types are split in half.
13419 EVT LoVT, HiVT;
13420 if (!VT.isVector())
13421 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
13422 else
13423 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
13424
13425 return std::make_pair(LoVT, HiVT);
13426}
13427
13428/// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
13429/// type, dependent on an enveloping VT that has been split into two identical
13430/// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
13431std::pair<EVT, EVT>
13433 bool *HiIsEmpty) const {
13434 EVT EltTp = VT.getVectorElementType();
13435 // Examples:
13436 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
13437 // custom VL=9 with enveloping VL=8/8 yields 8/1
13438 // custom VL=10 with enveloping VL=8/8 yields 8/2
13439 // etc.
13440 ElementCount VTNumElts = VT.getVectorElementCount();
13441 ElementCount EnvNumElts = EnvVT.getVectorElementCount();
13442 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
13443 "Mixing fixed width and scalable vectors when enveloping a type");
13444 EVT LoVT, HiVT;
13445 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
13446 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13447 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
13448 *HiIsEmpty = false;
13449 } else {
13450 // Flag that hi type has zero storage size, but return split envelop type
13451 // (this would be easier if vector types with zero elements were allowed).
13452 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
13453 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13454 *HiIsEmpty = true;
13455 }
13456 return std::make_pair(LoVT, HiVT);
13457}
13458
13459/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
13460/// low/high part.
13461std::pair<SDValue, SDValue>
13462SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
13463 const EVT &HiVT) {
13464 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
13465 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
13466 "Splitting vector with an invalid mixture of fixed and scalable "
13467 "vector types");
13469 N.getValueType().getVectorMinNumElements() &&
13470 "More vector elements requested than available!");
13471 SDValue Lo, Hi;
13472 Lo = getExtractSubvector(DL, LoVT, N, 0);
13473 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
13474 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
13475 // IDX with the runtime scaling factor of the result vector type. For
13476 // fixed-width result vectors, that runtime scaling factor is 1.
13479 return std::make_pair(Lo, Hi);
13480}
13481
13482std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
13483 const SDLoc &DL) {
13484 // Split the vector length parameter.
13485 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
13486 EVT VT = N.getValueType();
13488 "Expecting the mask to be an evenly-sized vector");
13489 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
13490 SDValue HalfNumElts =
13491 VecVT.isFixedLengthVector()
13492 ? getConstant(HalfMinNumElts, DL, VT)
13493 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
13494 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
13495 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
13496 return std::make_pair(Lo, Hi);
13497}
13498
13499/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
13501 EVT VT = N.getValueType();
13504 return getInsertSubvector(DL, getUNDEF(WideVT), N, 0);
13505}
13506
13509 unsigned Start, unsigned Count,
13510 EVT EltVT) {
13511 EVT VT = Op.getValueType();
13512 if (Count == 0)
13514 if (EltVT == EVT())
13515 EltVT = VT.getVectorElementType();
13516 SDLoc SL(Op);
13517 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
13518 Args.push_back(getExtractVectorElt(SL, EltVT, Op, i));
13519 }
13520}
13521
13522// getAddressSpace - Return the address space this GlobalAddress belongs to.
13524 return getGlobal()->getType()->getAddressSpace();
13525}
13526
13529 return Val.MachineCPVal->getType();
13530 return Val.ConstVal->getType();
13531}
13532
13533bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
13534 unsigned &SplatBitSize,
13535 bool &HasAnyUndefs,
13536 unsigned MinSplatBits,
13537 bool IsBigEndian) const {
13538 EVT VT = getValueType(0);
13539 assert(VT.isVector() && "Expected a vector type");
13540 unsigned VecWidth = VT.getSizeInBits();
13541 if (MinSplatBits > VecWidth)
13542 return false;
13543
13544 // FIXME: The widths are based on this node's type, but build vectors can
13545 // truncate their operands.
13546 SplatValue = APInt(VecWidth, 0);
13547 SplatUndef = APInt(VecWidth, 0);
13548
13549 // Get the bits. Bits with undefined values (when the corresponding element
13550 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
13551 // in SplatValue. If any of the values are not constant, give up and return
13552 // false.
13553 unsigned int NumOps = getNumOperands();
13554 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
13555 unsigned EltWidth = VT.getScalarSizeInBits();
13556
13557 for (unsigned j = 0; j < NumOps; ++j) {
13558 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
13559 SDValue OpVal = getOperand(i);
13560 unsigned BitPos = j * EltWidth;
13561
13562 if (OpVal.isUndef())
13563 SplatUndef.setBits(BitPos, BitPos + EltWidth);
13564 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
13565 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13566 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
13567 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13568 else
13569 return false;
13570 }
13571
13572 // The build_vector is all constants or undefs. Find the smallest element
13573 // size that splats the vector.
13574 HasAnyUndefs = (SplatUndef != 0);
13575
13576 // FIXME: This does not work for vectors with elements less than 8 bits.
13577 while (VecWidth > 8) {
13578 // If we can't split in half, stop here.
13579 if (VecWidth & 1)
13580 break;
13581
13582 unsigned HalfSize = VecWidth / 2;
13583 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
13584 APInt LowValue = SplatValue.extractBits(HalfSize, 0);
13585 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
13586 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
13587
13588 // If the two halves do not match (ignoring undef bits), stop here.
13589 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13590 MinSplatBits > HalfSize)
13591 break;
13592
13593 SplatValue = HighValue | LowValue;
13594 SplatUndef = HighUndef & LowUndef;
13595
13596 VecWidth = HalfSize;
13597 }
13598
13599 // FIXME: The loop above only tries to split in halves. But if the input
13600 // vector for example is <3 x i16> it wouldn't be able to detect a
13601 // SplatBitSize of 16. No idea if that is a design flaw currently limiting
13602 // optimizations. I guess that back in the days when this helper was created
13603 // vectors normally was power-of-2 sized.
13604
13605 SplatBitSize = VecWidth;
13606 return true;
13607}
13608
13610 BitVector *UndefElements) const {
13611 unsigned NumOps = getNumOperands();
13612 if (UndefElements) {
13613 UndefElements->clear();
13614 UndefElements->resize(NumOps);
13615 }
13616 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13617 if (!DemandedElts)
13618 return SDValue();
13619 SDValue Splatted;
13620 for (unsigned i = 0; i != NumOps; ++i) {
13621 if (!DemandedElts[i])
13622 continue;
13623 SDValue Op = getOperand(i);
13624 if (Op.isUndef()) {
13625 if (UndefElements)
13626 (*UndefElements)[i] = true;
13627 } else if (!Splatted) {
13628 Splatted = Op;
13629 } else if (Splatted != Op) {
13630 return SDValue();
13631 }
13632 }
13633
13634 if (!Splatted) {
13635 unsigned FirstDemandedIdx = DemandedElts.countr_zero();
13636 assert(getOperand(FirstDemandedIdx).isUndef() &&
13637 "Can only have a splat without a constant for all undefs.");
13638 return getOperand(FirstDemandedIdx);
13639 }
13640
13641 return Splatted;
13642}
13643
13645 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13646 return getSplatValue(DemandedElts, UndefElements);
13647}
13648
13650 SmallVectorImpl<SDValue> &Sequence,
13651 BitVector *UndefElements) const {
13652 unsigned NumOps = getNumOperands();
13653 Sequence.clear();
13654 if (UndefElements) {
13655 UndefElements->clear();
13656 UndefElements->resize(NumOps);
13657 }
13658 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13659 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
13660 return false;
13661
13662 // Set the undefs even if we don't find a sequence (like getSplatValue).
13663 if (UndefElements)
13664 for (unsigned I = 0; I != NumOps; ++I)
13665 if (DemandedElts[I] && getOperand(I).isUndef())
13666 (*UndefElements)[I] = true;
13667
13668 // Iteratively widen the sequence length looking for repetitions.
13669 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
13670 Sequence.append(SeqLen, SDValue());
13671 for (unsigned I = 0; I != NumOps; ++I) {
13672 if (!DemandedElts[I])
13673 continue;
13674 SDValue &SeqOp = Sequence[I % SeqLen];
13676 if (Op.isUndef()) {
13677 if (!SeqOp)
13678 SeqOp = Op;
13679 continue;
13680 }
13681 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
13682 Sequence.clear();
13683 break;
13684 }
13685 SeqOp = Op;
13686 }
13687 if (!Sequence.empty())
13688 return true;
13689 }
13690
13691 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
13692 return false;
13693}
13694
13696 BitVector *UndefElements) const {
13697 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13698 return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
13699}
13700
13703 BitVector *UndefElements) const {
13705 getSplatValue(DemandedElts, UndefElements));
13706}
13707
13710 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
13711}
13712
13715 BitVector *UndefElements) const {
13717 getSplatValue(DemandedElts, UndefElements));
13718}
13719
13724
13725int32_t
13727 uint32_t BitWidth) const {
13728 if (ConstantFPSDNode *CN =
13730 bool IsExact;
13731 APSInt IntVal(BitWidth);
13732 const APFloat &APF = CN->getValueAPF();
13733 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
13734 APFloat::opOK ||
13735 !IsExact)
13736 return -1;
13737
13738 return IntVal.exactLogBase2();
13739 }
13740 return -1;
13741}
13742
13744 bool IsLittleEndian, unsigned DstEltSizeInBits,
13745 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
13746 // Early-out if this contains anything but Undef/Constant/ConstantFP.
13747 if (!isConstant())
13748 return false;
13749
13750 unsigned NumSrcOps = getNumOperands();
13751 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
13752 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13753 "Invalid bitcast scale");
13754
13755 // Extract raw src bits.
13756 SmallVector<APInt> SrcBitElements(NumSrcOps,
13757 APInt::getZero(SrcEltSizeInBits));
13758 BitVector SrcUndeElements(NumSrcOps, false);
13759
13760 for (unsigned I = 0; I != NumSrcOps; ++I) {
13762 if (Op.isUndef()) {
13763 SrcUndeElements.set(I);
13764 continue;
13765 }
13766 auto *CInt = dyn_cast<ConstantSDNode>(Op);
13767 auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
13768 assert((CInt || CFP) && "Unknown constant");
13769 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13770 : CFP->getValueAPF().bitcastToAPInt();
13771 }
13772
13773 // Recast to dst width.
13774 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13775 SrcBitElements, UndefElements, SrcUndeElements);
13776 return true;
13777}
13778
13779void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
13780 unsigned DstEltSizeInBits,
13781 SmallVectorImpl<APInt> &DstBitElements,
13782 ArrayRef<APInt> SrcBitElements,
13783 BitVector &DstUndefElements,
13784 const BitVector &SrcUndefElements) {
13785 unsigned NumSrcOps = SrcBitElements.size();
13786 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13787 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13788 "Invalid bitcast scale");
13789 assert(NumSrcOps == SrcUndefElements.size() &&
13790 "Vector size mismatch");
13791
13792 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13793 DstUndefElements.clear();
13794 DstUndefElements.resize(NumDstOps, false);
13795 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
13796
13797 // Concatenate src elements constant bits together into dst element.
13798 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13799 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13800 for (unsigned I = 0; I != NumDstOps; ++I) {
13801 DstUndefElements.set(I);
13802 APInt &DstBits = DstBitElements[I];
13803 for (unsigned J = 0; J != Scale; ++J) {
13804 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13805 if (SrcUndefElements[Idx])
13806 continue;
13807 DstUndefElements.reset(I);
13808 const APInt &SrcBits = SrcBitElements[Idx];
13809 assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
13810 "Illegal constant bitwidths");
13811 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
13812 }
13813 }
13814 return;
13815 }
13816
13817 // Split src element constant bits into dst elements.
13818 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13819 for (unsigned I = 0; I != NumSrcOps; ++I) {
13820 if (SrcUndefElements[I]) {
13821 DstUndefElements.set(I * Scale, (I + 1) * Scale);
13822 continue;
13823 }
13824 const APInt &SrcBits = SrcBitElements[I];
13825 for (unsigned J = 0; J != Scale; ++J) {
13826 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13827 APInt &DstBits = DstBitElements[Idx];
13828 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13829 }
13830 }
13831}
13832
13834 for (const SDValue &Op : op_values()) {
13835 unsigned Opc = Op.getOpcode();
13836 if (!Op.isUndef() && Opc != ISD::Constant && Opc != ISD::ConstantFP)
13837 return false;
13838 }
13839 return true;
13840}
13841
13842std::optional<std::pair<APInt, APInt>>
13844 unsigned NumOps = getNumOperands();
13845 if (NumOps < 2)
13846 return std::nullopt;
13847
13850 return std::nullopt;
13851
13852 unsigned EltSize = getValueType(0).getScalarSizeInBits();
13853 APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
13854 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
13855
13856 if (Stride.isZero())
13857 return std::nullopt;
13858
13859 for (unsigned i = 2; i < NumOps; ++i) {
13861 return std::nullopt;
13862
13863 APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
13864 if (Val != (Start + (Stride * i)))
13865 return std::nullopt;
13866 }
13867
13868 return std::make_pair(Start, Stride);
13869}
13870
13872 // Find the first non-undef value in the shuffle mask.
13873 unsigned i, e;
13874 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
13875 /* search */;
13876
13877 // If all elements are undefined, this shuffle can be considered a splat
13878 // (although it should eventually get simplified away completely).
13879 if (i == e)
13880 return true;
13881
13882 // Make sure all remaining elements are either undef or the same as the first
13883 // non-undef value.
13884 for (int Idx = Mask[i]; i != e; ++i)
13885 if (Mask[i] >= 0 && Mask[i] != Idx)
13886 return false;
13887 return true;
13888}
13889
13890// Returns true if it is a constant integer BuildVector or constant integer,
13891// possibly hidden by a bitcast.
13893 SDValue N, bool AllowOpaques) const {
13895
13896 if (auto *C = dyn_cast<ConstantSDNode>(N))
13897 return AllowOpaques || !C->isOpaque();
13898
13900 return true;
13901
13902 // Treat a GlobalAddress supporting constant offset folding as a
13903 // constant integer.
13904 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N))
13905 if (GA->getOpcode() == ISD::GlobalAddress &&
13906 TLI->isOffsetFoldingLegal(GA))
13907 return true;
13908
13909 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
13910 isa<ConstantSDNode>(N.getOperand(0)))
13911 return true;
13912 return false;
13913}
13914
13915// Returns true if it is a constant float BuildVector or constant float.
13918 return true;
13919
13921 return true;
13922
13923 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
13924 isa<ConstantFPSDNode>(N.getOperand(0)))
13925 return true;
13926
13927 return false;
13928}
13929
13930std::optional<bool> SelectionDAG::isBoolConstant(SDValue N) const {
13931 ConstantSDNode *Const =
13932 isConstOrConstSplat(N, false, /*AllowTruncation=*/true);
13933 if (!Const)
13934 return std::nullopt;
13935
13936 EVT VT = N->getValueType(0);
13937 const APInt CVal = Const->getAPIntValue().trunc(VT.getScalarSizeInBits());
13938 switch (TLI->getBooleanContents(N.getValueType())) {
13940 if (CVal.isOne())
13941 return true;
13942 if (CVal.isZero())
13943 return false;
13944 return std::nullopt;
13946 if (CVal.isAllOnes())
13947 return true;
13948 if (CVal.isZero())
13949 return false;
13950 return std::nullopt;
13952 return CVal[0];
13953 }
13954 llvm_unreachable("Unknown BooleanContent enum");
13955}
13956
13957void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
13958 assert(!Node->OperandList && "Node already has operands");
13960 "too many operands to fit into SDNode");
13961 SDUse *Ops = OperandRecycler.allocate(
13962 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
13963
13964 bool IsDivergent = false;
13965 for (unsigned I = 0; I != Vals.size(); ++I) {
13966 Ops[I].setUser(Node);
13967 Ops[I].setInitial(Vals[I]);
13968 EVT VT = Ops[I].getValueType();
13969
13970 // Skip Chain. It does not carry divergence.
13971 if (VT != MVT::Other &&
13972 (VT != MVT::Glue || gluePropagatesDivergence(Ops[I].getNode())) &&
13973 Ops[I].getNode()->isDivergent()) {
13974 IsDivergent = true;
13975 }
13976 }
13977 Node->NumOperands = Vals.size();
13978 Node->OperandList = Ops;
13979 if (!TLI->isSDNodeAlwaysUniform(Node)) {
13980 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
13981 Node->SDNodeBits.IsDivergent = IsDivergent;
13982 }
13983 checkForCycles(Node);
13984}
13985
13988 size_t Limit = SDNode::getMaxNumOperands();
13989 while (Vals.size() > Limit) {
13990 unsigned SliceIdx = Vals.size() - Limit;
13991 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
13992 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
13993 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
13994 Vals.emplace_back(NewTF);
13995 }
13996 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
13997}
13998
14000 EVT VT, SDNodeFlags Flags) {
14001 switch (Opcode) {
14002 default:
14003 return SDValue();
14004 case ISD::ADD:
14005 case ISD::OR:
14006 case ISD::XOR:
14007 case ISD::UMAX:
14008 return getConstant(0, DL, VT);
14009 case ISD::MUL:
14010 return getConstant(1, DL, VT);
14011 case ISD::AND:
14012 case ISD::UMIN:
14013 return getAllOnesConstant(DL, VT);
14014 case ISD::SMAX:
14016 case ISD::SMIN:
14018 case ISD::FADD:
14019 // If flags allow, prefer positive zero since it's generally cheaper
14020 // to materialize on most targets.
14021 return getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, VT);
14022 case ISD::FMUL:
14023 return getConstantFP(1.0, DL, VT);
14024 case ISD::FMINNUM:
14025 case ISD::FMAXNUM: {
14026 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
14027 const fltSemantics &Semantics = VT.getFltSemantics();
14028 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
14029 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
14030 APFloat::getLargest(Semantics);
14031 if (Opcode == ISD::FMAXNUM)
14032 NeutralAF.changeSign();
14033
14034 return getConstantFP(NeutralAF, DL, VT);
14035 }
14036 case ISD::FMINIMUM:
14037 case ISD::FMAXIMUM: {
14038 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
14039 const fltSemantics &Semantics = VT.getFltSemantics();
14040 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
14041 : APFloat::getLargest(Semantics);
14042 if (Opcode == ISD::FMAXIMUM)
14043 NeutralAF.changeSign();
14044
14045 return getConstantFP(NeutralAF, DL, VT);
14046 }
14047
14048 }
14049}
14050
14051/// Helper used to make a call to a library function that has one argument of
14052/// pointer type.
14053///
14054/// Such functions include 'fegetmode', 'fesetenv' and some others, which are
14055/// used to get or set floating-point state. They have one argument of pointer
14056/// type, which points to the memory region containing bits of the
14057/// floating-point state. The value returned by such function is ignored in the
14058/// created call.
14059///
14060/// \param LibFunc Reference to library function (value of RTLIB::Libcall).
14061/// \param Ptr Pointer used to save/load state.
14062/// \param InChain Ingoing token chain.
14063/// \returns Outgoing chain token.
14065 SDValue InChain,
14066 const SDLoc &DLoc) {
14067 assert(InChain.getValueType() == MVT::Other && "Expected token chain");
14069 Args.emplace_back(Ptr, Ptr.getValueType().getTypeForEVT(*getContext()));
14070 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
14071 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
14072 TLI->getPointerTy(getDataLayout()));
14074 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
14075 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
14076 std::move(Args));
14077 return TLI->LowerCallTo(CLI).second;
14078}
14079
14081 assert(From && To && "Invalid SDNode; empty source SDValue?");
14082 auto I = SDEI.find(From);
14083 if (I == SDEI.end())
14084 return;
14085
14086 // Use of operator[] on the DenseMap may cause an insertion, which invalidates
14087 // the iterator, hence the need to make a copy to prevent a use-after-free.
14088 NodeExtraInfo NEI = I->second;
14089 if (LLVM_LIKELY(!NEI.PCSections)) {
14090 // No deep copy required for the types of extra info set.
14091 //
14092 // FIXME: Investigate if other types of extra info also need deep copy. This
14093 // depends on the types of nodes they can be attached to: if some extra info
14094 // is only ever attached to nodes where a replacement To node is always the
14095 // node where later use and propagation of the extra info has the intended
14096 // semantics, no deep copy is required.
14097 SDEI[To] = std::move(NEI);
14098 return;
14099 }
14100
14101 const SDNode *EntrySDN = getEntryNode().getNode();
14102
14103 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
14104 // through the replacement of From with To. Otherwise, replacements of a node
14105 // (From) with more complex nodes (To and its operands) may result in lost
14106 // extra info where the root node (To) is insignificant in further propagating
14107 // and using extra info when further lowering to MIR.
14108 //
14109 // In the first step pre-populate the visited set with the nodes reachable
14110 // from the old From node. This avoids copying NodeExtraInfo to parts of the
14111 // DAG that is not new and should be left untouched.
14112 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
14113 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
14114 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
14115 if (MaxDepth == 0) {
14116 // Remember this node in case we need to increase MaxDepth and continue
14117 // populating FromReach from this node.
14118 Leafs.emplace_back(N);
14119 return;
14120 }
14121 if (!FromReach.insert(N).second)
14122 return;
14123 for (const SDValue &Op : N->op_values())
14124 Self(Self, Op.getNode(), MaxDepth - 1);
14125 };
14126
14127 // Copy extra info to To and all its transitive operands (that are new).
14129 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
14130 if (FromReach.contains(N))
14131 return true;
14132 if (!Visited.insert(N).second)
14133 return true;
14134 if (EntrySDN == N)
14135 return false;
14136 for (const SDValue &Op : N->op_values()) {
14137 if (N == To && Op.getNode() == EntrySDN) {
14138 // Special case: New node's operand is the entry node; just need to
14139 // copy extra info to new node.
14140 break;
14141 }
14142 if (!Self(Self, Op.getNode()))
14143 return false;
14144 }
14145 // Copy only if entry node was not reached.
14146 SDEI[N] = NEI;
14147 return true;
14148 };
14149
14150 // We first try with a lower MaxDepth, assuming that the path to common
14151 // operands between From and To is relatively short. This significantly
14152 // improves performance in the common case. The initial MaxDepth is big
14153 // enough to avoid retry in the common case; the last MaxDepth is large
14154 // enough to avoid having to use the fallback below (and protects from
14155 // potential stack exhaustion from recursion).
14156 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14157 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
14158 // StartFrom is the previous (or initial) set of leafs reachable at the
14159 // previous maximum depth.
14161 std::swap(StartFrom, Leafs);
14162 for (const SDNode *N : StartFrom)
14163 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
14164 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
14165 return;
14166 // This should happen very rarely (reached the entry node).
14167 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
14168 assert(!Leafs.empty());
14169 }
14170
14171 // This should not happen - but if it did, that means the subgraph reachable
14172 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
14173 // could not visit all reachable common operands. Consequently, we were able
14174 // to reach the entry node.
14175 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14176 assert(false && "From subgraph too complex - increase max. MaxDepth?");
14177 // Best-effort fallback if assertions disabled.
14178 SDEI[To] = std::move(NEI);
14179}
14180
14181#ifndef NDEBUG
14182static void checkForCyclesHelper(const SDNode *N,
14185 const llvm::SelectionDAG *DAG) {
14186 // If this node has already been checked, don't check it again.
14187 if (Checked.count(N))
14188 return;
14189
14190 // If a node has already been visited on this depth-first walk, reject it as
14191 // a cycle.
14192 if (!Visited.insert(N).second) {
14193 errs() << "Detected cycle in SelectionDAG\n";
14194 dbgs() << "Offending node:\n";
14195 N->dumprFull(DAG); dbgs() << "\n";
14196 abort();
14197 }
14198
14199 for (const SDValue &Op : N->op_values())
14200 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
14201
14202 Checked.insert(N);
14203 Visited.erase(N);
14204}
14205#endif
14206
14208 const llvm::SelectionDAG *DAG,
14209 bool force) {
14210#ifndef NDEBUG
14211 bool check = force;
14212#ifdef EXPENSIVE_CHECKS
14213 check = true;
14214#endif // EXPENSIVE_CHECKS
14215 if (check) {
14216 assert(N && "Checking nonexistent SDNode");
14219 checkForCyclesHelper(N, visited, checked, DAG);
14220 }
14221#endif // !NDEBUG
14222}
14223
14224void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
14225 checkForCycles(DAG->getRoot().getNode(), DAG, force);
14226}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
Definition Compiler.h:569
#define LLVM_LIKELY(EXPR)
Definition Compiler.h:335
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
#define _
iv users
Definition IVUsers.cpp:48
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
mir Rename Register Operands
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define P(N)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1208
void copySign(const APFloat &RHS)
Definition APFloat.h:1302
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6057
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
bool isFinite() const
Definition APFloat.h:1454
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1347
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1199
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1235
bool isZero() const
Definition APFloat.h:1445
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1138
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1332
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1098
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1226
bool isPosZero() const
Definition APFloat.h:1460
bool isNegZero() const
Definition APFloat.h:1461
void changeSign()
Definition APFloat.h:1297
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1109
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1406
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:229
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1391
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1670
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition APInt.cpp:1644
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1396
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
Definition APInt.cpp:1154
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:834
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition APInt.h:1166
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition APInt.h:1628
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
Definition APInt.cpp:2086
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
Definition APInt.cpp:2100
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
Definition APInt.cpp:1141
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1435
unsigned logBase2() const
Definition APInt.h:1761
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
void setAllBits()
Set every bit to 1.
Definition APInt.h:1319
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:334
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1367
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
LLVM_ABI APInt byteSwap() const
Definition APInt.cpp:746
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition APInt.h:553
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1417
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1388
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1237
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
BitVector & reset()
Definition BitVector.h:392
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition BitVector.h:341
void clear()
clear - Removes all bits from the bitvector.
Definition BitVector.h:335
BitVector & set()
Definition BitVector.h:351
bool none() const
none - Returns true if none of the bits are set.
Definition BitVector.h:188
size_type size() const
size - Returns the number of bits in this bitvector.
Definition BitVector.h:159
const BlockAddress * getBlockAddress() const
The address of a basic block.
Definition Constants.h:899
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValue() const
Definition Constants.h:321
This is the shared class of boolean and integer constants.
Definition Constants.h:87
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition Constants.h:157
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
DWARF expression.
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:198
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
A debug info location.
Definition DebugLoc.h:124
Implements a dense probed hash-table based set.
Definition DenseSet.h:269
const char * getSymbol() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1077
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1445
Machine Value Type.
SimpleValueType SimpleTy
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
The optimization diagnostic interface.
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool isDivergent() const
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
SDValue()=default
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI void dump() const
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:148
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetOptions Options
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Definition Triple.h:611
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:343
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Provides info so a possible vectorization of a function can be computed.
bool isMasked() const
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:169
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:269
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:230
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
Definition TypeSize.h:177
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:237
A raw_ostream that writes to an std::string.
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
Definition APInt.cpp:3131
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
Definition APInt.cpp:3118
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
Definition APInt.cpp:3108
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
Definition APInt.cpp:3182
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
Definition APInt.cpp:3123
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
Definition APInt.h:2268
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
Definition APInt.cpp:3173
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
Definition APInt.h:2273
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
Definition APInt.cpp:3103
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
Definition APInt.cpp:3113
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
Definition ISDOpcodes.h:24
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:801
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:774
@ TargetConstantPool
Definition ISDOpcodes.h:184
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:525
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:587
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:765
@ TargetBlockAddress
Definition ISDOpcodes.h:186
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:835
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:862
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:571
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:738
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:892
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ GlobalTLSAddress
Definition ISDOpcodes.h:89
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:826
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:706
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:656
@ TargetExternalSymbol
Definition ISDOpcodes.h:185
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:773
@ TargetJumpTable
Definition ISDOpcodes.h:183
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
Definition ISDOpcodes.h:193
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:809
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:682
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:528
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:778
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:663
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition ISDOpcodes.h:180
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:695
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:756
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:636
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:601
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:563
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:832
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:793
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:881
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:870
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:718
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:787
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:908
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:498
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:730
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:701
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition ISDOpcodes.h:672
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:552
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:648
@ ExternalSymbol
Definition ISDOpcodes.h:93
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:941
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:690
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:903
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:927
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:838
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:815
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:521
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:713
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ TargetGlobalTLSAddress
Definition ISDOpcodes.h:181
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:543
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:666
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:355
@ Offset
Definition DWP.cpp:477
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1734
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1714
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1607
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2461
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:279
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:738
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition bit.h:289
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1643
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2125
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:252
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:627
auto cast_or_null(const Y &Val)
Definition Casting.h:720
void * PointerTy
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1589
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1555
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:759
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1721
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1598
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:342
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1633
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1629
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1728
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1579
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1824
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
Definition Analysis.cpp:723
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1886
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:212
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition MathExtras.h:583
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:208
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1616
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1656
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:384
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:853
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:760
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
Definition Metadata.h:780
MDNode * TBAA
The tag for type-based alias analysis.
Definition Metadata.h:777
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition APFloat.h:294
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:307
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static constexpr roundingMode rmTowardZero
Definition APFloat.h:308
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
Definition APFloat.cpp:268
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:306
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
Definition APFloat.cpp:265
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:320
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
intptr_t getRawBits() const
Definition ValueTypes.h:512
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:294
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:248
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:101
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
void makeNonNegative()
Make this value non-negative.
Definition KnownBits.h:117
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:235
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:267
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
Definition KnownBits.h:112
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:154
KnownBits byteSwap() const
Definition KnownBits.h:507
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:282
void setAllZero()
Make all bits known to be zero and discard any previous information.
Definition KnownBits.h:86
KnownBits reverseBits() const
Definition KnownBits.h:511
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:226
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:165
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:314
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:104
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
Definition KnownBits.h:218
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:304
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:173
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
Definition KnownBits.h:189
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:138
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
Definition KnownBits.h:107
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
Definition KnownBits.h:319
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:98
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
Definition KnownBits.cpp:53
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:273
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:212
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:160
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:117
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)