LLVM 22.0.0git
SplitKit.cpp
Go to the documentation of this file.
1//===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the SplitAnalysis class as well as mutator functions for
10// live range splitting.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SplitKit.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/Statistic.h"
30#include "llvm/Config/llvm-config.h"
31#include "llvm/IR/DebugLoc.h"
34#include "llvm/Support/Debug.h"
37#include <algorithm>
38#include <cassert>
39#include <iterator>
40#include <limits>
41#include <tuple>
42
43using namespace llvm;
44
45#define DEBUG_TYPE "regalloc"
46
47static cl::opt<bool>
48 EnableLoopIVHeuristic("enable-split-loopiv-heuristic",
49 cl::desc("Enable loop iv regalloc heuristic"),
50 cl::init(true));
51
52STATISTIC(NumFinished, "Number of splits finished");
53STATISTIC(NumSimple, "Number of splits that were simple");
54STATISTIC(NumCopies, "Number of copies inserted for splitting");
55STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
56
57//===----------------------------------------------------------------------===//
58// Last Insert Point Analysis
59//===----------------------------------------------------------------------===//
60
62 unsigned BBNum)
63 : LIS(lis), LastInsertPoint(BBNum) {}
64
66InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
67 const MachineBasicBlock &MBB) {
68 unsigned Num = MBB.getNumber();
69 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
70 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
71
73 bool EHPadSuccessor = false;
74 for (const MachineBasicBlock *SMBB : MBB.successors()) {
75 if (SMBB->isEHPad()) {
76 ExceptionalSuccessors.push_back(SMBB);
77 EHPadSuccessor = true;
78 } else if (SMBB->isInlineAsmBrIndirectTarget())
79 ExceptionalSuccessors.push_back(SMBB);
80 }
81
82 // Compute insert points on the first call. The pair is independent of the
83 // current live interval.
84 if (!LIP.first.isValid()) {
86 if (FirstTerm == MBB.end())
87 LIP.first = MBBEnd;
88 else
89 LIP.first = LIS.getInstructionIndex(*FirstTerm);
90
91 // If there is a landing pad or inlineasm_br successor, also find the
92 // instruction. If there is no such instruction, we don't need to do
93 // anything special. We assume there cannot be multiple instructions that
94 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
95 // assume that if there are any, they will be after any other call
96 // instructions in the block.
97 if (ExceptionalSuccessors.empty())
98 return LIP.first;
99 for (const MachineInstr &MI : llvm::reverse(MBB)) {
100 if ((EHPadSuccessor && MI.isCall()) ||
101 MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
102 LIP.second = LIS.getInstructionIndex(MI);
103 break;
104 }
105 }
106 }
107
108 // If CurLI is live into a landing pad successor, move the last insert point
109 // back to the call that may throw.
110 if (!LIP.second)
111 return LIP.first;
112
113 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
114 return LIS.isLiveInToMBB(CurLI, EHPad);
115 }))
116 return LIP.first;
117
118 // Find the value leaving MBB.
119 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
120 if (!VNI)
121 return LIP.first;
122
123 // The def of statepoint instruction is a gc relocation and it should be alive
124 // in landing pad. So we cannot split interval after statepoint instruction.
125 if (SlotIndex::isSameInstr(VNI->def, LIP.second))
126 if (auto *I = LIS.getInstructionFromIndex(LIP.second))
127 if (I->getOpcode() == TargetOpcode::STATEPOINT)
128 return LIP.second;
129
130 // If the value leaving MBB was defined after the call in MBB, it can't
131 // really be live-in to the landing pad. This can happen if the landing pad
132 // has a PHI, and this register is undef on the exceptional edge.
133 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
134 return LIP.first;
135
136 // Value is properly live-in to the landing pad.
137 // Only allow inserts before the call.
138 return LIP.second;
139}
140
144 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
145 if (LIP == LIS.getMBBEndIdx(&MBB))
146 return MBB.end();
147 return LIS.getInstructionFromIndex(LIP);
148}
149
150//===----------------------------------------------------------------------===//
151// Split Analysis
152//===----------------------------------------------------------------------===//
153
155 const MachineLoopInfo &mli)
156 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
157 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
158
160 UseSlots.clear();
161 UseBlocks.clear();
162 ThroughBlocks.clear();
163 CurLI = nullptr;
164}
165
166/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
167void SplitAnalysis::analyzeUses() {
168 assert(UseSlots.empty() && "Call clear first");
169
170 // First get all the defs from the interval values. This provides the correct
171 // slots for early clobbers.
172 for (const VNInfo *VNI : CurLI->valnos)
173 if (!VNI->isPHIDef() && !VNI->isUnused())
174 UseSlots.push_back(VNI->def);
175
176 // Get use slots form the use-def chain.
178 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
179 if (!MO.isUndef())
180 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
181
182 array_pod_sort(UseSlots.begin(), UseSlots.end());
183
184 // Remove duplicates, keeping the smaller slot for each instruction.
185 // That is what we want for early clobbers.
186 UseSlots.erase(llvm::unique(UseSlots, SlotIndex::isSameInstr),
187 UseSlots.end());
188
189 // Compute per-live block info.
190 calcLiveBlockInfo();
191
192 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
193 << UseBlocks.size() << " blocks, through "
194 << NumThroughBlocks << " blocks.\n");
195}
196
197/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
198/// where CurLI is live.
199void SplitAnalysis::calcLiveBlockInfo() {
200 ThroughBlocks.resize(MF.getNumBlockIDs());
201 NumThroughBlocks = NumGapBlocks = 0;
202 if (CurLI->empty())
203 return;
204
205 LiveInterval::const_iterator LVI = CurLI->begin();
206 LiveInterval::const_iterator LVE = CurLI->end();
207
209 UseI = UseSlots.begin();
210 UseE = UseSlots.end();
211
212 // Loop over basic blocks where CurLI is live.
214 LIS.getMBBFromIndex(LVI->start)->getIterator();
215 while (true) {
216 BlockInfo BI;
217 BI.MBB = &*MFI;
218 SlotIndex Start, Stop;
219 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
220
221 // If the block contains no uses, the range must be live through. At one
222 // point, RegisterCoalescer could create dangling ranges that ended
223 // mid-block.
224 if (UseI == UseE || *UseI >= Stop) {
225 ++NumThroughBlocks;
226 ThroughBlocks.set(BI.MBB->getNumber());
227 // The range shouldn't end mid-block if there are no uses. This shouldn't
228 // happen.
229 assert(LVI->end >= Stop && "range ends mid block with no uses");
230 } else {
231 // This block has uses. Find the first and last uses in the block.
232 BI.FirstInstr = *UseI;
233 assert(BI.FirstInstr >= Start);
234 do ++UseI;
235 while (UseI != UseE && *UseI < Stop);
236 BI.LastInstr = UseI[-1];
237 assert(BI.LastInstr < Stop);
238
239 // LVI is the first live segment overlapping MBB.
240 BI.LiveIn = LVI->start <= Start;
241
242 // When not live in, the first use should be a def.
243 if (!BI.LiveIn) {
244 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
245 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
246 BI.FirstDef = BI.FirstInstr;
247 }
248
249 // Look for gaps in the live range.
250 BI.LiveOut = true;
251 while (LVI->end < Stop) {
252 SlotIndex LastStop = LVI->end;
253 if (++LVI == LVE || LVI->start >= Stop) {
254 BI.LiveOut = false;
255 BI.LastInstr = LastStop;
256 break;
257 }
258
259 if (LastStop < LVI->start) {
260 // There is a gap in the live range. Create duplicate entries for the
261 // live-in snippet and the live-out snippet.
262 ++NumGapBlocks;
263
264 // Push the Live-in part.
265 BI.LiveOut = false;
266 UseBlocks.push_back(BI);
267 UseBlocks.back().LastInstr = LastStop;
268
269 // Set up BI for the live-out part.
270 BI.LiveIn = false;
271 BI.LiveOut = true;
272 BI.FirstInstr = BI.FirstDef = LVI->start;
273 }
274
275 // A Segment that starts in the middle of the block must be a def.
276 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
277 if (!BI.FirstDef)
278 BI.FirstDef = LVI->start;
279 }
280
281 UseBlocks.push_back(BI);
282
283 // LVI is now at LVE or LVI->end >= Stop.
284 if (LVI == LVE)
285 break;
286 }
287
288 // Live segment ends exactly at Stop. Move to the next segment.
289 if (LVI->end == Stop && ++LVI == LVE)
290 break;
291
292 // Pick the next basic block.
293 if (LVI->start < Stop)
294 ++MFI;
295 else
296 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
297 }
298
299 LooksLikeLoopIV = EnableLoopIVHeuristic && UseBlocks.size() == 2 &&
300 any_of(UseBlocks, [this](BlockInfo &BI) {
301 MachineLoop *L = Loops.getLoopFor(BI.MBB);
302 return BI.LiveIn && BI.LiveOut && BI.FirstDef && L &&
303 L->isLoopLatch(BI.MBB);
304 });
305
306 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
307}
308
310 if (cli->empty())
311 return 0;
312 LiveInterval *li = const_cast<LiveInterval*>(cli);
313 LiveInterval::iterator LVI = li->begin();
314 LiveInterval::iterator LVE = li->end();
315 unsigned Count = 0;
316
317 // Loop over basic blocks where li is live.
319 LIS.getMBBFromIndex(LVI->start)->getIterator();
320 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
321 while (true) {
322 ++Count;
323 LVI = li->advanceTo(LVI, Stop);
324 if (LVI == LVE)
325 return Count;
326 do {
327 ++MFI;
328 Stop = LIS.getMBBEndIdx(&*MFI);
329 } while (Stop <= LVI->start);
330 }
331}
332
334 Register OrigReg = VRM.getOriginal(CurLI->reg());
335 const LiveInterval &Orig = LIS.getInterval(OrigReg);
336 assert(!Orig.empty() && "Splitting empty interval?");
338
339 // Range containing Idx should begin at Idx.
340 if (I != Orig.end() && I->start <= Idx)
341 return I->start == Idx;
342
343 // Range does not contain Idx, previous must end at Idx.
344 return I != Orig.begin() && (--I)->end == Idx;
345}
346
348 clear();
349 CurLI = li;
350 analyzeUses();
351}
352
353//===----------------------------------------------------------------------===//
354// Split Editor
355//===----------------------------------------------------------------------===//
356
357/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
361 : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()),
362 MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
363 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
364 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
365
367 Edit = &LRE;
368 SpillMode = SM;
369 OpenIdx = 0;
370 RegAssign.clear();
371 Values.clear();
372
373 // Reset the LiveIntervalCalc instances needed for this spill mode.
374 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
375 &LIS.getVNInfoAllocator());
376 if (SpillMode)
377 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
378 &LIS.getVNInfoAllocator());
379
380 Edit->anyRematerializable();
381}
382
383#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
385 if (RegAssign.empty()) {
386 dbgs() << " empty\n";
387 return;
388 }
389
390 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
391 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
392 dbgs() << '\n';
393}
394#endif
395
396/// Find a subrange corresponding to the exact lane mask @p LM in the live
397/// interval @p LI. The interval @p LI is assumed to contain such a subrange.
398/// This function is used to find corresponding subranges between the
399/// original interval and the new intervals.
400template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
401 for (auto &S : LI.subranges())
402 if (S.LaneMask == LM)
403 return S;
404 llvm_unreachable("SubRange for this mask not found");
405}
406
408 LiveInterval &LI) {
409 return getSubrangeImpl(LM, LI);
410}
411
413 const LiveInterval &LI) {
414 return getSubrangeImpl(LM, LI);
415}
416
417/// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
418/// in the live interval @p LI. The interval @p LI is assumed to contain such
419/// a subrange. This function is used to find corresponding subranges between
420/// the original interval and the new intervals.
422 const LiveInterval &LI) {
423 for (const LiveInterval::SubRange &S : LI.subranges())
424 if ((S.LaneMask & LM) == LM)
425 return S;
426 llvm_unreachable("SubRange for this mask not found");
427}
428
429void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
430 if (!LI.hasSubRanges()) {
431 LI.createDeadDef(VNI);
432 return;
433 }
434
435 SlotIndex Def = VNI->def;
436 if (Original) {
437 // If we are transferring a def from the original interval, make sure
438 // to only update the subranges for which the original subranges had
439 // a def at this location.
440 for (LiveInterval::SubRange &S : LI.subranges()) {
441 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
442 VNInfo *PV = PS.getVNInfoAt(Def);
443 if (PV != nullptr && PV->def == Def)
444 S.createDeadDef(Def, LIS.getVNInfoAllocator());
445 }
446 } else {
447 // This is a new def: either from rematerialization, or from an inserted
448 // copy. Since rematerialization can regenerate a definition of a sub-
449 // register, we need to check which subranges need to be updated.
451 assert(DefMI != nullptr);
452 LaneBitmask LM;
453 for (const MachineOperand &DefOp : DefMI->defs()) {
454 Register R = DefOp.getReg();
455 if (R != LI.reg())
456 continue;
457 if (unsigned SR = DefOp.getSubReg())
458 LM |= TRI.getSubRegIndexLaneMask(SR);
459 else {
460 LM = MRI.getMaxLaneMaskForVReg(R);
461 break;
462 }
463 }
464 for (LiveInterval::SubRange &S : LI.subranges())
465 if ((S.LaneMask & LM).any())
466 S.createDeadDef(Def, LIS.getVNInfoAllocator());
467 }
468}
469
470VNInfo *SplitEditor::defValue(unsigned RegIdx,
471 const VNInfo *ParentVNI,
473 bool Original) {
474 assert(ParentVNI && "Mapping NULL value");
475 assert(Idx.isValid() && "Invalid SlotIndex");
476 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
477 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
478
479 // Create a new value.
480 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
481
482 bool Force = LI->hasSubRanges();
483 ValueForcePair FP(Force ? nullptr : VNI, Force);
484 // Use insert for lookup, so we can add missing values with a second lookup.
485 std::pair<ValueMap::iterator, bool> InsP =
486 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
487
488 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
489 // forced. Keep it as a simple def without any liveness.
490 if (!Force && InsP.second)
491 return VNI;
492
493 // If the previous value was a simple mapping, add liveness for it now.
494 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
495 addDeadDef(*LI, OldVNI, Original);
496
497 // No longer a simple mapping. Switch to a complex mapping. If the
498 // interval has subranges, make it a forced mapping.
499 InsP.first->second = ValueForcePair(nullptr, Force);
500 }
501
502 // This is a complex mapping, add liveness for VNI
503 addDeadDef(*LI, VNI, Original);
504 return VNI;
505}
506
507void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
508 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
509 VNInfo *VNI = VFP.getPointer();
510
511 // ParentVNI was either unmapped or already complex mapped. Either way, just
512 // set the force bit.
513 if (!VNI) {
514 VFP.setInt(true);
515 return;
516 }
517
518 // This was previously a single mapping. Make sure the old def is represented
519 // by a trivial live range.
520 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
521
522 // Mark as complex mapped, forced.
523 VFP = ValueForcePair(nullptr, true);
524}
525
526SlotIndex SplitEditor::buildSingleSubRegCopy(
527 Register FromReg, Register ToReg, MachineBasicBlock &MBB,
528 MachineBasicBlock::iterator InsertBefore, unsigned SubIdx,
529 LiveInterval &DestLI, bool Late, SlotIndex Def, const MCInstrDesc &Desc) {
530 bool FirstCopy = !Def.isValid();
531 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
532 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
533 | getInternalReadRegState(!FirstCopy), SubIdx)
534 .addReg(FromReg, 0, SubIdx);
535
536 SlotIndexes &Indexes = *LIS.getSlotIndexes();
537 if (FirstCopy) {
538 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
539 } else {
540 CopyMI->bundleWithPred();
541 }
542 return Def;
543}
544
545SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
547 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
548 const MCInstrDesc &Desc =
549 TII.get(TII.getLiveRangeSplitOpcode(FromReg, *MBB.getParent()));
550 SlotIndexes &Indexes = *LIS.getSlotIndexes();
551 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
552 // The full vreg is copied.
553 MachineInstr *CopyMI =
554 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
555 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
556 }
557
558 // Only a subset of lanes needs to be copied. The following is a simple
559 // heuristic to construct a sequence of COPYs. We could add a target
560 // specific callback if this turns out to be suboptimal.
561 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
562
563 // First pass: Try to find a perfectly matching subregister index. If none
564 // exists find the one covering the most lanemask bits.
565 const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
566 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
567
568 SmallVector<unsigned, 8> SubIndexes;
569
570 // Abort if we cannot possibly implement the COPY with the given indexes.
571 if (!TRI.getCoveringSubRegIndexes(RC, LaneMask, SubIndexes))
572 report_fatal_error("Impossible to implement partial COPY");
573
575 for (unsigned BestIdx : SubIndexes) {
576 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
577 DestLI, Late, Def, Desc);
578 }
579
580 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
581 DestLI.refineSubRanges(
582 Allocator, LaneMask,
583 [Def, &Allocator](LiveInterval::SubRange &SR) {
584 SR.createDeadDef(Def, Allocator);
585 },
586 Indexes, TRI);
587
588 return Def;
589}
590
591bool SplitEditor::rematWillIncreaseRestriction(const MachineInstr *DefMI,
593 SlotIndex UseIdx) const {
594 const MachineInstr *UseMI = LIS.getInstructionFromIndex(UseIdx);
595 if (!UseMI)
596 return false;
597
598 // Currently code assumes rematerialization only happens for a def at 0.
599 const unsigned DefOperandIdx = 0;
600 // We want to compute the static register class constraint for the instruction
601 // def. If it is a smaller subclass than getLargestLegalSuperClass at the use
602 // site, then rematerializing it will increase the constraints.
603 const TargetRegisterClass *DefConstrainRC =
604 DefMI->getRegClassConstraint(DefOperandIdx, &TII, &TRI);
605 if (!DefConstrainRC)
606 return false;
607
608 const TargetRegisterClass *RC = MRI.getRegClass(Edit->getReg());
609
610 // We want to find the register class that can be inflated to after the split
611 // occurs in recomputeRegClass
612 const TargetRegisterClass *SuperRC =
614
615 Register DefReg = DefMI->getOperand(DefOperandIdx).getReg();
616 const TargetRegisterClass *UseConstrainRC =
617 UseMI->getRegClassConstraintEffectForVReg(DefReg, SuperRC, &TII, &TRI,
618 /*ExploreBundle=*/true);
619 return UseConstrainRC->hasSubClass(DefConstrainRC);
620}
621
622VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
625 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
626
627 // We may be trying to avoid interference that ends at a deleted instruction,
628 // so always begin RegIdx 0 early and all others late.
629 bool Late = RegIdx != 0;
630
631 // Attempt cheap-as-a-copy rematerialization.
632 Register Original = VRM.getOriginal(Edit->get(RegIdx));
633 LiveInterval &OrigLI = LIS.getInterval(Original);
634 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
635
636 Register Reg = LI->reg();
637 if (OrigVNI) {
638 LiveRangeEdit::Remat RM(ParentVNI);
639 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
640 if (RM.OrigMI && TII.isAsCheapAsAMove(*RM.OrigMI) &&
641 Edit->canRematerializeAt(RM, OrigVNI, UseIdx)) {
642 if (!rematWillIncreaseRestriction(RM.OrigMI, MBB, UseIdx)) {
643 SlotIndex Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
644 ++NumRemats;
645 // Define the value in Reg.
646 return defValue(RegIdx, ParentVNI, Def, false);
647 }
649 dbgs() << "skipping rematerialize of " << printReg(Reg) << " at "
650 << UseIdx
651 << " since it will increase register class restrictions\n");
652 }
653 }
654
655 LaneBitmask LaneMask;
656 if (OrigLI.hasSubRanges()) {
657 LaneMask = LaneBitmask::getNone();
658 for (LiveInterval::SubRange &S : OrigLI.subranges()) {
659 if (S.liveAt(UseIdx))
660 LaneMask |= S.LaneMask;
661 }
662 } else {
663 LaneMask = LaneBitmask::getAll();
664 }
665
667 if (LaneMask.none()) {
668 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
669 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
670 SlotIndexes &Indexes = *LIS.getSlotIndexes();
671 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
672 } else {
673 ++NumCopies;
674 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
675 }
676
677 // Define the value in Reg.
678 return defValue(RegIdx, ParentVNI, Def, false);
679}
680
681/// Create a new virtual register and live interval.
683 // Create the complement as index 0.
684 if (Edit->empty())
685 Edit->createEmptyInterval();
686
687 // Create the open interval.
688 OpenIdx = Edit->size();
689 Edit->createEmptyInterval();
690 return OpenIdx;
691}
692
694 assert(Idx != 0 && "Cannot select the complement interval");
695 assert(Idx < Edit->size() && "Can only select previously opened interval");
696 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
697 OpenIdx = Idx;
698}
699
701 assert(OpenIdx && "openIntv not called before enterIntvBefore");
702 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
703 Idx = Idx.getBaseIndex();
704 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
705 if (!ParentVNI) {
706 LLVM_DEBUG(dbgs() << ": not live\n");
707 return Idx;
708 }
709 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
711 assert(MI && "enterIntvBefore called with invalid index");
712
713 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
714 return VNI->def;
715}
716
718 assert(OpenIdx && "openIntv not called before enterIntvAfter");
719 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
720 Idx = Idx.getBoundaryIndex();
721 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
722 if (!ParentVNI) {
723 LLVM_DEBUG(dbgs() << ": not live\n");
724 return Idx;
725 }
726 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
728 assert(MI && "enterIntvAfter called with invalid index");
729
730 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
731 std::next(MachineBasicBlock::iterator(MI)));
732 return VNI->def;
733}
734
736 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
738 SlotIndex Last = End.getPrevSlot();
739 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
740 << Last);
741 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
742 if (!ParentVNI) {
743 LLVM_DEBUG(dbgs() << ": not live\n");
744 return End;
745 }
747 if (LSP < Last) {
748 // It could be that the use after LSP is a def, and thus the ParentVNI
749 // just selected starts at that def. For this case to exist, the def
750 // must be part of a tied def/use pair (as otherwise we'd have split
751 // distinct live ranges into individual live intervals), and thus we
752 // can insert the def into the VNI of the use and the tied def/use
753 // pair can live in the resulting interval.
754 Last = LSP;
755 ParentVNI = Edit->getParent().getVNInfoAt(Last);
756 if (!ParentVNI) {
757 // undef use --> undef tied def
758 LLVM_DEBUG(dbgs() << ": tied use not live\n");
759 return End;
760 }
761 }
762
763 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
764 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
766 RegAssign.insert(VNI->def, End, OpenIdx);
767 LLVM_DEBUG(dump());
768 return VNI->def;
769}
770
771/// useIntv - indicate that all instructions in MBB should use OpenLI.
774}
775
777 assert(OpenIdx && "openIntv not called before useIntv");
778 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
779 RegAssign.insert(Start, End, OpenIdx);
780 LLVM_DEBUG(dump());
781}
782
784 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
785 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
786
787 // The interval must be live beyond the instruction at Idx.
788 SlotIndex Boundary = Idx.getBoundaryIndex();
789 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
790 if (!ParentVNI) {
791 LLVM_DEBUG(dbgs() << ": not live\n");
792 return Boundary.getNextSlot();
793 }
794 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
795 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
796 assert(MI && "No instruction at index");
797
798 // In spill mode, make live ranges as short as possible by inserting the copy
799 // before MI. This is only possible if that instruction doesn't redefine the
800 // value. The inserted COPY is not a kill, and we don't need to recompute
801 // the source live range. The spiller also won't try to hoist this copy.
802 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
803 MI->readsVirtualRegister(Edit->getReg())) {
804 forceRecompute(0, *ParentVNI);
805 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
806 return Idx;
807 }
808
809 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
810 std::next(MachineBasicBlock::iterator(MI)));
811 return VNI->def;
812}
813
815 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
816 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
817
818 // The interval must be live into the instruction at Idx.
819 Idx = Idx.getBaseIndex();
820 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
821 if (!ParentVNI) {
822 LLVM_DEBUG(dbgs() << ": not live\n");
823 return Idx.getNextSlot();
824 }
825 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
826
828 assert(MI && "No instruction at index");
829 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
830 return VNI->def;
831}
832
834 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
835 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
836 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
837 << Start);
838
839 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
840 if (!ParentVNI) {
841 LLVM_DEBUG(dbgs() << ": not live\n");
842 return Start;
843 }
844
845 unsigned RegIdx = 0;
846 Register Reg = LIS.getInterval(Edit->get(RegIdx)).reg();
847 VNInfo *VNI = defFromParent(RegIdx, ParentVNI, Start, MBB,
849 RegAssign.insert(Start, VNI->def, OpenIdx);
850 LLVM_DEBUG(dump());
851 return VNI->def;
852}
853
855 return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
856 return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
857 });
858}
859
861 assert(OpenIdx && "openIntv not called before overlapIntv");
862 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
863 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
864 "Parent changes value in extended range");
865 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
866 "Range cannot span basic blocks");
867
868 // The complement interval will be extended as needed by LICalc.extend().
869 if (ParentVNI)
870 forceRecompute(0, *ParentVNI);
871
872 // If the last use is tied to a def, we can't mark it as live for the
873 // interval which includes only the use. That would cause the tied pair
874 // to end up in two different intervals.
875 if (auto *MI = LIS.getInstructionFromIndex(End))
876 if (hasTiedUseOf(*MI, Edit->getReg())) {
877 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
878 return;
879 }
880
881 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
882 RegAssign.insert(Start, End, OpenIdx);
883 LLVM_DEBUG(dump());
884}
885
886//===----------------------------------------------------------------------===//
887// Spill modes
888//===----------------------------------------------------------------------===//
889
890void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
891 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
892 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
894 AssignI.setMap(RegAssign);
895
896 for (const VNInfo *C : Copies) {
897 SlotIndex Def = C->def;
899 assert(MI && "No instruction for back-copy");
900
901 MachineBasicBlock *MBB = MI->getParent();
903 bool AtBegin;
904 do AtBegin = MBBI == MBB->begin();
905 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
906
907 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
908 LIS.removeVRegDefAt(*LI, Def);
910 MI->eraseFromParent();
911
912 // Adjust RegAssign if a register assignment is killed at Def. We want to
913 // avoid calculating the live range of the source register if possible.
914 AssignI.find(Def.getPrevSlot());
915 if (!AssignI.valid() || AssignI.start() >= Def)
916 continue;
917 // If MI doesn't kill the assigned register, just leave it.
918 if (AssignI.stop() != Def)
919 continue;
920 unsigned RegIdx = AssignI.value();
921 // We could hoist back-copy right after another back-copy. As a result
922 // MMBI points to copy instruction which is actually dead now.
923 // We cannot set its stop to MBBI which will be the same as start and
924 // interval does not support that.
925 SlotIndex Kill =
926 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
927 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
928 Kill <= AssignI.start()) {
929 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
930 << '\n');
931 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
932 } else {
933 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
934 AssignI.setStop(Kill);
935 }
936 }
937}
938
940SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
941 MachineBasicBlock *DefMBB) {
942 if (MBB == DefMBB)
943 return MBB;
944 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
945
946 const MachineLoopInfo &Loops = SA.Loops;
947 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
948 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
949
950 // Best candidate so far.
951 MachineBasicBlock *BestMBB = MBB;
952 unsigned BestDepth = std::numeric_limits<unsigned>::max();
953
954 while (true) {
955 const MachineLoop *Loop = Loops.getLoopFor(MBB);
956
957 // MBB isn't in a loop, it doesn't get any better. All dominators have a
958 // higher frequency by definition.
959 if (!Loop) {
960 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
961 << " dominates " << printMBBReference(*MBB)
962 << " at depth 0\n");
963 return MBB;
964 }
965
966 // We'll never be able to exit the DefLoop.
967 if (Loop == DefLoop) {
968 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
969 << " dominates " << printMBBReference(*MBB)
970 << " in the same loop\n");
971 return MBB;
972 }
973
974 // Least busy dominator seen so far.
975 unsigned Depth = Loop->getLoopDepth();
976 if (Depth < BestDepth) {
977 BestMBB = MBB;
978 BestDepth = Depth;
979 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
980 << " dominates " << printMBBReference(*MBB)
981 << " at depth " << Depth << '\n');
982 }
983
984 // Leave loop by going to the immediate dominator of the loop header.
985 // This is a bigger stride than simply walking up the dominator tree.
986 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
987
988 // Too far up the dominator tree?
989 if (!IDom || !MDT.dominates(DefDomNode, IDom))
990 return BestMBB;
991
992 MBB = IDom->getBlock();
993 }
994}
995
996void SplitEditor::computeRedundantBackCopies(
997 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
998 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
999 const LiveInterval *Parent = &Edit->getParent();
1001 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
1002
1003 // Aggregate VNIs having the same value as ParentVNI.
1004 for (VNInfo *VNI : LI->valnos) {
1005 if (VNI->isUnused())
1006 continue;
1007 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1008 EqualVNs[ParentVNI->id].insert(VNI);
1009 }
1010
1011 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
1012 // redundant VNIs to BackCopies.
1013 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1014 const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1015 if (!NotToHoistSet.count(ParentVNI->id))
1016 continue;
1017 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
1019 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
1020 It2 = It1;
1021 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
1022 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
1023 continue;
1024
1025 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
1026 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
1027 if (MBB1 == MBB2) {
1028 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
1029 } else if (MDT.dominates(MBB1, MBB2)) {
1030 DominatedVNIs.insert(*It2);
1031 } else if (MDT.dominates(MBB2, MBB1)) {
1032 DominatedVNIs.insert(*It1);
1033 }
1034 }
1035 }
1036 if (!DominatedVNIs.empty()) {
1037 forceRecompute(0, *ParentVNI);
1038 append_range(BackCopies, DominatedVNIs);
1039 DominatedVNIs.clear();
1040 }
1041 }
1042}
1043
1044/// For SM_Size mode, find a common dominator for all the back-copies for
1045/// the same ParentVNI and hoist the backcopies to the dominator BB.
1046/// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1047/// to do the hoisting, simply remove the dominated backcopies for the same
1048/// ParentVNI.
1049void SplitEditor::hoistCopies() {
1050 // Get the complement interval, always RegIdx 0.
1051 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1052 const LiveInterval *Parent = &Edit->getParent();
1053
1054 // Track the nearest common dominator for all back-copies for each ParentVNI,
1055 // indexed by ParentVNI->id.
1056 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1057 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1058 // The total cost of all the back-copies for each ParentVNI.
1060 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1061 // for Speed.
1062 DenseSet<unsigned> NotToHoistSet;
1063
1064 // Find the nearest common dominator for parent values with multiple
1065 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1066 for (VNInfo *VNI : LI->valnos) {
1067 if (VNI->isUnused())
1068 continue;
1069 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1070 assert(ParentVNI && "Parent not live at complement def");
1071
1072 // Don't hoist remats. The complement is probably going to disappear
1073 // completely anyway.
1074 if (Edit->didRematerialize(ParentVNI))
1075 continue;
1076
1077 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1078
1079 DomPair &Dom = NearestDom[ParentVNI->id];
1080
1081 // Keep directly defined parent values. This is either a PHI or an
1082 // instruction in the complement range. All other copies of ParentVNI
1083 // should be eliminated.
1084 if (VNI->def == ParentVNI->def) {
1085 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1086 Dom = DomPair(ValMBB, VNI->def);
1087 continue;
1088 }
1089 // Skip the singly mapped values. There is nothing to gain from hoisting a
1090 // single back-copy.
1091 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1092 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1093 continue;
1094 }
1095
1096 if (!Dom.first) {
1097 // First time we see ParentVNI. VNI dominates itself.
1098 Dom = DomPair(ValMBB, VNI->def);
1099 } else if (Dom.first == ValMBB) {
1100 // Two defs in the same block. Pick the earlier def.
1101 if (!Dom.second.isValid() || VNI->def < Dom.second)
1102 Dom.second = VNI->def;
1103 } else {
1104 // Different basic blocks. Check if one dominates.
1106 MDT.findNearestCommonDominator(Dom.first, ValMBB);
1107 if (Near == ValMBB)
1108 // Def ValMBB dominates.
1109 Dom = DomPair(ValMBB, VNI->def);
1110 else if (Near != Dom.first)
1111 // None dominate. Hoist to common dominator, need new def.
1112 Dom = DomPair(Near, SlotIndex());
1113 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1114 }
1115
1116 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1117 << VNI->def << " for parent " << ParentVNI->id << '@'
1118 << ParentVNI->def << " hoist to "
1119 << printMBBReference(*Dom.first) << ' ' << Dom.second
1120 << '\n');
1121 }
1122
1123 // Insert the hoisted copies.
1124 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1125 DomPair &Dom = NearestDom[i];
1126 if (!Dom.first || Dom.second.isValid())
1127 continue;
1128 // This value needs a hoisted copy inserted at the end of Dom.first.
1129 const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1130 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1131 // Get a less loopy dominator than Dom.first.
1132 Dom.first = findShallowDominator(Dom.first, DefMBB);
1133 if (SpillMode == SM_Speed &&
1134 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1135 NotToHoistSet.insert(ParentVNI->id);
1136 continue;
1137 }
1138 SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1139 if (LSP <= ParentVNI->def) {
1140 NotToHoistSet.insert(ParentVNI->id);
1141 continue;
1142 }
1143 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1144 SA.getLastSplitPointIter(Dom.first))->def;
1145 }
1146
1147 // Remove redundant back-copies that are now known to be dominated by another
1148 // def with the same value.
1149 SmallVector<VNInfo*, 8> BackCopies;
1150 for (VNInfo *VNI : LI->valnos) {
1151 if (VNI->isUnused())
1152 continue;
1153 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1154 const DomPair &Dom = NearestDom[ParentVNI->id];
1155 if (!Dom.first || Dom.second == VNI->def ||
1156 NotToHoistSet.count(ParentVNI->id))
1157 continue;
1158 BackCopies.push_back(VNI);
1159 forceRecompute(0, *ParentVNI);
1160 }
1161
1162 // If it is not beneficial to hoist all the BackCopies, simply remove
1163 // redundant BackCopies in speed mode.
1164 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1165 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1166
1167 removeBackCopies(BackCopies);
1168}
1169
1170/// transferValues - Transfer all possible values to the new live ranges.
1171/// Values that were rematerialized are left alone, they need LICalc.extend().
1172bool SplitEditor::transferValues() {
1173 bool Skipped = false;
1174 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1175 for (const LiveRange::Segment &S : Edit->getParent()) {
1176 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1177 VNInfo *ParentVNI = S.valno;
1178 // RegAssign has holes where RegIdx 0 should be used.
1179 SlotIndex Start = S.start;
1180 AssignI.advanceTo(Start);
1181 do {
1182 unsigned RegIdx;
1183 SlotIndex End = S.end;
1184 if (!AssignI.valid()) {
1185 RegIdx = 0;
1186 } else if (AssignI.start() <= Start) {
1187 RegIdx = AssignI.value();
1188 if (AssignI.stop() < End) {
1189 End = AssignI.stop();
1190 ++AssignI;
1191 }
1192 } else {
1193 RegIdx = 0;
1194 End = std::min(End, AssignI.start());
1195 }
1196
1197 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1198 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1199 << printReg(Edit->get(RegIdx)) << ')');
1200 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1201
1202 // Check for a simply defined value that can be blitted directly.
1203 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1204 if (VNInfo *VNI = VFP.getPointer()) {
1205 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1206 LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1207 Start = End;
1208 continue;
1209 }
1210
1211 // Skip values with forced recomputation.
1212 if (VFP.getInt()) {
1213 LLVM_DEBUG(dbgs() << "(recalc)");
1214 Skipped = true;
1215 Start = End;
1216 continue;
1217 }
1218
1219 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1220
1221 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1222 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1223 // LiveInBlocks.
1225 SlotIndex BlockStart, BlockEnd;
1226 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1227
1228 // The first block may be live-in, or it may have its own def.
1229 if (Start != BlockStart) {
1230 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1231 assert(VNI && "Missing def for complex mapped value");
1232 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1233 // MBB has its own def. Is it also live-out?
1234 if (BlockEnd <= End)
1235 LIC.setLiveOutValue(&*MBB, VNI);
1236
1237 // Skip to the next block for live-in.
1238 ++MBB;
1239 BlockStart = BlockEnd;
1240 }
1241
1242 // Handle the live-in blocks covered by [Start;End).
1243 assert(Start <= BlockStart && "Expected live-in block");
1244 while (BlockStart < End) {
1245 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1246 BlockEnd = LIS.getMBBEndIdx(&*MBB);
1247 if (BlockStart == ParentVNI->def) {
1248 // This block has the def of a parent PHI, so it isn't live-in.
1249 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1250 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1251 assert(VNI && "Missing def for complex mapped parent PHI");
1252 if (End >= BlockEnd)
1253 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1254 } else {
1255 // This block needs a live-in value. The last block covered may not
1256 // be live-out.
1257 if (End < BlockEnd)
1258 LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1259 else {
1260 // Live-through, and we don't know the value.
1261 LIC.addLiveInBlock(LI, MDT[&*MBB]);
1262 LIC.setLiveOutValue(&*MBB, nullptr);
1263 }
1264 }
1265 BlockStart = BlockEnd;
1266 ++MBB;
1267 }
1268 Start = End;
1269 } while (Start != S.end);
1270 LLVM_DEBUG(dbgs() << '\n');
1271 }
1272
1273 LICalc[0].calculateValues();
1274 if (SpillMode)
1275 LICalc[1].calculateValues();
1276
1277 return Skipped;
1278}
1279
1281 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1282 if (Seg == nullptr)
1283 return true;
1284 if (Seg->end != Def.getDeadSlot())
1285 return false;
1286 // This is a dead PHI. Remove it.
1287 LR.removeSegment(*Seg, true);
1288 return true;
1289}
1290
1291void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1292 LiveRange &LR, LaneBitmask LM,
1293 ArrayRef<SlotIndex> Undefs) {
1294 for (MachineBasicBlock *P : B.predecessors()) {
1295 SlotIndex End = LIS.getMBBEndIdx(P);
1296 SlotIndex LastUse = End.getPrevSlot();
1297 // The predecessor may not have a live-out value. That is OK, like an
1298 // undef PHI operand.
1299 const LiveInterval &PLI = Edit->getParent();
1300 // Need the cast because the inputs to ?: would otherwise be deemed
1301 // "incompatible": SubRange vs LiveInterval.
1302 const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1303 : static_cast<const LiveRange &>(PLI);
1304 if (PSR.liveAt(LastUse))
1305 LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1306 }
1307}
1308
1309void SplitEditor::extendPHIKillRanges() {
1310 // Extend live ranges to be live-out for successor PHI values.
1311
1312 // Visit each PHI def slot in the parent live interval. If the def is dead,
1313 // remove it. Otherwise, extend the live interval to reach the end indexes
1314 // of all predecessor blocks.
1315
1316 const LiveInterval &ParentLI = Edit->getParent();
1317 for (const VNInfo *V : ParentLI.valnos) {
1318 if (V->isUnused() || !V->isPHIDef())
1319 continue;
1320
1321 unsigned RegIdx = RegAssign.lookup(V->def);
1322 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1323 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1324 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1325 if (!removeDeadSegment(V->def, LI))
1326 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1327 }
1328
1330 LiveIntervalCalc SubLIC;
1331
1332 for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1333 for (const VNInfo *V : PS.valnos) {
1334 if (V->isUnused() || !V->isPHIDef())
1335 continue;
1336 unsigned RegIdx = RegAssign.lookup(V->def);
1337 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1338 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1339 if (removeDeadSegment(V->def, S))
1340 continue;
1341
1342 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1343 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1344 &LIS.getVNInfoAllocator());
1345 Undefs.clear();
1346 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1347 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1348 }
1349 }
1350}
1351
1352/// rewriteAssigned - Rewrite all uses of Edit->getReg().
1353void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1354 struct ExtPoint {
1355 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1356 : MO(O), RegIdx(R), Next(N) {}
1357
1358 MachineOperand MO;
1359 unsigned RegIdx;
1360 SlotIndex Next;
1361 };
1362
1363 SmallVector<ExtPoint,4> ExtPoints;
1364
1365 for (MachineOperand &MO :
1366 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1367 MachineInstr *MI = MO.getParent();
1368 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1369 if (MI->isDebugValue()) {
1370 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1371 MO.setReg(0);
1372 continue;
1373 }
1374
1375 // <undef> operands don't really read the register, so it doesn't matter
1376 // which register we choose. When the use operand is tied to a def, we must
1377 // use the same register as the def, so just do that always.
1379 if (MO.isDef() || MO.isUndef())
1380 Idx = Idx.getRegSlot(MO.isEarlyClobber());
1381
1382 // Rewrite to the mapped register at Idx.
1383 unsigned RegIdx = RegAssign.lookup(Idx);
1384 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1385 MO.setReg(LI.reg());
1386 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1387 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1388
1389 // Extend liveness to Idx if the instruction reads reg.
1390 if (!ExtendRanges || MO.isUndef())
1391 continue;
1392
1393 // Skip instructions that don't read Reg.
1394 if (MO.isDef()) {
1395 if (!MO.getSubReg() && !MO.isEarlyClobber())
1396 continue;
1397 // We may want to extend a live range for a partial redef, or for a use
1398 // tied to an early clobber.
1399 if (!Edit->getParent().liveAt(Idx.getPrevSlot()))
1400 continue;
1401 } else {
1402 assert(MO.isUse());
1403 bool IsEarlyClobber = false;
1404 if (MO.isTied()) {
1405 // We want to extend a live range into `e` slot rather than `r` slot if
1406 // tied-def is early clobber, because the `e` slot already contained
1407 // in the live range of early-clobber tied-def operand, give an example
1408 // here:
1409 // 0 %0 = ...
1410 // 16 early-clobber %0 = Op %0 (tied-def 0), ...
1411 // 32 ... = Op %0
1412 // Before extend:
1413 // %0 = [0r, 0d) [16e, 32d)
1414 // The point we want to extend is 0d to 16e not 16r in this case, but if
1415 // we use 16r here we will extend nothing because that already contained
1416 // in [16e, 32d).
1417 unsigned OpIdx = MO.getOperandNo();
1418 unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx);
1419 const MachineOperand &DefOp = MI->getOperand(DefOpIdx);
1420 IsEarlyClobber = DefOp.isEarlyClobber();
1421 }
1422
1423 Idx = Idx.getRegSlot(IsEarlyClobber);
1424 }
1425
1426 SlotIndex Next = Idx;
1427 if (LI.hasSubRanges()) {
1428 // We have to delay extending subranges until we have seen all operands
1429 // defining the register. This is because a <def,read-undef> operand
1430 // will create an "undef" point, and we cannot extend any subranges
1431 // until all of them have been accounted for.
1432 if (MO.isUse())
1433 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1434 } else {
1435 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1436 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1437 }
1438 }
1439
1440 for (ExtPoint &EP : ExtPoints) {
1441 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1442 assert(LI.hasSubRanges());
1443
1444 LiveIntervalCalc SubLIC;
1445 Register Reg = EP.MO.getReg();
1446 unsigned Sub = EP.MO.getSubReg();
1447 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1448 : MRI.getMaxLaneMaskForVReg(Reg);
1449 for (LiveInterval::SubRange &S : LI.subranges()) {
1450 if ((S.LaneMask & LM).none())
1451 continue;
1452 // The problem here can be that the new register may have been created
1453 // for a partially defined original register. For example:
1454 // %0:subreg_hireg<def,read-undef> = ...
1455 // ...
1456 // %1 = COPY %0
1457 if (S.empty())
1458 continue;
1459 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1460 &LIS.getVNInfoAllocator());
1462 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1463 SubLIC.extend(S, EP.Next, 0, Undefs);
1464 }
1465 }
1466
1467 for (Register R : *Edit) {
1468 LiveInterval &LI = LIS.getInterval(R);
1469 if (!LI.hasSubRanges())
1470 continue;
1471 LI.clear();
1474 }
1475}
1476
1477void SplitEditor::deleteRematVictims() {
1479 for (const Register &R : *Edit) {
1480 LiveInterval *LI = &LIS.getInterval(R);
1481 for (const LiveRange::Segment &S : LI->segments) {
1482 // Dead defs end at the dead slot.
1483 if (S.end != S.valno->def.getDeadSlot())
1484 continue;
1485 if (S.valno->isPHIDef())
1486 continue;
1488 assert(MI && "Missing instruction for dead def");
1489 MI->addRegisterDead(LI->reg(), &TRI);
1490
1491 if (!MI->allDefsAreDead())
1492 continue;
1493
1494 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1495 Dead.push_back(MI);
1496 }
1497 }
1498
1499 if (Dead.empty())
1500 return;
1501
1502 Edit->eliminateDeadDefs(Dead, {});
1503}
1504
1505void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1506 // Fast-path for common case.
1507 if (!ParentVNI.isPHIDef()) {
1508 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1509 forceRecompute(I, ParentVNI);
1510 return;
1511 }
1512
1513 // Trace value through phis.
1514 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1516 Visited.insert(&ParentVNI);
1517 WorkList.push_back(&ParentVNI);
1518
1519 const LiveInterval &ParentLI = Edit->getParent();
1520 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1521 do {
1522 const VNInfo &VNI = *WorkList.pop_back_val();
1523 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1524 forceRecompute(I, VNI);
1525 if (!VNI.isPHIDef())
1526 continue;
1527
1528 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1529 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1530 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1531 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1532 assert(PredVNI && "Value available in PhiVNI predecessor");
1533 if (Visited.insert(PredVNI).second)
1534 WorkList.push_back(PredVNI);
1535 }
1536 } while(!WorkList.empty());
1537}
1538
1540 ++NumFinished;
1541
1542 // At this point, the live intervals in Edit contain VNInfos corresponding to
1543 // the inserted copies.
1544
1545 // Add the original defs from the parent interval.
1546 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1547 if (ParentVNI->isUnused())
1548 continue;
1549 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1550 defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1551
1552 // Force rematted values to be recomputed everywhere.
1553 // The new live ranges may be truncated.
1554 if (Edit->didRematerialize(ParentVNI))
1555 forceRecomputeVNI(*ParentVNI);
1556 }
1557
1558 // Hoist back-copies to the complement interval when in spill mode.
1559 switch (SpillMode) {
1560 case SM_Partition:
1561 // Leave all back-copies as is.
1562 break;
1563 case SM_Size:
1564 case SM_Speed:
1565 // hoistCopies will behave differently between size and speed.
1566 hoistCopies();
1567 }
1568
1569 // Transfer the simply mapped values, check if any are skipped.
1570 bool Skipped = transferValues();
1571
1572 // Rewrite virtual registers, possibly extending ranges.
1573 rewriteAssigned(Skipped);
1574
1575 if (Skipped)
1576 extendPHIKillRanges();
1577 else
1578 ++NumSimple;
1579
1580 // Delete defs that were rematted everywhere.
1581 if (Skipped)
1582 deleteRematVictims();
1583
1584 // Get rid of unused values and set phi-kill flags.
1585 for (Register Reg : *Edit) {
1586 LiveInterval &LI = LIS.getInterval(Reg);
1588 LI.RenumberValues();
1589 }
1590
1591 // Provide a reverse mapping from original indices to Edit ranges.
1592 if (LRMap) {
1593 auto Seq = llvm::seq<unsigned>(0, Edit->size());
1594 LRMap->assign(Seq.begin(), Seq.end());
1595 }
1596
1597 // Now check if any registers were separated into multiple components.
1598 ConnectedVNInfoEqClasses ConEQ(LIS);
1599 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1600 // Don't use iterators, they are invalidated by create() below.
1601 Register VReg = Edit->get(i);
1602 LiveInterval &LI = LIS.getInterval(VReg);
1604 LIS.splitSeparateComponents(LI, SplitLIs);
1605 Register Original = VRM.getOriginal(VReg);
1606 for (LiveInterval *SplitLI : SplitLIs)
1607 VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1608
1609 // The new intervals all map back to i.
1610 if (LRMap)
1611 LRMap->resize(Edit->size(), i);
1612 }
1613
1614 // Calculate spill weight and allocation hints for new intervals.
1615 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1616
1617 assert(!LRMap || LRMap->size() == Edit->size());
1618}
1619
1620//===----------------------------------------------------------------------===//
1621// Single Block Splitting
1622//===----------------------------------------------------------------------===//
1623
1625 bool SingleInstrs) const {
1626 // Always split for multiple instructions.
1627 if (!BI.isOneInstr())
1628 return true;
1629 // Don't split for single instructions unless explicitly requested.
1630 if (!SingleInstrs)
1631 return false;
1632 // Splitting a live-through range always makes progress.
1633 if (BI.LiveIn && BI.LiveOut)
1634 return true;
1635 // No point in isolating a copy. It has no register class constraints.
1637 bool copyLike = TII.isCopyInstr(*MI) || MI->isSubregToReg();
1638 if (copyLike)
1639 return false;
1640 // Finally, don't isolate an end point that was created by earlier splits.
1641 return isOriginalEndpoint(BI.FirstInstr);
1642}
1643
1645 openIntv();
1646 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1647 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1648 LastSplitPoint));
1649 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1650 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1651 } else {
1652 // The last use is after the last valid split point.
1653 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1654 useIntv(SegStart, SegStop);
1655 overlapIntv(SegStop, BI.LastInstr);
1656 }
1657}
1658
1659//===----------------------------------------------------------------------===//
1660// Global Live Range Splitting Support
1661//===----------------------------------------------------------------------===//
1662
1663// These methods support a method of global live range splitting that uses a
1664// global algorithm to decide intervals for CFG edges. They will insert split
1665// points and color intervals in basic blocks while avoiding interference.
1666//
1667// Note that splitSingleBlock is also useful for blocks where both CFG edges
1668// are on the stack.
1669
1671 unsigned IntvIn, SlotIndex LeaveBefore,
1672 unsigned IntvOut, SlotIndex EnterAfter){
1673 SlotIndex Start, Stop;
1674 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1675
1676 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1677 << ") intf " << LeaveBefore << '-' << EnterAfter
1678 << ", live-through " << IntvIn << " -> " << IntvOut);
1679
1680 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1681
1682 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1683 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1684 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1685
1687
1688 if (!IntvOut) {
1689 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1690 //
1691 // <<<<<<<<< Possible LeaveBefore interference.
1692 // |-----------| Live through.
1693 // -____________ Spill on entry.
1694 //
1695 selectIntv(IntvIn);
1697 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1698 (void)Idx;
1699 return;
1700 }
1701
1702 if (!IntvIn) {
1703 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1704 //
1705 // >>>>>>> Possible EnterAfter interference.
1706 // |-----------| Live through.
1707 // ___________-- Reload on exit.
1708 //
1709 selectIntv(IntvOut);
1711 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1712 (void)Idx;
1713 return;
1714 }
1715
1716 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1717 LLVM_DEBUG(dbgs() << ", straight through.\n");
1718 //
1719 // |-----------| Live through.
1720 // ------------- Straight through, same intv, no interference.
1721 //
1722 selectIntv(IntvOut);
1723 useIntv(Start, Stop);
1724 return;
1725 }
1726
1727 // We cannot legally insert splits after LSP.
1728 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1729 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1730
1731 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1732 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1733 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1734 //
1735 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1736 // |-----------| Live through.
1737 // ------======= Switch intervals between interference.
1738 //
1739 selectIntv(IntvOut);
1740 SlotIndex Idx;
1741 if (LeaveBefore && LeaveBefore < LSP) {
1742 Idx = enterIntvBefore(LeaveBefore);
1743 useIntv(Idx, Stop);
1744 } else {
1746 }
1747 selectIntv(IntvIn);
1748 useIntv(Start, Idx);
1749 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1750 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1751 return;
1752 }
1753
1754 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1755 //
1756 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1757 // |-----------| Live through.
1758 // ==---------== Switch intervals before/after interference.
1759 //
1760 assert(LeaveBefore <= EnterAfter && "Missed case");
1761
1762 selectIntv(IntvOut);
1763 SlotIndex Idx = enterIntvAfter(EnterAfter);
1764 useIntv(Idx, Stop);
1765 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1766
1767 selectIntv(IntvIn);
1768 Idx = leaveIntvBefore(LeaveBefore);
1769 useIntv(Start, Idx);
1770 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1771}
1772
1774 unsigned IntvIn, SlotIndex LeaveBefore) {
1775 SlotIndex Start, Stop;
1776 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1777
1778 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1779 << Stop << "), uses " << BI.FirstInstr << '-'
1780 << BI.LastInstr << ", reg-in " << IntvIn
1781 << ", leave before " << LeaveBefore
1782 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1783
1784 assert(IntvIn && "Must have register in");
1785 assert(BI.LiveIn && "Must be live-in");
1786 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1787
1788 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1789 LLVM_DEBUG(dbgs() << " before interference.\n");
1790 //
1791 // <<< Interference after kill.
1792 // |---o---x | Killed in block.
1793 // ========= Use IntvIn everywhere.
1794 //
1795 selectIntv(IntvIn);
1796 useIntv(Start, BI.LastInstr);
1797 return;
1798 }
1799
1800 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1801
1802 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1803 //
1804 // <<< Possible interference after last use.
1805 // |---o---o---| Live-out on stack.
1806 // =========____ Leave IntvIn after last use.
1807 //
1808 // < Interference after last use.
1809 // |---o---o--o| Live-out on stack, late last use.
1810 // ============ Copy to stack after LSP, overlap IntvIn.
1811 // \_____ Stack interval is live-out.
1812 //
1813 if (BI.LastInstr < LSP) {
1814 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1815 selectIntv(IntvIn);
1817 useIntv(Start, Idx);
1818 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1819 } else {
1820 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1821 selectIntv(IntvIn);
1824 useIntv(Start, Idx);
1825 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1826 }
1827 return;
1828 }
1829
1830 // The interference is overlapping somewhere we wanted to use IntvIn. That
1831 // means we need to create a local interval that can be allocated a
1832 // different register.
1833 unsigned LocalIntv = openIntv();
1834 (void)LocalIntv;
1835 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1836
1837 if (!BI.LiveOut || BI.LastInstr < LSP) {
1838 //
1839 // <<<<<<< Interference overlapping uses.
1840 // |---o---o---| Live-out on stack.
1841 // =====----____ Leave IntvIn before interference, then spill.
1842 //
1844 SlotIndex From = enterIntvBefore(LeaveBefore);
1845 useIntv(From, To);
1846 selectIntv(IntvIn);
1847 useIntv(Start, From);
1848 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1849 return;
1850 }
1851
1852 // <<<<<<< Interference overlapping uses.
1853 // |---o---o--o| Live-out on stack, late last use.
1854 // =====------- Copy to stack before LSP, overlap LocalIntv.
1855 // \_____ Stack interval is live-out.
1856 //
1857 SlotIndex To = leaveIntvBefore(LSP);
1858 overlapIntv(To, BI.LastInstr);
1859 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1860 useIntv(From, To);
1861 selectIntv(IntvIn);
1862 useIntv(Start, From);
1863 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1864}
1865
1867 unsigned IntvOut, SlotIndex EnterAfter) {
1868 SlotIndex Start, Stop;
1869 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1870
1871 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1872 << Stop << "), uses " << BI.FirstInstr << '-'
1873 << BI.LastInstr << ", reg-out " << IntvOut
1874 << ", enter after " << EnterAfter
1875 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1876
1877 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1878
1879 assert(IntvOut && "Must have register out");
1880 assert(BI.LiveOut && "Must be live-out");
1881 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1882
1883 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1884 LLVM_DEBUG(dbgs() << " after interference.\n");
1885 //
1886 // >>>> Interference before def.
1887 // | o---o---| Defined in block.
1888 // ========= Use IntvOut everywhere.
1889 //
1890 selectIntv(IntvOut);
1891 useIntv(BI.FirstInstr, Stop);
1892 return;
1893 }
1894
1895 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1896 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1897 //
1898 // >>>> Interference before def.
1899 // |---o---o---| Live-through, stack-in.
1900 // ____========= Enter IntvOut before first use.
1901 //
1902 selectIntv(IntvOut);
1903 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1904 useIntv(Idx, Stop);
1905 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1906 return;
1907 }
1908
1909 // The interference is overlapping somewhere we wanted to use IntvOut. That
1910 // means we need to create a local interval that can be allocated a
1911 // different register.
1912 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1913 //
1914 // >>>>>>> Interference overlapping uses.
1915 // |---o---o---| Live-through, stack-in.
1916 // ____---====== Create local interval for interference range.
1917 //
1918 selectIntv(IntvOut);
1919 SlotIndex Idx = enterIntvAfter(EnterAfter);
1920 useIntv(Idx, Stop);
1921 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1922
1923 openIntv();
1924 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1925 useIntv(From, Idx);
1926}
1927
1929 OS << "{" << printMBBReference(*MBB) << ", "
1930 << "uses " << FirstInstr << " to " << LastInstr << ", "
1931 << "1st def " << FirstDef << ", "
1932 << (LiveIn ? "live in" : "dead in") << ", "
1933 << (LiveOut ? "live out" : "dead out") << "}";
1934}
1935
1937 print(dbgs());
1938 dbgs() << "\n";
1939}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
aarch64 promote const
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file defines the BumpPtrAllocator interface.
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:638
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
bool End
Definition: ELF_riscv.cpp:480
const HexagonInstrInfo * TII
Hexagon Hardware Loops
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
Register const TargetRegisterInfo * TRI
MachineInstr unsigned OpIdx
#define P(N)
Basic Register Allocator
SI Lower i1 Copies
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
LiveInterval::SubRange & getSubRangeForMaskExact(LaneBitmask LM, LiveInterval &LI)
Definition: SplitKit.cpp:407
static bool removeDeadSegment(SlotIndex Def, LiveRange &LR)
Definition: SplitKit.cpp:1280
auto & getSubrangeImpl(LaneBitmask LM, T &LI)
Find a subrange corresponding to the exact lane mask LM in the live interval LI.
Definition: SplitKit.cpp:400
const LiveInterval::SubRange & getSubRangeForMask(LaneBitmask LM, const LiveInterval &LI)
Find a subrange corresponding to the lane mask LM, or a superset of it, in the live interval LI.
Definition: SplitKit.cpp:421
static bool hasTiedUseOf(MachineInstr &MI, Register Reg)
Definition: SplitKit.cpp:854
static cl::opt< bool > EnableLoopIVHeuristic("enable-split-loopiv-heuristic", cl::desc("Enable loop iv regalloc heuristic"), cl::init(true))
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define LLVM_DEBUG(...)
Definition: Debug.h:119
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition: BitVector.h:341
void clear()
clear - Removes all bits from the bitvector.
Definition: BitVector.h:335
BitVector & set()
Definition: BitVector.h:351
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:67
ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a LiveInterval into equivalence cl...
A debug info location.
Definition: DebugLoc.h:124
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:203
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:230
Implements a dense probed hash-table based set.
Definition: DenseSet.h:263
Base class for the actual dominator tree node.
NodeT * getBlock() const
NodeT * findNearestCommonDominator(NodeT *A, NodeT *B) const
Find nearest common dominator basic block for basic block A and B.
MachineBasicBlock::iterator getLastInsertPointIter(const LiveInterval &CurLI, MachineBasicBlock &MBB)
Returns the last insert point as an iterator for \pCurLI in \pMBB.
Definition: SplitKit.cpp:142
SlotIndex getLastInsertPoint(const LiveInterval &CurLI, const MachineBasicBlock &MBB)
Return the base index of the last valid insert point for \pCurLI in \pMBB.
Definition: SplitKit.h:67
InsertPointAnalysis(const LiveIntervals &lis, unsigned BBNum)
Definition: SplitKit.cpp:61
const_iterator begin() const
Definition: IntervalMap.h:1147
void insert(KeyT a, KeyT b, ValT y)
insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
Definition: IntervalMap.h:1130
ValT lookup(KeyT x, ValT NotFound=ValT()) const
lookup - Return the mapped value at x or NotFound.
Definition: IntervalMap.h:1120
bool empty() const
empty - Return true when no intervals are mapped.
Definition: IntervalMap.h:1102
void clear()
clear - Remove all entries.
Definition: IntervalMap.h:1331
A live range for subregisters.
Definition: LiveInterval.h:697
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:690
LLVM_ABI void removeEmptySubRanges()
Removes all subranges without any segments (subranges without segments are not considered valid and s...
Register reg() const
Definition: LiveInterval.h:721
bool hasSubRanges() const
Returns true if subregister liveness information is available.
Definition: LiveInterval.h:813
iterator_range< subrange_iterator > subranges()
Definition: LiveInterval.h:785
LLVM_ABI void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, std::function< void(LiveInterval::SubRange &)> Apply, const SlotIndexes &Indexes, const TargetRegisterInfo &TRI, unsigned ComposeSubRegIdx=0)
Refines the subranges to support LaneMask.
LLVM_ABI void computeSubRangeUndefs(SmallVectorImpl< SlotIndex > &Undefs, LaneBitmask LaneMask, const MachineRegisterInfo &MRI, const SlotIndexes &Indexes) const
For a given lane mask LaneMask, compute indexes at which the lane is marked undefined by subregister ...
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const
Return the first index in the given basic block.
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction associated with the given index.
SlotIndexes * getSlotIndexes() const
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
void RemoveMachineInstrFromMaps(MachineInstr &MI)
VNInfo::Allocator & getVNInfoAllocator()
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const
Return the last index in the given basic block.
LiveInterval & getInterval(Register Reg)
LLVM_ABI void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos)
Remove value number and related live segments of LI and its subranges that start at position Pos.
LLVM_ABI void constructMainRangeFromSubranges(LiveInterval &LI)
For live interval LI with correct SubRanges construct matching information for the main live range.
LLVM_ABI void splitSeparateComponents(LiveInterval &LI, SmallVectorImpl< LiveInterval * > &SplitLIs)
Split separate components in LiveInterval LI into separate intervals.
MachineBasicBlock * getMBBFromIndex(SlotIndex index) const
bool isLiveInToMBB(const LiveRange &LR, const MachineBasicBlock *mbb) const
void addLiveInBlock(LiveRange &LR, MachineDomTreeNode *DomNode, SlotIndex Kill=SlotIndex())
addLiveInBlock - Add a block with an unknown live-in value.
LLVM_ABI void reset(const MachineFunction *mf, SlotIndexes *SI, MachineDominatorTree *MDT, VNInfo::Allocator *VNIA)
reset - Prepare caches for a new set of non-overlapping live ranges.
LLVM_ABI void extend(LiveRange &LR, SlotIndex Use, Register PhysReg, ArrayRef< SlotIndex > Undefs)
Extend the live range of LR to reach Use.
LLVM_ABI void calculateValues()
calculateValues - Calculate the value that will be live-in to each block added with addLiveInBlock.
void setLiveOutValue(MachineBasicBlock *MBB, VNInfo *VNI)
setLiveOutValue - Indicate that VNI is live out from MBB.
bool empty() const
unsigned size() const
bool canRematerializeAt(Remat &RM, VNInfo *OrigVNI, SlotIndex UseIdx)
canRematerializeAt - Determine if ParentVNI can be rematerialized at UseIdx.
Register get(unsigned idx) const
LiveInterval & createEmptyInterval()
create - Create a new register with the same class and original slot as parent.
const LiveInterval & getParent() const
Register getReg() const
SlotIndex rematerializeAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, const Remat &RM, const TargetRegisterInfo &, bool Late=false, unsigned SubIdx=0, MachineInstr *ReplaceIndexMI=nullptr)
rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an instruction into MBB before...
bool didRematerialize(const VNInfo *ParentVNI) const
didRematerialize - Return true if ParentVNI was rematerialized anywhere.
bool anyRematerializable()
anyRematerializable - Return true if any parent values may be rematerializable.
This class represents the liveness of a register, stack slot, etc.
Definition: LiveInterval.h:158
VNInfo * getValNumInfo(unsigned ValNo)
getValNumInfo - Returns pointer to the specified val#.
Definition: LiveInterval.h:318
LLVM_ABI iterator addSegment(Segment S)
Add the specified Segment to this range, merging segments as appropriate.
const Segment * getSegmentContaining(SlotIndex Idx) const
Return the segment that contains the specified index, or null if there is none.
Definition: LiveInterval.h:410
bool liveAt(SlotIndex index) const
Definition: LiveInterval.h:403
LLVM_ABI VNInfo * createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc)
createDeadDef - Make sure the range has a value defined at Def.
iterator advanceTo(iterator I, SlotIndex Pos)
advanceTo - Advance the specified iterator to point to the Segment containing the specified position,...
Definition: LiveInterval.h:272
bool empty() const
Definition: LiveInterval.h:384
LLVM_ABI void RenumberValues()
RenumberValues - Renumber all values in order of appearance and remove unused values.
iterator end()
Definition: LiveInterval.h:217
VNInfo * getVNInfoBefore(SlotIndex Idx) const
getVNInfoBefore - Return the VNInfo that is live up to but not necessarily including Idx,...
Definition: LiveInterval.h:431
LLVM_ABI std::pair< VNInfo *, bool > extendInBlock(ArrayRef< SlotIndex > Undefs, SlotIndex StartIdx, SlotIndex Kill)
Attempt to extend a value defined after StartIdx to include Use.
unsigned getNumValNums() const
Definition: LiveInterval.h:314
iterator begin()
Definition: LiveInterval.h:216
Segments segments
Definition: LiveInterval.h:204
VNInfoList valnos
Definition: LiveInterval.h:205
VNInfo * getNextValue(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator)
getNextValue - Create a new value number and return it.
Definition: LiveInterval.h:332
LLVM_ABI void removeSegment(SlotIndex Start, SlotIndex End, bool RemoveDeadValNo=false)
Remove the specified interval from this live range.
VNInfo * getVNInfoAt(SlotIndex Idx) const
getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
Definition: LiveInterval.h:423
LLVM_ABI iterator find(SlotIndex Pos)
find - Return an iterator pointing to the first segment that ends after Pos, or end().
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:40
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:199
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:64
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
LLVM_ABI iterator SkipPHIsLabelsAndDebug(iterator I, Register Reg=Register(), bool SkipPseudoOp=true)
Return the first instruction in MBB after I that is not a PHI, label or debug.
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator_range< succ_iterator > successors()
iterator_range< pred_iterator > predecessors()
MachineBlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate machine basic b...
LLVM_ABI BlockFrequency getBlockFreq(const MachineBasicBlock *MBB) const
getblockFreq - Return block frequency.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
bool dominates(const MachineInstr *A, const MachineInstr *B) const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
MachineBasicBlock * getBlockNumbered(unsigned N) const
getBlockNumbered - MachineBasicBlocks are automatically numbered when they are inserted into the mach...
unsigned getNumBlockIDs() const
getNumBlockIDs - Return the number of MBB ID's allocated.
BasicBlockListType::const_iterator const_iterator
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
Definition: MachineInstr.h:72
mop_range defs()
Returns all explicit operands that are register definitions.
Definition: MachineInstr.h:724
LLVM_ABI void bundleWithPred()
Bundle this instruction with its predecessor.
LLVM_ABI const TargetRegisterClass * getRegClassConstraintEffectForVReg(Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, bool ExploreBundle=false) const
Applies the constraints (def/use) implied by this MI on Reg to the given CurRC.
unsigned getOperandNo(const_mop_iterator I) const
Returns the number of the operand iterator I points to.
Definition: MachineInstr.h:773
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:595
LLVM_ABI const TargetRegisterClass * getRegClassConstraint(unsigned OpIdx, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const
Compute the static register class constraint for operand OpIdx.
MachineOperand class - Representation of each machine instruction operand.
bool isEarlyClobber() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:66
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
Definition: SlotIndexes.h:177
SlotIndex getDeadSlot() const
Returns the dead def kill slot for the current instruction.
Definition: SlotIndexes.h:243
static bool isEarlierInstr(SlotIndex A, SlotIndex B)
isEarlierInstr - Return true if A refers to an instruction earlier than B.
Definition: SlotIndexes.h:183
SlotIndex getBoundaryIndex() const
Returns the boundary index for associated with this index.
Definition: SlotIndexes.h:232
SlotIndex getBaseIndex() const
Returns the base index for associated with this index.
Definition: SlotIndexes.h:225
SlotIndex getNextSlot() const
Returns the next slot in the index list.
Definition: SlotIndexes.h:253
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
Definition: SlotIndexes.h:238
SlotIndexes pass.
Definition: SlotIndexes.h:298
SlotIndex insertMachineInstrInMaps(MachineInstr &MI, bool Late=false)
Insert the given machine instruction into the mapping.
Definition: SlotIndexes.h:532
MachineBasicBlock * getMBBFromIndex(SlotIndex index) const
Returns the basic block which the given index falls in.
Definition: SlotIndexes.h:516
const std::pair< SlotIndex, SlotIndex > & getMBBRange(unsigned Num) const
Return the (start,end) range of the given basic block number.
Definition: SlotIndexes.h:450
SlotIndex getMBBEndIdx(unsigned Num) const
Returns the last index in the given basic block number.
Definition: SlotIndexes.h:471
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:470
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:401
SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
Definition: SmallPtrSet.h:329
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:541
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:574
void assign(size_type NumElts, ValueParamT Elt)
Definition: SmallVector.h:705
typename SuperClass::const_iterator const_iterator
Definition: SmallVector.h:579
void resize(size_type N)
Definition: SmallVector.h:639
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
SplitAnalysis - Analyze a LiveInterval, looking for live range splitting opportunities.
Definition: SplitKit.h:96
SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, const MachineLoopInfo &mli)
Definition: SplitKit.cpp:154
const MachineFunction & MF
Definition: SplitKit.h:98
MachineBasicBlock::iterator getLastSplitPointIter(MachineBasicBlock *BB)
Definition: SplitKit.h:243
bool isOriginalEndpoint(SlotIndex Idx) const
isOriginalEndpoint - Return true if the original live range was killed or (re-)defined at Idx.
Definition: SplitKit.cpp:333
unsigned countLiveBlocks(const LiveInterval *li) const
countLiveBlocks - Return the number of blocks where li is live.
Definition: SplitKit.cpp:309
SlotIndex getLastSplitPoint(unsigned Num)
Definition: SplitKit.h:235
const LiveIntervals & LIS
Definition: SplitKit.h:100
void analyze(const LiveInterval *li)
analyze - set CurLI to the specified interval, and analyze how it may be split.
Definition: SplitKit.cpp:347
void clear()
clear - clear all data structures so SplitAnalysis is ready to analyze a new interval.
Definition: SplitKit.cpp:159
const MachineLoopInfo & Loops
Definition: SplitKit.h:101
const TargetInstrInfo & TII
Definition: SplitKit.h:102
unsigned getNumLiveBlocks() const
getNumLiveBlocks - Return the number of blocks where CurLI is live.
Definition: SplitKit.h:212
const VirtRegMap & VRM
Definition: SplitKit.h:99
bool shouldSplitSingleBlock(const BlockInfo &BI, bool SingleInstrs) const
shouldSplitSingleBlock - Returns true if it would help to create a local live range for the instructi...
Definition: SplitKit.cpp:1624
void overlapIntv(SlotIndex Start, SlotIndex End)
overlapIntv - Indicate that all instructions in range should use the open interval if End does not ha...
Definition: SplitKit.cpp:860
unsigned openIntv()
Create a new virtual register and live interval.
Definition: SplitKit.cpp:682
SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM, MachineDominatorTree &MDT, MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
Create a new SplitEditor for editing the LiveInterval analyzed by SA.
Definition: SplitKit.cpp:358
void splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, unsigned IntvOut, SlotIndex EnterAfter)
splitRegOutBlock - Split CurLI in the given block such that it enters the block on the stack (or isn'...
Definition: SplitKit.cpp:1866
SlotIndex enterIntvAfter(SlotIndex Idx)
enterIntvAfter - Enter the open interval after the instruction at Idx.
Definition: SplitKit.cpp:717
SlotIndex enterIntvBefore(SlotIndex Idx)
enterIntvBefore - Enter the open interval before the instruction at Idx.
Definition: SplitKit.cpp:700
void useIntv(const MachineBasicBlock &MBB)
useIntv - indicate that all instructions in MBB should use OpenLI.
Definition: SplitKit.cpp:772
SlotIndex leaveIntvAfter(SlotIndex Idx)
leaveIntvAfter - Leave the open interval after the instruction at Idx.
Definition: SplitKit.cpp:783
void reset(LiveRangeEdit &, ComplementSpillMode=SM_Partition)
reset - Prepare for a new split.
Definition: SplitKit.cpp:366
SlotIndex enterIntvAtEnd(MachineBasicBlock &MBB)
enterIntvAtEnd - Enter the open interval at the end of MBB.
Definition: SplitKit.cpp:735
SlotIndex leaveIntvAtTop(MachineBasicBlock &MBB)
leaveIntvAtTop - Leave the interval at the top of MBB.
Definition: SplitKit.cpp:833
SlotIndex leaveIntvBefore(SlotIndex Idx)
leaveIntvBefore - Leave the open interval before the instruction at Idx.
Definition: SplitKit.cpp:814
void finish(SmallVectorImpl< unsigned > *LRMap=nullptr)
finish - after all the new live ranges have been created, compute the remaining live range,...
Definition: SplitKit.cpp:1539
void splitRegInBlock(const SplitAnalysis::BlockInfo &BI, unsigned IntvIn, SlotIndex LeaveBefore)
splitRegInBlock - Split CurLI in the given block such that it enters the block in IntvIn and leaves i...
Definition: SplitKit.cpp:1773
void splitLiveThroughBlock(unsigned MBBNum, unsigned IntvIn, SlotIndex LeaveBefore, unsigned IntvOut, SlotIndex EnterAfter)
splitLiveThroughBlock - Split CurLI in the given block such that it enters the block in IntvIn and le...
Definition: SplitKit.cpp:1670
ComplementSpillMode
ComplementSpillMode - Select how the complement live range should be created.
Definition: SplitKit.h:281
@ SM_Partition
SM_Partition(Default) - Try to create the complement interval so it doesn't overlap any other interva...
Definition: SplitKit.h:286
@ SM_Speed
SM_Speed - Overlap intervals to minimize the expected execution frequency of the inserted copies.
Definition: SplitKit.h:298
@ SM_Size
SM_Size - Overlap intervals to minimize the number of inserted COPY instructions.
Definition: SplitKit.h:293
void selectIntv(unsigned Idx)
selectIntv - Select a previously opened interval index.
Definition: SplitKit.cpp:693
void splitSingleBlock(const SplitAnalysis::BlockInfo &BI)
splitSingleBlock - Split CurLI into a separate live interval around the uses in a single block.
Definition: SplitKit.cpp:1644
void dump() const
dump - print the current interval mapping to dbgs().
Definition: SplitKit.cpp:384
virtual unsigned getLiveRangeSplitOpcode(Register Reg, const MachineFunction &MF) const
Allows targets to use appropriate copy instruction while spilitting live range of a register in regis...
virtual bool isAsCheapAsAMove(const MachineInstr &MI) const
Return true if the instruction is as cheap as a move instruction.
std::optional< DestSourcePair > isCopyInstr(const MachineInstr &MI) const
If the specific machine instruction is a instruction that moves/copies value from one register to ano...
bool hasSubClass(const TargetRegisterClass *RC) const
Return true if the specified TargetRegisterClass is a proper sub-class of this TargetRegisterClass.
bool getCoveringSubRegIndexes(const TargetRegisterClass *RC, LaneBitmask LaneMask, SmallVectorImpl< unsigned > &Indexes) const
Try to find one or more subregister indexes to cover LaneMask.
LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const
Return a bitmask representing the parts of a register that are covered by SubIdx.
virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &) const
Returns the largest super class of RC that is legal to use in the current sub-target and has the same...
VNInfo - Value Number Information.
Definition: LiveInterval.h:54
bool isUnused() const
Returns true if this value is unused.
Definition: LiveInterval.h:82
unsigned id
The ID number of this value.
Definition: LiveInterval.h:59
SlotIndex def
The index of the defining instruction.
Definition: LiveInterval.h:62
bool isPHIDef() const
Returns true if this value is defined by a PHI instruction (or was, PHI instructions may have been el...
Definition: LiveInterval.h:79
Calculate auxiliary information for a virtual register such as its spill weight and allocation hint.
void setIsSplitFromReg(Register virtReg, Register SReg)
records virtReg is a split live interval from SReg.
Definition: VirtRegMap.h:139
Register getOriginal(Register VirtReg) const
getOriginal - Return the original virtual register that VirtReg descends from through splitting.
Definition: VirtRegMap.h:155
MachineFunction & getMachineFunction() const
Definition: VirtRegMap.h:75
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:194
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:174
self_iterator getIterator()
Definition: ilist_node.h:134
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ Dead
Unused definition.
@ Define
Register definition.
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:444
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST=nullptr, unsigned DynamicVGPRBlockSize=0)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1702
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition: STLExtras.h:2155
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:663
auto unique(Range &&R, Predicate P)
Definition: STLExtras.h:2095
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:428
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1758
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition: Error.cpp:167
unsigned getInternalReadRegState(bool B)
unsigned getUndefRegState(bool B)
@ Sub
Subtraction of integers.
void array_pod_sort(IteratorTy Start, IteratorTy End)
array_pod_sort - This sorts an array with the specified start and end extent.
Definition: STLExtras.h:1629
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
LLVM_ABI Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
#define N
Description of the encoding of one expression Op.
static constexpr LaneBitmask getAll()
Definition: LaneBitmask.h:82
constexpr bool none() const
Definition: LaneBitmask.h:52
constexpr bool all() const
Definition: LaneBitmask.h:54
static constexpr LaneBitmask getNone()
Definition: LaneBitmask.h:81
Remat - Information needed to rematerialize at a specific location.
This represents a simple continuous liveness interval for a value.
Definition: LiveInterval.h:163
Additional information about basic blocks where the current variable is live.
Definition: SplitKit.h:121
SlotIndex FirstDef
First non-phi valno->def, or SlotIndex().
Definition: SplitKit.h:125
bool LiveOut
Current reg is live out.
Definition: SplitKit.h:127
bool LiveIn
Current reg is live in.
Definition: SplitKit.h:126
bool isOneInstr() const
isOneInstr - Returns true when this BlockInfo describes a single instruction.
Definition: SplitKit.h:131
MachineBasicBlock * MBB
Definition: SplitKit.h:122
void print(raw_ostream &OS) const
Definition: SplitKit.cpp:1928
SlotIndex LastInstr
Last instr accessing current reg.
Definition: SplitKit.h:124
SlotIndex FirstInstr
First instr accessing current reg.
Definition: SplitKit.h:123