LLVM 22.0.0git
SelectionDAG.cpp
Go to the documentation of this file.
1//===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the SelectionDAG class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "SDNodeDbgValue.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseSet.h"
21#include "llvm/ADT/FoldingSet.h"
22#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/Twine.h"
51#include "llvm/IR/Constant.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/DataLayout.h"
55#include "llvm/IR/DebugLoc.h"
57#include "llvm/IR/Function.h"
58#include "llvm/IR/GlobalValue.h"
59#include "llvm/IR/Metadata.h"
60#include "llvm/IR/Type.h"
64#include "llvm/Support/Debug.h"
73#include <algorithm>
74#include <cassert>
75#include <cstdint>
76#include <cstdlib>
77#include <limits>
78#include <optional>
79#include <set>
80#include <string>
81#include <utility>
82#include <vector>
83
84using namespace llvm;
85using namespace llvm::SDPatternMatch;
86
87/// makeVTList - Return an instance of the SDVTList struct initialized with the
88/// specified members.
89static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
90 SDVTList Res = {VTs, NumVTs};
91 return Res;
92}
93
94// Default null implementations of the callbacks.
98
99void SelectionDAG::DAGNodeDeletedListener::anchor() {}
100void SelectionDAG::DAGNodeInsertedListener::anchor() {}
101
102#define DEBUG_TYPE "selectiondag"
103
104static cl::opt<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
105 cl::Hidden, cl::init(true),
106 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
107
108static cl::opt<int> MaxLdStGlue("ldstmemcpy-glue-max",
109 cl::desc("Number limit for gluing ld/st of memcpy."),
110 cl::Hidden, cl::init(0));
111
113 MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192),
114 cl::desc("DAG combiner limit number of steps when searching DAG "
115 "for predecessor nodes"));
116
118 LLVM_DEBUG(dbgs() << Msg; V.getNode()->dump(G););
119}
120
122
123//===----------------------------------------------------------------------===//
124// ConstantFPSDNode Class
125//===----------------------------------------------------------------------===//
126
127/// isExactlyValue - We don't rely on operator== working on double values, as
128/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
129/// As such, this method can be used to do an exact bit-for-bit comparison of
130/// two floating point values.
132 return getValueAPF().bitwiseIsEqual(V);
133}
134
136 const APFloat& Val) {
137 assert(VT.isFloatingPoint() && "Can only convert between FP types");
138
139 // convert modifies in place, so make a copy.
140 APFloat Val2 = APFloat(Val);
141 bool losesInfo;
143 &losesInfo);
144 return !losesInfo;
145}
146
147//===----------------------------------------------------------------------===//
148// ISD Namespace
149//===----------------------------------------------------------------------===//
150
151bool ISD::isConstantSplatVector(const SDNode *N, APInt &SplatVal) {
152 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
153 if (auto OptAPInt = N->getOperand(0)->bitcastToAPInt()) {
154 unsigned EltSize =
155 N->getValueType(0).getVectorElementType().getSizeInBits();
156 SplatVal = OptAPInt->trunc(EltSize);
157 return true;
158 }
159 }
160
161 auto *BV = dyn_cast<BuildVectorSDNode>(N);
162 if (!BV)
163 return false;
164
165 APInt SplatUndef;
166 unsigned SplatBitSize;
167 bool HasUndefs;
168 unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
169 // Endianness does not matter here. We are checking for a splat given the
170 // element size of the vector, and if we find such a splat for little endian
171 // layout, then that should be valid also for big endian (as the full vector
172 // size is known to be a multiple of the element size).
173 const bool IsBigEndian = false;
174 return BV->isConstantSplat(SplatVal, SplatUndef, SplatBitSize, HasUndefs,
175 EltSize, IsBigEndian) &&
176 EltSize == SplatBitSize;
177}
178
179// FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
180// specializations of the more general isConstantSplatVector()?
181
182bool ISD::isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly) {
183 // Look through a bit convert.
184 while (N->getOpcode() == ISD::BITCAST)
185 N = N->getOperand(0).getNode();
186
187 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
188 APInt SplatVal;
189 return isConstantSplatVector(N, SplatVal) && SplatVal.isAllOnes();
190 }
191
192 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
193
194 unsigned i = 0, e = N->getNumOperands();
195
196 // Skip over all of the undef values.
197 while (i != e && N->getOperand(i).isUndef())
198 ++i;
199
200 // Do not accept an all-undef vector.
201 if (i == e) return false;
202
203 // Do not accept build_vectors that aren't all constants or which have non-~0
204 // elements. We have to be a bit careful here, as the type of the constant
205 // may not be the same as the type of the vector elements due to type
206 // legalization (the elements are promoted to a legal type for the target and
207 // a vector of a type may be legal when the base element type is not).
208 // We only want to check enough bits to cover the vector elements, because
209 // we care if the resultant vector is all ones, not whether the individual
210 // constants are.
211 SDValue NotZero = N->getOperand(i);
212 if (auto OptAPInt = NotZero->bitcastToAPInt()) {
213 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
214 if (OptAPInt->countr_one() < EltSize)
215 return false;
216 } else
217 return false;
218
219 // Okay, we have at least one ~0 value, check to see if the rest match or are
220 // undefs. Even with the above element type twiddling, this should be OK, as
221 // the same type legalization should have applied to all the elements.
222 for (++i; i != e; ++i)
223 if (N->getOperand(i) != NotZero && !N->getOperand(i).isUndef())
224 return false;
225 return true;
226}
227
228bool ISD::isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly) {
229 // Look through a bit convert.
230 while (N->getOpcode() == ISD::BITCAST)
231 N = N->getOperand(0).getNode();
232
233 if (!BuildVectorOnly && N->getOpcode() == ISD::SPLAT_VECTOR) {
234 APInt SplatVal;
235 return isConstantSplatVector(N, SplatVal) && SplatVal.isZero();
236 }
237
238 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
239
240 bool IsAllUndef = true;
241 for (const SDValue &Op : N->op_values()) {
242 if (Op.isUndef())
243 continue;
244 IsAllUndef = false;
245 // Do not accept build_vectors that aren't all constants or which have non-0
246 // elements. We have to be a bit careful here, as the type of the constant
247 // may not be the same as the type of the vector elements due to type
248 // legalization (the elements are promoted to a legal type for the target
249 // and a vector of a type may be legal when the base element type is not).
250 // We only want to check enough bits to cover the vector elements, because
251 // we care if the resultant vector is all zeros, not whether the individual
252 // constants are.
253 if (auto OptAPInt = Op->bitcastToAPInt()) {
254 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
255 if (OptAPInt->countr_zero() < EltSize)
256 return false;
257 } else
258 return false;
259 }
260
261 // Do not accept an all-undef vector.
262 if (IsAllUndef)
263 return false;
264 return true;
265}
266
268 return isConstantSplatVectorAllOnes(N, /*BuildVectorOnly*/ true);
269}
270
272 return isConstantSplatVectorAllZeros(N, /*BuildVectorOnly*/ true);
273}
274
276 if (N->getOpcode() != ISD::BUILD_VECTOR)
277 return false;
278
279 for (const SDValue &Op : N->op_values()) {
280 if (Op.isUndef())
281 continue;
283 return false;
284 }
285 return true;
286}
287
289 if (N->getOpcode() != ISD::BUILD_VECTOR)
290 return false;
291
292 for (const SDValue &Op : N->op_values()) {
293 if (Op.isUndef())
294 continue;
296 return false;
297 }
298 return true;
299}
300
301bool ISD::isVectorShrinkable(const SDNode *N, unsigned NewEltSize,
302 bool Signed) {
303 assert(N->getValueType(0).isVector() && "Expected a vector!");
304
305 unsigned EltSize = N->getValueType(0).getScalarSizeInBits();
306 if (EltSize <= NewEltSize)
307 return false;
308
309 if (N->getOpcode() == ISD::ZERO_EXTEND) {
310 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
311 NewEltSize) &&
312 !Signed;
313 }
314 if (N->getOpcode() == ISD::SIGN_EXTEND) {
315 return (N->getOperand(0).getValueType().getScalarSizeInBits() <=
316 NewEltSize) &&
317 Signed;
318 }
319 if (N->getOpcode() != ISD::BUILD_VECTOR)
320 return false;
321
322 for (const SDValue &Op : N->op_values()) {
323 if (Op.isUndef())
324 continue;
326 return false;
327
328 APInt C = Op->getAsAPIntVal().trunc(EltSize);
329 if (Signed && C.trunc(NewEltSize).sext(EltSize) != C)
330 return false;
331 if (!Signed && C.trunc(NewEltSize).zext(EltSize) != C)
332 return false;
333 }
334
335 return true;
336}
337
339 // Return false if the node has no operands.
340 // This is "logically inconsistent" with the definition of "all" but
341 // is probably the desired behavior.
342 if (N->getNumOperands() == 0)
343 return false;
344 return all_of(N->op_values(), [](SDValue Op) { return Op.isUndef(); });
345}
346
348 return N->getOpcode() == ISD::FREEZE && N->getOperand(0).isUndef();
349}
350
351template <typename ConstNodeType>
353 std::function<bool(ConstNodeType *)> Match,
354 bool AllowUndefs, bool AllowTruncation) {
355 // FIXME: Add support for scalar UNDEF cases?
356 if (auto *C = dyn_cast<ConstNodeType>(Op))
357 return Match(C);
358
359 // FIXME: Add support for vector UNDEF cases?
360 if (ISD::BUILD_VECTOR != Op.getOpcode() &&
361 ISD::SPLAT_VECTOR != Op.getOpcode())
362 return false;
363
364 EVT SVT = Op.getValueType().getScalarType();
365 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
366 if (AllowUndefs && Op.getOperand(i).isUndef()) {
367 if (!Match(nullptr))
368 return false;
369 continue;
370 }
371
372 auto *Cst = dyn_cast<ConstNodeType>(Op.getOperand(i));
373 if (!Cst || (!AllowTruncation && Cst->getValueType(0) != SVT) ||
374 !Match(Cst))
375 return false;
376 }
377 return true;
378}
379// Build used template types.
381 SDValue, std::function<bool(ConstantSDNode *)>, bool, bool);
383 SDValue, std::function<bool(ConstantFPSDNode *)>, bool, bool);
384
386 SDValue LHS, SDValue RHS,
387 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
388 bool AllowUndefs, bool AllowTypeMismatch) {
389 if (!AllowTypeMismatch && LHS.getValueType() != RHS.getValueType())
390 return false;
391
392 // TODO: Add support for scalar UNDEF cases?
393 if (auto *LHSCst = dyn_cast<ConstantSDNode>(LHS))
394 if (auto *RHSCst = dyn_cast<ConstantSDNode>(RHS))
395 return Match(LHSCst, RHSCst);
396
397 // TODO: Add support for vector UNDEF cases?
398 if (LHS.getOpcode() != RHS.getOpcode() ||
399 (LHS.getOpcode() != ISD::BUILD_VECTOR &&
400 LHS.getOpcode() != ISD::SPLAT_VECTOR))
401 return false;
402
403 EVT SVT = LHS.getValueType().getScalarType();
404 for (unsigned i = 0, e = LHS.getNumOperands(); i != e; ++i) {
405 SDValue LHSOp = LHS.getOperand(i);
406 SDValue RHSOp = RHS.getOperand(i);
407 bool LHSUndef = AllowUndefs && LHSOp.isUndef();
408 bool RHSUndef = AllowUndefs && RHSOp.isUndef();
409 auto *LHSCst = dyn_cast<ConstantSDNode>(LHSOp);
410 auto *RHSCst = dyn_cast<ConstantSDNode>(RHSOp);
411 if ((!LHSCst && !LHSUndef) || (!RHSCst && !RHSUndef))
412 return false;
413 if (!AllowTypeMismatch && (LHSOp.getValueType() != SVT ||
414 LHSOp.getValueType() != RHSOp.getValueType()))
415 return false;
416 if (!Match(LHSCst, RHSCst))
417 return false;
418 }
419 return true;
420}
421
423 switch (MinMaxOpc) {
424 default:
425 llvm_unreachable("unrecognized opcode");
426 case ISD::UMIN:
427 return ISD::UMAX;
428 case ISD::UMAX:
429 return ISD::UMIN;
430 case ISD::SMIN:
431 return ISD::SMAX;
432 case ISD::SMAX:
433 return ISD::SMIN;
434 }
435}
436
438 switch (VecReduceOpcode) {
439 default:
440 llvm_unreachable("Expected VECREDUCE opcode");
441 case ISD::VECREDUCE_FADD:
442 case ISD::VECREDUCE_SEQ_FADD:
443 case ISD::VP_REDUCE_FADD:
444 case ISD::VP_REDUCE_SEQ_FADD:
445 return ISD::FADD;
446 case ISD::VECREDUCE_FMUL:
447 case ISD::VECREDUCE_SEQ_FMUL:
448 case ISD::VP_REDUCE_FMUL:
449 case ISD::VP_REDUCE_SEQ_FMUL:
450 return ISD::FMUL;
451 case ISD::VECREDUCE_ADD:
452 case ISD::VP_REDUCE_ADD:
453 return ISD::ADD;
454 case ISD::VECREDUCE_MUL:
455 case ISD::VP_REDUCE_MUL:
456 return ISD::MUL;
457 case ISD::VECREDUCE_AND:
458 case ISD::VP_REDUCE_AND:
459 return ISD::AND;
460 case ISD::VECREDUCE_OR:
461 case ISD::VP_REDUCE_OR:
462 return ISD::OR;
463 case ISD::VECREDUCE_XOR:
464 case ISD::VP_REDUCE_XOR:
465 return ISD::XOR;
466 case ISD::VECREDUCE_SMAX:
467 case ISD::VP_REDUCE_SMAX:
468 return ISD::SMAX;
469 case ISD::VECREDUCE_SMIN:
470 case ISD::VP_REDUCE_SMIN:
471 return ISD::SMIN;
472 case ISD::VECREDUCE_UMAX:
473 case ISD::VP_REDUCE_UMAX:
474 return ISD::UMAX;
475 case ISD::VECREDUCE_UMIN:
476 case ISD::VP_REDUCE_UMIN:
477 return ISD::UMIN;
478 case ISD::VECREDUCE_FMAX:
479 case ISD::VP_REDUCE_FMAX:
480 return ISD::FMAXNUM;
481 case ISD::VECREDUCE_FMIN:
482 case ISD::VP_REDUCE_FMIN:
483 return ISD::FMINNUM;
484 case ISD::VECREDUCE_FMAXIMUM:
485 case ISD::VP_REDUCE_FMAXIMUM:
486 return ISD::FMAXIMUM;
487 case ISD::VECREDUCE_FMINIMUM:
488 case ISD::VP_REDUCE_FMINIMUM:
489 return ISD::FMINIMUM;
490 }
491}
492
493bool ISD::isVPOpcode(unsigned Opcode) {
494 switch (Opcode) {
495 default:
496 return false;
497#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) \
498 case ISD::VPSD: \
499 return true;
500#include "llvm/IR/VPIntrinsics.def"
501 }
502}
503
504bool ISD::isVPBinaryOp(unsigned Opcode) {
505 switch (Opcode) {
506 default:
507 break;
508#define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) case ISD::VPSD:
509#define VP_PROPERTY_BINARYOP return true;
510#define END_REGISTER_VP_SDNODE(VPSD) break;
511#include "llvm/IR/VPIntrinsics.def"
512 }
513 return false;
514}
515
516bool ISD::isVPReduction(unsigned Opcode) {
517 switch (Opcode) {
518 default:
519 return false;
520 case ISD::VP_REDUCE_ADD:
521 case ISD::VP_REDUCE_MUL:
522 case ISD::VP_REDUCE_AND:
523 case ISD::VP_REDUCE_OR:
524 case ISD::VP_REDUCE_XOR:
525 case ISD::VP_REDUCE_SMAX:
526 case ISD::VP_REDUCE_SMIN:
527 case ISD::VP_REDUCE_UMAX:
528 case ISD::VP_REDUCE_UMIN:
529 case ISD::VP_REDUCE_FMAX:
530 case ISD::VP_REDUCE_FMIN:
531 case ISD::VP_REDUCE_FMAXIMUM:
532 case ISD::VP_REDUCE_FMINIMUM:
533 case ISD::VP_REDUCE_FADD:
534 case ISD::VP_REDUCE_FMUL:
535 case ISD::VP_REDUCE_SEQ_FADD:
536 case ISD::VP_REDUCE_SEQ_FMUL:
537 return true;
538 }
539}
540
541/// The operand position of the vector mask.
542std::optional<unsigned> ISD::getVPMaskIdx(unsigned Opcode) {
543 switch (Opcode) {
544 default:
545 return std::nullopt;
546#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, ...) \
547 case ISD::VPSD: \
548 return MASKPOS;
549#include "llvm/IR/VPIntrinsics.def"
550 }
551}
552
553/// The operand position of the explicit vector length parameter.
554std::optional<unsigned> ISD::getVPExplicitVectorLengthIdx(unsigned Opcode) {
555 switch (Opcode) {
556 default:
557 return std::nullopt;
558#define BEGIN_REGISTER_VP_SDNODE(VPSD, LEGALPOS, TDNAME, MASKPOS, EVLPOS) \
559 case ISD::VPSD: \
560 return EVLPOS;
561#include "llvm/IR/VPIntrinsics.def"
562 }
563}
564
565std::optional<unsigned> ISD::getBaseOpcodeForVP(unsigned VPOpcode,
566 bool hasFPExcept) {
567 // FIXME: Return strict opcodes in case of fp exceptions.
568 switch (VPOpcode) {
569 default:
570 return std::nullopt;
571#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) case ISD::VPOPC:
572#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) return ISD::SDOPC;
573#define END_REGISTER_VP_SDNODE(VPOPC) break;
574#include "llvm/IR/VPIntrinsics.def"
575 }
576 return std::nullopt;
577}
578
579std::optional<unsigned> ISD::getVPForBaseOpcode(unsigned Opcode) {
580 switch (Opcode) {
581 default:
582 return std::nullopt;
583#define BEGIN_REGISTER_VP_SDNODE(VPOPC, ...) break;
584#define VP_PROPERTY_FUNCTIONAL_SDOPC(SDOPC) case ISD::SDOPC:
585#define END_REGISTER_VP_SDNODE(VPOPC) return ISD::VPOPC;
586#include "llvm/IR/VPIntrinsics.def"
587 }
588}
589
591 switch (ExtType) {
592 case ISD::EXTLOAD:
593 return IsFP ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
594 case ISD::SEXTLOAD:
595 return ISD::SIGN_EXTEND;
596 case ISD::ZEXTLOAD:
597 return ISD::ZERO_EXTEND;
598 default:
599 break;
600 }
601
602 llvm_unreachable("Invalid LoadExtType");
603}
604
606 // To perform this operation, we just need to swap the L and G bits of the
607 // operation.
608 unsigned OldL = (Operation >> 2) & 1;
609 unsigned OldG = (Operation >> 1) & 1;
610 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
611 (OldL << 1) | // New G bit
612 (OldG << 2)); // New L bit.
613}
614
616 unsigned Operation = Op;
617 if (isIntegerLike)
618 Operation ^= 7; // Flip L, G, E bits, but not U.
619 else
620 Operation ^= 15; // Flip all of the condition bits.
621
623 Operation &= ~8; // Don't let N and U bits get set.
624
625 return ISD::CondCode(Operation);
626}
627
631
633 bool isIntegerLike) {
634 return getSetCCInverseImpl(Op, isIntegerLike);
635}
636
637/// For an integer comparison, return 1 if the comparison is a signed operation
638/// and 2 if the result is an unsigned comparison. Return zero if the operation
639/// does not depend on the sign of the input (setne and seteq).
640static int isSignedOp(ISD::CondCode Opcode) {
641 switch (Opcode) {
642 default: llvm_unreachable("Illegal integer setcc operation!");
643 case ISD::SETEQ:
644 case ISD::SETNE: return 0;
645 case ISD::SETLT:
646 case ISD::SETLE:
647 case ISD::SETGT:
648 case ISD::SETGE: return 1;
649 case ISD::SETULT:
650 case ISD::SETULE:
651 case ISD::SETUGT:
652 case ISD::SETUGE: return 2;
653 }
654}
655
657 EVT Type) {
658 bool IsInteger = Type.isInteger();
659 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
660 // Cannot fold a signed integer setcc with an unsigned integer setcc.
661 return ISD::SETCC_INVALID;
662
663 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
664
665 // If the N and U bits get set, then the resultant comparison DOES suddenly
666 // care about orderedness, and it is true when ordered.
667 if (Op > ISD::SETTRUE2)
668 Op &= ~16; // Clear the U bit if the N bit is set.
669
670 // Canonicalize illegal integer setcc's.
671 if (IsInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
672 Op = ISD::SETNE;
673
674 return ISD::CondCode(Op);
675}
676
678 EVT Type) {
679 bool IsInteger = Type.isInteger();
680 if (IsInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
681 // Cannot fold a signed setcc with an unsigned setcc.
682 return ISD::SETCC_INVALID;
683
684 // Combine all of the condition bits.
685 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
686
687 // Canonicalize illegal integer setcc's.
688 if (IsInteger) {
689 switch (Result) {
690 default: break;
691 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
692 case ISD::SETOEQ: // SETEQ & SETU[LG]E
693 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
694 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
695 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
696 }
697 }
698
699 return Result;
700}
701
702//===----------------------------------------------------------------------===//
703// SDNode Profile Support
704//===----------------------------------------------------------------------===//
705
706/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
707static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
708 ID.AddInteger(OpC);
709}
710
711/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
712/// solely with their pointer.
714 ID.AddPointer(VTList.VTs);
715}
716
717/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
720 for (const auto &Op : Ops) {
721 ID.AddPointer(Op.getNode());
722 ID.AddInteger(Op.getResNo());
723 }
724}
725
726/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
729 for (const auto &Op : Ops) {
730 ID.AddPointer(Op.getNode());
731 ID.AddInteger(Op.getResNo());
732 }
733}
734
735static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC,
736 SDVTList VTList, ArrayRef<SDValue> OpList) {
737 AddNodeIDOpcode(ID, OpC);
738 AddNodeIDValueTypes(ID, VTList);
739 AddNodeIDOperands(ID, OpList);
740}
741
742/// If this is an SDNode with special info, add this info to the NodeID data.
744 switch (N->getOpcode()) {
747 case ISD::MCSymbol:
748 llvm_unreachable("Should only be used on nodes with operands");
749 default: break; // Normal nodes don't need extra info.
751 case ISD::Constant: {
753 ID.AddPointer(C->getConstantIntValue());
754 ID.AddBoolean(C->isOpaque());
755 break;
756 }
758 case ISD::ConstantFP:
759 ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
760 break;
766 ID.AddPointer(GA->getGlobal());
767 ID.AddInteger(GA->getOffset());
768 ID.AddInteger(GA->getTargetFlags());
769 break;
770 }
771 case ISD::BasicBlock:
773 break;
774 case ISD::Register:
775 ID.AddInteger(cast<RegisterSDNode>(N)->getReg().id());
776 break;
778 ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
779 break;
780 case ISD::SRCVALUE:
781 ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
782 break;
783 case ISD::FrameIndex:
785 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
786 break;
787 case ISD::PSEUDO_PROBE:
788 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getGuid());
789 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getIndex());
790 ID.AddInteger(cast<PseudoProbeSDNode>(N)->getAttributes());
791 break;
792 case ISD::JumpTable:
794 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
795 ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
796 break;
800 ID.AddInteger(CP->getAlign().value());
801 ID.AddInteger(CP->getOffset());
802 if (CP->isMachineConstantPoolEntry())
803 CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
804 else
805 ID.AddPointer(CP->getConstVal());
806 ID.AddInteger(CP->getTargetFlags());
807 break;
808 }
809 case ISD::TargetIndex: {
811 ID.AddInteger(TI->getIndex());
812 ID.AddInteger(TI->getOffset());
813 ID.AddInteger(TI->getTargetFlags());
814 break;
815 }
816 case ISD::LOAD: {
817 const LoadSDNode *LD = cast<LoadSDNode>(N);
818 ID.AddInteger(LD->getMemoryVT().getRawBits());
819 ID.AddInteger(LD->getRawSubclassData());
820 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
821 ID.AddInteger(LD->getMemOperand()->getFlags());
822 break;
823 }
824 case ISD::STORE: {
825 const StoreSDNode *ST = cast<StoreSDNode>(N);
826 ID.AddInteger(ST->getMemoryVT().getRawBits());
827 ID.AddInteger(ST->getRawSubclassData());
828 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
829 ID.AddInteger(ST->getMemOperand()->getFlags());
830 break;
831 }
832 case ISD::VP_LOAD: {
833 const VPLoadSDNode *ELD = cast<VPLoadSDNode>(N);
834 ID.AddInteger(ELD->getMemoryVT().getRawBits());
835 ID.AddInteger(ELD->getRawSubclassData());
836 ID.AddInteger(ELD->getPointerInfo().getAddrSpace());
837 ID.AddInteger(ELD->getMemOperand()->getFlags());
838 break;
839 }
840 case ISD::VP_LOAD_FF: {
841 const auto *LD = cast<VPLoadFFSDNode>(N);
842 ID.AddInteger(LD->getMemoryVT().getRawBits());
843 ID.AddInteger(LD->getRawSubclassData());
844 ID.AddInteger(LD->getPointerInfo().getAddrSpace());
845 ID.AddInteger(LD->getMemOperand()->getFlags());
846 break;
847 }
848 case ISD::VP_STORE: {
849 const VPStoreSDNode *EST = cast<VPStoreSDNode>(N);
850 ID.AddInteger(EST->getMemoryVT().getRawBits());
851 ID.AddInteger(EST->getRawSubclassData());
852 ID.AddInteger(EST->getPointerInfo().getAddrSpace());
853 ID.AddInteger(EST->getMemOperand()->getFlags());
854 break;
855 }
856 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: {
858 ID.AddInteger(SLD->getMemoryVT().getRawBits());
859 ID.AddInteger(SLD->getRawSubclassData());
860 ID.AddInteger(SLD->getPointerInfo().getAddrSpace());
861 break;
862 }
863 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: {
865 ID.AddInteger(SST->getMemoryVT().getRawBits());
866 ID.AddInteger(SST->getRawSubclassData());
867 ID.AddInteger(SST->getPointerInfo().getAddrSpace());
868 break;
869 }
870 case ISD::VP_GATHER: {
872 ID.AddInteger(EG->getMemoryVT().getRawBits());
873 ID.AddInteger(EG->getRawSubclassData());
874 ID.AddInteger(EG->getPointerInfo().getAddrSpace());
875 ID.AddInteger(EG->getMemOperand()->getFlags());
876 break;
877 }
878 case ISD::VP_SCATTER: {
880 ID.AddInteger(ES->getMemoryVT().getRawBits());
881 ID.AddInteger(ES->getRawSubclassData());
882 ID.AddInteger(ES->getPointerInfo().getAddrSpace());
883 ID.AddInteger(ES->getMemOperand()->getFlags());
884 break;
885 }
886 case ISD::MLOAD: {
888 ID.AddInteger(MLD->getMemoryVT().getRawBits());
889 ID.AddInteger(MLD->getRawSubclassData());
890 ID.AddInteger(MLD->getPointerInfo().getAddrSpace());
891 ID.AddInteger(MLD->getMemOperand()->getFlags());
892 break;
893 }
894 case ISD::MSTORE: {
896 ID.AddInteger(MST->getMemoryVT().getRawBits());
897 ID.AddInteger(MST->getRawSubclassData());
898 ID.AddInteger(MST->getPointerInfo().getAddrSpace());
899 ID.AddInteger(MST->getMemOperand()->getFlags());
900 break;
901 }
902 case ISD::MGATHER: {
904 ID.AddInteger(MG->getMemoryVT().getRawBits());
905 ID.AddInteger(MG->getRawSubclassData());
906 ID.AddInteger(MG->getPointerInfo().getAddrSpace());
907 ID.AddInteger(MG->getMemOperand()->getFlags());
908 break;
909 }
910 case ISD::MSCATTER: {
912 ID.AddInteger(MS->getMemoryVT().getRawBits());
913 ID.AddInteger(MS->getRawSubclassData());
914 ID.AddInteger(MS->getPointerInfo().getAddrSpace());
915 ID.AddInteger(MS->getMemOperand()->getFlags());
916 break;
917 }
918 case ISD::ATOMIC_CMP_SWAP:
919 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
920 case ISD::ATOMIC_SWAP:
921 case ISD::ATOMIC_LOAD_ADD:
922 case ISD::ATOMIC_LOAD_SUB:
923 case ISD::ATOMIC_LOAD_AND:
924 case ISD::ATOMIC_LOAD_CLR:
925 case ISD::ATOMIC_LOAD_OR:
926 case ISD::ATOMIC_LOAD_XOR:
927 case ISD::ATOMIC_LOAD_NAND:
928 case ISD::ATOMIC_LOAD_MIN:
929 case ISD::ATOMIC_LOAD_MAX:
930 case ISD::ATOMIC_LOAD_UMIN:
931 case ISD::ATOMIC_LOAD_UMAX:
932 case ISD::ATOMIC_LOAD:
933 case ISD::ATOMIC_STORE: {
934 const AtomicSDNode *AT = cast<AtomicSDNode>(N);
935 ID.AddInteger(AT->getMemoryVT().getRawBits());
936 ID.AddInteger(AT->getRawSubclassData());
937 ID.AddInteger(AT->getPointerInfo().getAddrSpace());
938 ID.AddInteger(AT->getMemOperand()->getFlags());
939 break;
940 }
941 case ISD::VECTOR_SHUFFLE: {
942 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
943 for (int M : Mask)
944 ID.AddInteger(M);
945 break;
946 }
947 case ISD::ADDRSPACECAST: {
949 ID.AddInteger(ASC->getSrcAddressSpace());
950 ID.AddInteger(ASC->getDestAddressSpace());
951 break;
952 }
954 case ISD::BlockAddress: {
956 ID.AddPointer(BA->getBlockAddress());
957 ID.AddInteger(BA->getOffset());
958 ID.AddInteger(BA->getTargetFlags());
959 break;
960 }
961 case ISD::AssertAlign:
962 ID.AddInteger(cast<AssertAlignSDNode>(N)->getAlign().value());
963 break;
964 case ISD::PREFETCH:
967 // Handled by MemIntrinsicSDNode check after the switch.
968 break;
969 case ISD::MDNODE_SDNODE:
970 ID.AddPointer(cast<MDNodeSDNode>(N)->getMD());
971 break;
972 } // end switch (N->getOpcode())
973
974 // MemIntrinsic nodes could also have subclass data, address spaces, and flags
975 // to check.
976 if (auto *MN = dyn_cast<MemIntrinsicSDNode>(N)) {
977 ID.AddInteger(MN->getRawSubclassData());
978 ID.AddInteger(MN->getPointerInfo().getAddrSpace());
979 ID.AddInteger(MN->getMemOperand()->getFlags());
980 ID.AddInteger(MN->getMemoryVT().getRawBits());
981 }
982}
983
984/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
985/// data.
986static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
987 AddNodeIDOpcode(ID, N->getOpcode());
988 // Add the return value info.
989 AddNodeIDValueTypes(ID, N->getVTList());
990 // Add the operand info.
991 AddNodeIDOperands(ID, N->ops());
992
993 // Handle SDNode leafs with special info.
995}
996
997//===----------------------------------------------------------------------===//
998// SelectionDAG Class
999//===----------------------------------------------------------------------===//
1000
1001/// doNotCSE - Return true if CSE should not be performed for this node.
1002static bool doNotCSE(SDNode *N) {
1003 if (N->getValueType(0) == MVT::Glue)
1004 return true; // Never CSE anything that produces a glue result.
1005
1006 switch (N->getOpcode()) {
1007 default: break;
1008 case ISD::HANDLENODE:
1009 case ISD::EH_LABEL:
1010 return true; // Never CSE these nodes.
1011 }
1012
1013 // Check that remaining values produced are not flags.
1014 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
1015 if (N->getValueType(i) == MVT::Glue)
1016 return true; // Never CSE anything that produces a glue result.
1017
1018 return false;
1019}
1020
1021/// RemoveDeadNodes - This method deletes all unreachable nodes in the
1022/// SelectionDAG.
1024 // Create a dummy node (which is not added to allnodes), that adds a reference
1025 // to the root node, preventing it from being deleted.
1026 HandleSDNode Dummy(getRoot());
1027
1028 SmallVector<SDNode*, 128> DeadNodes;
1029
1030 // Add all obviously-dead nodes to the DeadNodes worklist.
1031 for (SDNode &Node : allnodes())
1032 if (Node.use_empty())
1033 DeadNodes.push_back(&Node);
1034
1035 RemoveDeadNodes(DeadNodes);
1036
1037 // If the root changed (e.g. it was a dead load, update the root).
1038 setRoot(Dummy.getValue());
1039}
1040
1041/// RemoveDeadNodes - This method deletes the unreachable nodes in the
1042/// given list, and any nodes that become unreachable as a result.
1044
1045 // Process the worklist, deleting the nodes and adding their uses to the
1046 // worklist.
1047 while (!DeadNodes.empty()) {
1048 SDNode *N = DeadNodes.pop_back_val();
1049 // Skip to next node if we've already managed to delete the node. This could
1050 // happen if replacing a node causes a node previously added to the node to
1051 // be deleted.
1052 if (N->getOpcode() == ISD::DELETED_NODE)
1053 continue;
1054
1055 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1056 DUL->NodeDeleted(N, nullptr);
1057
1058 // Take the node out of the appropriate CSE map.
1059 RemoveNodeFromCSEMaps(N);
1060
1061 // Next, brutally remove the operand list. This is safe to do, as there are
1062 // no cycles in the graph.
1063 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
1064 SDUse &Use = *I++;
1065 SDNode *Operand = Use.getNode();
1066 Use.set(SDValue());
1067
1068 // Now that we removed this operand, see if there are no uses of it left.
1069 if (Operand->use_empty())
1070 DeadNodes.push_back(Operand);
1071 }
1072
1073 DeallocateNode(N);
1074 }
1075}
1076
1078 SmallVector<SDNode*, 16> DeadNodes(1, N);
1079
1080 // Create a dummy node that adds a reference to the root node, preventing
1081 // it from being deleted. (This matters if the root is an operand of the
1082 // dead node.)
1083 HandleSDNode Dummy(getRoot());
1084
1085 RemoveDeadNodes(DeadNodes);
1086}
1087
1089 // First take this out of the appropriate CSE map.
1090 RemoveNodeFromCSEMaps(N);
1091
1092 // Finally, remove uses due to operands of this node, remove from the
1093 // AllNodes list, and delete the node.
1094 DeleteNodeNotInCSEMaps(N);
1095}
1096
1097void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
1098 assert(N->getIterator() != AllNodes.begin() &&
1099 "Cannot delete the entry node!");
1100 assert(N->use_empty() && "Cannot delete a node that is not dead!");
1101
1102 // Drop all of the operands and decrement used node's use counts.
1103 N->DropOperands();
1104
1105 DeallocateNode(N);
1106}
1107
1108void SDDbgInfo::add(SDDbgValue *V, bool isParameter) {
1109 assert(!(V->isVariadic() && isParameter));
1110 if (isParameter)
1111 ByvalParmDbgValues.push_back(V);
1112 else
1113 DbgValues.push_back(V);
1114 for (const SDNode *Node : V->getSDNodes())
1115 if (Node)
1116 DbgValMap[Node].push_back(V);
1117}
1118
1120 DbgValMapType::iterator I = DbgValMap.find(Node);
1121 if (I == DbgValMap.end())
1122 return;
1123 for (auto &Val: I->second)
1124 Val->setIsInvalidated();
1125 DbgValMap.erase(I);
1126}
1127
1128void SelectionDAG::DeallocateNode(SDNode *N) {
1129 // If we have operands, deallocate them.
1131
1132 NodeAllocator.Deallocate(AllNodes.remove(N));
1133
1134 // Set the opcode to DELETED_NODE to help catch bugs when node
1135 // memory is reallocated.
1136 // FIXME: There are places in SDag that have grown a dependency on the opcode
1137 // value in the released node.
1138 __asan_unpoison_memory_region(&N->NodeType, sizeof(N->NodeType));
1139 N->NodeType = ISD::DELETED_NODE;
1140
1141 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
1142 // them and forget about that node.
1143 DbgInfo->erase(N);
1144
1145 // Invalidate extra info.
1146 SDEI.erase(N);
1147}
1148
1149#ifndef NDEBUG
1150/// VerifySDNode - Check the given SDNode. Aborts if it is invalid.
1151void SelectionDAG::verifyNode(SDNode *N) const {
1152 switch (N->getOpcode()) {
1153 default:
1154 if (N->isTargetOpcode())
1156 break;
1157 case ISD::BUILD_PAIR: {
1158 EVT VT = N->getValueType(0);
1159 assert(N->getNumValues() == 1 && "Too many results!");
1160 assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
1161 "Wrong return type!");
1162 assert(N->getNumOperands() == 2 && "Wrong number of operands!");
1163 assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
1164 "Mismatched operand types!");
1165 assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
1166 "Wrong operand type!");
1167 assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
1168 "Wrong return type size");
1169 break;
1170 }
1171 case ISD::BUILD_VECTOR: {
1172 assert(N->getNumValues() == 1 && "Too many results!");
1173 assert(N->getValueType(0).isVector() && "Wrong return type!");
1174 assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
1175 "Wrong number of operands!");
1176 EVT EltVT = N->getValueType(0).getVectorElementType();
1177 for (const SDUse &Op : N->ops()) {
1178 assert((Op.getValueType() == EltVT ||
1179 (EltVT.isInteger() && Op.getValueType().isInteger() &&
1180 EltVT.bitsLE(Op.getValueType()))) &&
1181 "Wrong operand type!");
1182 assert(Op.getValueType() == N->getOperand(0).getValueType() &&
1183 "Operands must all have the same type");
1184 }
1185 break;
1186 }
1187 }
1188}
1189#endif // NDEBUG
1190
1191/// Insert a newly allocated node into the DAG.
1192///
1193/// Handles insertion into the all nodes list and CSE map, as well as
1194/// verification and other common operations when a new node is allocated.
1195void SelectionDAG::InsertNode(SDNode *N) {
1196 AllNodes.push_back(N);
1197#ifndef NDEBUG
1198 N->PersistentId = NextPersistentId++;
1199 verifyNode(N);
1200#endif
1201 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1202 DUL->NodeInserted(N);
1203}
1204
1205/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
1206/// correspond to it. This is useful when we're about to delete or repurpose
1207/// the node. We don't want future request for structurally identical nodes
1208/// to return N anymore.
1209bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
1210 bool Erased = false;
1211 switch (N->getOpcode()) {
1212 case ISD::HANDLENODE: return false; // noop.
1213 case ISD::CONDCODE:
1214 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
1215 "Cond code doesn't exist!");
1216 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != nullptr;
1217 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = nullptr;
1218 break;
1220 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
1221 break;
1223 ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
1224 Erased = TargetExternalSymbols.erase(std::pair<std::string, unsigned>(
1225 ESN->getSymbol(), ESN->getTargetFlags()));
1226 break;
1227 }
1228 case ISD::MCSymbol: {
1229 auto *MCSN = cast<MCSymbolSDNode>(N);
1230 Erased = MCSymbols.erase(MCSN->getMCSymbol());
1231 break;
1232 }
1233 case ISD::VALUETYPE: {
1234 EVT VT = cast<VTSDNode>(N)->getVT();
1235 if (VT.isExtended()) {
1236 Erased = ExtendedValueTypeNodes.erase(VT);
1237 } else {
1238 Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != nullptr;
1239 ValueTypeNodes[VT.getSimpleVT().SimpleTy] = nullptr;
1240 }
1241 break;
1242 }
1243 default:
1244 // Remove it from the CSE Map.
1245 assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
1246 assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
1247 Erased = CSEMap.RemoveNode(N);
1248 break;
1249 }
1250#ifndef NDEBUG
1251 // Verify that the node was actually in one of the CSE maps, unless it has a
1252 // glue result (which cannot be CSE'd) or is one of the special cases that are
1253 // not subject to CSE.
1254 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
1255 !N->isMachineOpcode() && !doNotCSE(N)) {
1256 N->dump(this);
1257 dbgs() << "\n";
1258 llvm_unreachable("Node is not in map!");
1259 }
1260#endif
1261 return Erased;
1262}
1263
1264/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
1265/// maps and modified in place. Add it back to the CSE maps, unless an identical
1266/// node already exists, in which case transfer all its users to the existing
1267/// node. This transfer can potentially trigger recursive merging.
1268void
1269SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
1270 // For node types that aren't CSE'd, just act as if no identical node
1271 // already exists.
1272 if (!doNotCSE(N)) {
1273 SDNode *Existing = CSEMap.GetOrInsertNode(N);
1274 if (Existing != N) {
1275 // If there was already an existing matching node, use ReplaceAllUsesWith
1276 // to replace the dead one with the existing one. This can cause
1277 // recursive merging of other unrelated nodes down the line.
1278 Existing->intersectFlagsWith(N->getFlags());
1279 if (auto *MemNode = dyn_cast<MemSDNode>(Existing))
1280 MemNode->refineRanges(cast<MemSDNode>(N)->getMemOperand());
1281 ReplaceAllUsesWith(N, Existing);
1282
1283 // N is now dead. Inform the listeners and delete it.
1284 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1285 DUL->NodeDeleted(N, Existing);
1286 DeleteNodeNotInCSEMaps(N);
1287 return;
1288 }
1289 }
1290
1291 // If the node doesn't already exist, we updated it. Inform listeners.
1292 for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
1293 DUL->NodeUpdated(N);
1294}
1295
1296/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1297/// were replaced with those specified. If this node is never memoized,
1298/// return null, otherwise return a pointer to the slot it would take. If a
1299/// node already exists with these operands, the slot will be non-null.
1300SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
1301 void *&InsertPos) {
1302 if (doNotCSE(N))
1303 return nullptr;
1304
1305 SDValue Ops[] = { Op };
1306 FoldingSetNodeID ID;
1307 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1309 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1310 if (Node)
1311 Node->intersectFlagsWith(N->getFlags());
1312 return Node;
1313}
1314
1315/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1316/// were replaced with those specified. If this node is never memoized,
1317/// return null, otherwise return a pointer to the slot it would take. If a
1318/// node already exists with these operands, the slot will be non-null.
1319SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
1320 SDValue Op1, SDValue Op2,
1321 void *&InsertPos) {
1322 if (doNotCSE(N))
1323 return nullptr;
1324
1325 SDValue Ops[] = { Op1, Op2 };
1326 FoldingSetNodeID ID;
1327 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1329 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1330 if (Node)
1331 Node->intersectFlagsWith(N->getFlags());
1332 return Node;
1333}
1334
1335/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
1336/// were replaced with those specified. If this node is never memoized,
1337/// return null, otherwise return a pointer to the slot it would take. If a
1338/// node already exists with these operands, the slot will be non-null.
1339SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
1340 void *&InsertPos) {
1341 if (doNotCSE(N))
1342 return nullptr;
1343
1344 FoldingSetNodeID ID;
1345 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops);
1347 SDNode *Node = FindNodeOrInsertPos(ID, SDLoc(N), InsertPos);
1348 if (Node)
1349 Node->intersectFlagsWith(N->getFlags());
1350 return Node;
1351}
1352
1354 Type *Ty = VT == MVT::iPTR ? PointerType::get(*getContext(), 0)
1355 : VT.getTypeForEVT(*getContext());
1356
1357 return getDataLayout().getABITypeAlign(Ty);
1358}
1359
1360// EntryNode could meaningfully have debug info if we can find it...
1362 : TM(tm), OptLevel(OL), EntryNode(ISD::EntryToken, 0, DebugLoc(),
1363 getVTList(MVT::Other, MVT::Glue)),
1364 Root(getEntryNode()) {
1365 InsertNode(&EntryNode);
1366 DbgInfo = new SDDbgInfo();
1367}
1368
1370 OptimizationRemarkEmitter &NewORE, Pass *PassPtr,
1371 const TargetLibraryInfo *LibraryInfo,
1372 UniformityInfo *NewUA, ProfileSummaryInfo *PSIin,
1374 FunctionVarLocs const *VarLocs) {
1375 MF = &NewMF;
1376 SDAGISelPass = PassPtr;
1377 ORE = &NewORE;
1380 LibInfo = LibraryInfo;
1381 Context = &MF->getFunction().getContext();
1382 UA = NewUA;
1383 PSI = PSIin;
1384 BFI = BFIin;
1385 MMI = &MMIin;
1386 FnVarLocs = VarLocs;
1387}
1388
1390 assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
1391 allnodes_clear();
1392 OperandRecycler.clear(OperandAllocator);
1393 delete DbgInfo;
1394}
1395
1397 return llvm::shouldOptimizeForSize(FLI->MBB->getBasicBlock(), PSI, BFI);
1398}
1399
1400void SelectionDAG::allnodes_clear() {
1401 assert(&*AllNodes.begin() == &EntryNode);
1402 AllNodes.remove(AllNodes.begin());
1403 while (!AllNodes.empty())
1404 DeallocateNode(&AllNodes.front());
1405#ifndef NDEBUG
1406 NextPersistentId = 0;
1407#endif
1408}
1409
1410SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1411 void *&InsertPos) {
1412 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1413 if (N) {
1414 switch (N->getOpcode()) {
1415 default: break;
1416 case ISD::Constant:
1417 case ISD::ConstantFP:
1418 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1419 "debug location. Use another overload.");
1420 }
1421 }
1422 return N;
1423}
1424
1425SDNode *SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
1426 const SDLoc &DL, void *&InsertPos) {
1427 SDNode *N = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
1428 if (N) {
1429 switch (N->getOpcode()) {
1430 case ISD::Constant:
1431 case ISD::ConstantFP:
1432 // Erase debug location from the node if the node is used at several
1433 // different places. Do not propagate one location to all uses as it
1434 // will cause a worse single stepping debugging experience.
1435 if (N->getDebugLoc() != DL.getDebugLoc())
1436 N->setDebugLoc(DebugLoc());
1437 break;
1438 default:
1439 // When the node's point of use is located earlier in the instruction
1440 // sequence than its prior point of use, update its debug info to the
1441 // earlier location.
1442 if (DL.getIROrder() && DL.getIROrder() < N->getIROrder())
1443 N->setDebugLoc(DL.getDebugLoc());
1444 break;
1445 }
1446 }
1447 return N;
1448}
1449
1451 allnodes_clear();
1452 OperandRecycler.clear(OperandAllocator);
1453 OperandAllocator.Reset();
1454 CSEMap.clear();
1455
1456 ExtendedValueTypeNodes.clear();
1457 ExternalSymbols.clear();
1458 TargetExternalSymbols.clear();
1459 MCSymbols.clear();
1460 SDEI.clear();
1461 llvm::fill(CondCodeNodes, nullptr);
1462 llvm::fill(ValueTypeNodes, nullptr);
1463
1464 EntryNode.UseList = nullptr;
1465 InsertNode(&EntryNode);
1466 Root = getEntryNode();
1467 DbgInfo->clear();
1468}
1469
1471 return VT.bitsGT(Op.getValueType())
1472 ? getNode(ISD::FP_EXTEND, DL, VT, Op)
1473 : getNode(ISD::FP_ROUND, DL, VT, Op,
1474 getIntPtrConstant(0, DL, /*isTarget=*/true));
1475}
1476
1477std::pair<SDValue, SDValue>
1479 const SDLoc &DL, EVT VT) {
1480 assert(!VT.bitsEq(Op.getValueType()) &&
1481 "Strict no-op FP extend/round not allowed.");
1482 SDValue Res =
1483 VT.bitsGT(Op.getValueType())
1484 ? getNode(ISD::STRICT_FP_EXTEND, DL, {VT, MVT::Other}, {Chain, Op})
1485 : getNode(ISD::STRICT_FP_ROUND, DL, {VT, MVT::Other},
1486 {Chain, Op, getIntPtrConstant(0, DL, /*isTarget=*/true)});
1487
1488 return std::pair<SDValue, SDValue>(Res, SDValue(Res.getNode(), 1));
1489}
1490
1492 return VT.bitsGT(Op.getValueType()) ?
1493 getNode(ISD::ANY_EXTEND, DL, VT, Op) :
1494 getNode(ISD::TRUNCATE, DL, VT, Op);
1495}
1496
1498 return VT.bitsGT(Op.getValueType()) ?
1499 getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
1500 getNode(ISD::TRUNCATE, DL, VT, Op);
1501}
1502
1504 return VT.bitsGT(Op.getValueType()) ?
1505 getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
1506 getNode(ISD::TRUNCATE, DL, VT, Op);
1507}
1508
1510 EVT VT) {
1511 assert(!VT.isVector());
1512 auto Type = Op.getValueType();
1513 SDValue DestOp;
1514 if (Type == VT)
1515 return Op;
1516 auto Size = Op.getValueSizeInBits();
1517 DestOp = getBitcast(EVT::getIntegerVT(*Context, Size), Op);
1518 if (DestOp.getValueType() == VT)
1519 return DestOp;
1520
1521 return getAnyExtOrTrunc(DestOp, DL, VT);
1522}
1523
1525 EVT VT) {
1526 assert(!VT.isVector());
1527 auto Type = Op.getValueType();
1528 SDValue DestOp;
1529 if (Type == VT)
1530 return Op;
1531 auto Size = Op.getValueSizeInBits();
1532 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1533 if (DestOp.getValueType() == VT)
1534 return DestOp;
1535
1536 return getSExtOrTrunc(DestOp, DL, VT);
1537}
1538
1540 EVT VT) {
1541 assert(!VT.isVector());
1542 auto Type = Op.getValueType();
1543 SDValue DestOp;
1544 if (Type == VT)
1545 return Op;
1546 auto Size = Op.getValueSizeInBits();
1547 DestOp = getBitcast(MVT::getIntegerVT(Size), Op);
1548 if (DestOp.getValueType() == VT)
1549 return DestOp;
1550
1551 return getZExtOrTrunc(DestOp, DL, VT);
1552}
1553
1555 EVT OpVT) {
1556 if (VT.bitsLE(Op.getValueType()))
1557 return getNode(ISD::TRUNCATE, SL, VT, Op);
1558
1559 TargetLowering::BooleanContent BType = TLI->getBooleanContents(OpVT);
1560 return getNode(TLI->getExtendForContent(BType), SL, VT, Op);
1561}
1562
1564 EVT OpVT = Op.getValueType();
1565 assert(VT.isInteger() && OpVT.isInteger() &&
1566 "Cannot getZeroExtendInReg FP types");
1567 assert(VT.isVector() == OpVT.isVector() &&
1568 "getZeroExtendInReg type should be vector iff the operand "
1569 "type is vector!");
1570 assert((!VT.isVector() ||
1572 "Vector element counts must match in getZeroExtendInReg");
1573 assert(VT.bitsLE(OpVT) && "Not extending!");
1574 if (OpVT == VT)
1575 return Op;
1577 VT.getScalarSizeInBits());
1578 return getNode(ISD::AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT));
1579}
1580
1582 SDValue EVL, const SDLoc &DL,
1583 EVT VT) {
1584 EVT OpVT = Op.getValueType();
1585 assert(VT.isInteger() && OpVT.isInteger() &&
1586 "Cannot getVPZeroExtendInReg FP types");
1587 assert(VT.isVector() && OpVT.isVector() &&
1588 "getVPZeroExtendInReg type and operand type should be vector!");
1590 "Vector element counts must match in getZeroExtendInReg");
1591 assert(VT.bitsLE(OpVT) && "Not extending!");
1592 if (OpVT == VT)
1593 return Op;
1595 VT.getScalarSizeInBits());
1596 return getNode(ISD::VP_AND, DL, OpVT, Op, getConstant(Imm, DL, OpVT), Mask,
1597 EVL);
1598}
1599
1601 // Only unsigned pointer semantics are supported right now. In the future this
1602 // might delegate to TLI to check pointer signedness.
1603 return getZExtOrTrunc(Op, DL, VT);
1604}
1605
1607 // Only unsigned pointer semantics are supported right now. In the future this
1608 // might delegate to TLI to check pointer signedness.
1609 return getZeroExtendInReg(Op, DL, VT);
1610}
1611
1613 return getNode(ISD::SUB, DL, VT, getConstant(0, DL, VT), Val);
1614}
1615
1616/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1618 return getNode(ISD::XOR, DL, VT, Val, getAllOnesConstant(DL, VT));
1619}
1620
1622 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1623 return getNode(ISD::XOR, DL, VT, Val, TrueValue);
1624}
1625
1627 SDValue Mask, SDValue EVL, EVT VT) {
1628 SDValue TrueValue = getBoolConstant(true, DL, VT, VT);
1629 return getNode(ISD::VP_XOR, DL, VT, Val, TrueValue, Mask, EVL);
1630}
1631
1633 SDValue Mask, SDValue EVL) {
1634 return getVPZExtOrTrunc(DL, VT, Op, Mask, EVL);
1635}
1636
1638 SDValue Mask, SDValue EVL) {
1639 if (VT.bitsGT(Op.getValueType()))
1640 return getNode(ISD::VP_ZERO_EXTEND, DL, VT, Op, Mask, EVL);
1641 if (VT.bitsLT(Op.getValueType()))
1642 return getNode(ISD::VP_TRUNCATE, DL, VT, Op, Mask, EVL);
1643 return Op;
1644}
1645
1647 EVT OpVT) {
1648 if (!V)
1649 return getConstant(0, DL, VT);
1650
1651 switch (TLI->getBooleanContents(OpVT)) {
1654 return getConstant(1, DL, VT);
1656 return getAllOnesConstant(DL, VT);
1657 }
1658 llvm_unreachable("Unexpected boolean content enum!");
1659}
1660
1662 bool isT, bool isO) {
1663 return getConstant(APInt(VT.getScalarSizeInBits(), Val, /*isSigned=*/false),
1664 DL, VT, isT, isO);
1665}
1666
1668 bool isT, bool isO) {
1669 return getConstant(*ConstantInt::get(*Context, Val), DL, VT, isT, isO);
1670}
1671
1673 EVT VT, bool isT, bool isO) {
1674 assert(VT.isInteger() && "Cannot create FP integer constant!");
1675
1676 EVT EltVT = VT.getScalarType();
1677 const ConstantInt *Elt = &Val;
1678
1679 // Vector splats are explicit within the DAG, with ConstantSDNode holding the
1680 // to-be-splatted scalar ConstantInt.
1681 if (isa<VectorType>(Elt->getType()))
1682 Elt = ConstantInt::get(*getContext(), Elt->getValue());
1683
1684 // In some cases the vector type is legal but the element type is illegal and
1685 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1686 // inserted value (the type does not need to match the vector element type).
1687 // Any extra bits introduced will be truncated away.
1688 if (VT.isVector() && TLI->getTypeAction(*getContext(), EltVT) ==
1690 EltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1691 APInt NewVal;
1692 if (TLI->isSExtCheaperThanZExt(VT.getScalarType(), EltVT))
1693 NewVal = Elt->getValue().sextOrTrunc(EltVT.getSizeInBits());
1694 else
1695 NewVal = Elt->getValue().zextOrTrunc(EltVT.getSizeInBits());
1696 Elt = ConstantInt::get(*getContext(), NewVal);
1697 }
1698 // In other cases the element type is illegal and needs to be expanded, for
1699 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1700 // the value into n parts and use a vector type with n-times the elements.
1701 // Then bitcast to the type requested.
1702 // Legalizing constants too early makes the DAGCombiner's job harder so we
1703 // only legalize if the DAG tells us we must produce legal types.
1704 else if (NewNodesMustHaveLegalTypes && VT.isVector() &&
1705 TLI->getTypeAction(*getContext(), EltVT) ==
1707 const APInt &NewVal = Elt->getValue();
1708 EVT ViaEltVT = TLI->getTypeToTransformTo(*getContext(), EltVT);
1709 unsigned ViaEltSizeInBits = ViaEltVT.getSizeInBits();
1710
1711 // For scalable vectors, try to use a SPLAT_VECTOR_PARTS node.
1712 if (VT.isScalableVector() ||
1713 TLI->isOperationLegal(ISD::SPLAT_VECTOR, VT)) {
1714 assert(EltVT.getSizeInBits() % ViaEltSizeInBits == 0 &&
1715 "Can only handle an even split!");
1716 unsigned Parts = EltVT.getSizeInBits() / ViaEltSizeInBits;
1717
1718 SmallVector<SDValue, 2> ScalarParts;
1719 for (unsigned i = 0; i != Parts; ++i)
1720 ScalarParts.push_back(getConstant(
1721 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1722 ViaEltVT, isT, isO));
1723
1724 return getNode(ISD::SPLAT_VECTOR_PARTS, DL, VT, ScalarParts);
1725 }
1726
1727 unsigned ViaVecNumElts = VT.getSizeInBits() / ViaEltSizeInBits;
1728 EVT ViaVecVT = EVT::getVectorVT(*getContext(), ViaEltVT, ViaVecNumElts);
1729
1730 // Check the temporary vector is the correct size. If this fails then
1731 // getTypeToTransformTo() probably returned a type whose size (in bits)
1732 // isn't a power-of-2 factor of the requested type size.
1733 assert(ViaVecVT.getSizeInBits() == VT.getSizeInBits());
1734
1735 SmallVector<SDValue, 2> EltParts;
1736 for (unsigned i = 0; i < ViaVecNumElts / VT.getVectorNumElements(); ++i)
1737 EltParts.push_back(getConstant(
1738 NewVal.extractBits(ViaEltSizeInBits, i * ViaEltSizeInBits), DL,
1739 ViaEltVT, isT, isO));
1740
1741 // EltParts is currently in little endian order. If we actually want
1742 // big-endian order then reverse it now.
1743 if (getDataLayout().isBigEndian())
1744 std::reverse(EltParts.begin(), EltParts.end());
1745
1746 // The elements must be reversed when the element order is different
1747 // to the endianness of the elements (because the BITCAST is itself a
1748 // vector shuffle in this situation). However, we do not need any code to
1749 // perform this reversal because getConstant() is producing a vector
1750 // splat.
1751 // This situation occurs in MIPS MSA.
1752
1754 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1755 llvm::append_range(Ops, EltParts);
1756
1757 SDValue V =
1758 getNode(ISD::BITCAST, DL, VT, getBuildVector(ViaVecVT, DL, Ops));
1759 return V;
1760 }
1761
1762 assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1763 "APInt size does not match type size!");
1764 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1765 SDVTList VTs = getVTList(EltVT);
1767 AddNodeIDNode(ID, Opc, VTs, {});
1768 ID.AddPointer(Elt);
1769 ID.AddBoolean(isO);
1770 void *IP = nullptr;
1771 SDNode *N = nullptr;
1772 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1773 if (!VT.isVector())
1774 return SDValue(N, 0);
1775
1776 if (!N) {
1777 N = newSDNode<ConstantSDNode>(isT, isO, Elt, VTs);
1778 CSEMap.InsertNode(N, IP);
1779 InsertNode(N);
1780 NewSDValueDbgMsg(SDValue(N, 0), "Creating constant: ", this);
1781 }
1782
1783 SDValue Result(N, 0);
1784 if (VT.isVector())
1785 Result = getSplat(VT, DL, Result);
1786 return Result;
1787}
1788
1790 bool isT, bool isO) {
1791 unsigned Size = VT.getScalarSizeInBits();
1792 return getConstant(APInt(Size, Val, /*isSigned=*/true), DL, VT, isT, isO);
1793}
1794
1796 bool IsOpaque) {
1798 IsTarget, IsOpaque);
1799}
1800
1802 bool isTarget) {
1803 return getConstant(Val, DL, TLI->getPointerTy(getDataLayout()), isTarget);
1804}
1805
1807 const SDLoc &DL) {
1808 assert(VT.isInteger() && "Shift amount is not an integer type!");
1809 EVT ShiftVT = TLI->getShiftAmountTy(VT, getDataLayout());
1810 return getConstant(Val, DL, ShiftVT);
1811}
1812
1814 const SDLoc &DL) {
1815 assert(Val.ult(VT.getScalarSizeInBits()) && "Out of range shift");
1816 return getShiftAmountConstant(Val.getZExtValue(), VT, DL);
1817}
1818
1820 bool isTarget) {
1821 return getConstant(Val, DL, TLI->getVectorIdxTy(getDataLayout()), isTarget);
1822}
1823
1825 bool isTarget) {
1826 return getConstantFP(*ConstantFP::get(*getContext(), V), DL, VT, isTarget);
1827}
1828
1830 EVT VT, bool isTarget) {
1831 assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1832
1833 EVT EltVT = VT.getScalarType();
1834 const ConstantFP *Elt = &V;
1835
1836 // Vector splats are explicit within the DAG, with ConstantFPSDNode holding
1837 // the to-be-splatted scalar ConstantFP.
1838 if (isa<VectorType>(Elt->getType()))
1839 Elt = ConstantFP::get(*getContext(), Elt->getValue());
1840
1841 // Do the map lookup using the actual bit pattern for the floating point
1842 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1843 // we don't have issues with SNANs.
1844 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1845 SDVTList VTs = getVTList(EltVT);
1847 AddNodeIDNode(ID, Opc, VTs, {});
1848 ID.AddPointer(Elt);
1849 void *IP = nullptr;
1850 SDNode *N = nullptr;
1851 if ((N = FindNodeOrInsertPos(ID, DL, IP)))
1852 if (!VT.isVector())
1853 return SDValue(N, 0);
1854
1855 if (!N) {
1856 N = newSDNode<ConstantFPSDNode>(isTarget, Elt, VTs);
1857 CSEMap.InsertNode(N, IP);
1858 InsertNode(N);
1859 }
1860
1861 SDValue Result(N, 0);
1862 if (VT.isVector())
1863 Result = getSplat(VT, DL, Result);
1864 NewSDValueDbgMsg(Result, "Creating fp constant: ", this);
1865 return Result;
1866}
1867
1869 bool isTarget) {
1870 EVT EltVT = VT.getScalarType();
1871 if (EltVT == MVT::f32)
1872 return getConstantFP(APFloat((float)Val), DL, VT, isTarget);
1873 if (EltVT == MVT::f64)
1874 return getConstantFP(APFloat(Val), DL, VT, isTarget);
1875 if (EltVT == MVT::f80 || EltVT == MVT::f128 || EltVT == MVT::ppcf128 ||
1876 EltVT == MVT::f16 || EltVT == MVT::bf16) {
1877 bool Ignored;
1878 APFloat APF = APFloat(Val);
1880 &Ignored);
1881 return getConstantFP(APF, DL, VT, isTarget);
1882 }
1883 llvm_unreachable("Unsupported type in getConstantFP");
1884}
1885
1887 EVT VT, int64_t Offset, bool isTargetGA,
1888 unsigned TargetFlags) {
1889 assert((TargetFlags == 0 || isTargetGA) &&
1890 "Cannot set target flags on target-independent globals");
1891
1892 // Truncate (with sign-extension) the offset value to the pointer size.
1894 if (BitWidth < 64)
1896
1897 unsigned Opc;
1898 if (GV->isThreadLocal())
1900 else
1902
1903 SDVTList VTs = getVTList(VT);
1905 AddNodeIDNode(ID, Opc, VTs, {});
1906 ID.AddPointer(GV);
1907 ID.AddInteger(Offset);
1908 ID.AddInteger(TargetFlags);
1909 void *IP = nullptr;
1910 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
1911 return SDValue(E, 0);
1912
1913 auto *N = newSDNode<GlobalAddressSDNode>(
1914 Opc, DL.getIROrder(), DL.getDebugLoc(), GV, VTs, Offset, TargetFlags);
1915 CSEMap.InsertNode(N, IP);
1916 InsertNode(N);
1917 return SDValue(N, 0);
1918}
1919
1920SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1921 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1922 SDVTList VTs = getVTList(VT);
1924 AddNodeIDNode(ID, Opc, VTs, {});
1925 ID.AddInteger(FI);
1926 void *IP = nullptr;
1927 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1928 return SDValue(E, 0);
1929
1930 auto *N = newSDNode<FrameIndexSDNode>(FI, VTs, isTarget);
1931 CSEMap.InsertNode(N, IP);
1932 InsertNode(N);
1933 return SDValue(N, 0);
1934}
1935
1936SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1937 unsigned TargetFlags) {
1938 assert((TargetFlags == 0 || isTarget) &&
1939 "Cannot set target flags on target-independent jump tables");
1940 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1941 SDVTList VTs = getVTList(VT);
1943 AddNodeIDNode(ID, Opc, VTs, {});
1944 ID.AddInteger(JTI);
1945 ID.AddInteger(TargetFlags);
1946 void *IP = nullptr;
1947 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1948 return SDValue(E, 0);
1949
1950 auto *N = newSDNode<JumpTableSDNode>(JTI, VTs, isTarget, TargetFlags);
1951 CSEMap.InsertNode(N, IP);
1952 InsertNode(N);
1953 return SDValue(N, 0);
1954}
1955
1957 const SDLoc &DL) {
1959 return getNode(ISD::JUMP_TABLE_DEBUG_INFO, DL, MVT::Glue, Chain,
1960 getTargetConstant(static_cast<uint64_t>(JTI), DL, PTy, true));
1961}
1962
1964 MaybeAlign Alignment, int Offset,
1965 bool isTarget, unsigned TargetFlags) {
1966 assert((TargetFlags == 0 || isTarget) &&
1967 "Cannot set target flags on target-independent globals");
1968 if (!Alignment)
1969 Alignment = shouldOptForSize()
1970 ? getDataLayout().getABITypeAlign(C->getType())
1971 : getDataLayout().getPrefTypeAlign(C->getType());
1972 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1973 SDVTList VTs = getVTList(VT);
1975 AddNodeIDNode(ID, Opc, VTs, {});
1976 ID.AddInteger(Alignment->value());
1977 ID.AddInteger(Offset);
1978 ID.AddPointer(C);
1979 ID.AddInteger(TargetFlags);
1980 void *IP = nullptr;
1981 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
1982 return SDValue(E, 0);
1983
1984 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
1985 TargetFlags);
1986 CSEMap.InsertNode(N, IP);
1987 InsertNode(N);
1988 SDValue V = SDValue(N, 0);
1989 NewSDValueDbgMsg(V, "Creating new constant pool: ", this);
1990 return V;
1991}
1992
1994 MaybeAlign Alignment, int Offset,
1995 bool isTarget, unsigned TargetFlags) {
1996 assert((TargetFlags == 0 || isTarget) &&
1997 "Cannot set target flags on target-independent globals");
1998 if (!Alignment)
1999 Alignment = getDataLayout().getPrefTypeAlign(C->getType());
2000 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
2001 SDVTList VTs = getVTList(VT);
2003 AddNodeIDNode(ID, Opc, VTs, {});
2004 ID.AddInteger(Alignment->value());
2005 ID.AddInteger(Offset);
2006 C->addSelectionDAGCSEId(ID);
2007 ID.AddInteger(TargetFlags);
2008 void *IP = nullptr;
2009 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2010 return SDValue(E, 0);
2011
2012 auto *N = newSDNode<ConstantPoolSDNode>(isTarget, C, VTs, Offset, *Alignment,
2013 TargetFlags);
2014 CSEMap.InsertNode(N, IP);
2015 InsertNode(N);
2016 return SDValue(N, 0);
2017}
2018
2021 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), {});
2022 ID.AddPointer(MBB);
2023 void *IP = nullptr;
2024 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2025 return SDValue(E, 0);
2026
2027 auto *N = newSDNode<BasicBlockSDNode>(MBB);
2028 CSEMap.InsertNode(N, IP);
2029 InsertNode(N);
2030 return SDValue(N, 0);
2031}
2032
2034 if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
2035 ValueTypeNodes.size())
2036 ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
2037
2038 SDNode *&N = VT.isExtended() ?
2039 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
2040
2041 if (N) return SDValue(N, 0);
2042 N = newSDNode<VTSDNode>(VT);
2043 InsertNode(N);
2044 return SDValue(N, 0);
2045}
2046
2048 SDNode *&N = ExternalSymbols[Sym];
2049 if (N) return SDValue(N, 0);
2050 N = newSDNode<ExternalSymbolSDNode>(false, Sym, 0, getVTList(VT));
2051 InsertNode(N);
2052 return SDValue(N, 0);
2053}
2054
2056 SDNode *&N = MCSymbols[Sym];
2057 if (N)
2058 return SDValue(N, 0);
2059 N = newSDNode<MCSymbolSDNode>(Sym, getVTList(VT));
2060 InsertNode(N);
2061 return SDValue(N, 0);
2062}
2063
2065 unsigned TargetFlags) {
2066 SDNode *&N =
2067 TargetExternalSymbols[std::pair<std::string, unsigned>(Sym, TargetFlags)];
2068 if (N) return SDValue(N, 0);
2069 N = newSDNode<ExternalSymbolSDNode>(true, Sym, TargetFlags, getVTList(VT));
2070 InsertNode(N);
2071 return SDValue(N, 0);
2072}
2073
2075 if ((unsigned)Cond >= CondCodeNodes.size())
2076 CondCodeNodes.resize(Cond+1);
2077
2078 if (!CondCodeNodes[Cond]) {
2079 auto *N = newSDNode<CondCodeSDNode>(Cond);
2080 CondCodeNodes[Cond] = N;
2081 InsertNode(N);
2082 }
2083
2084 return SDValue(CondCodeNodes[Cond], 0);
2085}
2086
2088 bool ConstantFold) {
2089 assert(MulImm.getBitWidth() == VT.getSizeInBits() &&
2090 "APInt size does not match type size!");
2091
2092 if (MulImm == 0)
2093 return getConstant(0, DL, VT);
2094
2095 if (ConstantFold) {
2096 const MachineFunction &MF = getMachineFunction();
2097 const Function &F = MF.getFunction();
2098 ConstantRange CR = getVScaleRange(&F, 64);
2099 if (const APInt *C = CR.getSingleElement())
2100 return getConstant(MulImm * C->getZExtValue(), DL, VT);
2101 }
2102
2103 return getNode(ISD::VSCALE, DL, VT, getConstant(MulImm, DL, VT));
2104}
2105
2107 bool ConstantFold) {
2108 if (EC.isScalable())
2109 return getVScale(DL, VT,
2110 APInt(VT.getSizeInBits(), EC.getKnownMinValue()));
2111
2112 return getConstant(EC.getKnownMinValue(), DL, VT);
2113}
2114
2116 APInt One(ResVT.getScalarSizeInBits(), 1);
2117 return getStepVector(DL, ResVT, One);
2118}
2119
2121 const APInt &StepVal) {
2122 assert(ResVT.getScalarSizeInBits() == StepVal.getBitWidth());
2123 if (ResVT.isScalableVector())
2124 return getNode(
2125 ISD::STEP_VECTOR, DL, ResVT,
2126 getTargetConstant(StepVal, DL, ResVT.getVectorElementType()));
2127
2128 SmallVector<SDValue, 16> OpsStepConstants;
2129 for (uint64_t i = 0; i < ResVT.getVectorNumElements(); i++)
2130 OpsStepConstants.push_back(
2131 getConstant(StepVal * i, DL, ResVT.getVectorElementType()));
2132 return getBuildVector(ResVT, DL, OpsStepConstants);
2133}
2134
2135/// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
2136/// point at N1 to point at N2 and indices that point at N2 to point at N1.
2141
2143 SDValue N2, ArrayRef<int> Mask) {
2144 assert(VT.getVectorNumElements() == Mask.size() &&
2145 "Must have the same number of vector elements as mask elements!");
2146 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2147 "Invalid VECTOR_SHUFFLE");
2148
2149 // Canonicalize shuffle undef, undef -> undef
2150 if (N1.isUndef() && N2.isUndef())
2151 return getUNDEF(VT);
2152
2153 // Validate that all indices in Mask are within the range of the elements
2154 // input to the shuffle.
2155 int NElts = Mask.size();
2156 assert(llvm::all_of(Mask,
2157 [&](int M) { return M < (NElts * 2) && M >= -1; }) &&
2158 "Index out of range");
2159
2160 // Copy the mask so we can do any needed cleanup.
2161 SmallVector<int, 8> MaskVec(Mask);
2162
2163 // Canonicalize shuffle v, v -> v, undef
2164 if (N1 == N2) {
2165 N2 = getUNDEF(VT);
2166 for (int i = 0; i != NElts; ++i)
2167 if (MaskVec[i] >= NElts) MaskVec[i] -= NElts;
2168 }
2169
2170 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
2171 if (N1.isUndef())
2172 commuteShuffle(N1, N2, MaskVec);
2173
2174 if (TLI->hasVectorBlend()) {
2175 // If shuffling a splat, try to blend the splat instead. We do this here so
2176 // that even when this arises during lowering we don't have to re-handle it.
2177 auto BlendSplat = [&](BuildVectorSDNode *BV, int Offset) {
2178 BitVector UndefElements;
2179 SDValue Splat = BV->getSplatValue(&UndefElements);
2180 if (!Splat)
2181 return;
2182
2183 for (int i = 0; i < NElts; ++i) {
2184 if (MaskVec[i] < Offset || MaskVec[i] >= (Offset + NElts))
2185 continue;
2186
2187 // If this input comes from undef, mark it as such.
2188 if (UndefElements[MaskVec[i] - Offset]) {
2189 MaskVec[i] = -1;
2190 continue;
2191 }
2192
2193 // If we can blend a non-undef lane, use that instead.
2194 if (!UndefElements[i])
2195 MaskVec[i] = i + Offset;
2196 }
2197 };
2198 if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
2199 BlendSplat(N1BV, 0);
2200 if (auto *N2BV = dyn_cast<BuildVectorSDNode>(N2))
2201 BlendSplat(N2BV, NElts);
2202 }
2203
2204 // Canonicalize all index into lhs, -> shuffle lhs, undef
2205 // Canonicalize all index into rhs, -> shuffle rhs, undef
2206 bool AllLHS = true, AllRHS = true;
2207 bool N2Undef = N2.isUndef();
2208 for (int i = 0; i != NElts; ++i) {
2209 if (MaskVec[i] >= NElts) {
2210 if (N2Undef)
2211 MaskVec[i] = -1;
2212 else
2213 AllLHS = false;
2214 } else if (MaskVec[i] >= 0) {
2215 AllRHS = false;
2216 }
2217 }
2218 if (AllLHS && AllRHS)
2219 return getUNDEF(VT);
2220 if (AllLHS && !N2Undef)
2221 N2 = getUNDEF(VT);
2222 if (AllRHS) {
2223 N1 = getUNDEF(VT);
2224 commuteShuffle(N1, N2, MaskVec);
2225 }
2226 // Reset our undef status after accounting for the mask.
2227 N2Undef = N2.isUndef();
2228 // Re-check whether both sides ended up undef.
2229 if (N1.isUndef() && N2Undef)
2230 return getUNDEF(VT);
2231
2232 // If Identity shuffle return that node.
2233 bool Identity = true, AllSame = true;
2234 for (int i = 0; i != NElts; ++i) {
2235 if (MaskVec[i] >= 0 && MaskVec[i] != i) Identity = false;
2236 if (MaskVec[i] != MaskVec[0]) AllSame = false;
2237 }
2238 if (Identity && NElts)
2239 return N1;
2240
2241 // Shuffling a constant splat doesn't change the result.
2242 if (N2Undef) {
2243 SDValue V = N1;
2244
2245 // Look through any bitcasts. We check that these don't change the number
2246 // (and size) of elements and just changes their types.
2247 while (V.getOpcode() == ISD::BITCAST)
2248 V = V->getOperand(0);
2249
2250 // A splat should always show up as a build vector node.
2251 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2252 BitVector UndefElements;
2253 SDValue Splat = BV->getSplatValue(&UndefElements);
2254 // If this is a splat of an undef, shuffling it is also undef.
2255 if (Splat && Splat.isUndef())
2256 return getUNDEF(VT);
2257
2258 bool SameNumElts =
2259 V.getValueType().getVectorNumElements() == VT.getVectorNumElements();
2260
2261 // We only have a splat which can skip shuffles if there is a splatted
2262 // value and no undef lanes rearranged by the shuffle.
2263 if (Splat && UndefElements.none()) {
2264 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
2265 // number of elements match or the value splatted is a zero constant.
2266 if (SameNumElts || isNullConstant(Splat))
2267 return N1;
2268 }
2269
2270 // If the shuffle itself creates a splat, build the vector directly.
2271 if (AllSame && SameNumElts) {
2272 EVT BuildVT = BV->getValueType(0);
2273 const SDValue &Splatted = BV->getOperand(MaskVec[0]);
2274 SDValue NewBV = getSplatBuildVector(BuildVT, dl, Splatted);
2275
2276 // We may have jumped through bitcasts, so the type of the
2277 // BUILD_VECTOR may not match the type of the shuffle.
2278 if (BuildVT != VT)
2279 NewBV = getNode(ISD::BITCAST, dl, VT, NewBV);
2280 return NewBV;
2281 }
2282 }
2283 }
2284
2285 SDVTList VTs = getVTList(VT);
2287 SDValue Ops[2] = { N1, N2 };
2289 for (int i = 0; i != NElts; ++i)
2290 ID.AddInteger(MaskVec[i]);
2291
2292 void* IP = nullptr;
2293 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2294 return SDValue(E, 0);
2295
2296 // Allocate the mask array for the node out of the BumpPtrAllocator, since
2297 // SDNode doesn't have access to it. This memory will be "leaked" when
2298 // the node is deallocated, but recovered when the NodeAllocator is released.
2299 int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
2300 llvm::copy(MaskVec, MaskAlloc);
2301
2302 auto *N = newSDNode<ShuffleVectorSDNode>(VTs, dl.getIROrder(),
2303 dl.getDebugLoc(), MaskAlloc);
2304 createOperands(N, Ops);
2305
2306 CSEMap.InsertNode(N, IP);
2307 InsertNode(N);
2308 SDValue V = SDValue(N, 0);
2309 NewSDValueDbgMsg(V, "Creating new node: ", this);
2310 return V;
2311}
2312
2314 EVT VT = SV.getValueType(0);
2315 SmallVector<int, 8> MaskVec(SV.getMask());
2317
2318 SDValue Op0 = SV.getOperand(0);
2319 SDValue Op1 = SV.getOperand(1);
2320 return getVectorShuffle(VT, SDLoc(&SV), Op1, Op0, MaskVec);
2321}
2322
2324 SDVTList VTs = getVTList(VT);
2326 AddNodeIDNode(ID, ISD::Register, VTs, {});
2327 ID.AddInteger(Reg.id());
2328 void *IP = nullptr;
2329 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2330 return SDValue(E, 0);
2331
2332 auto *N = newSDNode<RegisterSDNode>(Reg, VTs);
2333 N->SDNodeBits.IsDivergent = TLI->isSDNodeSourceOfDivergence(N, FLI, UA);
2334 CSEMap.InsertNode(N, IP);
2335 InsertNode(N);
2336 return SDValue(N, 0);
2337}
2338
2341 AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), {});
2342 ID.AddPointer(RegMask);
2343 void *IP = nullptr;
2344 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2345 return SDValue(E, 0);
2346
2347 auto *N = newSDNode<RegisterMaskSDNode>(RegMask);
2348 CSEMap.InsertNode(N, IP);
2349 InsertNode(N);
2350 return SDValue(N, 0);
2351}
2352
2354 MCSymbol *Label) {
2355 return getLabelNode(ISD::EH_LABEL, dl, Root, Label);
2356}
2357
2358SDValue SelectionDAG::getLabelNode(unsigned Opcode, const SDLoc &dl,
2359 SDValue Root, MCSymbol *Label) {
2361 SDValue Ops[] = { Root };
2362 AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), Ops);
2363 ID.AddPointer(Label);
2364 void *IP = nullptr;
2365 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2366 return SDValue(E, 0);
2367
2368 auto *N =
2369 newSDNode<LabelSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), Label);
2370 createOperands(N, Ops);
2371
2372 CSEMap.InsertNode(N, IP);
2373 InsertNode(N);
2374 return SDValue(N, 0);
2375}
2376
2378 int64_t Offset, bool isTarget,
2379 unsigned TargetFlags) {
2380 unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
2381 SDVTList VTs = getVTList(VT);
2382
2384 AddNodeIDNode(ID, Opc, VTs, {});
2385 ID.AddPointer(BA);
2386 ID.AddInteger(Offset);
2387 ID.AddInteger(TargetFlags);
2388 void *IP = nullptr;
2389 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2390 return SDValue(E, 0);
2391
2392 auto *N = newSDNode<BlockAddressSDNode>(Opc, VTs, BA, Offset, TargetFlags);
2393 CSEMap.InsertNode(N, IP);
2394 InsertNode(N);
2395 return SDValue(N, 0);
2396}
2397
2400 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), {});
2401 ID.AddPointer(V);
2402
2403 void *IP = nullptr;
2404 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2405 return SDValue(E, 0);
2406
2407 auto *N = newSDNode<SrcValueSDNode>(V);
2408 CSEMap.InsertNode(N, IP);
2409 InsertNode(N);
2410 return SDValue(N, 0);
2411}
2412
2415 AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), {});
2416 ID.AddPointer(MD);
2417
2418 void *IP = nullptr;
2419 if (SDNode *E = FindNodeOrInsertPos(ID, IP))
2420 return SDValue(E, 0);
2421
2422 auto *N = newSDNode<MDNodeSDNode>(MD);
2423 CSEMap.InsertNode(N, IP);
2424 InsertNode(N);
2425 return SDValue(N, 0);
2426}
2427
2429 if (VT == V.getValueType())
2430 return V;
2431
2432 return getNode(ISD::BITCAST, SDLoc(V), VT, V);
2433}
2434
2436 unsigned SrcAS, unsigned DestAS) {
2437 SDVTList VTs = getVTList(VT);
2438 SDValue Ops[] = {Ptr};
2440 AddNodeIDNode(ID, ISD::ADDRSPACECAST, VTs, Ops);
2441 ID.AddInteger(SrcAS);
2442 ID.AddInteger(DestAS);
2443
2444 void *IP = nullptr;
2445 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
2446 return SDValue(E, 0);
2447
2448 auto *N = newSDNode<AddrSpaceCastSDNode>(dl.getIROrder(), dl.getDebugLoc(),
2449 VTs, SrcAS, DestAS);
2450 createOperands(N, Ops);
2451
2452 CSEMap.InsertNode(N, IP);
2453 InsertNode(N);
2454 return SDValue(N, 0);
2455}
2456
2458 return getNode(ISD::FREEZE, SDLoc(V), V.getValueType(), V);
2459}
2460
2461/// getShiftAmountOperand - Return the specified value casted to
2462/// the target's desired shift amount type.
2464 EVT OpTy = Op.getValueType();
2465 EVT ShTy = TLI->getShiftAmountTy(LHSTy, getDataLayout());
2466 if (OpTy == ShTy || OpTy.isVector()) return Op;
2467
2468 return getZExtOrTrunc(Op, SDLoc(Op), ShTy);
2469}
2470
2471/// Given a store node \p StoreNode, return true if it is safe to fold that node
2472/// into \p FPNode, which expands to a library call with output pointers.
2474 SDNode *FPNode) {
2476 SmallVector<const SDNode *, 8> DeferredNodes;
2478
2479 // Skip FPNode use by StoreNode (that's the use we want to fold into FPNode).
2480 for (SDValue Op : StoreNode->ops())
2481 if (Op.getNode() != FPNode)
2482 Worklist.push_back(Op.getNode());
2483
2485 while (!Worklist.empty()) {
2486 const SDNode *Node = Worklist.pop_back_val();
2487 auto [_, Inserted] = Visited.insert(Node);
2488 if (!Inserted)
2489 continue;
2490
2491 if (MaxSteps > 0 && Visited.size() >= MaxSteps)
2492 return false;
2493
2494 // Reached the FPNode (would result in a cycle).
2495 // OR Reached CALLSEQ_START (would result in nested call sequences).
2496 if (Node == FPNode || Node->getOpcode() == ISD::CALLSEQ_START)
2497 return false;
2498
2499 if (Node->getOpcode() == ISD::CALLSEQ_END) {
2500 // Defer looking into call sequences (so we can check we're outside one).
2501 // We still need to look through these for the predecessor check.
2502 DeferredNodes.push_back(Node);
2503 continue;
2504 }
2505
2506 for (SDValue Op : Node->ops())
2507 Worklist.push_back(Op.getNode());
2508 }
2509
2510 // True if we're outside a call sequence and don't have the FPNode as a
2511 // predecessor. No cycles or nested call sequences possible.
2512 return !SDNode::hasPredecessorHelper(FPNode, Visited, DeferredNodes,
2513 MaxSteps);
2514}
2515
2517 RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl<SDValue> &Results,
2518 std::optional<unsigned> CallRetResNo) {
2519 LLVMContext &Ctx = *getContext();
2520 EVT VT = Node->getValueType(0);
2521 unsigned NumResults = Node->getNumValues();
2522
2523 if (LC == RTLIB::UNKNOWN_LIBCALL)
2524 return false;
2525
2526 const char *LCName = TLI->getLibcallName(LC);
2527 if (!LCName)
2528 return false;
2529
2530 auto getVecDesc = [&]() -> VecDesc const * {
2531 for (bool Masked : {false, true}) {
2532 if (VecDesc const *VD = getLibInfo().getVectorMappingInfo(
2533 LCName, VT.getVectorElementCount(), Masked)) {
2534 return VD;
2535 }
2536 }
2537 return nullptr;
2538 };
2539
2540 // For vector types, we must find a vector mapping for the libcall.
2541 VecDesc const *VD = nullptr;
2542 if (VT.isVector() && !(VD = getVecDesc()))
2543 return false;
2544
2545 // Find users of the node that store the results (and share input chains). The
2546 // destination pointers can be used instead of creating stack allocations.
2547 SDValue StoresInChain;
2548 SmallVector<StoreSDNode *, 2> ResultStores(NumResults);
2549 for (SDNode *User : Node->users()) {
2551 continue;
2552 auto *ST = cast<StoreSDNode>(User);
2553 SDValue StoreValue = ST->getValue();
2554 unsigned ResNo = StoreValue.getResNo();
2555 // Ensure the store corresponds to an output pointer.
2556 if (CallRetResNo == ResNo)
2557 continue;
2558 // Ensure the store to the default address space and not atomic or volatile.
2559 if (!ST->isSimple() || ST->getAddressSpace() != 0)
2560 continue;
2561 // Ensure all store chains are the same (so they don't alias).
2562 if (StoresInChain && ST->getChain() != StoresInChain)
2563 continue;
2564 // Ensure the store is properly aligned.
2565 Type *StoreType = StoreValue.getValueType().getTypeForEVT(Ctx);
2566 if (ST->getAlign() <
2567 getDataLayout().getABITypeAlign(StoreType->getScalarType()))
2568 continue;
2569 // Avoid:
2570 // 1. Creating cyclic dependencies.
2571 // 2. Expanding the node to a call within a call sequence.
2573 continue;
2574 ResultStores[ResNo] = ST;
2575 StoresInChain = ST->getChain();
2576 }
2577
2579
2580 // Pass the arguments.
2581 for (const SDValue &Op : Node->op_values()) {
2582 EVT ArgVT = Op.getValueType();
2583 Type *ArgTy = ArgVT.getTypeForEVT(Ctx);
2584 Args.emplace_back(Op, ArgTy);
2585 }
2586
2587 // Pass the output pointers.
2588 SmallVector<SDValue, 2> ResultPtrs(NumResults);
2590 for (auto [ResNo, ST] : llvm::enumerate(ResultStores)) {
2591 if (ResNo == CallRetResNo)
2592 continue;
2593 EVT ResVT = Node->getValueType(ResNo);
2594 SDValue ResultPtr = ST ? ST->getBasePtr() : CreateStackTemporary(ResVT);
2595 ResultPtrs[ResNo] = ResultPtr;
2596 Args.emplace_back(ResultPtr, PointerTy);
2597 }
2598
2599 SDLoc DL(Node);
2600
2601 // Pass the vector mask (if required).
2602 if (VD && VD->isMasked()) {
2603 EVT MaskVT = TLI->getSetCCResultType(getDataLayout(), Ctx, VT);
2604 SDValue Mask = getBoolConstant(true, DL, MaskVT, VT);
2605 Args.emplace_back(Mask, MaskVT.getTypeForEVT(Ctx));
2606 }
2607
2608 Type *RetType = CallRetResNo.has_value()
2609 ? Node->getValueType(*CallRetResNo).getTypeForEVT(Ctx)
2610 : Type::getVoidTy(Ctx);
2611 SDValue InChain = StoresInChain ? StoresInChain : getEntryNode();
2612 SDValue Callee = getExternalSymbol(VD ? VD->getVectorFnName().data() : LCName,
2613 TLI->getPointerTy(getDataLayout()));
2615 CLI.setDebugLoc(DL).setChain(InChain).setLibCallee(
2616 TLI->getLibcallCallingConv(LC), RetType, Callee, std::move(Args));
2617
2618 auto [Call, CallChain] = TLI->LowerCallTo(CLI);
2619
2620 for (auto [ResNo, ResultPtr] : llvm::enumerate(ResultPtrs)) {
2621 if (ResNo == CallRetResNo) {
2622 Results.push_back(Call);
2623 continue;
2624 }
2625 MachinePointerInfo PtrInfo;
2626 SDValue LoadResult =
2627 getLoad(Node->getValueType(ResNo), DL, CallChain, ResultPtr, PtrInfo);
2628 SDValue OutChain = LoadResult.getValue(1);
2629
2630 if (StoreSDNode *ST = ResultStores[ResNo]) {
2631 // Replace store with the library call.
2632 ReplaceAllUsesOfValueWith(SDValue(ST, 0), OutChain);
2633 PtrInfo = ST->getPointerInfo();
2634 } else {
2636 getMachineFunction(), cast<FrameIndexSDNode>(ResultPtr)->getIndex());
2637 }
2638
2639 Results.push_back(LoadResult);
2640 }
2641
2642 return true;
2643}
2644
2646 SDLoc dl(Node);
2648 const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2649 EVT VT = Node->getValueType(0);
2650 SDValue Tmp1 = Node->getOperand(0);
2651 SDValue Tmp2 = Node->getOperand(1);
2652 const MaybeAlign MA(Node->getConstantOperandVal(3));
2653
2654 SDValue VAListLoad = getLoad(TLI.getPointerTy(getDataLayout()), dl, Tmp1,
2655 Tmp2, MachinePointerInfo(V));
2656 SDValue VAList = VAListLoad;
2657
2658 if (MA && *MA > TLI.getMinStackArgumentAlignment()) {
2659 VAList = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2660 getConstant(MA->value() - 1, dl, VAList.getValueType()));
2661
2662 VAList = getNode(
2663 ISD::AND, dl, VAList.getValueType(), VAList,
2664 getSignedConstant(-(int64_t)MA->value(), dl, VAList.getValueType()));
2665 }
2666
2667 // Increment the pointer, VAList, to the next vaarg
2668 Tmp1 = getNode(ISD::ADD, dl, VAList.getValueType(), VAList,
2669 getConstant(getDataLayout().getTypeAllocSize(
2670 VT.getTypeForEVT(*getContext())),
2671 dl, VAList.getValueType()));
2672 // Store the incremented VAList to the legalized pointer
2673 Tmp1 =
2674 getStore(VAListLoad.getValue(1), dl, Tmp1, Tmp2, MachinePointerInfo(V));
2675 // Load the actual argument out of the pointer VAList
2676 return getLoad(VT, dl, Tmp1, VAList, MachinePointerInfo());
2677}
2678
2680 SDLoc dl(Node);
2682 // This defaults to loading a pointer from the input and storing it to the
2683 // output, returning the chain.
2684 const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2685 const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2686 SDValue Tmp1 =
2687 getLoad(TLI.getPointerTy(getDataLayout()), dl, Node->getOperand(0),
2688 Node->getOperand(2), MachinePointerInfo(VS));
2689 return getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2690 MachinePointerInfo(VD));
2691}
2692
2694 const DataLayout &DL = getDataLayout();
2695 Type *Ty = VT.getTypeForEVT(*getContext());
2696 Align RedAlign = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2697
2698 if (TLI->isTypeLegal(VT) || !VT.isVector())
2699 return RedAlign;
2700
2701 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2702 const Align StackAlign = TFI->getStackAlign();
2703
2704 // See if we can choose a smaller ABI alignment in cases where it's an
2705 // illegal vector type that will get broken down.
2706 if (RedAlign > StackAlign) {
2707 EVT IntermediateVT;
2708 MVT RegisterVT;
2709 unsigned NumIntermediates;
2710 TLI->getVectorTypeBreakdown(*getContext(), VT, IntermediateVT,
2711 NumIntermediates, RegisterVT);
2712 Ty = IntermediateVT.getTypeForEVT(*getContext());
2713 Align RedAlign2 = UseABI ? DL.getABITypeAlign(Ty) : DL.getPrefTypeAlign(Ty);
2714 if (RedAlign2 < RedAlign)
2715 RedAlign = RedAlign2;
2716
2717 if (!getMachineFunction().getFrameInfo().isStackRealignable())
2718 // If the stack is not realignable, the alignment should be limited to the
2719 // StackAlignment
2720 RedAlign = std::min(RedAlign, StackAlign);
2721 }
2722
2723 return RedAlign;
2724}
2725
2727 MachineFrameInfo &MFI = MF->getFrameInfo();
2728 const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
2729 int StackID = 0;
2730 if (Bytes.isScalable())
2731 StackID = TFI->getStackIDForScalableVectors();
2732 // The stack id gives an indication of whether the object is scalable or
2733 // not, so it's safe to pass in the minimum size here.
2734 int FrameIdx = MFI.CreateStackObject(Bytes.getKnownMinValue(), Alignment,
2735 false, nullptr, StackID);
2736 return getFrameIndex(FrameIdx, TLI->getFrameIndexTy(getDataLayout()));
2737}
2738
2740 Type *Ty = VT.getTypeForEVT(*getContext());
2741 Align StackAlign =
2742 std::max(getDataLayout().getPrefTypeAlign(Ty), Align(minAlign));
2743 return CreateStackTemporary(VT.getStoreSize(), StackAlign);
2744}
2745
2747 TypeSize VT1Size = VT1.getStoreSize();
2748 TypeSize VT2Size = VT2.getStoreSize();
2749 assert(VT1Size.isScalable() == VT2Size.isScalable() &&
2750 "Don't know how to choose the maximum size when creating a stack "
2751 "temporary");
2752 TypeSize Bytes = VT1Size.getKnownMinValue() > VT2Size.getKnownMinValue()
2753 ? VT1Size
2754 : VT2Size;
2755
2756 Type *Ty1 = VT1.getTypeForEVT(*getContext());
2757 Type *Ty2 = VT2.getTypeForEVT(*getContext());
2758 const DataLayout &DL = getDataLayout();
2759 Align Align = std::max(DL.getPrefTypeAlign(Ty1), DL.getPrefTypeAlign(Ty2));
2760 return CreateStackTemporary(Bytes, Align);
2761}
2762
2764 ISD::CondCode Cond, const SDLoc &dl) {
2765 EVT OpVT = N1.getValueType();
2766
2767 auto GetUndefBooleanConstant = [&]() {
2768 if (VT.getScalarType() == MVT::i1 ||
2769 TLI->getBooleanContents(OpVT) ==
2771 return getUNDEF(VT);
2772 // ZeroOrOne / ZeroOrNegative require specific values for the high bits,
2773 // so we cannot use getUNDEF(). Return zero instead.
2774 return getConstant(0, dl, VT);
2775 };
2776
2777 // These setcc operations always fold.
2778 switch (Cond) {
2779 default: break;
2780 case ISD::SETFALSE:
2781 case ISD::SETFALSE2: return getBoolConstant(false, dl, VT, OpVT);
2782 case ISD::SETTRUE:
2783 case ISD::SETTRUE2: return getBoolConstant(true, dl, VT, OpVT);
2784
2785 case ISD::SETOEQ:
2786 case ISD::SETOGT:
2787 case ISD::SETOGE:
2788 case ISD::SETOLT:
2789 case ISD::SETOLE:
2790 case ISD::SETONE:
2791 case ISD::SETO:
2792 case ISD::SETUO:
2793 case ISD::SETUEQ:
2794 case ISD::SETUNE:
2795 assert(!OpVT.isInteger() && "Illegal setcc for integer!");
2796 break;
2797 }
2798
2799 if (OpVT.isInteger()) {
2800 // For EQ and NE, we can always pick a value for the undef to make the
2801 // predicate pass or fail, so we can return undef.
2802 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2803 // icmp eq/ne X, undef -> undef.
2804 if ((N1.isUndef() || N2.isUndef()) &&
2805 (Cond == ISD::SETEQ || Cond == ISD::SETNE))
2806 return GetUndefBooleanConstant();
2807
2808 // If both operands are undef, we can return undef for int comparison.
2809 // icmp undef, undef -> undef.
2810 if (N1.isUndef() && N2.isUndef())
2811 return GetUndefBooleanConstant();
2812
2813 // icmp X, X -> true/false
2814 // icmp X, undef -> true/false because undef could be X.
2815 if (N1.isUndef() || N2.isUndef() || N1 == N2)
2816 return getBoolConstant(ISD::isTrueWhenEqual(Cond), dl, VT, OpVT);
2817 }
2818
2820 const APInt &C2 = N2C->getAPIntValue();
2822 const APInt &C1 = N1C->getAPIntValue();
2823
2825 dl, VT, OpVT);
2826 }
2827 }
2828
2829 auto *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
2830 auto *N2CFP = dyn_cast<ConstantFPSDNode>(N2);
2831
2832 if (N1CFP && N2CFP) {
2833 APFloat::cmpResult R = N1CFP->getValueAPF().compare(N2CFP->getValueAPF());
2834 switch (Cond) {
2835 default: break;
2836 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
2837 return GetUndefBooleanConstant();
2838 [[fallthrough]];
2839 case ISD::SETOEQ: return getBoolConstant(R==APFloat::cmpEqual, dl, VT,
2840 OpVT);
2841 case ISD::SETNE: if (R==APFloat::cmpUnordered)
2842 return GetUndefBooleanConstant();
2843 [[fallthrough]];
2845 R==APFloat::cmpLessThan, dl, VT,
2846 OpVT);
2847 case ISD::SETLT: if (R==APFloat::cmpUnordered)
2848 return GetUndefBooleanConstant();
2849 [[fallthrough]];
2850 case ISD::SETOLT: return getBoolConstant(R==APFloat::cmpLessThan, dl, VT,
2851 OpVT);
2852 case ISD::SETGT: if (R==APFloat::cmpUnordered)
2853 return GetUndefBooleanConstant();
2854 [[fallthrough]];
2856 VT, OpVT);
2857 case ISD::SETLE: if (R==APFloat::cmpUnordered)
2858 return GetUndefBooleanConstant();
2859 [[fallthrough]];
2861 R==APFloat::cmpEqual, dl, VT,
2862 OpVT);
2863 case ISD::SETGE: if (R==APFloat::cmpUnordered)
2864 return GetUndefBooleanConstant();
2865 [[fallthrough]];
2867 R==APFloat::cmpEqual, dl, VT, OpVT);
2868 case ISD::SETO: return getBoolConstant(R!=APFloat::cmpUnordered, dl, VT,
2869 OpVT);
2870 case ISD::SETUO: return getBoolConstant(R==APFloat::cmpUnordered, dl, VT,
2871 OpVT);
2873 R==APFloat::cmpEqual, dl, VT,
2874 OpVT);
2875 case ISD::SETUNE: return getBoolConstant(R!=APFloat::cmpEqual, dl, VT,
2876 OpVT);
2878 R==APFloat::cmpLessThan, dl, VT,
2879 OpVT);
2881 R==APFloat::cmpUnordered, dl, VT,
2882 OpVT);
2884 VT, OpVT);
2885 case ISD::SETUGE: return getBoolConstant(R!=APFloat::cmpLessThan, dl, VT,
2886 OpVT);
2887 }
2888 } else if (N1CFP && OpVT.isSimple() && !N2.isUndef()) {
2889 // Ensure that the constant occurs on the RHS.
2891 if (!TLI->isCondCodeLegal(SwappedCond, OpVT.getSimpleVT()))
2892 return SDValue();
2893 return getSetCC(dl, VT, N2, N1, SwappedCond);
2894 } else if ((N2CFP && N2CFP->getValueAPF().isNaN()) ||
2895 (OpVT.isFloatingPoint() && (N1.isUndef() || N2.isUndef()))) {
2896 // If an operand is known to be a nan (or undef that could be a nan), we can
2897 // fold it.
2898 // Choosing NaN for the undef will always make unordered comparison succeed
2899 // and ordered comparison fails.
2900 // Matches behavior in llvm::ConstantFoldCompareInstruction.
2901 switch (ISD::getUnorderedFlavor(Cond)) {
2902 default:
2903 llvm_unreachable("Unknown flavor!");
2904 case 0: // Known false.
2905 return getBoolConstant(false, dl, VT, OpVT);
2906 case 1: // Known true.
2907 return getBoolConstant(true, dl, VT, OpVT);
2908 case 2: // Undefined.
2909 return GetUndefBooleanConstant();
2910 }
2911 }
2912
2913 // Could not fold it.
2914 return SDValue();
2915}
2916
2917/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2918/// use this predicate to simplify operations downstream.
2920 unsigned BitWidth = Op.getScalarValueSizeInBits();
2922}
2923
2924/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2925/// this predicate to simplify operations downstream. Mask is known to be zero
2926/// for bits that V cannot have.
2928 unsigned Depth) const {
2929 return Mask.isSubsetOf(computeKnownBits(V, Depth).Zero);
2930}
2931
2932/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero in
2933/// DemandedElts. We use this predicate to simplify operations downstream.
2934/// Mask is known to be zero for bits that V cannot have.
2936 const APInt &DemandedElts,
2937 unsigned Depth) const {
2938 return Mask.isSubsetOf(computeKnownBits(V, DemandedElts, Depth).Zero);
2939}
2940
2941/// MaskedVectorIsZero - Return true if 'Op' is known to be zero in
2942/// DemandedElts. We use this predicate to simplify operations downstream.
2944 unsigned Depth /* = 0 */) const {
2945 return computeKnownBits(V, DemandedElts, Depth).isZero();
2946}
2947
2948/// MaskedValueIsAllOnes - Return true if '(Op & Mask) == Mask'.
2950 unsigned Depth) const {
2951 return Mask.isSubsetOf(computeKnownBits(V, Depth).One);
2952}
2953
2955 const APInt &DemandedElts,
2956 unsigned Depth) const {
2957 EVT VT = Op.getValueType();
2958 assert(VT.isVector() && !VT.isScalableVector() && "Only for fixed vectors!");
2959
2960 unsigned NumElts = VT.getVectorNumElements();
2961 assert(DemandedElts.getBitWidth() == NumElts && "Unexpected demanded mask.");
2962
2963 APInt KnownZeroElements = APInt::getZero(NumElts);
2964 for (unsigned EltIdx = 0; EltIdx != NumElts; ++EltIdx) {
2965 if (!DemandedElts[EltIdx])
2966 continue; // Don't query elements that are not demanded.
2967 APInt Mask = APInt::getOneBitSet(NumElts, EltIdx);
2968 if (MaskedVectorIsZero(Op, Mask, Depth))
2969 KnownZeroElements.setBit(EltIdx);
2970 }
2971 return KnownZeroElements;
2972}
2973
2974/// isSplatValue - Return true if the vector V has the same value
2975/// across all DemandedElts. For scalable vectors, we don't know the
2976/// number of lanes at compile time. Instead, we use a 1 bit APInt
2977/// to represent a conservative value for all lanes; that is, that
2978/// one bit value is implicitly splatted across all lanes.
2979bool SelectionDAG::isSplatValue(SDValue V, const APInt &DemandedElts,
2980 APInt &UndefElts, unsigned Depth) const {
2981 unsigned Opcode = V.getOpcode();
2982 EVT VT = V.getValueType();
2983 assert(VT.isVector() && "Vector type expected");
2984 assert((!VT.isScalableVector() || DemandedElts.getBitWidth() == 1) &&
2985 "scalable demanded bits are ignored");
2986
2987 if (!DemandedElts)
2988 return false; // No demanded elts, better to assume we don't know anything.
2989
2990 if (Depth >= MaxRecursionDepth)
2991 return false; // Limit search depth.
2992
2993 // Deal with some common cases here that work for both fixed and scalable
2994 // vector types.
2995 switch (Opcode) {
2996 case ISD::SPLAT_VECTOR:
2997 UndefElts = V.getOperand(0).isUndef()
2998 ? APInt::getAllOnes(DemandedElts.getBitWidth())
2999 : APInt(DemandedElts.getBitWidth(), 0);
3000 return true;
3001 case ISD::ADD:
3002 case ISD::SUB:
3003 case ISD::AND:
3004 case ISD::XOR:
3005 case ISD::OR: {
3006 APInt UndefLHS, UndefRHS;
3007 SDValue LHS = V.getOperand(0);
3008 SDValue RHS = V.getOperand(1);
3009 // Only recognize splats with the same demanded undef elements for both
3010 // operands, otherwise we might fail to handle binop-specific undef
3011 // handling.
3012 // e.g. (and undef, 0) -> 0 etc.
3013 if (isSplatValue(LHS, DemandedElts, UndefLHS, Depth + 1) &&
3014 isSplatValue(RHS, DemandedElts, UndefRHS, Depth + 1) &&
3015 (DemandedElts & UndefLHS) == (DemandedElts & UndefRHS)) {
3016 UndefElts = UndefLHS | UndefRHS;
3017 return true;
3018 }
3019 return false;
3020 }
3021 case ISD::ABS:
3022 case ISD::TRUNCATE:
3023 case ISD::SIGN_EXTEND:
3024 case ISD::ZERO_EXTEND:
3025 return isSplatValue(V.getOperand(0), DemandedElts, UndefElts, Depth + 1);
3026 default:
3027 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
3028 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
3029 return TLI->isSplatValueForTargetNode(V, DemandedElts, UndefElts, *this,
3030 Depth);
3031 break;
3032 }
3033
3034 // We don't support other cases than those above for scalable vectors at
3035 // the moment.
3036 if (VT.isScalableVector())
3037 return false;
3038
3039 unsigned NumElts = VT.getVectorNumElements();
3040 assert(NumElts == DemandedElts.getBitWidth() && "Vector size mismatch");
3041 UndefElts = APInt::getZero(NumElts);
3042
3043 switch (Opcode) {
3044 case ISD::BUILD_VECTOR: {
3045 SDValue Scl;
3046 for (unsigned i = 0; i != NumElts; ++i) {
3047 SDValue Op = V.getOperand(i);
3048 if (Op.isUndef()) {
3049 UndefElts.setBit(i);
3050 continue;
3051 }
3052 if (!DemandedElts[i])
3053 continue;
3054 if (Scl && Scl != Op)
3055 return false;
3056 Scl = Op;
3057 }
3058 return true;
3059 }
3060 case ISD::VECTOR_SHUFFLE: {
3061 // Check if this is a shuffle node doing a splat or a shuffle of a splat.
3062 APInt DemandedLHS = APInt::getZero(NumElts);
3063 APInt DemandedRHS = APInt::getZero(NumElts);
3064 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(V)->getMask();
3065 for (int i = 0; i != (int)NumElts; ++i) {
3066 int M = Mask[i];
3067 if (M < 0) {
3068 UndefElts.setBit(i);
3069 continue;
3070 }
3071 if (!DemandedElts[i])
3072 continue;
3073 if (M < (int)NumElts)
3074 DemandedLHS.setBit(M);
3075 else
3076 DemandedRHS.setBit(M - NumElts);
3077 }
3078
3079 // If we aren't demanding either op, assume there's no splat.
3080 // If we are demanding both ops, assume there's no splat.
3081 if ((DemandedLHS.isZero() && DemandedRHS.isZero()) ||
3082 (!DemandedLHS.isZero() && !DemandedRHS.isZero()))
3083 return false;
3084
3085 // See if the demanded elts of the source op is a splat or we only demand
3086 // one element, which should always be a splat.
3087 // TODO: Handle source ops splats with undefs.
3088 auto CheckSplatSrc = [&](SDValue Src, const APInt &SrcElts) {
3089 APInt SrcUndefs;
3090 return (SrcElts.popcount() == 1) ||
3091 (isSplatValue(Src, SrcElts, SrcUndefs, Depth + 1) &&
3092 (SrcElts & SrcUndefs).isZero());
3093 };
3094 if (!DemandedLHS.isZero())
3095 return CheckSplatSrc(V.getOperand(0), DemandedLHS);
3096 return CheckSplatSrc(V.getOperand(1), DemandedRHS);
3097 }
3099 // Offset the demanded elts by the subvector index.
3100 SDValue Src = V.getOperand(0);
3101 // We don't support scalable vectors at the moment.
3102 if (Src.getValueType().isScalableVector())
3103 return false;
3104 uint64_t Idx = V.getConstantOperandVal(1);
3105 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3106 APInt UndefSrcElts;
3107 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3108 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3109 UndefElts = UndefSrcElts.extractBits(NumElts, Idx);
3110 return true;
3111 }
3112 break;
3113 }
3117 // Widen the demanded elts by the src element count.
3118 SDValue Src = V.getOperand(0);
3119 // We don't support scalable vectors at the moment.
3120 if (Src.getValueType().isScalableVector())
3121 return false;
3122 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3123 APInt UndefSrcElts;
3124 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3125 if (isSplatValue(Src, DemandedSrcElts, UndefSrcElts, Depth + 1)) {
3126 UndefElts = UndefSrcElts.trunc(NumElts);
3127 return true;
3128 }
3129 break;
3130 }
3131 case ISD::BITCAST: {
3132 SDValue Src = V.getOperand(0);
3133 EVT SrcVT = Src.getValueType();
3134 unsigned SrcBitWidth = SrcVT.getScalarSizeInBits();
3135 unsigned BitWidth = VT.getScalarSizeInBits();
3136
3137 // Ignore bitcasts from unsupported types.
3138 // TODO: Add fp support?
3139 if (!SrcVT.isVector() || !SrcVT.isInteger() || !VT.isInteger())
3140 break;
3141
3142 // Bitcast 'small element' vector to 'large element' vector.
3143 if ((BitWidth % SrcBitWidth) == 0) {
3144 // See if each sub element is a splat.
3145 unsigned Scale = BitWidth / SrcBitWidth;
3146 unsigned NumSrcElts = SrcVT.getVectorNumElements();
3147 APInt ScaledDemandedElts =
3148 APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
3149 for (unsigned I = 0; I != Scale; ++I) {
3150 APInt SubUndefElts;
3151 APInt SubDemandedElt = APInt::getOneBitSet(Scale, I);
3152 APInt SubDemandedElts = APInt::getSplat(NumSrcElts, SubDemandedElt);
3153 SubDemandedElts &= ScaledDemandedElts;
3154 if (!isSplatValue(Src, SubDemandedElts, SubUndefElts, Depth + 1))
3155 return false;
3156 // TODO: Add support for merging sub undef elements.
3157 if (!SubUndefElts.isZero())
3158 return false;
3159 }
3160 return true;
3161 }
3162 break;
3163 }
3164 }
3165
3166 return false;
3167}
3168
3169/// Helper wrapper to main isSplatValue function.
3170bool SelectionDAG::isSplatValue(SDValue V, bool AllowUndefs) const {
3171 EVT VT = V.getValueType();
3172 assert(VT.isVector() && "Vector type expected");
3173
3174 APInt UndefElts;
3175 // Since the number of lanes in a scalable vector is unknown at compile time,
3176 // we track one bit which is implicitly broadcast to all lanes. This means
3177 // that all lanes in a scalable vector are considered demanded.
3178 APInt DemandedElts
3180 return isSplatValue(V, DemandedElts, UndefElts) &&
3181 (AllowUndefs || !UndefElts);
3182}
3183
3186
3187 EVT VT = V.getValueType();
3188 unsigned Opcode = V.getOpcode();
3189 switch (Opcode) {
3190 default: {
3191 APInt UndefElts;
3192 // Since the number of lanes in a scalable vector is unknown at compile time,
3193 // we track one bit which is implicitly broadcast to all lanes. This means
3194 // that all lanes in a scalable vector are considered demanded.
3195 APInt DemandedElts
3197
3198 if (isSplatValue(V, DemandedElts, UndefElts)) {
3199 if (VT.isScalableVector()) {
3200 // DemandedElts and UndefElts are ignored for scalable vectors, since
3201 // the only supported cases are SPLAT_VECTOR nodes.
3202 SplatIdx = 0;
3203 } else {
3204 // Handle case where all demanded elements are UNDEF.
3205 if (DemandedElts.isSubsetOf(UndefElts)) {
3206 SplatIdx = 0;
3207 return getUNDEF(VT);
3208 }
3209 SplatIdx = (UndefElts & DemandedElts).countr_one();
3210 }
3211 return V;
3212 }
3213 break;
3214 }
3215 case ISD::SPLAT_VECTOR:
3216 SplatIdx = 0;
3217 return V;
3218 case ISD::VECTOR_SHUFFLE: {
3219 assert(!VT.isScalableVector());
3220 // Check if this is a shuffle node doing a splat.
3221 // TODO - remove this and rely purely on SelectionDAG::isSplatValue,
3222 // getTargetVShiftNode currently struggles without the splat source.
3223 auto *SVN = cast<ShuffleVectorSDNode>(V);
3224 if (!SVN->isSplat())
3225 break;
3226 int Idx = SVN->getSplatIndex();
3227 int NumElts = V.getValueType().getVectorNumElements();
3228 SplatIdx = Idx % NumElts;
3229 return V.getOperand(Idx / NumElts);
3230 }
3231 }
3232
3233 return SDValue();
3234}
3235
3237 int SplatIdx;
3238 if (SDValue SrcVector = getSplatSourceVector(V, SplatIdx)) {
3239 EVT SVT = SrcVector.getValueType().getScalarType();
3240 EVT LegalSVT = SVT;
3241 if (LegalTypes && !TLI->isTypeLegal(SVT)) {
3242 if (!SVT.isInteger())
3243 return SDValue();
3244 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
3245 if (LegalSVT.bitsLT(SVT))
3246 return SDValue();
3247 }
3248 return getExtractVectorElt(SDLoc(V), LegalSVT, SrcVector, SplatIdx);
3249 }
3250 return SDValue();
3251}
3252
3253std::optional<ConstantRange>
3255 unsigned Depth) const {
3256 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3257 V.getOpcode() == ISD::SRA) &&
3258 "Unknown shift node");
3259 // Shifting more than the bitwidth is not valid.
3260 unsigned BitWidth = V.getScalarValueSizeInBits();
3261
3262 if (auto *Cst = dyn_cast<ConstantSDNode>(V.getOperand(1))) {
3263 const APInt &ShAmt = Cst->getAPIntValue();
3264 if (ShAmt.uge(BitWidth))
3265 return std::nullopt;
3266 return ConstantRange(ShAmt);
3267 }
3268
3269 if (auto *BV = dyn_cast<BuildVectorSDNode>(V.getOperand(1))) {
3270 const APInt *MinAmt = nullptr, *MaxAmt = nullptr;
3271 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3272 if (!DemandedElts[i])
3273 continue;
3274 auto *SA = dyn_cast<ConstantSDNode>(BV->getOperand(i));
3275 if (!SA) {
3276 MinAmt = MaxAmt = nullptr;
3277 break;
3278 }
3279 const APInt &ShAmt = SA->getAPIntValue();
3280 if (ShAmt.uge(BitWidth))
3281 return std::nullopt;
3282 if (!MinAmt || MinAmt->ugt(ShAmt))
3283 MinAmt = &ShAmt;
3284 if (!MaxAmt || MaxAmt->ult(ShAmt))
3285 MaxAmt = &ShAmt;
3286 }
3287 assert(((!MinAmt && !MaxAmt) || (MinAmt && MaxAmt)) &&
3288 "Failed to find matching min/max shift amounts");
3289 if (MinAmt && MaxAmt)
3290 return ConstantRange(*MinAmt, *MaxAmt + 1);
3291 }
3292
3293 // Use computeKnownBits to find a hidden constant/knownbits (usually type
3294 // legalized). e.g. Hidden behind multiple bitcasts/build_vector/casts etc.
3295 KnownBits KnownAmt = computeKnownBits(V.getOperand(1), DemandedElts, Depth);
3296 if (KnownAmt.getMaxValue().ult(BitWidth))
3297 return ConstantRange::fromKnownBits(KnownAmt, /*IsSigned=*/false);
3298
3299 return std::nullopt;
3300}
3301
3302std::optional<unsigned>
3304 unsigned Depth) const {
3305 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3306 V.getOpcode() == ISD::SRA) &&
3307 "Unknown shift node");
3308 if (std::optional<ConstantRange> AmtRange =
3309 getValidShiftAmountRange(V, DemandedElts, Depth))
3310 if (const APInt *ShAmt = AmtRange->getSingleElement())
3311 return ShAmt->getZExtValue();
3312 return std::nullopt;
3313}
3314
3315std::optional<unsigned>
3317 EVT VT = V.getValueType();
3318 APInt DemandedElts = VT.isFixedLengthVector()
3320 : APInt(1, 1);
3321 return getValidShiftAmount(V, DemandedElts, Depth);
3322}
3323
3324std::optional<unsigned>
3326 unsigned Depth) const {
3327 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3328 V.getOpcode() == ISD::SRA) &&
3329 "Unknown shift node");
3330 if (std::optional<ConstantRange> AmtRange =
3331 getValidShiftAmountRange(V, DemandedElts, Depth))
3332 return AmtRange->getUnsignedMin().getZExtValue();
3333 return std::nullopt;
3334}
3335
3336std::optional<unsigned>
3338 EVT VT = V.getValueType();
3339 APInt DemandedElts = VT.isFixedLengthVector()
3341 : APInt(1, 1);
3342 return getValidMinimumShiftAmount(V, DemandedElts, Depth);
3343}
3344
3345std::optional<unsigned>
3347 unsigned Depth) const {
3348 assert((V.getOpcode() == ISD::SHL || V.getOpcode() == ISD::SRL ||
3349 V.getOpcode() == ISD::SRA) &&
3350 "Unknown shift node");
3351 if (std::optional<ConstantRange> AmtRange =
3352 getValidShiftAmountRange(V, DemandedElts, Depth))
3353 return AmtRange->getUnsignedMax().getZExtValue();
3354 return std::nullopt;
3355}
3356
3357std::optional<unsigned>
3359 EVT VT = V.getValueType();
3360 APInt DemandedElts = VT.isFixedLengthVector()
3362 : APInt(1, 1);
3363 return getValidMaximumShiftAmount(V, DemandedElts, Depth);
3364}
3365
3366/// Determine which bits of Op are known to be either zero or one and return
3367/// them in Known. For vectors, the known bits are those that are shared by
3368/// every vector element.
3370 EVT VT = Op.getValueType();
3371
3372 // Since the number of lanes in a scalable vector is unknown at compile time,
3373 // we track one bit which is implicitly broadcast to all lanes. This means
3374 // that all lanes in a scalable vector are considered demanded.
3375 APInt DemandedElts = VT.isFixedLengthVector()
3377 : APInt(1, 1);
3378 return computeKnownBits(Op, DemandedElts, Depth);
3379}
3380
3381/// Determine which bits of Op are known to be either zero or one and return
3382/// them in Known. The DemandedElts argument allows us to only collect the known
3383/// bits that are shared by the requested vector elements.
3385 unsigned Depth) const {
3386 unsigned BitWidth = Op.getScalarValueSizeInBits();
3387
3388 KnownBits Known(BitWidth); // Don't know anything.
3389
3390 if (auto OptAPInt = Op->bitcastToAPInt()) {
3391 // We know all of the bits for a constant!
3392 return KnownBits::makeConstant(*std::move(OptAPInt));
3393 }
3394
3395 if (Depth >= MaxRecursionDepth)
3396 return Known; // Limit search depth.
3397
3398 KnownBits Known2;
3399 unsigned NumElts = DemandedElts.getBitWidth();
3400 assert((!Op.getValueType().isFixedLengthVector() ||
3401 NumElts == Op.getValueType().getVectorNumElements()) &&
3402 "Unexpected vector size");
3403
3404 if (!DemandedElts)
3405 return Known; // No demanded elts, better to assume we don't know anything.
3406
3407 unsigned Opcode = Op.getOpcode();
3408 switch (Opcode) {
3409 case ISD::MERGE_VALUES:
3410 return computeKnownBits(Op.getOperand(Op.getResNo()), DemandedElts,
3411 Depth + 1);
3412 case ISD::SPLAT_VECTOR: {
3413 SDValue SrcOp = Op.getOperand(0);
3414 assert(SrcOp.getValueSizeInBits() >= BitWidth &&
3415 "Expected SPLAT_VECTOR implicit truncation");
3416 // Implicitly truncate the bits to match the official semantics of
3417 // SPLAT_VECTOR.
3418 Known = computeKnownBits(SrcOp, Depth + 1).trunc(BitWidth);
3419 break;
3420 }
3422 unsigned ScalarSize = Op.getOperand(0).getScalarValueSizeInBits();
3423 assert(ScalarSize * Op.getNumOperands() == BitWidth &&
3424 "Expected SPLAT_VECTOR_PARTS scalars to cover element width");
3425 for (auto [I, SrcOp] : enumerate(Op->ops())) {
3426 Known.insertBits(computeKnownBits(SrcOp, Depth + 1), ScalarSize * I);
3427 }
3428 break;
3429 }
3430 case ISD::STEP_VECTOR: {
3431 const APInt &Step = Op.getConstantOperandAPInt(0);
3432
3433 if (Step.isPowerOf2())
3434 Known.Zero.setLowBits(Step.logBase2());
3435
3437
3438 if (!isUIntN(BitWidth, Op.getValueType().getVectorMinNumElements()))
3439 break;
3440 const APInt MinNumElts =
3441 APInt(BitWidth, Op.getValueType().getVectorMinNumElements());
3442
3443 bool Overflow;
3444 const APInt MaxNumElts = getVScaleRange(&F, BitWidth)
3446 .umul_ov(MinNumElts, Overflow);
3447 if (Overflow)
3448 break;
3449
3450 const APInt MaxValue = (MaxNumElts - 1).umul_ov(Step, Overflow);
3451 if (Overflow)
3452 break;
3453
3454 Known.Zero.setHighBits(MaxValue.countl_zero());
3455 break;
3456 }
3457 case ISD::BUILD_VECTOR:
3458 assert(!Op.getValueType().isScalableVector());
3459 // Collect the known bits that are shared by every demanded vector element.
3460 Known.setAllConflict();
3461 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
3462 if (!DemandedElts[i])
3463 continue;
3464
3465 SDValue SrcOp = Op.getOperand(i);
3466 Known2 = computeKnownBits(SrcOp, Depth + 1);
3467
3468 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3469 if (SrcOp.getValueSizeInBits() != BitWidth) {
3470 assert(SrcOp.getValueSizeInBits() > BitWidth &&
3471 "Expected BUILD_VECTOR implicit truncation");
3472 Known2 = Known2.trunc(BitWidth);
3473 }
3474
3475 // Known bits are the values that are shared by every demanded element.
3476 Known = Known.intersectWith(Known2);
3477
3478 // If we don't know any bits, early out.
3479 if (Known.isUnknown())
3480 break;
3481 }
3482 break;
3483 case ISD::VECTOR_COMPRESS: {
3484 SDValue Vec = Op.getOperand(0);
3485 SDValue PassThru = Op.getOperand(2);
3486 Known = computeKnownBits(PassThru, DemandedElts, Depth + 1);
3487 // If we don't know any bits, early out.
3488 if (Known.isUnknown())
3489 break;
3490 Known2 = computeKnownBits(Vec, Depth + 1);
3491 Known = Known.intersectWith(Known2);
3492 break;
3493 }
3494 case ISD::VECTOR_SHUFFLE: {
3495 assert(!Op.getValueType().isScalableVector());
3496 // Collect the known bits that are shared by every vector element referenced
3497 // by the shuffle.
3498 APInt DemandedLHS, DemandedRHS;
3500 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
3501 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
3502 DemandedLHS, DemandedRHS))
3503 break;
3504
3505 // Known bits are the values that are shared by every demanded element.
3506 Known.setAllConflict();
3507 if (!!DemandedLHS) {
3508 SDValue LHS = Op.getOperand(0);
3509 Known2 = computeKnownBits(LHS, DemandedLHS, Depth + 1);
3510 Known = Known.intersectWith(Known2);
3511 }
3512 // If we don't know any bits, early out.
3513 if (Known.isUnknown())
3514 break;
3515 if (!!DemandedRHS) {
3516 SDValue RHS = Op.getOperand(1);
3517 Known2 = computeKnownBits(RHS, DemandedRHS, Depth + 1);
3518 Known = Known.intersectWith(Known2);
3519 }
3520 break;
3521 }
3522 case ISD::VSCALE: {
3524 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
3525 Known = getVScaleRange(&F, BitWidth).multiply(Multiplier).toKnownBits();
3526 break;
3527 }
3528 case ISD::CONCAT_VECTORS: {
3529 if (Op.getValueType().isScalableVector())
3530 break;
3531 // Split DemandedElts and test each of the demanded subvectors.
3532 Known.setAllConflict();
3533 EVT SubVectorVT = Op.getOperand(0).getValueType();
3534 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
3535 unsigned NumSubVectors = Op.getNumOperands();
3536 for (unsigned i = 0; i != NumSubVectors; ++i) {
3537 APInt DemandedSub =
3538 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
3539 if (!!DemandedSub) {
3540 SDValue Sub = Op.getOperand(i);
3541 Known2 = computeKnownBits(Sub, DemandedSub, Depth + 1);
3542 Known = Known.intersectWith(Known2);
3543 }
3544 // If we don't know any bits, early out.
3545 if (Known.isUnknown())
3546 break;
3547 }
3548 break;
3549 }
3550 case ISD::INSERT_SUBVECTOR: {
3551 if (Op.getValueType().isScalableVector())
3552 break;
3553 // Demand any elements from the subvector and the remainder from the src its
3554 // inserted into.
3555 SDValue Src = Op.getOperand(0);
3556 SDValue Sub = Op.getOperand(1);
3557 uint64_t Idx = Op.getConstantOperandVal(2);
3558 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
3559 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
3560 APInt DemandedSrcElts = DemandedElts;
3561 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
3562
3563 Known.setAllConflict();
3564 if (!!DemandedSubElts) {
3565 Known = computeKnownBits(Sub, DemandedSubElts, Depth + 1);
3566 if (Known.isUnknown())
3567 break; // early-out.
3568 }
3569 if (!!DemandedSrcElts) {
3570 Known2 = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3571 Known = Known.intersectWith(Known2);
3572 }
3573 break;
3574 }
3576 // Offset the demanded elts by the subvector index.
3577 SDValue Src = Op.getOperand(0);
3578 // Bail until we can represent demanded elements for scalable vectors.
3579 if (Op.getValueType().isScalableVector() || Src.getValueType().isScalableVector())
3580 break;
3581 uint64_t Idx = Op.getConstantOperandVal(1);
3582 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3583 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
3584 Known = computeKnownBits(Src, DemandedSrcElts, Depth + 1);
3585 break;
3586 }
3587 case ISD::SCALAR_TO_VECTOR: {
3588 if (Op.getValueType().isScalableVector())
3589 break;
3590 // We know about scalar_to_vector as much as we know about it source,
3591 // which becomes the first element of otherwise unknown vector.
3592 if (DemandedElts != 1)
3593 break;
3594
3595 SDValue N0 = Op.getOperand(0);
3596 Known = computeKnownBits(N0, Depth + 1);
3597 if (N0.getValueSizeInBits() != BitWidth)
3598 Known = Known.trunc(BitWidth);
3599
3600 break;
3601 }
3602 case ISD::BITCAST: {
3603 if (Op.getValueType().isScalableVector())
3604 break;
3605
3606 SDValue N0 = Op.getOperand(0);
3607 EVT SubVT = N0.getValueType();
3608 unsigned SubBitWidth = SubVT.getScalarSizeInBits();
3609
3610 // Ignore bitcasts from unsupported types.
3611 if (!(SubVT.isInteger() || SubVT.isFloatingPoint()))
3612 break;
3613
3614 // Fast handling of 'identity' bitcasts.
3615 if (BitWidth == SubBitWidth) {
3616 Known = computeKnownBits(N0, DemandedElts, Depth + 1);
3617 break;
3618 }
3619
3620 bool IsLE = getDataLayout().isLittleEndian();
3621
3622 // Bitcast 'small element' vector to 'large element' scalar/vector.
3623 if ((BitWidth % SubBitWidth) == 0) {
3624 assert(N0.getValueType().isVector() && "Expected bitcast from vector");
3625
3626 // Collect known bits for the (larger) output by collecting the known
3627 // bits from each set of sub elements and shift these into place.
3628 // We need to separately call computeKnownBits for each set of
3629 // sub elements as the knownbits for each is likely to be different.
3630 unsigned SubScale = BitWidth / SubBitWidth;
3631 APInt SubDemandedElts(NumElts * SubScale, 0);
3632 for (unsigned i = 0; i != NumElts; ++i)
3633 if (DemandedElts[i])
3634 SubDemandedElts.setBit(i * SubScale);
3635
3636 for (unsigned i = 0; i != SubScale; ++i) {
3637 Known2 = computeKnownBits(N0, SubDemandedElts.shl(i),
3638 Depth + 1);
3639 unsigned Shifts = IsLE ? i : SubScale - 1 - i;
3640 Known.insertBits(Known2, SubBitWidth * Shifts);
3641 }
3642 }
3643
3644 // Bitcast 'large element' scalar/vector to 'small element' vector.
3645 if ((SubBitWidth % BitWidth) == 0) {
3646 assert(Op.getValueType().isVector() && "Expected bitcast to vector");
3647
3648 // Collect known bits for the (smaller) output by collecting the known
3649 // bits from the overlapping larger input elements and extracting the
3650 // sub sections we actually care about.
3651 unsigned SubScale = SubBitWidth / BitWidth;
3652 APInt SubDemandedElts =
3653 APIntOps::ScaleBitMask(DemandedElts, NumElts / SubScale);
3654 Known2 = computeKnownBits(N0, SubDemandedElts, Depth + 1);
3655
3656 Known.setAllConflict();
3657 for (unsigned i = 0; i != NumElts; ++i)
3658 if (DemandedElts[i]) {
3659 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
3660 unsigned Offset = (Shifts % SubScale) * BitWidth;
3661 Known = Known.intersectWith(Known2.extractBits(BitWidth, Offset));
3662 // If we don't know any bits, early out.
3663 if (Known.isUnknown())
3664 break;
3665 }
3666 }
3667 break;
3668 }
3669 case ISD::AND:
3670 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3671 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3672
3673 Known &= Known2;
3674 break;
3675 case ISD::OR:
3676 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3677 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3678
3679 Known |= Known2;
3680 break;
3681 case ISD::XOR:
3682 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3683 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3684
3685 Known ^= Known2;
3686 break;
3687 case ISD::MUL: {
3688 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3689 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3690 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3691 // TODO: SelfMultiply can be poison, but not undef.
3692 if (SelfMultiply)
3693 SelfMultiply &= isGuaranteedNotToBeUndefOrPoison(
3694 Op.getOperand(0), DemandedElts, false, Depth + 1);
3695 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3696
3697 // If the multiplication is known not to overflow, the product of a number
3698 // with itself is non-negative. Only do this if we didn't already computed
3699 // the opposite value for the sign bit.
3700 if (Op->getFlags().hasNoSignedWrap() &&
3701 Op.getOperand(0) == Op.getOperand(1) &&
3702 !Known.isNegative())
3703 Known.makeNonNegative();
3704 break;
3705 }
3706 case ISD::MULHU: {
3707 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3708 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3709 Known = KnownBits::mulhu(Known, Known2);
3710 break;
3711 }
3712 case ISD::MULHS: {
3713 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3714 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3715 Known = KnownBits::mulhs(Known, Known2);
3716 break;
3717 }
3718 case ISD::ABDU: {
3719 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3720 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3721 Known = KnownBits::abdu(Known, Known2);
3722 break;
3723 }
3724 case ISD::ABDS: {
3725 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3726 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3727 Known = KnownBits::abds(Known, Known2);
3728 unsigned SignBits1 =
3729 ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
3730 if (SignBits1 == 1)
3731 break;
3732 unsigned SignBits0 =
3733 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
3734 Known.Zero.setHighBits(std::min(SignBits0, SignBits1) - 1);
3735 break;
3736 }
3737 case ISD::UMUL_LOHI: {
3738 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3739 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3740 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3741 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3742 if (Op.getResNo() == 0)
3743 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3744 else
3745 Known = KnownBits::mulhu(Known, Known2);
3746 break;
3747 }
3748 case ISD::SMUL_LOHI: {
3749 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3750 Known = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3751 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3752 bool SelfMultiply = Op.getOperand(0) == Op.getOperand(1);
3753 if (Op.getResNo() == 0)
3754 Known = KnownBits::mul(Known, Known2, SelfMultiply);
3755 else
3756 Known = KnownBits::mulhs(Known, Known2);
3757 break;
3758 }
3759 case ISD::AVGFLOORU: {
3760 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3761 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3762 Known = KnownBits::avgFloorU(Known, Known2);
3763 break;
3764 }
3765 case ISD::AVGCEILU: {
3766 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3767 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3768 Known = KnownBits::avgCeilU(Known, Known2);
3769 break;
3770 }
3771 case ISD::AVGFLOORS: {
3772 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3773 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3774 Known = KnownBits::avgFloorS(Known, Known2);
3775 break;
3776 }
3777 case ISD::AVGCEILS: {
3778 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3779 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3780 Known = KnownBits::avgCeilS(Known, Known2);
3781 break;
3782 }
3783 case ISD::SELECT:
3784 case ISD::VSELECT:
3785 Known = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3786 // If we don't know any bits, early out.
3787 if (Known.isUnknown())
3788 break;
3789 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth+1);
3790
3791 // Only known if known in both the LHS and RHS.
3792 Known = Known.intersectWith(Known2);
3793 break;
3794 case ISD::SELECT_CC:
3795 Known = computeKnownBits(Op.getOperand(3), DemandedElts, Depth+1);
3796 // If we don't know any bits, early out.
3797 if (Known.isUnknown())
3798 break;
3799 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth+1);
3800
3801 // Only known if known in both the LHS and RHS.
3802 Known = Known.intersectWith(Known2);
3803 break;
3804 case ISD::SMULO:
3805 case ISD::UMULO:
3806 if (Op.getResNo() != 1)
3807 break;
3808 // The boolean result conforms to getBooleanContents.
3809 // If we know the result of a setcc has the top bits zero, use this info.
3810 // We know that we have an integer-based boolean since these operations
3811 // are only available for integer.
3812 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
3814 BitWidth > 1)
3815 Known.Zero.setBitsFrom(1);
3816 break;
3817 case ISD::SETCC:
3818 case ISD::SETCCCARRY:
3819 case ISD::STRICT_FSETCC:
3820 case ISD::STRICT_FSETCCS: {
3821 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
3822 // If we know the result of a setcc has the top bits zero, use this info.
3823 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
3825 BitWidth > 1)
3826 Known.Zero.setBitsFrom(1);
3827 break;
3828 }
3829 case ISD::SHL: {
3830 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3831 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3832
3833 bool NUW = Op->getFlags().hasNoUnsignedWrap();
3834 bool NSW = Op->getFlags().hasNoSignedWrap();
3835
3836 bool ShAmtNonZero = Known2.isNonZero();
3837
3838 Known = KnownBits::shl(Known, Known2, NUW, NSW, ShAmtNonZero);
3839
3840 // Minimum shift low bits are known zero.
3841 if (std::optional<unsigned> ShMinAmt =
3842 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3843 Known.Zero.setLowBits(*ShMinAmt);
3844 break;
3845 }
3846 case ISD::SRL:
3847 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3848 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3849 Known = KnownBits::lshr(Known, Known2, /*ShAmtNonZero=*/false,
3850 Op->getFlags().hasExact());
3851
3852 // Minimum shift high bits are known zero.
3853 if (std::optional<unsigned> ShMinAmt =
3854 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
3855 Known.Zero.setHighBits(*ShMinAmt);
3856 break;
3857 case ISD::SRA:
3858 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3859 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3860 Known = KnownBits::ashr(Known, Known2, /*ShAmtNonZero=*/false,
3861 Op->getFlags().hasExact());
3862 break;
3863 case ISD::ROTL:
3864 case ISD::ROTR:
3865 if (ConstantSDNode *C =
3866 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
3867 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3868
3869 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3870
3871 // Canonicalize to ROTR.
3872 if (Opcode == ISD::ROTL && Amt != 0)
3873 Amt = BitWidth - Amt;
3874
3875 Known.Zero = Known.Zero.rotr(Amt);
3876 Known.One = Known.One.rotr(Amt);
3877 }
3878 break;
3879 case ISD::FSHL:
3880 case ISD::FSHR:
3881 if (ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(2), DemandedElts)) {
3882 unsigned Amt = C->getAPIntValue().urem(BitWidth);
3883
3884 // For fshl, 0-shift returns the 1st arg.
3885 // For fshr, 0-shift returns the 2nd arg.
3886 if (Amt == 0) {
3887 Known = computeKnownBits(Op.getOperand(Opcode == ISD::FSHL ? 0 : 1),
3888 DemandedElts, Depth + 1);
3889 break;
3890 }
3891
3892 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
3893 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
3894 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3895 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3896 if (Opcode == ISD::FSHL) {
3897 Known <<= Amt;
3898 Known2 >>= BitWidth - Amt;
3899 } else {
3900 Known <<= BitWidth - Amt;
3901 Known2 >>= Amt;
3902 }
3903 Known = Known.unionWith(Known2);
3904 }
3905 break;
3906 case ISD::SHL_PARTS:
3907 case ISD::SRA_PARTS:
3908 case ISD::SRL_PARTS: {
3909 assert((Op.getResNo() == 0 || Op.getResNo() == 1) && "Unknown result");
3910
3911 // Collect lo/hi source values and concatenate.
3912 unsigned LoBits = Op.getOperand(0).getScalarValueSizeInBits();
3913 unsigned HiBits = Op.getOperand(1).getScalarValueSizeInBits();
3914 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3915 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
3916 Known = Known2.concat(Known);
3917
3918 // Collect shift amount.
3919 Known2 = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
3920
3921 if (Opcode == ISD::SHL_PARTS)
3922 Known = KnownBits::shl(Known, Known2);
3923 else if (Opcode == ISD::SRA_PARTS)
3924 Known = KnownBits::ashr(Known, Known2);
3925 else // if (Opcode == ISD::SRL_PARTS)
3926 Known = KnownBits::lshr(Known, Known2);
3927
3928 // TODO: Minimum shift low/high bits are known zero.
3929
3930 if (Op.getResNo() == 0)
3931 Known = Known.extractBits(LoBits, 0);
3932 else
3933 Known = Known.extractBits(HiBits, LoBits);
3934 break;
3935 }
3937 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3938 EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
3939 Known = Known.sextInReg(EVT.getScalarSizeInBits());
3940 break;
3941 }
3942 case ISD::CTTZ:
3943 case ISD::CTTZ_ZERO_UNDEF: {
3944 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3945 // If we have a known 1, its position is our upper bound.
3946 unsigned PossibleTZ = Known2.countMaxTrailingZeros();
3947 unsigned LowBits = llvm::bit_width(PossibleTZ);
3948 Known.Zero.setBitsFrom(LowBits);
3949 break;
3950 }
3951 case ISD::CTLZ:
3952 case ISD::CTLZ_ZERO_UNDEF: {
3953 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3954 // If we have a known 1, its position is our upper bound.
3955 unsigned PossibleLZ = Known2.countMaxLeadingZeros();
3956 unsigned LowBits = llvm::bit_width(PossibleLZ);
3957 Known.Zero.setBitsFrom(LowBits);
3958 break;
3959 }
3960 case ISD::CTPOP: {
3961 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
3962 // If we know some of the bits are zero, they can't be one.
3963 unsigned PossibleOnes = Known2.countMaxPopulation();
3964 Known.Zero.setBitsFrom(llvm::bit_width(PossibleOnes));
3965 break;
3966 }
3967 case ISD::PARITY: {
3968 // Parity returns 0 everywhere but the LSB.
3969 Known.Zero.setBitsFrom(1);
3970 break;
3971 }
3972 case ISD::MGATHER:
3973 case ISD::MLOAD: {
3974 ISD::LoadExtType ETy =
3975 (Opcode == ISD::MGATHER)
3976 ? cast<MaskedGatherSDNode>(Op)->getExtensionType()
3977 : cast<MaskedLoadSDNode>(Op)->getExtensionType();
3978 if (ETy == ISD::ZEXTLOAD) {
3979 EVT MemVT = cast<MemSDNode>(Op)->getMemoryVT();
3980 KnownBits Known0(MemVT.getScalarSizeInBits());
3981 return Known0.zext(BitWidth);
3982 }
3983 break;
3984 }
3985 case ISD::LOAD: {
3987 const Constant *Cst = TLI->getTargetConstantFromLoad(LD);
3988 if (ISD::isNON_EXTLoad(LD) && Cst) {
3989 // Determine any common known bits from the loaded constant pool value.
3990 Type *CstTy = Cst->getType();
3991 if ((NumElts * BitWidth) == CstTy->getPrimitiveSizeInBits() &&
3992 !Op.getValueType().isScalableVector()) {
3993 // If its a vector splat, then we can (quickly) reuse the scalar path.
3994 // NOTE: We assume all elements match and none are UNDEF.
3995 if (CstTy->isVectorTy()) {
3996 if (const Constant *Splat = Cst->getSplatValue()) {
3997 Cst = Splat;
3998 CstTy = Cst->getType();
3999 }
4000 }
4001 // TODO - do we need to handle different bitwidths?
4002 if (CstTy->isVectorTy() && BitWidth == CstTy->getScalarSizeInBits()) {
4003 // Iterate across all vector elements finding common known bits.
4004 Known.setAllConflict();
4005 for (unsigned i = 0; i != NumElts; ++i) {
4006 if (!DemandedElts[i])
4007 continue;
4008 if (Constant *Elt = Cst->getAggregateElement(i)) {
4009 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
4010 const APInt &Value = CInt->getValue();
4011 Known.One &= Value;
4012 Known.Zero &= ~Value;
4013 continue;
4014 }
4015 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
4016 APInt Value = CFP->getValueAPF().bitcastToAPInt();
4017 Known.One &= Value;
4018 Known.Zero &= ~Value;
4019 continue;
4020 }
4021 }
4022 Known.One.clearAllBits();
4023 Known.Zero.clearAllBits();
4024 break;
4025 }
4026 } else if (BitWidth == CstTy->getPrimitiveSizeInBits()) {
4027 if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
4028 Known = KnownBits::makeConstant(CInt->getValue());
4029 } else if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
4030 Known =
4031 KnownBits::makeConstant(CFP->getValueAPF().bitcastToAPInt());
4032 }
4033 }
4034 }
4035 } else if (Op.getResNo() == 0) {
4036 unsigned ScalarMemorySize = LD->getMemoryVT().getScalarSizeInBits();
4037 KnownBits KnownScalarMemory(ScalarMemorySize);
4038 if (const MDNode *MD = LD->getRanges())
4039 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4040
4041 // Extend the Known bits from memory to the size of the scalar result.
4042 if (ISD::isZEXTLoad(Op.getNode()))
4043 Known = KnownScalarMemory.zext(BitWidth);
4044 else if (ISD::isSEXTLoad(Op.getNode()))
4045 Known = KnownScalarMemory.sext(BitWidth);
4046 else if (ISD::isEXTLoad(Op.getNode()))
4047 Known = KnownScalarMemory.anyext(BitWidth);
4048 else
4049 Known = KnownScalarMemory;
4050 assert(Known.getBitWidth() == BitWidth);
4051 return Known;
4052 }
4053 break;
4054 }
4056 if (Op.getValueType().isScalableVector())
4057 break;
4058 EVT InVT = Op.getOperand(0).getValueType();
4059 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4060 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4061 Known = Known.zext(BitWidth);
4062 break;
4063 }
4064 case ISD::ZERO_EXTEND: {
4065 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4066 Known = Known.zext(BitWidth);
4067 break;
4068 }
4070 if (Op.getValueType().isScalableVector())
4071 break;
4072 EVT InVT = Op.getOperand(0).getValueType();
4073 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4074 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4075 // If the sign bit is known to be zero or one, then sext will extend
4076 // it to the top bits, else it will just zext.
4077 Known = Known.sext(BitWidth);
4078 break;
4079 }
4080 case ISD::SIGN_EXTEND: {
4081 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4082 // If the sign bit is known to be zero or one, then sext will extend
4083 // it to the top bits, else it will just zext.
4084 Known = Known.sext(BitWidth);
4085 break;
4086 }
4088 if (Op.getValueType().isScalableVector())
4089 break;
4090 EVT InVT = Op.getOperand(0).getValueType();
4091 APInt InDemandedElts = DemandedElts.zext(InVT.getVectorNumElements());
4092 Known = computeKnownBits(Op.getOperand(0), InDemandedElts, Depth + 1);
4093 Known = Known.anyext(BitWidth);
4094 break;
4095 }
4096 case ISD::ANY_EXTEND: {
4097 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4098 Known = Known.anyext(BitWidth);
4099 break;
4100 }
4101 case ISD::TRUNCATE: {
4102 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4103 Known = Known.trunc(BitWidth);
4104 break;
4105 }
4106 case ISD::AssertZext: {
4107 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4109 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4110 Known.Zero |= (~InMask);
4111 Known.One &= (~Known.Zero);
4112 break;
4113 }
4114 case ISD::AssertAlign: {
4115 unsigned LogOfAlign = Log2(cast<AssertAlignSDNode>(Op)->getAlign());
4116 assert(LogOfAlign != 0);
4117
4118 // TODO: Should use maximum with source
4119 // If a node is guaranteed to be aligned, set low zero bits accordingly as
4120 // well as clearing one bits.
4121 Known.Zero.setLowBits(LogOfAlign);
4122 Known.One.clearLowBits(LogOfAlign);
4123 break;
4124 }
4125 case ISD::FGETSIGN:
4126 // All bits are zero except the low bit.
4127 Known.Zero.setBitsFrom(1);
4128 break;
4129 case ISD::ADD:
4130 case ISD::SUB: {
4131 SDNodeFlags Flags = Op.getNode()->getFlags();
4132 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4133 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4135 Op.getOpcode() == ISD::ADD, Flags.hasNoSignedWrap(),
4136 Flags.hasNoUnsignedWrap(), Known, Known2);
4137 break;
4138 }
4139 case ISD::USUBO:
4140 case ISD::SSUBO:
4141 case ISD::USUBO_CARRY:
4142 case ISD::SSUBO_CARRY:
4143 if (Op.getResNo() == 1) {
4144 // If we know the result of a setcc has the top bits zero, use this info.
4145 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4147 BitWidth > 1)
4148 Known.Zero.setBitsFrom(1);
4149 break;
4150 }
4151 [[fallthrough]];
4152 case ISD::SUBC: {
4153 assert(Op.getResNo() == 0 &&
4154 "We only compute knownbits for the difference here.");
4155
4156 // With USUBO_CARRY and SSUBO_CARRY a borrow bit may be added in.
4157 KnownBits Borrow(1);
4158 if (Opcode == ISD::USUBO_CARRY || Opcode == ISD::SSUBO_CARRY) {
4159 Borrow = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4160 // Borrow has bit width 1
4161 Borrow = Borrow.trunc(1);
4162 } else {
4163 Borrow.setAllZero();
4164 }
4165
4166 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4167 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4168 Known = KnownBits::computeForSubBorrow(Known, Known2, Borrow);
4169 break;
4170 }
4171 case ISD::UADDO:
4172 case ISD::SADDO:
4173 case ISD::UADDO_CARRY:
4174 case ISD::SADDO_CARRY:
4175 if (Op.getResNo() == 1) {
4176 // If we know the result of a setcc has the top bits zero, use this info.
4177 if (TLI->getBooleanContents(Op.getOperand(0).getValueType()) ==
4179 BitWidth > 1)
4180 Known.Zero.setBitsFrom(1);
4181 break;
4182 }
4183 [[fallthrough]];
4184 case ISD::ADDC:
4185 case ISD::ADDE: {
4186 assert(Op.getResNo() == 0 && "We only compute knownbits for the sum here.");
4187
4188 // With ADDE and UADDO_CARRY, a carry bit may be added in.
4189 KnownBits Carry(1);
4190 if (Opcode == ISD::ADDE)
4191 // Can't track carry from glue, set carry to unknown.
4192 Carry.resetAll();
4193 else if (Opcode == ISD::UADDO_CARRY || Opcode == ISD::SADDO_CARRY) {
4194 Carry = computeKnownBits(Op.getOperand(2), DemandedElts, Depth + 1);
4195 // Carry has bit width 1
4196 Carry = Carry.trunc(1);
4197 } else {
4198 Carry.setAllZero();
4199 }
4200
4201 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4202 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4203 Known = KnownBits::computeForAddCarry(Known, Known2, Carry);
4204 break;
4205 }
4206 case ISD::UDIV: {
4207 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4208 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4209 Known = KnownBits::udiv(Known, Known2, Op->getFlags().hasExact());
4210 break;
4211 }
4212 case ISD::SDIV: {
4213 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4214 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4215 Known = KnownBits::sdiv(Known, Known2, Op->getFlags().hasExact());
4216 break;
4217 }
4218 case ISD::SREM: {
4219 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4220 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4221 Known = KnownBits::srem(Known, Known2);
4222 break;
4223 }
4224 case ISD::UREM: {
4225 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4226 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4227 Known = KnownBits::urem(Known, Known2);
4228 break;
4229 }
4230 case ISD::EXTRACT_ELEMENT: {
4231 Known = computeKnownBits(Op.getOperand(0), Depth+1);
4232 const unsigned Index = Op.getConstantOperandVal(1);
4233 const unsigned EltBitWidth = Op.getValueSizeInBits();
4234
4235 // Remove low part of known bits mask
4236 Known.Zero = Known.Zero.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4237 Known.One = Known.One.getHiBits(Known.getBitWidth() - Index * EltBitWidth);
4238
4239 // Remove high part of known bit mask
4240 Known = Known.trunc(EltBitWidth);
4241 break;
4242 }
4244 SDValue InVec = Op.getOperand(0);
4245 SDValue EltNo = Op.getOperand(1);
4246 EVT VecVT = InVec.getValueType();
4247 // computeKnownBits not yet implemented for scalable vectors.
4248 if (VecVT.isScalableVector())
4249 break;
4250 const unsigned EltBitWidth = VecVT.getScalarSizeInBits();
4251 const unsigned NumSrcElts = VecVT.getVectorNumElements();
4252
4253 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
4254 // anything about the extended bits.
4255 if (BitWidth > EltBitWidth)
4256 Known = Known.trunc(EltBitWidth);
4257
4258 // If we know the element index, just demand that vector element, else for
4259 // an unknown element index, ignore DemandedElts and demand them all.
4260 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
4261 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
4262 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
4263 DemandedSrcElts =
4264 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
4265
4266 Known = computeKnownBits(InVec, DemandedSrcElts, Depth + 1);
4267 if (BitWidth > EltBitWidth)
4268 Known = Known.anyext(BitWidth);
4269 break;
4270 }
4272 if (Op.getValueType().isScalableVector())
4273 break;
4274
4275 // If we know the element index, split the demand between the
4276 // source vector and the inserted element, otherwise assume we need
4277 // the original demanded vector elements and the value.
4278 SDValue InVec = Op.getOperand(0);
4279 SDValue InVal = Op.getOperand(1);
4280 SDValue EltNo = Op.getOperand(2);
4281 bool DemandedVal = true;
4282 APInt DemandedVecElts = DemandedElts;
4283 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
4284 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
4285 unsigned EltIdx = CEltNo->getZExtValue();
4286 DemandedVal = !!DemandedElts[EltIdx];
4287 DemandedVecElts.clearBit(EltIdx);
4288 }
4289 Known.setAllConflict();
4290 if (DemandedVal) {
4291 Known2 = computeKnownBits(InVal, Depth + 1);
4292 Known = Known.intersectWith(Known2.zextOrTrunc(BitWidth));
4293 }
4294 if (!!DemandedVecElts) {
4295 Known2 = computeKnownBits(InVec, DemandedVecElts, Depth + 1);
4296 Known = Known.intersectWith(Known2);
4297 }
4298 break;
4299 }
4300 case ISD::BITREVERSE: {
4301 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4302 Known = Known2.reverseBits();
4303 break;
4304 }
4305 case ISD::BSWAP: {
4306 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4307 Known = Known2.byteSwap();
4308 break;
4309 }
4310 case ISD::ABS: {
4311 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4312 Known = Known2.abs();
4313 Known.Zero.setHighBits(
4314 ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1) - 1);
4315 break;
4316 }
4317 case ISD::USUBSAT: {
4318 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4319 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4320 Known = KnownBits::usub_sat(Known, Known2);
4321 break;
4322 }
4323 case ISD::UMIN: {
4324 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4325 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4326 Known = KnownBits::umin(Known, Known2);
4327 break;
4328 }
4329 case ISD::UMAX: {
4330 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4331 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4332 Known = KnownBits::umax(Known, Known2);
4333 break;
4334 }
4335 case ISD::SMIN:
4336 case ISD::SMAX: {
4337 // If we have a clamp pattern, we know that the number of sign bits will be
4338 // the minimum of the clamp min/max range.
4339 bool IsMax = (Opcode == ISD::SMAX);
4340 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4341 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4342 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4343 CstHigh =
4344 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4345 if (CstLow && CstHigh) {
4346 if (!IsMax)
4347 std::swap(CstLow, CstHigh);
4348
4349 const APInt &ValueLow = CstLow->getAPIntValue();
4350 const APInt &ValueHigh = CstHigh->getAPIntValue();
4351 if (ValueLow.sle(ValueHigh)) {
4352 unsigned LowSignBits = ValueLow.getNumSignBits();
4353 unsigned HighSignBits = ValueHigh.getNumSignBits();
4354 unsigned MinSignBits = std::min(LowSignBits, HighSignBits);
4355 if (ValueLow.isNegative() && ValueHigh.isNegative()) {
4356 Known.One.setHighBits(MinSignBits);
4357 break;
4358 }
4359 if (ValueLow.isNonNegative() && ValueHigh.isNonNegative()) {
4360 Known.Zero.setHighBits(MinSignBits);
4361 break;
4362 }
4363 }
4364 }
4365
4366 Known = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4367 Known2 = computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
4368 if (IsMax)
4369 Known = KnownBits::smax(Known, Known2);
4370 else
4371 Known = KnownBits::smin(Known, Known2);
4372
4373 // For SMAX, if CstLow is non-negative we know the result will be
4374 // non-negative and thus all sign bits are 0.
4375 // TODO: There's an equivalent of this for smin with negative constant for
4376 // known ones.
4377 if (IsMax && CstLow) {
4378 const APInt &ValueLow = CstLow->getAPIntValue();
4379 if (ValueLow.isNonNegative()) {
4380 unsigned SignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4381 Known.Zero.setHighBits(std::min(SignBits, ValueLow.getNumSignBits()));
4382 }
4383 }
4384
4385 break;
4386 }
4387 case ISD::UINT_TO_FP: {
4388 Known.makeNonNegative();
4389 break;
4390 }
4391 case ISD::SINT_TO_FP: {
4392 Known2 = computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
4393 if (Known2.isNonNegative())
4394 Known.makeNonNegative();
4395 else if (Known2.isNegative())
4396 Known.makeNegative();
4397 break;
4398 }
4399 case ISD::FP_TO_UINT_SAT: {
4400 // FP_TO_UINT_SAT produces an unsigned value that fits in the saturating VT.
4401 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
4403 break;
4404 }
4405 case ISD::ATOMIC_LOAD: {
4406 // If we are looking at the loaded value.
4407 if (Op.getResNo() == 0) {
4408 auto *AT = cast<AtomicSDNode>(Op);
4409 unsigned ScalarMemorySize = AT->getMemoryVT().getScalarSizeInBits();
4410 KnownBits KnownScalarMemory(ScalarMemorySize);
4411 if (const MDNode *MD = AT->getRanges())
4412 computeKnownBitsFromRangeMetadata(*MD, KnownScalarMemory);
4413
4414 switch (AT->getExtensionType()) {
4415 case ISD::ZEXTLOAD:
4416 Known = KnownScalarMemory.zext(BitWidth);
4417 break;
4418 case ISD::SEXTLOAD:
4419 Known = KnownScalarMemory.sext(BitWidth);
4420 break;
4421 case ISD::EXTLOAD:
4422 switch (TLI->getExtendForAtomicOps()) {
4423 case ISD::ZERO_EXTEND:
4424 Known = KnownScalarMemory.zext(BitWidth);
4425 break;
4426 case ISD::SIGN_EXTEND:
4427 Known = KnownScalarMemory.sext(BitWidth);
4428 break;
4429 default:
4430 Known = KnownScalarMemory.anyext(BitWidth);
4431 break;
4432 }
4433 break;
4434 case ISD::NON_EXTLOAD:
4435 Known = KnownScalarMemory;
4436 break;
4437 }
4438 assert(Known.getBitWidth() == BitWidth);
4439 }
4440 break;
4441 }
4442 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4443 if (Op.getResNo() == 1) {
4444 // The boolean result conforms to getBooleanContents.
4445 // If we know the result of a setcc has the top bits zero, use this info.
4446 // We know that we have an integer-based boolean since these operations
4447 // are only available for integer.
4448 if (TLI->getBooleanContents(Op.getValueType().isVector(), false) ==
4450 BitWidth > 1)
4451 Known.Zero.setBitsFrom(1);
4452 break;
4453 }
4454 [[fallthrough]];
4455 case ISD::ATOMIC_CMP_SWAP:
4456 case ISD::ATOMIC_SWAP:
4457 case ISD::ATOMIC_LOAD_ADD:
4458 case ISD::ATOMIC_LOAD_SUB:
4459 case ISD::ATOMIC_LOAD_AND:
4460 case ISD::ATOMIC_LOAD_CLR:
4461 case ISD::ATOMIC_LOAD_OR:
4462 case ISD::ATOMIC_LOAD_XOR:
4463 case ISD::ATOMIC_LOAD_NAND:
4464 case ISD::ATOMIC_LOAD_MIN:
4465 case ISD::ATOMIC_LOAD_MAX:
4466 case ISD::ATOMIC_LOAD_UMIN:
4467 case ISD::ATOMIC_LOAD_UMAX: {
4468 // If we are looking at the loaded value.
4469 if (Op.getResNo() == 0) {
4470 auto *AT = cast<AtomicSDNode>(Op);
4471 unsigned MemBits = AT->getMemoryVT().getScalarSizeInBits();
4472
4473 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
4474 Known.Zero.setBitsFrom(MemBits);
4475 }
4476 break;
4477 }
4478 case ISD::FrameIndex:
4480 TLI->computeKnownBitsForFrameIndex(cast<FrameIndexSDNode>(Op)->getIndex(),
4481 Known, getMachineFunction());
4482 break;
4483
4484 default:
4485 if (Opcode < ISD::BUILTIN_OP_END)
4486 break;
4487 [[fallthrough]];
4491 // TODO: Probably okay to remove after audit; here to reduce change size
4492 // in initial enablement patch for scalable vectors
4493 if (Op.getValueType().isScalableVector())
4494 break;
4495
4496 // Allow the target to implement this method for its nodes.
4497 TLI->computeKnownBitsForTargetNode(Op, Known, DemandedElts, *this, Depth);
4498 break;
4499 }
4500
4501 return Known;
4502}
4503
4504/// Convert ConstantRange OverflowResult into SelectionDAG::OverflowKind.
4517
4520 // X + 0 never overflow
4521 if (isNullConstant(N1))
4522 return OFK_Never;
4523
4524 // If both operands each have at least two sign bits, the addition
4525 // cannot overflow.
4526 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4527 return OFK_Never;
4528
4529 // TODO: Add ConstantRange::signedAddMayOverflow handling.
4530 return OFK_Sometime;
4531}
4532
4535 // X + 0 never overflow
4536 if (isNullConstant(N1))
4537 return OFK_Never;
4538
4539 // mulhi + 1 never overflow
4540 KnownBits N1Known = computeKnownBits(N1);
4541 if (N0.getOpcode() == ISD::UMUL_LOHI && N0.getResNo() == 1 &&
4542 N1Known.getMaxValue().ult(2))
4543 return OFK_Never;
4544
4545 KnownBits N0Known = computeKnownBits(N0);
4546 if (N1.getOpcode() == ISD::UMUL_LOHI && N1.getResNo() == 1 &&
4547 N0Known.getMaxValue().ult(2))
4548 return OFK_Never;
4549
4550 // Fallback to ConstantRange::unsignedAddMayOverflow handling.
4551 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4552 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4553 return mapOverflowResult(N0Range.unsignedAddMayOverflow(N1Range));
4554}
4555
4558 // X - 0 never overflow
4559 if (isNullConstant(N1))
4560 return OFK_Never;
4561
4562 // If both operands each have at least two sign bits, the subtraction
4563 // cannot overflow.
4564 if (ComputeNumSignBits(N0) > 1 && ComputeNumSignBits(N1) > 1)
4565 return OFK_Never;
4566
4567 KnownBits N0Known = computeKnownBits(N0);
4568 KnownBits N1Known = computeKnownBits(N1);
4569 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, true);
4570 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, true);
4571 return mapOverflowResult(N0Range.signedSubMayOverflow(N1Range));
4572}
4573
4576 // X - 0 never overflow
4577 if (isNullConstant(N1))
4578 return OFK_Never;
4579
4580 KnownBits N0Known = computeKnownBits(N0);
4581 KnownBits N1Known = computeKnownBits(N1);
4582 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4583 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4584 return mapOverflowResult(N0Range.unsignedSubMayOverflow(N1Range));
4585}
4586
4589 // X * 0 and X * 1 never overflow.
4590 if (isNullConstant(N1) || isOneConstant(N1))
4591 return OFK_Never;
4592
4593 KnownBits N0Known = computeKnownBits(N0);
4594 KnownBits N1Known = computeKnownBits(N1);
4595 ConstantRange N0Range = ConstantRange::fromKnownBits(N0Known, false);
4596 ConstantRange N1Range = ConstantRange::fromKnownBits(N1Known, false);
4597 return mapOverflowResult(N0Range.unsignedMulMayOverflow(N1Range));
4598}
4599
4602 // X * 0 and X * 1 never overflow.
4603 if (isNullConstant(N1) || isOneConstant(N1))
4604 return OFK_Never;
4605
4606 // Get the size of the result.
4607 unsigned BitWidth = N0.getScalarValueSizeInBits();
4608
4609 // Sum of the sign bits.
4610 unsigned SignBits = ComputeNumSignBits(N0) + ComputeNumSignBits(N1);
4611
4612 // If we have enough sign bits, then there's no overflow.
4613 if (SignBits > BitWidth + 1)
4614 return OFK_Never;
4615
4616 if (SignBits == BitWidth + 1) {
4617 // The overflow occurs when the true multiplication of the
4618 // the operands is the minimum negative number.
4619 KnownBits N0Known = computeKnownBits(N0);
4620 KnownBits N1Known = computeKnownBits(N1);
4621 // If one of the operands is non-negative, then there's no
4622 // overflow.
4623 if (N0Known.isNonNegative() || N1Known.isNonNegative())
4624 return OFK_Never;
4625 }
4626
4627 return OFK_Sometime;
4628}
4629
4631 if (Depth >= MaxRecursionDepth)
4632 return false; // Limit search depth.
4633
4634 EVT OpVT = Val.getValueType();
4635 unsigned BitWidth = OpVT.getScalarSizeInBits();
4636
4637 // Is the constant a known power of 2?
4639 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4640 }))
4641 return true;
4642
4643 // A left-shift of a constant one will have exactly one bit set because
4644 // shifting the bit off the end is undefined.
4645 if (Val.getOpcode() == ISD::SHL) {
4646 auto *C = isConstOrConstSplat(Val.getOperand(0));
4647 if (C && C->getAPIntValue() == 1)
4648 return true;
4649 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4650 isKnownNeverZero(Val, Depth);
4651 }
4652
4653 // Similarly, a logical right-shift of a constant sign-bit will have exactly
4654 // one bit set.
4655 if (Val.getOpcode() == ISD::SRL) {
4656 auto *C = isConstOrConstSplat(Val.getOperand(0));
4657 if (C && C->getAPIntValue().isSignMask())
4658 return true;
4659 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1) &&
4660 isKnownNeverZero(Val, Depth);
4661 }
4662
4663 if (Val.getOpcode() == ISD::ROTL || Val.getOpcode() == ISD::ROTR)
4664 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4665
4666 // Are all operands of a build vector constant powers of two?
4667 if (Val.getOpcode() == ISD::BUILD_VECTOR)
4668 if (llvm::all_of(Val->ops(), [BitWidth](SDValue E) {
4669 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(E))
4670 return C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2();
4671 return false;
4672 }))
4673 return true;
4674
4675 // Is the operand of a splat vector a constant power of two?
4676 if (Val.getOpcode() == ISD::SPLAT_VECTOR)
4678 if (C->getAPIntValue().zextOrTrunc(BitWidth).isPowerOf2())
4679 return true;
4680
4681 // vscale(power-of-two) is a power-of-two for some targets
4682 if (Val.getOpcode() == ISD::VSCALE &&
4683 getTargetLoweringInfo().isVScaleKnownToBeAPowerOfTwo() &&
4685 return true;
4686
4687 if (Val.getOpcode() == ISD::SMIN || Val.getOpcode() == ISD::SMAX ||
4688 Val.getOpcode() == ISD::UMIN || Val.getOpcode() == ISD::UMAX)
4689 return isKnownToBeAPowerOfTwo(Val.getOperand(1), Depth + 1) &&
4691
4692 if (Val.getOpcode() == ISD::SELECT || Val.getOpcode() == ISD::VSELECT)
4693 return isKnownToBeAPowerOfTwo(Val.getOperand(2), Depth + 1) &&
4695
4696 // Looking for `x & -x` pattern:
4697 // If x == 0:
4698 // x & -x -> 0
4699 // If x != 0:
4700 // x & -x -> non-zero pow2
4701 // so if we find the pattern return whether we know `x` is non-zero.
4702 SDValue X;
4703 if (sd_match(Val, m_And(m_Value(X), m_Neg(m_Deferred(X)))))
4704 return isKnownNeverZero(X, Depth);
4705
4706 if (Val.getOpcode() == ISD::ZERO_EXTEND)
4707 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4708
4709 // More could be done here, though the above checks are enough
4710 // to handle some common cases.
4711 return false;
4712}
4713
4715 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Val, true))
4716 return C1->getValueAPF().getExactLog2Abs() >= 0;
4717
4718 if (Val.getOpcode() == ISD::UINT_TO_FP || Val.getOpcode() == ISD::SINT_TO_FP)
4719 return isKnownToBeAPowerOfTwo(Val.getOperand(0), Depth + 1);
4720
4721 return false;
4722}
4723
4725 EVT VT = Op.getValueType();
4726
4727 // Since the number of lanes in a scalable vector is unknown at compile time,
4728 // we track one bit which is implicitly broadcast to all lanes. This means
4729 // that all lanes in a scalable vector are considered demanded.
4730 APInt DemandedElts = VT.isFixedLengthVector()
4732 : APInt(1, 1);
4733 return ComputeNumSignBits(Op, DemandedElts, Depth);
4734}
4735
4736unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
4737 unsigned Depth) const {
4738 EVT VT = Op.getValueType();
4739 assert((VT.isInteger() || VT.isFloatingPoint()) && "Invalid VT!");
4740 unsigned VTBits = VT.getScalarSizeInBits();
4741 unsigned NumElts = DemandedElts.getBitWidth();
4742 unsigned Tmp, Tmp2;
4743 unsigned FirstAnswer = 1;
4744
4745 if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
4746 const APInt &Val = C->getAPIntValue();
4747 return Val.getNumSignBits();
4748 }
4749
4750 if (Depth >= MaxRecursionDepth)
4751 return 1; // Limit search depth.
4752
4753 if (!DemandedElts)
4754 return 1; // No demanded elts, better to assume we don't know anything.
4755
4756 unsigned Opcode = Op.getOpcode();
4757 switch (Opcode) {
4758 default: break;
4759 case ISD::AssertSext:
4760 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4761 return VTBits-Tmp+1;
4762 case ISD::AssertZext:
4763 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
4764 return VTBits-Tmp;
4765 case ISD::FREEZE:
4766 if (isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
4767 /*PoisonOnly=*/false))
4768 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4769 break;
4770 case ISD::MERGE_VALUES:
4771 return ComputeNumSignBits(Op.getOperand(Op.getResNo()), DemandedElts,
4772 Depth + 1);
4773 case ISD::SPLAT_VECTOR: {
4774 // Check if the sign bits of source go down as far as the truncated value.
4775 unsigned NumSrcBits = Op.getOperand(0).getValueSizeInBits();
4776 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4777 if (NumSrcSignBits > (NumSrcBits - VTBits))
4778 return NumSrcSignBits - (NumSrcBits - VTBits);
4779 break;
4780 }
4781 case ISD::BUILD_VECTOR:
4782 assert(!VT.isScalableVector());
4783 Tmp = VTBits;
4784 for (unsigned i = 0, e = Op.getNumOperands(); (i < e) && (Tmp > 1); ++i) {
4785 if (!DemandedElts[i])
4786 continue;
4787
4788 SDValue SrcOp = Op.getOperand(i);
4789 // BUILD_VECTOR can implicitly truncate sources, we handle this specially
4790 // for constant nodes to ensure we only look at the sign bits.
4792 APInt T = C->getAPIntValue().trunc(VTBits);
4793 Tmp2 = T.getNumSignBits();
4794 } else {
4795 Tmp2 = ComputeNumSignBits(SrcOp, Depth + 1);
4796
4797 if (SrcOp.getValueSizeInBits() != VTBits) {
4798 assert(SrcOp.getValueSizeInBits() > VTBits &&
4799 "Expected BUILD_VECTOR implicit truncation");
4800 unsigned ExtraBits = SrcOp.getValueSizeInBits() - VTBits;
4801 Tmp2 = (Tmp2 > ExtraBits ? Tmp2 - ExtraBits : 1);
4802 }
4803 }
4804 Tmp = std::min(Tmp, Tmp2);
4805 }
4806 return Tmp;
4807
4808 case ISD::VECTOR_COMPRESS: {
4809 SDValue Vec = Op.getOperand(0);
4810 SDValue PassThru = Op.getOperand(2);
4811 Tmp = ComputeNumSignBits(PassThru, DemandedElts, Depth + 1);
4812 if (Tmp == 1)
4813 return 1;
4814 Tmp2 = ComputeNumSignBits(Vec, Depth + 1);
4815 Tmp = std::min(Tmp, Tmp2);
4816 return Tmp;
4817 }
4818
4819 case ISD::VECTOR_SHUFFLE: {
4820 // Collect the minimum number of sign bits that are shared by every vector
4821 // element referenced by the shuffle.
4822 APInt DemandedLHS, DemandedRHS;
4824 assert(NumElts == SVN->getMask().size() && "Unexpected vector size");
4825 if (!getShuffleDemandedElts(NumElts, SVN->getMask(), DemandedElts,
4826 DemandedLHS, DemandedRHS))
4827 return 1;
4828
4829 Tmp = std::numeric_limits<unsigned>::max();
4830 if (!!DemandedLHS)
4831 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
4832 if (!!DemandedRHS) {
4833 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
4834 Tmp = std::min(Tmp, Tmp2);
4835 }
4836 // If we don't know anything, early out and try computeKnownBits fall-back.
4837 if (Tmp == 1)
4838 break;
4839 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
4840 return Tmp;
4841 }
4842
4843 case ISD::BITCAST: {
4844 if (VT.isScalableVector())
4845 break;
4846 SDValue N0 = Op.getOperand(0);
4847 EVT SrcVT = N0.getValueType();
4848 unsigned SrcBits = SrcVT.getScalarSizeInBits();
4849
4850 // Ignore bitcasts from unsupported types..
4851 if (!(SrcVT.isInteger() || SrcVT.isFloatingPoint()))
4852 break;
4853
4854 // Fast handling of 'identity' bitcasts.
4855 if (VTBits == SrcBits)
4856 return ComputeNumSignBits(N0, DemandedElts, Depth + 1);
4857
4858 bool IsLE = getDataLayout().isLittleEndian();
4859
4860 // Bitcast 'large element' scalar/vector to 'small element' vector.
4861 if ((SrcBits % VTBits) == 0) {
4862 assert(VT.isVector() && "Expected bitcast to vector");
4863
4864 unsigned Scale = SrcBits / VTBits;
4865 APInt SrcDemandedElts =
4866 APIntOps::ScaleBitMask(DemandedElts, NumElts / Scale);
4867
4868 // Fast case - sign splat can be simply split across the small elements.
4869 Tmp = ComputeNumSignBits(N0, SrcDemandedElts, Depth + 1);
4870 if (Tmp == SrcBits)
4871 return VTBits;
4872
4873 // Slow case - determine how far the sign extends into each sub-element.
4874 Tmp2 = VTBits;
4875 for (unsigned i = 0; i != NumElts; ++i)
4876 if (DemandedElts[i]) {
4877 unsigned SubOffset = i % Scale;
4878 SubOffset = (IsLE ? ((Scale - 1) - SubOffset) : SubOffset);
4879 SubOffset = SubOffset * VTBits;
4880 if (Tmp <= SubOffset)
4881 return 1;
4882 Tmp2 = std::min(Tmp2, Tmp - SubOffset);
4883 }
4884 return Tmp2;
4885 }
4886 break;
4887 }
4888
4890 // FP_TO_SINT_SAT produces a signed value that fits in the saturating VT.
4891 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4892 return VTBits - Tmp + 1;
4893 case ISD::SIGN_EXTEND:
4894 Tmp = VTBits - Op.getOperand(0).getScalarValueSizeInBits();
4895 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1) + Tmp;
4897 // Max of the input and what this extends.
4898 Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarSizeInBits();
4899 Tmp = VTBits-Tmp+1;
4900 Tmp2 = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4901 return std::max(Tmp, Tmp2);
4903 if (VT.isScalableVector())
4904 break;
4905 SDValue Src = Op.getOperand(0);
4906 EVT SrcVT = Src.getValueType();
4907 APInt DemandedSrcElts = DemandedElts.zext(SrcVT.getVectorNumElements());
4908 Tmp = VTBits - SrcVT.getScalarSizeInBits();
4909 return ComputeNumSignBits(Src, DemandedSrcElts, Depth+1) + Tmp;
4910 }
4911 case ISD::SRA:
4912 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4913 // SRA X, C -> adds C sign bits.
4914 if (std::optional<unsigned> ShAmt =
4915 getValidMinimumShiftAmount(Op, DemandedElts, Depth + 1))
4916 Tmp = std::min(Tmp + *ShAmt, VTBits);
4917 return Tmp;
4918 case ISD::SHL:
4919 if (std::optional<ConstantRange> ShAmtRange =
4920 getValidShiftAmountRange(Op, DemandedElts, Depth + 1)) {
4921 unsigned MaxShAmt = ShAmtRange->getUnsignedMax().getZExtValue();
4922 unsigned MinShAmt = ShAmtRange->getUnsignedMin().getZExtValue();
4923 // Try to look through ZERO/SIGN/ANY_EXTEND. If all extended bits are
4924 // shifted out, then we can compute the number of sign bits for the
4925 // operand being extended. A future improvement could be to pass along the
4926 // "shifted left by" information in the recursive calls to
4927 // ComputeKnownSignBits. Allowing us to handle this more generically.
4928 if (ISD::isExtOpcode(Op.getOperand(0).getOpcode())) {
4929 SDValue Ext = Op.getOperand(0);
4930 EVT ExtVT = Ext.getValueType();
4931 SDValue Extendee = Ext.getOperand(0);
4932 EVT ExtendeeVT = Extendee.getValueType();
4933 unsigned SizeDifference =
4934 ExtVT.getScalarSizeInBits() - ExtendeeVT.getScalarSizeInBits();
4935 if (SizeDifference <= MinShAmt) {
4936 Tmp = SizeDifference +
4937 ComputeNumSignBits(Extendee, DemandedElts, Depth + 1);
4938 if (MaxShAmt < Tmp)
4939 return Tmp - MaxShAmt;
4940 }
4941 }
4942 // shl destroys sign bits, ensure it doesn't shift out all sign bits.
4943 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4944 if (MaxShAmt < Tmp)
4945 return Tmp - MaxShAmt;
4946 }
4947 break;
4948 case ISD::AND:
4949 case ISD::OR:
4950 case ISD::XOR: // NOT is handled here.
4951 // Logical binary ops preserve the number of sign bits at the worst.
4952 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth+1);
4953 if (Tmp != 1) {
4954 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4955 FirstAnswer = std::min(Tmp, Tmp2);
4956 // We computed what we know about the sign bits as our first
4957 // answer. Now proceed to the generic code that uses
4958 // computeKnownBits, and pick whichever answer is better.
4959 }
4960 break;
4961
4962 case ISD::SELECT:
4963 case ISD::VSELECT:
4964 Tmp = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth+1);
4965 if (Tmp == 1) return 1; // Early out.
4966 Tmp2 = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4967 return std::min(Tmp, Tmp2);
4968 case ISD::SELECT_CC:
4969 Tmp = ComputeNumSignBits(Op.getOperand(2), DemandedElts, Depth+1);
4970 if (Tmp == 1) return 1; // Early out.
4971 Tmp2 = ComputeNumSignBits(Op.getOperand(3), DemandedElts, Depth+1);
4972 return std::min(Tmp, Tmp2);
4973
4974 case ISD::SMIN:
4975 case ISD::SMAX: {
4976 // If we have a clamp pattern, we know that the number of sign bits will be
4977 // the minimum of the clamp min/max range.
4978 bool IsMax = (Opcode == ISD::SMAX);
4979 ConstantSDNode *CstLow = nullptr, *CstHigh = nullptr;
4980 if ((CstLow = isConstOrConstSplat(Op.getOperand(1), DemandedElts)))
4981 if (Op.getOperand(0).getOpcode() == (IsMax ? ISD::SMIN : ISD::SMAX))
4982 CstHigh =
4983 isConstOrConstSplat(Op.getOperand(0).getOperand(1), DemandedElts);
4984 if (CstLow && CstHigh) {
4985 if (!IsMax)
4986 std::swap(CstLow, CstHigh);
4987 if (CstLow->getAPIntValue().sle(CstHigh->getAPIntValue())) {
4988 Tmp = CstLow->getAPIntValue().getNumSignBits();
4989 Tmp2 = CstHigh->getAPIntValue().getNumSignBits();
4990 return std::min(Tmp, Tmp2);
4991 }
4992 }
4993
4994 // Fallback - just get the minimum number of sign bits of the operands.
4995 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
4996 if (Tmp == 1)
4997 return 1; // Early out.
4998 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
4999 return std::min(Tmp, Tmp2);
5000 }
5001 case ISD::UMIN:
5002 case ISD::UMAX:
5003 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5004 if (Tmp == 1)
5005 return 1; // Early out.
5006 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5007 return std::min(Tmp, Tmp2);
5008 case ISD::SSUBO_CARRY:
5009 case ISD::USUBO_CARRY:
5010 // sub_carry(x,x,c) -> 0/-1 (sext carry)
5011 if (Op.getResNo() == 0 && Op.getOperand(0) == Op.getOperand(1))
5012 return VTBits;
5013 [[fallthrough]];
5014 case ISD::SADDO:
5015 case ISD::UADDO:
5016 case ISD::SADDO_CARRY:
5017 case ISD::UADDO_CARRY:
5018 case ISD::SSUBO:
5019 case ISD::USUBO:
5020 case ISD::SMULO:
5021 case ISD::UMULO:
5022 if (Op.getResNo() != 1)
5023 break;
5024 // The boolean result conforms to getBooleanContents. Fall through.
5025 // If setcc returns 0/-1, all bits are sign bits.
5026 // We know that we have an integer-based boolean since these operations
5027 // are only available for integer.
5028 if (TLI->getBooleanContents(VT.isVector(), false) ==
5030 return VTBits;
5031 break;
5032 case ISD::SETCC:
5033 case ISD::SETCCCARRY:
5034 case ISD::STRICT_FSETCC:
5035 case ISD::STRICT_FSETCCS: {
5036 unsigned OpNo = Op->isStrictFPOpcode() ? 1 : 0;
5037 // If setcc returns 0/-1, all bits are sign bits.
5038 if (TLI->getBooleanContents(Op.getOperand(OpNo).getValueType()) ==
5040 return VTBits;
5041 break;
5042 }
5043 case ISD::ROTL:
5044 case ISD::ROTR:
5045 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5046
5047 // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
5048 if (Tmp == VTBits)
5049 return VTBits;
5050
5051 if (ConstantSDNode *C =
5052 isConstOrConstSplat(Op.getOperand(1), DemandedElts)) {
5053 unsigned RotAmt = C->getAPIntValue().urem(VTBits);
5054
5055 // Handle rotate right by N like a rotate left by 32-N.
5056 if (Opcode == ISD::ROTR)
5057 RotAmt = (VTBits - RotAmt) % VTBits;
5058
5059 // If we aren't rotating out all of the known-in sign bits, return the
5060 // number that are left. This handles rotl(sext(x), 1) for example.
5061 if (Tmp > (RotAmt + 1)) return (Tmp - RotAmt);
5062 }
5063 break;
5064 case ISD::ADD:
5065 case ISD::ADDC:
5066 // Add can have at most one carry bit. Thus we know that the output
5067 // is, at worst, one more bit than the inputs.
5068 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5069 if (Tmp == 1) return 1; // Early out.
5070
5071 // Special case decrementing a value (ADD X, -1):
5072 if (ConstantSDNode *CRHS =
5073 isConstOrConstSplat(Op.getOperand(1), DemandedElts))
5074 if (CRHS->isAllOnes()) {
5075 KnownBits Known =
5076 computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
5077
5078 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5079 // sign bits set.
5080 if ((Known.Zero | 1).isAllOnes())
5081 return VTBits;
5082
5083 // If we are subtracting one from a positive number, there is no carry
5084 // out of the result.
5085 if (Known.isNonNegative())
5086 return Tmp;
5087 }
5088
5089 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5090 if (Tmp2 == 1) return 1; // Early out.
5091 return std::min(Tmp, Tmp2) - 1;
5092 case ISD::SUB:
5093 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5094 if (Tmp2 == 1) return 1; // Early out.
5095
5096 // Handle NEG.
5097 if (ConstantSDNode *CLHS =
5098 isConstOrConstSplat(Op.getOperand(0), DemandedElts))
5099 if (CLHS->isZero()) {
5100 KnownBits Known =
5101 computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
5102 // If the input is known to be 0 or 1, the output is 0/-1, which is all
5103 // sign bits set.
5104 if ((Known.Zero | 1).isAllOnes())
5105 return VTBits;
5106
5107 // If the input is known to be positive (the sign bit is known clear),
5108 // the output of the NEG has the same number of sign bits as the input.
5109 if (Known.isNonNegative())
5110 return Tmp2;
5111
5112 // Otherwise, we treat this like a SUB.
5113 }
5114
5115 // Sub can have at most one carry bit. Thus we know that the output
5116 // is, at worst, one more bit than the inputs.
5117 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5118 if (Tmp == 1) return 1; // Early out.
5119 return std::min(Tmp, Tmp2) - 1;
5120 case ISD::MUL: {
5121 // The output of the Mul can be at most twice the valid bits in the inputs.
5122 unsigned SignBitsOp0 = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5123 if (SignBitsOp0 == 1)
5124 break;
5125 unsigned SignBitsOp1 = ComputeNumSignBits(Op.getOperand(1), Depth + 1);
5126 if (SignBitsOp1 == 1)
5127 break;
5128 unsigned OutValidBits =
5129 (VTBits - SignBitsOp0 + 1) + (VTBits - SignBitsOp1 + 1);
5130 return OutValidBits > VTBits ? 1 : VTBits - OutValidBits + 1;
5131 }
5132 case ISD::AVGCEILS:
5133 case ISD::AVGFLOORS:
5134 Tmp = ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5135 if (Tmp == 1)
5136 return 1; // Early out.
5137 Tmp2 = ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
5138 return std::min(Tmp, Tmp2);
5139 case ISD::SREM:
5140 // The sign bit is the LHS's sign bit, except when the result of the
5141 // remainder is zero. The magnitude of the result should be less than or
5142 // equal to the magnitude of the LHS. Therefore, the result should have
5143 // at least as many sign bits as the left hand side.
5144 return ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
5145 case ISD::TRUNCATE: {
5146 // Check if the sign bits of source go down as far as the truncated value.
5147 unsigned NumSrcBits = Op.getOperand(0).getScalarValueSizeInBits();
5148 unsigned NumSrcSignBits = ComputeNumSignBits(Op.getOperand(0), Depth + 1);
5149 if (NumSrcSignBits > (NumSrcBits - VTBits))
5150 return NumSrcSignBits - (NumSrcBits - VTBits);
5151 break;
5152 }
5153 case ISD::EXTRACT_ELEMENT: {
5154 if (VT.isScalableVector())
5155 break;
5156 const int KnownSign = ComputeNumSignBits(Op.getOperand(0), Depth+1);
5157 const int BitWidth = Op.getValueSizeInBits();
5158 const int Items = Op.getOperand(0).getValueSizeInBits() / BitWidth;
5159
5160 // Get reverse index (starting from 1), Op1 value indexes elements from
5161 // little end. Sign starts at big end.
5162 const int rIndex = Items - 1 - Op.getConstantOperandVal(1);
5163
5164 // If the sign portion ends in our element the subtraction gives correct
5165 // result. Otherwise it gives either negative or > bitwidth result
5166 return std::clamp(KnownSign - rIndex * BitWidth, 1, BitWidth);
5167 }
5169 if (VT.isScalableVector())
5170 break;
5171 // If we know the element index, split the demand between the
5172 // source vector and the inserted element, otherwise assume we need
5173 // the original demanded vector elements and the value.
5174 SDValue InVec = Op.getOperand(0);
5175 SDValue InVal = Op.getOperand(1);
5176 SDValue EltNo = Op.getOperand(2);
5177 bool DemandedVal = true;
5178 APInt DemandedVecElts = DemandedElts;
5179 auto *CEltNo = dyn_cast<ConstantSDNode>(EltNo);
5180 if (CEltNo && CEltNo->getAPIntValue().ult(NumElts)) {
5181 unsigned EltIdx = CEltNo->getZExtValue();
5182 DemandedVal = !!DemandedElts[EltIdx];
5183 DemandedVecElts.clearBit(EltIdx);
5184 }
5185 Tmp = std::numeric_limits<unsigned>::max();
5186 if (DemandedVal) {
5187 // TODO - handle implicit truncation of inserted elements.
5188 if (InVal.getScalarValueSizeInBits() != VTBits)
5189 break;
5190 Tmp2 = ComputeNumSignBits(InVal, Depth + 1);
5191 Tmp = std::min(Tmp, Tmp2);
5192 }
5193 if (!!DemandedVecElts) {
5194 Tmp2 = ComputeNumSignBits(InVec, DemandedVecElts, Depth + 1);
5195 Tmp = std::min(Tmp, Tmp2);
5196 }
5197 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5198 return Tmp;
5199 }
5201 assert(!VT.isScalableVector());
5202 SDValue InVec = Op.getOperand(0);
5203 SDValue EltNo = Op.getOperand(1);
5204 EVT VecVT = InVec.getValueType();
5205 // ComputeNumSignBits not yet implemented for scalable vectors.
5206 if (VecVT.isScalableVector())
5207 break;
5208 const unsigned BitWidth = Op.getValueSizeInBits();
5209 const unsigned EltBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
5210 const unsigned NumSrcElts = VecVT.getVectorNumElements();
5211
5212 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
5213 // anything about sign bits. But if the sizes match we can derive knowledge
5214 // about sign bits from the vector operand.
5215 if (BitWidth != EltBitWidth)
5216 break;
5217
5218 // If we know the element index, just demand that vector element, else for
5219 // an unknown element index, ignore DemandedElts and demand them all.
5220 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
5221 auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo);
5222 if (ConstEltNo && ConstEltNo->getAPIntValue().ult(NumSrcElts))
5223 DemandedSrcElts =
5224 APInt::getOneBitSet(NumSrcElts, ConstEltNo->getZExtValue());
5225
5226 return ComputeNumSignBits(InVec, DemandedSrcElts, Depth + 1);
5227 }
5229 // Offset the demanded elts by the subvector index.
5230 SDValue Src = Op.getOperand(0);
5231 // Bail until we can represent demanded elements for scalable vectors.
5232 if (Src.getValueType().isScalableVector())
5233 break;
5234 uint64_t Idx = Op.getConstantOperandVal(1);
5235 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5236 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5237 return ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5238 }
5239 case ISD::CONCAT_VECTORS: {
5240 if (VT.isScalableVector())
5241 break;
5242 // Determine the minimum number of sign bits across all demanded
5243 // elts of the input vectors. Early out if the result is already 1.
5244 Tmp = std::numeric_limits<unsigned>::max();
5245 EVT SubVectorVT = Op.getOperand(0).getValueType();
5246 unsigned NumSubVectorElts = SubVectorVT.getVectorNumElements();
5247 unsigned NumSubVectors = Op.getNumOperands();
5248 for (unsigned i = 0; (i < NumSubVectors) && (Tmp > 1); ++i) {
5249 APInt DemandedSub =
5250 DemandedElts.extractBits(NumSubVectorElts, i * NumSubVectorElts);
5251 if (!DemandedSub)
5252 continue;
5253 Tmp2 = ComputeNumSignBits(Op.getOperand(i), DemandedSub, Depth + 1);
5254 Tmp = std::min(Tmp, Tmp2);
5255 }
5256 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5257 return Tmp;
5258 }
5259 case ISD::INSERT_SUBVECTOR: {
5260 if (VT.isScalableVector())
5261 break;
5262 // Demand any elements from the subvector and the remainder from the src its
5263 // inserted into.
5264 SDValue Src = Op.getOperand(0);
5265 SDValue Sub = Op.getOperand(1);
5266 uint64_t Idx = Op.getConstantOperandVal(2);
5267 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5268 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5269 APInt DemandedSrcElts = DemandedElts;
5270 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5271
5272 Tmp = std::numeric_limits<unsigned>::max();
5273 if (!!DemandedSubElts) {
5274 Tmp = ComputeNumSignBits(Sub, DemandedSubElts, Depth + 1);
5275 if (Tmp == 1)
5276 return 1; // early-out
5277 }
5278 if (!!DemandedSrcElts) {
5279 Tmp2 = ComputeNumSignBits(Src, DemandedSrcElts, Depth + 1);
5280 Tmp = std::min(Tmp, Tmp2);
5281 }
5282 assert(Tmp <= VTBits && "Failed to determine minimum sign bits");
5283 return Tmp;
5284 }
5285 case ISD::LOAD: {
5287 if (const MDNode *Ranges = LD->getRanges()) {
5288 if (DemandedElts != 1)
5289 break;
5290
5292 if (VTBits > CR.getBitWidth()) {
5293 switch (LD->getExtensionType()) {
5294 case ISD::SEXTLOAD:
5295 CR = CR.signExtend(VTBits);
5296 break;
5297 case ISD::ZEXTLOAD:
5298 CR = CR.zeroExtend(VTBits);
5299 break;
5300 default:
5301 break;
5302 }
5303 }
5304
5305 if (VTBits != CR.getBitWidth())
5306 break;
5307 return std::min(CR.getSignedMin().getNumSignBits(),
5309 }
5310
5311 break;
5312 }
5313 case ISD::ATOMIC_CMP_SWAP:
5314 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5315 case ISD::ATOMIC_SWAP:
5316 case ISD::ATOMIC_LOAD_ADD:
5317 case ISD::ATOMIC_LOAD_SUB:
5318 case ISD::ATOMIC_LOAD_AND:
5319 case ISD::ATOMIC_LOAD_CLR:
5320 case ISD::ATOMIC_LOAD_OR:
5321 case ISD::ATOMIC_LOAD_XOR:
5322 case ISD::ATOMIC_LOAD_NAND:
5323 case ISD::ATOMIC_LOAD_MIN:
5324 case ISD::ATOMIC_LOAD_MAX:
5325 case ISD::ATOMIC_LOAD_UMIN:
5326 case ISD::ATOMIC_LOAD_UMAX:
5327 case ISD::ATOMIC_LOAD: {
5328 auto *AT = cast<AtomicSDNode>(Op);
5329 // If we are looking at the loaded value.
5330 if (Op.getResNo() == 0) {
5331 Tmp = AT->getMemoryVT().getScalarSizeInBits();
5332 if (Tmp == VTBits)
5333 return 1; // early-out
5334
5335 // For atomic_load, prefer to use the extension type.
5336 if (Op->getOpcode() == ISD::ATOMIC_LOAD) {
5337 switch (AT->getExtensionType()) {
5338 default:
5339 break;
5340 case ISD::SEXTLOAD:
5341 return VTBits - Tmp + 1;
5342 case ISD::ZEXTLOAD:
5343 return VTBits - Tmp;
5344 }
5345 }
5346
5347 if (TLI->getExtendForAtomicOps() == ISD::SIGN_EXTEND)
5348 return VTBits - Tmp + 1;
5349 if (TLI->getExtendForAtomicOps() == ISD::ZERO_EXTEND)
5350 return VTBits - Tmp;
5351 }
5352 break;
5353 }
5354 }
5355
5356 // If we are looking at the loaded value of the SDNode.
5357 if (Op.getResNo() == 0) {
5358 // Handle LOADX separately here. EXTLOAD case will fallthrough.
5359 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
5360 unsigned ExtType = LD->getExtensionType();
5361 switch (ExtType) {
5362 default: break;
5363 case ISD::SEXTLOAD: // e.g. i16->i32 = '17' bits known.
5364 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5365 return VTBits - Tmp + 1;
5366 case ISD::ZEXTLOAD: // e.g. i16->i32 = '16' bits known.
5367 Tmp = LD->getMemoryVT().getScalarSizeInBits();
5368 return VTBits - Tmp;
5369 case ISD::NON_EXTLOAD:
5370 if (const Constant *Cst = TLI->getTargetConstantFromLoad(LD)) {
5371 // We only need to handle vectors - computeKnownBits should handle
5372 // scalar cases.
5373 Type *CstTy = Cst->getType();
5374 if (CstTy->isVectorTy() && !VT.isScalableVector() &&
5375 (NumElts * VTBits) == CstTy->getPrimitiveSizeInBits() &&
5376 VTBits == CstTy->getScalarSizeInBits()) {
5377 Tmp = VTBits;
5378 for (unsigned i = 0; i != NumElts; ++i) {
5379 if (!DemandedElts[i])
5380 continue;
5381 if (Constant *Elt = Cst->getAggregateElement(i)) {
5382 if (auto *CInt = dyn_cast<ConstantInt>(Elt)) {
5383 const APInt &Value = CInt->getValue();
5384 Tmp = std::min(Tmp, Value.getNumSignBits());
5385 continue;
5386 }
5387 if (auto *CFP = dyn_cast<ConstantFP>(Elt)) {
5388 APInt Value = CFP->getValueAPF().bitcastToAPInt();
5389 Tmp = std::min(Tmp, Value.getNumSignBits());
5390 continue;
5391 }
5392 }
5393 // Unknown type. Conservatively assume no bits match sign bit.
5394 return 1;
5395 }
5396 return Tmp;
5397 }
5398 }
5399 break;
5400 }
5401 }
5402 }
5403
5404 // Allow the target to implement this method for its nodes.
5405 if (Opcode >= ISD::BUILTIN_OP_END ||
5406 Opcode == ISD::INTRINSIC_WO_CHAIN ||
5407 Opcode == ISD::INTRINSIC_W_CHAIN ||
5408 Opcode == ISD::INTRINSIC_VOID) {
5409 // TODO: This can probably be removed once target code is audited. This
5410 // is here purely to reduce patch size and review complexity.
5411 if (!VT.isScalableVector()) {
5412 unsigned NumBits =
5413 TLI->ComputeNumSignBitsForTargetNode(Op, DemandedElts, *this, Depth);
5414 if (NumBits > 1)
5415 FirstAnswer = std::max(FirstAnswer, NumBits);
5416 }
5417 }
5418
5419 // Finally, if we can prove that the top bits of the result are 0's or 1's,
5420 // use this information.
5421 KnownBits Known = computeKnownBits(Op, DemandedElts, Depth);
5422 return std::max(FirstAnswer, Known.countMinSignBits());
5423}
5424
5426 unsigned Depth) const {
5427 unsigned SignBits = ComputeNumSignBits(Op, Depth);
5428 return Op.getScalarValueSizeInBits() - SignBits + 1;
5429}
5430
5432 const APInt &DemandedElts,
5433 unsigned Depth) const {
5434 unsigned SignBits = ComputeNumSignBits(Op, DemandedElts, Depth);
5435 return Op.getScalarValueSizeInBits() - SignBits + 1;
5436}
5437
5439 unsigned Depth) const {
5440 // Early out for FREEZE.
5441 if (Op.getOpcode() == ISD::FREEZE)
5442 return true;
5443
5444 EVT VT = Op.getValueType();
5445 APInt DemandedElts = VT.isFixedLengthVector()
5447 : APInt(1, 1);
5448 return isGuaranteedNotToBeUndefOrPoison(Op, DemandedElts, PoisonOnly, Depth);
5449}
5450
5452 const APInt &DemandedElts,
5453 bool PoisonOnly,
5454 unsigned Depth) const {
5455 unsigned Opcode = Op.getOpcode();
5456
5457 // Early out for FREEZE.
5458 if (Opcode == ISD::FREEZE)
5459 return true;
5460
5461 if (Depth >= MaxRecursionDepth)
5462 return false; // Limit search depth.
5463
5464 if (isIntOrFPConstant(Op))
5465 return true;
5466
5467 switch (Opcode) {
5468 case ISD::CONDCODE:
5469 case ISD::VALUETYPE:
5470 case ISD::FrameIndex:
5472 case ISD::CopyFromReg:
5473 return true;
5474
5475 case ISD::POISON:
5476 return false;
5477
5478 case ISD::UNDEF:
5479 return PoisonOnly;
5480
5481 case ISD::BUILD_VECTOR:
5482 // NOTE: BUILD_VECTOR has implicit truncation of wider scalar elements -
5483 // this shouldn't affect the result.
5484 for (unsigned i = 0, e = Op.getNumOperands(); i < e; ++i) {
5485 if (!DemandedElts[i])
5486 continue;
5488 Depth + 1))
5489 return false;
5490 }
5491 return true;
5492
5494 SDValue Src = Op.getOperand(0);
5495 if (Src.getValueType().isScalableVector())
5496 break;
5497 uint64_t Idx = Op.getConstantOperandVal(1);
5498 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
5499 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
5500 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5501 Depth + 1);
5502 }
5503
5504 case ISD::INSERT_SUBVECTOR: {
5505 if (Op.getValueType().isScalableVector())
5506 break;
5507 SDValue Src = Op.getOperand(0);
5508 SDValue Sub = Op.getOperand(1);
5509 uint64_t Idx = Op.getConstantOperandVal(2);
5510 unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
5511 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
5512 APInt DemandedSrcElts = DemandedElts;
5513 DemandedSrcElts.clearBits(Idx, Idx + NumSubElts);
5514
5515 if (!!DemandedSubElts && !isGuaranteedNotToBeUndefOrPoison(
5516 Sub, DemandedSubElts, PoisonOnly, Depth + 1))
5517 return false;
5518 if (!!DemandedSrcElts && !isGuaranteedNotToBeUndefOrPoison(
5519 Src, DemandedSrcElts, PoisonOnly, Depth + 1))
5520 return false;
5521 return true;
5522 }
5523
5525 SDValue Src = Op.getOperand(0);
5526 auto *IndexC = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5527 EVT SrcVT = Src.getValueType();
5528 if (SrcVT.isFixedLengthVector() && IndexC &&
5529 IndexC->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5530 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5531 IndexC->getZExtValue());
5532 return isGuaranteedNotToBeUndefOrPoison(Src, DemandedSrcElts, PoisonOnly,
5533 Depth + 1);
5534 }
5535 break;
5536 }
5537
5539 SDValue InVec = Op.getOperand(0);
5540 SDValue InVal = Op.getOperand(1);
5541 SDValue EltNo = Op.getOperand(2);
5542 EVT VT = InVec.getValueType();
5543 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
5544 if (IndexC && VT.isFixedLengthVector() &&
5545 IndexC->getAPIntValue().ult(VT.getVectorNumElements())) {
5546 if (DemandedElts[IndexC->getZExtValue()] &&
5548 return false;
5549 APInt InVecDemandedElts = DemandedElts;
5550 InVecDemandedElts.clearBit(IndexC->getZExtValue());
5551 if (!!InVecDemandedElts &&
5553 peekThroughInsertVectorElt(InVec, InVecDemandedElts),
5554 InVecDemandedElts, PoisonOnly, Depth + 1))
5555 return false;
5556 return true;
5557 }
5558 break;
5559 }
5560
5562 // Check upper (known undef) elements.
5563 if (DemandedElts.ugt(1) && !PoisonOnly)
5564 return false;
5565 // Check element zero.
5566 if (DemandedElts[0] && !isGuaranteedNotToBeUndefOrPoison(
5567 Op.getOperand(0), PoisonOnly, Depth + 1))
5568 return false;
5569 return true;
5570
5571 case ISD::SPLAT_VECTOR:
5572 return isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), PoisonOnly,
5573 Depth + 1);
5574
5575 case ISD::VECTOR_SHUFFLE: {
5576 APInt DemandedLHS, DemandedRHS;
5577 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5578 if (!getShuffleDemandedElts(DemandedElts.getBitWidth(), SVN->getMask(),
5579 DemandedElts, DemandedLHS, DemandedRHS,
5580 /*AllowUndefElts=*/false))
5581 return false;
5582 if (!DemandedLHS.isZero() &&
5583 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedLHS,
5584 PoisonOnly, Depth + 1))
5585 return false;
5586 if (!DemandedRHS.isZero() &&
5587 !isGuaranteedNotToBeUndefOrPoison(Op.getOperand(1), DemandedRHS,
5588 PoisonOnly, Depth + 1))
5589 return false;
5590 return true;
5591 }
5592
5593 case ISD::SHL:
5594 case ISD::SRL:
5595 case ISD::SRA:
5596 // Shift amount operand is checked by canCreateUndefOrPoison. So it is
5597 // enough to check operand 0 if Op can't create undef/poison.
5598 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5599 /*ConsiderFlags*/ true, Depth) &&
5600 isGuaranteedNotToBeUndefOrPoison(Op.getOperand(0), DemandedElts,
5601 PoisonOnly, Depth + 1);
5602
5603 case ISD::BSWAP:
5604 case ISD::CTPOP:
5605 case ISD::BITREVERSE:
5606 case ISD::AND:
5607 case ISD::OR:
5608 case ISD::XOR:
5609 case ISD::ADD:
5610 case ISD::SUB:
5611 case ISD::MUL:
5612 case ISD::SADDSAT:
5613 case ISD::UADDSAT:
5614 case ISD::SSUBSAT:
5615 case ISD::USUBSAT:
5616 case ISD::SSHLSAT:
5617 case ISD::USHLSAT:
5618 case ISD::SMIN:
5619 case ISD::SMAX:
5620 case ISD::UMIN:
5621 case ISD::UMAX:
5622 case ISD::ZERO_EXTEND:
5623 case ISD::SIGN_EXTEND:
5624 case ISD::ANY_EXTEND:
5625 case ISD::TRUNCATE:
5626 case ISD::VSELECT: {
5627 // If Op can't create undef/poison and none of its operands are undef/poison
5628 // then Op is never undef/poison. A difference from the more common check
5629 // below, outside the switch, is that we handle elementwise operations for
5630 // which the DemandedElts mask is valid for all operands here.
5631 return !canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly,
5632 /*ConsiderFlags*/ true, Depth) &&
5633 all_of(Op->ops(), [&](SDValue V) {
5634 return isGuaranteedNotToBeUndefOrPoison(V, DemandedElts,
5635 PoisonOnly, Depth + 1);
5636 });
5637 }
5638
5639 // TODO: Search for noundef attributes from library functions.
5640
5641 // TODO: Pointers dereferenced by ISD::LOAD/STORE ops are noundef.
5642
5643 default:
5644 // Allow the target to implement this method for its nodes.
5645 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5646 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5647 return TLI->isGuaranteedNotToBeUndefOrPoisonForTargetNode(
5648 Op, DemandedElts, *this, PoisonOnly, Depth);
5649 break;
5650 }
5651
5652 // If Op can't create undef/poison and none of its operands are undef/poison
5653 // then Op is never undef/poison.
5654 // NOTE: TargetNodes can handle this in themselves in
5655 // isGuaranteedNotToBeUndefOrPoisonForTargetNode or let
5656 // TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode handle it.
5657 return !canCreateUndefOrPoison(Op, PoisonOnly, /*ConsiderFlags*/ true,
5658 Depth) &&
5659 all_of(Op->ops(), [&](SDValue V) {
5660 return isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly, Depth + 1);
5661 });
5662}
5663
5665 bool ConsiderFlags,
5666 unsigned Depth) const {
5667 EVT VT = Op.getValueType();
5668 APInt DemandedElts = VT.isFixedLengthVector()
5670 : APInt(1, 1);
5671 return canCreateUndefOrPoison(Op, DemandedElts, PoisonOnly, ConsiderFlags,
5672 Depth);
5673}
5674
5676 bool PoisonOnly, bool ConsiderFlags,
5677 unsigned Depth) const {
5678 if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5679 return true;
5680
5681 unsigned Opcode = Op.getOpcode();
5682 switch (Opcode) {
5683 case ISD::AssertSext:
5684 case ISD::AssertZext:
5685 case ISD::AssertAlign:
5687 // Assertion nodes can create poison if the assertion fails.
5688 return true;
5689
5690 case ISD::FREEZE:
5694 case ISD::SADDSAT:
5695 case ISD::UADDSAT:
5696 case ISD::SSUBSAT:
5697 case ISD::USUBSAT:
5698 case ISD::MULHU:
5699 case ISD::MULHS:
5700 case ISD::AVGFLOORS:
5701 case ISD::AVGFLOORU:
5702 case ISD::AVGCEILS:
5703 case ISD::AVGCEILU:
5704 case ISD::ABDU:
5705 case ISD::ABDS:
5706 case ISD::SMIN:
5707 case ISD::SMAX:
5708 case ISD::SCMP:
5709 case ISD::UMIN:
5710 case ISD::UMAX:
5711 case ISD::UCMP:
5712 case ISD::AND:
5713 case ISD::XOR:
5714 case ISD::ROTL:
5715 case ISD::ROTR:
5716 case ISD::FSHL:
5717 case ISD::FSHR:
5718 case ISD::BSWAP:
5719 case ISD::CTTZ:
5720 case ISD::CTLZ:
5721 case ISD::CTPOP:
5722 case ISD::BITREVERSE:
5723 case ISD::PARITY:
5724 case ISD::SIGN_EXTEND:
5725 case ISD::TRUNCATE:
5729 case ISD::BITCAST:
5730 case ISD::BUILD_VECTOR:
5731 case ISD::BUILD_PAIR:
5732 case ISD::SPLAT_VECTOR:
5733 case ISD::FABS:
5734 return false;
5735
5736 case ISD::ABS:
5737 // ISD::ABS defines abs(INT_MIN) -> INT_MIN and never generates poison.
5738 // Different to Intrinsic::abs.
5739 return false;
5740
5741 case ISD::ADDC:
5742 case ISD::SUBC:
5743 case ISD::ADDE:
5744 case ISD::SUBE:
5745 case ISD::SADDO:
5746 case ISD::SSUBO:
5747 case ISD::SMULO:
5748 case ISD::SADDO_CARRY:
5749 case ISD::SSUBO_CARRY:
5750 case ISD::UADDO:
5751 case ISD::USUBO:
5752 case ISD::UMULO:
5753 case ISD::UADDO_CARRY:
5754 case ISD::USUBO_CARRY:
5755 // No poison on result or overflow flags.
5756 return false;
5757
5758 case ISD::SELECT_CC:
5759 case ISD::SETCC: {
5760 // Integer setcc cannot create undef or poison.
5761 if (Op.getOperand(0).getValueType().isInteger())
5762 return false;
5763
5764 // FP compares are more complicated. They can create poison for nan/infinity
5765 // based on options and flags. The options and flags also cause special
5766 // nonan condition codes to be used. Those condition codes may be preserved
5767 // even if the nonan flag is dropped somewhere.
5768 unsigned CCOp = Opcode == ISD::SETCC ? 2 : 4;
5769 ISD::CondCode CCCode = cast<CondCodeSDNode>(Op.getOperand(CCOp))->get();
5770 return (unsigned)CCCode & 0x10U;
5771 }
5772
5773 case ISD::OR:
5774 case ISD::ZERO_EXTEND:
5775 case ISD::SELECT:
5776 case ISD::VSELECT:
5777 case ISD::ADD:
5778 case ISD::SUB:
5779 case ISD::MUL:
5780 case ISD::FNEG:
5781 case ISD::FADD:
5782 case ISD::FSUB:
5783 case ISD::FMUL:
5784 case ISD::FDIV:
5785 case ISD::FREM:
5786 case ISD::FCOPYSIGN:
5787 case ISD::FMA:
5788 case ISD::FMAD:
5789 case ISD::FP_EXTEND:
5792 // No poison except from flags (which is handled above)
5793 return false;
5794
5795 case ISD::SHL:
5796 case ISD::SRL:
5797 case ISD::SRA:
5798 // If the max shift amount isn't in range, then the shift can
5799 // create poison.
5800 return !getValidMaximumShiftAmount(Op, DemandedElts, Depth + 1);
5801
5804 // If the amount is zero then the result will be poison.
5805 // TODO: Add isKnownNeverZero DemandedElts handling.
5806 return !isKnownNeverZero(Op.getOperand(0), Depth + 1);
5807
5809 // Check if we demand any upper (undef) elements.
5810 return !PoisonOnly && DemandedElts.ugt(1);
5811
5814 // Ensure that the element index is in bounds.
5815 EVT VecVT = Op.getOperand(0).getValueType();
5816 SDValue Idx = Op.getOperand(Opcode == ISD::INSERT_VECTOR_ELT ? 2 : 1);
5817 KnownBits KnownIdx = computeKnownBits(Idx, Depth + 1);
5818 return KnownIdx.getMaxValue().uge(VecVT.getVectorMinNumElements());
5819 }
5820
5821 case ISD::VECTOR_SHUFFLE: {
5822 // Check for any demanded shuffle element that is undef.
5823 auto *SVN = cast<ShuffleVectorSDNode>(Op);
5824 for (auto [Idx, Elt] : enumerate(SVN->getMask()))
5825 if (Elt < 0 && DemandedElts[Idx])
5826 return true;
5827 return false;
5828 }
5829
5830 default:
5831 // Allow the target to implement this method for its nodes.
5832 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
5833 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID)
5834 return TLI->canCreateUndefOrPoisonForTargetNode(
5835 Op, DemandedElts, *this, PoisonOnly, ConsiderFlags, Depth);
5836 break;
5837 }
5838
5839 // Be conservative and return true.
5840 return true;
5841}
5842
5843bool SelectionDAG::isADDLike(SDValue Op, bool NoWrap) const {
5844 unsigned Opcode = Op.getOpcode();
5845 if (Opcode == ISD::OR)
5846 return Op->getFlags().hasDisjoint() ||
5847 haveNoCommonBitsSet(Op.getOperand(0), Op.getOperand(1));
5848 if (Opcode == ISD::XOR)
5849 return !NoWrap && isMinSignedConstant(Op.getOperand(1));
5850 return false;
5851}
5852
5854 return Op.getNumOperands() == 2 && isa<ConstantSDNode>(Op.getOperand(1)) &&
5855 (Op.isAnyAdd() || isADDLike(Op));
5856}
5857
5859 unsigned Depth) const {
5860 EVT VT = Op.getValueType();
5861
5862 // Since the number of lanes in a scalable vector is unknown at compile time,
5863 // we track one bit which is implicitly broadcast to all lanes. This means
5864 // that all lanes in a scalable vector are considered demanded.
5865 APInt DemandedElts = VT.isFixedLengthVector()
5867 : APInt(1, 1);
5868
5869 return isKnownNeverNaN(Op, DemandedElts, SNaN, Depth);
5870}
5871
5873 bool SNaN, unsigned Depth) const {
5874 assert(!DemandedElts.isZero() && "No demanded elements");
5875
5876 // If we're told that NaNs won't happen, assume they won't.
5877 if (getTarget().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs())
5878 return true;
5879
5880 if (Depth >= MaxRecursionDepth)
5881 return false; // Limit search depth.
5882
5883 // If the value is a constant, we can obviously see if it is a NaN or not.
5885 return !C->getValueAPF().isNaN() ||
5886 (SNaN && !C->getValueAPF().isSignaling());
5887 }
5888
5889 unsigned Opcode = Op.getOpcode();
5890 switch (Opcode) {
5891 case ISD::FADD:
5892 case ISD::FSUB:
5893 case ISD::FMUL:
5894 case ISD::FDIV:
5895 case ISD::FREM:
5896 case ISD::FSIN:
5897 case ISD::FCOS:
5898 case ISD::FTAN:
5899 case ISD::FASIN:
5900 case ISD::FACOS:
5901 case ISD::FATAN:
5902 case ISD::FATAN2:
5903 case ISD::FSINH:
5904 case ISD::FCOSH:
5905 case ISD::FTANH:
5906 case ISD::FMA:
5907 case ISD::FMAD: {
5908 if (SNaN)
5909 return true;
5910 // TODO: Need isKnownNeverInfinity
5911 return false;
5912 }
5913 case ISD::FCANONICALIZE:
5914 case ISD::FEXP:
5915 case ISD::FEXP2:
5916 case ISD::FEXP10:
5917 case ISD::FTRUNC:
5918 case ISD::FFLOOR:
5919 case ISD::FCEIL:
5920 case ISD::FROUND:
5921 case ISD::FROUNDEVEN:
5922 case ISD::LROUND:
5923 case ISD::LLROUND:
5924 case ISD::FRINT:
5925 case ISD::LRINT:
5926 case ISD::LLRINT:
5927 case ISD::FNEARBYINT:
5928 case ISD::FLDEXP: {
5929 if (SNaN)
5930 return true;
5931 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5932 }
5933 case ISD::FABS:
5934 case ISD::FNEG:
5935 case ISD::FCOPYSIGN: {
5936 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5937 }
5938 case ISD::SELECT:
5939 return isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1) &&
5940 isKnownNeverNaN(Op.getOperand(2), DemandedElts, SNaN, Depth + 1);
5941 case ISD::FP_EXTEND:
5942 case ISD::FP_ROUND: {
5943 if (SNaN)
5944 return true;
5945 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
5946 }
5947 case ISD::SINT_TO_FP:
5948 case ISD::UINT_TO_FP:
5949 return true;
5950 case ISD::FSQRT: // Need is known positive
5951 case ISD::FLOG:
5952 case ISD::FLOG2:
5953 case ISD::FLOG10:
5954 case ISD::FPOWI:
5955 case ISD::FPOW: {
5956 if (SNaN)
5957 return true;
5958 // TODO: Refine on operand
5959 return false;
5960 }
5961 case ISD::FMINNUM:
5962 case ISD::FMAXNUM:
5963 case ISD::FMINIMUMNUM:
5964 case ISD::FMAXIMUMNUM: {
5965 // Only one needs to be known not-nan, since it will be returned if the
5966 // other ends up being one.
5967 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) ||
5968 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5969 }
5970 case ISD::FMINNUM_IEEE:
5971 case ISD::FMAXNUM_IEEE: {
5972 if (SNaN)
5973 return true;
5974 // This can return a NaN if either operand is an sNaN, or if both operands
5975 // are NaN.
5976 return (isKnownNeverNaN(Op.getOperand(0), DemandedElts, false, Depth + 1) &&
5977 isKnownNeverSNaN(Op.getOperand(1), DemandedElts, Depth + 1)) ||
5978 (isKnownNeverNaN(Op.getOperand(1), DemandedElts, false, Depth + 1) &&
5979 isKnownNeverSNaN(Op.getOperand(0), DemandedElts, Depth + 1));
5980 }
5981 case ISD::FMINIMUM:
5982 case ISD::FMAXIMUM: {
5983 // TODO: Does this quiet or return the origina NaN as-is?
5984 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1) &&
5985 isKnownNeverNaN(Op.getOperand(1), DemandedElts, SNaN, Depth + 1);
5986 }
5988 SDValue Src = Op.getOperand(0);
5989 auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5990 EVT SrcVT = Src.getValueType();
5991 if (SrcVT.isFixedLengthVector() && Idx &&
5992 Idx->getAPIntValue().ult(SrcVT.getVectorNumElements())) {
5993 APInt DemandedSrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
5994 Idx->getZExtValue());
5995 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
5996 }
5997 return isKnownNeverNaN(Src, SNaN, Depth + 1);
5998 }
6000 SDValue Src = Op.getOperand(0);
6001 if (Src.getValueType().isFixedLengthVector()) {
6002 unsigned Idx = Op.getConstantOperandVal(1);
6003 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
6004 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
6005 return isKnownNeverNaN(Src, DemandedSrcElts, SNaN, Depth + 1);
6006 }
6007 return isKnownNeverNaN(Src, SNaN, Depth + 1);
6008 }
6009 case ISD::INSERT_SUBVECTOR: {
6010 SDValue BaseVector = Op.getOperand(0);
6011 SDValue SubVector = Op.getOperand(1);
6012 EVT BaseVectorVT = BaseVector.getValueType();
6013 if (BaseVectorVT.isFixedLengthVector()) {
6014 unsigned Idx = Op.getConstantOperandVal(2);
6015 unsigned NumBaseElts = BaseVectorVT.getVectorNumElements();
6016 unsigned NumSubElts = SubVector.getValueType().getVectorNumElements();
6017
6018 // Clear/Extract the bits at the position where the subvector will be
6019 // inserted.
6020 APInt DemandedMask =
6021 APInt::getBitsSet(NumBaseElts, Idx, Idx + NumSubElts);
6022 APInt DemandedSrcElts = DemandedElts & ~DemandedMask;
6023 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
6024
6025 bool NeverNaN = true;
6026 if (!DemandedSrcElts.isZero())
6027 NeverNaN &=
6028 isKnownNeverNaN(BaseVector, DemandedSrcElts, SNaN, Depth + 1);
6029 if (NeverNaN && !DemandedSubElts.isZero())
6030 NeverNaN &=
6031 isKnownNeverNaN(SubVector, DemandedSubElts, SNaN, Depth + 1);
6032 return NeverNaN;
6033 }
6034 return isKnownNeverNaN(BaseVector, SNaN, Depth + 1) &&
6035 isKnownNeverNaN(SubVector, SNaN, Depth + 1);
6036 }
6037 case ISD::BUILD_VECTOR: {
6038 unsigned NumElts = Op.getNumOperands();
6039 for (unsigned I = 0; I != NumElts; ++I)
6040 if (DemandedElts[I] &&
6041 !isKnownNeverNaN(Op.getOperand(I), SNaN, Depth + 1))
6042 return false;
6043 return true;
6044 }
6045 case ISD::AssertNoFPClass: {
6046 FPClassTest NoFPClass =
6047 static_cast<FPClassTest>(Op.getConstantOperandVal(1));
6048 if ((NoFPClass & fcNan) == fcNan)
6049 return true;
6050 if (SNaN && (NoFPClass & fcSNan) == fcSNan)
6051 return true;
6052 return isKnownNeverNaN(Op.getOperand(0), DemandedElts, SNaN, Depth + 1);
6053 }
6054 default:
6055 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::INTRINSIC_WO_CHAIN ||
6056 Opcode == ISD::INTRINSIC_W_CHAIN || Opcode == ISD::INTRINSIC_VOID) {
6057 return TLI->isKnownNeverNaNForTargetNode(Op, DemandedElts, *this, SNaN,
6058 Depth);
6059 }
6060
6061 return false;
6062 }
6063}
6064
6066 assert(Op.getValueType().isFloatingPoint() &&
6067 "Floating point type expected");
6068
6069 // If the value is a constant, we can obviously see if it is a zero or not.
6071 Op, [](ConstantFPSDNode *C) { return !C->isZero(); });
6072}
6073
6075 if (Depth >= MaxRecursionDepth)
6076 return false; // Limit search depth.
6077
6078 assert(!Op.getValueType().isFloatingPoint() &&
6079 "Floating point types unsupported - use isKnownNeverZeroFloat");
6080
6081 // If the value is a constant, we can obviously see if it is a zero or not.
6083 [](ConstantSDNode *C) { return !C->isZero(); }))
6084 return true;
6085
6086 // TODO: Recognize more cases here. Most of the cases are also incomplete to
6087 // some degree.
6088 switch (Op.getOpcode()) {
6089 default:
6090 break;
6091
6092 case ISD::OR:
6093 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6094 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6095
6096 case ISD::VSELECT:
6097 case ISD::SELECT:
6098 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6099 isKnownNeverZero(Op.getOperand(2), Depth + 1);
6100
6101 case ISD::SHL: {
6102 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6103 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6104 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6105 // 1 << X is never zero.
6106 if (ValKnown.One[0])
6107 return true;
6108 // If max shift cnt of known ones is non-zero, result is non-zero.
6109 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6110 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6111 !ValKnown.One.shl(MaxCnt).isZero())
6112 return true;
6113 break;
6114 }
6115 case ISD::UADDSAT:
6116 case ISD::UMAX:
6117 return isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6118 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6119
6120 // For smin/smax: If either operand is known negative/positive
6121 // respectively we don't need the other to be known at all.
6122 case ISD::SMAX: {
6123 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6124 if (Op1.isStrictlyPositive())
6125 return true;
6126
6127 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6128 if (Op0.isStrictlyPositive())
6129 return true;
6130
6131 if (Op1.isNonZero() && Op0.isNonZero())
6132 return true;
6133
6134 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6135 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6136 }
6137 case ISD::SMIN: {
6138 KnownBits Op1 = computeKnownBits(Op.getOperand(1), Depth + 1);
6139 if (Op1.isNegative())
6140 return true;
6141
6142 KnownBits Op0 = computeKnownBits(Op.getOperand(0), Depth + 1);
6143 if (Op0.isNegative())
6144 return true;
6145
6146 if (Op1.isNonZero() && Op0.isNonZero())
6147 return true;
6148
6149 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6150 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6151 }
6152 case ISD::UMIN:
6153 return isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6154 isKnownNeverZero(Op.getOperand(0), Depth + 1);
6155
6156 case ISD::ROTL:
6157 case ISD::ROTR:
6158 case ISD::BITREVERSE:
6159 case ISD::BSWAP:
6160 case ISD::CTPOP:
6161 case ISD::ABS:
6162 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6163
6164 case ISD::SRA:
6165 case ISD::SRL: {
6166 if (Op->getFlags().hasExact())
6167 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6168 KnownBits ValKnown = computeKnownBits(Op.getOperand(0), Depth + 1);
6169 if (ValKnown.isNegative())
6170 return true;
6171 // If max shift cnt of known ones is non-zero, result is non-zero.
6172 APInt MaxCnt = computeKnownBits(Op.getOperand(1), Depth + 1).getMaxValue();
6173 if (MaxCnt.ult(ValKnown.getBitWidth()) &&
6174 !ValKnown.One.lshr(MaxCnt).isZero())
6175 return true;
6176 break;
6177 }
6178 case ISD::UDIV:
6179 case ISD::SDIV:
6180 // div exact can only produce a zero if the dividend is zero.
6181 // TODO: For udiv this is also true if Op1 u<= Op0
6182 if (Op->getFlags().hasExact())
6183 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6184 break;
6185
6186 case ISD::ADD:
6187 if (Op->getFlags().hasNoUnsignedWrap())
6188 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) ||
6189 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6190 return true;
6191 // TODO: There are a lot more cases we can prove for add.
6192 break;
6193
6194 case ISD::SUB: {
6195 if (isNullConstant(Op.getOperand(0)))
6196 return isKnownNeverZero(Op.getOperand(1), Depth + 1);
6197
6198 std::optional<bool> ne =
6199 KnownBits::ne(computeKnownBits(Op.getOperand(0), Depth + 1),
6200 computeKnownBits(Op.getOperand(1), Depth + 1));
6201 return ne && *ne;
6202 }
6203
6204 case ISD::MUL:
6205 if (Op->getFlags().hasNoSignedWrap() || Op->getFlags().hasNoUnsignedWrap())
6206 if (isKnownNeverZero(Op.getOperand(1), Depth + 1) &&
6207 isKnownNeverZero(Op.getOperand(0), Depth + 1))
6208 return true;
6209 break;
6210
6211 case ISD::ZERO_EXTEND:
6212 case ISD::SIGN_EXTEND:
6213 return isKnownNeverZero(Op.getOperand(0), Depth + 1);
6214 case ISD::VSCALE: {
6216 const APInt &Multiplier = Op.getConstantOperandAPInt(0);
6217 ConstantRange CR =
6218 getVScaleRange(&F, Op.getScalarValueSizeInBits()).multiply(Multiplier);
6219 if (!CR.contains(APInt(CR.getBitWidth(), 0)))
6220 return true;
6221 break;
6222 }
6223 }
6224
6226}
6227
6229 if (ConstantFPSDNode *C1 = isConstOrConstSplatFP(Op, true))
6230 return !C1->isNegative();
6231
6232 return Op.getOpcode() == ISD::FABS;
6233}
6234
6236 // Check the obvious case.
6237 if (A == B) return true;
6238
6239 // For negative and positive zero.
6242 if (CA->isZero() && CB->isZero()) return true;
6243
6244 // Otherwise they may not be equal.
6245 return false;
6246}
6247
6248// Only bits set in Mask must be negated, other bits may be arbitrary.
6250 if (isBitwiseNot(V, AllowUndefs))
6251 return V.getOperand(0);
6252
6253 // Handle any_extend (not (truncate X)) pattern, where Mask only sets
6254 // bits in the non-extended part.
6255 ConstantSDNode *MaskC = isConstOrConstSplat(Mask);
6256 if (!MaskC || V.getOpcode() != ISD::ANY_EXTEND)
6257 return SDValue();
6258 SDValue ExtArg = V.getOperand(0);
6259 if (ExtArg.getScalarValueSizeInBits() >=
6260 MaskC->getAPIntValue().getActiveBits() &&
6261 isBitwiseNot(ExtArg, AllowUndefs) &&
6262 ExtArg.getOperand(0).getOpcode() == ISD::TRUNCATE &&
6263 ExtArg.getOperand(0).getOperand(0).getValueType() == V.getValueType())
6264 return ExtArg.getOperand(0).getOperand(0);
6265 return SDValue();
6266}
6267
6269 // Match masked merge pattern (X & ~M) op (Y & M)
6270 // Including degenerate case (X & ~M) op M
6271 auto MatchNoCommonBitsPattern = [&](SDValue Not, SDValue Mask,
6272 SDValue Other) {
6273 if (SDValue NotOperand =
6274 getBitwiseNotOperand(Not, Mask, /* AllowUndefs */ true)) {
6275 if (NotOperand->getOpcode() == ISD::ZERO_EXTEND ||
6276 NotOperand->getOpcode() == ISD::TRUNCATE)
6277 NotOperand = NotOperand->getOperand(0);
6278
6279 if (Other == NotOperand)
6280 return true;
6281 if (Other->getOpcode() == ISD::AND)
6282 return NotOperand == Other->getOperand(0) ||
6283 NotOperand == Other->getOperand(1);
6284 }
6285 return false;
6286 };
6287
6288 if (A->getOpcode() == ISD::ZERO_EXTEND || A->getOpcode() == ISD::TRUNCATE)
6289 A = A->getOperand(0);
6290
6291 if (B->getOpcode() == ISD::ZERO_EXTEND || B->getOpcode() == ISD::TRUNCATE)
6292 B = B->getOperand(0);
6293
6294 if (A->getOpcode() == ISD::AND)
6295 return MatchNoCommonBitsPattern(A->getOperand(0), A->getOperand(1), B) ||
6296 MatchNoCommonBitsPattern(A->getOperand(1), A->getOperand(0), B);
6297 return false;
6298}
6299
6300// FIXME: unify with llvm::haveNoCommonBitsSet.
6302 assert(A.getValueType() == B.getValueType() &&
6303 "Values must have the same type");
6306 return true;
6309}
6310
6311static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step,
6312 SelectionDAG &DAG) {
6313 if (cast<ConstantSDNode>(Step)->isZero())
6314 return DAG.getConstant(0, DL, VT);
6315
6316 return SDValue();
6317}
6318
6321 SelectionDAG &DAG) {
6322 int NumOps = Ops.size();
6323 assert(NumOps != 0 && "Can't build an empty vector!");
6324 assert(!VT.isScalableVector() &&
6325 "BUILD_VECTOR cannot be used with scalable types");
6326 assert(VT.getVectorNumElements() == (unsigned)NumOps &&
6327 "Incorrect element count in BUILD_VECTOR!");
6328
6329 // BUILD_VECTOR of UNDEFs is UNDEF.
6330 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6331 return DAG.getUNDEF(VT);
6332
6333 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
6334 SDValue IdentitySrc;
6335 bool IsIdentity = true;
6336 for (int i = 0; i != NumOps; ++i) {
6338 Ops[i].getOperand(0).getValueType() != VT ||
6339 (IdentitySrc && Ops[i].getOperand(0) != IdentitySrc) ||
6340 !isa<ConstantSDNode>(Ops[i].getOperand(1)) ||
6341 Ops[i].getConstantOperandAPInt(1) != i) {
6342 IsIdentity = false;
6343 break;
6344 }
6345 IdentitySrc = Ops[i].getOperand(0);
6346 }
6347 if (IsIdentity)
6348 return IdentitySrc;
6349
6350 return SDValue();
6351}
6352
6353/// Try to simplify vector concatenation to an input value, undef, or build
6354/// vector.
6357 SelectionDAG &DAG) {
6358 assert(!Ops.empty() && "Can't concatenate an empty list of vectors!");
6360 [Ops](SDValue Op) {
6361 return Ops[0].getValueType() == Op.getValueType();
6362 }) &&
6363 "Concatenation of vectors with inconsistent value types!");
6364 assert((Ops[0].getValueType().getVectorElementCount() * Ops.size()) ==
6365 VT.getVectorElementCount() &&
6366 "Incorrect element count in vector concatenation!");
6367
6368 if (Ops.size() == 1)
6369 return Ops[0];
6370
6371 // Concat of UNDEFs is UNDEF.
6372 if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
6373 return DAG.getUNDEF(VT);
6374
6375 // Scan the operands and look for extract operations from a single source
6376 // that correspond to insertion at the same location via this concatenation:
6377 // concat (extract X, 0*subvec_elts), (extract X, 1*subvec_elts), ...
6378 SDValue IdentitySrc;
6379 bool IsIdentity = true;
6380 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
6381 SDValue Op = Ops[i];
6382 unsigned IdentityIndex = i * Op.getValueType().getVectorMinNumElements();
6383 if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
6384 Op.getOperand(0).getValueType() != VT ||
6385 (IdentitySrc && Op.getOperand(0) != IdentitySrc) ||
6386 Op.getConstantOperandVal(1) != IdentityIndex) {
6387 IsIdentity = false;
6388 break;
6389 }
6390 assert((!IdentitySrc || IdentitySrc == Op.getOperand(0)) &&
6391 "Unexpected identity source vector for concat of extracts");
6392 IdentitySrc = Op.getOperand(0);
6393 }
6394 if (IsIdentity) {
6395 assert(IdentitySrc && "Failed to set source vector of extracts");
6396 return IdentitySrc;
6397 }
6398
6399 // The code below this point is only designed to work for fixed width
6400 // vectors, so we bail out for now.
6401 if (VT.isScalableVector())
6402 return SDValue();
6403
6404 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
6405 // simplified to one big BUILD_VECTOR.
6406 // FIXME: Add support for SCALAR_TO_VECTOR as well.
6407 EVT SVT = VT.getScalarType();
6409 for (SDValue Op : Ops) {
6410 EVT OpVT = Op.getValueType();
6411 if (Op.isUndef())
6412 Elts.append(OpVT.getVectorNumElements(), DAG.getUNDEF(SVT));
6413 else if (Op.getOpcode() == ISD::BUILD_VECTOR)
6414 Elts.append(Op->op_begin(), Op->op_end());
6415 else
6416 return SDValue();
6417 }
6418
6419 // BUILD_VECTOR requires all inputs to be of the same type, find the
6420 // maximum type and extend them all.
6421 for (SDValue Op : Elts)
6422 SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
6423
6424 if (SVT.bitsGT(VT.getScalarType())) {
6425 for (SDValue &Op : Elts) {
6426 if (Op.isUndef())
6427 Op = DAG.getUNDEF(SVT);
6428 else
6429 Op = DAG.getTargetLoweringInfo().isZExtFree(Op.getValueType(), SVT)
6430 ? DAG.getZExtOrTrunc(Op, DL, SVT)
6431 : DAG.getSExtOrTrunc(Op, DL, SVT);
6432 }
6433 }
6434
6435 SDValue V = DAG.getBuildVector(VT, DL, Elts);
6436 NewSDValueDbgMsg(V, "New node fold concat vectors: ", &DAG);
6437 return V;
6438}
6439
6440/// Gets or creates the specified node.
6441SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT) {
6442 SDVTList VTs = getVTList(VT);
6444 AddNodeIDNode(ID, Opcode, VTs, {});
6445 void *IP = nullptr;
6446 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
6447 return SDValue(E, 0);
6448
6449 auto *N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6450 CSEMap.InsertNode(N, IP);
6451
6452 InsertNode(N);
6453 SDValue V = SDValue(N, 0);
6454 NewSDValueDbgMsg(V, "Creating new node: ", this);
6455 return V;
6456}
6457
6458SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6459 SDValue N1) {
6460 SDNodeFlags Flags;
6461 if (Inserter)
6462 Flags = Inserter->getFlags();
6463 return getNode(Opcode, DL, VT, N1, Flags);
6464}
6465
6466SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
6467 SDValue N1, const SDNodeFlags Flags) {
6468 assert(N1.getOpcode() != ISD::DELETED_NODE && "Operand is DELETED_NODE!");
6469
6470 // Constant fold unary operations with a vector integer or float operand.
6471 switch (Opcode) {
6472 default:
6473 // FIXME: Entirely reasonable to perform folding of other unary
6474 // operations here as the need arises.
6475 break;
6476 case ISD::FNEG:
6477 case ISD::FABS:
6478 case ISD::FCEIL:
6479 case ISD::FTRUNC:
6480 case ISD::FFLOOR:
6481 case ISD::FP_EXTEND:
6482 case ISD::FP_TO_SINT:
6483 case ISD::FP_TO_UINT:
6484 case ISD::FP_TO_FP16:
6485 case ISD::FP_TO_BF16:
6486 case ISD::TRUNCATE:
6487 case ISD::ANY_EXTEND:
6488 case ISD::ZERO_EXTEND:
6489 case ISD::SIGN_EXTEND:
6490 case ISD::UINT_TO_FP:
6491 case ISD::SINT_TO_FP:
6492 case ISD::FP16_TO_FP:
6493 case ISD::BF16_TO_FP:
6494 case ISD::BITCAST:
6495 case ISD::ABS:
6496 case ISD::BITREVERSE:
6497 case ISD::BSWAP:
6498 case ISD::CTLZ:
6500 case ISD::CTTZ:
6502 case ISD::CTPOP:
6503 case ISD::STEP_VECTOR: {
6504 SDValue Ops = {N1};
6505 if (SDValue Fold = FoldConstantArithmetic(Opcode, DL, VT, Ops))
6506 return Fold;
6507 }
6508 }
6509
6510 unsigned OpOpcode = N1.getNode()->getOpcode();
6511 switch (Opcode) {
6512 case ISD::STEP_VECTOR:
6513 assert(VT.isScalableVector() &&
6514 "STEP_VECTOR can only be used with scalable types");
6515 assert(OpOpcode == ISD::TargetConstant &&
6516 VT.getVectorElementType() == N1.getValueType() &&
6517 "Unexpected step operand");
6518 break;
6519 case ISD::FREEZE:
6520 assert(VT == N1.getValueType() && "Unexpected VT!");
6521 if (isGuaranteedNotToBeUndefOrPoison(N1, /*PoisonOnly=*/false))
6522 return N1;
6523 break;
6524 case ISD::TokenFactor:
6525 case ISD::MERGE_VALUES:
6527 return N1; // Factor, merge or concat of one node? No need.
6528 case ISD::BUILD_VECTOR: {
6529 // Attempt to simplify BUILD_VECTOR.
6530 SDValue Ops[] = {N1};
6531 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
6532 return V;
6533 break;
6534 }
6535 case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
6536 case ISD::FP_EXTEND:
6538 "Invalid FP cast!");
6539 if (N1.getValueType() == VT) return N1; // noop conversion.
6540 assert((!VT.isVector() || VT.getVectorElementCount() ==
6542 "Vector element count mismatch!");
6543 assert(N1.getValueType().bitsLT(VT) && "Invalid fpext node, dst < src!");
6544 if (N1.isUndef())
6545 return getUNDEF(VT);
6546 break;
6547 case ISD::FP_TO_SINT:
6548 case ISD::FP_TO_UINT:
6549 if (N1.isUndef())
6550 return getUNDEF(VT);
6551 break;
6552 case ISD::SINT_TO_FP:
6553 case ISD::UINT_TO_FP:
6554 // [us]itofp(undef) = 0, because the result value is bounded.
6555 if (N1.isUndef())
6556 return getConstantFP(0.0, DL, VT);
6557 break;
6558 case ISD::SIGN_EXTEND:
6559 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6560 "Invalid SIGN_EXTEND!");
6561 assert(VT.isVector() == N1.getValueType().isVector() &&
6562 "SIGN_EXTEND result type type should be vector iff the operand "
6563 "type is vector!");
6564 if (N1.getValueType() == VT) return N1; // noop extension
6565 assert((!VT.isVector() || VT.getVectorElementCount() ==
6567 "Vector element count mismatch!");
6568 assert(N1.getValueType().bitsLT(VT) && "Invalid sext node, dst < src!");
6569 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) {
6570 SDNodeFlags Flags;
6571 if (OpOpcode == ISD::ZERO_EXTEND)
6572 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6573 SDValue NewVal = getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6574 transferDbgValues(N1, NewVal);
6575 return NewVal;
6576 }
6577
6578 if (OpOpcode == ISD::POISON)
6579 return getPOISON(VT);
6580
6581 if (N1.isUndef())
6582 // sext(undef) = 0, because the top bits will all be the same.
6583 return getConstant(0, DL, VT);
6584
6585 // Skip unnecessary sext_inreg pattern:
6586 // (sext (trunc x)) -> x iff the upper bits are all signbits.
6587 if (OpOpcode == ISD::TRUNCATE) {
6588 SDValue OpOp = N1.getOperand(0);
6589 if (OpOp.getValueType() == VT) {
6590 unsigned NumSignExtBits =
6592 if (ComputeNumSignBits(OpOp) > NumSignExtBits) {
6593 transferDbgValues(N1, OpOp);
6594 return OpOp;
6595 }
6596 }
6597 }
6598 break;
6599 case ISD::ZERO_EXTEND:
6600 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6601 "Invalid ZERO_EXTEND!");
6602 assert(VT.isVector() == N1.getValueType().isVector() &&
6603 "ZERO_EXTEND result type type should be vector iff the operand "
6604 "type is vector!");
6605 if (N1.getValueType() == VT) return N1; // noop extension
6606 assert((!VT.isVector() || VT.getVectorElementCount() ==
6608 "Vector element count mismatch!");
6609 assert(N1.getValueType().bitsLT(VT) && "Invalid zext node, dst < src!");
6610 if (OpOpcode == ISD::ZERO_EXTEND) { // (zext (zext x)) -> (zext x)
6611 SDNodeFlags Flags;
6612 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6613 SDValue NewVal =
6614 getNode(ISD::ZERO_EXTEND, DL, VT, N1.getOperand(0), Flags);
6615 transferDbgValues(N1, NewVal);
6616 return NewVal;
6617 }
6618
6619 if (OpOpcode == ISD::POISON)
6620 return getPOISON(VT);
6621
6622 if (N1.isUndef())
6623 // zext(undef) = 0, because the top bits will be zero.
6624 return getConstant(0, DL, VT);
6625
6626 // Skip unnecessary zext_inreg pattern:
6627 // (zext (trunc x)) -> x iff the upper bits are known zero.
6628 // TODO: Remove (zext (trunc (and x, c))) exception which some targets
6629 // use to recognise zext_inreg patterns.
6630 if (OpOpcode == ISD::TRUNCATE) {
6631 SDValue OpOp = N1.getOperand(0);
6632 if (OpOp.getValueType() == VT) {
6633 if (OpOp.getOpcode() != ISD::AND) {
6636 if (MaskedValueIsZero(OpOp, HiBits)) {
6637 transferDbgValues(N1, OpOp);
6638 return OpOp;
6639 }
6640 }
6641 }
6642 }
6643 break;
6644 case ISD::ANY_EXTEND:
6645 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6646 "Invalid ANY_EXTEND!");
6647 assert(VT.isVector() == N1.getValueType().isVector() &&
6648 "ANY_EXTEND result type type should be vector iff the operand "
6649 "type is vector!");
6650 if (N1.getValueType() == VT) return N1; // noop extension
6651 assert((!VT.isVector() || VT.getVectorElementCount() ==
6653 "Vector element count mismatch!");
6654 assert(N1.getValueType().bitsLT(VT) && "Invalid anyext node, dst < src!");
6655
6656 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6657 OpOpcode == ISD::ANY_EXTEND) {
6658 SDNodeFlags Flags;
6659 if (OpOpcode == ISD::ZERO_EXTEND)
6660 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6661 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
6662 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6663 }
6664 if (N1.isUndef())
6665 return getUNDEF(VT);
6666
6667 // (ext (trunc x)) -> x
6668 if (OpOpcode == ISD::TRUNCATE) {
6669 SDValue OpOp = N1.getOperand(0);
6670 if (OpOp.getValueType() == VT) {
6671 transferDbgValues(N1, OpOp);
6672 return OpOp;
6673 }
6674 }
6675 break;
6676 case ISD::TRUNCATE:
6677 assert(VT.isInteger() && N1.getValueType().isInteger() &&
6678 "Invalid TRUNCATE!");
6679 assert(VT.isVector() == N1.getValueType().isVector() &&
6680 "TRUNCATE result type type should be vector iff the operand "
6681 "type is vector!");
6682 if (N1.getValueType() == VT) return N1; // noop truncate
6683 assert((!VT.isVector() || VT.getVectorElementCount() ==
6685 "Vector element count mismatch!");
6686 assert(N1.getValueType().bitsGT(VT) && "Invalid truncate node, src < dst!");
6687 if (OpOpcode == ISD::TRUNCATE)
6688 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6689 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
6690 OpOpcode == ISD::ANY_EXTEND) {
6691 // If the source is smaller than the dest, we still need an extend.
6693 VT.getScalarType())) {
6694 SDNodeFlags Flags;
6695 if (OpOpcode == ISD::ZERO_EXTEND)
6696 Flags.setNonNeg(N1->getFlags().hasNonNeg());
6697 return getNode(OpOpcode, DL, VT, N1.getOperand(0), Flags);
6698 }
6699 if (N1.getOperand(0).getValueType().bitsGT(VT))
6700 return getNode(ISD::TRUNCATE, DL, VT, N1.getOperand(0));
6701 return N1.getOperand(0);
6702 }
6703 if (N1.isUndef())
6704 return getUNDEF(VT);
6705 if (OpOpcode == ISD::VSCALE && !NewNodesMustHaveLegalTypes)
6706 return getVScale(DL, VT,
6708 break;
6712 assert(VT.isVector() && "This DAG node is restricted to vector types.");
6713 assert(N1.getValueType().bitsLE(VT) &&
6714 "The input must be the same size or smaller than the result.");
6717 "The destination vector type must have fewer lanes than the input.");
6718 break;
6719 case ISD::ABS:
6720 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid ABS!");
6721 if (N1.isUndef())
6722 return getConstant(0, DL, VT);
6723 break;
6724 case ISD::BSWAP:
6725 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BSWAP!");
6726 assert((VT.getScalarSizeInBits() % 16 == 0) &&
6727 "BSWAP types must be a multiple of 16 bits!");
6728 if (N1.isUndef())
6729 return getUNDEF(VT);
6730 // bswap(bswap(X)) -> X.
6731 if (OpOpcode == ISD::BSWAP)
6732 return N1.getOperand(0);
6733 break;
6734 case ISD::BITREVERSE:
6735 assert(VT.isInteger() && VT == N1.getValueType() && "Invalid BITREVERSE!");
6736 if (N1.isUndef())
6737 return getUNDEF(VT);
6738 break;
6739 case ISD::BITCAST:
6741 "Cannot BITCAST between types of different sizes!");
6742 if (VT == N1.getValueType()) return N1; // noop conversion.
6743 if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
6744 return getNode(ISD::BITCAST, DL, VT, N1.getOperand(0));
6745 if (N1.isUndef())
6746 return getUNDEF(VT);
6747 break;
6749 assert(VT.isVector() && !N1.getValueType().isVector() &&
6750 (VT.getVectorElementType() == N1.getValueType() ||
6752 N1.getValueType().isInteger() &&
6754 "Illegal SCALAR_TO_VECTOR node!");
6755 if (N1.isUndef())
6756 return getUNDEF(VT);
6757 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
6758 if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
6760 N1.getConstantOperandVal(1) == 0 &&
6761 N1.getOperand(0).getValueType() == VT)
6762 return N1.getOperand(0);
6763 break;
6764 case ISD::FNEG:
6765 // Negation of an unknown bag of bits is still completely undefined.
6766 if (N1.isUndef())
6767 return getUNDEF(VT);
6768
6769 if (OpOpcode == ISD::FNEG) // --X -> X
6770 return N1.getOperand(0);
6771 break;
6772 case ISD::FABS:
6773 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
6774 return getNode(ISD::FABS, DL, VT, N1.getOperand(0));
6775 break;
6776 case ISD::VSCALE:
6777 assert(VT == N1.getValueType() && "Unexpected VT!");
6778 break;
6779 case ISD::CTPOP:
6780 if (N1.getValueType().getScalarType() == MVT::i1)
6781 return N1;
6782 break;
6783 case ISD::CTLZ:
6784 case ISD::CTTZ:
6785 if (N1.getValueType().getScalarType() == MVT::i1)
6786 return getNOT(DL, N1, N1.getValueType());
6787 break;
6788 case ISD::VECREDUCE_ADD:
6789 if (N1.getValueType().getScalarType() == MVT::i1)
6790 return getNode(ISD::VECREDUCE_XOR, DL, VT, N1);
6791 break;
6792 case ISD::VECREDUCE_SMIN:
6793 case ISD::VECREDUCE_UMAX:
6794 if (N1.getValueType().getScalarType() == MVT::i1)
6795 return getNode(ISD::VECREDUCE_OR, DL, VT, N1);
6796 break;
6797 case ISD::VECREDUCE_SMAX:
6798 case ISD::VECREDUCE_UMIN:
6799 if (N1.getValueType().getScalarType() == MVT::i1)
6800 return getNode(ISD::VECREDUCE_AND, DL, VT, N1);
6801 break;
6802 case ISD::SPLAT_VECTOR:
6803 assert(VT.isVector() && "Wrong return type!");
6804 // FIXME: Hexagon uses i32 scalar for a floating point zero vector so allow
6805 // that for now.
6807 (VT.isFloatingPoint() && N1.getValueType() == MVT::i32) ||
6809 N1.getValueType().isInteger() &&
6811 "Wrong operand type!");
6812 break;
6813 }
6814
6815 SDNode *N;
6816 SDVTList VTs = getVTList(VT);
6817 SDValue Ops[] = {N1};
6818 if (VT != MVT::Glue) { // Don't CSE glue producing nodes
6820 AddNodeIDNode(ID, Opcode, VTs, Ops);
6821 void *IP = nullptr;
6822 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
6823 E->intersectFlagsWith(Flags);
6824 return SDValue(E, 0);
6825 }
6826
6827 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6828 N->setFlags(Flags);
6829 createOperands(N, Ops);
6830 CSEMap.InsertNode(N, IP);
6831 } else {
6832 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
6833 createOperands(N, Ops);
6834 }
6835
6836 InsertNode(N);
6837 SDValue V = SDValue(N, 0);
6838 NewSDValueDbgMsg(V, "Creating new node: ", this);
6839 return V;
6840}
6841
6842static std::optional<APInt> FoldValue(unsigned Opcode, const APInt &C1,
6843 const APInt &C2) {
6844 switch (Opcode) {
6845 case ISD::ADD: return C1 + C2;
6846 case ISD::SUB: return C1 - C2;
6847 case ISD::MUL: return C1 * C2;
6848 case ISD::AND: return C1 & C2;
6849 case ISD::OR: return C1 | C2;
6850 case ISD::XOR: return C1 ^ C2;
6851 case ISD::SHL: return C1 << C2;
6852 case ISD::SRL: return C1.lshr(C2);
6853 case ISD::SRA: return C1.ashr(C2);
6854 case ISD::ROTL: return C1.rotl(C2);
6855 case ISD::ROTR: return C1.rotr(C2);
6856 case ISD::SMIN: return C1.sle(C2) ? C1 : C2;
6857 case ISD::SMAX: return C1.sge(C2) ? C1 : C2;
6858 case ISD::UMIN: return C1.ule(C2) ? C1 : C2;
6859 case ISD::UMAX: return C1.uge(C2) ? C1 : C2;
6860 case ISD::SADDSAT: return C1.sadd_sat(C2);
6861 case ISD::UADDSAT: return C1.uadd_sat(C2);
6862 case ISD::SSUBSAT: return C1.ssub_sat(C2);
6863 case ISD::USUBSAT: return C1.usub_sat(C2);
6864 case ISD::SSHLSAT: return C1.sshl_sat(C2);
6865 case ISD::USHLSAT: return C1.ushl_sat(C2);
6866 case ISD::UDIV:
6867 if (!C2.getBoolValue())
6868 break;
6869 return C1.udiv(C2);
6870 case ISD::UREM:
6871 if (!C2.getBoolValue())
6872 break;
6873 return C1.urem(C2);
6874 case ISD::SDIV:
6875 if (!C2.getBoolValue())
6876 break;
6877 return C1.sdiv(C2);
6878 case ISD::SREM:
6879 if (!C2.getBoolValue())
6880 break;
6881 return C1.srem(C2);
6882 case ISD::AVGFLOORS:
6883 return APIntOps::avgFloorS(C1, C2);
6884 case ISD::AVGFLOORU:
6885 return APIntOps::avgFloorU(C1, C2);
6886 case ISD::AVGCEILS:
6887 return APIntOps::avgCeilS(C1, C2);
6888 case ISD::AVGCEILU:
6889 return APIntOps::avgCeilU(C1, C2);
6890 case ISD::ABDS:
6891 return APIntOps::abds(C1, C2);
6892 case ISD::ABDU:
6893 return APIntOps::abdu(C1, C2);
6894 case ISD::MULHS:
6895 return APIntOps::mulhs(C1, C2);
6896 case ISD::MULHU:
6897 return APIntOps::mulhu(C1, C2);
6898 }
6899 return std::nullopt;
6900}
6901// Handle constant folding with UNDEF.
6902// TODO: Handle more cases.
6903static std::optional<APInt> FoldValueWithUndef(unsigned Opcode, const APInt &C1,
6904 bool IsUndef1, const APInt &C2,
6905 bool IsUndef2) {
6906 if (!(IsUndef1 || IsUndef2))
6907 return FoldValue(Opcode, C1, C2);
6908
6909 // Fold and(x, undef) -> 0
6910 // Fold mul(x, undef) -> 0
6911 if (Opcode == ISD::AND || Opcode == ISD::MUL)
6912 return APInt::getZero(C1.getBitWidth());
6913
6914 return std::nullopt;
6915}
6916
6918 const GlobalAddressSDNode *GA,
6919 const SDNode *N2) {
6920 if (GA->getOpcode() != ISD::GlobalAddress)
6921 return SDValue();
6922 if (!TLI->isOffsetFoldingLegal(GA))
6923 return SDValue();
6924 auto *C2 = dyn_cast<ConstantSDNode>(N2);
6925 if (!C2)
6926 return SDValue();
6927 int64_t Offset = C2->getSExtValue();
6928 switch (Opcode) {
6929 case ISD::ADD:
6930 case ISD::PTRADD:
6931 break;
6932 case ISD::SUB: Offset = -uint64_t(Offset); break;
6933 default: return SDValue();
6934 }
6935 return getGlobalAddress(GA->getGlobal(), SDLoc(C2), VT,
6936 GA->getOffset() + uint64_t(Offset));
6937}
6938
6940 switch (Opcode) {
6941 case ISD::SDIV:
6942 case ISD::UDIV:
6943 case ISD::SREM:
6944 case ISD::UREM: {
6945 // If a divisor is zero/undef or any element of a divisor vector is
6946 // zero/undef, the whole op is undef.
6947 assert(Ops.size() == 2 && "Div/rem should have 2 operands");
6948 SDValue Divisor = Ops[1];
6949 if (Divisor.isUndef() || isNullConstant(Divisor))
6950 return true;
6951
6952 return ISD::isBuildVectorOfConstantSDNodes(Divisor.getNode()) &&
6953 llvm::any_of(Divisor->op_values(),
6954 [](SDValue V) { return V.isUndef() ||
6955 isNullConstant(V); });
6956 // TODO: Handle signed overflow.
6957 }
6958 // TODO: Handle oversized shifts.
6959 default:
6960 return false;
6961 }
6962}
6963
6966 SDNodeFlags Flags) {
6967 // If the opcode is a target-specific ISD node, there's nothing we can
6968 // do here and the operand rules may not line up with the below, so
6969 // bail early.
6970 // We can't create a scalar CONCAT_VECTORS so skip it. It will break
6971 // for concats involving SPLAT_VECTOR. Concats of BUILD_VECTORS are handled by
6972 // foldCONCAT_VECTORS in getNode before this is called.
6973 if (Opcode >= ISD::BUILTIN_OP_END || Opcode == ISD::CONCAT_VECTORS)
6974 return SDValue();
6975
6976 unsigned NumOps = Ops.size();
6977 if (NumOps == 0)
6978 return SDValue();
6979
6980 if (isUndef(Opcode, Ops))
6981 return getUNDEF(VT);
6982
6983 // Handle unary special cases.
6984 if (NumOps == 1) {
6985 SDValue N1 = Ops[0];
6986
6987 // Constant fold unary operations with an integer constant operand. Even
6988 // opaque constant will be folded, because the folding of unary operations
6989 // doesn't create new constants with different values. Nevertheless, the
6990 // opaque flag is preserved during folding to prevent future folding with
6991 // other constants.
6992 if (auto *C = dyn_cast<ConstantSDNode>(N1)) {
6993 const APInt &Val = C->getAPIntValue();
6994 switch (Opcode) {
6995 case ISD::SIGN_EXTEND:
6996 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
6997 C->isTargetOpcode(), C->isOpaque());
6998 case ISD::TRUNCATE:
6999 if (C->isOpaque())
7000 break;
7001 [[fallthrough]];
7002 case ISD::ZERO_EXTEND:
7003 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
7004 C->isTargetOpcode(), C->isOpaque());
7005 case ISD::ANY_EXTEND:
7006 // Some targets like RISCV prefer to sign extend some types.
7007 if (TLI->isSExtCheaperThanZExt(N1.getValueType(), VT))
7008 return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), DL, VT,
7009 C->isTargetOpcode(), C->isOpaque());
7010 return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), DL, VT,
7011 C->isTargetOpcode(), C->isOpaque());
7012 case ISD::ABS:
7013 return getConstant(Val.abs(), DL, VT, C->isTargetOpcode(),
7014 C->isOpaque());
7015 case ISD::BITREVERSE:
7016 return getConstant(Val.reverseBits(), DL, VT, C->isTargetOpcode(),
7017 C->isOpaque());
7018 case ISD::BSWAP:
7019 return getConstant(Val.byteSwap(), DL, VT, C->isTargetOpcode(),
7020 C->isOpaque());
7021 case ISD::CTPOP:
7022 return getConstant(Val.popcount(), DL, VT, C->isTargetOpcode(),
7023 C->isOpaque());
7024 case ISD::CTLZ:
7026 return getConstant(Val.countl_zero(), DL, VT, C->isTargetOpcode(),
7027 C->isOpaque());
7028 case ISD::CTTZ:
7030 return getConstant(Val.countr_zero(), DL, VT, C->isTargetOpcode(),
7031 C->isOpaque());
7032 case ISD::UINT_TO_FP:
7033 case ISD::SINT_TO_FP: {
7035 (void)FPV.convertFromAPInt(Val, Opcode == ISD::SINT_TO_FP,
7037 return getConstantFP(FPV, DL, VT);
7038 }
7039 case ISD::FP16_TO_FP:
7040 case ISD::BF16_TO_FP: {
7041 bool Ignored;
7042 APFloat FPV(Opcode == ISD::FP16_TO_FP ? APFloat::IEEEhalf()
7043 : APFloat::BFloat(),
7044 (Val.getBitWidth() == 16) ? Val : Val.trunc(16));
7045
7046 // This can return overflow, underflow, or inexact; we don't care.
7047 // FIXME need to be more flexible about rounding mode.
7049 &Ignored);
7050 return getConstantFP(FPV, DL, VT);
7051 }
7052 case ISD::STEP_VECTOR:
7053 if (SDValue V = FoldSTEP_VECTOR(DL, VT, N1, *this))
7054 return V;
7055 break;
7056 case ISD::BITCAST:
7057 if (VT == MVT::f16 && C->getValueType(0) == MVT::i16)
7058 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val), DL, VT);
7059 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
7060 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val), DL, VT);
7061 if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
7062 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val), DL, VT);
7063 if (VT == MVT::f128 && C->getValueType(0) == MVT::i128)
7064 return getConstantFP(APFloat(APFloat::IEEEquad(), Val), DL, VT);
7065 break;
7066 }
7067 }
7068
7069 // Constant fold unary operations with a floating point constant operand.
7070 if (auto *C = dyn_cast<ConstantFPSDNode>(N1)) {
7071 APFloat V = C->getValueAPF(); // make copy
7072 switch (Opcode) {
7073 case ISD::FNEG:
7074 V.changeSign();
7075 return getConstantFP(V, DL, VT);
7076 case ISD::FABS:
7077 V.clearSign();
7078 return getConstantFP(V, DL, VT);
7079 case ISD::FCEIL: {
7080 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
7082 return getConstantFP(V, DL, VT);
7083 return SDValue();
7084 }
7085 case ISD::FTRUNC: {
7086 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
7088 return getConstantFP(V, DL, VT);
7089 return SDValue();
7090 }
7091 case ISD::FFLOOR: {
7092 APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
7094 return getConstantFP(V, DL, VT);
7095 return SDValue();
7096 }
7097 case ISD::FP_EXTEND: {
7098 bool ignored;
7099 // This can return overflow, underflow, or inexact; we don't care.
7100 // FIXME need to be more flexible about rounding mode.
7101 (void)V.convert(VT.getFltSemantics(), APFloat::rmNearestTiesToEven,
7102 &ignored);
7103 return getConstantFP(V, DL, VT);
7104 }
7105 case ISD::FP_TO_SINT:
7106 case ISD::FP_TO_UINT: {
7107 bool ignored;
7108 APSInt IntVal(VT.getSizeInBits(), Opcode == ISD::FP_TO_UINT);
7109 // FIXME need to be more flexible about rounding mode.
7111 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored);
7112 if (s == APFloat::opInvalidOp) // inexact is OK, in fact usual
7113 break;
7114 return getConstant(IntVal, DL, VT);
7115 }
7116 case ISD::FP_TO_FP16:
7117 case ISD::FP_TO_BF16: {
7118 bool Ignored;
7119 // This can return overflow, underflow, or inexact; we don't care.
7120 // FIXME need to be more flexible about rounding mode.
7121 (void)V.convert(Opcode == ISD::FP_TO_FP16 ? APFloat::IEEEhalf()
7122 : APFloat::BFloat(),
7124 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7125 }
7126 case ISD::BITCAST:
7127 if (VT == MVT::i16 && C->getValueType(0) == MVT::f16)
7128 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7129 VT);
7130 if (VT == MVT::i16 && C->getValueType(0) == MVT::bf16)
7131 return getConstant((uint16_t)V.bitcastToAPInt().getZExtValue(), DL,
7132 VT);
7133 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
7134 return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), DL,
7135 VT);
7136 if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
7137 return getConstant(V.bitcastToAPInt().getZExtValue(), DL, VT);
7138 break;
7139 }
7140 }
7141
7142 // Early-out if we failed to constant fold a bitcast.
7143 if (Opcode == ISD::BITCAST)
7144 return SDValue();
7145 }
7146
7147 // Handle binops special cases.
7148 if (NumOps == 2) {
7149 if (SDValue CFP = foldConstantFPMath(Opcode, DL, VT, Ops))
7150 return CFP;
7151
7152 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7153 if (auto *C2 = dyn_cast<ConstantSDNode>(Ops[1])) {
7154 if (C1->isOpaque() || C2->isOpaque())
7155 return SDValue();
7156
7157 std::optional<APInt> FoldAttempt =
7158 FoldValue(Opcode, C1->getAPIntValue(), C2->getAPIntValue());
7159 if (!FoldAttempt)
7160 return SDValue();
7161
7162 SDValue Folded = getConstant(*FoldAttempt, DL, VT);
7163 assert((!Folded || !VT.isVector()) &&
7164 "Can't fold vectors ops with scalar operands");
7165 return Folded;
7166 }
7167 }
7168
7169 // fold (add Sym, c) -> Sym+c
7171 return FoldSymbolOffset(Opcode, VT, GA, Ops[1].getNode());
7172 if (TLI->isCommutativeBinOp(Opcode))
7174 return FoldSymbolOffset(Opcode, VT, GA, Ops[0].getNode());
7175
7176 // fold (sext_in_reg c1) -> c2
7177 if (Opcode == ISD::SIGN_EXTEND_INREG) {
7178 EVT EVT = cast<VTSDNode>(Ops[1])->getVT();
7179
7180 auto SignExtendInReg = [&](APInt Val, llvm::EVT ConstantVT) {
7181 unsigned FromBits = EVT.getScalarSizeInBits();
7182 Val <<= Val.getBitWidth() - FromBits;
7183 Val.ashrInPlace(Val.getBitWidth() - FromBits);
7184 return getConstant(Val, DL, ConstantVT);
7185 };
7186
7187 if (auto *C1 = dyn_cast<ConstantSDNode>(Ops[0])) {
7188 const APInt &Val = C1->getAPIntValue();
7189 return SignExtendInReg(Val, VT);
7190 }
7191
7193 SmallVector<SDValue, 8> ScalarOps;
7194 llvm::EVT OpVT = Ops[0].getOperand(0).getValueType();
7195 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I) {
7196 SDValue Op = Ops[0].getOperand(I);
7197 if (Op.isUndef()) {
7198 ScalarOps.push_back(getUNDEF(OpVT));
7199 continue;
7200 }
7201 const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
7202 ScalarOps.push_back(SignExtendInReg(Val, OpVT));
7203 }
7204 return getBuildVector(VT, DL, ScalarOps);
7205 }
7206
7207 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR &&
7208 isa<ConstantSDNode>(Ops[0].getOperand(0)))
7209 return getNode(ISD::SPLAT_VECTOR, DL, VT,
7210 SignExtendInReg(Ops[0].getConstantOperandAPInt(0),
7211 Ops[0].getOperand(0).getValueType()));
7212 }
7213 }
7214
7215 // Handle fshl/fshr special cases.
7216 if (Opcode == ISD::FSHL || Opcode == ISD::FSHR) {
7217 auto *C1 = dyn_cast<ConstantSDNode>(Ops[0]);
7218 auto *C2 = dyn_cast<ConstantSDNode>(Ops[1]);
7219 auto *C3 = dyn_cast<ConstantSDNode>(Ops[2]);
7220
7221 if (C1 && C2 && C3) {
7222 if (C1->isOpaque() || C2->isOpaque() || C3->isOpaque())
7223 return SDValue();
7224 const APInt &V1 = C1->getAPIntValue(), &V2 = C2->getAPIntValue(),
7225 &V3 = C3->getAPIntValue();
7226
7227 APInt FoldedVal = Opcode == ISD::FSHL ? APIntOps::fshl(V1, V2, V3)
7228 : APIntOps::fshr(V1, V2, V3);
7229 return getConstant(FoldedVal, DL, VT);
7230 }
7231 }
7232
7233 // Handle fma/fmad special cases.
7234 if (Opcode == ISD::FMA || Opcode == ISD::FMAD) {
7235 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7236 assert(Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7237 Ops[2].getValueType() == VT && "FMA types must match!");
7241 if (C1 && C2 && C3) {
7242 APFloat V1 = C1->getValueAPF();
7243 const APFloat &V2 = C2->getValueAPF();
7244 const APFloat &V3 = C3->getValueAPF();
7245 if (Opcode == ISD::FMAD) {
7248 } else
7250 return getConstantFP(V1, DL, VT);
7251 }
7252 }
7253
7254 // This is for vector folding only from here on.
7255 if (!VT.isVector())
7256 return SDValue();
7257
7258 ElementCount NumElts = VT.getVectorElementCount();
7259
7260 // See if we can fold through any bitcasted integer ops.
7261 if (NumOps == 2 && VT.isFixedLengthVector() && VT.isInteger() &&
7262 Ops[0].getValueType() == VT && Ops[1].getValueType() == VT &&
7263 (Ops[0].getOpcode() == ISD::BITCAST ||
7264 Ops[1].getOpcode() == ISD::BITCAST)) {
7267 auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
7268 auto *BV2 = dyn_cast<BuildVectorSDNode>(N2);
7269 if (BV1 && BV2 && N1.getValueType().isInteger() &&
7270 N2.getValueType().isInteger()) {
7271 bool IsLE = getDataLayout().isLittleEndian();
7272 unsigned EltBits = VT.getScalarSizeInBits();
7273 SmallVector<APInt> RawBits1, RawBits2;
7274 BitVector UndefElts1, UndefElts2;
7275 if (BV1->getConstantRawBits(IsLE, EltBits, RawBits1, UndefElts1) &&
7276 BV2->getConstantRawBits(IsLE, EltBits, RawBits2, UndefElts2)) {
7277 SmallVector<APInt> RawBits;
7278 for (unsigned I = 0, E = NumElts.getFixedValue(); I != E; ++I) {
7279 std::optional<APInt> Fold = FoldValueWithUndef(
7280 Opcode, RawBits1[I], UndefElts1[I], RawBits2[I], UndefElts2[I]);
7281 if (!Fold)
7282 break;
7283 RawBits.push_back(*Fold);
7284 }
7285 if (RawBits.size() == NumElts.getFixedValue()) {
7286 // We have constant folded, but we might need to cast this again back
7287 // to the original (possibly legalized) type.
7288 EVT BVVT, BVEltVT;
7289 if (N1.getValueType() == VT) {
7290 BVVT = N1.getValueType();
7291 BVEltVT = BV1->getOperand(0).getValueType();
7292 } else {
7293 BVVT = N2.getValueType();
7294 BVEltVT = BV2->getOperand(0).getValueType();
7295 }
7296 unsigned BVEltBits = BVEltVT.getSizeInBits();
7297 SmallVector<APInt> DstBits;
7298 BitVector DstUndefs;
7300 DstBits, RawBits, DstUndefs,
7301 BitVector(RawBits.size(), false));
7302 SmallVector<SDValue> Ops(DstBits.size(), getUNDEF(BVEltVT));
7303 for (unsigned I = 0, E = DstBits.size(); I != E; ++I) {
7304 if (DstUndefs[I])
7305 continue;
7306 Ops[I] = getConstant(DstBits[I].sext(BVEltBits), DL, BVEltVT);
7307 }
7308 return getBitcast(VT, getBuildVector(BVVT, DL, Ops));
7309 }
7310 }
7311 }
7312 }
7313
7314 // Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
7315 // (shl step_vector(C0), C1) -> (step_vector(C0 << C1))
7316 if ((Opcode == ISD::MUL || Opcode == ISD::SHL) &&
7317 Ops[0].getOpcode() == ISD::STEP_VECTOR) {
7318 APInt RHSVal;
7319 if (ISD::isConstantSplatVector(Ops[1].getNode(), RHSVal)) {
7320 APInt NewStep = Opcode == ISD::MUL
7321 ? Ops[0].getConstantOperandAPInt(0) * RHSVal
7322 : Ops[0].getConstantOperandAPInt(0) << RHSVal;
7323 return getStepVector(DL, VT, NewStep);
7324 }
7325 }
7326
7327 auto IsScalarOrSameVectorSize = [NumElts](const SDValue &Op) {
7328 return !Op.getValueType().isVector() ||
7329 Op.getValueType().getVectorElementCount() == NumElts;
7330 };
7331
7332 auto IsBuildVectorSplatVectorOrUndef = [](const SDValue &Op) {
7333 return Op.isUndef() || Op.getOpcode() == ISD::CONDCODE ||
7334 Op.getOpcode() == ISD::BUILD_VECTOR ||
7335 Op.getOpcode() == ISD::SPLAT_VECTOR;
7336 };
7337
7338 // All operands must be vector types with the same number of elements as
7339 // the result type and must be either UNDEF or a build/splat vector
7340 // or UNDEF scalars.
7341 if (!llvm::all_of(Ops, IsBuildVectorSplatVectorOrUndef) ||
7342 !llvm::all_of(Ops, IsScalarOrSameVectorSize))
7343 return SDValue();
7344
7345 // If we are comparing vectors, then the result needs to be a i1 boolean that
7346 // is then extended back to the legal result type depending on how booleans
7347 // are represented.
7348 EVT SVT = (Opcode == ISD::SETCC ? MVT::i1 : VT.getScalarType());
7349 ISD::NodeType ExtendCode =
7350 (Opcode == ISD::SETCC && SVT != VT.getScalarType())
7351 ? TargetLowering::getExtendForContent(TLI->getBooleanContents(VT))
7353
7354 // Find legal integer scalar type for constant promotion and
7355 // ensure that its scalar size is at least as large as source.
7356 EVT LegalSVT = VT.getScalarType();
7357 if (NewNodesMustHaveLegalTypes && LegalSVT.isInteger()) {
7358 LegalSVT = TLI->getTypeToTransformTo(*getContext(), LegalSVT);
7359 if (LegalSVT.bitsLT(VT.getScalarType()))
7360 return SDValue();
7361 }
7362
7363 // For scalable vector types we know we're dealing with SPLAT_VECTORs. We
7364 // only have one operand to check. For fixed-length vector types we may have
7365 // a combination of BUILD_VECTOR and SPLAT_VECTOR.
7366 unsigned NumVectorElts = NumElts.isScalable() ? 1 : NumElts.getFixedValue();
7367
7368 // Constant fold each scalar lane separately.
7369 SmallVector<SDValue, 4> ScalarResults;
7370 for (unsigned I = 0; I != NumVectorElts; I++) {
7371 SmallVector<SDValue, 4> ScalarOps;
7372 for (SDValue Op : Ops) {
7373 EVT InSVT = Op.getValueType().getScalarType();
7374 if (Op.getOpcode() != ISD::BUILD_VECTOR &&
7375 Op.getOpcode() != ISD::SPLAT_VECTOR) {
7376 if (Op.isUndef())
7377 ScalarOps.push_back(getUNDEF(InSVT));
7378 else
7379 ScalarOps.push_back(Op);
7380 continue;
7381 }
7382
7383 SDValue ScalarOp =
7384 Op.getOperand(Op.getOpcode() == ISD::SPLAT_VECTOR ? 0 : I);
7385 EVT ScalarVT = ScalarOp.getValueType();
7386
7387 // Build vector (integer) scalar operands may need implicit
7388 // truncation - do this before constant folding.
7389 if (ScalarVT.isInteger() && ScalarVT.bitsGT(InSVT)) {
7390 // Don't create illegally-typed nodes unless they're constants or undef
7391 // - if we fail to constant fold we can't guarantee the (dead) nodes
7392 // we're creating will be cleaned up before being visited for
7393 // legalization.
7394 if (NewNodesMustHaveLegalTypes && !ScalarOp.isUndef() &&
7395 !isa<ConstantSDNode>(ScalarOp) &&
7396 TLI->getTypeAction(*getContext(), InSVT) !=
7398 return SDValue();
7399 ScalarOp = getNode(ISD::TRUNCATE, DL, InSVT, ScalarOp);
7400 }
7401
7402 ScalarOps.push_back(ScalarOp);
7403 }
7404
7405 // Constant fold the scalar operands.
7406 SDValue ScalarResult = getNode(Opcode, DL, SVT, ScalarOps, Flags);
7407
7408 // Scalar folding only succeeded if the result is a constant or UNDEF.
7409 if (!ScalarResult.isUndef() && ScalarResult.getOpcode() != ISD::Constant &&
7410 ScalarResult.getOpcode() != ISD::ConstantFP)
7411 return SDValue();
7412
7413 // Legalize the (integer) scalar constant if necessary. We only do
7414 // this once we know the folding succeeded, since otherwise we would
7415 // get a node with illegal type which has a user.
7416 if (LegalSVT != SVT)
7417 ScalarResult = getNode(ExtendCode, DL, LegalSVT, ScalarResult);
7418
7419 ScalarResults.push_back(ScalarResult);
7420 }
7421
7422 SDValue V = NumElts.isScalable() ? getSplatVector(VT, DL, ScalarResults[0])
7423 : getBuildVector(VT, DL, ScalarResults);
7424 NewSDValueDbgMsg(V, "New node fold constant vector: ", this);
7425 return V;
7426}
7427
7430 // TODO: Add support for unary/ternary fp opcodes.
7431 if (Ops.size() != 2)
7432 return SDValue();
7433
7434 // TODO: We don't do any constant folding for strict FP opcodes here, but we
7435 // should. That will require dealing with a potentially non-default
7436 // rounding mode, checking the "opStatus" return value from the APFloat
7437 // math calculations, and possibly other variations.
7438 SDValue N1 = Ops[0];
7439 SDValue N2 = Ops[1];
7440 ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, /*AllowUndefs*/ false);
7441 ConstantFPSDNode *N2CFP = isConstOrConstSplatFP(N2, /*AllowUndefs*/ false);
7442 if (N1CFP && N2CFP) {
7443 APFloat C1 = N1CFP->getValueAPF(); // make copy
7444 const APFloat &C2 = N2CFP->getValueAPF();
7445 switch (Opcode) {
7446 case ISD::FADD:
7448 return getConstantFP(C1, DL, VT);
7449 case ISD::FSUB:
7451 return getConstantFP(C1, DL, VT);
7452 case ISD::FMUL:
7454 return getConstantFP(C1, DL, VT);
7455 case ISD::FDIV:
7457 return getConstantFP(C1, DL, VT);
7458 case ISD::FREM:
7459 C1.mod(C2);
7460 return getConstantFP(C1, DL, VT);
7461 case ISD::FCOPYSIGN:
7462 C1.copySign(C2);
7463 return getConstantFP(C1, DL, VT);
7464 case ISD::FMINNUM:
7465 return getConstantFP(minnum(C1, C2), DL, VT);
7466 case ISD::FMAXNUM:
7467 return getConstantFP(maxnum(C1, C2), DL, VT);
7468 case ISD::FMINIMUM:
7469 return getConstantFP(minimum(C1, C2), DL, VT);
7470 case ISD::FMAXIMUM:
7471 return getConstantFP(maximum(C1, C2), DL, VT);
7472 case ISD::FMINIMUMNUM:
7473 return getConstantFP(minimumnum(C1, C2), DL, VT);
7474 case ISD::FMAXIMUMNUM:
7475 return getConstantFP(maximumnum(C1, C2), DL, VT);
7476 default: break;
7477 }
7478 }
7479 if (N1CFP && Opcode == ISD::FP_ROUND) {
7480 APFloat C1 = N1CFP->getValueAPF(); // make copy
7481 bool Unused;
7482 // This can return overflow, underflow, or inexact; we don't care.
7483 // FIXME need to be more flexible about rounding mode.
7485 &Unused);
7486 return getConstantFP(C1, DL, VT);
7487 }
7488
7489 switch (Opcode) {
7490 case ISD::FSUB:
7491 // -0.0 - undef --> undef (consistent with "fneg undef")
7492 if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, /*AllowUndefs*/ true))
7493 if (N1C && N1C->getValueAPF().isNegZero() && N2.isUndef())
7494 return getUNDEF(VT);
7495 [[fallthrough]];
7496
7497 case ISD::FADD:
7498 case ISD::FMUL:
7499 case ISD::FDIV:
7500 case ISD::FREM:
7501 // If both operands are undef, the result is undef. If 1 operand is undef,
7502 // the result is NaN. This should match the behavior of the IR optimizer.
7503 if (N1.isUndef() && N2.isUndef())
7504 return getUNDEF(VT);
7505 if (N1.isUndef() || N2.isUndef())
7507 }
7508 return SDValue();
7509}
7510
7512 const SDLoc &DL, EVT DstEltVT) {
7513 EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
7514
7515 // If this is already the right type, we're done.
7516 if (SrcEltVT == DstEltVT)
7517 return SDValue(BV, 0);
7518
7519 unsigned SrcBitSize = SrcEltVT.getSizeInBits();
7520 unsigned DstBitSize = DstEltVT.getSizeInBits();
7521
7522 // If this is a conversion of N elements of one type to N elements of another
7523 // type, convert each element. This handles FP<->INT cases.
7524 if (SrcBitSize == DstBitSize) {
7526 for (SDValue Op : BV->op_values()) {
7527 // If the vector element type is not legal, the BUILD_VECTOR operands
7528 // are promoted and implicitly truncated. Make that explicit here.
7529 if (Op.getValueType() != SrcEltVT)
7530 Op = getNode(ISD::TRUNCATE, DL, SrcEltVT, Op);
7531 Ops.push_back(getBitcast(DstEltVT, Op));
7532 }
7533 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT,
7535 return getBuildVector(VT, DL, Ops);
7536 }
7537
7538 // Otherwise, we're growing or shrinking the elements. To avoid having to
7539 // handle annoying details of growing/shrinking FP values, we convert them to
7540 // int first.
7541 if (SrcEltVT.isFloatingPoint()) {
7542 // Convert the input float vector to a int vector where the elements are the
7543 // same sizes.
7544 EVT IntEltVT = EVT::getIntegerVT(*getContext(), SrcEltVT.getSizeInBits());
7545 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7547 DstEltVT);
7548 return SDValue();
7549 }
7550
7551 // Now we know the input is an integer vector. If the output is a FP type,
7552 // convert to integer first, then to FP of the right size.
7553 if (DstEltVT.isFloatingPoint()) {
7554 EVT IntEltVT = EVT::getIntegerVT(*getContext(), DstEltVT.getSizeInBits());
7555 if (SDValue Tmp = FoldConstantBuildVector(BV, DL, IntEltVT))
7557 DstEltVT);
7558 return SDValue();
7559 }
7560
7561 // Okay, we know the src/dst types are both integers of differing types.
7562 assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
7563
7564 // Extract the constant raw bit data.
7565 BitVector UndefElements;
7566 SmallVector<APInt> RawBits;
7567 bool IsLE = getDataLayout().isLittleEndian();
7568 if (!BV->getConstantRawBits(IsLE, DstBitSize, RawBits, UndefElements))
7569 return SDValue();
7570
7572 for (unsigned I = 0, E = RawBits.size(); I != E; ++I) {
7573 if (UndefElements[I])
7574 Ops.push_back(getUNDEF(DstEltVT));
7575 else
7576 Ops.push_back(getConstant(RawBits[I], DL, DstEltVT));
7577 }
7578
7579 EVT VT = EVT::getVectorVT(*getContext(), DstEltVT, Ops.size());
7580 return getBuildVector(VT, DL, Ops);
7581}
7582
7584 assert(Val.getValueType().isInteger() && "Invalid AssertAlign!");
7585
7586 // There's no need to assert on a byte-aligned pointer. All pointers are at
7587 // least byte aligned.
7588 if (A == Align(1))
7589 return Val;
7590
7591 SDVTList VTs = getVTList(Val.getValueType());
7593 AddNodeIDNode(ID, ISD::AssertAlign, VTs, {Val});
7594 ID.AddInteger(A.value());
7595
7596 void *IP = nullptr;
7597 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP))
7598 return SDValue(E, 0);
7599
7600 auto *N =
7601 newSDNode<AssertAlignSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, A);
7602 createOperands(N, {Val});
7603
7604 CSEMap.InsertNode(N, IP);
7605 InsertNode(N);
7606
7607 SDValue V(N, 0);
7608 NewSDValueDbgMsg(V, "Creating new node: ", this);
7609 return V;
7610}
7611
7612SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7613 SDValue N1, SDValue N2) {
7614 SDNodeFlags Flags;
7615 if (Inserter)
7616 Flags = Inserter->getFlags();
7617 return getNode(Opcode, DL, VT, N1, N2, Flags);
7618}
7619
7621 SDValue &N2) const {
7622 if (!TLI->isCommutativeBinOp(Opcode))
7623 return;
7624
7625 // Canonicalize:
7626 // binop(const, nonconst) -> binop(nonconst, const)
7629 bool N1CFP = isConstantFPBuildVectorOrConstantFP(N1);
7630 bool N2CFP = isConstantFPBuildVectorOrConstantFP(N2);
7631 if ((N1C && !N2C) || (N1CFP && !N2CFP))
7632 std::swap(N1, N2);
7633
7634 // Canonicalize:
7635 // binop(splat(x), step_vector) -> binop(step_vector, splat(x))
7636 else if (N1.getOpcode() == ISD::SPLAT_VECTOR &&
7638 std::swap(N1, N2);
7639}
7640
7641SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
7642 SDValue N1, SDValue N2, const SDNodeFlags Flags) {
7644 N2.getOpcode() != ISD::DELETED_NODE &&
7645 "Operand is DELETED_NODE!");
7646
7647 canonicalizeCommutativeBinop(Opcode, N1, N2);
7648
7649 auto *N1C = dyn_cast<ConstantSDNode>(N1);
7650 auto *N2C = dyn_cast<ConstantSDNode>(N2);
7651
7652 // Don't allow undefs in vector splats - we might be returning N2 when folding
7653 // to zero etc.
7654 ConstantSDNode *N2CV =
7655 isConstOrConstSplat(N2, /*AllowUndefs*/ false, /*AllowTruncation*/ true);
7656
7657 switch (Opcode) {
7658 default: break;
7659 case ISD::TokenFactor:
7660 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
7661 N2.getValueType() == MVT::Other && "Invalid token factor!");
7662 // Fold trivial token factors.
7663 if (N1.getOpcode() == ISD::EntryToken) return N2;
7664 if (N2.getOpcode() == ISD::EntryToken) return N1;
7665 if (N1 == N2) return N1;
7666 break;
7667 case ISD::BUILD_VECTOR: {
7668 // Attempt to simplify BUILD_VECTOR.
7669 SDValue Ops[] = {N1, N2};
7670 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
7671 return V;
7672 break;
7673 }
7674 case ISD::CONCAT_VECTORS: {
7675 SDValue Ops[] = {N1, N2};
7676 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
7677 return V;
7678 break;
7679 }
7680 case ISD::AND:
7681 assert(VT.isInteger() && "This operator does not apply to FP types!");
7682 assert(N1.getValueType() == N2.getValueType() &&
7683 N1.getValueType() == VT && "Binary operator types must match!");
7684 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
7685 // worth handling here.
7686 if (N2CV && N2CV->isZero())
7687 return N2;
7688 if (N2CV && N2CV->isAllOnes()) // X & -1 -> X
7689 return N1;
7690 break;
7691 case ISD::OR:
7692 case ISD::XOR:
7693 case ISD::ADD:
7694 case ISD::PTRADD:
7695 case ISD::SUB:
7696 assert(VT.isInteger() && "This operator does not apply to FP types!");
7697 assert(N1.getValueType() == N2.getValueType() &&
7698 N1.getValueType() == VT && "Binary operator types must match!");
7699 // The equal operand types requirement is unnecessarily strong for PTRADD.
7700 // However, the SelectionDAGBuilder does not generate PTRADDs with different
7701 // operand types, and we'd need to re-implement GEP's non-standard wrapping
7702 // logic everywhere where PTRADDs may be folded or combined to properly
7703 // support them. If/when we introduce pointer types to the SDAG, we will
7704 // need to relax this constraint.
7705
7706 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
7707 // it's worth handling here.
7708 if (N2CV && N2CV->isZero())
7709 return N1;
7710 if ((Opcode == ISD::ADD || Opcode == ISD::SUB) &&
7711 VT.getScalarType() == MVT::i1)
7712 return getNode(ISD::XOR, DL, VT, N1, N2);
7713 // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
7714 if (Opcode == ISD::ADD && N1.getOpcode() == ISD::VSCALE &&
7715 N2.getOpcode() == ISD::VSCALE) {
7716 const APInt &C1 = N1->getConstantOperandAPInt(0);
7717 const APInt &C2 = N2->getConstantOperandAPInt(0);
7718 return getVScale(DL, VT, C1 + C2);
7719 }
7720 break;
7721 case ISD::MUL:
7722 assert(VT.isInteger() && "This operator does not apply to FP types!");
7723 assert(N1.getValueType() == N2.getValueType() &&
7724 N1.getValueType() == VT && "Binary operator types must match!");
7725 if (VT.getScalarType() == MVT::i1)
7726 return getNode(ISD::AND, DL, VT, N1, N2);
7727 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7728 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7729 const APInt &N2CImm = N2C->getAPIntValue();
7730 return getVScale(DL, VT, MulImm * N2CImm);
7731 }
7732 break;
7733 case ISD::UDIV:
7734 case ISD::UREM:
7735 case ISD::MULHU:
7736 case ISD::MULHS:
7737 case ISD::SDIV:
7738 case ISD::SREM:
7739 case ISD::SADDSAT:
7740 case ISD::SSUBSAT:
7741 case ISD::UADDSAT:
7742 case ISD::USUBSAT:
7743 assert(VT.isInteger() && "This operator does not apply to FP types!");
7744 assert(N1.getValueType() == N2.getValueType() &&
7745 N1.getValueType() == VT && "Binary operator types must match!");
7746 if (VT.getScalarType() == MVT::i1) {
7747 // fold (add_sat x, y) -> (or x, y) for bool types.
7748 if (Opcode == ISD::SADDSAT || Opcode == ISD::UADDSAT)
7749 return getNode(ISD::OR, DL, VT, N1, N2);
7750 // fold (sub_sat x, y) -> (and x, ~y) for bool types.
7751 if (Opcode == ISD::SSUBSAT || Opcode == ISD::USUBSAT)
7752 return getNode(ISD::AND, DL, VT, N1, getNOT(DL, N2, VT));
7753 }
7754 break;
7755 case ISD::SCMP:
7756 case ISD::UCMP:
7757 assert(N1.getValueType() == N2.getValueType() &&
7758 "Types of operands of UCMP/SCMP must match");
7759 assert(N1.getValueType().isVector() == VT.isVector() &&
7760 "Operands and return type of must both be scalars or vectors");
7761 if (VT.isVector())
7764 "Result and operands must have the same number of elements");
7765 break;
7766 case ISD::AVGFLOORS:
7767 case ISD::AVGFLOORU:
7768 case ISD::AVGCEILS:
7769 case ISD::AVGCEILU:
7770 assert(VT.isInteger() && "This operator does not apply to FP types!");
7771 assert(N1.getValueType() == N2.getValueType() &&
7772 N1.getValueType() == VT && "Binary operator types must match!");
7773 break;
7774 case ISD::ABDS:
7775 case ISD::ABDU:
7776 assert(VT.isInteger() && "This operator does not apply to FP types!");
7777 assert(N1.getValueType() == N2.getValueType() &&
7778 N1.getValueType() == VT && "Binary operator types must match!");
7779 if (VT.getScalarType() == MVT::i1)
7780 return getNode(ISD::XOR, DL, VT, N1, N2);
7781 break;
7782 case ISD::SMIN:
7783 case ISD::UMAX:
7784 assert(VT.isInteger() && "This operator does not apply to FP types!");
7785 assert(N1.getValueType() == N2.getValueType() &&
7786 N1.getValueType() == VT && "Binary operator types must match!");
7787 if (VT.getScalarType() == MVT::i1)
7788 return getNode(ISD::OR, DL, VT, N1, N2);
7789 break;
7790 case ISD::SMAX:
7791 case ISD::UMIN:
7792 assert(VT.isInteger() && "This operator does not apply to FP types!");
7793 assert(N1.getValueType() == N2.getValueType() &&
7794 N1.getValueType() == VT && "Binary operator types must match!");
7795 if (VT.getScalarType() == MVT::i1)
7796 return getNode(ISD::AND, DL, VT, N1, N2);
7797 break;
7798 case ISD::FADD:
7799 case ISD::FSUB:
7800 case ISD::FMUL:
7801 case ISD::FDIV:
7802 case ISD::FREM:
7803 assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
7804 assert(N1.getValueType() == N2.getValueType() &&
7805 N1.getValueType() == VT && "Binary operator types must match!");
7806 if (SDValue V = simplifyFPBinop(Opcode, N1, N2, Flags))
7807 return V;
7808 break;
7809 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
7810 assert(N1.getValueType() == VT &&
7813 "Invalid FCOPYSIGN!");
7814 break;
7815 case ISD::SHL:
7816 if (N2C && (N1.getOpcode() == ISD::VSCALE) && Flags.hasNoSignedWrap()) {
7817 const APInt &MulImm = N1->getConstantOperandAPInt(0);
7818 const APInt &ShiftImm = N2C->getAPIntValue();
7819 return getVScale(DL, VT, MulImm << ShiftImm);
7820 }
7821 [[fallthrough]];
7822 case ISD::SRA:
7823 case ISD::SRL:
7824 if (SDValue V = simplifyShift(N1, N2))
7825 return V;
7826 [[fallthrough]];
7827 case ISD::ROTL:
7828 case ISD::ROTR:
7829 assert(VT == N1.getValueType() &&
7830 "Shift operators return type must be the same as their first arg");
7831 assert(VT.isInteger() && N2.getValueType().isInteger() &&
7832 "Shifts only work on integers");
7833 assert((!VT.isVector() || VT == N2.getValueType()) &&
7834 "Vector shift amounts must be in the same as their first arg");
7835 // Verify that the shift amount VT is big enough to hold valid shift
7836 // amounts. This catches things like trying to shift an i1024 value by an
7837 // i8, which is easy to fall into in generic code that uses
7838 // TLI.getShiftAmount().
7841 "Invalid use of small shift amount with oversized value!");
7842
7843 // Always fold shifts of i1 values so the code generator doesn't need to
7844 // handle them. Since we know the size of the shift has to be less than the
7845 // size of the value, the shift/rotate count is guaranteed to be zero.
7846 if (VT == MVT::i1)
7847 return N1;
7848 if (N2CV && N2CV->isZero())
7849 return N1;
7850 break;
7851 case ISD::FP_ROUND:
7853 VT.bitsLE(N1.getValueType()) && N2C &&
7854 (N2C->getZExtValue() == 0 || N2C->getZExtValue() == 1) &&
7855 N2.getOpcode() == ISD::TargetConstant && "Invalid FP_ROUND!");
7856 if (N1.getValueType() == VT) return N1; // noop conversion.
7857 break;
7858 case ISD::AssertNoFPClass: {
7860 "AssertNoFPClass is used for a non-floating type");
7861 assert(isa<ConstantSDNode>(N2) && "NoFPClass is not Constant");
7862 FPClassTest NoFPClass = static_cast<FPClassTest>(N2->getAsZExtVal());
7863 assert(llvm::to_underlying(NoFPClass) <=
7865 "FPClassTest value too large");
7866 (void)NoFPClass;
7867 break;
7868 }
7869 case ISD::AssertSext:
7870 case ISD::AssertZext: {
7871 EVT EVT = cast<VTSDNode>(N2)->getVT();
7872 assert(VT == N1.getValueType() && "Not an inreg extend!");
7873 assert(VT.isInteger() && EVT.isInteger() &&
7874 "Cannot *_EXTEND_INREG FP types");
7875 assert(!EVT.isVector() &&
7876 "AssertSExt/AssertZExt type should be the vector element type "
7877 "rather than the vector type!");
7878 assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
7879 if (VT.getScalarType() == EVT) return N1; // noop assertion.
7880 break;
7881 }
7883 EVT EVT = cast<VTSDNode>(N2)->getVT();
7884 assert(VT == N1.getValueType() && "Not an inreg extend!");
7885 assert(VT.isInteger() && EVT.isInteger() &&
7886 "Cannot *_EXTEND_INREG FP types");
7887 assert(EVT.isVector() == VT.isVector() &&
7888 "SIGN_EXTEND_INREG type should be vector iff the operand "
7889 "type is vector!");
7890 assert((!EVT.isVector() ||
7892 "Vector element counts must match in SIGN_EXTEND_INREG");
7893 assert(EVT.bitsLE(VT) && "Not extending!");
7894 if (EVT == VT) return N1; // Not actually extending
7895 break;
7896 }
7898 case ISD::FP_TO_UINT_SAT: {
7899 assert(VT.isInteger() && cast<VTSDNode>(N2)->getVT().isInteger() &&
7900 N1.getValueType().isFloatingPoint() && "Invalid FP_TO_*INT_SAT");
7901 assert(N1.getValueType().isVector() == VT.isVector() &&
7902 "FP_TO_*INT_SAT type should be vector iff the operand type is "
7903 "vector!");
7904 assert((!VT.isVector() || VT.getVectorElementCount() ==
7906 "Vector element counts must match in FP_TO_*INT_SAT");
7907 assert(!cast<VTSDNode>(N2)->getVT().isVector() &&
7908 "Type to saturate to must be a scalar.");
7909 assert(cast<VTSDNode>(N2)->getVT().bitsLE(VT.getScalarType()) &&
7910 "Not extending!");
7911 break;
7912 }
7915 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
7916 element type of the vector.");
7917
7918 // Extract from an undefined value or using an undefined index is undefined.
7919 if (N1.isUndef() || N2.isUndef())
7920 return getUNDEF(VT);
7921
7922 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF for fixed length
7923 // vectors. For scalable vectors we will provide appropriate support for
7924 // dealing with arbitrary indices.
7925 if (N2C && N1.getValueType().isFixedLengthVector() &&
7926 N2C->getAPIntValue().uge(N1.getValueType().getVectorNumElements()))
7927 return getUNDEF(VT);
7928
7929 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
7930 // expanding copies of large vectors from registers. This only works for
7931 // fixed length vectors, since we need to know the exact number of
7932 // elements.
7933 if (N2C && N1.getOpcode() == ISD::CONCAT_VECTORS &&
7935 unsigned Factor = N1.getOperand(0).getValueType().getVectorNumElements();
7936 return getExtractVectorElt(DL, VT,
7937 N1.getOperand(N2C->getZExtValue() / Factor),
7938 N2C->getZExtValue() % Factor);
7939 }
7940
7941 // EXTRACT_VECTOR_ELT of BUILD_VECTOR or SPLAT_VECTOR is often formed while
7942 // lowering is expanding large vector constants.
7943 if (N2C && (N1.getOpcode() == ISD::BUILD_VECTOR ||
7944 N1.getOpcode() == ISD::SPLAT_VECTOR)) {
7947 "BUILD_VECTOR used for scalable vectors");
7948 unsigned Index =
7949 N1.getOpcode() == ISD::BUILD_VECTOR ? N2C->getZExtValue() : 0;
7950 SDValue Elt = N1.getOperand(Index);
7951
7952 if (VT != Elt.getValueType())
7953 // If the vector element type is not legal, the BUILD_VECTOR operands
7954 // are promoted and implicitly truncated, and the result implicitly
7955 // extended. Make that explicit here.
7956 Elt = getAnyExtOrTrunc(Elt, DL, VT);
7957
7958 return Elt;
7959 }
7960
7961 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
7962 // operations are lowered to scalars.
7963 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
7964 // If the indices are the same, return the inserted element else
7965 // if the indices are known different, extract the element from
7966 // the original vector.
7967 SDValue N1Op2 = N1.getOperand(2);
7969
7970 if (N1Op2C && N2C) {
7971 if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
7972 if (VT == N1.getOperand(1).getValueType())
7973 return N1.getOperand(1);
7974 if (VT.isFloatingPoint()) {
7976 return getFPExtendOrRound(N1.getOperand(1), DL, VT);
7977 }
7978 return getSExtOrTrunc(N1.getOperand(1), DL, VT);
7979 }
7980 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
7981 }
7982 }
7983
7984 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
7985 // when vector types are scalarized and v1iX is legal.
7986 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx).
7987 // Here we are completely ignoring the extract element index (N2),
7988 // which is fine for fixed width vectors, since any index other than 0
7989 // is undefined anyway. However, this cannot be ignored for scalable
7990 // vectors - in theory we could support this, but we don't want to do this
7991 // without a profitability check.
7992 if (N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
7994 N1.getValueType().getVectorNumElements() == 1) {
7995 return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0),
7996 N1.getOperand(1));
7997 }
7998 break;
8000 assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
8001 assert(!N1.getValueType().isVector() && !VT.isVector() &&
8002 (N1.getValueType().isInteger() == VT.isInteger()) &&
8003 N1.getValueType() != VT &&
8004 "Wrong types for EXTRACT_ELEMENT!");
8005
8006 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
8007 // 64-bit integers into 32-bit parts. Instead of building the extract of
8008 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
8009 if (N1.getOpcode() == ISD::BUILD_PAIR)
8010 return N1.getOperand(N2C->getZExtValue());
8011
8012 // EXTRACT_ELEMENT of a constant int is also very common.
8013 if (N1C) {
8014 unsigned ElementSize = VT.getSizeInBits();
8015 unsigned Shift = ElementSize * N2C->getZExtValue();
8016 const APInt &Val = N1C->getAPIntValue();
8017 return getConstant(Val.extractBits(ElementSize, Shift), DL, VT);
8018 }
8019 break;
8021 EVT N1VT = N1.getValueType();
8022 assert(VT.isVector() && N1VT.isVector() &&
8023 "Extract subvector VTs must be vectors!");
8025 "Extract subvector VTs must have the same element type!");
8026 assert((VT.isFixedLengthVector() || N1VT.isScalableVector()) &&
8027 "Cannot extract a scalable vector from a fixed length vector!");
8028 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8030 "Extract subvector must be from larger vector to smaller vector!");
8031 assert(N2C && "Extract subvector index must be a constant");
8032 assert((VT.isScalableVector() != N1VT.isScalableVector() ||
8033 (VT.getVectorMinNumElements() + N2C->getZExtValue()) <=
8034 N1VT.getVectorMinNumElements()) &&
8035 "Extract subvector overflow!");
8036 assert(N2C->getAPIntValue().getBitWidth() ==
8037 TLI->getVectorIdxWidth(getDataLayout()) &&
8038 "Constant index for EXTRACT_SUBVECTOR has an invalid size");
8039 assert(N2C->getZExtValue() % VT.getVectorMinNumElements() == 0 &&
8040 "Extract index is not a multiple of the output vector length");
8041
8042 // Trivial extraction.
8043 if (VT == N1VT)
8044 return N1;
8045
8046 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
8047 if (N1.isUndef())
8048 return getUNDEF(VT);
8049
8050 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
8051 // the concat have the same type as the extract.
8052 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
8053 VT == N1.getOperand(0).getValueType()) {
8054 unsigned Factor = VT.getVectorMinNumElements();
8055 return N1.getOperand(N2C->getZExtValue() / Factor);
8056 }
8057
8058 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
8059 // during shuffle legalization.
8060 if (N1.getOpcode() == ISD::INSERT_SUBVECTOR && N2 == N1.getOperand(2) &&
8061 VT == N1.getOperand(1).getValueType())
8062 return N1.getOperand(1);
8063 break;
8064 }
8065 }
8066
8067 if (N1.getOpcode() == ISD::POISON || N2.getOpcode() == ISD::POISON) {
8068 switch (Opcode) {
8069 case ISD::XOR:
8070 case ISD::ADD:
8071 case ISD::PTRADD:
8072 case ISD::SUB:
8074 case ISD::UDIV:
8075 case ISD::SDIV:
8076 case ISD::UREM:
8077 case ISD::SREM:
8078 case ISD::MUL:
8079 case ISD::AND:
8080 case ISD::SSUBSAT:
8081 case ISD::USUBSAT:
8082 case ISD::UMIN:
8083 case ISD::OR:
8084 case ISD::SADDSAT:
8085 case ISD::UADDSAT:
8086 case ISD::UMAX:
8087 case ISD::SMAX:
8088 case ISD::SMIN:
8089 // fold op(arg1, poison) -> poison, fold op(poison, arg2) -> poison.
8090 return N2.getOpcode() == ISD::POISON ? N2 : N1;
8091 }
8092 }
8093
8094 // Canonicalize an UNDEF to the RHS, even over a constant.
8095 if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() != ISD::UNDEF) {
8096 if (TLI->isCommutativeBinOp(Opcode)) {
8097 std::swap(N1, N2);
8098 } else {
8099 switch (Opcode) {
8100 case ISD::PTRADD:
8101 case ISD::SUB:
8102 // fold op(undef, non_undef_arg2) -> undef.
8103 return N1;
8105 case ISD::UDIV:
8106 case ISD::SDIV:
8107 case ISD::UREM:
8108 case ISD::SREM:
8109 case ISD::SSUBSAT:
8110 case ISD::USUBSAT:
8111 // fold op(undef, non_undef_arg2) -> 0.
8112 return getConstant(0, DL, VT);
8113 }
8114 }
8115 }
8116
8117 // Fold a bunch of operators when the RHS is undef.
8118 if (N2.getOpcode() == ISD::UNDEF) {
8119 switch (Opcode) {
8120 case ISD::XOR:
8121 if (N1.getOpcode() == ISD::UNDEF)
8122 // Handle undef ^ undef -> 0 special case. This is a common
8123 // idiom (misuse).
8124 return getConstant(0, DL, VT);
8125 [[fallthrough]];
8126 case ISD::ADD:
8127 case ISD::PTRADD:
8128 case ISD::SUB:
8129 // fold op(arg1, undef) -> undef.
8130 return N2;
8131 case ISD::UDIV:
8132 case ISD::SDIV:
8133 case ISD::UREM:
8134 case ISD::SREM:
8135 // fold op(arg1, undef) -> poison.
8136 return getPOISON(VT);
8137 case ISD::MUL:
8138 case ISD::AND:
8139 case ISD::SSUBSAT:
8140 case ISD::USUBSAT:
8141 case ISD::UMIN:
8142 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> 0.
8143 return N1.getOpcode() == ISD::UNDEF ? N2 : getConstant(0, DL, VT);
8144 case ISD::OR:
8145 case ISD::SADDSAT:
8146 case ISD::UADDSAT:
8147 case ISD::UMAX:
8148 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> -1.
8149 return N1.getOpcode() == ISD::UNDEF ? N2 : getAllOnesConstant(DL, VT);
8150 case ISD::SMAX:
8151 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MAX_INT.
8152 return N1.getOpcode() == ISD::UNDEF
8153 ? N2
8154 : getConstant(
8156 VT);
8157 case ISD::SMIN:
8158 // fold op(undef, undef) -> undef, fold op(arg1, undef) -> MIN_INT.
8159 return N1.getOpcode() == ISD::UNDEF
8160 ? N2
8161 : getConstant(
8163 VT);
8164 }
8165 }
8166
8167 // Perform trivial constant folding.
8168 if (SDValue SV = FoldConstantArithmetic(Opcode, DL, VT, {N1, N2}, Flags))
8169 return SV;
8170
8171 // Memoize this node if possible.
8172 SDNode *N;
8173 SDVTList VTs = getVTList(VT);
8174 SDValue Ops[] = {N1, N2};
8175 if (VT != MVT::Glue) {
8177 AddNodeIDNode(ID, Opcode, VTs, Ops);
8178 void *IP = nullptr;
8179 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8180 E->intersectFlagsWith(Flags);
8181 return SDValue(E, 0);
8182 }
8183
8184 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8185 N->setFlags(Flags);
8186 createOperands(N, Ops);
8187 CSEMap.InsertNode(N, IP);
8188 } else {
8189 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8190 createOperands(N, Ops);
8191 }
8192
8193 InsertNode(N);
8194 SDValue V = SDValue(N, 0);
8195 NewSDValueDbgMsg(V, "Creating new node: ", this);
8196 return V;
8197}
8198
8199SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8200 SDValue N1, SDValue N2, SDValue N3) {
8201 SDNodeFlags Flags;
8202 if (Inserter)
8203 Flags = Inserter->getFlags();
8204 return getNode(Opcode, DL, VT, N1, N2, N3, Flags);
8205}
8206
8207SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8208 SDValue N1, SDValue N2, SDValue N3,
8209 const SDNodeFlags Flags) {
8211 N2.getOpcode() != ISD::DELETED_NODE &&
8212 N3.getOpcode() != ISD::DELETED_NODE &&
8213 "Operand is DELETED_NODE!");
8214 // Perform various simplifications.
8215 switch (Opcode) {
8216 case ISD::BUILD_VECTOR: {
8217 // Attempt to simplify BUILD_VECTOR.
8218 SDValue Ops[] = {N1, N2, N3};
8219 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
8220 return V;
8221 break;
8222 }
8223 case ISD::CONCAT_VECTORS: {
8224 SDValue Ops[] = {N1, N2, N3};
8225 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
8226 return V;
8227 break;
8228 }
8229 case ISD::SETCC: {
8230 assert(VT.isInteger() && "SETCC result type must be an integer!");
8231 assert(N1.getValueType() == N2.getValueType() &&
8232 "SETCC operands must have the same type!");
8233 assert(VT.isVector() == N1.getValueType().isVector() &&
8234 "SETCC type should be vector iff the operand type is vector!");
8235 assert((!VT.isVector() || VT.getVectorElementCount() ==
8237 "SETCC vector element counts must match!");
8238 // Use FoldSetCC to simplify SETCC's.
8239 if (SDValue V = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL))
8240 return V;
8241 break;
8242 }
8243 case ISD::SELECT:
8244 case ISD::VSELECT:
8245 if (SDValue V = simplifySelect(N1, N2, N3))
8246 return V;
8247 break;
8249 llvm_unreachable("should use getVectorShuffle constructor!");
8250 case ISD::VECTOR_SPLICE: {
8251 if (cast<ConstantSDNode>(N3)->isZero())
8252 return N1;
8253 break;
8254 }
8256 assert(VT.isVector() && VT == N1.getValueType() &&
8257 "INSERT_VECTOR_ELT vector type mismatch");
8259 "INSERT_VECTOR_ELT scalar fp/int mismatch");
8260 assert((!VT.isFloatingPoint() ||
8261 VT.getVectorElementType() == N2.getValueType()) &&
8262 "INSERT_VECTOR_ELT fp scalar type mismatch");
8263 assert((!VT.isInteger() ||
8265 "INSERT_VECTOR_ELT int scalar size mismatch");
8266
8267 auto *N3C = dyn_cast<ConstantSDNode>(N3);
8268 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF, except
8269 // for scalable vectors where we will generate appropriate code to
8270 // deal with out-of-bounds cases correctly.
8271 if (N3C && VT.isFixedLengthVector() &&
8272 N3C->getZExtValue() >= VT.getVectorNumElements())
8273 return getUNDEF(VT);
8274
8275 // Undefined index can be assumed out-of-bounds, so that's UNDEF too.
8276 if (N3.isUndef())
8277 return getUNDEF(VT);
8278
8279 // If inserting poison, just use the input vector.
8280 if (N2.getOpcode() == ISD::POISON)
8281 return N1;
8282
8283 // Inserting undef into undef/poison is still undef.
8284 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8285 return getUNDEF(VT);
8286
8287 // If the inserted element is an UNDEF, just use the input vector.
8288 // But not if skipping the insert could make the result more poisonous.
8289 if (N2.isUndef()) {
8290 if (N3C && VT.isFixedLengthVector()) {
8291 APInt EltMask =
8292 APInt::getOneBitSet(VT.getVectorNumElements(), N3C->getZExtValue());
8293 if (isGuaranteedNotToBePoison(N1, EltMask))
8294 return N1;
8295 } else if (isGuaranteedNotToBePoison(N1))
8296 return N1;
8297 }
8298 break;
8299 }
8300 case ISD::INSERT_SUBVECTOR: {
8301 // If inserting poison, just use the input vector,
8302 if (N2.getOpcode() == ISD::POISON)
8303 return N1;
8304
8305 // Inserting undef into undef/poison is still undef.
8306 if (N2.getOpcode() == ISD::UNDEF && N1.isUndef())
8307 return getUNDEF(VT);
8308
8309 EVT N2VT = N2.getValueType();
8310 assert(VT == N1.getValueType() &&
8311 "Dest and insert subvector source types must match!");
8312 assert(VT.isVector() && N2VT.isVector() &&
8313 "Insert subvector VTs must be vectors!");
8315 "Insert subvector VTs must have the same element type!");
8316 assert((VT.isScalableVector() || N2VT.isFixedLengthVector()) &&
8317 "Cannot insert a scalable vector into a fixed length vector!");
8318 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8320 "Insert subvector must be from smaller vector to larger vector!");
8322 "Insert subvector index must be constant");
8323 assert((VT.isScalableVector() != N2VT.isScalableVector() ||
8324 (N2VT.getVectorMinNumElements() + N3->getAsZExtVal()) <=
8326 "Insert subvector overflow!");
8328 TLI->getVectorIdxWidth(getDataLayout()) &&
8329 "Constant index for INSERT_SUBVECTOR has an invalid size");
8330
8331 // Trivial insertion.
8332 if (VT == N2VT)
8333 return N2;
8334
8335 // If this is an insert of an extracted vector into an undef/poison vector,
8336 // we can just use the input to the extract. But not if skipping the
8337 // extract+insert could make the result more poisonous.
8338 if (N1.isUndef() && N2.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
8339 N2.getOperand(1) == N3 && N2.getOperand(0).getValueType() == VT) {
8340 if (N1.getOpcode() == ISD::POISON)
8341 return N2.getOperand(0);
8342 if (VT.isFixedLengthVector() && N2VT.isFixedLengthVector()) {
8343 unsigned LoBit = N3->getAsZExtVal();
8344 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8345 APInt EltMask =
8346 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8347 if (isGuaranteedNotToBePoison(N2.getOperand(0), ~EltMask))
8348 return N2.getOperand(0);
8349 } else if (isGuaranteedNotToBePoison(N2.getOperand(0)))
8350 return N2.getOperand(0);
8351 }
8352
8353 // If the inserted subvector is UNDEF, just use the input vector.
8354 // But not if skipping the insert could make the result more poisonous.
8355 if (N2.isUndef()) {
8356 if (VT.isFixedLengthVector()) {
8357 unsigned LoBit = N3->getAsZExtVal();
8358 unsigned HiBit = LoBit + N2VT.getVectorNumElements();
8359 APInt EltMask =
8360 APInt::getBitsSet(VT.getVectorNumElements(), LoBit, HiBit);
8361 if (isGuaranteedNotToBePoison(N1, EltMask))
8362 return N1;
8363 } else if (isGuaranteedNotToBePoison(N1))
8364 return N1;
8365 }
8366 break;
8367 }
8368 case ISD::BITCAST:
8369 // Fold bit_convert nodes from a type to themselves.
8370 if (N1.getValueType() == VT)
8371 return N1;
8372 break;
8373 case ISD::VP_TRUNCATE:
8374 case ISD::VP_SIGN_EXTEND:
8375 case ISD::VP_ZERO_EXTEND:
8376 // Don't create noop casts.
8377 if (N1.getValueType() == VT)
8378 return N1;
8379 break;
8380 case ISD::VECTOR_COMPRESS: {
8381 [[maybe_unused]] EVT VecVT = N1.getValueType();
8382 [[maybe_unused]] EVT MaskVT = N2.getValueType();
8383 [[maybe_unused]] EVT PassthruVT = N3.getValueType();
8384 assert(VT == VecVT && "Vector and result type don't match.");
8385 assert(VecVT.isVector() && MaskVT.isVector() && PassthruVT.isVector() &&
8386 "All inputs must be vectors.");
8387 assert(VecVT == PassthruVT && "Vector and passthru types don't match.");
8389 "Vector and mask must have same number of elements.");
8390
8391 if (N1.isUndef() || N2.isUndef())
8392 return N3;
8393
8394 break;
8395 }
8396 case ISD::PARTIAL_REDUCE_UMLA:
8397 case ISD::PARTIAL_REDUCE_SMLA:
8398 case ISD::PARTIAL_REDUCE_SUMLA: {
8399 [[maybe_unused]] EVT AccVT = N1.getValueType();
8400 [[maybe_unused]] EVT Input1VT = N2.getValueType();
8401 [[maybe_unused]] EVT Input2VT = N3.getValueType();
8402 assert(Input1VT.isVector() && Input1VT == Input2VT &&
8403 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8404 "node to have the same type!");
8405 assert(VT.isVector() && VT == AccVT &&
8406 "Expected the first operand of the PARTIAL_REDUCE_MLA node to have "
8407 "the same type as its result!");
8409 AccVT.getVectorElementCount()) &&
8410 "Expected the element count of the second and third operands of the "
8411 "PARTIAL_REDUCE_MLA node to be a positive integer multiple of the "
8412 "element count of the first operand and the result!");
8414 "Expected the second and third operands of the PARTIAL_REDUCE_MLA "
8415 "node to have an element type which is the same as or smaller than "
8416 "the element type of the first operand and result!");
8417 break;
8418 }
8419 }
8420
8421 // Perform trivial constant folding for arithmetic operators.
8422 switch (Opcode) {
8423 case ISD::FMA:
8424 case ISD::FMAD:
8425 case ISD::SETCC:
8426 case ISD::FSHL:
8427 case ISD::FSHR:
8428 if (SDValue SV =
8429 FoldConstantArithmetic(Opcode, DL, VT, {N1, N2, N3}, Flags))
8430 return SV;
8431 break;
8432 }
8433
8434 // Memoize node if it doesn't produce a glue result.
8435 SDNode *N;
8436 SDVTList VTs = getVTList(VT);
8437 SDValue Ops[] = {N1, N2, N3};
8438 if (VT != MVT::Glue) {
8440 AddNodeIDNode(ID, Opcode, VTs, Ops);
8441 void *IP = nullptr;
8442 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
8443 E->intersectFlagsWith(Flags);
8444 return SDValue(E, 0);
8445 }
8446
8447 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8448 N->setFlags(Flags);
8449 createOperands(N, Ops);
8450 CSEMap.InsertNode(N, IP);
8451 } else {
8452 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
8453 createOperands(N, Ops);
8454 }
8455
8456 InsertNode(N);
8457 SDValue V = SDValue(N, 0);
8458 NewSDValueDbgMsg(V, "Creating new node: ", this);
8459 return V;
8460}
8461
8462SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8463 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8464 const SDNodeFlags Flags) {
8465 SDValue Ops[] = { N1, N2, N3, N4 };
8466 return getNode(Opcode, DL, VT, Ops, Flags);
8467}
8468
8469SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8470 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
8471 SDNodeFlags Flags;
8472 if (Inserter)
8473 Flags = Inserter->getFlags();
8474 return getNode(Opcode, DL, VT, N1, N2, N3, N4, Flags);
8475}
8476
8477SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8478 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8479 SDValue N5, const SDNodeFlags Flags) {
8480 SDValue Ops[] = { N1, N2, N3, N4, N5 };
8481 return getNode(Opcode, DL, VT, Ops, Flags);
8482}
8483
8484SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
8485 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
8486 SDValue N5) {
8487 SDNodeFlags Flags;
8488 if (Inserter)
8489 Flags = Inserter->getFlags();
8490 return getNode(Opcode, DL, VT, N1, N2, N3, N4, N5, Flags);
8491}
8492
8493/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
8494/// the incoming stack arguments to be loaded from the stack.
8496 SmallVector<SDValue, 8> ArgChains;
8497
8498 // Include the original chain at the beginning of the list. When this is
8499 // used by target LowerCall hooks, this helps legalize find the
8500 // CALLSEQ_BEGIN node.
8501 ArgChains.push_back(Chain);
8502
8503 // Add a chain value for each stack argument.
8504 for (SDNode *U : getEntryNode().getNode()->users())
8505 if (LoadSDNode *L = dyn_cast<LoadSDNode>(U))
8506 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
8507 if (FI->getIndex() < 0)
8508 ArgChains.push_back(SDValue(L, 1));
8509
8510 // Build a tokenfactor for all the chains.
8511 return getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
8512}
8513
8514/// getMemsetValue - Vectorized representation of the memset value
8515/// operand.
8517 const SDLoc &dl) {
8518 assert(!Value.isUndef());
8519
8520 unsigned NumBits = VT.getScalarSizeInBits();
8522 assert(C->getAPIntValue().getBitWidth() == 8);
8523 APInt Val = APInt::getSplat(NumBits, C->getAPIntValue());
8524 if (VT.isInteger()) {
8525 bool IsOpaque = VT.getSizeInBits() > 64 ||
8526 !DAG.getTargetLoweringInfo().isLegalStoreImmediate(C->getSExtValue());
8527 return DAG.getConstant(Val, dl, VT, false, IsOpaque);
8528 }
8529 return DAG.getConstantFP(APFloat(VT.getFltSemantics(), Val), dl, VT);
8530 }
8531
8532 assert(Value.getValueType() == MVT::i8 && "memset with non-byte fill value?");
8533 EVT IntVT = VT.getScalarType();
8534 if (!IntVT.isInteger())
8535 IntVT = EVT::getIntegerVT(*DAG.getContext(), IntVT.getSizeInBits());
8536
8537 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, IntVT, Value);
8538 if (NumBits > 8) {
8539 // Use a multiplication with 0x010101... to extend the input to the
8540 // required length.
8541 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
8542 Value = DAG.getNode(ISD::MUL, dl, IntVT, Value,
8543 DAG.getConstant(Magic, dl, IntVT));
8544 }
8545
8546 if (VT != Value.getValueType() && !VT.isInteger())
8547 Value = DAG.getBitcast(VT.getScalarType(), Value);
8548 if (VT != Value.getValueType())
8549 Value = DAG.getSplatBuildVector(VT, dl, Value);
8550
8551 return Value;
8552}
8553
8554/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
8555/// used when a memcpy is turned into a memset when the source is a constant
8556/// string ptr.
8558 const TargetLowering &TLI,
8559 const ConstantDataArraySlice &Slice) {
8560 // Handle vector with all elements zero.
8561 if (Slice.Array == nullptr) {
8562 if (VT.isInteger())
8563 return DAG.getConstant(0, dl, VT);
8564 return DAG.getNode(ISD::BITCAST, dl, VT,
8565 DAG.getConstant(0, dl, VT.changeTypeToInteger()));
8566 }
8567
8568 assert(!VT.isVector() && "Can't handle vector type here!");
8569 unsigned NumVTBits = VT.getSizeInBits();
8570 unsigned NumVTBytes = NumVTBits / 8;
8571 unsigned NumBytes = std::min(NumVTBytes, unsigned(Slice.Length));
8572
8573 APInt Val(NumVTBits, 0);
8574 if (DAG.getDataLayout().isLittleEndian()) {
8575 for (unsigned i = 0; i != NumBytes; ++i)
8576 Val |= (uint64_t)(unsigned char)Slice[i] << i*8;
8577 } else {
8578 for (unsigned i = 0; i != NumBytes; ++i)
8579 Val |= (uint64_t)(unsigned char)Slice[i] << (NumVTBytes-i-1)*8;
8580 }
8581
8582 // If the "cost" of materializing the integer immediate is less than the cost
8583 // of a load, then it is cost effective to turn the load into the immediate.
8584 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
8585 if (TLI.shouldConvertConstantLoadToIntImm(Val, Ty))
8586 return DAG.getConstant(Val, dl, VT);
8587 return SDValue();
8588}
8589
8591 const SDLoc &DL,
8592 const SDNodeFlags Flags) {
8593 EVT VT = Base.getValueType();
8594 SDValue Index;
8595
8596 if (Offset.isScalable())
8597 Index = getVScale(DL, Base.getValueType(),
8598 APInt(Base.getValueSizeInBits().getFixedValue(),
8599 Offset.getKnownMinValue()));
8600 else
8601 Index = getConstant(Offset.getFixedValue(), DL, VT);
8602
8603 return getMemBasePlusOffset(Base, Index, DL, Flags);
8604}
8605
8607 const SDLoc &DL,
8608 const SDNodeFlags Flags) {
8609 assert(Offset.getValueType().isInteger());
8610 EVT BasePtrVT = Ptr.getValueType();
8611 if (TLI->shouldPreservePtrArith(this->getMachineFunction().getFunction(),
8612 BasePtrVT))
8613 return getNode(ISD::PTRADD, DL, BasePtrVT, Ptr, Offset, Flags);
8614 return getNode(ISD::ADD, DL, BasePtrVT, Ptr, Offset, Flags);
8615}
8616
8617/// Returns true if memcpy source is constant data.
8619 uint64_t SrcDelta = 0;
8620 GlobalAddressSDNode *G = nullptr;
8621 if (Src.getOpcode() == ISD::GlobalAddress)
8623 else if (Src->isAnyAdd() &&
8624 Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
8625 Src.getOperand(1).getOpcode() == ISD::Constant) {
8626 G = cast<GlobalAddressSDNode>(Src.getOperand(0));
8627 SrcDelta = Src.getConstantOperandVal(1);
8628 }
8629 if (!G)
8630 return false;
8631
8632 return getConstantDataArrayInfo(G->getGlobal(), Slice, 8,
8633 SrcDelta + G->getOffset());
8634}
8635
8637 SelectionDAG &DAG) {
8638 // On Darwin, -Os means optimize for size without hurting performance, so
8639 // only really optimize for size when -Oz (MinSize) is used.
8641 return MF.getFunction().hasMinSize();
8642 return DAG.shouldOptForSize();
8643}
8644
8646 SmallVector<SDValue, 32> &OutChains, unsigned From,
8647 unsigned To, SmallVector<SDValue, 16> &OutLoadChains,
8648 SmallVector<SDValue, 16> &OutStoreChains) {
8649 assert(OutLoadChains.size() && "Missing loads in memcpy inlining");
8650 assert(OutStoreChains.size() && "Missing stores in memcpy inlining");
8651 SmallVector<SDValue, 16> GluedLoadChains;
8652 for (unsigned i = From; i < To; ++i) {
8653 OutChains.push_back(OutLoadChains[i]);
8654 GluedLoadChains.push_back(OutLoadChains[i]);
8655 }
8656
8657 // Chain for all loads.
8658 SDValue LoadToken = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8659 GluedLoadChains);
8660
8661 for (unsigned i = From; i < To; ++i) {
8662 StoreSDNode *ST = dyn_cast<StoreSDNode>(OutStoreChains[i]);
8663 SDValue NewStore = DAG.getTruncStore(LoadToken, dl, ST->getValue(),
8664 ST->getBasePtr(), ST->getMemoryVT(),
8665 ST->getMemOperand());
8666 OutChains.push_back(NewStore);
8667 }
8668}
8669
8671 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
8672 uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline,
8673 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo,
8674 const AAMDNodes &AAInfo, BatchAAResults *BatchAA) {
8675 // Turn a memcpy of undef to nop.
8676 // FIXME: We need to honor volatile even is Src is undef.
8677 if (Src.isUndef())
8678 return Chain;
8679
8680 // Expand memcpy to a series of load and store ops if the size operand falls
8681 // below a certain threshold.
8682 // TODO: In the AlwaysInline case, if the size is big then generate a loop
8683 // rather than maybe a humongous number of loads and stores.
8684 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8685 const DataLayout &DL = DAG.getDataLayout();
8686 LLVMContext &C = *DAG.getContext();
8687 std::vector<EVT> MemOps;
8688 bool DstAlignCanChange = false;
8690 MachineFrameInfo &MFI = MF.getFrameInfo();
8691 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8693 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8694 DstAlignCanChange = true;
8695 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8696 if (!SrcAlign || Alignment > *SrcAlign)
8697 SrcAlign = Alignment;
8698 assert(SrcAlign && "SrcAlign must be set");
8700 // If marked as volatile, perform a copy even when marked as constant.
8701 bool CopyFromConstant = !isVol && isMemSrcFromConstant(Src, Slice);
8702 bool isZeroConstant = CopyFromConstant && Slice.Array == nullptr;
8703 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
8704 const MemOp Op = isZeroConstant
8705 ? MemOp::Set(Size, DstAlignCanChange, Alignment,
8706 /*IsZeroMemset*/ true, isVol)
8707 : MemOp::Copy(Size, DstAlignCanChange, Alignment,
8708 *SrcAlign, isVol, CopyFromConstant);
8709 if (!TLI.findOptimalMemOpLowering(
8710 C, MemOps, Limit, Op, DstPtrInfo.getAddrSpace(),
8711 SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes()))
8712 return SDValue();
8713
8714 if (DstAlignCanChange) {
8715 Type *Ty = MemOps[0].getTypeForEVT(C);
8716 Align NewAlign = DL.getABITypeAlign(Ty);
8717
8718 // Don't promote to an alignment that would require dynamic stack
8719 // realignment which may conflict with optimizations such as tail call
8720 // optimization.
8722 if (!TRI->hasStackRealignment(MF))
8723 if (MaybeAlign StackAlign = DL.getStackAlignment())
8724 NewAlign = std::min(NewAlign, *StackAlign);
8725
8726 if (NewAlign > Alignment) {
8727 // Give the stack frame object a larger alignment if needed.
8728 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8729 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8730 Alignment = NewAlign;
8731 }
8732 }
8733
8734 // Prepare AAInfo for loads/stores after lowering this memcpy.
8735 AAMDNodes NewAAInfo = AAInfo;
8736 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8737
8738 const Value *SrcVal = dyn_cast_if_present<const Value *>(SrcPtrInfo.V);
8739 bool isConstant =
8740 BatchAA && SrcVal &&
8741 BatchAA->pointsToConstantMemory(MemoryLocation(SrcVal, Size, AAInfo));
8742
8743 MachineMemOperand::Flags MMOFlags =
8745 SmallVector<SDValue, 16> OutLoadChains;
8746 SmallVector<SDValue, 16> OutStoreChains;
8747 SmallVector<SDValue, 32> OutChains;
8748 unsigned NumMemOps = MemOps.size();
8749 uint64_t SrcOff = 0, DstOff = 0;
8750 for (unsigned i = 0; i != NumMemOps; ++i) {
8751 EVT VT = MemOps[i];
8752 unsigned VTSize = VT.getSizeInBits() / 8;
8753 SDValue Value, Store;
8754
8755 if (VTSize > Size) {
8756 // Issuing an unaligned load / store pair that overlaps with the previous
8757 // pair. Adjust the offset accordingly.
8758 assert(i == NumMemOps-1 && i != 0);
8759 SrcOff -= VTSize - Size;
8760 DstOff -= VTSize - Size;
8761 }
8762
8763 if (CopyFromConstant &&
8764 (isZeroConstant || (VT.isInteger() && !VT.isVector()))) {
8765 // It's unlikely a store of a vector immediate can be done in a single
8766 // instruction. It would require a load from a constantpool first.
8767 // We only handle zero vectors here.
8768 // FIXME: Handle other cases where store of vector immediate is done in
8769 // a single instruction.
8770 ConstantDataArraySlice SubSlice;
8771 if (SrcOff < Slice.Length) {
8772 SubSlice = Slice;
8773 SubSlice.move(SrcOff);
8774 } else {
8775 // This is an out-of-bounds access and hence UB. Pretend we read zero.
8776 SubSlice.Array = nullptr;
8777 SubSlice.Offset = 0;
8778 SubSlice.Length = VTSize;
8779 }
8780 Value = getMemsetStringVal(VT, dl, DAG, TLI, SubSlice);
8781 if (Value.getNode()) {
8782 Store = DAG.getStore(
8783 Chain, dl, Value,
8784 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8785 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8786 OutChains.push_back(Store);
8787 }
8788 }
8789
8790 if (!Store.getNode()) {
8791 // The type might not be legal for the target. This should only happen
8792 // if the type is smaller than a legal type, as on PPC, so the right
8793 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
8794 // to Load/Store if NVT==VT.
8795 // FIXME does the case above also need this?
8796 EVT NVT = TLI.getTypeToTransformTo(C, VT);
8797 assert(NVT.bitsGE(VT));
8798
8799 bool isDereferenceable =
8800 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8801 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8802 if (isDereferenceable)
8804 if (isConstant)
8805 SrcMMOFlags |= MachineMemOperand::MOInvariant;
8806
8807 Value = DAG.getExtLoad(
8808 ISD::EXTLOAD, dl, NVT, Chain,
8809 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8810 SrcPtrInfo.getWithOffset(SrcOff), VT,
8811 commonAlignment(*SrcAlign, SrcOff), SrcMMOFlags, NewAAInfo);
8812 OutLoadChains.push_back(Value.getValue(1));
8813
8814 Store = DAG.getTruncStore(
8815 Chain, dl, Value,
8816 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8817 DstPtrInfo.getWithOffset(DstOff), VT, Alignment, MMOFlags, NewAAInfo);
8818 OutStoreChains.push_back(Store);
8819 }
8820 SrcOff += VTSize;
8821 DstOff += VTSize;
8822 Size -= VTSize;
8823 }
8824
8825 unsigned GluedLdStLimit = MaxLdStGlue == 0 ?
8827 unsigned NumLdStInMemcpy = OutStoreChains.size();
8828
8829 if (NumLdStInMemcpy) {
8830 // It may be that memcpy might be converted to memset if it's memcpy
8831 // of constants. In such a case, we won't have loads and stores, but
8832 // just stores. In the absence of loads, there is nothing to gang up.
8833 if ((GluedLdStLimit <= 1) || !EnableMemCpyDAGOpt) {
8834 // If target does not care, just leave as it.
8835 for (unsigned i = 0; i < NumLdStInMemcpy; ++i) {
8836 OutChains.push_back(OutLoadChains[i]);
8837 OutChains.push_back(OutStoreChains[i]);
8838 }
8839 } else {
8840 // Ld/St less than/equal limit set by target.
8841 if (NumLdStInMemcpy <= GluedLdStLimit) {
8842 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8843 NumLdStInMemcpy, OutLoadChains,
8844 OutStoreChains);
8845 } else {
8846 unsigned NumberLdChain = NumLdStInMemcpy / GluedLdStLimit;
8847 unsigned RemainingLdStInMemcpy = NumLdStInMemcpy % GluedLdStLimit;
8848 unsigned GlueIter = 0;
8849
8850 for (unsigned cnt = 0; cnt < NumberLdChain; ++cnt) {
8851 unsigned IndexFrom = NumLdStInMemcpy - GlueIter - GluedLdStLimit;
8852 unsigned IndexTo = NumLdStInMemcpy - GlueIter;
8853
8854 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, IndexFrom, IndexTo,
8855 OutLoadChains, OutStoreChains);
8856 GlueIter += GluedLdStLimit;
8857 }
8858
8859 // Residual ld/st.
8860 if (RemainingLdStInMemcpy) {
8861 chainLoadsAndStoresForMemcpy(DAG, dl, OutChains, 0,
8862 RemainingLdStInMemcpy, OutLoadChains,
8863 OutStoreChains);
8864 }
8865 }
8866 }
8867 }
8868 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8869}
8870
8872 SDValue Chain, SDValue Dst, SDValue Src,
8873 uint64_t Size, Align Alignment,
8874 bool isVol, bool AlwaysInline,
8875 MachinePointerInfo DstPtrInfo,
8876 MachinePointerInfo SrcPtrInfo,
8877 const AAMDNodes &AAInfo) {
8878 // Turn a memmove of undef to nop.
8879 // FIXME: We need to honor volatile even is Src is undef.
8880 if (Src.isUndef())
8881 return Chain;
8882
8883 // Expand memmove to a series of load and store ops if the size operand falls
8884 // below a certain threshold.
8885 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8886 const DataLayout &DL = DAG.getDataLayout();
8887 LLVMContext &C = *DAG.getContext();
8888 std::vector<EVT> MemOps;
8889 bool DstAlignCanChange = false;
8891 MachineFrameInfo &MFI = MF.getFrameInfo();
8892 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
8894 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
8895 DstAlignCanChange = true;
8896 MaybeAlign SrcAlign = DAG.InferPtrAlign(Src);
8897 if (!SrcAlign || Alignment > *SrcAlign)
8898 SrcAlign = Alignment;
8899 assert(SrcAlign && "SrcAlign must be set");
8900 unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
8901 if (!TLI.findOptimalMemOpLowering(
8902 C, MemOps, Limit,
8903 MemOp::Copy(Size, DstAlignCanChange, Alignment, *SrcAlign,
8904 /*IsVolatile*/ true),
8905 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
8906 MF.getFunction().getAttributes()))
8907 return SDValue();
8908
8909 if (DstAlignCanChange) {
8910 Type *Ty = MemOps[0].getTypeForEVT(C);
8911 Align NewAlign = DL.getABITypeAlign(Ty);
8912
8913 // Don't promote to an alignment that would require dynamic stack
8914 // realignment which may conflict with optimizations such as tail call
8915 // optimization.
8917 if (!TRI->hasStackRealignment(MF))
8918 if (MaybeAlign StackAlign = DL.getStackAlignment())
8919 NewAlign = std::min(NewAlign, *StackAlign);
8920
8921 if (NewAlign > Alignment) {
8922 // Give the stack frame object a larger alignment if needed.
8923 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
8924 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
8925 Alignment = NewAlign;
8926 }
8927 }
8928
8929 // Prepare AAInfo for loads/stores after lowering this memmove.
8930 AAMDNodes NewAAInfo = AAInfo;
8931 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
8932
8933 MachineMemOperand::Flags MMOFlags =
8935 uint64_t SrcOff = 0, DstOff = 0;
8936 SmallVector<SDValue, 8> LoadValues;
8937 SmallVector<SDValue, 8> LoadChains;
8938 SmallVector<SDValue, 8> OutChains;
8939 unsigned NumMemOps = MemOps.size();
8940 for (unsigned i = 0; i < NumMemOps; i++) {
8941 EVT VT = MemOps[i];
8942 unsigned VTSize = VT.getSizeInBits() / 8;
8943 SDValue Value;
8944
8945 bool isDereferenceable =
8946 SrcPtrInfo.getWithOffset(SrcOff).isDereferenceable(VTSize, C, DL);
8947 MachineMemOperand::Flags SrcMMOFlags = MMOFlags;
8948 if (isDereferenceable)
8950
8951 Value = DAG.getLoad(
8952 VT, dl, Chain,
8953 DAG.getMemBasePlusOffset(Src, TypeSize::getFixed(SrcOff), dl),
8954 SrcPtrInfo.getWithOffset(SrcOff), *SrcAlign, SrcMMOFlags, NewAAInfo);
8955 LoadValues.push_back(Value);
8956 LoadChains.push_back(Value.getValue(1));
8957 SrcOff += VTSize;
8958 }
8959 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
8960 OutChains.clear();
8961 for (unsigned i = 0; i < NumMemOps; i++) {
8962 EVT VT = MemOps[i];
8963 unsigned VTSize = VT.getSizeInBits() / 8;
8964 SDValue Store;
8965
8966 Store = DAG.getStore(
8967 Chain, dl, LoadValues[i],
8968 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
8969 DstPtrInfo.getWithOffset(DstOff), Alignment, MMOFlags, NewAAInfo);
8970 OutChains.push_back(Store);
8971 DstOff += VTSize;
8972 }
8973
8974 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
8975}
8976
8977/// Lower the call to 'memset' intrinsic function into a series of store
8978/// operations.
8979///
8980/// \param DAG Selection DAG where lowered code is placed.
8981/// \param dl Link to corresponding IR location.
8982/// \param Chain Control flow dependency.
8983/// \param Dst Pointer to destination memory location.
8984/// \param Src Value of byte to write into the memory.
8985/// \param Size Number of bytes to write.
8986/// \param Alignment Alignment of the destination in bytes.
8987/// \param isVol True if destination is volatile.
8988/// \param AlwaysInline Makes sure no function call is generated.
8989/// \param DstPtrInfo IR information on the memory pointer.
8990/// \returns New head in the control flow, if lowering was successful, empty
8991/// SDValue otherwise.
8992///
8993/// The function tries to replace 'llvm.memset' intrinsic with several store
8994/// operations and value calculation code. This is usually profitable for small
8995/// memory size or when the semantic requires inlining.
8997 SDValue Chain, SDValue Dst, SDValue Src,
8998 uint64_t Size, Align Alignment, bool isVol,
8999 bool AlwaysInline, MachinePointerInfo DstPtrInfo,
9000 const AAMDNodes &AAInfo) {
9001 // Turn a memset of undef to nop.
9002 // FIXME: We need to honor volatile even is Src is undef.
9003 if (Src.isUndef())
9004 return Chain;
9005
9006 // Expand memset to a series of load/store ops if the size operand
9007 // falls below a certain threshold.
9008 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9009 std::vector<EVT> MemOps;
9010 bool DstAlignCanChange = false;
9011 LLVMContext &C = *DAG.getContext();
9013 MachineFrameInfo &MFI = MF.getFrameInfo();
9014 bool OptSize = shouldLowerMemFuncForSize(MF, DAG);
9016 if (FI && !MFI.isFixedObjectIndex(FI->getIndex()))
9017 DstAlignCanChange = true;
9018 bool IsZeroVal = isNullConstant(Src);
9019 unsigned Limit = AlwaysInline ? ~0 : TLI.getMaxStoresPerMemset(OptSize);
9020
9021 if (!TLI.findOptimalMemOpLowering(
9022 C, MemOps, Limit,
9023 MemOp::Set(Size, DstAlignCanChange, Alignment, IsZeroVal, isVol),
9024 DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes()))
9025 return SDValue();
9026
9027 if (DstAlignCanChange) {
9028 Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
9029 const DataLayout &DL = DAG.getDataLayout();
9030 Align NewAlign = DL.getABITypeAlign(Ty);
9031
9032 // Don't promote to an alignment that would require dynamic stack
9033 // realignment which may conflict with optimizations such as tail call
9034 // optimization.
9036 if (!TRI->hasStackRealignment(MF))
9037 if (MaybeAlign StackAlign = DL.getStackAlignment())
9038 NewAlign = std::min(NewAlign, *StackAlign);
9039
9040 if (NewAlign > Alignment) {
9041 // Give the stack frame object a larger alignment if needed.
9042 if (MFI.getObjectAlign(FI->getIndex()) < NewAlign)
9043 MFI.setObjectAlignment(FI->getIndex(), NewAlign);
9044 Alignment = NewAlign;
9045 }
9046 }
9047
9048 SmallVector<SDValue, 8> OutChains;
9049 uint64_t DstOff = 0;
9050 unsigned NumMemOps = MemOps.size();
9051
9052 // Find the largest store and generate the bit pattern for it.
9053 EVT LargestVT = MemOps[0];
9054 for (unsigned i = 1; i < NumMemOps; i++)
9055 if (MemOps[i].bitsGT(LargestVT))
9056 LargestVT = MemOps[i];
9057 SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
9058
9059 // Prepare AAInfo for loads/stores after lowering this memset.
9060 AAMDNodes NewAAInfo = AAInfo;
9061 NewAAInfo.TBAA = NewAAInfo.TBAAStruct = nullptr;
9062
9063 for (unsigned i = 0; i < NumMemOps; i++) {
9064 EVT VT = MemOps[i];
9065 unsigned VTSize = VT.getSizeInBits() / 8;
9066 if (VTSize > Size) {
9067 // Issuing an unaligned load / store pair that overlaps with the previous
9068 // pair. Adjust the offset accordingly.
9069 assert(i == NumMemOps-1 && i != 0);
9070 DstOff -= VTSize - Size;
9071 }
9072
9073 // If this store is smaller than the largest store see whether we can get
9074 // the smaller value for free with a truncate or extract vector element and
9075 // then store.
9076 SDValue Value = MemSetValue;
9077 if (VT.bitsLT(LargestVT)) {
9078 unsigned Index;
9079 unsigned NElts = LargestVT.getSizeInBits() / VT.getSizeInBits();
9080 EVT SVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), NElts);
9081 if (!LargestVT.isVector() && !VT.isVector() &&
9082 TLI.isTruncateFree(LargestVT, VT))
9083 Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
9084 else if (LargestVT.isVector() && !VT.isVector() &&
9086 LargestVT.getTypeForEVT(*DAG.getContext()),
9087 VT.getSizeInBits(), Index) &&
9088 TLI.isTypeLegal(SVT) &&
9089 LargestVT.getSizeInBits() == SVT.getSizeInBits()) {
9090 // Target which can combine store(extractelement VectorTy, Idx) can get
9091 // the smaller value for free.
9092 SDValue TailValue = DAG.getNode(ISD::BITCAST, dl, SVT, MemSetValue);
9093 Value = DAG.getExtractVectorElt(dl, VT, TailValue, Index);
9094 } else
9095 Value = getMemsetValue(Src, VT, DAG, dl);
9096 }
9097 assert(Value.getValueType() == VT && "Value with wrong type.");
9098 SDValue Store = DAG.getStore(
9099 Chain, dl, Value,
9100 DAG.getMemBasePlusOffset(Dst, TypeSize::getFixed(DstOff), dl),
9101 DstPtrInfo.getWithOffset(DstOff), Alignment,
9103 NewAAInfo);
9104 OutChains.push_back(Store);
9105 DstOff += VT.getSizeInBits() / 8;
9106 Size -= VTSize;
9107 }
9108
9109 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
9110}
9111
9113 unsigned AS) {
9114 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
9115 // pointer operands can be losslessly bitcasted to pointers of address space 0
9116 if (AS != 0 && !TLI->getTargetMachine().isNoopAddrSpaceCast(AS, 0)) {
9117 report_fatal_error("cannot lower memory intrinsic in address space " +
9118 Twine(AS));
9119 }
9120}
9121
9123 const SelectionDAG *SelDAG,
9124 bool AllowReturnsFirstArg) {
9125 if (!CI || !CI->isTailCall())
9126 return false;
9127 // TODO: Fix "returns-first-arg" determination so it doesn't depend on which
9128 // helper symbol we lower to.
9129 return isInTailCallPosition(*CI, SelDAG->getTarget(),
9130 AllowReturnsFirstArg &&
9132}
9133
9134std::pair<SDValue, SDValue>
9136 SDValue Mem1, SDValue Size, const CallInst *CI) {
9137 const char *LibCallName = TLI->getLibcallName(RTLIB::MEMCMP);
9138 if (!LibCallName)
9139 return {};
9140
9143 {Mem0, PT},
9144 {Mem1, PT},
9146
9148 bool IsTailCall =
9149 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9150
9151 CLI.setDebugLoc(dl)
9152 .setChain(Chain)
9153 .setLibCallee(
9154 TLI->getLibcallCallingConv(RTLIB::MEMCMP),
9156 getExternalSymbol(LibCallName, TLI->getPointerTy(getDataLayout())),
9157 std::move(Args))
9158 .setTailCall(IsTailCall);
9159
9160 return TLI->LowerCallTo(CLI);
9161}
9162
9163std::pair<SDValue, SDValue> SelectionDAG::getStrlen(SDValue Chain,
9164 const SDLoc &dl,
9165 SDValue Src,
9166 const CallInst *CI) {
9167 const char *LibCallName = TLI->getLibcallName(RTLIB::STRLEN);
9168 if (!LibCallName)
9169 return {};
9170
9171 // Emit a library call.
9174
9176 bool IsTailCall =
9177 isInTailCallPositionWrapper(CI, this, /*AllowReturnsFirstArg*/ true);
9178
9179 CLI.setDebugLoc(dl)
9180 .setChain(Chain)
9181 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::STRLEN), CI->getType(),
9183 LibCallName, TLI->getProgramPointerTy(getDataLayout())),
9184 std::move(Args))
9185 .setTailCall(IsTailCall);
9186
9187 return TLI->LowerCallTo(CLI);
9188}
9189
9191 SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size,
9192 Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI,
9193 std::optional<bool> OverrideTailCall, MachinePointerInfo DstPtrInfo,
9194 MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo,
9195 BatchAAResults *BatchAA) {
9196 // Check to see if we should lower the memcpy to loads and stores first.
9197 // For cases within the target-specified limits, this is the best choice.
9199 if (ConstantSize) {
9200 // Memcpy with size zero? Just return the original chain.
9201 if (ConstantSize->isZero())
9202 return Chain;
9203
9205 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9206 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9207 if (Result.getNode())
9208 return Result;
9209 }
9210
9211 // Then check to see if we should lower the memcpy with target-specific
9212 // code. If the target chooses to do this, this is the next best.
9213 if (TSI) {
9214 SDValue Result = TSI->EmitTargetCodeForMemcpy(
9215 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline,
9216 DstPtrInfo, SrcPtrInfo);
9217 if (Result.getNode())
9218 return Result;
9219 }
9220
9221 // If we really need inline code and the target declined to provide it,
9222 // use a (potentially long) sequence of loads and stores.
9223 if (AlwaysInline) {
9224 assert(ConstantSize && "AlwaysInline requires a constant size!");
9226 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9227 isVol, true, DstPtrInfo, SrcPtrInfo, AAInfo, BatchAA);
9228 }
9229
9232
9233 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
9234 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
9235 // respect volatile, so they may do things like read or write memory
9236 // beyond the given memory regions. But fixing this isn't easy, and most
9237 // people don't care.
9238
9239 // Emit a library call.
9242 Args.emplace_back(Dst, PtrTy);
9243 Args.emplace_back(Src, PtrTy);
9244 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9245 // FIXME: pass in SDLoc
9247 bool IsTailCall = false;
9248 const char *MemCpyName = TLI->getMemcpyName();
9249
9250 if (OverrideTailCall.has_value()) {
9251 IsTailCall = *OverrideTailCall;
9252 } else {
9253 bool LowersToMemcpy = StringRef(MemCpyName) == StringRef("memcpy");
9254 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemcpy);
9255 }
9256
9257 CLI.setDebugLoc(dl)
9258 .setChain(Chain)
9259 .setLibCallee(
9260 TLI->getLibcallCallingConv(RTLIB::MEMCPY),
9261 Dst.getValueType().getTypeForEVT(*getContext()),
9262 getExternalSymbol(MemCpyName, TLI->getPointerTy(getDataLayout())),
9263 std::move(Args))
9265 .setTailCall(IsTailCall);
9266
9267 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9268 return CallResult.second;
9269}
9270
9272 SDValue Dst, SDValue Src, SDValue Size,
9273 Type *SizeTy, unsigned ElemSz,
9274 bool isTailCall,
9275 MachinePointerInfo DstPtrInfo,
9276 MachinePointerInfo SrcPtrInfo) {
9277 // Emit a library call.
9280 Args.emplace_back(Dst, ArgTy);
9281 Args.emplace_back(Src, ArgTy);
9282 Args.emplace_back(Size, SizeTy);
9283
9284 RTLIB::Libcall LibraryCall =
9286 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9287 report_fatal_error("Unsupported element size");
9288
9290 CLI.setDebugLoc(dl)
9291 .setChain(Chain)
9292 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9294 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9295 TLI->getPointerTy(getDataLayout())),
9296 std::move(Args))
9298 .setTailCall(isTailCall);
9299
9300 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9301 return CallResult.second;
9302}
9303
9305 SDValue Src, SDValue Size, Align Alignment,
9306 bool isVol, const CallInst *CI,
9307 std::optional<bool> OverrideTailCall,
9308 MachinePointerInfo DstPtrInfo,
9309 MachinePointerInfo SrcPtrInfo,
9310 const AAMDNodes &AAInfo,
9311 BatchAAResults *BatchAA) {
9312 // Check to see if we should lower the memmove to loads and stores first.
9313 // For cases within the target-specified limits, this is the best choice.
9315 if (ConstantSize) {
9316 // Memmove with size zero? Just return the original chain.
9317 if (ConstantSize->isZero())
9318 return Chain;
9319
9321 *this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(), Alignment,
9322 isVol, false, DstPtrInfo, SrcPtrInfo, AAInfo);
9323 if (Result.getNode())
9324 return Result;
9325 }
9326
9327 // Then check to see if we should lower the memmove with target-specific
9328 // code. If the target chooses to do this, this is the next best.
9329 if (TSI) {
9330 SDValue Result =
9331 TSI->EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size,
9332 Alignment, isVol, DstPtrInfo, SrcPtrInfo);
9333 if (Result.getNode())
9334 return Result;
9335 }
9336
9339
9340 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
9341 // not be safe. See memcpy above for more details.
9342
9343 // Emit a library call.
9346 Args.emplace_back(Dst, PtrTy);
9347 Args.emplace_back(Src, PtrTy);
9348 Args.emplace_back(Size, getDataLayout().getIntPtrType(*getContext()));
9349 // FIXME: pass in SDLoc
9351
9352 bool IsTailCall = false;
9353 if (OverrideTailCall.has_value()) {
9354 IsTailCall = *OverrideTailCall;
9355 } else {
9356 bool LowersToMemmove =
9357 TLI->getLibcallName(RTLIB::MEMMOVE) == StringRef("memmove");
9358 IsTailCall = isInTailCallPositionWrapper(CI, this, LowersToMemmove);
9359 }
9360
9361 CLI.setDebugLoc(dl)
9362 .setChain(Chain)
9363 .setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMMOVE),
9364 Dst.getValueType().getTypeForEVT(*getContext()),
9365 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMMOVE),
9366 TLI->getPointerTy(getDataLayout())),
9367 std::move(Args))
9369 .setTailCall(IsTailCall);
9370
9371 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
9372 return CallResult.second;
9373}
9374
9376 SDValue Dst, SDValue Src, SDValue Size,
9377 Type *SizeTy, unsigned ElemSz,
9378 bool isTailCall,
9379 MachinePointerInfo DstPtrInfo,
9380 MachinePointerInfo SrcPtrInfo) {
9381 // Emit a library call.
9383 Type *IntPtrTy = getDataLayout().getIntPtrType(*getContext());
9384 Args.emplace_back(Dst, IntPtrTy);
9385 Args.emplace_back(Src, IntPtrTy);
9386 Args.emplace_back(Size, SizeTy);
9387
9388 RTLIB::Libcall LibraryCall =
9390 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9391 report_fatal_error("Unsupported element size");
9392
9394 CLI.setDebugLoc(dl)
9395 .setChain(Chain)
9396 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9398 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9399 TLI->getPointerTy(getDataLayout())),
9400 std::move(Args))
9402 .setTailCall(isTailCall);
9403
9404 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9405 return CallResult.second;
9406}
9407
9409 SDValue Src, SDValue Size, Align Alignment,
9410 bool isVol, bool AlwaysInline,
9411 const CallInst *CI,
9412 MachinePointerInfo DstPtrInfo,
9413 const AAMDNodes &AAInfo) {
9414 // Check to see if we should lower the memset to stores first.
9415 // For cases within the target-specified limits, this is the best choice.
9417 if (ConstantSize) {
9418 // Memset with size zero? Just return the original chain.
9419 if (ConstantSize->isZero())
9420 return Chain;
9421
9422 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9423 ConstantSize->getZExtValue(), Alignment,
9424 isVol, false, DstPtrInfo, AAInfo);
9425
9426 if (Result.getNode())
9427 return Result;
9428 }
9429
9430 // Then check to see if we should lower the memset with target-specific
9431 // code. If the target chooses to do this, this is the next best.
9432 if (TSI) {
9433 SDValue Result = TSI->EmitTargetCodeForMemset(
9434 *this, dl, Chain, Dst, Src, Size, Alignment, isVol, AlwaysInline, DstPtrInfo);
9435 if (Result.getNode())
9436 return Result;
9437 }
9438
9439 // If we really need inline code and the target declined to provide it,
9440 // use a (potentially long) sequence of loads and stores.
9441 if (AlwaysInline) {
9442 assert(ConstantSize && "AlwaysInline requires a constant size!");
9443 SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
9444 ConstantSize->getZExtValue(), Alignment,
9445 isVol, true, DstPtrInfo, AAInfo);
9446 assert(Result &&
9447 "getMemsetStores must return a valid sequence when AlwaysInline");
9448 return Result;
9449 }
9450
9452
9453 // Emit a library call.
9454 auto &Ctx = *getContext();
9455 const auto& DL = getDataLayout();
9456
9458 // FIXME: pass in SDLoc
9459 CLI.setDebugLoc(dl).setChain(Chain);
9460
9461 const char *BzeroName = getTargetLoweringInfo().getLibcallName(RTLIB::BZERO);
9462
9463 bool UseBZero = isNullConstant(Src) && BzeroName;
9464 // If zeroing out and bzero is present, use it.
9465 if (UseBZero) {
9467 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9468 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9469 CLI.setLibCallee(
9470 TLI->getLibcallCallingConv(RTLIB::BZERO), Type::getVoidTy(Ctx),
9471 getExternalSymbol(BzeroName, TLI->getPointerTy(DL)), std::move(Args));
9472 } else {
9474 Args.emplace_back(Dst, PointerType::getUnqual(Ctx));
9475 Args.emplace_back(Src, Src.getValueType().getTypeForEVT(Ctx));
9476 Args.emplace_back(Size, DL.getIntPtrType(Ctx));
9477 CLI.setLibCallee(TLI->getLibcallCallingConv(RTLIB::MEMSET),
9478 Dst.getValueType().getTypeForEVT(Ctx),
9479 getExternalSymbol(TLI->getLibcallName(RTLIB::MEMSET),
9480 TLI->getPointerTy(DL)),
9481 std::move(Args));
9482 }
9483 bool LowersToMemset =
9484 TLI->getLibcallName(RTLIB::MEMSET) == StringRef("memset");
9485 // If we're going to use bzero, make sure not to tail call unless the
9486 // subsequent return doesn't need a value, as bzero doesn't return the first
9487 // arg unlike memset.
9488 bool ReturnsFirstArg = CI && funcReturnsFirstArgOfCall(*CI) && !UseBZero;
9489 bool IsTailCall =
9490 CI && CI->isTailCall() &&
9491 isInTailCallPosition(*CI, getTarget(), ReturnsFirstArg && LowersToMemset);
9492 CLI.setDiscardResult().setTailCall(IsTailCall);
9493
9494 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9495 return CallResult.second;
9496}
9497
9500 Type *SizeTy, unsigned ElemSz,
9501 bool isTailCall,
9502 MachinePointerInfo DstPtrInfo) {
9503 // Emit a library call.
9505 Args.emplace_back(Dst, getDataLayout().getIntPtrType(*getContext()));
9506 Args.emplace_back(Value, Type::getInt8Ty(*getContext()));
9507 Args.emplace_back(Size, SizeTy);
9508
9509 RTLIB::Libcall LibraryCall =
9511 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
9512 report_fatal_error("Unsupported element size");
9513
9515 CLI.setDebugLoc(dl)
9516 .setChain(Chain)
9517 .setLibCallee(TLI->getLibcallCallingConv(LibraryCall),
9519 getExternalSymbol(TLI->getLibcallName(LibraryCall),
9520 TLI->getPointerTy(getDataLayout())),
9521 std::move(Args))
9523 .setTailCall(isTailCall);
9524
9525 std::pair<SDValue, SDValue> CallResult = TLI->LowerCallTo(CLI);
9526 return CallResult.second;
9527}
9528
9529SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9531 MachineMemOperand *MMO,
9532 ISD::LoadExtType ExtType) {
9534 AddNodeIDNode(ID, Opcode, VTList, Ops);
9535 ID.AddInteger(MemVT.getRawBits());
9536 ID.AddInteger(getSyntheticNodeSubclassData<AtomicSDNode>(
9537 dl.getIROrder(), Opcode, VTList, MemVT, MMO, ExtType));
9538 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9539 ID.AddInteger(MMO->getFlags());
9540 void* IP = nullptr;
9541 if (auto *E = cast_or_null<AtomicSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9542 E->refineAlignment(MMO);
9543 E->refineRanges(MMO);
9544 return SDValue(E, 0);
9545 }
9546
9547 auto *N = newSDNode<AtomicSDNode>(dl.getIROrder(), dl.getDebugLoc(), Opcode,
9548 VTList, MemVT, MMO, ExtType);
9549 createOperands(N, Ops);
9550
9551 CSEMap.InsertNode(N, IP);
9552 InsertNode(N);
9553 SDValue V(N, 0);
9554 NewSDValueDbgMsg(V, "Creating new node: ", this);
9555 return V;
9556}
9557
9559 EVT MemVT, SDVTList VTs, SDValue Chain,
9560 SDValue Ptr, SDValue Cmp, SDValue Swp,
9561 MachineMemOperand *MMO) {
9562 assert(Opcode == ISD::ATOMIC_CMP_SWAP ||
9563 Opcode == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
9564 assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
9565
9566 SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
9567 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9568}
9569
9570SDValue SelectionDAG::getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
9571 SDValue Chain, SDValue Ptr, SDValue Val,
9572 MachineMemOperand *MMO) {
9573 assert((Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB ||
9574 Opcode == ISD::ATOMIC_LOAD_AND || Opcode == ISD::ATOMIC_LOAD_CLR ||
9575 Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR ||
9576 Opcode == ISD::ATOMIC_LOAD_NAND || Opcode == ISD::ATOMIC_LOAD_MIN ||
9577 Opcode == ISD::ATOMIC_LOAD_MAX || Opcode == ISD::ATOMIC_LOAD_UMIN ||
9578 Opcode == ISD::ATOMIC_LOAD_UMAX || Opcode == ISD::ATOMIC_LOAD_FADD ||
9579 Opcode == ISD::ATOMIC_LOAD_FSUB || Opcode == ISD::ATOMIC_LOAD_FMAX ||
9580 Opcode == ISD::ATOMIC_LOAD_FMIN ||
9581 Opcode == ISD::ATOMIC_LOAD_FMINIMUM ||
9582 Opcode == ISD::ATOMIC_LOAD_FMAXIMUM ||
9583 Opcode == ISD::ATOMIC_LOAD_UINC_WRAP ||
9584 Opcode == ISD::ATOMIC_LOAD_UDEC_WRAP ||
9585 Opcode == ISD::ATOMIC_LOAD_USUB_COND ||
9586 Opcode == ISD::ATOMIC_LOAD_USUB_SAT || Opcode == ISD::ATOMIC_SWAP ||
9587 Opcode == ISD::ATOMIC_STORE) &&
9588 "Invalid Atomic Op");
9589
9590 EVT VT = Val.getValueType();
9591
9592 SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
9593 getVTList(VT, MVT::Other);
9594 SDValue Ops[] = {Chain, Ptr, Val};
9595 return getAtomic(Opcode, dl, MemVT, VTs, Ops, MMO);
9596}
9597
9599 EVT MemVT, EVT VT, SDValue Chain,
9601 SDVTList VTs = getVTList(VT, MVT::Other);
9602 SDValue Ops[] = {Chain, Ptr};
9603 return getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, VTs, Ops, MMO, ExtType);
9604}
9605
9606/// getMergeValues - Create a MERGE_VALUES node from the given operands.
9608 if (Ops.size() == 1)
9609 return Ops[0];
9610
9612 VTs.reserve(Ops.size());
9613 for (const SDValue &Op : Ops)
9614 VTs.push_back(Op.getValueType());
9615 return getNode(ISD::MERGE_VALUES, dl, getVTList(VTs), Ops);
9616}
9617
9619 unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops,
9620 EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment,
9622 const AAMDNodes &AAInfo) {
9623 if (Size.hasValue() && !Size.getValue())
9625
9627 MachineMemOperand *MMO =
9628 MF.getMachineMemOperand(PtrInfo, Flags, Size, Alignment, AAInfo);
9629
9630 return getMemIntrinsicNode(Opcode, dl, VTList, Ops, MemVT, MMO);
9631}
9632
9634 SDVTList VTList,
9635 ArrayRef<SDValue> Ops, EVT MemVT,
9636 MachineMemOperand *MMO) {
9637 assert(
9638 (Opcode == ISD::INTRINSIC_VOID || Opcode == ISD::INTRINSIC_W_CHAIN ||
9639 Opcode == ISD::PREFETCH ||
9640 (Opcode <= (unsigned)std::numeric_limits<int>::max() &&
9641 Opcode >= ISD::BUILTIN_OP_END && TSI->isTargetMemoryOpcode(Opcode))) &&
9642 "Opcode is not a memory-accessing opcode!");
9643
9644 // Memoize the node unless it returns a glue result.
9646 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
9648 AddNodeIDNode(ID, Opcode, VTList, Ops);
9649 ID.AddInteger(getSyntheticNodeSubclassData<MemIntrinsicSDNode>(
9650 Opcode, dl.getIROrder(), VTList, MemVT, MMO));
9651 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9652 ID.AddInteger(MMO->getFlags());
9653 ID.AddInteger(MemVT.getRawBits());
9654 void *IP = nullptr;
9655 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9656 cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
9657 return SDValue(E, 0);
9658 }
9659
9660 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9661 VTList, MemVT, MMO);
9662 createOperands(N, Ops);
9663
9664 CSEMap.InsertNode(N, IP);
9665 } else {
9666 N = newSDNode<MemIntrinsicSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(),
9667 VTList, MemVT, MMO);
9668 createOperands(N, Ops);
9669 }
9670 InsertNode(N);
9671 SDValue V(N, 0);
9672 NewSDValueDbgMsg(V, "Creating new node: ", this);
9673 return V;
9674}
9675
9677 SDValue Chain, int FrameIndex) {
9678 const unsigned Opcode = IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END;
9679 const auto VTs = getVTList(MVT::Other);
9680 SDValue Ops[2] = {
9681 Chain,
9682 getFrameIndex(FrameIndex,
9683 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
9684 true)};
9685
9687 AddNodeIDNode(ID, Opcode, VTs, Ops);
9688 ID.AddInteger(FrameIndex);
9689 void *IP = nullptr;
9690 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
9691 return SDValue(E, 0);
9692
9693 LifetimeSDNode *N =
9694 newSDNode<LifetimeSDNode>(Opcode, dl.getIROrder(), dl.getDebugLoc(), VTs);
9695 createOperands(N, Ops);
9696 CSEMap.InsertNode(N, IP);
9697 InsertNode(N);
9698 SDValue V(N, 0);
9699 NewSDValueDbgMsg(V, "Creating new node: ", this);
9700 return V;
9701}
9702
9704 uint64_t Guid, uint64_t Index,
9705 uint32_t Attr) {
9706 const unsigned Opcode = ISD::PSEUDO_PROBE;
9707 const auto VTs = getVTList(MVT::Other);
9708 SDValue Ops[] = {Chain};
9710 AddNodeIDNode(ID, Opcode, VTs, Ops);
9711 ID.AddInteger(Guid);
9712 ID.AddInteger(Index);
9713 void *IP = nullptr;
9714 if (SDNode *E = FindNodeOrInsertPos(ID, Dl, IP))
9715 return SDValue(E, 0);
9716
9717 auto *N = newSDNode<PseudoProbeSDNode>(
9718 Opcode, Dl.getIROrder(), Dl.getDebugLoc(), VTs, Guid, Index, Attr);
9719 createOperands(N, Ops);
9720 CSEMap.InsertNode(N, IP);
9721 InsertNode(N);
9722 SDValue V(N, 0);
9723 NewSDValueDbgMsg(V, "Creating new node: ", this);
9724 return V;
9725}
9726
9727/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9728/// MachinePointerInfo record from it. This is particularly useful because the
9729/// code generator has many cases where it doesn't bother passing in a
9730/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9732 SelectionDAG &DAG, SDValue Ptr,
9733 int64_t Offset = 0) {
9734 // If this is FI+Offset, we can model it.
9737 FI->getIndex(), Offset);
9738
9739 // If this is (FI+Offset1)+Offset2, we can model it.
9740 if (Ptr.getOpcode() != ISD::ADD ||
9741 !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
9742 !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
9743 return Info;
9744
9745 int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
9747 DAG.getMachineFunction(), FI,
9748 Offset + cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
9749}
9750
9751/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
9752/// MachinePointerInfo record from it. This is particularly useful because the
9753/// code generator has many cases where it doesn't bother passing in a
9754/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
9756 SelectionDAG &DAG, SDValue Ptr,
9757 SDValue OffsetOp) {
9758 // If the 'Offset' value isn't a constant, we can't handle this.
9760 return InferPointerInfo(Info, DAG, Ptr, OffsetNode->getSExtValue());
9761 if (OffsetOp.isUndef())
9762 return InferPointerInfo(Info, DAG, Ptr);
9763 return Info;
9764}
9765
9767 EVT VT, const SDLoc &dl, SDValue Chain,
9769 MachinePointerInfo PtrInfo, EVT MemVT,
9770 Align Alignment,
9771 MachineMemOperand::Flags MMOFlags,
9772 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9773 assert(Chain.getValueType() == MVT::Other &&
9774 "Invalid chain type");
9775
9776 MMOFlags |= MachineMemOperand::MOLoad;
9777 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
9778 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
9779 // clients.
9780 if (PtrInfo.V.isNull())
9781 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
9782
9783 TypeSize Size = MemVT.getStoreSize();
9785 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
9786 Alignment, AAInfo, Ranges);
9787 return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
9788}
9789
9791 EVT VT, const SDLoc &dl, SDValue Chain,
9792 SDValue Ptr, SDValue Offset, EVT MemVT,
9793 MachineMemOperand *MMO) {
9794 if (VT == MemVT) {
9795 ExtType = ISD::NON_EXTLOAD;
9796 } else if (ExtType == ISD::NON_EXTLOAD) {
9797 assert(VT == MemVT && "Non-extending load from different memory type!");
9798 } else {
9799 // Extending load.
9800 assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
9801 "Should only be an extending load, not truncating!");
9802 assert(VT.isInteger() == MemVT.isInteger() &&
9803 "Cannot convert from FP to Int or Int -> FP!");
9804 assert(VT.isVector() == MemVT.isVector() &&
9805 "Cannot use an ext load to convert to or from a vector!");
9806 assert((!VT.isVector() ||
9808 "Cannot use an ext load to change the number of vector elements!");
9809 }
9810
9811 assert((!MMO->getRanges() ||
9813 ->getBitWidth() == MemVT.getScalarSizeInBits() &&
9814 MemVT.isInteger())) &&
9815 "Range metadata and load type must match!");
9816
9817 bool Indexed = AM != ISD::UNINDEXED;
9818 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
9819
9820 SDVTList VTs = Indexed ?
9821 getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
9822 SDValue Ops[] = { Chain, Ptr, Offset };
9824 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops);
9825 ID.AddInteger(MemVT.getRawBits());
9826 ID.AddInteger(getSyntheticNodeSubclassData<LoadSDNode>(
9827 dl.getIROrder(), VTs, AM, ExtType, MemVT, MMO));
9828 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9829 ID.AddInteger(MMO->getFlags());
9830 void *IP = nullptr;
9831 if (auto *E = cast_or_null<LoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
9832 E->refineAlignment(MMO);
9833 E->refineRanges(MMO);
9834 return SDValue(E, 0);
9835 }
9836 auto *N = newSDNode<LoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9837 ExtType, MemVT, MMO);
9838 createOperands(N, Ops);
9839
9840 CSEMap.InsertNode(N, IP);
9841 InsertNode(N);
9842 SDValue V(N, 0);
9843 NewSDValueDbgMsg(V, "Creating new node: ", this);
9844 return V;
9845}
9846
9849 MaybeAlign Alignment,
9850 MachineMemOperand::Flags MMOFlags,
9851 const AAMDNodes &AAInfo, const MDNode *Ranges) {
9852 SDValue Undef = getUNDEF(Ptr.getValueType());
9853 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9854 PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges);
9855}
9856
9859 SDValue Undef = getUNDEF(Ptr.getValueType());
9860 return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
9861 VT, MMO);
9862}
9863
9865 EVT VT, SDValue Chain, SDValue Ptr,
9866 MachinePointerInfo PtrInfo, EVT MemVT,
9867 MaybeAlign Alignment,
9868 MachineMemOperand::Flags MMOFlags,
9869 const AAMDNodes &AAInfo) {
9870 SDValue Undef = getUNDEF(Ptr.getValueType());
9871 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, PtrInfo,
9872 MemVT, Alignment, MMOFlags, AAInfo);
9873}
9874
9876 EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT,
9877 MachineMemOperand *MMO) {
9878 SDValue Undef = getUNDEF(Ptr.getValueType());
9879 return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
9880 MemVT, MMO);
9881}
9882
9886 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
9887 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
9888 // Don't propagate the invariant or dereferenceable flags.
9889 auto MMOFlags =
9890 LD->getMemOperand()->getFlags() &
9892 return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
9893 LD->getChain(), Base, Offset, LD->getPointerInfo(),
9894 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo());
9895}
9896
9899 Align Alignment,
9900 MachineMemOperand::Flags MMOFlags,
9901 const AAMDNodes &AAInfo) {
9902 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9903
9904 MMOFlags |= MachineMemOperand::MOStore;
9905 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9906
9907 if (PtrInfo.V.isNull())
9908 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9909
9912 MachineMemOperand *MMO =
9913 MF.getMachineMemOperand(PtrInfo, MMOFlags, Size, Alignment, AAInfo);
9914 return getStore(Chain, dl, Val, Ptr, MMO);
9915}
9916
9919 SDValue Undef = getUNDEF(Ptr.getValueType());
9920 return getStore(Chain, dl, Val, Ptr, Undef, Val.getValueType(), MMO,
9922}
9923
9927 bool IsTruncating) {
9928 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
9929 EVT VT = Val.getValueType();
9930 if (VT == SVT) {
9931 IsTruncating = false;
9932 } else if (!IsTruncating) {
9933 assert(VT == SVT && "No-truncating store from different memory type!");
9934 } else {
9936 "Should only be a truncating store, not extending!");
9937 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
9938 assert(VT.isVector() == SVT.isVector() &&
9939 "Cannot use trunc store to convert to or from a vector!");
9940 assert((!VT.isVector() ||
9942 "Cannot use trunc store to change the number of vector elements!");
9943 }
9944
9945 bool Indexed = AM != ISD::UNINDEXED;
9946 assert((Indexed || Offset.isUndef()) && "Unindexed store with an offset!");
9947 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
9948 : getVTList(MVT::Other);
9949 SDValue Ops[] = {Chain, Val, Ptr, Offset};
9951 AddNodeIDNode(ID, ISD::STORE, VTs, Ops);
9952 ID.AddInteger(SVT.getRawBits());
9953 ID.AddInteger(getSyntheticNodeSubclassData<StoreSDNode>(
9954 dl.getIROrder(), VTs, AM, IsTruncating, SVT, MMO));
9955 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
9956 ID.AddInteger(MMO->getFlags());
9957 void *IP = nullptr;
9958 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
9959 cast<StoreSDNode>(E)->refineAlignment(MMO);
9960 return SDValue(E, 0);
9961 }
9962 auto *N = newSDNode<StoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
9963 IsTruncating, SVT, MMO);
9964 createOperands(N, Ops);
9965
9966 CSEMap.InsertNode(N, IP);
9967 InsertNode(N);
9968 SDValue V(N, 0);
9969 NewSDValueDbgMsg(V, "Creating new node: ", this);
9970 return V;
9971}
9972
9975 EVT SVT, Align Alignment,
9976 MachineMemOperand::Flags MMOFlags,
9977 const AAMDNodes &AAInfo) {
9978 assert(Chain.getValueType() == MVT::Other &&
9979 "Invalid chain type");
9980
9981 MMOFlags |= MachineMemOperand::MOStore;
9982 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
9983
9984 if (PtrInfo.V.isNull())
9985 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
9986
9988 MachineMemOperand *MMO = MF.getMachineMemOperand(
9989 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
9990 return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
9991}
9992
9994 SDValue Ptr, EVT SVT,
9995 MachineMemOperand *MMO) {
9996 SDValue Undef = getUNDEF(Ptr.getValueType());
9997 return getStore(Chain, dl, Val, Ptr, Undef, SVT, MMO, ISD::UNINDEXED, true);
9998}
9999
10003 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
10004 assert(ST->getOffset().isUndef() && "Store is already a indexed store!");
10005 return getStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10006 ST->getMemoryVT(), ST->getMemOperand(), AM,
10007 ST->isTruncatingStore());
10008}
10009
10011 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl,
10012 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL,
10013 MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment,
10014 MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo,
10015 const MDNode *Ranges, bool IsExpanding) {
10016 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10017
10018 MMOFlags |= MachineMemOperand::MOLoad;
10019 assert((MMOFlags & MachineMemOperand::MOStore) == 0);
10020 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
10021 // clients.
10022 if (PtrInfo.V.isNull())
10023 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr, Offset);
10024
10025 TypeSize Size = MemVT.getStoreSize();
10027 MachineMemOperand *MMO = MF.getMachineMemOperand(PtrInfo, MMOFlags, Size,
10028 Alignment, AAInfo, Ranges);
10029 return getLoadVP(AM, ExtType, VT, dl, Chain, Ptr, Offset, Mask, EVL, MemVT,
10030 MMO, IsExpanding);
10031}
10032
10034 ISD::LoadExtType ExtType, EVT VT,
10035 const SDLoc &dl, SDValue Chain, SDValue Ptr,
10036 SDValue Offset, SDValue Mask, SDValue EVL,
10037 EVT MemVT, MachineMemOperand *MMO,
10038 bool IsExpanding) {
10039 bool Indexed = AM != ISD::UNINDEXED;
10040 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10041
10042 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10043 : getVTList(VT, MVT::Other);
10044 SDValue Ops[] = {Chain, Ptr, Offset, Mask, EVL};
10046 AddNodeIDNode(ID, ISD::VP_LOAD, VTs, Ops);
10047 ID.AddInteger(MemVT.getRawBits());
10048 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadSDNode>(
10049 dl.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10050 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10051 ID.AddInteger(MMO->getFlags());
10052 void *IP = nullptr;
10053 if (auto *E = cast_or_null<VPLoadSDNode>(FindNodeOrInsertPos(ID, dl, IP))) {
10054 E->refineAlignment(MMO);
10055 E->refineRanges(MMO);
10056 return SDValue(E, 0);
10057 }
10058 auto *N = newSDNode<VPLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10059 ExtType, IsExpanding, MemVT, MMO);
10060 createOperands(N, Ops);
10061
10062 CSEMap.InsertNode(N, IP);
10063 InsertNode(N);
10064 SDValue V(N, 0);
10065 NewSDValueDbgMsg(V, "Creating new node: ", this);
10066 return V;
10067}
10068
10070 SDValue Ptr, SDValue Mask, SDValue EVL,
10071 MachinePointerInfo PtrInfo,
10072 MaybeAlign Alignment,
10073 MachineMemOperand::Flags MMOFlags,
10074 const AAMDNodes &AAInfo, const MDNode *Ranges,
10075 bool IsExpanding) {
10076 SDValue Undef = getUNDEF(Ptr.getValueType());
10077 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10078 Mask, EVL, PtrInfo, VT, Alignment, MMOFlags, AAInfo, Ranges,
10079 IsExpanding);
10080}
10081
10083 SDValue Ptr, SDValue Mask, SDValue EVL,
10084 MachineMemOperand *MMO, bool IsExpanding) {
10085 SDValue Undef = getUNDEF(Ptr.getValueType());
10086 return getLoadVP(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
10087 Mask, EVL, VT, MMO, IsExpanding);
10088}
10089
10091 EVT VT, SDValue Chain, SDValue Ptr,
10092 SDValue Mask, SDValue EVL,
10093 MachinePointerInfo PtrInfo, EVT MemVT,
10094 MaybeAlign Alignment,
10095 MachineMemOperand::Flags MMOFlags,
10096 const AAMDNodes &AAInfo, bool IsExpanding) {
10097 SDValue Undef = getUNDEF(Ptr.getValueType());
10098 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10099 EVL, PtrInfo, MemVT, Alignment, MMOFlags, AAInfo, nullptr,
10100 IsExpanding);
10101}
10102
10104 EVT VT, SDValue Chain, SDValue Ptr,
10105 SDValue Mask, SDValue EVL, EVT MemVT,
10106 MachineMemOperand *MMO, bool IsExpanding) {
10107 SDValue Undef = getUNDEF(Ptr.getValueType());
10108 return getLoadVP(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef, Mask,
10109 EVL, MemVT, MMO, IsExpanding);
10110}
10111
10115 auto *LD = cast<VPLoadSDNode>(OrigLoad);
10116 assert(LD->getOffset().isUndef() && "Load is already a indexed load!");
10117 // Don't propagate the invariant or dereferenceable flags.
10118 auto MMOFlags =
10119 LD->getMemOperand()->getFlags() &
10121 return getLoadVP(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
10122 LD->getChain(), Base, Offset, LD->getMask(),
10123 LD->getVectorLength(), LD->getPointerInfo(),
10124 LD->getMemoryVT(), LD->getAlign(), MMOFlags, LD->getAAInfo(),
10125 nullptr, LD->isExpandingLoad());
10126}
10127
10130 SDValue EVL, EVT MemVT, MachineMemOperand *MMO,
10131 ISD::MemIndexedMode AM, bool IsTruncating,
10132 bool IsCompressing) {
10133 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10134 bool Indexed = AM != ISD::UNINDEXED;
10135 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10136 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10137 : getVTList(MVT::Other);
10138 SDValue Ops[] = {Chain, Val, Ptr, Offset, Mask, EVL};
10140 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10141 ID.AddInteger(MemVT.getRawBits());
10142 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10143 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10144 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10145 ID.AddInteger(MMO->getFlags());
10146 void *IP = nullptr;
10147 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10148 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10149 return SDValue(E, 0);
10150 }
10151 auto *N = newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10152 IsTruncating, IsCompressing, MemVT, MMO);
10153 createOperands(N, Ops);
10154
10155 CSEMap.InsertNode(N, IP);
10156 InsertNode(N);
10157 SDValue V(N, 0);
10158 NewSDValueDbgMsg(V, "Creating new node: ", this);
10159 return V;
10160}
10161
10163 SDValue Val, SDValue Ptr, SDValue Mask,
10164 SDValue EVL, MachinePointerInfo PtrInfo,
10165 EVT SVT, Align Alignment,
10166 MachineMemOperand::Flags MMOFlags,
10167 const AAMDNodes &AAInfo,
10168 bool IsCompressing) {
10169 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10170
10171 MMOFlags |= MachineMemOperand::MOStore;
10172 assert((MMOFlags & MachineMemOperand::MOLoad) == 0);
10173
10174 if (PtrInfo.V.isNull())
10175 PtrInfo = InferPointerInfo(PtrInfo, *this, Ptr);
10176
10178 MachineMemOperand *MMO = MF.getMachineMemOperand(
10179 PtrInfo, MMOFlags, SVT.getStoreSize(), Alignment, AAInfo);
10180 return getTruncStoreVP(Chain, dl, Val, Ptr, Mask, EVL, SVT, MMO,
10181 IsCompressing);
10182}
10183
10185 SDValue Val, SDValue Ptr, SDValue Mask,
10186 SDValue EVL, EVT SVT,
10187 MachineMemOperand *MMO,
10188 bool IsCompressing) {
10189 EVT VT = Val.getValueType();
10190
10191 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10192 if (VT == SVT)
10193 return getStoreVP(Chain, dl, Val, Ptr, getUNDEF(Ptr.getValueType()), Mask,
10194 EVL, VT, MMO, ISD::UNINDEXED,
10195 /*IsTruncating*/ false, IsCompressing);
10196
10198 "Should only be a truncating store, not extending!");
10199 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10200 assert(VT.isVector() == SVT.isVector() &&
10201 "Cannot use trunc store to convert to or from a vector!");
10202 assert((!VT.isVector() ||
10204 "Cannot use trunc store to change the number of vector elements!");
10205
10206 SDVTList VTs = getVTList(MVT::Other);
10207 SDValue Undef = getUNDEF(Ptr.getValueType());
10208 SDValue Ops[] = {Chain, Val, Ptr, Undef, Mask, EVL};
10210 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10211 ID.AddInteger(SVT.getRawBits());
10212 ID.AddInteger(getSyntheticNodeSubclassData<VPStoreSDNode>(
10213 dl.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10214 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10215 ID.AddInteger(MMO->getFlags());
10216 void *IP = nullptr;
10217 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10218 cast<VPStoreSDNode>(E)->refineAlignment(MMO);
10219 return SDValue(E, 0);
10220 }
10221 auto *N =
10222 newSDNode<VPStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10223 ISD::UNINDEXED, true, IsCompressing, SVT, MMO);
10224 createOperands(N, Ops);
10225
10226 CSEMap.InsertNode(N, IP);
10227 InsertNode(N);
10228 SDValue V(N, 0);
10229 NewSDValueDbgMsg(V, "Creating new node: ", this);
10230 return V;
10231}
10232
10236 auto *ST = cast<VPStoreSDNode>(OrigStore);
10237 assert(ST->getOffset().isUndef() && "Store is already an indexed store!");
10238 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
10239 SDValue Ops[] = {ST->getChain(), ST->getValue(), Base,
10240 Offset, ST->getMask(), ST->getVectorLength()};
10242 AddNodeIDNode(ID, ISD::VP_STORE, VTs, Ops);
10243 ID.AddInteger(ST->getMemoryVT().getRawBits());
10244 ID.AddInteger(ST->getRawSubclassData());
10245 ID.AddInteger(ST->getPointerInfo().getAddrSpace());
10246 ID.AddInteger(ST->getMemOperand()->getFlags());
10247 void *IP = nullptr;
10248 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10249 return SDValue(E, 0);
10250
10251 auto *N = newSDNode<VPStoreSDNode>(
10252 dl.getIROrder(), dl.getDebugLoc(), VTs, AM, ST->isTruncatingStore(),
10253 ST->isCompressingStore(), ST->getMemoryVT(), ST->getMemOperand());
10254 createOperands(N, Ops);
10255
10256 CSEMap.InsertNode(N, IP);
10257 InsertNode(N);
10258 SDValue V(N, 0);
10259 NewSDValueDbgMsg(V, "Creating new node: ", this);
10260 return V;
10261}
10262
10264 ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL,
10265 SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask,
10266 SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding) {
10267 bool Indexed = AM != ISD::UNINDEXED;
10268 assert((Indexed || Offset.isUndef()) && "Unindexed load with an offset!");
10269
10270 SDValue Ops[] = {Chain, Ptr, Offset, Stride, Mask, EVL};
10271 SDVTList VTs = Indexed ? getVTList(VT, Ptr.getValueType(), MVT::Other)
10272 : getVTList(VT, MVT::Other);
10274 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_LOAD, VTs, Ops);
10275 ID.AddInteger(VT.getRawBits());
10276 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedLoadSDNode>(
10277 DL.getIROrder(), VTs, AM, ExtType, IsExpanding, MemVT, MMO));
10278 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10279
10280 void *IP = nullptr;
10281 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10282 cast<VPStridedLoadSDNode>(E)->refineAlignment(MMO);
10283 return SDValue(E, 0);
10284 }
10285
10286 auto *N =
10287 newSDNode<VPStridedLoadSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs, AM,
10288 ExtType, IsExpanding, MemVT, MMO);
10289 createOperands(N, Ops);
10290 CSEMap.InsertNode(N, IP);
10291 InsertNode(N);
10292 SDValue V(N, 0);
10293 NewSDValueDbgMsg(V, "Creating new node: ", this);
10294 return V;
10295}
10296
10298 SDValue Ptr, SDValue Stride,
10299 SDValue Mask, SDValue EVL,
10300 MachineMemOperand *MMO,
10301 bool IsExpanding) {
10302 SDValue Undef = getUNDEF(Ptr.getValueType());
10304 Undef, Stride, Mask, EVL, VT, MMO, IsExpanding);
10305}
10306
10308 ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain,
10309 SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT,
10310 MachineMemOperand *MMO, bool IsExpanding) {
10311 SDValue Undef = getUNDEF(Ptr.getValueType());
10312 return getStridedLoadVP(ISD::UNINDEXED, ExtType, VT, DL, Chain, Ptr, Undef,
10313 Stride, Mask, EVL, MemVT, MMO, IsExpanding);
10314}
10315
10317 SDValue Val, SDValue Ptr,
10318 SDValue Offset, SDValue Stride,
10319 SDValue Mask, SDValue EVL, EVT MemVT,
10320 MachineMemOperand *MMO,
10322 bool IsTruncating, bool IsCompressing) {
10323 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10324 bool Indexed = AM != ISD::UNINDEXED;
10325 assert((Indexed || Offset.isUndef()) && "Unindexed vp_store with an offset!");
10326 SDVTList VTs = Indexed ? getVTList(Ptr.getValueType(), MVT::Other)
10327 : getVTList(MVT::Other);
10328 SDValue Ops[] = {Chain, Val, Ptr, Offset, Stride, Mask, EVL};
10330 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10331 ID.AddInteger(MemVT.getRawBits());
10332 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10333 DL.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10334 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10335 void *IP = nullptr;
10336 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10337 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10338 return SDValue(E, 0);
10339 }
10340 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10341 VTs, AM, IsTruncating,
10342 IsCompressing, MemVT, MMO);
10343 createOperands(N, Ops);
10344
10345 CSEMap.InsertNode(N, IP);
10346 InsertNode(N);
10347 SDValue V(N, 0);
10348 NewSDValueDbgMsg(V, "Creating new node: ", this);
10349 return V;
10350}
10351
10353 SDValue Val, SDValue Ptr,
10354 SDValue Stride, SDValue Mask,
10355 SDValue EVL, EVT SVT,
10356 MachineMemOperand *MMO,
10357 bool IsCompressing) {
10358 EVT VT = Val.getValueType();
10359
10360 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10361 if (VT == SVT)
10362 return getStridedStoreVP(Chain, DL, Val, Ptr, getUNDEF(Ptr.getValueType()),
10363 Stride, Mask, EVL, VT, MMO, ISD::UNINDEXED,
10364 /*IsTruncating*/ false, IsCompressing);
10365
10367 "Should only be a truncating store, not extending!");
10368 assert(VT.isInteger() == SVT.isInteger() && "Can't do FP-INT conversion!");
10369 assert(VT.isVector() == SVT.isVector() &&
10370 "Cannot use trunc store to convert to or from a vector!");
10371 assert((!VT.isVector() ||
10373 "Cannot use trunc store to change the number of vector elements!");
10374
10375 SDVTList VTs = getVTList(MVT::Other);
10376 SDValue Undef = getUNDEF(Ptr.getValueType());
10377 SDValue Ops[] = {Chain, Val, Ptr, Undef, Stride, Mask, EVL};
10379 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VP_STRIDED_STORE, VTs, Ops);
10380 ID.AddInteger(SVT.getRawBits());
10381 ID.AddInteger(getSyntheticNodeSubclassData<VPStridedStoreSDNode>(
10382 DL.getIROrder(), VTs, ISD::UNINDEXED, true, IsCompressing, SVT, MMO));
10383 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10384 void *IP = nullptr;
10385 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10386 cast<VPStridedStoreSDNode>(E)->refineAlignment(MMO);
10387 return SDValue(E, 0);
10388 }
10389 auto *N = newSDNode<VPStridedStoreSDNode>(DL.getIROrder(), DL.getDebugLoc(),
10390 VTs, ISD::UNINDEXED, true,
10391 IsCompressing, SVT, MMO);
10392 createOperands(N, Ops);
10393
10394 CSEMap.InsertNode(N, IP);
10395 InsertNode(N);
10396 SDValue V(N, 0);
10397 NewSDValueDbgMsg(V, "Creating new node: ", this);
10398 return V;
10399}
10400
10403 ISD::MemIndexType IndexType) {
10404 assert(Ops.size() == 6 && "Incompatible number of operands");
10405
10407 AddNodeIDNode(ID, ISD::VP_GATHER, VTs, Ops);
10408 ID.AddInteger(VT.getRawBits());
10409 ID.AddInteger(getSyntheticNodeSubclassData<VPGatherSDNode>(
10410 dl.getIROrder(), VTs, VT, MMO, IndexType));
10411 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10412 ID.AddInteger(MMO->getFlags());
10413 void *IP = nullptr;
10414 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10415 cast<VPGatherSDNode>(E)->refineAlignment(MMO);
10416 return SDValue(E, 0);
10417 }
10418
10419 auto *N = newSDNode<VPGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10420 VT, MMO, IndexType);
10421 createOperands(N, Ops);
10422
10423 assert(N->getMask().getValueType().getVectorElementCount() ==
10424 N->getValueType(0).getVectorElementCount() &&
10425 "Vector width mismatch between mask and data");
10426 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10427 N->getValueType(0).getVectorElementCount().isScalable() &&
10428 "Scalable flags of index and data do not match");
10430 N->getIndex().getValueType().getVectorElementCount(),
10431 N->getValueType(0).getVectorElementCount()) &&
10432 "Vector width mismatch between index and data");
10433 assert(isa<ConstantSDNode>(N->getScale()) &&
10434 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10435 "Scale should be a constant power of 2");
10436
10437 CSEMap.InsertNode(N, IP);
10438 InsertNode(N);
10439 SDValue V(N, 0);
10440 NewSDValueDbgMsg(V, "Creating new node: ", this);
10441 return V;
10442}
10443
10446 MachineMemOperand *MMO,
10447 ISD::MemIndexType IndexType) {
10448 assert(Ops.size() == 7 && "Incompatible number of operands");
10449
10451 AddNodeIDNode(ID, ISD::VP_SCATTER, VTs, Ops);
10452 ID.AddInteger(VT.getRawBits());
10453 ID.AddInteger(getSyntheticNodeSubclassData<VPScatterSDNode>(
10454 dl.getIROrder(), VTs, VT, MMO, IndexType));
10455 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10456 ID.AddInteger(MMO->getFlags());
10457 void *IP = nullptr;
10458 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10459 cast<VPScatterSDNode>(E)->refineAlignment(MMO);
10460 return SDValue(E, 0);
10461 }
10462 auto *N = newSDNode<VPScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10463 VT, MMO, IndexType);
10464 createOperands(N, Ops);
10465
10466 assert(N->getMask().getValueType().getVectorElementCount() ==
10467 N->getValue().getValueType().getVectorElementCount() &&
10468 "Vector width mismatch between mask and data");
10469 assert(
10470 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10471 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10472 "Scalable flags of index and data do not match");
10474 N->getIndex().getValueType().getVectorElementCount(),
10475 N->getValue().getValueType().getVectorElementCount()) &&
10476 "Vector width mismatch between index and data");
10477 assert(isa<ConstantSDNode>(N->getScale()) &&
10478 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10479 "Scale should be a constant power of 2");
10480
10481 CSEMap.InsertNode(N, IP);
10482 InsertNode(N);
10483 SDValue V(N, 0);
10484 NewSDValueDbgMsg(V, "Creating new node: ", this);
10485 return V;
10486}
10487
10490 SDValue PassThru, EVT MemVT,
10491 MachineMemOperand *MMO,
10493 ISD::LoadExtType ExtTy, bool isExpanding) {
10494 bool Indexed = AM != ISD::UNINDEXED;
10495 assert((Indexed || Offset.isUndef()) &&
10496 "Unindexed masked load with an offset!");
10497 SDVTList VTs = Indexed ? getVTList(VT, Base.getValueType(), MVT::Other)
10498 : getVTList(VT, MVT::Other);
10499 SDValue Ops[] = {Chain, Base, Offset, Mask, PassThru};
10501 AddNodeIDNode(ID, ISD::MLOAD, VTs, Ops);
10502 ID.AddInteger(MemVT.getRawBits());
10503 ID.AddInteger(getSyntheticNodeSubclassData<MaskedLoadSDNode>(
10504 dl.getIROrder(), VTs, AM, ExtTy, isExpanding, MemVT, MMO));
10505 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10506 ID.AddInteger(MMO->getFlags());
10507 void *IP = nullptr;
10508 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10509 cast<MaskedLoadSDNode>(E)->refineAlignment(MMO);
10510 return SDValue(E, 0);
10511 }
10512 auto *N = newSDNode<MaskedLoadSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
10513 AM, ExtTy, isExpanding, MemVT, MMO);
10514 createOperands(N, Ops);
10515
10516 CSEMap.InsertNode(N, IP);
10517 InsertNode(N);
10518 SDValue V(N, 0);
10519 NewSDValueDbgMsg(V, "Creating new node: ", this);
10520 return V;
10521}
10522
10527 assert(LD->getOffset().isUndef() && "Masked load is already a indexed load!");
10528 return getMaskedLoad(OrigLoad.getValueType(), dl, LD->getChain(), Base,
10529 Offset, LD->getMask(), LD->getPassThru(),
10530 LD->getMemoryVT(), LD->getMemOperand(), AM,
10531 LD->getExtensionType(), LD->isExpandingLoad());
10532}
10533
10536 SDValue Mask, EVT MemVT,
10537 MachineMemOperand *MMO,
10538 ISD::MemIndexedMode AM, bool IsTruncating,
10539 bool IsCompressing) {
10540 assert(Chain.getValueType() == MVT::Other &&
10541 "Invalid chain type");
10542 bool Indexed = AM != ISD::UNINDEXED;
10543 assert((Indexed || Offset.isUndef()) &&
10544 "Unindexed masked store with an offset!");
10545 SDVTList VTs = Indexed ? getVTList(Base.getValueType(), MVT::Other)
10546 : getVTList(MVT::Other);
10547 SDValue Ops[] = {Chain, Val, Base, Offset, Mask};
10549 AddNodeIDNode(ID, ISD::MSTORE, VTs, Ops);
10550 ID.AddInteger(MemVT.getRawBits());
10551 ID.AddInteger(getSyntheticNodeSubclassData<MaskedStoreSDNode>(
10552 dl.getIROrder(), VTs, AM, IsTruncating, IsCompressing, MemVT, MMO));
10553 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10554 ID.AddInteger(MMO->getFlags());
10555 void *IP = nullptr;
10556 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10557 cast<MaskedStoreSDNode>(E)->refineAlignment(MMO);
10558 return SDValue(E, 0);
10559 }
10560 auto *N =
10561 newSDNode<MaskedStoreSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, AM,
10562 IsTruncating, IsCompressing, MemVT, MMO);
10563 createOperands(N, Ops);
10564
10565 CSEMap.InsertNode(N, IP);
10566 InsertNode(N);
10567 SDValue V(N, 0);
10568 NewSDValueDbgMsg(V, "Creating new node: ", this);
10569 return V;
10570}
10571
10576 assert(ST->getOffset().isUndef() &&
10577 "Masked store is already a indexed store!");
10578 return getMaskedStore(ST->getChain(), dl, ST->getValue(), Base, Offset,
10579 ST->getMask(), ST->getMemoryVT(), ST->getMemOperand(),
10580 AM, ST->isTruncatingStore(), ST->isCompressingStore());
10581}
10582
10585 MachineMemOperand *MMO,
10586 ISD::MemIndexType IndexType,
10587 ISD::LoadExtType ExtTy) {
10588 assert(Ops.size() == 6 && "Incompatible number of operands");
10589
10591 AddNodeIDNode(ID, ISD::MGATHER, VTs, Ops);
10592 ID.AddInteger(MemVT.getRawBits());
10593 ID.AddInteger(getSyntheticNodeSubclassData<MaskedGatherSDNode>(
10594 dl.getIROrder(), VTs, MemVT, MMO, IndexType, ExtTy));
10595 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10596 ID.AddInteger(MMO->getFlags());
10597 void *IP = nullptr;
10598 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10599 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10600 return SDValue(E, 0);
10601 }
10602
10603 auto *N = newSDNode<MaskedGatherSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10604 VTs, MemVT, MMO, IndexType, ExtTy);
10605 createOperands(N, Ops);
10606
10607 assert(N->getPassThru().getValueType() == N->getValueType(0) &&
10608 "Incompatible type of the PassThru value in MaskedGatherSDNode");
10609 assert(N->getMask().getValueType().getVectorElementCount() ==
10610 N->getValueType(0).getVectorElementCount() &&
10611 "Vector width mismatch between mask and data");
10612 assert(N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10613 N->getValueType(0).getVectorElementCount().isScalable() &&
10614 "Scalable flags of index and data do not match");
10616 N->getIndex().getValueType().getVectorElementCount(),
10617 N->getValueType(0).getVectorElementCount()) &&
10618 "Vector width mismatch between index and data");
10619 assert(isa<ConstantSDNode>(N->getScale()) &&
10620 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10621 "Scale should be a constant power of 2");
10622
10623 CSEMap.InsertNode(N, IP);
10624 InsertNode(N);
10625 SDValue V(N, 0);
10626 NewSDValueDbgMsg(V, "Creating new node: ", this);
10627 return V;
10628}
10629
10632 MachineMemOperand *MMO,
10633 ISD::MemIndexType IndexType,
10634 bool IsTrunc) {
10635 assert(Ops.size() == 6 && "Incompatible number of operands");
10636
10638 AddNodeIDNode(ID, ISD::MSCATTER, VTs, Ops);
10639 ID.AddInteger(MemVT.getRawBits());
10640 ID.AddInteger(getSyntheticNodeSubclassData<MaskedScatterSDNode>(
10641 dl.getIROrder(), VTs, MemVT, MMO, IndexType, IsTrunc));
10642 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10643 ID.AddInteger(MMO->getFlags());
10644 void *IP = nullptr;
10645 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10646 cast<MaskedScatterSDNode>(E)->refineAlignment(MMO);
10647 return SDValue(E, 0);
10648 }
10649
10650 auto *N = newSDNode<MaskedScatterSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10651 VTs, MemVT, MMO, IndexType, IsTrunc);
10652 createOperands(N, Ops);
10653
10654 assert(N->getMask().getValueType().getVectorElementCount() ==
10655 N->getValue().getValueType().getVectorElementCount() &&
10656 "Vector width mismatch between mask and data");
10657 assert(
10658 N->getIndex().getValueType().getVectorElementCount().isScalable() ==
10659 N->getValue().getValueType().getVectorElementCount().isScalable() &&
10660 "Scalable flags of index and data do not match");
10662 N->getIndex().getValueType().getVectorElementCount(),
10663 N->getValue().getValueType().getVectorElementCount()) &&
10664 "Vector width mismatch between index and data");
10665 assert(isa<ConstantSDNode>(N->getScale()) &&
10666 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10667 "Scale should be a constant power of 2");
10668
10669 CSEMap.InsertNode(N, IP);
10670 InsertNode(N);
10671 SDValue V(N, 0);
10672 NewSDValueDbgMsg(V, "Creating new node: ", this);
10673 return V;
10674}
10675
10677 const SDLoc &dl, ArrayRef<SDValue> Ops,
10678 MachineMemOperand *MMO,
10679 ISD::MemIndexType IndexType) {
10680 assert(Ops.size() == 7 && "Incompatible number of operands");
10681
10683 AddNodeIDNode(ID, ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, VTs, Ops);
10684 ID.AddInteger(MemVT.getRawBits());
10685 ID.AddInteger(getSyntheticNodeSubclassData<MaskedHistogramSDNode>(
10686 dl.getIROrder(), VTs, MemVT, MMO, IndexType));
10687 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10688 ID.AddInteger(MMO->getFlags());
10689 void *IP = nullptr;
10690 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
10691 cast<MaskedGatherSDNode>(E)->refineAlignment(MMO);
10692 return SDValue(E, 0);
10693 }
10694
10695 auto *N = newSDNode<MaskedHistogramSDNode>(dl.getIROrder(), dl.getDebugLoc(),
10696 VTs, MemVT, MMO, IndexType);
10697 createOperands(N, Ops);
10698
10699 assert(N->getMask().getValueType().getVectorElementCount() ==
10700 N->getIndex().getValueType().getVectorElementCount() &&
10701 "Vector width mismatch between mask and data");
10702 assert(isa<ConstantSDNode>(N->getScale()) &&
10703 N->getScale()->getAsAPIntVal().isPowerOf2() &&
10704 "Scale should be a constant power of 2");
10705 assert(N->getInc().getValueType().isInteger() && "Non integer update value");
10706
10707 CSEMap.InsertNode(N, IP);
10708 InsertNode(N);
10709 SDValue V(N, 0);
10710 NewSDValueDbgMsg(V, "Creating new node: ", this);
10711 return V;
10712}
10713
10715 SDValue Ptr, SDValue Mask, SDValue EVL,
10716 MachineMemOperand *MMO) {
10717 SDVTList VTs = getVTList(VT, EVL.getValueType(), MVT::Other);
10718 SDValue Ops[] = {Chain, Ptr, Mask, EVL};
10720 AddNodeIDNode(ID, ISD::VP_LOAD_FF, VTs, Ops);
10721 ID.AddInteger(VT.getRawBits());
10722 ID.AddInteger(getSyntheticNodeSubclassData<VPLoadFFSDNode>(DL.getIROrder(),
10723 VTs, VT, MMO));
10724 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10725 ID.AddInteger(MMO->getFlags());
10726 void *IP = nullptr;
10727 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
10728 cast<VPLoadFFSDNode>(E)->refineAlignment(MMO);
10729 return SDValue(E, 0);
10730 }
10731 auto *N = newSDNode<VPLoadFFSDNode>(DL.getIROrder(), DL.getDebugLoc(), VTs,
10732 VT, MMO);
10733 createOperands(N, Ops);
10734
10735 CSEMap.InsertNode(N, IP);
10736 InsertNode(N);
10737 SDValue V(N, 0);
10738 NewSDValueDbgMsg(V, "Creating new node: ", this);
10739 return V;
10740}
10741
10743 EVT MemVT, MachineMemOperand *MMO) {
10744 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10745 SDVTList VTs = getVTList(MVT::Other);
10746 SDValue Ops[] = {Chain, Ptr};
10748 AddNodeIDNode(ID, ISD::GET_FPENV_MEM, VTs, Ops);
10749 ID.AddInteger(MemVT.getRawBits());
10750 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10751 ISD::GET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10752 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10753 ID.AddInteger(MMO->getFlags());
10754 void *IP = nullptr;
10755 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10756 return SDValue(E, 0);
10757
10758 auto *N = newSDNode<FPStateAccessSDNode>(ISD::GET_FPENV_MEM, dl.getIROrder(),
10759 dl.getDebugLoc(), VTs, MemVT, MMO);
10760 createOperands(N, Ops);
10761
10762 CSEMap.InsertNode(N, IP);
10763 InsertNode(N);
10764 SDValue V(N, 0);
10765 NewSDValueDbgMsg(V, "Creating new node: ", this);
10766 return V;
10767}
10768
10770 EVT MemVT, MachineMemOperand *MMO) {
10771 assert(Chain.getValueType() == MVT::Other && "Invalid chain type");
10772 SDVTList VTs = getVTList(MVT::Other);
10773 SDValue Ops[] = {Chain, Ptr};
10775 AddNodeIDNode(ID, ISD::SET_FPENV_MEM, VTs, Ops);
10776 ID.AddInteger(MemVT.getRawBits());
10777 ID.AddInteger(getSyntheticNodeSubclassData<FPStateAccessSDNode>(
10778 ISD::SET_FPENV_MEM, dl.getIROrder(), VTs, MemVT, MMO));
10779 ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
10780 ID.AddInteger(MMO->getFlags());
10781 void *IP = nullptr;
10782 if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP))
10783 return SDValue(E, 0);
10784
10785 auto *N = newSDNode<FPStateAccessSDNode>(ISD::SET_FPENV_MEM, dl.getIROrder(),
10786 dl.getDebugLoc(), VTs, MemVT, MMO);
10787 createOperands(N, Ops);
10788
10789 CSEMap.InsertNode(N, IP);
10790 InsertNode(N);
10791 SDValue V(N, 0);
10792 NewSDValueDbgMsg(V, "Creating new node: ", this);
10793 return V;
10794}
10795
10797 // select undef, T, F --> T (if T is a constant), otherwise F
10798 // select, ?, undef, F --> F
10799 // select, ?, T, undef --> T
10800 if (Cond.isUndef())
10801 return isConstantValueOfAnyType(T) ? T : F;
10802 if (T.isUndef())
10803 return F;
10804 if (F.isUndef())
10805 return T;
10806
10807 // select true, T, F --> T
10808 // select false, T, F --> F
10809 if (auto C = isBoolConstant(Cond))
10810 return *C ? T : F;
10811
10812 // select ?, T, T --> T
10813 if (T == F)
10814 return T;
10815
10816 return SDValue();
10817}
10818
10820 // shift undef, Y --> 0 (can always assume that the undef value is 0)
10821 if (X.isUndef())
10822 return getConstant(0, SDLoc(X.getNode()), X.getValueType());
10823 // shift X, undef --> undef (because it may shift by the bitwidth)
10824 if (Y.isUndef())
10825 return getUNDEF(X.getValueType());
10826
10827 // shift 0, Y --> 0
10828 // shift X, 0 --> X
10830 return X;
10831
10832 // shift X, C >= bitwidth(X) --> undef
10833 // All vector elements must be too big (or undef) to avoid partial undefs.
10834 auto isShiftTooBig = [X](ConstantSDNode *Val) {
10835 return !Val || Val->getAPIntValue().uge(X.getScalarValueSizeInBits());
10836 };
10837 if (ISD::matchUnaryPredicate(Y, isShiftTooBig, true))
10838 return getUNDEF(X.getValueType());
10839
10840 // shift i1/vXi1 X, Y --> X (any non-zero shift amount is undefined).
10841 if (X.getValueType().getScalarType() == MVT::i1)
10842 return X;
10843
10844 return SDValue();
10845}
10846
10848 SDNodeFlags Flags) {
10849 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
10850 // (an undef operand can be chosen to be Nan/Inf), then the result of this
10851 // operation is poison. That result can be relaxed to undef.
10852 ConstantFPSDNode *XC = isConstOrConstSplatFP(X, /* AllowUndefs */ true);
10853 ConstantFPSDNode *YC = isConstOrConstSplatFP(Y, /* AllowUndefs */ true);
10854 bool HasNan = (XC && XC->getValueAPF().isNaN()) ||
10855 (YC && YC->getValueAPF().isNaN());
10856 bool HasInf = (XC && XC->getValueAPF().isInfinity()) ||
10857 (YC && YC->getValueAPF().isInfinity());
10858
10859 if (Flags.hasNoNaNs() && (HasNan || X.isUndef() || Y.isUndef()))
10860 return getUNDEF(X.getValueType());
10861
10862 if (Flags.hasNoInfs() && (HasInf || X.isUndef() || Y.isUndef()))
10863 return getUNDEF(X.getValueType());
10864
10865 if (!YC)
10866 return SDValue();
10867
10868 // X + -0.0 --> X
10869 if (Opcode == ISD::FADD)
10870 if (YC->getValueAPF().isNegZero())
10871 return X;
10872
10873 // X - +0.0 --> X
10874 if (Opcode == ISD::FSUB)
10875 if (YC->getValueAPF().isPosZero())
10876 return X;
10877
10878 // X * 1.0 --> X
10879 // X / 1.0 --> X
10880 if (Opcode == ISD::FMUL || Opcode == ISD::FDIV)
10881 if (YC->getValueAPF().isExactlyValue(1.0))
10882 return X;
10883
10884 // X * 0.0 --> 0.0
10885 if (Opcode == ISD::FMUL && Flags.hasNoNaNs() && Flags.hasNoSignedZeros())
10886 if (YC->getValueAPF().isZero())
10887 return getConstantFP(0.0, SDLoc(Y), Y.getValueType());
10888
10889 return SDValue();
10890}
10891
10893 SDValue Ptr, SDValue SV, unsigned Align) {
10894 SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, dl, MVT::i32) };
10895 return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops);
10896}
10897
10898SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10900 switch (Ops.size()) {
10901 case 0: return getNode(Opcode, DL, VT);
10902 case 1: return getNode(Opcode, DL, VT, Ops[0].get());
10903 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
10904 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
10905 default: break;
10906 }
10907
10908 // Copy from an SDUse array into an SDValue array for use with
10909 // the regular getNode logic.
10911 return getNode(Opcode, DL, VT, NewOps);
10912}
10913
10914SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10916 SDNodeFlags Flags;
10917 if (Inserter)
10918 Flags = Inserter->getFlags();
10919 return getNode(Opcode, DL, VT, Ops, Flags);
10920}
10921
10922SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
10923 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
10924 unsigned NumOps = Ops.size();
10925 switch (NumOps) {
10926 case 0: return getNode(Opcode, DL, VT);
10927 case 1: return getNode(Opcode, DL, VT, Ops[0], Flags);
10928 case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Flags);
10929 case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2], Flags);
10930 default: break;
10931 }
10932
10933#ifndef NDEBUG
10934 for (const auto &Op : Ops)
10935 assert(Op.getOpcode() != ISD::DELETED_NODE &&
10936 "Operand is DELETED_NODE!");
10937#endif
10938
10939 switch (Opcode) {
10940 default: break;
10941 case ISD::BUILD_VECTOR:
10942 // Attempt to simplify BUILD_VECTOR.
10943 if (SDValue V = FoldBUILD_VECTOR(DL, VT, Ops, *this))
10944 return V;
10945 break;
10947 if (SDValue V = foldCONCAT_VECTORS(DL, VT, Ops, *this))
10948 return V;
10949 break;
10950 case ISD::SELECT_CC:
10951 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
10952 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
10953 "LHS and RHS of condition must have same type!");
10954 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10955 "True and False arms of SelectCC must have same type!");
10956 assert(Ops[2].getValueType() == VT &&
10957 "select_cc node must be of same type as true and false value!");
10958 assert((!Ops[0].getValueType().isVector() ||
10959 Ops[0].getValueType().getVectorElementCount() ==
10960 VT.getVectorElementCount()) &&
10961 "Expected select_cc with vector result to have the same sized "
10962 "comparison type!");
10963 break;
10964 case ISD::BR_CC:
10965 assert(NumOps == 5 && "BR_CC takes 5 operands!");
10966 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
10967 "LHS/RHS of comparison should match types!");
10968 break;
10969 case ISD::VP_ADD:
10970 case ISD::VP_SUB:
10971 // If it is VP_ADD/VP_SUB mask operation then turn it to VP_XOR
10972 if (VT.getScalarType() == MVT::i1)
10973 Opcode = ISD::VP_XOR;
10974 break;
10975 case ISD::VP_MUL:
10976 // If it is VP_MUL mask operation then turn it to VP_AND
10977 if (VT.getScalarType() == MVT::i1)
10978 Opcode = ISD::VP_AND;
10979 break;
10980 case ISD::VP_REDUCE_MUL:
10981 // If it is VP_REDUCE_MUL mask operation then turn it to VP_REDUCE_AND
10982 if (VT == MVT::i1)
10983 Opcode = ISD::VP_REDUCE_AND;
10984 break;
10985 case ISD::VP_REDUCE_ADD:
10986 // If it is VP_REDUCE_ADD mask operation then turn it to VP_REDUCE_XOR
10987 if (VT == MVT::i1)
10988 Opcode = ISD::VP_REDUCE_XOR;
10989 break;
10990 case ISD::VP_REDUCE_SMAX:
10991 case ISD::VP_REDUCE_UMIN:
10992 // If it is VP_REDUCE_SMAX/VP_REDUCE_UMIN mask operation then turn it to
10993 // VP_REDUCE_AND.
10994 if (VT == MVT::i1)
10995 Opcode = ISD::VP_REDUCE_AND;
10996 break;
10997 case ISD::VP_REDUCE_SMIN:
10998 case ISD::VP_REDUCE_UMAX:
10999 // If it is VP_REDUCE_SMIN/VP_REDUCE_UMAX mask operation then turn it to
11000 // VP_REDUCE_OR.
11001 if (VT == MVT::i1)
11002 Opcode = ISD::VP_REDUCE_OR;
11003 break;
11004 }
11005
11006 // Memoize nodes.
11007 SDNode *N;
11008 SDVTList VTs = getVTList(VT);
11009
11010 if (VT != MVT::Glue) {
11012 AddNodeIDNode(ID, Opcode, VTs, Ops);
11013 void *IP = nullptr;
11014
11015 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11016 E->intersectFlagsWith(Flags);
11017 return SDValue(E, 0);
11018 }
11019
11020 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11021 createOperands(N, Ops);
11022
11023 CSEMap.InsertNode(N, IP);
11024 } else {
11025 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11026 createOperands(N, Ops);
11027 }
11028
11029 N->setFlags(Flags);
11030 InsertNode(N);
11031 SDValue V(N, 0);
11032 NewSDValueDbgMsg(V, "Creating new node: ", this);
11033 return V;
11034}
11035
11036SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11037 ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops) {
11038 SDNodeFlags Flags;
11039 if (Inserter)
11040 Flags = Inserter->getFlags();
11041 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11042}
11043
11044SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11046 const SDNodeFlags Flags) {
11047 return getNode(Opcode, DL, getVTList(ResultTys), Ops, Flags);
11048}
11049
11050SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11052 SDNodeFlags Flags;
11053 if (Inserter)
11054 Flags = Inserter->getFlags();
11055 return getNode(Opcode, DL, VTList, Ops, Flags);
11056}
11057
11058SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11059 ArrayRef<SDValue> Ops, const SDNodeFlags Flags) {
11060 if (VTList.NumVTs == 1)
11061 return getNode(Opcode, DL, VTList.VTs[0], Ops, Flags);
11062
11063#ifndef NDEBUG
11064 for (const auto &Op : Ops)
11065 assert(Op.getOpcode() != ISD::DELETED_NODE &&
11066 "Operand is DELETED_NODE!");
11067#endif
11068
11069 switch (Opcode) {
11070 case ISD::SADDO:
11071 case ISD::UADDO:
11072 case ISD::SSUBO:
11073 case ISD::USUBO: {
11074 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11075 "Invalid add/sub overflow op!");
11076 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11077 Ops[0].getValueType() == Ops[1].getValueType() &&
11078 Ops[0].getValueType() == VTList.VTs[0] &&
11079 "Binary operator types must match!");
11080 SDValue N1 = Ops[0], N2 = Ops[1];
11081 canonicalizeCommutativeBinop(Opcode, N1, N2);
11082
11083 // (X +- 0) -> X with zero-overflow.
11084 ConstantSDNode *N2CV = isConstOrConstSplat(N2, /*AllowUndefs*/ false,
11085 /*AllowTruncation*/ true);
11086 if (N2CV && N2CV->isZero()) {
11087 SDValue ZeroOverFlow = getConstant(0, DL, VTList.VTs[1]);
11088 return getNode(ISD::MERGE_VALUES, DL, VTList, {N1, ZeroOverFlow}, Flags);
11089 }
11090
11091 if (VTList.VTs[0].getScalarType() == MVT::i1 &&
11092 VTList.VTs[1].getScalarType() == MVT::i1) {
11093 SDValue F1 = getFreeze(N1);
11094 SDValue F2 = getFreeze(N2);
11095 // {vXi1,vXi1} (u/s)addo(vXi1 x, vXi1y) -> {xor(x,y),and(x,y)}
11096 if (Opcode == ISD::UADDO || Opcode == ISD::SADDO)
11097 return getNode(ISD::MERGE_VALUES, DL, VTList,
11098 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11099 getNode(ISD::AND, DL, VTList.VTs[1], F1, F2)},
11100 Flags);
11101 // {vXi1,vXi1} (u/s)subo(vXi1 x, vXi1y) -> {xor(x,y),and(~x,y)}
11102 if (Opcode == ISD::USUBO || Opcode == ISD::SSUBO) {
11103 SDValue NotF1 = getNOT(DL, F1, VTList.VTs[0]);
11104 return getNode(ISD::MERGE_VALUES, DL, VTList,
11105 {getNode(ISD::XOR, DL, VTList.VTs[0], F1, F2),
11106 getNode(ISD::AND, DL, VTList.VTs[1], NotF1, F2)},
11107 Flags);
11108 }
11109 }
11110 break;
11111 }
11112 case ISD::SADDO_CARRY:
11113 case ISD::UADDO_CARRY:
11114 case ISD::SSUBO_CARRY:
11115 case ISD::USUBO_CARRY:
11116 assert(VTList.NumVTs == 2 && Ops.size() == 3 &&
11117 "Invalid add/sub overflow op!");
11118 assert(VTList.VTs[0].isInteger() && VTList.VTs[1].isInteger() &&
11119 Ops[0].getValueType() == Ops[1].getValueType() &&
11120 Ops[0].getValueType() == VTList.VTs[0] &&
11121 Ops[2].getValueType() == VTList.VTs[1] &&
11122 "Binary operator types must match!");
11123 break;
11124 case ISD::SMUL_LOHI:
11125 case ISD::UMUL_LOHI: {
11126 assert(VTList.NumVTs == 2 && Ops.size() == 2 && "Invalid mul lo/hi op!");
11127 assert(VTList.VTs[0].isInteger() && VTList.VTs[0] == VTList.VTs[1] &&
11128 VTList.VTs[0] == Ops[0].getValueType() &&
11129 VTList.VTs[0] == Ops[1].getValueType() &&
11130 "Binary operator types must match!");
11131 // Constant fold.
11134 if (LHS && RHS) {
11135 unsigned Width = VTList.VTs[0].getScalarSizeInBits();
11136 unsigned OutWidth = Width * 2;
11137 APInt Val = LHS->getAPIntValue();
11138 APInt Mul = RHS->getAPIntValue();
11139 if (Opcode == ISD::SMUL_LOHI) {
11140 Val = Val.sext(OutWidth);
11141 Mul = Mul.sext(OutWidth);
11142 } else {
11143 Val = Val.zext(OutWidth);
11144 Mul = Mul.zext(OutWidth);
11145 }
11146 Val *= Mul;
11147
11148 SDValue Hi =
11149 getConstant(Val.extractBits(Width, Width), DL, VTList.VTs[0]);
11150 SDValue Lo = getConstant(Val.trunc(Width), DL, VTList.VTs[0]);
11151 return getNode(ISD::MERGE_VALUES, DL, VTList, {Lo, Hi}, Flags);
11152 }
11153 break;
11154 }
11155 case ISD::FFREXP: {
11156 assert(VTList.NumVTs == 2 && Ops.size() == 1 && "Invalid ffrexp op!");
11157 assert(VTList.VTs[0].isFloatingPoint() && VTList.VTs[1].isInteger() &&
11158 VTList.VTs[0] == Ops[0].getValueType() && "frexp type mismatch");
11159
11161 int FrexpExp;
11162 APFloat FrexpMant =
11163 frexp(C->getValueAPF(), FrexpExp, APFloat::rmNearestTiesToEven);
11164 SDValue Result0 = getConstantFP(FrexpMant, DL, VTList.VTs[0]);
11165 SDValue Result1 = getSignedConstant(FrexpMant.isFinite() ? FrexpExp : 0,
11166 DL, VTList.VTs[1]);
11167 return getNode(ISD::MERGE_VALUES, DL, VTList, {Result0, Result1}, Flags);
11168 }
11169
11170 break;
11171 }
11173 assert(VTList.NumVTs == 2 && Ops.size() == 2 &&
11174 "Invalid STRICT_FP_EXTEND!");
11175 assert(VTList.VTs[0].isFloatingPoint() &&
11176 Ops[1].getValueType().isFloatingPoint() && "Invalid FP cast!");
11177 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11178 "STRICT_FP_EXTEND result type should be vector iff the operand "
11179 "type is vector!");
11180 assert((!VTList.VTs[0].isVector() ||
11181 VTList.VTs[0].getVectorElementCount() ==
11182 Ops[1].getValueType().getVectorElementCount()) &&
11183 "Vector element count mismatch!");
11184 assert(Ops[1].getValueType().bitsLT(VTList.VTs[0]) &&
11185 "Invalid fpext node, dst <= src!");
11186 break;
11188 assert(VTList.NumVTs == 2 && Ops.size() == 3 && "Invalid STRICT_FP_ROUND!");
11189 assert(VTList.VTs[0].isVector() == Ops[1].getValueType().isVector() &&
11190 "STRICT_FP_ROUND result type should be vector iff the operand "
11191 "type is vector!");
11192 assert((!VTList.VTs[0].isVector() ||
11193 VTList.VTs[0].getVectorElementCount() ==
11194 Ops[1].getValueType().getVectorElementCount()) &&
11195 "Vector element count mismatch!");
11196 assert(VTList.VTs[0].isFloatingPoint() &&
11197 Ops[1].getValueType().isFloatingPoint() &&
11198 VTList.VTs[0].bitsLT(Ops[1].getValueType()) &&
11199 Ops[2].getOpcode() == ISD::TargetConstant &&
11200 (Ops[2]->getAsZExtVal() == 0 || Ops[2]->getAsZExtVal() == 1) &&
11201 "Invalid STRICT_FP_ROUND!");
11202 break;
11203 }
11204
11205 // Memoize the node unless it returns a glue result.
11206 SDNode *N;
11207 if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
11209 AddNodeIDNode(ID, Opcode, VTList, Ops);
11210 void *IP = nullptr;
11211 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11212 E->intersectFlagsWith(Flags);
11213 return SDValue(E, 0);
11214 }
11215
11216 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11217 createOperands(N, Ops);
11218 CSEMap.InsertNode(N, IP);
11219 } else {
11220 N = newSDNode<SDNode>(Opcode, DL.getIROrder(), DL.getDebugLoc(), VTList);
11221 createOperands(N, Ops);
11222 }
11223
11224 N->setFlags(Flags);
11225 InsertNode(N);
11226 SDValue V(N, 0);
11227 NewSDValueDbgMsg(V, "Creating new node: ", this);
11228 return V;
11229}
11230
11231SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL,
11232 SDVTList VTList) {
11233 return getNode(Opcode, DL, VTList, ArrayRef<SDValue>());
11234}
11235
11236SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11237 SDValue N1) {
11238 SDValue Ops[] = { N1 };
11239 return getNode(Opcode, DL, VTList, Ops);
11240}
11241
11242SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11243 SDValue N1, SDValue N2) {
11244 SDValue Ops[] = { N1, N2 };
11245 return getNode(Opcode, DL, VTList, Ops);
11246}
11247
11248SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11249 SDValue N1, SDValue N2, SDValue N3) {
11250 SDValue Ops[] = { N1, N2, N3 };
11251 return getNode(Opcode, DL, VTList, Ops);
11252}
11253
11254SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11255 SDValue N1, SDValue N2, SDValue N3, SDValue N4) {
11256 SDValue Ops[] = { N1, N2, N3, N4 };
11257 return getNode(Opcode, DL, VTList, Ops);
11258}
11259
11260SDValue SelectionDAG::getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
11261 SDValue N1, SDValue N2, SDValue N3, SDValue N4,
11262 SDValue N5) {
11263 SDValue Ops[] = { N1, N2, N3, N4, N5 };
11264 return getNode(Opcode, DL, VTList, Ops);
11265}
11266
11268 if (!VT.isExtended())
11269 return makeVTList(SDNode::getValueTypeList(VT.getSimpleVT()), 1);
11270
11271 return makeVTList(&(*EVTs.insert(VT).first), 1);
11272}
11273
11276 ID.AddInteger(2U);
11277 ID.AddInteger(VT1.getRawBits());
11278 ID.AddInteger(VT2.getRawBits());
11279
11280 void *IP = nullptr;
11281 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11282 if (!Result) {
11283 EVT *Array = Allocator.Allocate<EVT>(2);
11284 Array[0] = VT1;
11285 Array[1] = VT2;
11286 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 2);
11287 VTListMap.InsertNode(Result, IP);
11288 }
11289 return Result->getSDVTList();
11290}
11291
11294 ID.AddInteger(3U);
11295 ID.AddInteger(VT1.getRawBits());
11296 ID.AddInteger(VT2.getRawBits());
11297 ID.AddInteger(VT3.getRawBits());
11298
11299 void *IP = nullptr;
11300 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11301 if (!Result) {
11302 EVT *Array = Allocator.Allocate<EVT>(3);
11303 Array[0] = VT1;
11304 Array[1] = VT2;
11305 Array[2] = VT3;
11306 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 3);
11307 VTListMap.InsertNode(Result, IP);
11308 }
11309 return Result->getSDVTList();
11310}
11311
11314 ID.AddInteger(4U);
11315 ID.AddInteger(VT1.getRawBits());
11316 ID.AddInteger(VT2.getRawBits());
11317 ID.AddInteger(VT3.getRawBits());
11318 ID.AddInteger(VT4.getRawBits());
11319
11320 void *IP = nullptr;
11321 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11322 if (!Result) {
11323 EVT *Array = Allocator.Allocate<EVT>(4);
11324 Array[0] = VT1;
11325 Array[1] = VT2;
11326 Array[2] = VT3;
11327 Array[3] = VT4;
11328 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, 4);
11329 VTListMap.InsertNode(Result, IP);
11330 }
11331 return Result->getSDVTList();
11332}
11333
11335 unsigned NumVTs = VTs.size();
11337 ID.AddInteger(NumVTs);
11338 for (unsigned index = 0; index < NumVTs; index++) {
11339 ID.AddInteger(VTs[index].getRawBits());
11340 }
11341
11342 void *IP = nullptr;
11343 SDVTListNode *Result = VTListMap.FindNodeOrInsertPos(ID, IP);
11344 if (!Result) {
11345 EVT *Array = Allocator.Allocate<EVT>(NumVTs);
11346 llvm::copy(VTs, Array);
11347 Result = new (Allocator) SDVTListNode(ID.Intern(Allocator), Array, NumVTs);
11348 VTListMap.InsertNode(Result, IP);
11349 }
11350 return Result->getSDVTList();
11351}
11352
11353
11354/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
11355/// specified operands. If the resultant node already exists in the DAG,
11356/// this does not modify the specified node, instead it returns the node that
11357/// already exists. If the resultant node does not exist in the DAG, the
11358/// input node is returned. As a degenerate case, if you specify the same
11359/// input operands as the node already has, the input node is returned.
11361 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
11362
11363 // Check to see if there is no change.
11364 if (Op == N->getOperand(0)) return N;
11365
11366 // See if the modified node already exists.
11367 void *InsertPos = nullptr;
11368 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
11369 return Existing;
11370
11371 // Nope it doesn't. Remove the node from its current place in the maps.
11372 if (InsertPos)
11373 if (!RemoveNodeFromCSEMaps(N))
11374 InsertPos = nullptr;
11375
11376 // Now we update the operands.
11377 N->OperandList[0].set(Op);
11378
11380 // If this gets put into a CSE map, add it.
11381 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11382 return N;
11383}
11384
11386 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
11387
11388 // Check to see if there is no change.
11389 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
11390 return N; // No operands changed, just return the input node.
11391
11392 // See if the modified node already exists.
11393 void *InsertPos = nullptr;
11394 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
11395 return Existing;
11396
11397 // Nope it doesn't. Remove the node from its current place in the maps.
11398 if (InsertPos)
11399 if (!RemoveNodeFromCSEMaps(N))
11400 InsertPos = nullptr;
11401
11402 // Now we update the operands.
11403 if (N->OperandList[0] != Op1)
11404 N->OperandList[0].set(Op1);
11405 if (N->OperandList[1] != Op2)
11406 N->OperandList[1].set(Op2);
11407
11409 // If this gets put into a CSE map, add it.
11410 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11411 return N;
11412}
11413
11416 SDValue Ops[] = { Op1, Op2, Op3 };
11417 return UpdateNodeOperands(N, Ops);
11418}
11419
11422 SDValue Op3, SDValue Op4) {
11423 SDValue Ops[] = { Op1, Op2, Op3, Op4 };
11424 return UpdateNodeOperands(N, Ops);
11425}
11426
11429 SDValue Op3, SDValue Op4, SDValue Op5) {
11430 SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
11431 return UpdateNodeOperands(N, Ops);
11432}
11433
11436 unsigned NumOps = Ops.size();
11437 assert(N->getNumOperands() == NumOps &&
11438 "Update with wrong number of operands");
11439
11440 // If no operands changed just return the input node.
11441 if (std::equal(Ops.begin(), Ops.end(), N->op_begin()))
11442 return N;
11443
11444 // See if the modified node already exists.
11445 void *InsertPos = nullptr;
11446 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, InsertPos))
11447 return Existing;
11448
11449 // Nope it doesn't. Remove the node from its current place in the maps.
11450 if (InsertPos)
11451 if (!RemoveNodeFromCSEMaps(N))
11452 InsertPos = nullptr;
11453
11454 // Now we update the operands.
11455 for (unsigned i = 0; i != NumOps; ++i)
11456 if (N->OperandList[i] != Ops[i])
11457 N->OperandList[i].set(Ops[i]);
11458
11460 // If this gets put into a CSE map, add it.
11461 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
11462 return N;
11463}
11464
11465/// DropOperands - Release the operands and set this node to have
11466/// zero operands.
11468 // Unlike the code in MorphNodeTo that does this, we don't need to
11469 // watch for dead nodes here.
11470 for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
11471 SDUse &Use = *I++;
11472 Use.set(SDValue());
11473 }
11474}
11475
11477 ArrayRef<MachineMemOperand *> NewMemRefs) {
11478 if (NewMemRefs.empty()) {
11479 N->clearMemRefs();
11480 return;
11481 }
11482
11483 // Check if we can avoid allocating by storing a single reference directly.
11484 if (NewMemRefs.size() == 1) {
11485 N->MemRefs = NewMemRefs[0];
11486 N->NumMemRefs = 1;
11487 return;
11488 }
11489
11490 MachineMemOperand **MemRefsBuffer =
11491 Allocator.template Allocate<MachineMemOperand *>(NewMemRefs.size());
11492 llvm::copy(NewMemRefs, MemRefsBuffer);
11493 N->MemRefs = MemRefsBuffer;
11494 N->NumMemRefs = static_cast<int>(NewMemRefs.size());
11495}
11496
11497/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
11498/// machine opcode.
11499///
11501 EVT VT) {
11502 SDVTList VTs = getVTList(VT);
11503 return SelectNodeTo(N, MachineOpc, VTs, {});
11504}
11505
11507 EVT VT, SDValue Op1) {
11508 SDVTList VTs = getVTList(VT);
11509 SDValue Ops[] = { Op1 };
11510 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11511}
11512
11514 EVT VT, SDValue Op1,
11515 SDValue Op2) {
11516 SDVTList VTs = getVTList(VT);
11517 SDValue Ops[] = { Op1, Op2 };
11518 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11519}
11520
11522 EVT VT, SDValue Op1,
11523 SDValue Op2, SDValue Op3) {
11524 SDVTList VTs = getVTList(VT);
11525 SDValue Ops[] = { Op1, Op2, Op3 };
11526 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11527}
11528
11531 SDVTList VTs = getVTList(VT);
11532 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11533}
11534
11536 EVT VT1, EVT VT2, ArrayRef<SDValue> Ops) {
11537 SDVTList VTs = getVTList(VT1, VT2);
11538 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11539}
11540
11542 EVT VT1, EVT VT2) {
11543 SDVTList VTs = getVTList(VT1, VT2);
11544 return SelectNodeTo(N, MachineOpc, VTs, {});
11545}
11546
11548 EVT VT1, EVT VT2, EVT VT3,
11550 SDVTList VTs = getVTList(VT1, VT2, VT3);
11551 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11552}
11553
11555 EVT VT1, EVT VT2,
11556 SDValue Op1, SDValue Op2) {
11557 SDVTList VTs = getVTList(VT1, VT2);
11558 SDValue Ops[] = { Op1, Op2 };
11559 return SelectNodeTo(N, MachineOpc, VTs, Ops);
11560}
11561
11564 SDNode *New = MorphNodeTo(N, ~MachineOpc, VTs, Ops);
11565 // Reset the NodeID to -1.
11566 New->setNodeId(-1);
11567 if (New != N) {
11568 ReplaceAllUsesWith(N, New);
11570 }
11571 return New;
11572}
11573
11574/// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
11575/// the line number information on the merged node since it is not possible to
11576/// preserve the information that operation is associated with multiple lines.
11577/// This will make the debugger working better at -O0, were there is a higher
11578/// probability having other instructions associated with that line.
11579///
11580/// For IROrder, we keep the smaller of the two
11581SDNode *SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &OLoc) {
11582 DebugLoc NLoc = N->getDebugLoc();
11583 if (NLoc && OptLevel == CodeGenOptLevel::None && OLoc.getDebugLoc() != NLoc) {
11584 N->setDebugLoc(DebugLoc());
11585 }
11586 unsigned Order = std::min(N->getIROrder(), OLoc.getIROrder());
11587 N->setIROrder(Order);
11588 return N;
11589}
11590
11591/// MorphNodeTo - This *mutates* the specified node to have the specified
11592/// return type, opcode, and operands.
11593///
11594/// Note that MorphNodeTo returns the resultant node. If there is already a
11595/// node of the specified opcode and operands, it returns that node instead of
11596/// the current one. Note that the SDLoc need not be the same.
11597///
11598/// Using MorphNodeTo is faster than creating a new node and swapping it in
11599/// with ReplaceAllUsesWith both because it often avoids allocating a new
11600/// node, and because it doesn't require CSE recalculation for any of
11601/// the node's users.
11602///
11603/// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
11604/// As a consequence it isn't appropriate to use from within the DAG combiner or
11605/// the legalizer which maintain worklists that would need to be updated when
11606/// deleting things.
11609 // If an identical node already exists, use it.
11610 void *IP = nullptr;
11611 if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
11613 AddNodeIDNode(ID, Opc, VTs, Ops);
11614 if (SDNode *ON = FindNodeOrInsertPos(ID, SDLoc(N), IP))
11615 return UpdateSDLocOnMergeSDNode(ON, SDLoc(N));
11616 }
11617
11618 if (!RemoveNodeFromCSEMaps(N))
11619 IP = nullptr;
11620
11621 // Start the morphing.
11622 N->NodeType = Opc;
11623 N->ValueList = VTs.VTs;
11624 N->NumValues = VTs.NumVTs;
11625
11626 // Clear the operands list, updating used nodes to remove this from their
11627 // use list. Keep track of any operands that become dead as a result.
11628 SmallPtrSet<SDNode*, 16> DeadNodeSet;
11629 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
11630 SDUse &Use = *I++;
11631 SDNode *Used = Use.getNode();
11632 Use.set(SDValue());
11633 if (Used->use_empty())
11634 DeadNodeSet.insert(Used);
11635 }
11636
11637 // For MachineNode, initialize the memory references information.
11639 MN->clearMemRefs();
11640
11641 // Swap for an appropriately sized array from the recycler.
11642 removeOperands(N);
11643 createOperands(N, Ops);
11644
11645 // Delete any nodes that are still dead after adding the uses for the
11646 // new operands.
11647 if (!DeadNodeSet.empty()) {
11648 SmallVector<SDNode *, 16> DeadNodes;
11649 for (SDNode *N : DeadNodeSet)
11650 if (N->use_empty())
11651 DeadNodes.push_back(N);
11652 RemoveDeadNodes(DeadNodes);
11653 }
11654
11655 if (IP)
11656 CSEMap.InsertNode(N, IP); // Memoize the new node.
11657 return N;
11658}
11659
11661 unsigned OrigOpc = Node->getOpcode();
11662 unsigned NewOpc;
11663 switch (OrigOpc) {
11664 default:
11665 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
11666#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11667 case ISD::STRICT_##DAGN: NewOpc = ISD::DAGN; break;
11668#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
11669 case ISD::STRICT_##DAGN: NewOpc = ISD::SETCC; break;
11670#include "llvm/IR/ConstrainedOps.def"
11671 }
11672
11673 assert(Node->getNumValues() == 2 && "Unexpected number of results!");
11674
11675 // We're taking this node out of the chain, so we need to re-link things.
11676 SDValue InputChain = Node->getOperand(0);
11677 SDValue OutputChain = SDValue(Node, 1);
11678 ReplaceAllUsesOfValueWith(OutputChain, InputChain);
11679
11681 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
11682 Ops.push_back(Node->getOperand(i));
11683
11684 SDVTList VTs = getVTList(Node->getValueType(0));
11685 SDNode *Res = MorphNodeTo(Node, NewOpc, VTs, Ops);
11686
11687 // MorphNodeTo can operate in two ways: if an existing node with the
11688 // specified operands exists, it can just return it. Otherwise, it
11689 // updates the node in place to have the requested operands.
11690 if (Res == Node) {
11691 // If we updated the node in place, reset the node ID. To the isel,
11692 // this should be just like a newly allocated machine node.
11693 Res->setNodeId(-1);
11694 } else {
11697 }
11698
11699 return Res;
11700}
11701
11702/// getMachineNode - These are used for target selectors to create a new node
11703/// with specified return type(s), MachineInstr opcode, and operands.
11704///
11705/// Note that getMachineNode returns the resultant node. If there is already a
11706/// node of the specified opcode and operands, it returns that node instead of
11707/// the current one.
11709 EVT VT) {
11710 SDVTList VTs = getVTList(VT);
11711 return getMachineNode(Opcode, dl, VTs, {});
11712}
11713
11715 EVT VT, SDValue Op1) {
11716 SDVTList VTs = getVTList(VT);
11717 SDValue Ops[] = { Op1 };
11718 return getMachineNode(Opcode, dl, VTs, Ops);
11719}
11720
11722 EVT VT, SDValue Op1, SDValue Op2) {
11723 SDVTList VTs = getVTList(VT);
11724 SDValue Ops[] = { Op1, Op2 };
11725 return getMachineNode(Opcode, dl, VTs, Ops);
11726}
11727
11729 EVT VT, SDValue Op1, SDValue Op2,
11730 SDValue Op3) {
11731 SDVTList VTs = getVTList(VT);
11732 SDValue Ops[] = { Op1, Op2, Op3 };
11733 return getMachineNode(Opcode, dl, VTs, Ops);
11734}
11735
11738 SDVTList VTs = getVTList(VT);
11739 return getMachineNode(Opcode, dl, VTs, Ops);
11740}
11741
11743 EVT VT1, EVT VT2, SDValue Op1,
11744 SDValue Op2) {
11745 SDVTList VTs = getVTList(VT1, VT2);
11746 SDValue Ops[] = { Op1, Op2 };
11747 return getMachineNode(Opcode, dl, VTs, Ops);
11748}
11749
11751 EVT VT1, EVT VT2, SDValue Op1,
11752 SDValue Op2, SDValue Op3) {
11753 SDVTList VTs = getVTList(VT1, VT2);
11754 SDValue Ops[] = { Op1, Op2, Op3 };
11755 return getMachineNode(Opcode, dl, VTs, Ops);
11756}
11757
11759 EVT VT1, EVT VT2,
11761 SDVTList VTs = getVTList(VT1, VT2);
11762 return getMachineNode(Opcode, dl, VTs, Ops);
11763}
11764
11766 EVT VT1, EVT VT2, EVT VT3,
11767 SDValue Op1, SDValue Op2) {
11768 SDVTList VTs = getVTList(VT1, VT2, VT3);
11769 SDValue Ops[] = { Op1, Op2 };
11770 return getMachineNode(Opcode, dl, VTs, Ops);
11771}
11772
11774 EVT VT1, EVT VT2, EVT VT3,
11775 SDValue Op1, SDValue Op2,
11776 SDValue Op3) {
11777 SDVTList VTs = getVTList(VT1, VT2, VT3);
11778 SDValue Ops[] = { Op1, Op2, Op3 };
11779 return getMachineNode(Opcode, dl, VTs, Ops);
11780}
11781
11783 EVT VT1, EVT VT2, EVT VT3,
11785 SDVTList VTs = getVTList(VT1, VT2, VT3);
11786 return getMachineNode(Opcode, dl, VTs, Ops);
11787}
11788
11790 ArrayRef<EVT> ResultTys,
11792 SDVTList VTs = getVTList(ResultTys);
11793 return getMachineNode(Opcode, dl, VTs, Ops);
11794}
11795
11797 SDVTList VTs,
11799 bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
11801 void *IP = nullptr;
11802
11803 if (DoCSE) {
11805 AddNodeIDNode(ID, ~Opcode, VTs, Ops);
11806 IP = nullptr;
11807 if (SDNode *E = FindNodeOrInsertPos(ID, DL, IP)) {
11808 return cast<MachineSDNode>(UpdateSDLocOnMergeSDNode(E, DL));
11809 }
11810 }
11811
11812 // Allocate a new MachineSDNode.
11813 N = newSDNode<MachineSDNode>(~Opcode, DL.getIROrder(), DL.getDebugLoc(), VTs);
11814 createOperands(N, Ops);
11815
11816 if (DoCSE)
11817 CSEMap.InsertNode(N, IP);
11818
11819 InsertNode(N);
11820 NewSDValueDbgMsg(SDValue(N, 0), "Creating new machine node: ", this);
11821 return N;
11822}
11823
11824/// getTargetExtractSubreg - A convenience function for creating
11825/// TargetOpcode::EXTRACT_SUBREG nodes.
11827 SDValue Operand) {
11828 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11829 SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
11830 VT, Operand, SRIdxVal);
11831 return SDValue(Subreg, 0);
11832}
11833
11834/// getTargetInsertSubreg - A convenience function for creating
11835/// TargetOpcode::INSERT_SUBREG nodes.
11837 SDValue Operand, SDValue Subreg) {
11838 SDValue SRIdxVal = getTargetConstant(SRIdx, DL, MVT::i32);
11839 SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
11840 VT, Operand, Subreg, SRIdxVal);
11841 return SDValue(Result, 0);
11842}
11843
11844/// getNodeIfExists - Get the specified node if it's already available, or
11845/// else return NULL.
11848 bool AllowCommute) {
11849 SDNodeFlags Flags;
11850 if (Inserter)
11851 Flags = Inserter->getFlags();
11852 return getNodeIfExists(Opcode, VTList, Ops, Flags, AllowCommute);
11853}
11854
11857 const SDNodeFlags Flags,
11858 bool AllowCommute) {
11859 if (VTList.VTs[VTList.NumVTs - 1] == MVT::Glue)
11860 return nullptr;
11861
11862 auto Lookup = [&](ArrayRef<SDValue> LookupOps) -> SDNode * {
11864 AddNodeIDNode(ID, Opcode, VTList, LookupOps);
11865 void *IP = nullptr;
11866 if (SDNode *E = FindNodeOrInsertPos(ID, IP)) {
11867 E->intersectFlagsWith(Flags);
11868 return E;
11869 }
11870 return nullptr;
11871 };
11872
11873 if (SDNode *Existing = Lookup(Ops))
11874 return Existing;
11875
11876 if (AllowCommute && TLI->isCommutativeBinOp(Opcode))
11877 return Lookup({Ops[1], Ops[0]});
11878
11879 return nullptr;
11880}
11881
11882/// doesNodeExist - Check if a node exists without modifying its flags.
11883bool SelectionDAG::doesNodeExist(unsigned Opcode, SDVTList VTList,
11885 if (VTList.VTs[VTList.NumVTs - 1] != MVT::Glue) {
11887 AddNodeIDNode(ID, Opcode, VTList, Ops);
11888 void *IP = nullptr;
11889 if (FindNodeOrInsertPos(ID, SDLoc(), IP))
11890 return true;
11891 }
11892 return false;
11893}
11894
11895/// getDbgValue - Creates a SDDbgValue node.
11896///
11897/// SDNode
11899 SDNode *N, unsigned R, bool IsIndirect,
11900 const DebugLoc &DL, unsigned O) {
11901 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11902 "Expected inlined-at fields to agree");
11903 return new (DbgInfo->getAlloc())
11904 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromNode(N, R),
11905 {}, IsIndirect, DL, O,
11906 /*IsVariadic=*/false);
11907}
11908
11909/// Constant
11911 DIExpression *Expr,
11912 const Value *C,
11913 const DebugLoc &DL, unsigned O) {
11914 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11915 "Expected inlined-at fields to agree");
11916 return new (DbgInfo->getAlloc())
11917 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromConst(C), {},
11918 /*IsIndirect=*/false, DL, O,
11919 /*IsVariadic=*/false);
11920}
11921
11922/// FrameIndex
11924 DIExpression *Expr, unsigned FI,
11925 bool IsIndirect,
11926 const DebugLoc &DL,
11927 unsigned O) {
11928 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11929 "Expected inlined-at fields to agree");
11930 return getFrameIndexDbgValue(Var, Expr, FI, {}, IsIndirect, DL, O);
11931}
11932
11933/// FrameIndex with dependencies
11935 DIExpression *Expr, unsigned FI,
11936 ArrayRef<SDNode *> Dependencies,
11937 bool IsIndirect,
11938 const DebugLoc &DL,
11939 unsigned O) {
11940 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11941 "Expected inlined-at fields to agree");
11942 return new (DbgInfo->getAlloc())
11943 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromFrameIdx(FI),
11944 Dependencies, IsIndirect, DL, O,
11945 /*IsVariadic=*/false);
11946}
11947
11948/// VReg
11950 Register VReg, bool IsIndirect,
11951 const DebugLoc &DL, unsigned O) {
11952 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11953 "Expected inlined-at fields to agree");
11954 return new (DbgInfo->getAlloc())
11955 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, SDDbgOperand::fromVReg(VReg),
11956 {}, IsIndirect, DL, O,
11957 /*IsVariadic=*/false);
11958}
11959
11962 ArrayRef<SDNode *> Dependencies,
11963 bool IsIndirect, const DebugLoc &DL,
11964 unsigned O, bool IsVariadic) {
11965 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
11966 "Expected inlined-at fields to agree");
11967 return new (DbgInfo->getAlloc())
11968 SDDbgValue(DbgInfo->getAlloc(), Var, Expr, Locs, Dependencies, IsIndirect,
11969 DL, O, IsVariadic);
11970}
11971
11973 unsigned OffsetInBits, unsigned SizeInBits,
11974 bool InvalidateDbg) {
11975 SDNode *FromNode = From.getNode();
11976 SDNode *ToNode = To.getNode();
11977 assert(FromNode && ToNode && "Can't modify dbg values");
11978
11979 // PR35338
11980 // TODO: assert(From != To && "Redundant dbg value transfer");
11981 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
11982 if (From == To || FromNode == ToNode)
11983 return;
11984
11985 if (!FromNode->getHasDebugValue())
11986 return;
11987
11988 SDDbgOperand FromLocOp =
11989 SDDbgOperand::fromNode(From.getNode(), From.getResNo());
11991
11993 for (SDDbgValue *Dbg : GetDbgValues(FromNode)) {
11994 if (Dbg->isInvalidated())
11995 continue;
11996
11997 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
11998
11999 // Create a new location ops vector that is equal to the old vector, but
12000 // with each instance of FromLocOp replaced with ToLocOp.
12001 bool Changed = false;
12002 auto NewLocOps = Dbg->copyLocationOps();
12003 std::replace_if(
12004 NewLocOps.begin(), NewLocOps.end(),
12005 [&Changed, FromLocOp](const SDDbgOperand &Op) {
12006 bool Match = Op == FromLocOp;
12007 Changed |= Match;
12008 return Match;
12009 },
12010 ToLocOp);
12011 // Ignore this SDDbgValue if we didn't find a matching location.
12012 if (!Changed)
12013 continue;
12014
12015 DIVariable *Var = Dbg->getVariable();
12016 auto *Expr = Dbg->getExpression();
12017 // If a fragment is requested, update the expression.
12018 if (SizeInBits) {
12019 // When splitting a larger (e.g., sign-extended) value whose
12020 // lower bits are described with an SDDbgValue, do not attempt
12021 // to transfer the SDDbgValue to the upper bits.
12022 if (auto FI = Expr->getFragmentInfo())
12023 if (OffsetInBits + SizeInBits > FI->SizeInBits)
12024 continue;
12025 auto Fragment = DIExpression::createFragmentExpression(Expr, OffsetInBits,
12026 SizeInBits);
12027 if (!Fragment)
12028 continue;
12029 Expr = *Fragment;
12030 }
12031
12032 auto AdditionalDependencies = Dbg->getAdditionalDependencies();
12033 // Clone the SDDbgValue and move it to To.
12034 SDDbgValue *Clone = getDbgValueList(
12035 Var, Expr, NewLocOps, AdditionalDependencies, Dbg->isIndirect(),
12036 Dbg->getDebugLoc(), std::max(ToNode->getIROrder(), Dbg->getOrder()),
12037 Dbg->isVariadic());
12038 ClonedDVs.push_back(Clone);
12039
12040 if (InvalidateDbg) {
12041 // Invalidate value and indicate the SDDbgValue should not be emitted.
12042 Dbg->setIsInvalidated();
12043 Dbg->setIsEmitted();
12044 }
12045 }
12046
12047 for (SDDbgValue *Dbg : ClonedDVs) {
12048 assert(is_contained(Dbg->getSDNodes(), ToNode) &&
12049 "Transferred DbgValues should depend on the new SDNode");
12050 AddDbgValue(Dbg, false);
12051 }
12052}
12053
12055 if (!N.getHasDebugValue())
12056 return;
12057
12058 auto GetLocationOperand = [](SDNode *Node, unsigned ResNo) {
12059 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(Node))
12060 return SDDbgOperand::fromFrameIdx(FISDN->getIndex());
12061 return SDDbgOperand::fromNode(Node, ResNo);
12062 };
12063
12065 for (auto *DV : GetDbgValues(&N)) {
12066 if (DV->isInvalidated())
12067 continue;
12068 switch (N.getOpcode()) {
12069 default:
12070 break;
12071 case ISD::ADD: {
12072 SDValue N0 = N.getOperand(0);
12073 SDValue N1 = N.getOperand(1);
12074 if (!isa<ConstantSDNode>(N0)) {
12075 bool RHSConstant = isa<ConstantSDNode>(N1);
12077 if (RHSConstant)
12078 Offset = N.getConstantOperandVal(1);
12079 // We are not allowed to turn indirect debug values variadic, so
12080 // don't salvage those.
12081 if (!RHSConstant && DV->isIndirect())
12082 continue;
12083
12084 // Rewrite an ADD constant node into a DIExpression. Since we are
12085 // performing arithmetic to compute the variable's *value* in the
12086 // DIExpression, we need to mark the expression with a
12087 // DW_OP_stack_value.
12088 auto *DIExpr = DV->getExpression();
12089 auto NewLocOps = DV->copyLocationOps();
12090 bool Changed = false;
12091 size_t OrigLocOpsSize = NewLocOps.size();
12092 for (size_t i = 0; i < OrigLocOpsSize; ++i) {
12093 // We're not given a ResNo to compare against because the whole
12094 // node is going away. We know that any ISD::ADD only has one
12095 // result, so we can assume any node match is using the result.
12096 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12097 NewLocOps[i].getSDNode() != &N)
12098 continue;
12099 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12100 if (RHSConstant) {
12103 DIExpr = DIExpression::appendOpsToArg(DIExpr, ExprOps, i, true);
12104 } else {
12105 // Convert to a variadic expression (if not already).
12106 // convertToVariadicExpression() returns a const pointer, so we use
12107 // a temporary const variable here.
12108 const auto *TmpDIExpr =
12112 ExprOps.push_back(NewLocOps.size());
12113 ExprOps.push_back(dwarf::DW_OP_plus);
12114 SDDbgOperand RHS =
12116 NewLocOps.push_back(RHS);
12117 DIExpr = DIExpression::appendOpsToArg(TmpDIExpr, ExprOps, i, true);
12118 }
12119 Changed = true;
12120 }
12121 (void)Changed;
12122 assert(Changed && "Salvage target doesn't use N");
12123
12124 bool IsVariadic =
12125 DV->isVariadic() || OrigLocOpsSize != NewLocOps.size();
12126
12127 auto AdditionalDependencies = DV->getAdditionalDependencies();
12128 SDDbgValue *Clone = getDbgValueList(
12129 DV->getVariable(), DIExpr, NewLocOps, AdditionalDependencies,
12130 DV->isIndirect(), DV->getDebugLoc(), DV->getOrder(), IsVariadic);
12131 ClonedDVs.push_back(Clone);
12132 DV->setIsInvalidated();
12133 DV->setIsEmitted();
12134 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
12135 N0.getNode()->dumprFull(this);
12136 dbgs() << " into " << *DIExpr << '\n');
12137 }
12138 break;
12139 }
12140 case ISD::TRUNCATE: {
12141 SDValue N0 = N.getOperand(0);
12142 TypeSize FromSize = N0.getValueSizeInBits();
12143 TypeSize ToSize = N.getValueSizeInBits(0);
12144
12145 DIExpression *DbgExpression = DV->getExpression();
12146 auto ExtOps = DIExpression::getExtOps(FromSize, ToSize, false);
12147 auto NewLocOps = DV->copyLocationOps();
12148 bool Changed = false;
12149 for (size_t i = 0; i < NewLocOps.size(); ++i) {
12150 if (NewLocOps[i].getKind() != SDDbgOperand::SDNODE ||
12151 NewLocOps[i].getSDNode() != &N)
12152 continue;
12153
12154 NewLocOps[i] = GetLocationOperand(N0.getNode(), N0.getResNo());
12155 DbgExpression = DIExpression::appendOpsToArg(DbgExpression, ExtOps, i);
12156 Changed = true;
12157 }
12158 assert(Changed && "Salvage target doesn't use N");
12159 (void)Changed;
12160
12161 SDDbgValue *Clone =
12162 getDbgValueList(DV->getVariable(), DbgExpression, NewLocOps,
12163 DV->getAdditionalDependencies(), DV->isIndirect(),
12164 DV->getDebugLoc(), DV->getOrder(), DV->isVariadic());
12165
12166 ClonedDVs.push_back(Clone);
12167 DV->setIsInvalidated();
12168 DV->setIsEmitted();
12169 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting"; N0.getNode()->dumprFull(this);
12170 dbgs() << " into " << *DbgExpression << '\n');
12171 break;
12172 }
12173 }
12174 }
12175
12176 for (SDDbgValue *Dbg : ClonedDVs) {
12177 assert((!Dbg->getSDNodes().empty() ||
12178 llvm::any_of(Dbg->getLocationOps(),
12179 [&](const SDDbgOperand &Op) {
12180 return Op.getKind() == SDDbgOperand::FRAMEIX;
12181 })) &&
12182 "Salvaged DbgValue should depend on a new SDNode");
12183 AddDbgValue(Dbg, false);
12184 }
12185}
12186
12187/// Creates a SDDbgLabel node.
12189 const DebugLoc &DL, unsigned O) {
12190 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
12191 "Expected inlined-at fields to agree");
12192 return new (DbgInfo->getAlloc()) SDDbgLabel(Label, DL, O);
12193}
12194
12195namespace {
12196
12197/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
12198/// pointed to by a use iterator is deleted, increment the use iterator
12199/// so that it doesn't dangle.
12200///
12201class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
12204
12205 void NodeDeleted(SDNode *N, SDNode *E) override {
12206 // Increment the iterator as needed.
12207 while (UI != UE && N == UI->getUser())
12208 ++UI;
12209 }
12210
12211public:
12212 RAUWUpdateListener(SelectionDAG &d,
12215 : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
12216};
12217
12218} // end anonymous namespace
12219
12220/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12221/// This can cause recursive merging of nodes in the DAG.
12222///
12223/// This version assumes From has a single result value.
12224///
12226 SDNode *From = FromN.getNode();
12227 assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
12228 "Cannot replace with this method!");
12229 assert(From != To.getNode() && "Cannot replace uses of with self");
12230
12231 // Preserve Debug Values
12232 transferDbgValues(FromN, To);
12233 // Preserve extra info.
12234 copyExtraInfo(From, To.getNode());
12235
12236 // Iterate over all the existing uses of From. New uses will be added
12237 // to the beginning of the use list, which we avoid visiting.
12238 // This specifically avoids visiting uses of From that arise while the
12239 // replacement is happening, because any such uses would be the result
12240 // of CSE: If an existing node looks like From after one of its operands
12241 // is replaced by To, we don't want to replace of all its users with To
12242 // too. See PR3018 for more info.
12243 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12244 RAUWUpdateListener Listener(*this, UI, UE);
12245 while (UI != UE) {
12246 SDNode *User = UI->getUser();
12247
12248 // This node is about to morph, remove its old self from the CSE maps.
12249 RemoveNodeFromCSEMaps(User);
12250
12251 // A user can appear in a use list multiple times, and when this
12252 // happens the uses are usually next to each other in the list.
12253 // To help reduce the number of CSE recomputations, process all
12254 // the uses of this user that we can find this way.
12255 do {
12256 SDUse &Use = *UI;
12257 ++UI;
12258 Use.set(To);
12259 if (To->isDivergent() != From->isDivergent())
12261 } while (UI != UE && UI->getUser() == User);
12262 // Now that we have modified User, add it back to the CSE maps. If it
12263 // already exists there, recursively merge the results together.
12264 AddModifiedNodeToCSEMaps(User);
12265 }
12266
12267 // If we just RAUW'd the root, take note.
12268 if (FromN == getRoot())
12269 setRoot(To);
12270}
12271
12272/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12273/// This can cause recursive merging of nodes in the DAG.
12274///
12275/// This version assumes that for each value of From, there is a
12276/// corresponding value in To in the same position with the same type.
12277///
12279#ifndef NDEBUG
12280 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12281 assert((!From->hasAnyUseOfValue(i) ||
12282 From->getValueType(i) == To->getValueType(i)) &&
12283 "Cannot use this version of ReplaceAllUsesWith!");
12284#endif
12285
12286 // Handle the trivial case.
12287 if (From == To)
12288 return;
12289
12290 // Preserve Debug Info. Only do this if there's a use.
12291 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
12292 if (From->hasAnyUseOfValue(i)) {
12293 assert((i < To->getNumValues()) && "Invalid To location");
12294 transferDbgValues(SDValue(From, i), SDValue(To, i));
12295 }
12296 // Preserve extra info.
12297 copyExtraInfo(From, To);
12298
12299 // Iterate over just the existing users of From. See the comments in
12300 // the ReplaceAllUsesWith above.
12301 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12302 RAUWUpdateListener Listener(*this, UI, UE);
12303 while (UI != UE) {
12304 SDNode *User = UI->getUser();
12305
12306 // This node is about to morph, remove its old self from the CSE maps.
12307 RemoveNodeFromCSEMaps(User);
12308
12309 // A user can appear in a use list multiple times, and when this
12310 // happens the uses are usually next to each other in the list.
12311 // To help reduce the number of CSE recomputations, process all
12312 // the uses of this user that we can find this way.
12313 do {
12314 SDUse &Use = *UI;
12315 ++UI;
12316 Use.setNode(To);
12317 if (To->isDivergent() != From->isDivergent())
12319 } while (UI != UE && UI->getUser() == User);
12320
12321 // Now that we have modified User, add it back to the CSE maps. If it
12322 // already exists there, recursively merge the results together.
12323 AddModifiedNodeToCSEMaps(User);
12324 }
12325
12326 // If we just RAUW'd the root, take note.
12327 if (From == getRoot().getNode())
12328 setRoot(SDValue(To, getRoot().getResNo()));
12329}
12330
12331/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
12332/// This can cause recursive merging of nodes in the DAG.
12333///
12334/// This version can replace From with any result values. To must match the
12335/// number and types of values returned by From.
12337 if (From->getNumValues() == 1) // Handle the simple case efficiently.
12338 return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
12339
12340 for (unsigned i = 0, e = From->getNumValues(); i != e; ++i) {
12341 // Preserve Debug Info.
12342 transferDbgValues(SDValue(From, i), To[i]);
12343 // Preserve extra info.
12344 copyExtraInfo(From, To[i].getNode());
12345 }
12346
12347 // Iterate over just the existing users of From. See the comments in
12348 // the ReplaceAllUsesWith above.
12349 SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
12350 RAUWUpdateListener Listener(*this, UI, UE);
12351 while (UI != UE) {
12352 SDNode *User = UI->getUser();
12353
12354 // This node is about to morph, remove its old self from the CSE maps.
12355 RemoveNodeFromCSEMaps(User);
12356
12357 // A user can appear in a use list multiple times, and when this happens the
12358 // uses are usually next to each other in the list. To help reduce the
12359 // number of CSE and divergence recomputations, process all the uses of this
12360 // user that we can find this way.
12361 bool To_IsDivergent = false;
12362 do {
12363 SDUse &Use = *UI;
12364 const SDValue &ToOp = To[Use.getResNo()];
12365 ++UI;
12366 Use.set(ToOp);
12367 To_IsDivergent |= ToOp->isDivergent();
12368 } while (UI != UE && UI->getUser() == User);
12369
12370 if (To_IsDivergent != From->isDivergent())
12372
12373 // Now that we have modified User, add it back to the CSE maps. If it
12374 // already exists there, recursively merge the results together.
12375 AddModifiedNodeToCSEMaps(User);
12376 }
12377
12378 // If we just RAUW'd the root, take note.
12379 if (From == getRoot().getNode())
12380 setRoot(SDValue(To[getRoot().getResNo()]));
12381}
12382
12383/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
12384/// uses of other values produced by From.getNode() alone. The Deleted
12385/// vector is handled the same way as for ReplaceAllUsesWith.
12387 // Handle the really simple, really trivial case efficiently.
12388 if (From == To) return;
12389
12390 // Handle the simple, trivial, case efficiently.
12391 if (From.getNode()->getNumValues() == 1) {
12392 ReplaceAllUsesWith(From, To);
12393 return;
12394 }
12395
12396 // Preserve Debug Info.
12397 transferDbgValues(From, To);
12398 copyExtraInfo(From.getNode(), To.getNode());
12399
12400 // Iterate over just the existing users of From. See the comments in
12401 // the ReplaceAllUsesWith above.
12402 SDNode::use_iterator UI = From.getNode()->use_begin(),
12403 UE = From.getNode()->use_end();
12404 RAUWUpdateListener Listener(*this, UI, UE);
12405 while (UI != UE) {
12406 SDNode *User = UI->getUser();
12407 bool UserRemovedFromCSEMaps = false;
12408
12409 // A user can appear in a use list multiple times, and when this
12410 // happens the uses are usually next to each other in the list.
12411 // To help reduce the number of CSE recomputations, process all
12412 // the uses of this user that we can find this way.
12413 do {
12414 SDUse &Use = *UI;
12415
12416 // Skip uses of different values from the same node.
12417 if (Use.getResNo() != From.getResNo()) {
12418 ++UI;
12419 continue;
12420 }
12421
12422 // If this node hasn't been modified yet, it's still in the CSE maps,
12423 // so remove its old self from the CSE maps.
12424 if (!UserRemovedFromCSEMaps) {
12425 RemoveNodeFromCSEMaps(User);
12426 UserRemovedFromCSEMaps = true;
12427 }
12428
12429 ++UI;
12430 Use.set(To);
12431 if (To->isDivergent() != From->isDivergent())
12433 } while (UI != UE && UI->getUser() == User);
12434 // We are iterating over all uses of the From node, so if a use
12435 // doesn't use the specific value, no changes are made.
12436 if (!UserRemovedFromCSEMaps)
12437 continue;
12438
12439 // Now that we have modified User, add it back to the CSE maps. If it
12440 // already exists there, recursively merge the results together.
12441 AddModifiedNodeToCSEMaps(User);
12442 }
12443
12444 // If we just RAUW'd the root, take note.
12445 if (From == getRoot())
12446 setRoot(To);
12447}
12448
12449namespace {
12450
12451/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
12452/// to record information about a use.
12453struct UseMemo {
12454 SDNode *User;
12455 unsigned Index;
12456 SDUse *Use;
12457};
12458
12459/// operator< - Sort Memos by User.
12460bool operator<(const UseMemo &L, const UseMemo &R) {
12461 return (intptr_t)L.User < (intptr_t)R.User;
12462}
12463
12464/// RAUOVWUpdateListener - Helper for ReplaceAllUsesOfValuesWith - When the node
12465/// pointed to by a UseMemo is deleted, set the User to nullptr to indicate that
12466/// the node already has been taken care of recursively.
12467class RAUOVWUpdateListener : public SelectionDAG::DAGUpdateListener {
12468 SmallVectorImpl<UseMemo> &Uses;
12469
12470 void NodeDeleted(SDNode *N, SDNode *E) override {
12471 for (UseMemo &Memo : Uses)
12472 if (Memo.User == N)
12473 Memo.User = nullptr;
12474 }
12475
12476public:
12477 RAUOVWUpdateListener(SelectionDAG &d, SmallVectorImpl<UseMemo> &uses)
12478 : SelectionDAG::DAGUpdateListener(d), Uses(uses) {}
12479};
12480
12481} // end anonymous namespace
12482
12483/// Return true if a glue output should propagate divergence information.
12485 switch (Node->getOpcode()) {
12486 case ISD::CopyFromReg:
12487 case ISD::CopyToReg:
12488 return false;
12489 default:
12490 return true;
12491 }
12492
12493 llvm_unreachable("covered opcode switch");
12494}
12495
12497 if (TLI->isSDNodeAlwaysUniform(N)) {
12498 assert(!TLI->isSDNodeSourceOfDivergence(N, FLI, UA) &&
12499 "Conflicting divergence information!");
12500 return false;
12501 }
12502 if (TLI->isSDNodeSourceOfDivergence(N, FLI, UA))
12503 return true;
12504 for (const auto &Op : N->ops()) {
12505 EVT VT = Op.getValueType();
12506
12507 // Skip Chain. It does not carry divergence.
12508 if (VT != MVT::Other && Op.getNode()->isDivergent() &&
12509 (VT != MVT::Glue || gluePropagatesDivergence(Op.getNode())))
12510 return true;
12511 }
12512 return false;
12513}
12514
12516 SmallVector<SDNode *, 16> Worklist(1, N);
12517 do {
12518 N = Worklist.pop_back_val();
12519 bool IsDivergent = calculateDivergence(N);
12520 if (N->SDNodeBits.IsDivergent != IsDivergent) {
12521 N->SDNodeBits.IsDivergent = IsDivergent;
12522 llvm::append_range(Worklist, N->users());
12523 }
12524 } while (!Worklist.empty());
12525}
12526
12527void SelectionDAG::CreateTopologicalOrder(std::vector<SDNode *> &Order) {
12529 Order.reserve(AllNodes.size());
12530 for (auto &N : allnodes()) {
12531 unsigned NOps = N.getNumOperands();
12532 Degree[&N] = NOps;
12533 if (0 == NOps)
12534 Order.push_back(&N);
12535 }
12536 for (size_t I = 0; I != Order.size(); ++I) {
12537 SDNode *N = Order[I];
12538 for (auto *U : N->users()) {
12539 unsigned &UnsortedOps = Degree[U];
12540 if (0 == --UnsortedOps)
12541 Order.push_back(U);
12542 }
12543 }
12544}
12545
12546#if !defined(NDEBUG) && LLVM_ENABLE_ABI_BREAKING_CHECKS
12547void SelectionDAG::VerifyDAGDivergence() {
12548 std::vector<SDNode *> TopoOrder;
12549 CreateTopologicalOrder(TopoOrder);
12550 for (auto *N : TopoOrder) {
12551 assert(calculateDivergence(N) == N->isDivergent() &&
12552 "Divergence bit inconsistency detected");
12553 }
12554}
12555#endif
12556
12557/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
12558/// uses of other values produced by From.getNode() alone. The same value
12559/// may appear in both the From and To list. The Deleted vector is
12560/// handled the same way as for ReplaceAllUsesWith.
12562 const SDValue *To,
12563 unsigned Num){
12564 // Handle the simple, trivial case efficiently.
12565 if (Num == 1)
12566 return ReplaceAllUsesOfValueWith(*From, *To);
12567
12568 transferDbgValues(*From, *To);
12569 copyExtraInfo(From->getNode(), To->getNode());
12570
12571 // Read up all the uses and make records of them. This helps
12572 // processing new uses that are introduced during the
12573 // replacement process.
12575 for (unsigned i = 0; i != Num; ++i) {
12576 unsigned FromResNo = From[i].getResNo();
12577 SDNode *FromNode = From[i].getNode();
12578 for (SDUse &Use : FromNode->uses()) {
12579 if (Use.getResNo() == FromResNo) {
12580 UseMemo Memo = {Use.getUser(), i, &Use};
12581 Uses.push_back(Memo);
12582 }
12583 }
12584 }
12585
12586 // Sort the uses, so that all the uses from a given User are together.
12588 RAUOVWUpdateListener Listener(*this, Uses);
12589
12590 for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
12591 UseIndex != UseIndexEnd; ) {
12592 // We know that this user uses some value of From. If it is the right
12593 // value, update it.
12594 SDNode *User = Uses[UseIndex].User;
12595 // If the node has been deleted by recursive CSE updates when updating
12596 // another node, then just skip this entry.
12597 if (User == nullptr) {
12598 ++UseIndex;
12599 continue;
12600 }
12601
12602 // This node is about to morph, remove its old self from the CSE maps.
12603 RemoveNodeFromCSEMaps(User);
12604
12605 // The Uses array is sorted, so all the uses for a given User
12606 // are next to each other in the list.
12607 // To help reduce the number of CSE recomputations, process all
12608 // the uses of this user that we can find this way.
12609 do {
12610 unsigned i = Uses[UseIndex].Index;
12611 SDUse &Use = *Uses[UseIndex].Use;
12612 ++UseIndex;
12613
12614 Use.set(To[i]);
12615 } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
12616
12617 // Now that we have modified User, add it back to the CSE maps. If it
12618 // already exists there, recursively merge the results together.
12619 AddModifiedNodeToCSEMaps(User);
12620 }
12621}
12622
12623/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
12624/// based on their topological order. It returns the maximum id and a vector
12625/// of the SDNodes* in assigned order by reference.
12627 unsigned DAGSize = 0;
12628
12629 // SortedPos tracks the progress of the algorithm. Nodes before it are
12630 // sorted, nodes after it are unsorted. When the algorithm completes
12631 // it is at the end of the list.
12632 allnodes_iterator SortedPos = allnodes_begin();
12633
12634 // Visit all the nodes. Move nodes with no operands to the front of
12635 // the list immediately. Annotate nodes that do have operands with their
12636 // operand count. Before we do this, the Node Id fields of the nodes
12637 // may contain arbitrary values. After, the Node Id fields for nodes
12638 // before SortedPos will contain the topological sort index, and the
12639 // Node Id fields for nodes At SortedPos and after will contain the
12640 // count of outstanding operands.
12642 checkForCycles(&N, this);
12643 unsigned Degree = N.getNumOperands();
12644 if (Degree == 0) {
12645 // A node with no uses, add it to the result array immediately.
12646 N.setNodeId(DAGSize++);
12647 allnodes_iterator Q(&N);
12648 if (Q != SortedPos)
12649 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
12650 assert(SortedPos != AllNodes.end() && "Overran node list");
12651 ++SortedPos;
12652 } else {
12653 // Temporarily use the Node Id as scratch space for the degree count.
12654 N.setNodeId(Degree);
12655 }
12656 }
12657
12658 // Visit all the nodes. As we iterate, move nodes into sorted order,
12659 // such that by the time the end is reached all nodes will be sorted.
12660 for (SDNode &Node : allnodes()) {
12661 SDNode *N = &Node;
12662 checkForCycles(N, this);
12663 // N is in sorted position, so all its uses have one less operand
12664 // that needs to be sorted.
12665 for (SDNode *P : N->users()) {
12666 unsigned Degree = P->getNodeId();
12667 assert(Degree != 0 && "Invalid node degree");
12668 --Degree;
12669 if (Degree == 0) {
12670 // All of P's operands are sorted, so P may sorted now.
12671 P->setNodeId(DAGSize++);
12672 if (P->getIterator() != SortedPos)
12673 SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
12674 assert(SortedPos != AllNodes.end() && "Overran node list");
12675 ++SortedPos;
12676 } else {
12677 // Update P's outstanding operand count.
12678 P->setNodeId(Degree);
12679 }
12680 }
12681 if (Node.getIterator() == SortedPos) {
12682#ifndef NDEBUG
12684 SDNode *S = &*++I;
12685 dbgs() << "Overran sorted position:\n";
12686 S->dumprFull(this); dbgs() << "\n";
12687 dbgs() << "Checking if this is due to cycles\n";
12688 checkForCycles(this, true);
12689#endif
12690 llvm_unreachable(nullptr);
12691 }
12692 }
12693
12694 assert(SortedPos == AllNodes.end() &&
12695 "Topological sort incomplete!");
12696 assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
12697 "First node in topological sort is not the entry token!");
12698 assert(AllNodes.front().getNodeId() == 0 &&
12699 "First node in topological sort has non-zero id!");
12700 assert(AllNodes.front().getNumOperands() == 0 &&
12701 "First node in topological sort has operands!");
12702 assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
12703 "Last node in topologic sort has unexpected id!");
12704 assert(AllNodes.back().use_empty() &&
12705 "Last node in topologic sort has users!");
12706 assert(DAGSize == allnodes_size() && "Node count mismatch!");
12707 return DAGSize;
12708}
12709
12711 SmallVectorImpl<const SDNode *> &SortedNodes) const {
12712 SortedNodes.clear();
12713 // Node -> remaining number of outstanding operands.
12714 DenseMap<const SDNode *, unsigned> RemainingOperands;
12715
12716 // Put nodes without any operands into SortedNodes first.
12717 for (const SDNode &N : allnodes()) {
12718 checkForCycles(&N, this);
12719 unsigned NumOperands = N.getNumOperands();
12720 if (NumOperands == 0)
12721 SortedNodes.push_back(&N);
12722 else
12723 // Record their total number of outstanding operands.
12724 RemainingOperands[&N] = NumOperands;
12725 }
12726
12727 // A node is pushed into SortedNodes when all of its operands (predecessors in
12728 // the graph) are also in SortedNodes.
12729 for (unsigned i = 0U; i < SortedNodes.size(); ++i) {
12730 const SDNode *N = SortedNodes[i];
12731 for (const SDNode *U : N->users()) {
12732 unsigned &NumRemOperands = RemainingOperands[U];
12733 assert(NumRemOperands && "Invalid number of remaining operands");
12734 --NumRemOperands;
12735 if (!NumRemOperands)
12736 SortedNodes.push_back(U);
12737 }
12738 }
12739
12740 assert(SortedNodes.size() == AllNodes.size() && "Node count mismatch");
12741 assert(SortedNodes.front()->getOpcode() == ISD::EntryToken &&
12742 "First node in topological sort is not the entry token");
12743 assert(SortedNodes.front()->getNumOperands() == 0 &&
12744 "First node in topological sort has operands");
12745 assert(SortedNodes.back()->use_empty() &&
12746 "Last node in topologic sort has users");
12747}
12748
12749/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
12750/// value is produced by SD.
12751void SelectionDAG::AddDbgValue(SDDbgValue *DB, bool isParameter) {
12752 for (SDNode *SD : DB->getSDNodes()) {
12753 if (!SD)
12754 continue;
12755 assert(DbgInfo->getSDDbgValues(SD).empty() || SD->getHasDebugValue());
12756 SD->setHasDebugValue(true);
12757 }
12758 DbgInfo->add(DB, isParameter);
12759}
12760
12761void SelectionDAG::AddDbgLabel(SDDbgLabel *DB) { DbgInfo->add(DB); }
12762
12764 SDValue NewMemOpChain) {
12765 assert(isa<MemSDNode>(NewMemOpChain) && "Expected a memop node");
12766 assert(NewMemOpChain.getValueType() == MVT::Other && "Expected a token VT");
12767 // The new memory operation must have the same position as the old load in
12768 // terms of memory dependency. Create a TokenFactor for the old load and new
12769 // memory operation and update uses of the old load's output chain to use that
12770 // TokenFactor.
12771 if (OldChain == NewMemOpChain || OldChain.use_empty())
12772 return NewMemOpChain;
12773
12774 SDValue TokenFactor = getNode(ISD::TokenFactor, SDLoc(OldChain), MVT::Other,
12775 OldChain, NewMemOpChain);
12776 ReplaceAllUsesOfValueWith(OldChain, TokenFactor);
12777 UpdateNodeOperands(TokenFactor.getNode(), OldChain, NewMemOpChain);
12778 return TokenFactor;
12779}
12780
12782 SDValue NewMemOp) {
12783 assert(isa<MemSDNode>(NewMemOp.getNode()) && "Expected a memop node");
12784 SDValue OldChain = SDValue(OldLoad, 1);
12785 SDValue NewMemOpChain = NewMemOp.getValue(1);
12786 return makeEquivalentMemoryOrdering(OldChain, NewMemOpChain);
12787}
12788
12790 Function **OutFunction) {
12791 assert(isa<ExternalSymbolSDNode>(Op) && "Node should be an ExternalSymbol");
12792
12793 auto *Symbol = cast<ExternalSymbolSDNode>(Op)->getSymbol();
12794 auto *Module = MF->getFunction().getParent();
12795 auto *Function = Module->getFunction(Symbol);
12796
12797 if (OutFunction != nullptr)
12798 *OutFunction = Function;
12799
12800 if (Function != nullptr) {
12801 auto PtrTy = TLI->getPointerTy(getDataLayout(), Function->getAddressSpace());
12802 return getGlobalAddress(Function, SDLoc(Op), PtrTy);
12803 }
12804
12805 std::string ErrorStr;
12806 raw_string_ostream ErrorFormatter(ErrorStr);
12807 ErrorFormatter << "Undefined external symbol ";
12808 ErrorFormatter << '"' << Symbol << '"';
12809 report_fatal_error(Twine(ErrorStr));
12810}
12811
12812//===----------------------------------------------------------------------===//
12813// SDNode Class
12814//===----------------------------------------------------------------------===//
12815
12818 return Const != nullptr && Const->isZero();
12819}
12820
12822 return V.isUndef() || isNullConstant(V);
12823}
12824
12827 return Const != nullptr && Const->isZero() && !Const->isNegative();
12828}
12829
12832 return Const != nullptr && Const->isAllOnes();
12833}
12834
12837 return Const != nullptr && Const->isOne();
12838}
12839
12842 return Const != nullptr && Const->isMinSignedValue();
12843}
12844
12845bool llvm::isNeutralConstant(unsigned Opcode, SDNodeFlags Flags, SDValue V,
12846 unsigned OperandNo) {
12847 // NOTE: The cases should match with IR's ConstantExpr::getBinOpIdentity().
12848 // TODO: Target-specific opcodes could be added.
12849 if (auto *ConstV = isConstOrConstSplat(V, /*AllowUndefs*/ false,
12850 /*AllowTruncation*/ true)) {
12851 APInt Const = ConstV->getAPIntValue().trunc(V.getScalarValueSizeInBits());
12852 switch (Opcode) {
12853 case ISD::ADD:
12854 case ISD::OR:
12855 case ISD::XOR:
12856 case ISD::UMAX:
12857 return Const.isZero();
12858 case ISD::MUL:
12859 return Const.isOne();
12860 case ISD::AND:
12861 case ISD::UMIN:
12862 return Const.isAllOnes();
12863 case ISD::SMAX:
12864 return Const.isMinSignedValue();
12865 case ISD::SMIN:
12866 return Const.isMaxSignedValue();
12867 case ISD::SUB:
12868 case ISD::SHL:
12869 case ISD::SRA:
12870 case ISD::SRL:
12871 return OperandNo == 1 && Const.isZero();
12872 case ISD::UDIV:
12873 case ISD::SDIV:
12874 return OperandNo == 1 && Const.isOne();
12875 }
12876 } else if (auto *ConstFP = isConstOrConstSplatFP(V)) {
12877 switch (Opcode) {
12878 case ISD::FADD:
12879 return ConstFP->isZero() &&
12880 (Flags.hasNoSignedZeros() || ConstFP->isNegative());
12881 case ISD::FSUB:
12882 return OperandNo == 1 && ConstFP->isZero() &&
12883 (Flags.hasNoSignedZeros() || !ConstFP->isNegative());
12884 case ISD::FMUL:
12885 return ConstFP->isExactlyValue(1.0);
12886 case ISD::FDIV:
12887 return OperandNo == 1 && ConstFP->isExactlyValue(1.0);
12888 case ISD::FMINNUM:
12889 case ISD::FMAXNUM: {
12890 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
12891 EVT VT = V.getValueType();
12892 const fltSemantics &Semantics = VT.getFltSemantics();
12893 APFloat NeutralAF = !Flags.hasNoNaNs()
12894 ? APFloat::getQNaN(Semantics)
12895 : !Flags.hasNoInfs()
12896 ? APFloat::getInf(Semantics)
12897 : APFloat::getLargest(Semantics);
12898 if (Opcode == ISD::FMAXNUM)
12899 NeutralAF.changeSign();
12900
12901 return ConstFP->isExactlyValue(NeutralAF);
12902 }
12903 }
12904 }
12905 return false;
12906}
12907
12909 while (V.getOpcode() == ISD::BITCAST)
12910 V = V.getOperand(0);
12911 return V;
12912}
12913
12915 while (V.getOpcode() == ISD::BITCAST && V.getOperand(0).hasOneUse())
12916 V = V.getOperand(0);
12917 return V;
12918}
12919
12921 while (V.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12922 V = V.getOperand(0);
12923 return V;
12924}
12925
12927 while (V.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12928 SDValue InVec = V.getOperand(0);
12929 SDValue EltNo = V.getOperand(2);
12930 EVT VT = InVec.getValueType();
12931 auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
12932 if (IndexC && VT.isFixedLengthVector() &&
12933 IndexC->getAPIntValue().ult(VT.getVectorNumElements()) &&
12934 !DemandedElts[IndexC->getZExtValue()]) {
12935 V = InVec;
12936 continue;
12937 }
12938 break;
12939 }
12940 return V;
12941}
12942
12944 while (V.getOpcode() == ISD::TRUNCATE)
12945 V = V.getOperand(0);
12946 return V;
12947}
12948
12949bool llvm::isBitwiseNot(SDValue V, bool AllowUndefs) {
12950 if (V.getOpcode() != ISD::XOR)
12951 return false;
12952 V = peekThroughBitcasts(V.getOperand(1));
12953 unsigned NumBits = V.getScalarValueSizeInBits();
12954 ConstantSDNode *C =
12955 isConstOrConstSplat(V, AllowUndefs, /*AllowTruncation*/ true);
12956 return C && (C->getAPIntValue().countr_one() >= NumBits);
12957}
12958
12960 bool AllowTruncation) {
12961 EVT VT = N.getValueType();
12962 APInt DemandedElts = VT.isFixedLengthVector()
12964 : APInt(1, 1);
12965 return isConstOrConstSplat(N, DemandedElts, AllowUndefs, AllowTruncation);
12966}
12967
12969 bool AllowUndefs,
12970 bool AllowTruncation) {
12972 return CN;
12973
12974 // SplatVectors can truncate their operands. Ignore that case here unless
12975 // AllowTruncation is set.
12976 if (N->getOpcode() == ISD::SPLAT_VECTOR) {
12977 EVT VecEltVT = N->getValueType(0).getVectorElementType();
12978 if (auto *CN = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12979 EVT CVT = CN->getValueType(0);
12980 assert(CVT.bitsGE(VecEltVT) && "Illegal splat_vector element extension");
12981 if (AllowTruncation || CVT == VecEltVT)
12982 return CN;
12983 }
12984 }
12985
12987 BitVector UndefElements;
12988 ConstantSDNode *CN = BV->getConstantSplatNode(DemandedElts, &UndefElements);
12989
12990 // BuildVectors can truncate their operands. Ignore that case here unless
12991 // AllowTruncation is set.
12992 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
12993 if (CN && (UndefElements.none() || AllowUndefs)) {
12994 EVT CVT = CN->getValueType(0);
12995 EVT NSVT = N.getValueType().getScalarType();
12996 assert(CVT.bitsGE(NSVT) && "Illegal build vector element extension");
12997 if (AllowTruncation || (CVT == NSVT))
12998 return CN;
12999 }
13000 }
13001
13002 return nullptr;
13003}
13004
13006 EVT VT = N.getValueType();
13007 APInt DemandedElts = VT.isFixedLengthVector()
13009 : APInt(1, 1);
13010 return isConstOrConstSplatFP(N, DemandedElts, AllowUndefs);
13011}
13012
13014 const APInt &DemandedElts,
13015 bool AllowUndefs) {
13017 return CN;
13018
13020 BitVector UndefElements;
13021 ConstantFPSDNode *CN =
13022 BV->getConstantFPSplatNode(DemandedElts, &UndefElements);
13023 // TODO: Look into whether we should allow UndefElements in non-DemandedElts
13024 if (CN && (UndefElements.none() || AllowUndefs))
13025 return CN;
13026 }
13027
13028 if (N.getOpcode() == ISD::SPLAT_VECTOR)
13029 if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N.getOperand(0)))
13030 return CN;
13031
13032 return nullptr;
13033}
13034
13035bool llvm::isNullOrNullSplat(SDValue N, bool AllowUndefs) {
13036 // TODO: may want to use peekThroughBitcast() here.
13037 ConstantSDNode *C =
13038 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation=*/true);
13039 return C && C->isZero();
13040}
13041
13042bool llvm::isOneOrOneSplat(SDValue N, bool AllowUndefs) {
13043 ConstantSDNode *C =
13044 isConstOrConstSplat(N, AllowUndefs, /*AllowTruncation*/ true);
13045 return C && C->isOne();
13046}
13047
13048bool llvm::isAllOnesOrAllOnesSplat(SDValue N, bool AllowUndefs) {
13050 unsigned BitWidth = N.getScalarValueSizeInBits();
13051 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
13052 return C && C->isAllOnes() && C->getValueSizeInBits(0) == BitWidth;
13053}
13054
13055bool llvm::isOnesOrOnesSplat(SDValue N, bool AllowUndefs) {
13056 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs);
13057 return C && APInt::isSameValue(C->getAPIntValue(),
13058 APInt(C->getAPIntValue().getBitWidth(), 1));
13059}
13060
13061bool llvm::isZeroOrZeroSplat(SDValue N, bool AllowUndefs) {
13063 ConstantSDNode *C = isConstOrConstSplat(N, AllowUndefs, true);
13064 return C && C->isZero();
13065}
13066
13070
13071MemSDNode::MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
13072 SDVTList VTs, EVT memvt, MachineMemOperand *mmo)
13073 : SDNode(Opc, Order, dl, VTs), MemoryVT(memvt), MMO(mmo) {
13074 MemSDNodeBits.IsVolatile = MMO->isVolatile();
13075 MemSDNodeBits.IsNonTemporal = MMO->isNonTemporal();
13076 MemSDNodeBits.IsDereferenceable = MMO->isDereferenceable();
13077 MemSDNodeBits.IsInvariant = MMO->isInvariant();
13078
13079 // We check here that the size of the memory operand fits within the size of
13080 // the MMO. This is because the MMO might indicate only a possible address
13081 // range instead of specifying the affected memory addresses precisely.
13082 assert(
13083 (!MMO->getType().isValid() ||
13084 TypeSize::isKnownLE(memvt.getStoreSize(), MMO->getSize().getValue())) &&
13085 "Size mismatch!");
13086}
13087
13088/// Profile - Gather unique data for the node.
13089///
13091 AddNodeIDNode(ID, this);
13092}
13093
13094namespace {
13095
13096 struct EVTArray {
13097 std::vector<EVT> VTs;
13098
13099 EVTArray() {
13100 VTs.reserve(MVT::VALUETYPE_SIZE);
13101 for (unsigned i = 0; i < MVT::VALUETYPE_SIZE; ++i)
13102 VTs.push_back(MVT((MVT::SimpleValueType)i));
13103 }
13104 };
13105
13106} // end anonymous namespace
13107
13108/// getValueTypeList - Return a pointer to the specified value type.
13109///
13110const EVT *SDNode::getValueTypeList(MVT VT) {
13111 static EVTArray SimpleVTArray;
13112
13113 assert(VT < MVT::VALUETYPE_SIZE && "Value type out of range!");
13114 return &SimpleVTArray.VTs[VT.SimpleTy];
13115}
13116
13117/// hasAnyUseOfValue - Return true if there are any use of the indicated
13118/// value. This method ignores uses of other values defined by this operation.
13119bool SDNode::hasAnyUseOfValue(unsigned Value) const {
13120 assert(Value < getNumValues() && "Bad value!");
13121
13122 for (SDUse &U : uses())
13123 if (U.getResNo() == Value)
13124 return true;
13125
13126 return false;
13127}
13128
13129/// isOnlyUserOf - Return true if this node is the only use of N.
13130bool SDNode::isOnlyUserOf(const SDNode *N) const {
13131 bool Seen = false;
13132 for (const SDNode *User : N->users()) {
13133 if (User == this)
13134 Seen = true;
13135 else
13136 return false;
13137 }
13138
13139 return Seen;
13140}
13141
13142/// Return true if the only users of N are contained in Nodes.
13144 bool Seen = false;
13145 for (const SDNode *User : N->users()) {
13146 if (llvm::is_contained(Nodes, User))
13147 Seen = true;
13148 else
13149 return false;
13150 }
13151
13152 return Seen;
13153}
13154
13155/// Return true if the referenced return value is an operand of N.
13156bool SDValue::isOperandOf(const SDNode *N) const {
13157 return is_contained(N->op_values(), *this);
13158}
13159
13160bool SDNode::isOperandOf(const SDNode *N) const {
13161 return any_of(N->op_values(),
13162 [this](SDValue Op) { return this == Op.getNode(); });
13163}
13164
13165/// reachesChainWithoutSideEffects - Return true if this operand (which must
13166/// be a chain) reaches the specified operand without crossing any
13167/// side-effecting instructions on any chain path. In practice, this looks
13168/// through token factors and non-volatile loads. In order to remain efficient,
13169/// this only looks a couple of nodes in, it does not do an exhaustive search.
13170///
13171/// Note that we only need to examine chains when we're searching for
13172/// side-effects; SelectionDAG requires that all side-effects are represented
13173/// by chains, even if another operand would force a specific ordering. This
13174/// constraint is necessary to allow transformations like splitting loads.
13176 unsigned Depth) const {
13177 if (*this == Dest) return true;
13178
13179 // Don't search too deeply, we just want to be able to see through
13180 // TokenFactor's etc.
13181 if (Depth == 0) return false;
13182
13183 // If this is a token factor, all inputs to the TF happen in parallel.
13184 if (getOpcode() == ISD::TokenFactor) {
13185 // First, try a shallow search.
13186 if (is_contained((*this)->ops(), Dest)) {
13187 // We found the chain we want as an operand of this TokenFactor.
13188 // Essentially, we reach the chain without side-effects if we could
13189 // serialize the TokenFactor into a simple chain of operations with
13190 // Dest as the last operation. This is automatically true if the
13191 // chain has one use: there are no other ordering constraints.
13192 // If the chain has more than one use, we give up: some other
13193 // use of Dest might force a side-effect between Dest and the current
13194 // node.
13195 if (Dest.hasOneUse())
13196 return true;
13197 }
13198 // Next, try a deep search: check whether every operand of the TokenFactor
13199 // reaches Dest.
13200 return llvm::all_of((*this)->ops(), [=](SDValue Op) {
13201 return Op.reachesChainWithoutSideEffects(Dest, Depth - 1);
13202 });
13203 }
13204
13205 // Loads don't have side effects, look through them.
13206 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
13207 if (Ld->isUnordered())
13208 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
13209 }
13210 return false;
13211}
13212
13213bool SDNode::hasPredecessor(const SDNode *N) const {
13216 Worklist.push_back(this);
13217 return hasPredecessorHelper(N, Visited, Worklist);
13218}
13219
13221 this->Flags &= Flags;
13222}
13223
13224SDValue
13226 ArrayRef<ISD::NodeType> CandidateBinOps,
13227 bool AllowPartials) {
13228 // The pattern must end in an extract from index 0.
13229 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13230 !isNullConstant(Extract->getOperand(1)))
13231 return SDValue();
13232
13233 // Match against one of the candidate binary ops.
13234 SDValue Op = Extract->getOperand(0);
13235 if (llvm::none_of(CandidateBinOps, [Op](ISD::NodeType BinOp) {
13236 return Op.getOpcode() == unsigned(BinOp);
13237 }))
13238 return SDValue();
13239
13240 // Floating-point reductions may require relaxed constraints on the final step
13241 // of the reduction because they may reorder intermediate operations.
13242 unsigned CandidateBinOp = Op.getOpcode();
13243 if (Op.getValueType().isFloatingPoint()) {
13244 SDNodeFlags Flags = Op->getFlags();
13245 switch (CandidateBinOp) {
13246 case ISD::FADD:
13247 if (!Flags.hasNoSignedZeros() || !Flags.hasAllowReassociation())
13248 return SDValue();
13249 break;
13250 default:
13251 llvm_unreachable("Unhandled FP opcode for binop reduction");
13252 }
13253 }
13254
13255 // Matching failed - attempt to see if we did enough stages that a partial
13256 // reduction from a subvector is possible.
13257 auto PartialReduction = [&](SDValue Op, unsigned NumSubElts) {
13258 if (!AllowPartials || !Op)
13259 return SDValue();
13260 EVT OpVT = Op.getValueType();
13261 EVT OpSVT = OpVT.getScalarType();
13262 EVT SubVT = EVT::getVectorVT(*getContext(), OpSVT, NumSubElts);
13263 if (!TLI->isExtractSubvectorCheap(SubVT, OpVT, 0))
13264 return SDValue();
13265 BinOp = (ISD::NodeType)CandidateBinOp;
13266 return getExtractSubvector(SDLoc(Op), SubVT, Op, 0);
13267 };
13268
13269 // At each stage, we're looking for something that looks like:
13270 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
13271 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
13272 // i32 undef, i32 undef, i32 undef, i32 undef>
13273 // %a = binop <8 x i32> %op, %s
13274 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
13275 // we expect something like:
13276 // <4,5,6,7,u,u,u,u>
13277 // <2,3,u,u,u,u,u,u>
13278 // <1,u,u,u,u,u,u,u>
13279 // While a partial reduction match would be:
13280 // <2,3,u,u,u,u,u,u>
13281 // <1,u,u,u,u,u,u,u>
13282 unsigned Stages = Log2_32(Op.getValueType().getVectorNumElements());
13283 SDValue PrevOp;
13284 for (unsigned i = 0; i < Stages; ++i) {
13285 unsigned MaskEnd = (1 << i);
13286
13287 if (Op.getOpcode() != CandidateBinOp)
13288 return PartialReduction(PrevOp, MaskEnd);
13289
13290 SDValue Op0 = Op.getOperand(0);
13291 SDValue Op1 = Op.getOperand(1);
13292
13294 if (Shuffle) {
13295 Op = Op1;
13296 } else {
13297 Shuffle = dyn_cast<ShuffleVectorSDNode>(Op1);
13298 Op = Op0;
13299 }
13300
13301 // The first operand of the shuffle should be the same as the other operand
13302 // of the binop.
13303 if (!Shuffle || Shuffle->getOperand(0) != Op)
13304 return PartialReduction(PrevOp, MaskEnd);
13305
13306 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
13307 for (int Index = 0; Index < (int)MaskEnd; ++Index)
13308 if (Shuffle->getMaskElt(Index) != (int)(MaskEnd + Index))
13309 return PartialReduction(PrevOp, MaskEnd);
13310
13311 PrevOp = Op;
13312 }
13313
13314 // Handle subvector reductions, which tend to appear after the shuffle
13315 // reduction stages.
13316 while (Op.getOpcode() == CandidateBinOp) {
13317 unsigned NumElts = Op.getValueType().getVectorNumElements();
13318 SDValue Op0 = Op.getOperand(0);
13319 SDValue Op1 = Op.getOperand(1);
13320 if (Op0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
13322 Op0.getOperand(0) != Op1.getOperand(0))
13323 break;
13324 SDValue Src = Op0.getOperand(0);
13325 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
13326 if (NumSrcElts != (2 * NumElts))
13327 break;
13328 if (!(Op0.getConstantOperandAPInt(1) == 0 &&
13329 Op1.getConstantOperandAPInt(1) == NumElts) &&
13330 !(Op1.getConstantOperandAPInt(1) == 0 &&
13331 Op0.getConstantOperandAPInt(1) == NumElts))
13332 break;
13333 Op = Src;
13334 }
13335
13336 BinOp = (ISD::NodeType)CandidateBinOp;
13337 return Op;
13338}
13339
13341 EVT VT = N->getValueType(0);
13342 EVT EltVT = VT.getVectorElementType();
13343 unsigned NE = VT.getVectorNumElements();
13344
13345 SDLoc dl(N);
13346
13347 // If ResNE is 0, fully unroll the vector op.
13348 if (ResNE == 0)
13349 ResNE = NE;
13350 else if (NE > ResNE)
13351 NE = ResNE;
13352
13353 if (N->getNumValues() == 2) {
13354 SmallVector<SDValue, 8> Scalars0, Scalars1;
13355 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13356 EVT VT1 = N->getValueType(1);
13357 EVT EltVT1 = VT1.getVectorElementType();
13358
13359 unsigned i;
13360 for (i = 0; i != NE; ++i) {
13361 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13362 SDValue Operand = N->getOperand(j);
13363 EVT OperandVT = Operand.getValueType();
13364
13365 // A vector operand; extract a single element.
13366 EVT OperandEltVT = OperandVT.getVectorElementType();
13367 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13368 }
13369
13370 SDValue EltOp = getNode(N->getOpcode(), dl, {EltVT, EltVT1}, Operands);
13371 Scalars0.push_back(EltOp);
13372 Scalars1.push_back(EltOp.getValue(1));
13373 }
13374
13375 for (; i < ResNE; ++i) {
13376 Scalars0.push_back(getUNDEF(EltVT));
13377 Scalars1.push_back(getUNDEF(EltVT1));
13378 }
13379
13380 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13381 EVT VecVT1 = EVT::getVectorVT(*getContext(), EltVT1, ResNE);
13382 SDValue Vec0 = getBuildVector(VecVT, dl, Scalars0);
13383 SDValue Vec1 = getBuildVector(VecVT1, dl, Scalars1);
13384 return getMergeValues({Vec0, Vec1}, dl);
13385 }
13386
13387 assert(N->getNumValues() == 1 &&
13388 "Can't unroll a vector with multiple results!");
13389
13391 SmallVector<SDValue, 4> Operands(N->getNumOperands());
13392
13393 unsigned i;
13394 for (i= 0; i != NE; ++i) {
13395 for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
13396 SDValue Operand = N->getOperand(j);
13397 EVT OperandVT = Operand.getValueType();
13398 if (OperandVT.isVector()) {
13399 // A vector operand; extract a single element.
13400 EVT OperandEltVT = OperandVT.getVectorElementType();
13401 Operands[j] = getExtractVectorElt(dl, OperandEltVT, Operand, i);
13402 } else {
13403 // A scalar operand; just use it as is.
13404 Operands[j] = Operand;
13405 }
13406 }
13407
13408 switch (N->getOpcode()) {
13409 default: {
13410 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands,
13411 N->getFlags()));
13412 break;
13413 }
13414 case ISD::VSELECT:
13415 Scalars.push_back(getNode(ISD::SELECT, dl, EltVT, Operands));
13416 break;
13417 case ISD::SHL:
13418 case ISD::SRA:
13419 case ISD::SRL:
13420 case ISD::ROTL:
13421 case ISD::ROTR:
13422 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
13424 Operands[1])));
13425 break;
13427 EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
13428 Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
13429 Operands[0],
13430 getValueType(ExtVT)));
13431 break;
13432 }
13433 case ISD::ADDRSPACECAST: {
13434 const auto *ASC = cast<AddrSpaceCastSDNode>(N);
13435 Scalars.push_back(getAddrSpaceCast(dl, EltVT, Operands[0],
13436 ASC->getSrcAddressSpace(),
13437 ASC->getDestAddressSpace()));
13438 break;
13439 }
13440 }
13441 }
13442
13443 for (; i < ResNE; ++i)
13444 Scalars.push_back(getUNDEF(EltVT));
13445
13446 EVT VecVT = EVT::getVectorVT(*getContext(), EltVT, ResNE);
13447 return getBuildVector(VecVT, dl, Scalars);
13448}
13449
13450std::pair<SDValue, SDValue> SelectionDAG::UnrollVectorOverflowOp(
13451 SDNode *N, unsigned ResNE) {
13452 unsigned Opcode = N->getOpcode();
13453 assert((Opcode == ISD::UADDO || Opcode == ISD::SADDO ||
13454 Opcode == ISD::USUBO || Opcode == ISD::SSUBO ||
13455 Opcode == ISD::UMULO || Opcode == ISD::SMULO) &&
13456 "Expected an overflow opcode");
13457
13458 EVT ResVT = N->getValueType(0);
13459 EVT OvVT = N->getValueType(1);
13460 EVT ResEltVT = ResVT.getVectorElementType();
13461 EVT OvEltVT = OvVT.getVectorElementType();
13462 SDLoc dl(N);
13463
13464 // If ResNE is 0, fully unroll the vector op.
13465 unsigned NE = ResVT.getVectorNumElements();
13466 if (ResNE == 0)
13467 ResNE = NE;
13468 else if (NE > ResNE)
13469 NE = ResNE;
13470
13471 SmallVector<SDValue, 8> LHSScalars;
13472 SmallVector<SDValue, 8> RHSScalars;
13473 ExtractVectorElements(N->getOperand(0), LHSScalars, 0, NE);
13474 ExtractVectorElements(N->getOperand(1), RHSScalars, 0, NE);
13475
13476 EVT SVT = TLI->getSetCCResultType(getDataLayout(), *getContext(), ResEltVT);
13477 SDVTList VTs = getVTList(ResEltVT, SVT);
13478 SmallVector<SDValue, 8> ResScalars;
13479 SmallVector<SDValue, 8> OvScalars;
13480 for (unsigned i = 0; i < NE; ++i) {
13481 SDValue Res = getNode(Opcode, dl, VTs, LHSScalars[i], RHSScalars[i]);
13482 SDValue Ov =
13483 getSelect(dl, OvEltVT, Res.getValue(1),
13484 getBoolConstant(true, dl, OvEltVT, ResVT),
13485 getConstant(0, dl, OvEltVT));
13486
13487 ResScalars.push_back(Res);
13488 OvScalars.push_back(Ov);
13489 }
13490
13491 ResScalars.append(ResNE - NE, getUNDEF(ResEltVT));
13492 OvScalars.append(ResNE - NE, getUNDEF(OvEltVT));
13493
13494 EVT NewResVT = EVT::getVectorVT(*getContext(), ResEltVT, ResNE);
13495 EVT NewOvVT = EVT::getVectorVT(*getContext(), OvEltVT, ResNE);
13496 return std::make_pair(getBuildVector(NewResVT, dl, ResScalars),
13497 getBuildVector(NewOvVT, dl, OvScalars));
13498}
13499
13502 unsigned Bytes,
13503 int Dist) const {
13504 if (LD->isVolatile() || Base->isVolatile())
13505 return false;
13506 // TODO: probably too restrictive for atomics, revisit
13507 if (!LD->isSimple())
13508 return false;
13509 if (LD->isIndexed() || Base->isIndexed())
13510 return false;
13511 if (LD->getChain() != Base->getChain())
13512 return false;
13513 EVT VT = LD->getMemoryVT();
13514 if (VT.getSizeInBits() / 8 != Bytes)
13515 return false;
13516
13517 auto BaseLocDecomp = BaseIndexOffset::match(Base, *this);
13518 auto LocDecomp = BaseIndexOffset::match(LD, *this);
13519
13520 int64_t Offset = 0;
13521 if (BaseLocDecomp.equalBaseIndex(LocDecomp, *this, Offset))
13522 return (Dist * (int64_t)Bytes == Offset);
13523 return false;
13524}
13525
13526/// InferPtrAlignment - Infer alignment of a load / store address. Return
13527/// std::nullopt if it cannot be inferred.
13529 // If this is a GlobalAddress + cst, return the alignment.
13530 const GlobalValue *GV = nullptr;
13531 int64_t GVOffset = 0;
13532 if (TLI->isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
13533 unsigned PtrWidth = getDataLayout().getPointerTypeSizeInBits(GV->getType());
13534 KnownBits Known(PtrWidth);
13536 unsigned AlignBits = Known.countMinTrailingZeros();
13537 if (AlignBits)
13538 return commonAlignment(Align(1ull << std::min(31U, AlignBits)), GVOffset);
13539 }
13540
13541 // If this is a direct reference to a stack slot, use information about the
13542 // stack slot's alignment.
13543 int FrameIdx = INT_MIN;
13544 int64_t FrameOffset = 0;
13546 FrameIdx = FI->getIndex();
13547 } else if (isBaseWithConstantOffset(Ptr) &&
13548 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
13549 // Handle FI+Cst
13550 FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
13551 FrameOffset = Ptr.getConstantOperandVal(1);
13552 }
13553
13554 if (FrameIdx != INT_MIN) {
13556 return commonAlignment(MFI.getObjectAlign(FrameIdx), FrameOffset);
13557 }
13558
13559 return std::nullopt;
13560}
13561
13562/// Split the scalar node with EXTRACT_ELEMENT using the provided
13563/// VTs and return the low/high part.
13564std::pair<SDValue, SDValue> SelectionDAG::SplitScalar(const SDValue &N,
13565 const SDLoc &DL,
13566 const EVT &LoVT,
13567 const EVT &HiVT) {
13568 assert(!LoVT.isVector() && !HiVT.isVector() && !N.getValueType().isVector() &&
13569 "Split node must be a scalar type");
13570 SDValue Lo =
13572 SDValue Hi =
13574 return std::make_pair(Lo, Hi);
13575}
13576
13577/// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
13578/// which is split (or expanded) into two not necessarily identical pieces.
13579std::pair<EVT, EVT> SelectionDAG::GetSplitDestVTs(const EVT &VT) const {
13580 // Currently all types are split in half.
13581 EVT LoVT, HiVT;
13582 if (!VT.isVector())
13583 LoVT = HiVT = TLI->getTypeToTransformTo(*getContext(), VT);
13584 else
13585 LoVT = HiVT = VT.getHalfNumVectorElementsVT(*getContext());
13586
13587 return std::make_pair(LoVT, HiVT);
13588}
13589
13590/// GetDependentSplitDestVTs - Compute the VTs needed for the low/hi parts of a
13591/// type, dependent on an enveloping VT that has been split into two identical
13592/// pieces. Sets the HiIsEmpty flag when hi type has zero storage size.
13593std::pair<EVT, EVT>
13595 bool *HiIsEmpty) const {
13596 EVT EltTp = VT.getVectorElementType();
13597 // Examples:
13598 // custom VL=8 with enveloping VL=8/8 yields 8/0 (hi empty)
13599 // custom VL=9 with enveloping VL=8/8 yields 8/1
13600 // custom VL=10 with enveloping VL=8/8 yields 8/2
13601 // etc.
13602 ElementCount VTNumElts = VT.getVectorElementCount();
13603 ElementCount EnvNumElts = EnvVT.getVectorElementCount();
13604 assert(VTNumElts.isScalable() == EnvNumElts.isScalable() &&
13605 "Mixing fixed width and scalable vectors when enveloping a type");
13606 EVT LoVT, HiVT;
13607 if (VTNumElts.getKnownMinValue() > EnvNumElts.getKnownMinValue()) {
13608 LoVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13609 HiVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts - EnvNumElts);
13610 *HiIsEmpty = false;
13611 } else {
13612 // Flag that hi type has zero storage size, but return split envelop type
13613 // (this would be easier if vector types with zero elements were allowed).
13614 LoVT = EVT::getVectorVT(*getContext(), EltTp, VTNumElts);
13615 HiVT = EVT::getVectorVT(*getContext(), EltTp, EnvNumElts);
13616 *HiIsEmpty = true;
13617 }
13618 return std::make_pair(LoVT, HiVT);
13619}
13620
13621/// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
13622/// low/high part.
13623std::pair<SDValue, SDValue>
13624SelectionDAG::SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT,
13625 const EVT &HiVT) {
13626 assert(LoVT.isScalableVector() == HiVT.isScalableVector() &&
13627 LoVT.isScalableVector() == N.getValueType().isScalableVector() &&
13628 "Splitting vector with an invalid mixture of fixed and scalable "
13629 "vector types");
13631 N.getValueType().getVectorMinNumElements() &&
13632 "More vector elements requested than available!");
13633 SDValue Lo, Hi;
13634 Lo = getExtractSubvector(DL, LoVT, N, 0);
13635 // For scalable vectors it is safe to use LoVT.getVectorMinNumElements()
13636 // (rather than having to use ElementCount), because EXTRACT_SUBVECTOR scales
13637 // IDX with the runtime scaling factor of the result vector type. For
13638 // fixed-width result vectors, that runtime scaling factor is 1.
13641 return std::make_pair(Lo, Hi);
13642}
13643
13644std::pair<SDValue, SDValue> SelectionDAG::SplitEVL(SDValue N, EVT VecVT,
13645 const SDLoc &DL) {
13646 // Split the vector length parameter.
13647 // %evl -> umin(%evl, %halfnumelts) and usubsat(%evl - %halfnumelts).
13648 EVT VT = N.getValueType();
13650 "Expecting the mask to be an evenly-sized vector");
13651 unsigned HalfMinNumElts = VecVT.getVectorMinNumElements() / 2;
13652 SDValue HalfNumElts =
13653 VecVT.isFixedLengthVector()
13654 ? getConstant(HalfMinNumElts, DL, VT)
13655 : getVScale(DL, VT, APInt(VT.getScalarSizeInBits(), HalfMinNumElts));
13656 SDValue Lo = getNode(ISD::UMIN, DL, VT, N, HalfNumElts);
13657 SDValue Hi = getNode(ISD::USUBSAT, DL, VT, N, HalfNumElts);
13658 return std::make_pair(Lo, Hi);
13659}
13660
13661/// Widen the vector up to the next power of two using INSERT_SUBVECTOR.
13663 EVT VT = N.getValueType();
13666 return getInsertSubvector(DL, getUNDEF(WideVT), N, 0);
13667}
13668
13671 unsigned Start, unsigned Count,
13672 EVT EltVT) {
13673 EVT VT = Op.getValueType();
13674 if (Count == 0)
13676 if (EltVT == EVT())
13677 EltVT = VT.getVectorElementType();
13678 SDLoc SL(Op);
13679 for (unsigned i = Start, e = Start + Count; i != e; ++i) {
13680 Args.push_back(getExtractVectorElt(SL, EltVT, Op, i));
13681 }
13682}
13683
13684// getAddressSpace - Return the address space this GlobalAddress belongs to.
13686 return getGlobal()->getType()->getAddressSpace();
13687}
13688
13691 return Val.MachineCPVal->getType();
13692 return Val.ConstVal->getType();
13693}
13694
13695bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
13696 unsigned &SplatBitSize,
13697 bool &HasAnyUndefs,
13698 unsigned MinSplatBits,
13699 bool IsBigEndian) const {
13700 EVT VT = getValueType(0);
13701 assert(VT.isVector() && "Expected a vector type");
13702 unsigned VecWidth = VT.getSizeInBits();
13703 if (MinSplatBits > VecWidth)
13704 return false;
13705
13706 // FIXME: The widths are based on this node's type, but build vectors can
13707 // truncate their operands.
13708 SplatValue = APInt(VecWidth, 0);
13709 SplatUndef = APInt(VecWidth, 0);
13710
13711 // Get the bits. Bits with undefined values (when the corresponding element
13712 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
13713 // in SplatValue. If any of the values are not constant, give up and return
13714 // false.
13715 unsigned int NumOps = getNumOperands();
13716 assert(NumOps > 0 && "isConstantSplat has 0-size build vector");
13717 unsigned EltWidth = VT.getScalarSizeInBits();
13718
13719 for (unsigned j = 0; j < NumOps; ++j) {
13720 unsigned i = IsBigEndian ? NumOps - 1 - j : j;
13721 SDValue OpVal = getOperand(i);
13722 unsigned BitPos = j * EltWidth;
13723
13724 if (OpVal.isUndef())
13725 SplatUndef.setBits(BitPos, BitPos + EltWidth);
13726 else if (auto *CN = dyn_cast<ConstantSDNode>(OpVal))
13727 SplatValue.insertBits(CN->getAPIntValue().zextOrTrunc(EltWidth), BitPos);
13728 else if (auto *CN = dyn_cast<ConstantFPSDNode>(OpVal))
13729 SplatValue.insertBits(CN->getValueAPF().bitcastToAPInt(), BitPos);
13730 else
13731 return false;
13732 }
13733
13734 // The build_vector is all constants or undefs. Find the smallest element
13735 // size that splats the vector.
13736 HasAnyUndefs = (SplatUndef != 0);
13737
13738 // FIXME: This does not work for vectors with elements less than 8 bits.
13739 while (VecWidth > 8) {
13740 // If we can't split in half, stop here.
13741 if (VecWidth & 1)
13742 break;
13743
13744 unsigned HalfSize = VecWidth / 2;
13745 APInt HighValue = SplatValue.extractBits(HalfSize, HalfSize);
13746 APInt LowValue = SplatValue.extractBits(HalfSize, 0);
13747 APInt HighUndef = SplatUndef.extractBits(HalfSize, HalfSize);
13748 APInt LowUndef = SplatUndef.extractBits(HalfSize, 0);
13749
13750 // If the two halves do not match (ignoring undef bits), stop here.
13751 if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
13752 MinSplatBits > HalfSize)
13753 break;
13754
13755 SplatValue = HighValue | LowValue;
13756 SplatUndef = HighUndef & LowUndef;
13757
13758 VecWidth = HalfSize;
13759 }
13760
13761 // FIXME: The loop above only tries to split in halves. But if the input
13762 // vector for example is <3 x i16> it wouldn't be able to detect a
13763 // SplatBitSize of 16. No idea if that is a design flaw currently limiting
13764 // optimizations. I guess that back in the days when this helper was created
13765 // vectors normally was power-of-2 sized.
13766
13767 SplatBitSize = VecWidth;
13768 return true;
13769}
13770
13772 BitVector *UndefElements) const {
13773 unsigned NumOps = getNumOperands();
13774 if (UndefElements) {
13775 UndefElements->clear();
13776 UndefElements->resize(NumOps);
13777 }
13778 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13779 if (!DemandedElts)
13780 return SDValue();
13781 SDValue Splatted;
13782 for (unsigned i = 0; i != NumOps; ++i) {
13783 if (!DemandedElts[i])
13784 continue;
13785 SDValue Op = getOperand(i);
13786 if (Op.isUndef()) {
13787 if (UndefElements)
13788 (*UndefElements)[i] = true;
13789 } else if (!Splatted) {
13790 Splatted = Op;
13791 } else if (Splatted != Op) {
13792 return SDValue();
13793 }
13794 }
13795
13796 if (!Splatted) {
13797 unsigned FirstDemandedIdx = DemandedElts.countr_zero();
13798 assert(getOperand(FirstDemandedIdx).isUndef() &&
13799 "Can only have a splat without a constant for all undefs.");
13800 return getOperand(FirstDemandedIdx);
13801 }
13802
13803 return Splatted;
13804}
13805
13807 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13808 return getSplatValue(DemandedElts, UndefElements);
13809}
13810
13812 SmallVectorImpl<SDValue> &Sequence,
13813 BitVector *UndefElements) const {
13814 unsigned NumOps = getNumOperands();
13815 Sequence.clear();
13816 if (UndefElements) {
13817 UndefElements->clear();
13818 UndefElements->resize(NumOps);
13819 }
13820 assert(NumOps == DemandedElts.getBitWidth() && "Unexpected vector size");
13821 if (!DemandedElts || NumOps < 2 || !isPowerOf2_32(NumOps))
13822 return false;
13823
13824 // Set the undefs even if we don't find a sequence (like getSplatValue).
13825 if (UndefElements)
13826 for (unsigned I = 0; I != NumOps; ++I)
13827 if (DemandedElts[I] && getOperand(I).isUndef())
13828 (*UndefElements)[I] = true;
13829
13830 // Iteratively widen the sequence length looking for repetitions.
13831 for (unsigned SeqLen = 1; SeqLen < NumOps; SeqLen *= 2) {
13832 Sequence.append(SeqLen, SDValue());
13833 for (unsigned I = 0; I != NumOps; ++I) {
13834 if (!DemandedElts[I])
13835 continue;
13836 SDValue &SeqOp = Sequence[I % SeqLen];
13838 if (Op.isUndef()) {
13839 if (!SeqOp)
13840 SeqOp = Op;
13841 continue;
13842 }
13843 if (SeqOp && !SeqOp.isUndef() && SeqOp != Op) {
13844 Sequence.clear();
13845 break;
13846 }
13847 SeqOp = Op;
13848 }
13849 if (!Sequence.empty())
13850 return true;
13851 }
13852
13853 assert(Sequence.empty() && "Failed to empty non-repeating sequence pattern");
13854 return false;
13855}
13856
13858 BitVector *UndefElements) const {
13859 APInt DemandedElts = APInt::getAllOnes(getNumOperands());
13860 return getRepeatedSequence(DemandedElts, Sequence, UndefElements);
13861}
13862
13865 BitVector *UndefElements) const {
13867 getSplatValue(DemandedElts, UndefElements));
13868}
13869
13872 return dyn_cast_or_null<ConstantSDNode>(getSplatValue(UndefElements));
13873}
13874
13877 BitVector *UndefElements) const {
13879 getSplatValue(DemandedElts, UndefElements));
13880}
13881
13886
13887int32_t
13889 uint32_t BitWidth) const {
13890 if (ConstantFPSDNode *CN =
13892 bool IsExact;
13893 APSInt IntVal(BitWidth);
13894 const APFloat &APF = CN->getValueAPF();
13895 if (APF.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
13896 APFloat::opOK ||
13897 !IsExact)
13898 return -1;
13899
13900 return IntVal.exactLogBase2();
13901 }
13902 return -1;
13903}
13904
13906 bool IsLittleEndian, unsigned DstEltSizeInBits,
13907 SmallVectorImpl<APInt> &RawBitElements, BitVector &UndefElements) const {
13908 // Early-out if this contains anything but Undef/Constant/ConstantFP.
13909 if (!isConstant())
13910 return false;
13911
13912 unsigned NumSrcOps = getNumOperands();
13913 unsigned SrcEltSizeInBits = getValueType(0).getScalarSizeInBits();
13914 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13915 "Invalid bitcast scale");
13916
13917 // Extract raw src bits.
13918 SmallVector<APInt> SrcBitElements(NumSrcOps,
13919 APInt::getZero(SrcEltSizeInBits));
13920 BitVector SrcUndeElements(NumSrcOps, false);
13921
13922 for (unsigned I = 0; I != NumSrcOps; ++I) {
13924 if (Op.isUndef()) {
13925 SrcUndeElements.set(I);
13926 continue;
13927 }
13928 auto *CInt = dyn_cast<ConstantSDNode>(Op);
13929 auto *CFP = dyn_cast<ConstantFPSDNode>(Op);
13930 assert((CInt || CFP) && "Unknown constant");
13931 SrcBitElements[I] = CInt ? CInt->getAPIntValue().trunc(SrcEltSizeInBits)
13932 : CFP->getValueAPF().bitcastToAPInt();
13933 }
13934
13935 // Recast to dst width.
13936 recastRawBits(IsLittleEndian, DstEltSizeInBits, RawBitElements,
13937 SrcBitElements, UndefElements, SrcUndeElements);
13938 return true;
13939}
13940
13941void BuildVectorSDNode::recastRawBits(bool IsLittleEndian,
13942 unsigned DstEltSizeInBits,
13943 SmallVectorImpl<APInt> &DstBitElements,
13944 ArrayRef<APInt> SrcBitElements,
13945 BitVector &DstUndefElements,
13946 const BitVector &SrcUndefElements) {
13947 unsigned NumSrcOps = SrcBitElements.size();
13948 unsigned SrcEltSizeInBits = SrcBitElements[0].getBitWidth();
13949 assert(((NumSrcOps * SrcEltSizeInBits) % DstEltSizeInBits) == 0 &&
13950 "Invalid bitcast scale");
13951 assert(NumSrcOps == SrcUndefElements.size() &&
13952 "Vector size mismatch");
13953
13954 unsigned NumDstOps = (NumSrcOps * SrcEltSizeInBits) / DstEltSizeInBits;
13955 DstUndefElements.clear();
13956 DstUndefElements.resize(NumDstOps, false);
13957 DstBitElements.assign(NumDstOps, APInt::getZero(DstEltSizeInBits));
13958
13959 // Concatenate src elements constant bits together into dst element.
13960 if (SrcEltSizeInBits <= DstEltSizeInBits) {
13961 unsigned Scale = DstEltSizeInBits / SrcEltSizeInBits;
13962 for (unsigned I = 0; I != NumDstOps; ++I) {
13963 DstUndefElements.set(I);
13964 APInt &DstBits = DstBitElements[I];
13965 for (unsigned J = 0; J != Scale; ++J) {
13966 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13967 if (SrcUndefElements[Idx])
13968 continue;
13969 DstUndefElements.reset(I);
13970 const APInt &SrcBits = SrcBitElements[Idx];
13971 assert(SrcBits.getBitWidth() == SrcEltSizeInBits &&
13972 "Illegal constant bitwidths");
13973 DstBits.insertBits(SrcBits, J * SrcEltSizeInBits);
13974 }
13975 }
13976 return;
13977 }
13978
13979 // Split src element constant bits into dst elements.
13980 unsigned Scale = SrcEltSizeInBits / DstEltSizeInBits;
13981 for (unsigned I = 0; I != NumSrcOps; ++I) {
13982 if (SrcUndefElements[I]) {
13983 DstUndefElements.set(I * Scale, (I + 1) * Scale);
13984 continue;
13985 }
13986 const APInt &SrcBits = SrcBitElements[I];
13987 for (unsigned J = 0; J != Scale; ++J) {
13988 unsigned Idx = (I * Scale) + (IsLittleEndian ? J : (Scale - J - 1));
13989 APInt &DstBits = DstBitElements[Idx];
13990 DstBits = SrcBits.extractBits(DstEltSizeInBits, J * DstEltSizeInBits);
13991 }
13992 }
13993}
13994
13996 for (const SDValue &Op : op_values()) {
13997 unsigned Opc = Op.getOpcode();
13998 if (!Op.isUndef() && Opc != ISD::Constant && Opc != ISD::ConstantFP)
13999 return false;
14000 }
14001 return true;
14002}
14003
14004std::optional<std::pair<APInt, APInt>>
14006 unsigned NumOps = getNumOperands();
14007 if (NumOps < 2)
14008 return std::nullopt;
14009
14012 return std::nullopt;
14013
14014 unsigned EltSize = getValueType(0).getScalarSizeInBits();
14015 APInt Start = getConstantOperandAPInt(0).trunc(EltSize);
14016 APInt Stride = getConstantOperandAPInt(1).trunc(EltSize) - Start;
14017
14018 if (Stride.isZero())
14019 return std::nullopt;
14020
14021 for (unsigned i = 2; i < NumOps; ++i) {
14023 return std::nullopt;
14024
14025 APInt Val = getConstantOperandAPInt(i).trunc(EltSize);
14026 if (Val != (Start + (Stride * i)))
14027 return std::nullopt;
14028 }
14029
14030 return std::make_pair(Start, Stride);
14031}
14032
14034 // Find the first non-undef value in the shuffle mask.
14035 unsigned i, e;
14036 for (i = 0, e = Mask.size(); i != e && Mask[i] < 0; ++i)
14037 /* search */;
14038
14039 // If all elements are undefined, this shuffle can be considered a splat
14040 // (although it should eventually get simplified away completely).
14041 if (i == e)
14042 return true;
14043
14044 // Make sure all remaining elements are either undef or the same as the first
14045 // non-undef value.
14046 for (int Idx = Mask[i]; i != e; ++i)
14047 if (Mask[i] >= 0 && Mask[i] != Idx)
14048 return false;
14049 return true;
14050}
14051
14052// Returns true if it is a constant integer BuildVector or constant integer,
14053// possibly hidden by a bitcast.
14055 SDValue N, bool AllowOpaques) const {
14057
14058 if (auto *C = dyn_cast<ConstantSDNode>(N))
14059 return AllowOpaques || !C->isOpaque();
14060
14062 return true;
14063
14064 // Treat a GlobalAddress supporting constant offset folding as a
14065 // constant integer.
14066 if (auto *GA = dyn_cast<GlobalAddressSDNode>(N))
14067 if (GA->getOpcode() == ISD::GlobalAddress &&
14068 TLI->isOffsetFoldingLegal(GA))
14069 return true;
14070
14071 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
14072 isa<ConstantSDNode>(N.getOperand(0)))
14073 return true;
14074 return false;
14075}
14076
14077// Returns true if it is a constant float BuildVector or constant float.
14080 return true;
14081
14083 return true;
14084
14085 if ((N.getOpcode() == ISD::SPLAT_VECTOR) &&
14086 isa<ConstantFPSDNode>(N.getOperand(0)))
14087 return true;
14088
14089 return false;
14090}
14091
14092std::optional<bool> SelectionDAG::isBoolConstant(SDValue N) const {
14093 ConstantSDNode *Const =
14094 isConstOrConstSplat(N, false, /*AllowTruncation=*/true);
14095 if (!Const)
14096 return std::nullopt;
14097
14098 EVT VT = N->getValueType(0);
14099 const APInt CVal = Const->getAPIntValue().trunc(VT.getScalarSizeInBits());
14100 switch (TLI->getBooleanContents(N.getValueType())) {
14102 if (CVal.isOne())
14103 return true;
14104 if (CVal.isZero())
14105 return false;
14106 return std::nullopt;
14108 if (CVal.isAllOnes())
14109 return true;
14110 if (CVal.isZero())
14111 return false;
14112 return std::nullopt;
14114 return CVal[0];
14115 }
14116 llvm_unreachable("Unknown BooleanContent enum");
14117}
14118
14119void SelectionDAG::createOperands(SDNode *Node, ArrayRef<SDValue> Vals) {
14120 assert(!Node->OperandList && "Node already has operands");
14122 "too many operands to fit into SDNode");
14123 SDUse *Ops = OperandRecycler.allocate(
14124 ArrayRecycler<SDUse>::Capacity::get(Vals.size()), OperandAllocator);
14125
14126 bool IsDivergent = false;
14127 for (unsigned I = 0; I != Vals.size(); ++I) {
14128 Ops[I].setUser(Node);
14129 Ops[I].setInitial(Vals[I]);
14130 EVT VT = Ops[I].getValueType();
14131
14132 // Skip Chain. It does not carry divergence.
14133 if (VT != MVT::Other &&
14134 (VT != MVT::Glue || gluePropagatesDivergence(Ops[I].getNode())) &&
14135 Ops[I].getNode()->isDivergent()) {
14136 IsDivergent = true;
14137 }
14138 }
14139 Node->NumOperands = Vals.size();
14140 Node->OperandList = Ops;
14141 if (!TLI->isSDNodeAlwaysUniform(Node)) {
14142 IsDivergent |= TLI->isSDNodeSourceOfDivergence(Node, FLI, UA);
14143 Node->SDNodeBits.IsDivergent = IsDivergent;
14144 }
14145 checkForCycles(Node);
14146}
14147
14150 size_t Limit = SDNode::getMaxNumOperands();
14151 while (Vals.size() > Limit) {
14152 unsigned SliceIdx = Vals.size() - Limit;
14153 auto ExtractedTFs = ArrayRef<SDValue>(Vals).slice(SliceIdx, Limit);
14154 SDValue NewTF = getNode(ISD::TokenFactor, DL, MVT::Other, ExtractedTFs);
14155 Vals.erase(Vals.begin() + SliceIdx, Vals.end());
14156 Vals.emplace_back(NewTF);
14157 }
14158 return getNode(ISD::TokenFactor, DL, MVT::Other, Vals);
14159}
14160
14162 EVT VT, SDNodeFlags Flags) {
14163 switch (Opcode) {
14164 default:
14165 return SDValue();
14166 case ISD::ADD:
14167 case ISD::OR:
14168 case ISD::XOR:
14169 case ISD::UMAX:
14170 return getConstant(0, DL, VT);
14171 case ISD::MUL:
14172 return getConstant(1, DL, VT);
14173 case ISD::AND:
14174 case ISD::UMIN:
14175 return getAllOnesConstant(DL, VT);
14176 case ISD::SMAX:
14178 case ISD::SMIN:
14180 case ISD::FADD:
14181 // If flags allow, prefer positive zero since it's generally cheaper
14182 // to materialize on most targets.
14183 return getConstantFP(Flags.hasNoSignedZeros() ? 0.0 : -0.0, DL, VT);
14184 case ISD::FMUL:
14185 return getConstantFP(1.0, DL, VT);
14186 case ISD::FMINNUM:
14187 case ISD::FMAXNUM: {
14188 // Neutral element for fminnum is NaN, Inf or FLT_MAX, depending on FMF.
14189 const fltSemantics &Semantics = VT.getFltSemantics();
14190 APFloat NeutralAF = !Flags.hasNoNaNs() ? APFloat::getQNaN(Semantics) :
14191 !Flags.hasNoInfs() ? APFloat::getInf(Semantics) :
14192 APFloat::getLargest(Semantics);
14193 if (Opcode == ISD::FMAXNUM)
14194 NeutralAF.changeSign();
14195
14196 return getConstantFP(NeutralAF, DL, VT);
14197 }
14198 case ISD::FMINIMUM:
14199 case ISD::FMAXIMUM: {
14200 // Neutral element for fminimum is Inf or FLT_MAX, depending on FMF.
14201 const fltSemantics &Semantics = VT.getFltSemantics();
14202 APFloat NeutralAF = !Flags.hasNoInfs() ? APFloat::getInf(Semantics)
14203 : APFloat::getLargest(Semantics);
14204 if (Opcode == ISD::FMAXIMUM)
14205 NeutralAF.changeSign();
14206
14207 return getConstantFP(NeutralAF, DL, VT);
14208 }
14209
14210 }
14211}
14212
14213/// Helper used to make a call to a library function that has one argument of
14214/// pointer type.
14215///
14216/// Such functions include 'fegetmode', 'fesetenv' and some others, which are
14217/// used to get or set floating-point state. They have one argument of pointer
14218/// type, which points to the memory region containing bits of the
14219/// floating-point state. The value returned by such function is ignored in the
14220/// created call.
14221///
14222/// \param LibFunc Reference to library function (value of RTLIB::Libcall).
14223/// \param Ptr Pointer used to save/load state.
14224/// \param InChain Ingoing token chain.
14225/// \returns Outgoing chain token.
14227 SDValue InChain,
14228 const SDLoc &DLoc) {
14229 assert(InChain.getValueType() == MVT::Other && "Expected token chain");
14231 Args.emplace_back(Ptr, Ptr.getValueType().getTypeForEVT(*getContext()));
14232 RTLIB::Libcall LC = static_cast<RTLIB::Libcall>(LibFunc);
14233 SDValue Callee = getExternalSymbol(TLI->getLibcallName(LC),
14234 TLI->getPointerTy(getDataLayout()));
14236 CLI.setDebugLoc(DLoc).setChain(InChain).setLibCallee(
14237 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*getContext()), Callee,
14238 std::move(Args));
14239 return TLI->LowerCallTo(CLI).second;
14240}
14241
14243 assert(From && To && "Invalid SDNode; empty source SDValue?");
14244 auto I = SDEI.find(From);
14245 if (I == SDEI.end())
14246 return;
14247
14248 // Use of operator[] on the DenseMap may cause an insertion, which invalidates
14249 // the iterator, hence the need to make a copy to prevent a use-after-free.
14250 NodeExtraInfo NEI = I->second;
14251 if (LLVM_LIKELY(!NEI.PCSections)) {
14252 // No deep copy required for the types of extra info set.
14253 //
14254 // FIXME: Investigate if other types of extra info also need deep copy. This
14255 // depends on the types of nodes they can be attached to: if some extra info
14256 // is only ever attached to nodes where a replacement To node is always the
14257 // node where later use and propagation of the extra info has the intended
14258 // semantics, no deep copy is required.
14259 SDEI[To] = std::move(NEI);
14260 return;
14261 }
14262
14263 const SDNode *EntrySDN = getEntryNode().getNode();
14264
14265 // We need to copy NodeExtraInfo to all _new_ nodes that are being introduced
14266 // through the replacement of From with To. Otherwise, replacements of a node
14267 // (From) with more complex nodes (To and its operands) may result in lost
14268 // extra info where the root node (To) is insignificant in further propagating
14269 // and using extra info when further lowering to MIR.
14270 //
14271 // In the first step pre-populate the visited set with the nodes reachable
14272 // from the old From node. This avoids copying NodeExtraInfo to parts of the
14273 // DAG that is not new and should be left untouched.
14274 SmallVector<const SDNode *> Leafs{From}; // Leafs reachable with VisitFrom.
14275 DenseSet<const SDNode *> FromReach; // The set of nodes reachable from From.
14276 auto VisitFrom = [&](auto &&Self, const SDNode *N, int MaxDepth) {
14277 if (MaxDepth == 0) {
14278 // Remember this node in case we need to increase MaxDepth and continue
14279 // populating FromReach from this node.
14280 Leafs.emplace_back(N);
14281 return;
14282 }
14283 if (!FromReach.insert(N).second)
14284 return;
14285 for (const SDValue &Op : N->op_values())
14286 Self(Self, Op.getNode(), MaxDepth - 1);
14287 };
14288
14289 // Copy extra info to To and all its transitive operands (that are new).
14291 auto DeepCopyTo = [&](auto &&Self, const SDNode *N) {
14292 if (FromReach.contains(N))
14293 return true;
14294 if (!Visited.insert(N).second)
14295 return true;
14296 if (EntrySDN == N)
14297 return false;
14298 for (const SDValue &Op : N->op_values()) {
14299 if (N == To && Op.getNode() == EntrySDN) {
14300 // Special case: New node's operand is the entry node; just need to
14301 // copy extra info to new node.
14302 break;
14303 }
14304 if (!Self(Self, Op.getNode()))
14305 return false;
14306 }
14307 // Copy only if entry node was not reached.
14308 SDEI[N] = NEI;
14309 return true;
14310 };
14311
14312 // We first try with a lower MaxDepth, assuming that the path to common
14313 // operands between From and To is relatively short. This significantly
14314 // improves performance in the common case. The initial MaxDepth is big
14315 // enough to avoid retry in the common case; the last MaxDepth is large
14316 // enough to avoid having to use the fallback below (and protects from
14317 // potential stack exhaustion from recursion).
14318 for (int PrevDepth = 0, MaxDepth = 16; MaxDepth <= 1024;
14319 PrevDepth = MaxDepth, MaxDepth *= 2, Visited.clear()) {
14320 // StartFrom is the previous (or initial) set of leafs reachable at the
14321 // previous maximum depth.
14323 std::swap(StartFrom, Leafs);
14324 for (const SDNode *N : StartFrom)
14325 VisitFrom(VisitFrom, N, MaxDepth - PrevDepth);
14326 if (LLVM_LIKELY(DeepCopyTo(DeepCopyTo, To)))
14327 return;
14328 // This should happen very rarely (reached the entry node).
14329 LLVM_DEBUG(dbgs() << __func__ << ": MaxDepth=" << MaxDepth << " too low\n");
14330 assert(!Leafs.empty());
14331 }
14332
14333 // This should not happen - but if it did, that means the subgraph reachable
14334 // from From has depth greater or equal to maximum MaxDepth, and VisitFrom()
14335 // could not visit all reachable common operands. Consequently, we were able
14336 // to reach the entry node.
14337 errs() << "warning: incomplete propagation of SelectionDAG::NodeExtraInfo\n";
14338 assert(false && "From subgraph too complex - increase max. MaxDepth?");
14339 // Best-effort fallback if assertions disabled.
14340 SDEI[To] = std::move(NEI);
14341}
14342
14343#ifndef NDEBUG
14344static void checkForCyclesHelper(const SDNode *N,
14347 const llvm::SelectionDAG *DAG) {
14348 // If this node has already been checked, don't check it again.
14349 if (Checked.count(N))
14350 return;
14351
14352 // If a node has already been visited on this depth-first walk, reject it as
14353 // a cycle.
14354 if (!Visited.insert(N).second) {
14355 errs() << "Detected cycle in SelectionDAG\n";
14356 dbgs() << "Offending node:\n";
14357 N->dumprFull(DAG); dbgs() << "\n";
14358 abort();
14359 }
14360
14361 for (const SDValue &Op : N->op_values())
14362 checkForCyclesHelper(Op.getNode(), Visited, Checked, DAG);
14363
14364 Checked.insert(N);
14365 Visited.erase(N);
14366}
14367#endif
14368
14370 const llvm::SelectionDAG *DAG,
14371 bool force) {
14372#ifndef NDEBUG
14373 bool check = force;
14374#ifdef EXPENSIVE_CHECKS
14375 check = true;
14376#endif // EXPENSIVE_CHECKS
14377 if (check) {
14378 assert(N && "Checking nonexistent SDNode");
14381 checkForCyclesHelper(N, visited, checked, DAG);
14382 }
14383#endif // !NDEBUG
14384}
14385
14386void llvm::checkForCycles(const llvm::SelectionDAG *DAG, bool force) {
14387 checkForCycles(DAG->getRoot().getNode(), DAG, force);
14388}
return SDValue()
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file implements the BitVector class.
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Analysis containing CSE Info
Definition CSEInfo.cpp:27
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
#define __asan_unpoison_memory_region(p, size)
Definition Compiler.h:569
#define LLVM_LIKELY(EXPR)
Definition Compiler.h:335
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseSet and SmallDenseSet classes.
This file contains constants used for implementing Dwarf debug support.
This file defines a hash set that can be used to remove duplication of nodes in a graph.
#define _
iv users
Definition IVUsers.cpp:48
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static LVOptions Options
Definition LVOptions.cpp:25
static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB)
static bool shouldLowerMemFuncForSize(const MachineFunction &MF)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
static Align getPrefTypeAlign(EVT VT, SelectionDAG &DAG)
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define G(x, y, z)
Definition MD5.cpp:56
mir Rename Register Operands
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
Register const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define P(N)
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
Contains matchers for matching SelectionDAG nodes and values.
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file contains some templates that are useful if you are working with the STL at all.
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo, BatchAAResults *BatchAA)
static SDValue getMemsetStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo)
Lower the call to 'memset' intrinsic function into a series of store operations.
static std::optional< APInt > FoldValueWithUndef(unsigned Opcode, const APInt &C1, bool IsUndef1, const APInt &C2, bool IsUndef2)
static SDValue FoldSTEP_VECTOR(const SDLoc &DL, EVT VT, SDValue Step, SelectionDAG &DAG)
static void AddNodeIDNode(FoldingSetNodeID &ID, unsigned OpC, SDVTList VTList, ArrayRef< SDValue > OpList)
static SDValue getMemsetStringVal(EVT VT, const SDLoc &dl, SelectionDAG &DAG, const TargetLowering &TLI, const ConstantDataArraySlice &Slice)
getMemsetStringVal - Similar to getMemsetValue.
static cl::opt< bool > EnableMemCpyDAGOpt("enable-memcpy-dag-opt", cl::Hidden, cl::init(true), cl::desc("Gang up loads and stores generated by inlining of memcpy"))
static bool haveNoCommonBitsSetCommutative(SDValue A, SDValue B)
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList)
AddNodeIDValueTypes - Value type lists are intern'd so we can represent them solely with their pointe...
static void commuteShuffle(SDValue &N1, SDValue &N2, MutableArrayRef< int > M)
Swaps the values of N1 and N2.
static bool isMemSrcFromConstant(SDValue Src, ConstantDataArraySlice &Slice)
Returns true if memcpy source is constant data.
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, Align Alignment, bool isVol, bool AlwaysInline, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo)
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)
AddNodeIDOpcode - Add the node opcode to the NodeID data.
static ISD::CondCode getSetCCInverseImpl(ISD::CondCode Op, bool isIntegerLike)
static bool doNotCSE(SDNode *N)
doNotCSE - Return true if CSE should not be performed for this node.
static cl::opt< int > MaxLdStGlue("ldstmemcpy-glue-max", cl::desc("Number limit for gluing ld/st of memcpy."), cl::Hidden, cl::init(0))
static void AddNodeIDOperands(FoldingSetNodeID &ID, ArrayRef< SDValue > Ops)
AddNodeIDOperands - Various routines for adding operands to the NodeID data.
static bool canFoldStoreIntoLibCallOutputPointers(StoreSDNode *StoreNode, SDNode *FPNode)
Given a store node StoreNode, return true if it is safe to fold that node into FPNode,...
static SDValue foldCONCAT_VECTORS(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
Try to simplify vector concatenation to an input value, undef, or build vector.
static MachinePointerInfo InferPointerInfo(const MachinePointerInfo &Info, SelectionDAG &DAG, SDValue Ptr, int64_t Offset=0)
InferPointerInfo - If the specified ptr/offset is a frame index, infer a MachinePointerInfo record fr...
static bool isInTailCallPositionWrapper(const CallInst *CI, const SelectionDAG *SelDAG, bool AllowReturnsFirstArg)
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N)
If this is an SDNode with special info, add this info to the NodeID data.
static bool gluePropagatesDivergence(const SDNode *Node)
Return true if a glue output should propagate divergence information.
static void NewSDValueDbgMsg(SDValue V, StringRef Msg, SelectionDAG *G)
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs)
makeVTList - Return an instance of the SDVTList struct initialized with the specified members.
static void checkForCyclesHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallPtrSetImpl< const SDNode * > &Checked, const llvm::SelectionDAG *DAG)
static void chainLoadsAndStoresForMemcpy(SelectionDAG &DAG, const SDLoc &dl, SmallVector< SDValue, 32 > &OutChains, unsigned From, unsigned To, SmallVector< SDValue, 16 > &OutLoadChains, SmallVector< SDValue, 16 > &OutStoreChains)
static int isSignedOp(ISD::CondCode Opcode)
For an integer comparison, return 1 if the comparison is a signed operation and 2 if the result is an...
static std::optional< APInt > FoldValue(unsigned Opcode, const APInt &C1, const APInt &C2)
static SDValue FoldBUILD_VECTOR(const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SelectionDAG &DAG)
static void checkAddrSpaceIsValidForLibcall(const TargetLowering *TLI, unsigned AS)
static cl::opt< unsigned > MaxSteps("has-predecessor-max-steps", cl::Hidden, cl::init(8192), cl::desc("DAG combiner limit number of steps when searching DAG " "for predecessor nodes"))
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
This file describes how to lower LLVM code to machine code.
static void removeOperands(MachineInstr &MI, unsigned i)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=nullptr)
Factory for QNaN values.
Definition APFloat.h:1120
opStatus divide(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1208
void copySign(const APFloat &RHS)
Definition APFloat.h:1302
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6057
opStatus subtract(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1190
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
Definition APFloat.h:1432
opStatus add(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1181
bool isFinite() const
Definition APFloat.h:1454
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
Definition APFloat.h:1347
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1199
opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, roundingMode RM)
Definition APFloat.h:1235
bool isZero() const
Definition APFloat.h:1445
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Definition APFloat.h:1138
opStatus convertToInteger(MutableArrayRef< integerPart > Input, unsigned int Width, bool IsSigned, roundingMode RM, bool *IsExact) const
Definition APFloat.h:1332
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
Definition APFloat.h:1098
opStatus mod(const APFloat &RHS)
Definition APFloat.h:1226
bool isPosZero() const
Definition APFloat.h:1460
bool isNegZero() const
Definition APFloat.h:1461
void changeSign()
Definition APFloat.h:1297
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Definition APFloat.h:1109
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
LLVM_ABI APInt usub_sat(const APInt &RHS) const
Definition APInt.cpp:2055
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
Definition APInt.cpp:1573
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition APInt.h:234
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition APInt.h:1406
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
Definition APInt.cpp:1012
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition APInt.h:229
uint64_t getZExtValue() const
Get zero extended value.
Definition APInt.h:1540
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition APInt.h:1391
unsigned popcount() const
Count the number of bits set.
Definition APInt.h:1670
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition APInt.h:1385
LLVM_ABI APInt getHiBits(unsigned numBits) const
Compute an APInt containing numBits highbits from this APInt.
Definition APInt.cpp:639
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition APInt.cpp:1033
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1512
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition APInt.h:1330
APInt abs() const
Get the absolute value.
Definition APInt.h:1795
LLVM_ABI APInt sadd_sat(const APInt &RHS) const
Definition APInt.cpp:2026
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition APInt.h:371
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition APInt.h:1182
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition APInt.h:258
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
Definition APInt.cpp:1666
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition APInt.h:1111
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition APInt.h:209
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition APInt.cpp:1644
void clearAllBits()
Set every bit to 0.
Definition APInt.h:1396
LLVM_ABI APInt rotr(unsigned rotateAmt) const
Rotate right by rotateAmt.
Definition APInt.cpp:1154
LLVM_ABI APInt reverseBits() const
Definition APInt.cpp:768
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition APInt.h:834
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition APInt.h:1166
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition APInt.h:1628
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
LLVM_ABI APInt sshl_sat(const APInt &RHS) const
Definition APInt.cpp:2086
LLVM_ABI APInt ushl_sat(const APInt &RHS) const
Definition APInt.cpp:2100
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
Definition APInt.cpp:1041
LLVM_ABI APInt rotl(unsigned rotateAmt) const
Rotate left by rotateAmt.
Definition APInt.cpp:1141
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition APInt.h:1435
unsigned logBase2() const
Definition APInt.h:1761
LLVM_ABI APInt uadd_sat(const APInt &RHS) const
Definition APInt.cpp:2036
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition APInt.h:827
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
Definition APInt.cpp:1736
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition APInt.h:334
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition APInt.h:1150
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition APInt.h:1367
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition APInt.h:873
LLVM_ABI APInt byteSwap() const
Definition APInt.cpp:746
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition APInt.h:553
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition APInt.h:306
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
Definition APInt.h:1417
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:200
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition APInt.h:1388
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
Definition APInt.cpp:482
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1237
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition APInt.h:286
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition APInt.h:239
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition APInt.h:851
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition APInt.h:1221
LLVM_ABI APInt ssub_sat(const APInt &RHS) const
Definition APInt.cpp:2045
An arbitrary precision integer that knows its signedness.
Definition APSInt.h:24
unsigned getSrcAddressSpace() const
unsigned getDestAddressSpace() const
static Capacity get(size_t N)
Get the capacity of an array that can hold at least N elements.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
This is an SDNode representing atomic operations.
static LLVM_ABI BaseIndexOffset match(const SDNode *N, const SelectionDAG &DAG)
Parses tree in N for base, index, offset addresses.
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal=false)
BitVector & reset()
Definition BitVector.h:411
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition BitVector.h:360
void clear()
clear - Removes all bits from the bitvector.
Definition BitVector.h:354
BitVector & set()
Definition BitVector.h:370
bool none() const
none - Returns true if none of the bits are set.
Definition BitVector.h:207
size_type size() const
size - Returns the number of bits in this bitvector.
Definition BitVector.h:178
const BlockAddress * getBlockAddress() const
The address of a basic block.
Definition Constants.h:899
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &RawBitElements, BitVector &UndefElements) const
Extract the raw bit data from a build vector of Undef, Constant or ConstantFP node elements.
static LLVM_ABI void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, SmallVectorImpl< APInt > &DstBitElements, ArrayRef< APInt > SrcBitElements, BitVector &DstUndefElements, const BitVector &SrcUndefElements)
Recast bit data SrcBitElements to DstEltSizeInBits wide elements.
LLVM_ABI bool getRepeatedSequence(const APInt &DemandedElts, SmallVectorImpl< SDValue > &Sequence, BitVector *UndefElements=nullptr) const
Find the shortest repeating sequence of values in the build vector.
LLVM_ABI ConstantFPSDNode * getConstantFPSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant FP or null if this is not a constant FP splat.
LLVM_ABI std::optional< std::pair< APInt, APInt > > isConstantSequence() const
If this BuildVector is constant and represents the numerical series "<a, a+n, a+2n,...
LLVM_ABI SDValue getSplatValue(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted value or a null value if this is not a splat.
LLVM_ABI bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, unsigned &SplatBitSize, bool &HasAnyUndefs, unsigned MinSplatBits=0, bool isBigEndian=false) const
Check if this is a constant splat, and if so, find the smallest element size that splats the vector.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
LLVM_ABI int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, uint32_t BitWidth) const
If this is a constant FP splat and the splatted constant FP is an exact power or 2,...
LLVM_ABI bool isConstant() const
This class represents a function call, abstracting a target machine's calling convention.
bool isTailCall() const
static LLVM_ABI bool isValueValidForType(EVT VT, const APFloat &Val)
const APFloat & getValueAPF() const
bool isExactlyValue(double V) const
We don't rely on operator== working on double values, as it returns true for things that are clearly ...
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValue() const
Definition Constants.h:321
This is the shared class of boolean and integer constants.
Definition Constants.h:87
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition Constants.h:157
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:154
LLVM_ABI Type * getType() const
This class represents a range of values.
LLVM_ABI ConstantRange multiply(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a multiplication of a value in thi...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI ConstantRange zeroExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI ConstantRange signExtend(uint32_t BitWidth) const
Return a new range in the specified integer type, which must be strictly larger than the current type...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI APInt getUnsignedMax() const
Return the largest unsigned value contained in the ConstantRange.
LLVM_ABI APInt getSignedMax() const
Return the largest signed value contained in the ConstantRange.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
uint64_t getZExtValue() const
const APInt & getAPIntValue() const
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
DWARF expression.
static LLVM_ABI ExtOps getExtOps(unsigned FromSize, unsigned ToSize, bool Signed)
Returns the ops for a zero- or sign-extension in a DIExpression.
static LLVM_ABI void appendOffset(SmallVectorImpl< uint64_t > &Ops, int64_t Offset)
Append Ops with operations to apply the Offset.
static LLVM_ABI DIExpression * appendOpsToArg(const DIExpression *Expr, ArrayRef< uint64_t > Ops, unsigned ArgNo, bool StackValue=false)
Create a copy of Expr by appending the given list of Ops to each instance of the operand DW_OP_LLVM_a...
static LLVM_ABI const DIExpression * convertToVariadicExpression(const DIExpression *Expr)
If Expr is a non-variadic expression (i.e.
static LLVM_ABI std::optional< DIExpression * > createFragmentExpression(const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits)
Create a DIExpression to describe one part of an aggregate variable that is fragmented across multipl...
Base class for variables.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
bool isLittleEndian() const
Layout endianness...
Definition DataLayout.h:207
LLVM_ABI IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Returns an integer type with size at least as big as that of a pointer in the given address space.
LLVM_ABI Align getABITypeAlign(Type *Ty) const
Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
A debug info location.
Definition DebugLoc.h:124
Implements a dense probed hash-table based set.
Definition DenseSet.h:279
const char * getSymbol() const
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition FoldingSet.h:330
Data structure describing the variable locations in a function.
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
LLVM_ABI unsigned getAddressSpace() const
const GlobalValue * getGlobal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
unsigned getAddressSpace() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
This class is used to form a handle around another node that is persistent and is updated across invo...
const SDValue & getValue() const
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
This SDNode is used for LIFETIME_START/LIFETIME_END values.
This class is used to represent ISD::LOAD nodes.
static LocationSize precise(uint64_t Value)
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
Machine Value Type.
SimpleValueType SimpleTy
static MVT getIntegerVT(unsigned BitWidth)
Abstract base class for all machine specific constantpool value subclasses.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
A description of a memory reference used in the backend.
const MDNode * getRanges() const
Return the range tag for the memory reference.
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOInvariant
The memory access always returns the same value (or traps).
@ MOStore
The memory access writes data.
const MachinePointerInfo & getPointerInfo() const
Flags getFlags() const
Return the raw flags of the source value,.
This class contains meta information specific to a module.
An SDNode that represents everything that will be needed to construct a MachineInstr.
This class is used to represent an MGATHER node.
This class is used to represent an MLOAD node.
This class is used to represent an MSCATTER node.
This class is used to represent an MSTORE node.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
LLVM_ABI MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT memvt, MachineMemOperand *MMO)
MachineMemOperand * MMO
Memory reference information.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
unsigned getRawSubclassData() const
Return the SubclassData value, without HasDebugValue.
EVT getMemoryVT() const
Return the type of the in-memory value.
Representation for a specific memory location.
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
Function * getFunction(StringRef Name) const
Look up the specified function in the module symbol table.
Definition Module.cpp:230
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:303
The optimization diagnostic interface.
Pass interface - Implemented by all 'passes'.
Definition Pass.h:99
Class to represent pointers.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
unsigned getAddressSpace() const
Return the address space of the Pointer type.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
bool isNull() const
Test if the pointer held in the union is null, regardless of which type it is.
Analysis providing profile information.
void Deallocate(SubClass *E)
Deallocate - Release storage for the pointed-to object.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
Keeps track of dbg_value information through SDISel.
LLVM_ABI void add(SDDbgValue *V, bool isParameter)
LLVM_ABI void erase(const SDNode *Node)
Invalidate all DbgValues attached to the node and remove it from the Node-to-DbgValues map.
Holds the information from a dbg_label node through SDISel.
Holds the information for a single machine location through SDISel; either an SDNode,...
static SDDbgOperand fromNode(SDNode *Node, unsigned ResNo)
static SDDbgOperand fromFrameIdx(unsigned FrameIdx)
static SDDbgOperand fromVReg(Register VReg)
static SDDbgOperand fromConst(const Value *Const)
@ SDNODE
Value is the result of an expression.
Holds the information from a dbg_value node through SDISel.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
const DebugLoc & getDebugLoc() const
unsigned getIROrder() const
This class provides iterator support for SDUse operands that use a specific SDNode.
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
const APInt & getAsAPIntVal() const
Helper method returns the APInt value of a ConstantSDNode.
LLVM_ABI void dumprFull(const SelectionDAG *G=nullptr) const
printrFull to dbgs().
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool isDivergent() const
LLVM_ABI bool isOnlyUserOf(const SDNode *N) const
Return true if this node is the only use of N.
iterator_range< value_op_iterator > op_values() const
unsigned getIROrder() const
Return the node ordering.
static constexpr size_t getMaxNumOperands()
Return the maximum number of operands that a SDNode can hold.
iterator_range< use_iterator > uses()
MemSDNodeBitfields MemSDNodeBits
LLVM_ABI void Profile(FoldingSetNodeID &ID) const
Gather unique data for the node.
bool getHasDebugValue() const
SDNodeFlags getFlags() const
void setNodeId(int Id)
Set unique node id.
LLVM_ABI void intersectFlagsWith(const SDNodeFlags Flags)
Clear any flags in this node that aren't also set in Flags.
static bool hasPredecessorHelper(const SDNode *N, SmallPtrSetImpl< const SDNode * > &Visited, SmallVectorImpl< const SDNode * > &Worklist, unsigned int MaxSteps=0, bool TopologicalPrune=false)
Returns true if N is a predecessor of any node in Worklist.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
bool use_empty() const
Return true if there are no uses of this node.
unsigned getNumValues() const
Return the number of values defined/returned by this operator.
unsigned getNumOperands() const
Return the number of values used by this operation.
const SDValue & getOperand(unsigned Num) const
static LLVM_ABI bool areOnlyUsersOf(ArrayRef< const SDNode * > Nodes, const SDNode *N)
Return true if all the users of N are contained in Nodes.
use_iterator use_begin() const
Provide iteration support to walk over all uses of an SDNode.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if this node is an operand of N.
const APInt & getConstantOperandAPInt(unsigned Num) const
Helper method returns the APInt of a ConstantSDNode operand.
std::optional< APInt > bitcastToAPInt() const
LLVM_ABI bool hasPredecessor(const SDNode *N) const
Return true if N is a predecessor of this node.
LLVM_ABI bool hasAnyUseOfValue(unsigned Value) const
Return true if there are any use of the indicated value.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
bool isUndef() const
Returns true if the node type is UNDEF or POISON.
op_iterator op_end() const
op_iterator op_begin() const
static use_iterator use_end()
LLVM_ABI void DropOperands()
Release the operands and set this node to have zero operands.
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
Create an SDNode.
Represents a use of a SDNode.
SDNode * getUser()
This returns the SDNode that contains this Use.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
bool isUndef() const
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
LLVM_ABI bool isOperandOf(const SDNode *N) const
Return true if the referenced return value is an operand of N.
SDValue()=default
LLVM_ABI bool reachesChainWithoutSideEffects(SDValue Dest, unsigned Depth=2) const
Return true if this operand (which must be a chain) reaches the specified operand without crossing an...
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
uint64_t getConstantOperandVal(unsigned i) const
unsigned getOpcode() const
virtual void verifyTargetNode(const SelectionDAG &DAG, const SDNode *N) const
Checks that the given target-specific node is valid. Aborts if it is not.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getVPZeroExtendInReg(SDValue Op, SDValue Mask, SDValue EVL, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op)
Return the specified value casted to the target's desired shift amount type.
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getExtLoadVP(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsExpanding=false)
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI SDValue getSplatSourceVector(SDValue V, int &SplatIndex)
If V is a splatted value, return the source vector and its splat index.
LLVM_ABI SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI OverflowKind computeOverflowForUnsignedSub(SDValue N0, SDValue N1) const
Determine if the result of the unsigned sub of 2 nodes can overflow.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
const SDValue & getRoot() const
Return the root tag of the SelectionDAG.
LLVM_ABI std::pair< SDValue, SDValue > getStrlen(SDValue Chain, const SDLoc &dl, SDValue Src, const CallInst *CI)
LLVM_ABI SDValue getMaskedGather(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, ISD::LoadExtType ExtTy)
LLVM_ABI SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS)
Return an AddrSpaceCastSDNode.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI std::optional< bool > isBoolConstant(SDValue N) const
Check if a value \op N is a constant using the target's BooleanContent for its type.
LLVM_ABI SDValue getStackArgumentTokenFactor(SDValue Chain)
Compute a TokenFactor to force all the incoming stack arguments to be loaded from the stack.
const TargetSubtargetInfo & getSubtarget() const
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI void updateDivergence(SDNode *N)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getNeutralElement(unsigned Opcode, const SDLoc &DL, EVT VT, SDNodeFlags Flags)
Get the (commutative) neutral element for the given opcode, if it exists.
LLVM_ABI SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo)
LLVM_ABI SDValue getAtomicLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO)
LLVM_ABI SDNode * getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops, const SDNodeFlags Flags, bool AllowCommute=false)
Get the specified node if it's already available, or else return NULL.
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getPseudoProbeNode(const SDLoc &Dl, SDValue Chain, uint64_t Guid, uint64_t Index, uint32_t Attr)
Creates a PseudoProbeSDNode with function GUID Guid and the index of the block Index it is probing,...
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDNode * SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT)
These are used for target selectors to mutate the specified node to have the specified return type,...
LLVM_ABI SelectionDAG(const TargetMachine &TM, CodeGenOptLevel)
LLVM_ABI SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, MachinePointerInfo DstPtrInfo, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getBitcastedSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getStridedLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
Gets a node for an atomic cmpxchg op.
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num)
Like ReplaceAllUsesOfValueWith, but for multiple values at once.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue getSymbolFunctionGlobalAddress(SDValue Op, Function **TargetFunction=nullptr)
Return a GlobalAddress of the function from the current module with name matching the given ExternalS...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
OverflowKind
Used to represent the possible overflow behavior of an operation.
static LLVM_ABI unsigned getHasPredecessorMaxSteps()
LLVM_ABI bool haveNoCommonBitsSet(SDValue A, SDValue B) const
Return true if A and B have no common bits set.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI bool cannotBeOrderedNegativeFP(SDValue Op) const
Test whether the given float value is known to be positive.
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
LLVM_ABI bool calculateDivergence(SDNode *N)
LLVM_ABI SDValue getElementCount(const SDLoc &DL, EVT VT, ElementCount EC, bool ConstantFold=true)
LLVM_ABI SDValue getGetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getAssertAlign(const SDLoc &DL, SDValue V, Align A)
Return an AssertAlignSDNode.
LLVM_ABI SDNode * mutateStrictFPToFP(SDNode *Node)
Mutate the specified strict FP node to its non-strict equivalent, unlinking the node from its chain a...
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getInsertSubvector(const SDLoc &DL, SDValue Vec, SDValue SubVec, unsigned Idx)
Insert SubVec at the Idx element of Vec.
LLVM_ABI SDValue getBitcastedZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
LLVM_ABI SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO)
Gets a node for an atomic op, produces result (if relevant) and chain and takes 2 operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI Align getEVTAlign(EVT MemoryVT) const
Compute the default alignment value for the given type.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
LLVM_ABI SDValue getVPZExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be an integer vector, to the vector-type VT,...
const TargetLowering & getTargetLoweringInfo() const
LLVM_ABI bool isEqualTo(SDValue A, SDValue B) const
Test whether two SDValues are known to compare equal.
static constexpr unsigned MaxRecursionDepth
LLVM_ABI SDValue getStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
bool isGuaranteedNotToBePoison(SDValue Op, unsigned Depth=0) const
Return true if this function can prove that Op is never poison.
LLVM_ABI SDValue expandVACopy(SDNode *Node)
Expand the specified ISD::VACOPY node as the Legalize pass would.
LLVM_ABI SDValue getIndexedMaskedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI void dump(bool Sorted=false) const
Dump the textual format of this DAG.
LLVM_ABI APInt computeVectorKnownZeroElements(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
For each demanded element of a vector, see if it is known to be zero.
LLVM_ABI void AddDbgValue(SDDbgValue *DB, bool isParameter)
Add a dbg_value SDNode.
bool NewNodesMustHaveLegalTypes
When true, additional steps are taken to ensure that getConstant() and similar functions return DAG n...
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
LLVM_ABI void salvageDebugInfo(SDNode &N)
To be invoked on an SDNode that is slated to be erased.
LLVM_ABI SDNode * MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef< SDValue > Ops)
This mutates the specified node to have the specified return type, opcode, and operands.
LLVM_ABI std::pair< SDValue, SDValue > UnrollVectorOverflowOp(SDNode *N, unsigned ResNE=0)
Like UnrollVectorOp(), but for the [US](ADD|SUB|MUL)O family of opcodes.
allnodes_const_iterator allnodes_begin() const
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
LLVM_ABI SDValue getGatherVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcastedAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by first bitcasting (from potentia...
LLVM_ABI bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts, unsigned Depth=0) const
Test whether V has a splatted value for all the demanded elements.
LLVM_ABI void DeleteNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
LLVM_ABI SDDbgValue * getDbgValueList(DIVariable *Var, DIExpression *Expr, ArrayRef< SDDbgOperand > Locs, ArrayRef< SDNode * > Dependencies, bool IsIndirect, const DebugLoc &DL, unsigned O, bool IsVariadic)
Creates a SDDbgValue node from a list of locations.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI SDValue getNegative(SDValue Val, const SDLoc &DL, EVT VT)
Create negative operation as (SUB 0, Val).
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI void setNodeMemRefs(MachineSDNode *N, ArrayRef< MachineMemOperand * > NewMemRefs)
Mutate the specified machine node's memory references to the provided list.
LLVM_ABI SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal)
Try to simplify a select/vselect into 1 of its operands or a constant.
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
LLVM_ABI bool isConstantFPBuildVectorOrConstantFP(SDValue N) const
Test whether the given value is a constant FP or similar node.
const DataLayout & getDataLayout() const
LLVM_ABI SDValue expandVAArg(SDNode *Node)
Expand the specified ISD::VAARG node as the Legalize pass would.
LLVM_ABI SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl< SDValue > &Vals)
Creates a new TokenFactor containing Vals.
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
const SelectionDAGTargetInfo & getSelectionDAGInfo() const
LLVM_ABI bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const
Return true if loads are next to each other and can be merged.
LLVM_ABI SDValue getMaskedHistogram(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDDbgLabel * getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O)
Creates a SDDbgLabel node.
LLVM_ABI SDValue getStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI OverflowKind computeOverflowForUnsignedMul(SDValue N0, SDValue N1) const
Determine if the result of the unsigned mul of 2 nodes can overflow.
LLVM_ABI void copyExtraInfo(SDNode *From, SDNode *To)
Copy extra info associated with one node to another.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align)
VAArg produces a result and token chain, and takes a pointer and a source value as input.
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI SDValue getLoadFFVP(EVT VT, const SDLoc &DL, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue EVL, MachineMemOperand *MMO)
LLVM_ABI SDValue getMDNode(const MDNode *MD)
Return an MDNodeSDNode which holds an MDNode.
LLVM_ABI void clear()
Clear state and free memory necessary to make this SelectionDAG ready to process a new block.
std::pair< SDValue, SDValue > getMemcmp(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, const CallInst *CI)
LLVM_ABI void ReplaceAllUsesWith(SDValue From, SDValue To)
Modify anything using 'From' to use 'To' instead.
LLVM_ABI SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV)
Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to the shuffle node in input but with swa...
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI SDValue makeStateFunctionCall(unsigned LibFunc, SDValue Ptr, SDValue InChain, const SDLoc &DLoc)
Helper used to make a call to a library function that has one argument of pointer type.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
LLVM_ABI SDValue getIndexedLoadVP(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getSrcValue(const Value *v)
Construct a node to track a Value* through the backend.
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI OverflowKind computeOverflowForSignedMul(SDValue N0, SDValue N1) const
Determine if the result of the signed mul of 2 nodes can overflow.
LLVM_ABI MaybeAlign InferPtrAlign(SDValue Ptr) const
Infer alignment of a load / store address.
LLVM_ABI bool MaskedValueIsAllOnes(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if '(Op & Mask) == Mask'.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNodes()
This method deletes all unreachable nodes in the SelectionDAG.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
LLVM_ABI void AddDbgLabel(SDDbgLabel *DB)
Add a dbg_label SDNode.
bool isConstantValueOfAnyType(SDValue N) const
LLVM_ABI SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand)
A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI SDDbgValue * getVRegDbgValue(DIVariable *Var, DIExpression *Expr, Register VReg, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a VReg SDDbgValue node.
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label)
LLVM_ABI SDValue getIndexedStoreVP(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI std::optional< unsigned > getValidMinimumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue getSetFPEnv(SDValue Chain, const SDLoc &dl, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO)
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Base, SDValue Offset, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, bool IsTruncating=false, bool IsCompressing=false)
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI std::pair< SDValue, SDValue > getStrictFPExtendOrRound(SDValue Op, SDValue Chain, const SDLoc &DL, EVT VT)
Convert Op, which must be a STRICT operation of float type, to the float type VT, by either extending...
LLVM_ABI std::pair< SDValue, SDValue > SplitEVL(SDValue N, EVT VecVT, const SDLoc &DL)
Split the explicit vector length parameter of a VP operation.
LLVM_ABI SDValue getPtrExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either truncating it or perform...
LLVM_ABI SDValue getVPLogicalNOT(const SDLoc &DL, SDValue Val, SDValue Mask, SDValue EVL, EVT VT)
Create a vector-predicated logical NOT operation as (VP_XOR Val, BooleanOne, Mask,...
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
iterator_range< allnodes_iterator > allnodes()
LLVM_ABI SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI SDValue WidenVector(const SDValue &N, const SDLoc &DL)
Widen the vector up to the next power of two using INSERT_SUBVECTOR.
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getLoadVP(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT MemVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, const MDNode *Ranges=nullptr, bool IsExpanding=false)
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDDbgValue * getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O)
Creates a constant SDDbgValue node.
LLVM_ABI SDValue getScatterVP(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getLifetimeNode(bool IsStart, const SDLoc &dl, SDValue Chain, int FrameIndex)
Creates a LifetimeSDNode that starts (IsStart==true) or ends (IsStart==false) the lifetime of the Fra...
ArrayRef< SDDbgValue * > GetDbgValues(const SDNode *SD) const
Get the debug values which reference the given SDNode.
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI OverflowKind computeOverflowForSignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the signed addition of 2 nodes can overflow.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI unsigned AssignTopologicalOrder()
Topological-sort the AllNodes list and a assign a unique node id for each node in the DAG based on th...
ilist< SDNode >::size_type allnodes_size() const
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
LLVM_ABI SDValue FoldConstantBuildVector(BuildVectorSDNode *BV, const SDLoc &DL, EVT DstEltVT)
Fold BUILD_VECTOR of constants/undefs to the destination type BUILD_VECTOR of constants/undefs elemen...
LLVM_ABI SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo)
LLVM_ABI SDValue getIndexedMaskedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTruncStoreVP(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, SDValue EVL, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags, const AAMDNodes &AAInfo, bool IsCompressing=false)
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
const TargetLibraryInfo & getLibInfo() const
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI bool MaskedVectorIsZero(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
Return true if 'Op' is known to be zero in DemandedElts.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
LLVM_ABI SDDbgValue * getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a FrameIndex SDDbgValue node.
LLVM_ABI SDValue getExtStridedLoadVP(ISD::LoadExtType ExtType, const SDLoc &DL, EVT VT, SDValue Chain, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT MemVT, MachineMemOperand *MMO, bool IsExpanding=false)
LLVM_ABI SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getJumpTable(int JTI, EVT VT, bool isTarget=false, unsigned TargetFlags=0)
LLVM_ABI bool isBaseWithConstantOffset(SDValue Op) const
Return true if the specified operand is an ISD::ADD with a ConstantSDNode on the right-hand side,...
LLVM_ABI SDValue getVPPtrExtOrTrunc(const SDLoc &DL, EVT VT, SDValue Op, SDValue Mask, SDValue EVL)
Convert a vector-predicated Op, which must be of integer type, to the vector-type integer type VT,...
LLVM_ABI SDValue getVectorIdxConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI void getTopologicallyOrderedNodes(SmallVectorImpl< const SDNode * > &SortedNodes) const
Get all the nodes in their topological order without modifying any states.
LLVM_ABI void ReplaceAllUsesOfValueWith(SDValue From, SDValue To)
Replace any uses of From with To, leaving uses of other values produced by From.getNode() alone.
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getPtrExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to extend the Op as a pointer value assuming it was the smaller SrcTy ...
LLVM_ABI bool canCreateUndefOrPoison(SDValue Op, const APInt &DemandedElts, bool PoisonOnly=false, bool ConsiderFlags=true, unsigned Depth=0) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
LLVM_ABI OverflowKind computeOverflowForUnsignedAdd(SDValue N0, SDValue N1) const
Determine if the result of the unsigned addition of 2 nodes can overflow.
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getTruncStridedStoreVP(SDValue Chain, const SDLoc &DL, SDValue Val, SDValue Ptr, SDValue Stride, SDValue Mask, SDValue EVL, EVT SVT, MachineMemOperand *MMO, bool IsCompressing=false)
LLVM_ABI void canonicalizeCommutativeBinop(unsigned Opcode, SDValue &N1, SDValue &N2) const
Swap N1 and N2 if Opcode is a commutative binary opcode and the canonical form expects the opposite o...
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
LLVM_ABI bool isKnownToBeAPowerOfTwoFP(SDValue Val, unsigned Depth=0) const
Test if the given fp value is known to be an integer power-of-2, either positive or negative.
LLVM_ABI OverflowKind computeOverflowForSignedSub(SDValue N0, SDValue N1) const
Determine if the result of the signed sub of 2 nodes can overflow.
LLVM_ABI bool expandMultipleResultFPLibCall(RTLIB::Libcall LC, SDNode *Node, SmallVectorImpl< SDValue > &Results, std::optional< unsigned > CallRetResNo={})
Expands a node with multiple results to an FP or vector libcall.
LLVMContext * getContext() const
LLVM_ABI SDValue simplifyFPBinop(unsigned Opcode, SDValue X, SDValue Y, SDNodeFlags Flags)
Try to simplify a floating-point binary operation into 1 of its operands or a constant.
const SDValue & setRoot(SDValue N)
Set the current root tag of the SelectionDAG.
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
LLVM_ABI bool isUndef(unsigned Opcode, ArrayRef< SDValue > Ops)
Return true if the result of this operation is always undefined.
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
LLVM_ABI SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
Mutate the specified node in-place to have the specified operands.
LLVM_ABI std::pair< EVT, EVT > GetDependentSplitDestVTs(const EVT &VT, const EVT &EnvVT, bool *HiIsEmpty) const
Compute the VTs needed for the low/hi parts of a type, dependent on an enveloping VT that has been sp...
LLVM_ABI SDValue foldConstantFPMath(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops)
Fold floating-point operations when all operands are constants and/or undefined.
LLVM_ABI void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, UniformityInfo *UA, ProfileSummaryInfo *PSIin, BlockFrequencyInfo *BFIin, MachineModuleInfo &MMI, FunctionVarLocs const *FnVarLocs)
Prepare this SelectionDAG to process code in the given MachineFunction.
LLVM_ABI std::optional< ConstantRange > getValidShiftAmountRange(SDValue V, const APInt &DemandedElts, unsigned Depth) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2)
LLVM_ABI SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM)
LLVM_ABI SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg)
A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDDbgValue * getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O)
Creates a SDDbgValue node.
LLVM_ABI SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Base, SDValue Offset, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::MemIndexedMode AM, ISD::LoadExtType, bool IsExpanding=false)
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef< ISD::NodeType > CandidateBinOps, bool AllowPartials=false)
Match a binop + shuffle pyramid that represents a horizontal reduction over the elements of a vector ...
LLVM_ABI bool isADDLike(SDValue Op, bool NoWrap=false) const
Return true if the specified operand is an ISD::OR or ISD::XOR node that can be treated as an ISD::AD...
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
LLVM_ABI SDValue simplifyShift(SDValue X, SDValue Y)
Try to simplify a shift into 1 of its operands or a constant.
LLVM_ABI void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits=0, unsigned SizeInBits=0, bool InvalidateDbg=true)
Transfer debug values from one node to another, while optionally generating fragment expressions for ...
LLVM_ABI SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a logical NOT operation as (XOR Val, BooleanOne).
LLVM_ABI SDValue getMaskedScatter(SDVTList VTs, EVT MemVT, const SDLoc &dl, ArrayRef< SDValue > Ops, MachineMemOperand *MMO, ISD::MemIndexType IndexType, bool IsTruncating=false)
ilist< SDNode >::iterator allnodes_iterator
This SDNode is used to implement the code generator support for the llvm IR shufflevector instruction...
int getMaskElt(unsigned Idx) const
ArrayRef< int > getMask() const
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
static LLVM_ABI bool isSplatMask(ArrayRef< int > Mask)
size_type size() const
Definition SmallPtrSet.h:99
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
bool erase(PtrType Ptr)
Remove pointer from the set.
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator erase(const_iterator CI)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition StringRef.h:140
Information about stack frame layout on the target.
virtual TargetStackID::Value getStackIDForScalableVectors() const
Returns the StackID that scalable vectors should be associated with.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
Completely target-dependent object reference.
unsigned getTargetFlags() const
Provides information about what library functions are available for the current target.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
const TargetMachine & getTargetMachine() const
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
BooleanContent
Enum that describes how the target represents true/false values.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
Primary interface to the complete machine description for the target machine.
virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast between SrcAS and DestAS is a noop.
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const SelectionDAGTargetInfo * getSelectionDAGInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
bool isOSDarwin() const
Is this a "Darwin" OS (macOS, iOS, tvOS, watchOS, DriverKit, XROS, or bridgeOS).
Definition Triple.h:612
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition TypeSize.h:344
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition Type.h:273
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
Definition Type.cpp:297
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
Definition Type.cpp:281
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Definition Type.cpp:295
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:198
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
A Use represents the edge between a Value definition and its users.
Definition Use.h:35
LLVM_ABI void set(Value *Val)
Definition Value.h:905
User * getUser() const
Returns the User that contains this Use.
Definition Use.h:61
This class is used to represent an VP_GATHER node.
This class is used to represent a VP_LOAD node.
This class is used to represent an VP_SCATTER node.
This class is used to represent a VP_STORE node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
Provides info so a possible vectorization of a function can be computed.
bool isMasked() const
StringRef getVectorFnName() const
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:202
bool contains(const_arg_type_t< ValueT > V) const
Check if the set contains the given element.
Definition DenseSet.h:175
constexpr bool hasKnownScalarFactor(const FixedOrScalableQuantity &RHS) const
Returns true if there exists a value X where RHS.multiplyCoefficientBy(X) will result in a value whos...
Definition TypeSize.h:270
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:201
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:231
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition TypeSize.h:169
constexpr bool isKnownEven() const
A return value of true indicates we know at compile time that the number of elements (vscale * Min) i...
Definition TypeSize.h:177
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition TypeSize.h:166
static constexpr bool isKnownGE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:238
A raw_ostream that writes to an std::string.
CallInst * Call
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt mulhu(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on zero-extended operands.
Definition APInt.cpp:3131
LLVM_ABI APInt avgCeilU(const APInt &C1, const APInt &C2)
Compute the ceil of the unsigned average of C1 and C2.
Definition APInt.cpp:3118
LLVM_ABI APInt avgFloorU(const APInt &C1, const APInt &C2)
Compute the floor of the unsigned average of C1 and C2.
Definition APInt.cpp:3108
LLVM_ABI APInt fshr(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift right.
Definition APInt.cpp:3182
LLVM_ABI APInt mulhs(const APInt &C1, const APInt &C2)
Performs (2*N)-bit multiplication on sign-extended operands.
Definition APInt.cpp:3123
APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
Definition APInt.h:2268
LLVM_ABI APInt fshl(const APInt &Hi, const APInt &Lo, const APInt &Shift)
Perform a funnel shift left.
Definition APInt.cpp:3173
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
Definition APInt.cpp:3009
APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
Definition APInt.h:2273
LLVM_ABI APInt avgFloorS(const APInt &C1, const APInt &C2)
Compute the floor of the signed average of C1 and C2.
Definition APInt.cpp:3103
LLVM_ABI APInt avgCeilS(const APInt &C1, const APInt &C2)
Compute the ceil of the signed average of C1 and C2.
Definition APInt.cpp:3113
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, bool isIntegerLike)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
Definition ISDOpcodes.h:24
LLVM_ABI CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical AND between different comparisons of identical values: ((X op1 Y) & (X...
LLVM_ABI bool isConstantSplatVectorAllOnes(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are ~0 ...
bool isNON_EXTLoad(const SDNode *N)
Returns true if the specified node is a non-extending load.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition ISDOpcodes.h:41
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
Definition ISDOpcodes.h:801
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
Definition ISDOpcodes.h:256
@ CTLZ_ZERO_UNDEF
Definition ISDOpcodes.h:774
@ TargetConstantPool
Definition ISDOpcodes.h:184
@ STRICT_FSETCC
STRICT_FSETCC/STRICT_FSETCCS - Constrained versions of SETCC, used for floating-point operands only.
Definition ISDOpcodes.h:504
@ DELETED_NODE
DELETED_NODE - This is an illegal value that is used to catch errors.
Definition ISDOpcodes.h:45
@ POISON
POISON - A poison node.
Definition ISDOpcodes.h:231
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
Definition ISDOpcodes.h:525
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition ISDOpcodes.h:270
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition ISDOpcodes.h:587
@ BSWAP
Byte Swap and Counting operators.
Definition ISDOpcodes.h:765
@ TargetBlockAddress
Definition ISDOpcodes.h:186
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:289
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition ISDOpcodes.h:515
@ ADD
Simple integer binary arithmetic operators.
Definition ISDOpcodes.h:259
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition ISDOpcodes.h:835
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
Definition ISDOpcodes.h:511
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
Definition ISDOpcodes.h:215
@ GlobalAddress
Definition ISDOpcodes.h:88
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition ISDOpcodes.h:862
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
Definition ISDOpcodes.h:571
@ FADD
Simple binary floating point operators.
Definition ISDOpcodes.h:410
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
Definition ISDOpcodes.h:738
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
Definition ISDOpcodes.h:892
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
Definition ISDOpcodes.h:249
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ GlobalTLSAddress
Definition ISDOpcodes.h:89
@ SIGN_EXTEND
Conversion operators.
Definition ISDOpcodes.h:826
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition ISDOpcodes.h:706
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition ISDOpcodes.h:656
@ TargetExternalSymbol
Definition ISDOpcodes.h:185
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
Definition ISDOpcodes.h:773
@ TargetJumpTable
Definition ISDOpcodes.h:183
@ TargetIndex
TargetIndex - Like a constant pool entry, but with completely target-dependent semantics.
Definition ISDOpcodes.h:193
@ SETCCCARRY
Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but op #2 is a boolean indicating ...
Definition ISDOpcodes.h:809
@ SSUBO
Same for subtraction.
Definition ISDOpcodes.h:347
@ STEP_VECTOR
STEP_VECTOR(IMM) - Returns a scalable vector whose lanes are comprised of a linear sequence of unsign...
Definition ISDOpcodes.h:682
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
Definition ISDOpcodes.h:528
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition ISDOpcodes.h:369
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition ISDOpcodes.h:778
@ UNDEF
UNDEF - An undefined node.
Definition ISDOpcodes.h:228
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
Definition ISDOpcodes.h:242
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition ISDOpcodes.h:663
@ AssertAlign
AssertAlign - These nodes record if a register contains a value that has a known alignment and the tr...
Definition ISDOpcodes.h:69
@ BasicBlock
Various leaf nodes.
Definition ISDOpcodes.h:81
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
Definition ISDOpcodes.h:225
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition ISDOpcodes.h:343
@ TargetGlobalAddress
TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or anything else with this node...
Definition ISDOpcodes.h:180
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition ISDOpcodes.h:695
@ SHL
Shift and rotation operations.
Definition ISDOpcodes.h:756
@ AssertNoFPClass
AssertNoFPClass - These nodes record if a register contains a float value that is known to be not som...
Definition ISDOpcodes.h:78
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition ISDOpcodes.h:636
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition ISDOpcodes.h:601
@ EntryToken
EntryToken - This is the marker used to indicate the start of a region.
Definition ISDOpcodes.h:48
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
Definition ISDOpcodes.h:563
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
Definition ISDOpcodes.h:219
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition ISDOpcodes.h:832
@ TargetConstantFP
Definition ISDOpcodes.h:175
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
Definition ISDOpcodes.h:793
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
Definition ISDOpcodes.h:379
@ SMULO
Same for multiplication.
Definition ISDOpcodes.h:351
@ TargetFrameIndex
Definition ISDOpcodes.h:182
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
Definition ISDOpcodes.h:881
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
Definition ISDOpcodes.h:870
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition ISDOpcodes.h:718
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
Definition ISDOpcodes.h:787
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:323
@ STRICT_FP_ROUND
X = STRICT_FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision ...
Definition ISDOpcodes.h:493
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition ISDOpcodes.h:908
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
Definition ISDOpcodes.h:174
@ STRICT_FP_EXTEND
X = STRICT_FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition ISDOpcodes.h:498
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition ISDOpcodes.h:730
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
Definition ISDOpcodes.h:200
@ SCMP
[US]CMP - 3-way comparison of signed or unsigned integers.
Definition ISDOpcodes.h:726
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition ISDOpcodes.h:701
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:299
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition ISDOpcodes.h:672
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
Definition ISDOpcodes.h:236
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
Definition ISDOpcodes.h:552
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
Definition ISDOpcodes.h:53
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
Definition ISDOpcodes.h:648
@ ExternalSymbol
Definition ISDOpcodes.h:93
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition ISDOpcodes.h:941
@ VECTOR_COMPRESS
VECTOR_COMPRESS(Vec, Mask, Passthru) consecutively place vector elements based on mask e....
Definition ISDOpcodes.h:690
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
Definition ISDOpcodes.h:903
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
Definition ISDOpcodes.h:927
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition ISDOpcodes.h:838
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
Definition ISDOpcodes.h:815
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
Definition ISDOpcodes.h:62
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
Definition ISDOpcodes.h:521
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition ISDOpcodes.h:360
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
Definition ISDOpcodes.h:713
@ SADDO_CARRY
Carry-using overflow-aware nodes for multiple precision addition and subtraction.
Definition ISDOpcodes.h:333
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
Definition ISDOpcodes.h:208
@ TargetGlobalTLSAddress
Definition ISDOpcodes.h:181
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
Definition ISDOpcodes.h:543
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isNormalStore(const SDNode *N)
Returns true if the specified node is a non-truncating and unindexed store.
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
bool matchUnaryFpPredicate(SDValue Op, std::function< bool(ConstantFPSDNode *)> Match, bool AllowUndefs=false)
Hook for matching ConstantFPSDNode predicate.
bool isExtOpcode(unsigned Opcode)
LLVM_ABI bool isConstantSplatVectorAllZeros(const SDNode *N, bool BuildVectorOnly=false)
Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where all of the elements are 0 o...
LLVM_ABI bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed)
Returns true if the specified node is a vector where all elements can be truncated to the specified e...
LLVM_ABI bool isVPBinaryOp(unsigned Opcode)
Whether this is a vector-predicated binary operation opcode.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
LLVM_ABI std::optional< unsigned > getBaseOpcodeForVP(unsigned Opcode, bool hasFPExcept)
Translate this VP Opcode to its corresponding non-VP Opcode.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
LLVM_ABI std::optional< unsigned > getVPMaskIdx(unsigned Opcode)
The operand position of the vector mask.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI std::optional< unsigned > getVPExplicitVectorLengthIdx(unsigned Opcode)
The operand position of the explicit vector length parameter.
bool isEXTLoad(const SDNode *N)
Returns true if the specified node is a EXTLOAD.
LLVM_ABI bool allOperandsUndef(const SDNode *N)
Return true if the node has at least one operand and all operands of the specified node are ISD::UNDE...
LLVM_ABI bool isFreezeUndef(const SDNode *N)
Return true if the specified node is FREEZE(UNDEF).
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI std::optional< unsigned > getVPForBaseOpcode(unsigned Opcode)
Translate this non-VP Opcode to its corresponding VP Opcode.
MemIndexType
MemIndexType enum - This enum defines how to interpret MGATHER/SCATTER's index parameter when calcula...
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool matchUnaryPredicateImpl(SDValue Op, std::function< bool(ConstNodeType *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Attempt to match a unary predicate against a scalar/splat constant or every element of a constant BUI...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI NodeType getInverseMinMaxOpcode(unsigned MinMaxOpc)
Given a MinMaxOpc of ISD::(U|S)MIN or ISD::(U|S)MAX, returns ISD::(U|S)MAX and ISD::(U|S)MIN,...
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
LLVM_ABI bool isVPReduction(unsigned Opcode)
Whether this is a vector-predicated reduction opcode.
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
LLVM_ABI bool isBuildVectorOfConstantFPSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantFPSDNode or undef.
bool isSEXTLoad(const SDNode *N)
Returns true if the specified node is a SEXTLOAD.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI bool isBuildVectorAllOnes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are ~0 or undef.
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
LLVM_ABI bool isVPOpcode(unsigned Opcode)
Whether this is a vector-predicated Opcode.
LLVM_ABI CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, EVT Type)
Return the result of a logical OR between different comparisons of identical values: ((X op1 Y) | (X ...
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
LLVM_ABI Libcall getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMCPY_ELEMENT_UNORDERED_ATOMIC - Return MEMCPY_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMSET_ELEMENT_UNORDERED_ATOMIC - Return MEMSET_ELEMENT_UNORDERED_ATOMIC_* value for the given ele...
LLVM_ABI Libcall getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize)
getMEMMOVE_ELEMENT_UNORDERED_ATOMIC - Return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_* value for the given e...
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
initializer< Ty > init(const Ty &Val)
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition Dwarf.h:149
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
NodeAddr< NodeBase * > Node
Definition RDFGraph.h:381
This is an optimization pass for GlobalISel generic memory operations.
GenericUniformityInfo< SSAContext > UniformityInfo
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
Definition MathExtras.h:355
@ Offset
Definition DWP.cpp:477
bool operator<(int64_t V1, const APSInt &V2)
Definition APSInt.h:362
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
getICmpCondCode - Return the ISD condition code corresponding to the given LLVM IR integer condition ...
Definition Analysis.cpp:241
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1745
LLVM_ABI SDValue peekThroughExtractSubvectors(SDValue V)
Return the non-extracted vector source operand of V if it exists.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1725
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI bool isAllOnesOrAllOnesSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant -1 integer or a splatted vector of a constant -1 integer (with...
Definition Utils.cpp:1607
LLVM_ABI SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs)
If V is a bitwise not, returns the inverted operand.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition STLExtras.h:2472
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition bit.h:279
bool isIntOrFPConstant(SDValue V)
Return true if V is either a integer or FP constant.
auto dyn_cast_if_present(const Y &Val)
dyn_cast_if_present<X> - Functionally identical to dyn_cast, except that a null (or none in the case ...
Definition Casting.h:733
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
Definition bit.h:289
LLVM_READONLY APFloat maximum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximum semantics.
Definition APFloat.h:1643
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2136
constexpr bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition MathExtras.h:252
LLVM_ABI bool shouldOptimizeForSize(const MachineFunction *MF, ProfileSummaryInfo *PSI, const MachineBlockFrequencyInfo *BFI, PGSOQueryType QueryType=PGSOQueryType::Other)
Returns true if machine function MF is suggested to be size-optimized based on the profile.
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition STLExtras.h:632
auto cast_or_null(const Y &Val)
Definition Casting.h:715
void * PointerTy
LLVM_ABI bool isNullOrNullSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
Definition Utils.cpp:1589
LLVM_ABI bool isMinSignedConstant(SDValue V)
Returns true if V is a constant min signed integer value.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM)
Equivalent of C standard library function.
Definition APFloat.h:1555
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:754
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1732
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
LLVM_READONLY APFloat maxnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 maxNum semantics.
Definition APFloat.h:1598
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:342
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
LLVM_ABI SDValue peekThroughInsertVectorElt(SDValue V, const APInt &DemandedElts)
Recursively peek through INSERT_VECTOR_ELT nodes, returning the source vector operand of V,...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void checkForCycles(const SelectionDAG *DAG, bool force=false)
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1622
LLVM_READONLY APFloat minimumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimumNumber semantics.
Definition APFloat.h:1629
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
LLVM_ABI SDValue peekThroughTruncates(SDValue V)
Return the non-truncated source operand of V if it exists.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
constexpr std::underlying_type_t< Enum > to_underlying(Enum E)
Returns underlying integer value of an enum.
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI SDValue peekThroughOneUseBitcasts(SDValue V)
Return the non-bitcasted and one-use source operand of V if it exists.
CodeGenOptLevel
Code generation optimization level.
Definition CodeGen.h:82
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Other
Any other memory.
Definition ModRef.h:68
LLVM_READONLY APFloat minnum(const APFloat &A, const APFloat &B)
Implements IEEE-754 2008 minNum semantics.
Definition APFloat.h:1579
@ Mul
Product of integers.
@ Sub
Subtraction of integers.
LLVM_ABI bool isNullConstantOrUndef(SDValue V)
Returns true if V is a constant integer zero or an UNDEF node.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1835
constexpr unsigned BitWidth
bool funcReturnsFirstArgOfCall(const CallInst &CI)
Returns true if the parent of CI returns CI's first argument after calling CI.
Definition Analysis.cpp:723
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
LLVM_ABI bool isZeroOrZeroSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 0 integer or a splatted vector of a constant 0 integer (with n...
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1897
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:201
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition MathExtras.h:583
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition Alignment.h:197
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_READONLY APFloat minimum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 minimum semantics.
Definition APFloat.h:1616
LLVM_READONLY APFloat maximumnum(const APFloat &A, const APFloat &B)
Implements IEEE 754-2019 maximumNumber semantics.
Definition APFloat.h:1656
LLVM_ABI bool isOnesOrOnesSplat(SDValue N, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
LLVM_ABI bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, unsigned OperandNo)
Returns true if V is a neutral element of Opc with Flags.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
Definition MathExtras.h:384
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
#define N
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition Metadata.h:761
MDNode * TBAAStruct
The tag for type-based alias analysis (tbaa struct).
Definition Metadata.h:781
MDNode * TBAA
The tag for type-based alias analysis.
Definition Metadata.h:778
static LLVM_ABI const fltSemantics & IEEEsingle() LLVM_READNONE
Definition APFloat.cpp:266
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition APFloat.h:294
static constexpr roundingMode rmTowardNegative
Definition APFloat.h:307
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:304
static constexpr roundingMode rmTowardZero
Definition APFloat.h:308
static LLVM_ABI const fltSemantics & IEEEquad() LLVM_READNONE
Definition APFloat.cpp:268
static LLVM_ABI const fltSemantics & IEEEdouble() LLVM_READNONE
Definition APFloat.cpp:267
static LLVM_ABI const fltSemantics & IEEEhalf() LLVM_READNONE
Definition APFloat.cpp:264
static constexpr roundingMode rmTowardPositive
Definition APFloat.h:306
static LLVM_ABI const fltSemantics & BFloat() LLVM_READNONE
Definition APFloat.cpp:265
opStatus
IEEE-754R 7: Default exception handling.
Definition APFloat.h:320
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Represents offset+length into a ConstantDataArray.
uint64_t Length
Length of the slice.
uint64_t Offset
Slice starts at this Offset.
void move(uint64_t Delta)
Moves the Offset and adjusts Length accordingly.
const ConstantDataArray * Array
ConstantDataArray pointer.
Extended Value Type.
Definition ValueTypes.h:35
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
Definition ValueTypes.h:395
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition ValueTypes.h:137
intptr_t getRawBits() const
Definition ValueTypes.h:512
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition ValueTypes.h:74
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
Definition ValueTypes.h:121
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition ValueTypes.h:284
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition ValueTypes.h:300
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition ValueTypes.h:147
ElementCount getVectorElementCount() const
Definition ValueTypes.h:350
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition ValueTypes.h:373
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
Definition ValueTypes.h:359
uint64_t getScalarSizeInBits() const
Definition ValueTypes.h:385
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition ValueTypes.h:316
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition ValueTypes.h:65
bool isFixedLengthVector() const
Definition ValueTypes.h:181
bool isVector() const
Return true if this is a vector value type.
Definition ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition ValueTypes.h:323
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
Definition ValueTypes.h:292
bool bitsEq(EVT VT) const
Return true if this has the same number of bits as VT.
Definition ValueTypes.h:256
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
Definition ValueTypes.h:174
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition ValueTypes.h:328
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition ValueTypes.h:142
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition ValueTypes.h:336
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
Definition ValueTypes.h:308
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
Definition ValueTypes.h:453
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition ValueTypes.h:152
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
Definition KnownBits.h:301
LLVM_ABI KnownBits sextInReg(unsigned SrcBitWidth) const
Return known bits for a in-register sign extension of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
Definition KnownBits.h:255
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
Definition KnownBits.h:108
bool isZero() const
Returns true if value is all zero.
Definition KnownBits.h:80
void makeNonNegative()
Make this value non-negative.
Definition KnownBits.h:124
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
Definition KnownBits.h:242
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
Definition KnownBits.h:66
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
Definition KnownBits.h:274
static LLVM_ABI std::optional< bool > ne(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_NE result.
void makeNegative()
Make this value negative.
Definition KnownBits.h:119
void setAllConflict()
Make all bits known to be both zero and one.
Definition KnownBits.h:99
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
Definition KnownBits.h:161
KnownBits byteSwap() const
Definition KnownBits.h:514
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
Definition KnownBits.h:289
void setAllZero()
Make all bits known to be zero and discard any previous information.
Definition KnownBits.h:86
KnownBits reverseBits() const
Definition KnownBits.h:518
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
Definition KnownBits.h:233
unsigned getBitWidth() const
Get the bit width of this value.
Definition KnownBits.h:44
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
Definition KnownBits.h:172
void resetAll()
Resets the known state of all bits.
Definition KnownBits.h:74
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
Definition KnownBits.h:321
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
Definition KnownBits.h:111
static LLVM_ABI KnownBits abdu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for abdu(LHS, RHS).
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
Definition KnownBits.h:225
static LLVM_ABI KnownBits avgFloorU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorU.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
Definition KnownBits.h:311
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
Definition KnownBits.h:180
static LLVM_ABI KnownBits computeForSubBorrow(const KnownBits &LHS, KnownBits RHS, const KnownBits &Borrow)
Compute known bits results from subtracting RHS from LHS with 1-bit Borrow.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
Definition KnownBits.h:196
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition KnownBits.h:145
static LLVM_ABI KnownBits abds(KnownBits LHS, KnownBits RHS)
Compute known bits for abds(LHS, RHS).
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
Definition KnownBits.cpp:60
bool isStrictlyPositive() const
Returns true if this value is known to be positive.
Definition KnownBits.h:114
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static LLVM_ABI KnownBits avgFloorS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgFloorS.
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
Definition KnownBits.h:326
bool isNegative() const
Returns true if this value is known to be negative.
Definition KnownBits.h:105
static LLVM_ABI KnownBits computeForAddCarry(const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry)
Compute known bits resulting from adding LHS, RHS and a 1-bit Carry.
Definition KnownBits.cpp:53
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
Definition KnownBits.h:280
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
Definition KnownBits.h:219
static LLVM_ABI KnownBits avgCeilU(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilU.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
Definition KnownBits.h:167
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
static LLVM_ABI KnownBits avgCeilS(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from APIntOps::avgCeilS.
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI bool isDereferenceable(unsigned Size, LLVMContext &C, const DataLayout &DL) const
Return true if memory region [V, V+Offset+Size) is known to be dereferenceable.
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
PointerUnion< const Value *, const PseudoSourceValue * > V
This is the IR pointer value for the access, or it is null if unknown.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
These are IR-level optimization flags that may be propagated to SDNodes.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
unsigned int NumVTs
Clients of various APIs that cause global effects on the DAG can optionally implement this interface.
virtual void NodeDeleted(SDNode *N, SDNode *E)
The node N that was deleted and, if E is not null, an equivalent node E that replaced it.
virtual void NodeInserted(SDNode *N)
The node N that was inserted.
virtual void NodeUpdated(SDNode *N)
The node N that was updated.
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)