LLVM 22.0.0git
SystemZLongBranch.cpp
Go to the documentation of this file.
1//===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass makes sure that all branches are in range. There are several ways
10// in which this could be done. One aggressive approach is to assume that all
11// branches are in range and successively replace those that turn out not
12// to be in range with a longer form (branch relaxation). A simple
13// implementation is to continually walk through the function relaxing
14// branches until no more changes are needed and a fixed point is reached.
15// However, in the pathological worst case, this implementation is
16// quadratic in the number of blocks; relaxing branch N can make branch N-1
17// go out of range, which in turn can make branch N-2 go out of range,
18// and so on.
19//
20// An alternative approach is to assume that all branches must be
21// converted to their long forms, then reinstate the short forms of
22// branches that, even under this pessimistic assumption, turn out to be
23// in range (branch shortening). This too can be implemented as a function
24// walk that is repeated until a fixed point is reached. In general,
25// the result of shortening is not as good as that of relaxation, and
26// shortening is also quadratic in the worst case; shortening branch N
27// can bring branch N-1 in range of the short form, which in turn can do
28// the same for branch N-2, and so on. The main advantage of shortening
29// is that each walk through the function produces valid code, so it is
30// possible to stop at any point after the first walk. The quadraticness
31// could therefore be handled with a maximum pass count, although the
32// question then becomes: what maximum count should be used?
33//
34// On SystemZ, long branches are only needed for functions bigger than 64k,
35// which are relatively rare to begin with, and the long branch sequences
36// are actually relatively cheap. It therefore doesn't seem worth spending
37// much compilation time on the problem. Instead, the approach we take is:
38//
39// (1) Work out the address that each block would have if no branches
40// need relaxing. Exit the pass early if all branches are in range
41// according to this assumption.
42//
43// (2) Work out the address that each block would have if all branches
44// need relaxing.
45//
46// (3) Walk through the block calculating the final address of each instruction
47// and relaxing those that need to be relaxed. For backward branches,
48// this check uses the final address of the target block, as calculated
49// earlier in the walk. For forward branches, this check uses the
50// address of the target block that was calculated in (2). Both checks
51// give a conservatively-correct range.
52//
53//===----------------------------------------------------------------------===//
54
55#include "SystemZ.h"
56#include "SystemZInstrInfo.h"
59#include "llvm/ADT/Statistic.h"
60#include "llvm/ADT/StringRef.h"
66#include "llvm/IR/DebugLoc.h"
68#include <cassert>
69#include <cstdint>
70
71using namespace llvm;
72
73#define DEBUG_TYPE "systemz-long-branch"
74
75STATISTIC(LongBranches, "Number of long branches.");
76
77namespace {
78
79// Represents positional information about a basic block.
80struct MBBInfo {
81 // The address that we currently assume the block has.
82 uint64_t Address = 0;
83
84 // The size of the block in bytes, excluding terminators.
85 // This value never changes.
86 uint64_t Size = 0;
87
88 // The minimum alignment of the block.
89 // This value never changes.
90 Align Alignment;
91
92 // The number of terminators in this block. This value never changes.
93 unsigned NumTerminators = 0;
94
95 MBBInfo() = default;
96};
97
98// Represents the state of a block terminator.
99struct TerminatorInfo {
100 // If this terminator is a relaxable branch, this points to the branch
101 // instruction, otherwise it is null.
102 MachineInstr *Branch = nullptr;
103
104 // The address that we currently assume the terminator has.
105 uint64_t Address = 0;
106
107 // The current size of the terminator in bytes.
108 uint64_t Size = 0;
109
110 // If Branch is nonnull, this is the number of the target block,
111 // otherwise it is unused.
112 unsigned TargetBlock = 0;
113
114 // If Branch is nonnull, this is the length of the longest relaxed form,
115 // otherwise it is zero.
116 unsigned ExtraRelaxSize = 0;
117
118 TerminatorInfo() = default;
119};
120
121// Used to keep track of the current position while iterating over the blocks.
122struct BlockPosition {
123 // The address that we assume this position has.
124 uint64_t Address = 0;
125
126 // The number of low bits in Address that are known to be the same
127 // as the runtime address.
128 unsigned KnownBits;
129
130 BlockPosition(unsigned InitialLogAlignment)
131 : KnownBits(InitialLogAlignment) {}
132};
133
134class SystemZLongBranch : public MachineFunctionPass {
135public:
136 static char ID;
137
138 SystemZLongBranch() : MachineFunctionPass(ID) {}
139
140 bool runOnMachineFunction(MachineFunction &F) override;
141
143 return MachineFunctionProperties().setNoVRegs();
144 }
145
146private:
147 void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
148 void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
149 bool AssumeRelaxed);
150 TerminatorInfo describeTerminator(MachineInstr &MI);
151 uint64_t initMBBInfo();
152 bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
153 bool mustRelaxABranch();
154 void setWorstCaseAddresses();
155 void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
156 void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
157 void relaxBranch(TerminatorInfo &Terminator);
158 void relaxBranches();
159
160 const SystemZInstrInfo *TII = nullptr;
161 MachineFunction *MF = nullptr;
164};
165
166char SystemZLongBranch::ID = 0;
167
168const uint64_t MaxBackwardRange = 0x10000;
169const uint64_t MaxForwardRange = 0xfffe;
170
171} // end anonymous namespace
172
173INITIALIZE_PASS(SystemZLongBranch, DEBUG_TYPE, "SystemZ Long Branch", false,
174 false)
175
176// Position describes the state immediately before Block. Update Block
177// accordingly and move Position to the end of the block's non-terminator
178// instructions.
179void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
180 MBBInfo &Block) {
181 if (Log2(Block.Alignment) > Position.KnownBits) {
182 // When calculating the address of Block, we need to conservatively
183 // assume that Block had the worst possible misalignment.
184 Position.Address +=
185 (Block.Alignment.value() - (uint64_t(1) << Position.KnownBits));
186 Position.KnownBits = Log2(Block.Alignment);
187 }
188
189 // Align the addresses.
190 Position.Address = alignTo(Position.Address, Block.Alignment);
191
192 // Record the block's position.
193 Block.Address = Position.Address;
194
195 // Move past the non-terminators in the block.
196 Position.Address += Block.Size;
197}
198
199// Position describes the state immediately before Terminator.
200// Update Terminator accordingly and move Position past it.
201// Assume that Terminator will be relaxed if AssumeRelaxed.
202void SystemZLongBranch::skipTerminator(BlockPosition &Position,
203 TerminatorInfo &Terminator,
204 bool AssumeRelaxed) {
205 Terminator.Address = Position.Address;
206 Position.Address += Terminator.Size;
207 if (AssumeRelaxed)
208 Position.Address += Terminator.ExtraRelaxSize;
209}
210
211static unsigned getInstSizeInBytes(const MachineInstr &MI,
212 const SystemZInstrInfo *TII) {
213 unsigned Size = TII->getInstSizeInBytes(MI);
214 assert((Size ||
215 // These do not have a size:
216 MI.isDebugOrPseudoInstr() || MI.isPosition() || MI.isKill() ||
217 MI.isImplicitDef() || MI.getOpcode() == TargetOpcode::MEMBARRIER ||
218 MI.getOpcode() == TargetOpcode::INIT_UNDEF || MI.isFakeUse() ||
219 // These have a size that may be zero:
220 MI.isInlineAsm() || MI.getOpcode() == SystemZ::STACKMAP ||
221 MI.getOpcode() == SystemZ::PATCHPOINT ||
222 // EH_SjLj_Setup is a dummy terminator instruction of size 0,
223 // It is used to handle the clobber register for builtin setjmp.
224 MI.getOpcode() == SystemZ::EH_SjLj_Setup) &&
225 "Missing size value for instruction.");
226 return Size;
227}
228
229// Return a description of terminator instruction MI.
230TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) {
231 TerminatorInfo Terminator;
233 if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
234 switch (MI.getOpcode()) {
235 case SystemZ::J:
236 // Relaxes to JG, which is 2 bytes longer.
237 Terminator.ExtraRelaxSize = 2;
238 break;
239 case SystemZ::BRC:
240 // Relaxes to BRCL, which is 2 bytes longer.
241 Terminator.ExtraRelaxSize = 2;
242 break;
243 case SystemZ::BRCT:
244 case SystemZ::BRCTG:
245 // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
246 Terminator.ExtraRelaxSize = 6;
247 break;
248 case SystemZ::BRCTH:
249 // Never needs to be relaxed.
250 Terminator.ExtraRelaxSize = 0;
251 break;
252 case SystemZ::CRJ:
253 case SystemZ::CLRJ:
254 // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
255 Terminator.ExtraRelaxSize = 2;
256 break;
257 case SystemZ::CGRJ:
258 case SystemZ::CLGRJ:
259 // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
260 Terminator.ExtraRelaxSize = 4;
261 break;
262 case SystemZ::CIJ:
263 case SystemZ::CGIJ:
264 // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
265 Terminator.ExtraRelaxSize = 4;
266 break;
267 case SystemZ::CLIJ:
268 case SystemZ::CLGIJ:
269 // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
270 Terminator.ExtraRelaxSize = 6;
271 break;
272 default:
273 llvm_unreachable("Unrecognized branch instruction");
274 }
275 Terminator.Branch = &MI;
276 Terminator.TargetBlock =
277 TII->getBranchInfo(MI).getMBBTarget()->getNumber();
278 }
279 return Terminator;
280}
281
282// Fill MBBs and Terminators, setting the addresses on the assumption
283// that no branches need relaxation. Return the size of the function under
284// this assumption.
285uint64_t SystemZLongBranch::initMBBInfo() {
286 MF->RenumberBlocks();
287 unsigned NumBlocks = MF->size();
288
289 MBBs.clear();
290 MBBs.resize(NumBlocks);
291
292 Terminators.clear();
293 Terminators.reserve(NumBlocks);
294
295 BlockPosition Position(Log2(MF->getAlignment()));
296 for (unsigned I = 0; I < NumBlocks; ++I) {
297 MachineBasicBlock *MBB = MF->getBlockNumbered(I);
298 MBBInfo &Block = MBBs[I];
299
300 // Record the alignment, for quick access.
301 Block.Alignment = MBB->getAlignment();
302
303 // Calculate the size of the fixed part of the block.
306 while (MI != End && !MI->isTerminator()) {
307 Block.Size += getInstSizeInBytes(*MI, TII);
308 ++MI;
309 }
310 skipNonTerminators(Position, Block);
311
312 // Add the terminators.
313 while (MI != End) {
314 if (!MI->isDebugInstr()) {
315 assert(MI->isTerminator() && "Terminator followed by non-terminator");
316 Terminators.push_back(describeTerminator(*MI));
317 skipTerminator(Position, Terminators.back(), false);
318 ++Block.NumTerminators;
319 }
320 ++MI;
321 }
322 }
323
324 return Position.Address;
325}
326
327// Return true if, under current assumptions, Terminator would need to be
328// relaxed if it were placed at address Address.
329bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
330 uint64_t Address) {
331 if (!Terminator.Branch || Terminator.ExtraRelaxSize == 0)
332 return false;
333
334 const MBBInfo &Target = MBBs[Terminator.TargetBlock];
335 if (Address >= Target.Address) {
336 if (Address - Target.Address <= MaxBackwardRange)
337 return false;
338 } else {
339 if (Target.Address - Address <= MaxForwardRange)
340 return false;
341 }
342
343 return true;
344}
345
346// Return true if, under current assumptions, any terminator needs
347// to be relaxed.
348bool SystemZLongBranch::mustRelaxABranch() {
349 for (auto &Terminator : Terminators)
350 if (mustRelaxBranch(Terminator, Terminator.Address))
351 return true;
352 return false;
353}
354
355// Set the address of each block on the assumption that all branches
356// must be long.
357void SystemZLongBranch::setWorstCaseAddresses() {
359 BlockPosition Position(Log2(MF->getAlignment()));
360 for (auto &Block : MBBs) {
361 skipNonTerminators(Position, Block);
362 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
363 skipTerminator(Position, *TI, true);
364 ++TI;
365 }
366 }
367}
368
369// Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
370// by a BRCL on the result.
371void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
372 unsigned AddOpcode) {
373 MachineBasicBlock *MBB = MI->getParent();
374 DebugLoc DL = MI->getDebugLoc();
375 MachineInstr *AddImm = BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
376 .add(MI->getOperand(0))
377 .add(MI->getOperand(1))
378 .addImm(-1);
379 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
382 .add(MI->getOperand(2));
383 // The implicit use of CC is a killing use.
384 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
385 // The result of the BRANCH ON COUNT MI is the new count in register 0, so the
386 // debug tracking needs to go to the result of the Add immediate.
388 MI->eraseFromParent();
389}
390
391// Split MI into the comparison given by CompareOpcode followed
392// a BRCL on the result.
393void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
394 unsigned CompareOpcode) {
395 MachineBasicBlock *MBB = MI->getParent();
396 DebugLoc DL = MI->getDebugLoc();
397 BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
398 .add(MI->getOperand(0))
399 .add(MI->getOperand(1));
400 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
402 .add(MI->getOperand(2))
403 .add(MI->getOperand(3));
404 // The implicit use of CC is a killing use.
405 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
406 // Since we are replacing branches that did not compute any value, no debug
407 // value substitution is necessary.
408 MI->eraseFromParent();
409}
410
411// Relax the branch described by Terminator.
412void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
414 switch (Branch->getOpcode()) {
415 case SystemZ::J:
416 Branch->setDesc(TII->get(SystemZ::JG));
417 break;
418 case SystemZ::BRC:
419 Branch->setDesc(TII->get(SystemZ::BRCL));
420 break;
421 case SystemZ::BRCT:
422 splitBranchOnCount(Branch, SystemZ::AHI);
423 break;
424 case SystemZ::BRCTG:
425 splitBranchOnCount(Branch, SystemZ::AGHI);
426 break;
427 case SystemZ::CRJ:
428 splitCompareBranch(Branch, SystemZ::CR);
429 break;
430 case SystemZ::CGRJ:
431 splitCompareBranch(Branch, SystemZ::CGR);
432 break;
433 case SystemZ::CIJ:
434 splitCompareBranch(Branch, SystemZ::CHI);
435 break;
436 case SystemZ::CGIJ:
437 splitCompareBranch(Branch, SystemZ::CGHI);
438 break;
439 case SystemZ::CLRJ:
440 splitCompareBranch(Branch, SystemZ::CLR);
441 break;
442 case SystemZ::CLGRJ:
443 splitCompareBranch(Branch, SystemZ::CLGR);
444 break;
445 case SystemZ::CLIJ:
446 splitCompareBranch(Branch, SystemZ::CLFI);
447 break;
448 case SystemZ::CLGIJ:
449 splitCompareBranch(Branch, SystemZ::CLGFI);
450 break;
451 default:
452 llvm_unreachable("Unrecognized branch");
453 }
454
455 Terminator.Size += Terminator.ExtraRelaxSize;
456 Terminator.ExtraRelaxSize = 0;
457 Terminator.Branch = nullptr;
458
459 ++LongBranches;
460}
461
462// Run a shortening pass and relax any branches that need to be relaxed.
463void SystemZLongBranch::relaxBranches() {
465 BlockPosition Position(Log2(MF->getAlignment()));
466 for (auto &Block : MBBs) {
467 skipNonTerminators(Position, Block);
468 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
469 assert(Position.Address <= TI->Address &&
470 "Addresses shouldn't go forwards");
471 if (mustRelaxBranch(*TI, Position.Address))
472 relaxBranch(*TI);
473 skipTerminator(Position, *TI, false);
474 ++TI;
475 }
476 }
477}
478
479bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
480 TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
481 MF = &F;
482 uint64_t Size = initMBBInfo();
483 if (Size <= MaxForwardRange || !mustRelaxABranch())
484 return false;
485
486 setWorstCaseAddresses();
487 relaxBranches();
488 return true;
489}
490
492 return new SystemZLongBranch();
493}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:56
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
#define DEBUG_TYPE
static unsigned getInstSizeInBytes(const MachineInstr &MI, const SystemZInstrInfo *TII)
A debug info location.
Definition: DebugLoc.h:124
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:314
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
Align getAlignment() const
Return alignment of the basic block.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New, unsigned MaxOperand=UINT_MAX)
Create substitutions for any tracked values in Old, to point at New.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
Representation of each machine instruction.
Definition: MachineInstr.h:72
LLVM_ABI bool addRegisterKilled(Register IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound=false)
We have determined MI kills a register.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
Target - Wrapper for Target specific information.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
const unsigned CCMASK_ICMP
Definition: SystemZ.h:47
const unsigned CCMASK_CMP_NE
Definition: SystemZ.h:38
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
FunctionPass * createSystemZLongBranchPass(SystemZTargetMachine &TM)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition: Alignment.h:208
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39