65 if (
F.getFnAttribute(
"disable-tail-calls").getValueAsBool())
71 AttrBuilder CallerAttrs(
F.getContext(),
F.getAttributes().getRetAttrs());
72 for (
const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
73 Attribute::DereferenceableOrNull, Attribute::NoAlias,
74 Attribute::NonNull, Attribute::NoUndef,
75 Attribute::Range, Attribute::NoFPClass})
76 CallerAttrs.removeAttribute(Attr);
78 if (CallerAttrs.hasAttributes())
82 if (CallerAttrs.contains(Attribute::ZExt) ||
83 CallerAttrs.contains(Attribute::SExt))
94 for (
unsigned I = 0, E = ArgLocs.
size();
I != E; ++
I) {
111 if (
MRI.getLiveInPhysReg(ArgReg) != Reg)
121 IsSExt =
Call->paramHasAttr(ArgIdx, Attribute::SExt);
122 IsZExt =
Call->paramHasAttr(ArgIdx, Attribute::ZExt);
123 IsNoExt =
Call->paramHasAttr(ArgIdx, Attribute::NoExt);
124 IsInReg =
Call->paramHasAttr(ArgIdx, Attribute::InReg);
125 IsSRet =
Call->paramHasAttr(ArgIdx, Attribute::StructRet);
126 IsNest =
Call->paramHasAttr(ArgIdx, Attribute::Nest);
127 IsByVal =
Call->paramHasAttr(ArgIdx, Attribute::ByVal);
137 "multiple ABI attributes?");
153std::pair<SDValue, SDValue>
163 Args.reserve(
Ops.size());
166 for (
unsigned i = 0; i <
Ops.size(); ++i) {
168 Type *Ty = i < OpsTypeOverrides.
size() && OpsTypeOverrides[i]
169 ? OpsTypeOverrides[i]
178 Entry.IsZExt = !Entry.IsSExt;
182 Entry.IsSExt = Entry.IsZExt =
false;
184 Args.push_back(Entry);
188 if (LC == RTLIB::UNKNOWN_LIBCALL || !LibcallName)
195 Type *OrigRetTy = RetTy;
198 bool zeroExtend = !signExtend;
203 signExtend = zeroExtend =
false;
219 LLVMContext &Context, std::vector<EVT> &MemOps,
unsigned Limit,
220 const MemOp &
Op,
unsigned DstAS,
unsigned SrcAS,
221 const AttributeList &FuncAttributes)
const {
222 if (Limit != ~
unsigned(0) &&
Op.isMemcpyWithFixedDstAlign() &&
223 Op.getSrcAlign() <
Op.getDstAlign())
228 if (VT == MVT::Other) {
232 VT = MVT::LAST_INTEGER_VALUETYPE;
233 if (
Op.isFixedDstAlign())
240 MVT LVT = MVT::LAST_INTEGER_VALUETYPE;
251 unsigned NumMemOps = 0;
255 while (VTSize >
Size) {
266 else if (NewVT == MVT::i64 &&
278 if (NewVT == MVT::i8)
287 if (NumMemOps &&
Op.allowOverlap() && NewVTSize <
Size &&
289 VT, DstAS,
Op.isFixedDstAlign() ?
Op.getDstAlign() :
Align(1),
299 if (++NumMemOps > Limit)
302 MemOps.push_back(VT);
327 bool IsSignaling)
const {
332 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
333 &&
"Unsupported setcc type!");
336 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
337 bool ShouldInvertCC =
false;
341 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
342 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
343 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
347 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
348 (VT == MVT::f64) ? RTLIB::UNE_F64 :
349 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
353 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
354 (VT == MVT::f64) ? RTLIB::OGE_F64 :
355 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
359 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
360 (VT == MVT::f64) ? RTLIB::OLT_F64 :
361 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
365 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
366 (VT == MVT::f64) ? RTLIB::OLE_F64 :
367 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
371 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
372 (VT == MVT::f64) ? RTLIB::OGT_F64 :
373 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
376 ShouldInvertCC =
true;
379 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
380 (VT == MVT::f64) ? RTLIB::UO_F64 :
381 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
385 ShouldInvertCC =
true;
388 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
389 (VT == MVT::f64) ? RTLIB::UO_F64 :
390 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
391 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
392 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
393 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
397 ShouldInvertCC =
true;
400 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
401 (VT == MVT::f64) ? RTLIB::OGE_F64 :
402 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
405 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
406 (VT == MVT::f64) ? RTLIB::OGT_F64 :
407 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
410 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
411 (VT == MVT::f64) ? RTLIB::OLE_F64 :
412 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
415 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
416 (VT == MVT::f64) ? RTLIB::OLT_F64 :
417 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
435 if (LC1Impl == RTLIB::Unsupported) {
437 "no libcall available to soften floating-point compare");
441 if (ShouldInvertCC) {
443 CCCode = getSetCCInverse(CCCode, RetVT);
446 if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
451 if (LC2Impl == RTLIB::Unsupported) {
453 "no libcall available to soften floating-point compare");
457 "unordered call should be simple boolean");
467 auto Call2 =
makeLibCall(DAG, LC2, RetVT,
Ops, CallOptions, dl, Chain);
470 CCCode = getSetCCInverse(CCCode, RetVT);
471 NewLHS = DAG.
getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
514 return DAG.
getNode(ISD::BRIND, dl, MVT::Other, Chain, Addr);
524 if (!TM.shouldAssumeDSOLocal(GV))
544 const APInt &DemandedElts,
547 unsigned Opcode =
Op.getOpcode();
566 if (!Op1C || Op1C->isOpaque())
570 const APInt &
C = Op1C->getAPIntValue();
575 EVT VT =
Op.getValueType();
592 EVT VT =
Op.getValueType();
607 "ShrinkDemandedOp only supports binary operators!");
608 assert(
Op.getNode()->getNumValues() == 1 &&
609 "ShrinkDemandedOp only supports nodes with one result!");
611 EVT VT =
Op.getValueType();
620 Op.getOperand(1).getValueType().getScalarSizeInBits() ==
BitWidth &&
621 "ShrinkDemandedOp only supports operands that have the same size!");
625 if (!
Op.getNode()->hasOneUse())
641 unsigned Opcode =
Op.getOpcode();
642 if (Opcode == ISD::PTRADD) {
651 assert(DemandedSize <= SmallVTBits &&
"Narrowed below demanded bits?");
675 const APInt &DemandedElts,
695 bool AssumeSingleUse)
const {
696 EVT VT =
Op.getValueType();
712 EVT VT =
Op.getValueType();
730 switch (
Op.getOpcode()) {
736 EVT SrcVT = Src.getValueType();
737 EVT DstVT =
Op.getValueType();
743 if (NumSrcEltBits == NumDstEltBits)
748 if (SrcVT.
isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
749 unsigned Scale = NumDstEltBits / NumSrcEltBits;
753 for (
unsigned i = 0; i != Scale; ++i) {
754 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
755 unsigned BitOffset = EltOffset * NumSrcEltBits;
758 DemandedSrcBits |=
Sub;
759 for (
unsigned j = 0; j != NumElts; ++j)
761 DemandedSrcElts.
setBit((j * Scale) + i);
766 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
771 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
772 unsigned Scale = NumSrcEltBits / NumDstEltBits;
776 for (
unsigned i = 0; i != NumElts; ++i)
777 if (DemandedElts[i]) {
778 unsigned Offset = (i % Scale) * NumDstEltBits;
780 DemandedSrcElts.
setBit(i / Scale);
784 Src, DemandedSrcBits, DemandedSrcElts, DAG,
Depth + 1))
798 return Op.getOperand(0);
800 return Op.getOperand(1);
811 return Op.getOperand(0);
813 return Op.getOperand(1);
823 return Op.getOperand(0);
825 return Op.getOperand(1);
831 return Op.getOperand(0);
835 return Op.getOperand(1);
841 if (std::optional<unsigned> MaxSA =
844 unsigned ShAmt = *MaxSA;
845 unsigned NumSignBits =
848 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
856 if (std::optional<unsigned> MaxSA =
859 unsigned ShAmt = *MaxSA;
863 unsigned NumSignBits =
902 if (NumSignBits >= (
BitWidth - ExBits + 1))
915 EVT SrcVT = Src.getValueType();
916 EVT DstVT =
Op.getValueType();
917 if (IsLE && DemandedElts == 1 &&
933 !DemandedElts[CIdx->getZExtValue()])
944 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
947 if (DemandedSubElts == 0)
957 bool AllUndef =
true, IdentityLHS =
true, IdentityRHS =
true;
958 for (
unsigned i = 0; i != NumElts; ++i) {
959 int M = ShuffleMask[i];
960 if (M < 0 || !DemandedElts[i])
963 IdentityLHS &= (M == (int)i);
964 IdentityRHS &= ((M - NumElts) == i);
970 return Op.getOperand(0);
972 return Op.getOperand(1);
992 unsigned Depth)
const {
993 EVT VT =
Op.getValueType();
1006 unsigned Depth)
const {
1020 "SRL or SRA node is required here!");
1023 if (!N1C || !N1C->
isOne())
1070 unsigned ShiftOpc =
Op.getOpcode();
1071 bool IsSigned =
false;
1075 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
1080 unsigned NumZero = std::min(NumZeroA, NumZeroB);
1086 if (NumZero >= 2 && NumSigned < NumZero) {
1091 if (NumSigned >= 1) {
1099 if (NumZero >= 1 && NumSigned < NumZero) {
1119 EVT VT =
Op.getValueType();
1133 Add.getOperand(1)) &&
1164 unsigned Depth,
bool AssumeSingleUse)
const {
1167 "Mask size mismatches value type size!");
1172 EVT VT =
Op.getValueType();
1174 unsigned NumElts = OriginalDemandedElts.
getBitWidth();
1176 "Unexpected vector size");
1179 APInt DemandedElts = OriginalDemandedElts;
1204 bool HasMultiUse =
false;
1205 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse()) {
1214 }
else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1223 switch (
Op.getOpcode()) {
1227 if (!DemandedElts[0])
1232 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1239 if (DemandedElts == 1)
1268 EVT MemVT = LD->getMemoryVT();
1285 APInt DemandedVecElts(DemandedElts);
1287 unsigned Idx = CIdx->getZExtValue();
1291 if (!DemandedElts[Idx])
1308 if (!!DemandedVecElts)
1321 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
1323 APInt DemandedSrcElts = DemandedElts;
1324 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
1335 if (!!DemandedSubElts)
1337 if (!!DemandedSrcElts)
1347 if (NewSub || NewSrc) {
1348 NewSub = NewSub ? NewSub :
Sub;
1349 NewSrc = NewSrc ? NewSrc : Src;
1362 if (Src.getValueType().isScalableVector())
1365 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1366 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
1388 EVT SubVT =
Op.getOperand(0).getValueType();
1389 unsigned NumSubVecs =
Op.getNumOperands();
1391 for (
unsigned i = 0; i != NumSubVecs; ++i) {
1392 APInt DemandedSubElts =
1393 DemandedElts.
extractBits(NumSubElts, i * NumSubElts);
1395 Known2, TLO,
Depth + 1))
1398 if (!!DemandedSubElts)
1408 APInt DemandedLHS, DemandedRHS;
1413 if (!!DemandedLHS || !!DemandedRHS) {
1418 if (!!DemandedLHS) {
1424 if (!!DemandedRHS) {
1436 if (DemandedOp0 || DemandedOp1) {
1437 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1438 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1473 LHSKnown.
One == ~RHSC->getAPIntValue()) {
1485 unsigned NumSubElts =
1506 Known2, TLO,
Depth + 1))
1532 if (DemandedOp0 || DemandedOp1) {
1533 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1534 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1553 Known2, TLO,
Depth + 1)) {
1577 if (DemandedOp0 || DemandedOp1) {
1578 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1579 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1590 for (
int I = 0;
I != 2; ++
I) {
1593 SDValue Alt =
Op.getOperand(1 -
I).getOperand(0);
1594 SDValue C2 =
Op.getOperand(1 -
I).getOperand(1);
1596 for (
int J = 0; J != 2; ++J) {
1649 if (
C->getAPIntValue() == Known2.
One) {
1658 if (!
C->isAllOnes() &&
DemandedBits.isSubsetOf(
C->getAPIntValue())) {
1670 if (ShiftC->getAPIntValue().ult(
BitWidth)) {
1671 uint64_t ShiftAmt = ShiftC->getZExtValue();
1674 : Ones.
lshr(ShiftAmt);
1691 if (!
C || !
C->isAllOnes())
1701 if (DemandedOp0 || DemandedOp1) {
1702 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1703 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1714 Known, TLO,
Depth + 1))
1717 Known2, TLO,
Depth + 1))
1729 Known, TLO,
Depth + 1))
1732 Known2, TLO,
Depth + 1))
1740 Known, TLO,
Depth + 1))
1743 Known2, TLO,
Depth + 1))
1786 if (std::optional<unsigned> KnownSA =
1788 unsigned ShAmt = *KnownSA;
1798 if (std::optional<unsigned> InnerSA =
1800 unsigned C1 = *InnerSA;
1802 int Diff = ShAmt - C1;
1821 if (ShAmt < InnerBits &&
DemandedBits.getActiveBits() <= InnerBits &&
1839 InnerOp, DemandedElts,
Depth + 2)) {
1840 unsigned InnerShAmt = *SA2;
1841 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1843 (InnerBits - InnerShAmt + ShAmt) &&
1871 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
1882 Op.getNode()->hasOneUse()) {
1893 assert(DemandedSize <= SmallVTBits &&
1894 "Narrowed below demanded bits?");
1924 Flags.setNoUnsignedWrap(IsNUW);
1929 NewShiftAmt, Flags);
1955 if (std::optional<unsigned> MaxSA =
1957 unsigned ShAmt = *MaxSA;
1958 unsigned NumSignBits =
1961 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1971 if (std::optional<unsigned> KnownSA =
1973 unsigned ShAmt = *KnownSA;
1983 if (std::optional<unsigned> InnerSA =
1985 unsigned C1 = *InnerSA;
1987 int Diff = ShAmt - C1;
2003 if (std::optional<unsigned> InnerSA =
2005 unsigned C1 = *InnerSA;
2007 unsigned Combined = std::min(C1 + ShAmt,
BitWidth - 1);
2019 if (
Op->getFlags().hasExact())
2054 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2068 if (std::optional<unsigned> MaxSA =
2070 unsigned ShAmt = *MaxSA;
2074 unsigned NumSignBits =
2083 DemandedElts,
Depth + 1))
2107 if (std::optional<unsigned> KnownSA =
2109 unsigned ShAmt = *KnownSA;
2116 if (std::optional<unsigned> InnerSA =
2118 unsigned LowBits =
BitWidth - ShAmt;
2124 if (*InnerSA == ShAmt) {
2134 unsigned NumSignBits =
2136 if (NumSignBits > ShAmt)
2146 if (
Op->getFlags().hasExact())
2183 Op0, InDemandedMask, DemandedElts, TLO.
DAG,
Depth + 1);
2193 DemandedElts,
Depth + 1))
2206 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2212 Known, TLO,
Depth + 1))
2228 Known2 <<= (IsFSHL ? Amt : (
BitWidth - Amt));
2229 Known >>= (IsFSHL ? (
BitWidth - Amt) : Amt);
2236 Op0, Demanded0, DemandedElts, TLO.
DAG,
Depth + 1);
2238 Op1, Demanded1, DemandedElts, TLO.
DAG,
Depth + 1);
2239 if (DemandedOp0 || DemandedOp1) {
2240 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
2241 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
2253 Known2, TLO,
Depth + 1))
2269 unsigned Amt = SA->getAPIntValue().urem(
BitWidth);
2285 DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) {
2290 DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) {
2309 unsigned Opc =
Op.getOpcode();
2316 unsigned NumSignBits =
2320 if (NumSignBits >= NumDemandedUpperBits)
2386 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2418 unsigned MinSignedBits =
2420 bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2423 if (!AlreadySignExtended) {
2441 InputDemandedBits.
setBit(ExVTBits - 1);
2451 if (Known.
Zero[ExVTBits - 1])
2455 if (Known.
One[ExVTBits - 1]) {
2465 EVT HalfVT =
Op.getOperand(0).getValueType();
2479 Known = KnownHi.
concat(KnownLo);
2488 EVT SrcVT = Src.getValueType();
2497 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2508 APInt InDemandedElts = DemandedElts.
zext(InElts);
2519 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2529 EVT SrcVT = Src.getValueType();
2534 APInt InDemandedElts = DemandedElts.
zext(InElts);
2539 InDemandedBits.
setBit(InBits - 1);
2545 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2582 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2592 EVT SrcVT = Src.getValueType();
2599 if (IsLE && IsVecInReg && DemandedElts == 1 &&
2604 APInt InDemandedElts = DemandedElts.
zext(InElts);
2613 Src, InDemandedBits, InDemandedElts, TLO.
DAG,
Depth + 1))
2622 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2635 Src, TruncMask, DemandedElts, TLO.
DAG,
Depth + 1))
2640 switch (Src.getOpcode()) {
2651 if (Src.getNode()->hasOneUse()) {
2663 std::optional<unsigned> ShAmtC =
2665 if (!ShAmtC || *ShAmtC >=
BitWidth)
2667 unsigned ShVal = *ShAmtC;
2697 Known.
Zero |= ~InMask;
2698 Known.
One &= (~Known.Zero);
2704 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2705 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2714 if (CIdx->getAPIntValue().ult(NumSrcElts))
2721 DemandedSrcBits = DemandedSrcBits.
trunc(EltBitWidth);
2730 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2732 TLO.
DAG.
getNode(
Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2742 case ISD::BITCAST: {
2746 EVT SrcVT = Src.getValueType();
2756 if ((OpVTLegal || i32Legal) && VT.
isSimple() && SrcVT != MVT::f16 &&
2757 SrcVT != MVT::f128) {
2759 EVT Ty = OpVTLegal ? VT : MVT::i32;
2763 unsigned OpVTSizeInBits =
Op.getValueSizeInBits();
2764 if (!OpVTLegal && OpVTSizeInBits > 32)
2766 unsigned ShVal =
Op.getValueSizeInBits() - 1;
2776 unsigned Scale =
BitWidth / NumSrcEltBits;
2780 for (
unsigned i = 0; i != Scale; ++i) {
2781 unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2782 unsigned BitOffset = EltOffset * NumSrcEltBits;
2784 if (!
Sub.isZero()) {
2785 DemandedSrcBits |=
Sub;
2786 for (
unsigned j = 0; j != NumElts; ++j)
2787 if (DemandedElts[j])
2788 DemandedSrcElts.
setBit((j * Scale) + i);
2792 APInt KnownSrcUndef, KnownSrcZero;
2794 KnownSrcZero, TLO,
Depth + 1))
2799 KnownSrcBits, TLO,
Depth + 1))
2801 }
else if (IsLE && (NumSrcEltBits %
BitWidth) == 0) {
2803 unsigned Scale = NumSrcEltBits /
BitWidth;
2807 for (
unsigned i = 0; i != NumElts; ++i)
2808 if (DemandedElts[i]) {
2811 DemandedSrcElts.
setBit(i / Scale);
2815 APInt KnownSrcUndef, KnownSrcZero;
2817 KnownSrcZero, TLO,
Depth + 1))
2823 KnownSrcBits, TLO,
Depth + 1))
2829 Src, DemandedSrcBits, DemandedSrcElts, TLO.
DAG,
Depth + 1)) {
2851 if (
C &&
C->getAPIntValue().countr_zero() == CTZ) {
2867 if (
Op.getOperand(0).getValueType() !=
Op.getOperand(1).getValueType())
2875 SDValue Op0 =
Op.getOperand(0), Op1 =
Op.getOperand(1);
2880 auto GetDemandedBitsLHSMask = [&](
APInt Demanded,
2889 DemandedElts, KnownOp0, TLO,
Depth + 1) ||
2906 Op0, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2908 Op1, LoMask, DemandedElts, TLO.
DAG,
Depth + 1);
2909 if (DemandedOp0 || DemandedOp1) {
2910 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2911 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2925 if (
C && !
C->isAllOnes() && !
C->isOne() &&
2926 (
C->getAPIntValue() | HighMask).isAllOnes()) {
2938 auto getShiftLeftAmt = [&HighMask](
SDValue Mul) ->
unsigned {
2965 if (
unsigned ShAmt = getShiftLeftAmt(Op0))
2968 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2969 return foldMul(
ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2973 if (
unsigned ShAmt = getShiftLeftAmt(Op1))
2974 return foldMul(
ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2982 Op.getOpcode() !=
ISD::SUB, Flags.hasNoSignedWrap(),
2983 Flags.hasNoUnsignedWrap(), KnownOp0, KnownOp1);
3004 Known.
Zero |= SignMask;
3005 Known.
One &= ~SignMask;
3022 Known, TLO,
Depth + 1) ||
3036 Known.
Zero &= ~SignMask0;
3037 Known.
One &= ~SignMask0;
3052 Known.
Zero ^= SignMask;
3053 Known.
One ^= SignMask;
3064 if (
Op.getValueType().isScalableVector())
3083 auto *C = dyn_cast<ConstantSDNode>(V);
3084 return C && C->isOpaque();
3105 const APInt &DemandedElts,
3111 APInt KnownUndef, KnownZero;
3125 const APInt &UndefOp0,
3126 const APInt &UndefOp1) {
3129 "Vector binop only");
3134 UndefOp1.
getBitWidth() == NumElts &&
"Bad type for undef analysis");
3136 auto getUndefOrConstantElt = [&](
SDValue V,
unsigned Index,
3137 const APInt &UndefVals) {
3138 if (UndefVals[Index])
3154 for (
unsigned i = 0; i != NumElts; ++i) {
3173 bool AssumeSingleUse)
const {
3174 EVT VT =
Op.getValueType();
3175 unsigned Opcode =
Op.getOpcode();
3176 APInt DemandedElts = OriginalDemandedElts;
3190 "Mask size mismatches value type element count!");
3199 if (!AssumeSingleUse && !
Op.getNode()->hasOneUse())
3203 if (DemandedElts == 0) {
3218 auto SimplifyDemandedVectorEltsBinOp = [&](
SDValue Op0,
SDValue Op1) {
3223 if (NewOp0 || NewOp1) {
3226 NewOp1 ? NewOp1 : Op1,
Op->getFlags());
3234 if (!DemandedElts[0]) {
3241 case ISD::BITCAST: {
3243 EVT SrcVT = Src.getValueType();
3250 for (
unsigned I = 0;
I != NumElts; ++
I) {
3251 if (DemandedElts[
I]) {
3252 unsigned Offset =
I * EltSize;
3265 if (NumSrcElts == NumElts)
3267 KnownZero, TLO,
Depth + 1);
3269 APInt SrcDemandedElts, SrcZero, SrcUndef;
3273 if ((NumElts % NumSrcElts) == 0) {
3274 unsigned Scale = NumElts / NumSrcElts;
3286 for (
unsigned i = 0; i != NumElts; ++i)
3287 if (DemandedElts[i]) {
3288 unsigned Ofs = (i % Scale) * EltSizeInBits;
3289 SrcDemandedBits.
setBits(Ofs, Ofs + EltSizeInBits);
3301 for (
unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
3305 for (
unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
3306 unsigned Elt = Scale * SrcElt + SubElt;
3307 if (DemandedElts[Elt])
3315 for (
unsigned i = 0; i != NumSrcElts; ++i) {
3316 if (SrcDemandedElts[i]) {
3318 KnownZero.
setBits(i * Scale, (i + 1) * Scale);
3320 KnownUndef.
setBits(i * Scale, (i + 1) * Scale);
3328 if ((NumSrcElts % NumElts) == 0) {
3329 unsigned Scale = NumSrcElts / NumElts;
3337 for (
unsigned i = 0; i != NumElts; ++i) {
3338 if (DemandedElts[i]) {
3368 [&](
SDValue Elt) { return Op.getOperand(0) != Elt; })) {
3370 bool Updated =
false;
3371 for (
unsigned i = 0; i != NumElts; ++i) {
3382 for (
unsigned i = 0; i != NumElts; ++i) {
3384 if (
SrcOp.isUndef()) {
3386 }
else if (EltSizeInBits ==
SrcOp.getScalarValueSizeInBits() &&
3394 EVT SubVT =
Op.getOperand(0).getValueType();
3395 unsigned NumSubVecs =
Op.getNumOperands();
3397 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3400 APInt SubUndef, SubZero;
3404 KnownUndef.
insertBits(SubUndef, i * NumSubElts);
3405 KnownZero.
insertBits(SubZero, i * NumSubElts);
3410 bool FoundNewSub =
false;
3412 for (
unsigned i = 0; i != NumSubVecs; ++i) {
3416 SubOp, SubElts, TLO.
DAG,
Depth + 1);
3417 DemandedSubOps.
push_back(NewSubOp ? NewSubOp : SubOp);
3418 FoundNewSub = NewSubOp ?
true : FoundNewSub;
3434 unsigned NumSubElts =
Sub.getValueType().getVectorNumElements();
3436 APInt DemandedSrcElts = DemandedElts;
3437 DemandedSrcElts.
clearBits(Idx, Idx + NumSubElts);
3440 if (!DemandedSubElts)
3443 APInt SubUndef, SubZero;
3449 if (!DemandedSrcElts && !Src.isUndef())
3463 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3466 if (NewSrc || NewSub) {
3467 NewSrc = NewSrc ? NewSrc : Src;
3468 NewSub = NewSub ? NewSub :
Sub;
3470 NewSub,
Op.getOperand(2));
3479 if (Src.getValueType().isScalableVector())
3482 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3483 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts).
shl(Idx);
3485 APInt SrcUndef, SrcZero;
3495 Src, DemandedSrcElts, TLO.
DAG,
Depth + 1);
3511 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
3512 unsigned Idx = CIdx->getZExtValue();
3513 if (!DemandedElts[Idx])
3516 APInt DemandedVecElts(DemandedElts);
3519 KnownZero, TLO,
Depth + 1))
3528 APInt VecUndef, VecZero;
3542 APInt UndefSel, ZeroSel;
3548 APInt DemandedLHS(DemandedElts);
3549 APInt DemandedRHS(DemandedElts);
3550 APInt UndefLHS, ZeroLHS;
3551 APInt UndefRHS, ZeroRHS;
3559 KnownUndef = UndefLHS & UndefRHS;
3560 KnownZero = ZeroLHS & ZeroRHS;
3564 APInt DemandedSel = DemandedElts & ~KnownZero;
3565 if (DemandedSel != DemandedElts)
3578 APInt DemandedLHS(NumElts, 0);
3579 APInt DemandedRHS(NumElts, 0);
3580 for (
unsigned i = 0; i != NumElts; ++i) {
3581 int M = ShuffleMask[i];
3582 if (M < 0 || !DemandedElts[i])
3584 assert(0 <= M && M < (
int)(2 * NumElts) &&
"Shuffle index out of range");
3585 if (M < (
int)NumElts)
3588 DemandedRHS.
setBit(M - NumElts);
3594 bool FoldLHS = !DemandedLHS && !LHS.isUndef();
3595 bool FoldRHS = !DemandedRHS && !RHS.isUndef();
3596 if (FoldLHS || FoldRHS) {
3597 LHS = FoldLHS ? TLO.
DAG.
getUNDEF(LHS.getValueType()) : LHS;
3598 RHS = FoldRHS ? TLO.
DAG.
getUNDEF(RHS.getValueType()) : RHS;
3605 APInt UndefLHS, ZeroLHS;
3606 APInt UndefRHS, ZeroRHS;
3615 bool Updated =
false;
3616 bool IdentityLHS =
true, IdentityRHS =
true;
3618 for (
unsigned i = 0; i != NumElts; ++i) {
3619 int &M = NewMask[i];
3622 if (!DemandedElts[i] || (M < (
int)NumElts && UndefLHS[M]) ||
3623 (M >= (
int)NumElts && UndefRHS[M - NumElts])) {
3627 IdentityLHS &= (M < 0) || (M == (
int)i);
3628 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3633 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.
LegalOps) {
3641 for (
unsigned i = 0; i != NumElts; ++i) {
3642 int M = ShuffleMask[i];
3645 }
else if (M < (
int)NumElts) {
3651 if (UndefRHS[M - NumElts])
3653 if (ZeroRHS[M - NumElts])
3662 APInt SrcUndef, SrcZero;
3664 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3665 APInt DemandedSrcElts = DemandedElts.
zext(NumSrcElts);
3673 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3674 DemandedSrcElts == 1) {
3687 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() ==
ISD::AND &&
3688 Op->isOnlyUserOf(Src.getNode()) &&
3689 Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3691 EVT SrcVT = Src.getValueType();
3698 ISD::AND,
DL, SrcVT, {Src.getOperand(1), Mask})) {
3712 if (Op0 == Op1 &&
Op->isOnlyUserOf(Op0.
getNode())) {
3713 APInt UndefLHS, ZeroLHS;
3735 APInt UndefRHS, ZeroRHS;
3739 APInt UndefLHS, ZeroLHS;
3744 KnownZero = ZeroLHS & ZeroRHS;
3750 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3762 APInt UndefRHS, ZeroRHS;
3766 APInt UndefLHS, ZeroLHS;
3771 KnownZero = ZeroLHS;
3772 KnownUndef = UndefLHS & UndefRHS;
3777 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3788 APInt SrcUndef, SrcZero;
3794 APInt DemandedElts0 = DemandedElts & ~SrcZero;
3799 KnownUndef &= DemandedElts0;
3800 KnownZero &= DemandedElts0;
3805 if (DemandedElts.
isSubsetOf(SrcZero | KnownZero | SrcUndef | KnownUndef))
3812 KnownZero |= SrcZero;
3813 KnownUndef &= SrcUndef;
3814 KnownUndef &= ~KnownZero;
3818 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3826 KnownZero, TLO,
Depth + 1))
3831 Op.getOperand(0), DemandedElts, TLO.
DAG,
Depth + 1))
3846 KnownZero, TLO,
Depth + 1))
3853 KnownZero, TLO,
Depth))
3859 TLO,
Depth, AssumeSingleUse))
3865 assert((KnownUndef & KnownZero) == 0 &&
"Elements flagged as undef AND zero");
3879 const APInt &DemandedElts,
3881 unsigned Depth)
const {
3886 "Should use MaskedValueIsZero if you don't know whether Op"
3887 " is a target node!");
3894 unsigned Depth)
const {
3901 unsigned Depth)
const {
3913 unsigned Depth)
const {
3922 unsigned Depth)
const {
3927 "Should use ComputeNumSignBits if you don't know whether Op"
3928 " is a target node!");
3945 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3946 " is a target node!");
3957 "Should use SimplifyDemandedBits if you don't know whether Op"
3958 " is a target node!");
3971 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3972 " is a target node!");
4005 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
4006 " is a target node!");
4013 return DAG.isGuaranteedNotToBeUndefOrPoison(V, PoisonOnly,
4025 "Should use canCreateUndefOrPoison if you don't know whether Op"
4026 " is a target node!");
4032 const APInt &DemandedElts,
4035 unsigned Depth)
const {
4040 "Should use isKnownNeverNaN if you don't know whether Op"
4041 " is a target node!");
4046 const APInt &DemandedElts,
4049 unsigned Depth)
const {
4054 "Should use isSplatValue if you don't know whether Op"
4055 " is a target node!");
4070 CVal = CN->getAPIntValue();
4071 EltWidth =
N.getValueType().getScalarSizeInBits();
4078 CVal = CVal.
trunc(EltWidth);
4084 return CVal.
isOne();
4126 return (
N->isOne() && !SExt) || (SExt && (
N->getValueType(0) != MVT::i1));
4129 return N->isAllOnes() && SExt;
4138 DAGCombinerInfo &DCI)
const {
4167 if (AndC &&
isNullConstant(N1) && AndC->getAPIntValue().isPowerOf2() &&
4170 AndC->getAPIntValue().getActiveBits());
4197 if (isXAndYEqZeroPreferableToXAndYEqY(
Cond, OpVT) &&
4205 if (DCI.isBeforeLegalizeOps() ||
4234 DAGCombinerInfo &DCI)
const {
4238 SelectionDAG &DAG = DCI.DAG;
4275SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
4277 const SDLoc &
DL)
const {
4288 ConstantSDNode *C01;
4317 auto checkConstants = [&
I1, &I01]() ->
bool {
4322 if (checkConstants()) {
4330 if (!checkConstants())
4336 const unsigned KeptBits =
I1.logBase2();
4337 const unsigned KeptBitsMinusOne = I01.
logBase2();
4340 if (KeptBits != (KeptBitsMinusOne + 1))
4345 SelectionDAG &DAG = DCI.DAG;
4354 return DAG.
getSetCC(
DL, SCCVT, SExtInReg,
X, NewCond);
4358SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
4360 DAGCombinerInfo &DCI,
const SDLoc &
DL)
const {
4362 "Should be a comparison with 0.");
4364 "Valid only for [in]equality comparisons.");
4366 unsigned NewShiftOpcode;
4369 SelectionDAG &DAG = DCI.DAG;
4372 auto Match = [&NewShiftOpcode, &
X, &
C, &
Y, &DAG,
this](
SDValue V) {
4376 unsigned OldShiftOpcode =
V.getOpcode();
4377 switch (OldShiftOpcode) {
4389 C =
V.getOperand(0);
4390 ConstantSDNode *CC =
4394 Y =
V.getOperand(1);
4396 ConstantSDNode *
XC =
4399 X, XC, CC,
Y, OldShiftOpcode, NewShiftOpcode, DAG);
4416 EVT VT =
X.getValueType();
4431 DAGCombinerInfo &DCI)
const {
4434 "Unexpected binop");
4440 SelectionDAG &DAG = DCI.DAG;
4462 if (!DCI.isCalledByLegalizer())
4463 DCI.AddToWorklist(YShl1.
getNode());
4478 if (CTPOP.getOpcode() !=
ISD::CTPOP || !CTPOP.hasOneUse())
4481 EVT CTVT = CTPOP.getValueType();
4482 SDValue CTOp = CTPOP.getOperand(0);
4502 for (
unsigned i = 0; i <
Passes; i++) {
4551 auto getRotateSource = [](
SDValue X) {
4553 return X.getOperand(0);
4560 if (
SDValue R = getRotateSource(N0))
4593 if (!C1 || !C1->
isZero())
4618 if (
Or.getOperand(0) ==
Other) {
4619 X =
Or.getOperand(0);
4620 Y =
Or.getOperand(1);
4623 if (
Or.getOperand(1) ==
Other) {
4624 X =
Or.getOperand(1);
4625 Y =
Or.getOperand(0);
4635 if (matchOr(F0, F1)) {
4642 if (matchOr(F1, F0)) {
4658 const SDLoc &dl)
const {
4668 bool N0ConstOrSplat =
4670 bool N1ConstOrSplat =
4678 if (N0ConstOrSplat && !N1ConstOrSplat &&
4681 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4687 if (!N0ConstOrSplat && !N1ConstOrSplat &&
4692 return DAG.
getSetCC(dl, VT, N1, N0, SwappedCC);
4701 const APInt &C1 = N1C->getAPIntValue();
4717 !Attr.hasFnAttr(Attribute::MinSize)) {
4721 return DAG.
getNode(LogicOp, dl, VT, IsXZero, IsYZero);
4752 const APInt &C1 = N1C->getAPIntValue();
4768 if ((
C->getAPIntValue()+1).isPowerOf2()) {
4769 MinBits =
C->getAPIntValue().countr_one();
4780 MinBits = LN0->getMemoryVT().getSizeInBits();
4784 MinBits = LN0->getMemoryVT().getSizeInBits();
4795 MinBits >= ReqdBits) {
4800 if (MinBits == 1 && C1 == 1)
4819 if (TopSetCC.
getValueType() == MVT::i1 && VT == MVT::i1 &&
4853 unsigned bestWidth = 0, bestOffset = 0;
4854 if (Lod->isSimple() && Lod->isUnindexed() &&
4855 (Lod->getMemoryVT().isByteSized() ||
4857 unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits();
4859 unsigned maskWidth = origWidth;
4863 origWidth = Lod->getMemoryVT().getSizeInBits();
4867 for (
unsigned width = 8; width < origWidth; width *= 2) {
4872 unsigned maxOffset = origWidth - width;
4873 for (
unsigned offset = 0; offset <= maxOffset; offset += 8) {
4874 if (Mask.isSubsetOf(newMask)) {
4875 unsigned ptrOffset =
4877 unsigned IsFast = 0;
4878 assert((ptrOffset % 8) == 0 &&
"Non-Bytealigned pointer offset");
4883 *DAG.
getContext(), Layout, newVT, Lod->getAddressSpace(),
4884 NewAlign, Lod->getMemOperand()->getFlags(), &IsFast) &&
4886 bestOffset = ptrOffset / 8;
4887 bestMask = Mask.lshr(offset);
4901 if (bestOffset != 0)
4905 Lod->getPointerInfo().getWithOffset(bestOffset),
4906 Lod->getBaseAlign());
4985 ExtDstTy != ExtSrcTy &&
"Unexpected types!");
4992 return DAG.
getSetCC(dl, VT, ZextOp,
4994 }
else if ((N1C->isZero() || N1C->isOne()) &&
5041 return DAG.
getSetCC(dl, VT, Val, N1,
5044 }
else if (N1C->isOne()) {
5127 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1,
Cond, DCI, dl))
5134 const APInt &C1 = N1C->getAPIntValue();
5136 APInt MinVal, MaxVal;
5158 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5178 (!N1C->isOpaque() || (
C.getBitWidth() <= 64 &&
5226 if (
SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
5227 VT, N0, N1,
Cond, DCI, dl))
5234 bool CmpZero = N1C->isZero();
5235 bool CmpNegOne = N1C->isAllOnes();
5236 if ((CmpZero || CmpNegOne) && N0.
hasOneUse()) {
5239 unsigned EltBits = V.getScalarValueSizeInBits();
5240 if (V.getOpcode() !=
ISD::OR || (EltBits % 2) != 0)
5248 RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5251 Hi = RHS.getOperand(0);
5256 LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
5259 Hi = LHS.getOperand(0);
5267 unsigned HalfBits = EltBits / 2;
5278 if (IsConcat(N0,
Lo,
Hi))
5279 return MergeConcat(
Lo,
Hi);
5317 const APInt &C1 = N1C->getAPIntValue();
5332 unsigned ShCt = AndRHS->getAPIntValue().logBase2();
5333 if (AndRHS->getAPIntValue().isPowerOf2() &&
5340 }
else if (
Cond ==
ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
5360 const APInt &AndRHSC = AndRHS->getAPIntValue();
5412 return DAG.
getSetCC(dl, VT, Shift, CmpRHS, NewCond);
5420 assert(!CFP->getValueAPF().isNaN() &&
"Unexpected NaN value");
5441 !
isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(0))) {
5442 bool IsFabs = N0.
getOpcode() == ISD::FABS;
5460 if (CFP->getValueAPF().isInfinity()) {
5461 bool IsNegInf = CFP->getValueAPF().isNegative();
5472 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5481 "Integer types should be handled by FoldSetCC");
5487 if (UOF ==
unsigned(EqTrue))
5492 if (NewCond !=
Cond &&
5495 return DAG.
getSetCC(dl, VT, N0, N1, NewCond);
5502 if ((isSignedIntSetCC(
Cond) || isUnsignedIntSetCC(
Cond)) &&
5539 bool LegalRHSImm =
false;
5547 DAG.
getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
5555 DAG.
getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
5565 DAG.
getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
5570 if (RHSC->getValueType(0).getSizeInBits() <= 64)
5579 if (
SDValue V = foldSetCCWithBinOp(VT, N0, N1,
Cond, dl, DCI))
5585 if (
SDValue V = foldSetCCWithBinOp(VT, N1, N0,
Cond, dl, DCI))
5588 if (
SDValue V = foldSetCCWithAnd(VT, N0, N1,
Cond, dl, DCI))
5591 if (
SDValue V = foldSetCCWithOr(VT, N0, N1,
Cond, dl, DCI))
5600 if (!
isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
5602 if (
SDValue Folded = buildUREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5605 if (
SDValue Folded = buildSREMEqFold(VT, N0, N1,
Cond, DCI, dl))
5618 N0 = DAG.
getNOT(dl, Temp, OpVT);
5627 Temp = DAG.
getNOT(dl, N0, OpVT);
5634 Temp = DAG.
getNOT(dl, N1, OpVT);
5641 Temp = DAG.
getNOT(dl, N0, OpVT);
5648 Temp = DAG.
getNOT(dl, N1, OpVT);
5657 N0 = DAG.
getNode(ExtendCode, dl, VT, N0);
5685 GA = GASD->getGlobal();
5686 Offset += GASD->getOffset();
5690 if (
N->isAnyAdd()) {
5695 Offset += V->getSExtValue();
5700 Offset += V->getSExtValue();
5721 unsigned S = Constraint.
size();
5724 switch (Constraint[0]) {
5755 if (S > 1 && Constraint[0] ==
'{' && Constraint[S - 1] ==
'}') {
5756 if (S == 8 && Constraint.
substr(1, 6) ==
"memory")
5784 std::vector<SDValue> &
Ops,
5787 if (Constraint.
size() > 1)
5790 char ConstraintLetter = Constraint[0];
5791 switch (ConstraintLetter) {
5811 bool IsBool =
C->getConstantIntValue()->getBitWidth() == 1;
5821 if (ConstraintLetter !=
'n') {
5824 GA->getValueType(0),
5825 Offset + GA->getOffset()));
5830 BA->getBlockAddress(), BA->getValueType(0),
5831 Offset + BA->getOffset(), BA->getTargetFlags()));
5839 const unsigned OpCode =
Op.getOpcode();
5842 Op =
Op.getOperand(1);
5846 Op =
Op.getOperand(0);
5863std::pair<unsigned, const TargetRegisterClass *>
5869 assert(*(Constraint.
end() - 1) ==
'}' &&
"Not a brace enclosed constraint?");
5874 std::pair<unsigned, const TargetRegisterClass *> R =
5886 std::pair<unsigned, const TargetRegisterClass *> S =
5887 std::make_pair(PR, RC);
5932 unsigned maCount = 0;
5938 unsigned LabelNo = 0;
5941 ConstraintOperands.emplace_back(std::move(CI));
5945 if (OpInfo.multipleAlternatives.size() > maCount)
5946 maCount = OpInfo.multipleAlternatives.size();
5948 OpInfo.ConstraintVT = MVT::Other;
5951 switch (OpInfo.Type) {
5954 if (OpInfo.isIndirect) {
5955 OpInfo.CallOperandVal =
Call.getArgOperand(ArgNo);
5961 assert(!
Call.getType()->isVoidTy() &&
"Bad inline asm!");
5963 OpInfo.ConstraintVT =
5967 assert(ResNo == 0 &&
"Asm only has one result!");
5968 OpInfo.ConstraintVT =
5974 OpInfo.CallOperandVal =
Call.getArgOperand(ArgNo);
5985 if (OpInfo.CallOperandVal) {
5986 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5987 if (OpInfo.isIndirect) {
5988 OpTy =
Call.getParamElementType(ArgNo);
5989 assert(OpTy &&
"Indirect operand must have elementtype attribute");
5994 if (STy->getNumElements() == 1)
5995 OpTy = STy->getElementType(0);
6000 unsigned BitSize =
DL.getTypeSizeInBits(OpTy);
6021 if (!ConstraintOperands.empty()) {
6023 unsigned bestMAIndex = 0;
6024 int bestWeight = -1;
6030 for (maIndex = 0; maIndex < maCount; ++maIndex) {
6032 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6033 cIndex != eIndex; ++cIndex) {
6042 if (OpInfo.hasMatchingInput()) {
6044 if (OpInfo.ConstraintVT !=
Input.ConstraintVT) {
6045 if ((OpInfo.ConstraintVT.isInteger() !=
6046 Input.ConstraintVT.isInteger()) ||
6047 (OpInfo.ConstraintVT.getSizeInBits() !=
6048 Input.ConstraintVT.getSizeInBits())) {
6059 weightSum += weight;
6062 if (weightSum > bestWeight) {
6063 bestWeight = weightSum;
6064 bestMAIndex = maIndex;
6071 cInfo.selectAlternative(bestMAIndex);
6076 for (
unsigned cIndex = 0, eIndex = ConstraintOperands.size();
6077 cIndex != eIndex; ++cIndex) {
6084 if (OpInfo.hasMatchingInput()) {
6087 if (OpInfo.ConstraintVT !=
Input.ConstraintVT) {
6088 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6090 OpInfo.ConstraintVT);
6091 std::pair<unsigned, const TargetRegisterClass *> InputRC =
6093 Input.ConstraintVT);
6094 const bool OutOpIsIntOrFP = OpInfo.ConstraintVT.isInteger() ||
6095 OpInfo.ConstraintVT.isFloatingPoint();
6096 const bool InOpIsIntOrFP =
Input.ConstraintVT.isInteger() ||
6097 Input.ConstraintVT.isFloatingPoint();
6098 if ((OutOpIsIntOrFP != InOpIsIntOrFP) ||
6099 (MatchRC.second != InputRC.second)) {
6101 " with a matching output constraint of"
6102 " incompatible type!");
6108 return ConstraintOperands;
6143 if (maIndex >= (
int)
info.multipleAlternatives.size())
6144 rCodes = &
info.Codes;
6146 rCodes = &
info.multipleAlternatives[maIndex].Codes;
6150 for (
const std::string &rCode : *rCodes) {
6153 if (weight > BestWeight)
6154 BestWeight = weight;
6167 Value *CallOperandVal =
info.CallOperandVal;
6170 if (!CallOperandVal)
6173 switch (*constraint) {
6237 Ret.reserve(OpInfo.Codes.size());
6252 Ret.emplace_back(Code, CType);
6270 "need immediate or other");
6275 std::vector<SDValue> ResultOps;
6277 return !ResultOps.empty();
6285 assert(!OpInfo.Codes.empty() &&
"Must have at least one constraint");
6288 if (OpInfo.Codes.size() == 1) {
6289 OpInfo.ConstraintCode = OpInfo.Codes[0];
6296 unsigned BestIdx = 0;
6297 for (
const unsigned E =
G.size();
6304 if (BestIdx + 1 == E) {
6310 OpInfo.ConstraintCode =
G[BestIdx].first;
6311 OpInfo.ConstraintType =
G[BestIdx].second;
6315 if (OpInfo.ConstraintCode ==
"X" && OpInfo.CallOperandVal) {
6319 Value *v = OpInfo.CallOperandVal;
6325 OpInfo.ConstraintCode =
"i";
6332 OpInfo.ConstraintCode = Repl;
6346 EVT VT =
N->getValueType(0);
6351 bool UseSRA =
false;
6357 APInt Divisor =
C->getAPIntValue();
6379 "Expected matchUnaryPredicate to return one element for scalable "
6386 Factor = Factors[0];
6404 EVT VT =
N->getValueType(0);
6409 bool UseSRL =
false;
6415 APInt Divisor =
C->getAPIntValue();
6440 "Expected matchUnaryPredicate to return one element for scalable "
6447 Factor = Factors[0];
6490 EVT VT =
N->getValueType(0);
6526 bool IsAfterLegalization,
6527 bool IsAfterLegalTypes,
6530 EVT VT =
N->getValueType(0);
6556 if (
N->getFlags().hasExact())
6565 const APInt &Divisor =
C->getAPIntValue();
6567 int NumeratorFactor = 0;
6578 NumeratorFactor = 1;
6581 NumeratorFactor = -1;
6598 SDValue MagicFactor, Factor, Shift, ShiftMask;
6606 Shifts.
size() == 1 && ShiftMasks.
size() == 1 &&
6607 "Expected matchUnaryPredicate to return one element for scalable "
6615 MagicFactor = MagicFactors[0];
6616 Factor = Factors[0];
6618 ShiftMask = ShiftMasks[0];
6664 SDValue Q = GetMULHS(N0, MagicFactor);
6694 bool IsAfterLegalization,
6695 bool IsAfterLegalTypes,
6698 EVT VT =
N->getValueType(0);
6724 if (
N->getFlags().hasExact())
6734 bool UseNPQ =
false, UsePreShift =
false, UsePostShift =
false;
6740 const APInt& Divisor =
C->getAPIntValue();
6742 SDValue PreShift, MagicFactor, NPQFactor, PostShift;
6746 if (Divisor.
isOne()) {
6747 PreShift = PostShift = DAG.
getUNDEF(ShSVT);
6748 MagicFactor = NPQFactor = DAG.
getUNDEF(SVT);
6752 Divisor, std::min(KnownLeadingZeros, Divisor.
countl_zero()));
6757 "We shouldn't generate an undefined shift!");
6759 "We shouldn't generate an undefined shift!");
6761 "Unexpected pre-shift");
6768 UseNPQ |= magics.
IsAdd;
6769 UsePreShift |= magics.
PreShift != 0;
6784 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
6792 NPQFactors.
size() == 1 && PostShifts.
size() == 1 &&
6793 "Expected matchUnaryPredicate to return one for scalable vectors");
6800 PreShift = PreShifts[0];
6801 MagicFactor = MagicFactors[0];
6802 PostShift = PostShifts[0];
6854 Q = GetMULHU(Q, MagicFactor);
6867 NPQ = GetMULHU(NPQ, NPQFactor);
6886 return DAG.
getSelect(dl, VT, IsOne, N0, Q);
6900 if (SplatValue != Values.
end()) {
6905 Replacement = *SplatValue;
6909 if (!AlternativeReplacement)
6912 Replacement = AlternativeReplacement;
6922SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT,
SDValue REMNode,
6925 DAGCombinerInfo &DCI,
6926 const SDLoc &
DL)
const {
6928 if (
SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
6930 for (SDNode *
N : Built)
6931 DCI.AddToWorklist(
N);
6939TargetLowering::prepareUREMEqFold(EVT SETCCVT,
SDValue REMNode,
6941 DAGCombinerInfo &DCI,
const SDLoc &
DL,
6942 SmallVectorImpl<SDNode *> &Created)
const {
6949 "Only applicable for (in)equality comparisons.");
6951 SelectionDAG &DAG = DCI.DAG;
6962 bool ComparingWithAllZeros =
true;
6963 bool AllComparisonsWithNonZerosAreTautological =
true;
6964 bool HadTautologicalLanes =
false;
6965 bool AllLanesAreTautological =
true;
6966 bool HadEvenDivisor =
false;
6967 bool AllDivisorsArePowerOfTwo =
true;
6968 bool HadTautologicalInvertedLanes =
false;
6971 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6977 const APInt &
Cmp = CCmp->getAPIntValue();
6979 ComparingWithAllZeros &=
Cmp.isZero();
6985 bool TautologicalInvertedLane =
D.ule(Cmp);
6986 HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6991 bool TautologicalLane =
D.isOne() || TautologicalInvertedLane;
6992 HadTautologicalLanes |= TautologicalLane;
6993 AllLanesAreTautological &= TautologicalLane;
6999 AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
7002 unsigned K =
D.countr_zero();
7003 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
7004 APInt D0 =
D.lshr(K);
7007 HadEvenDivisor |= (
K != 0);
7010 AllDivisorsArePowerOfTwo &= D0.
isOne();
7014 unsigned W =
D.getBitWidth();
7016 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
7029 "We are expecting that K is always less than all-ones for ShSVT");
7032 if (TautologicalLane) {
7058 if (AllLanesAreTautological)
7063 if (AllDivisorsArePowerOfTwo)
7068 if (HadTautologicalLanes) {
7083 "Expected matchBinaryPredicate to return one element for "
7094 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
7098 "Expecting that the types on LHS and RHS of comparisons match.");
7108 if (HadEvenDivisor) {
7121 if (!HadTautologicalInvertedLanes)
7127 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
7134 SDValue TautologicalInvertedChannels =
7144 DL, SETCCVT, SETCCVT);
7146 Replacement, NewCC);
7154 TautologicalInvertedChannels);
7164SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT,
SDValue REMNode,
7167 DAGCombinerInfo &DCI,
7168 const SDLoc &
DL)
const {
7170 if (
SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode,
Cond,
7172 assert(Built.
size() <= 7 &&
"Max size prediction failed.");
7173 for (SDNode *
N : Built)
7174 DCI.AddToWorklist(
N);
7182TargetLowering::prepareSREMEqFold(EVT SETCCVT,
SDValue REMNode,
7184 DAGCombinerInfo &DCI,
const SDLoc &
DL,
7185 SmallVectorImpl<SDNode *> &Created)
const {
7209 "Only applicable for (in)equality comparisons.");
7211 SelectionDAG &DAG = DCI.DAG;
7225 if (!CompTarget || !CompTarget->
isZero())
7228 bool HadIntMinDivisor =
false;
7229 bool HadOneDivisor =
false;
7230 bool AllDivisorsAreOnes =
true;
7231 bool HadEvenDivisor =
false;
7232 bool NeedToApplyOffset =
false;
7233 bool AllDivisorsArePowerOfTwo =
true;
7236 auto BuildSREMPattern = [&](ConstantSDNode *
C) {
7244 APInt
D =
C->getAPIntValue();
7248 HadIntMinDivisor |=
D.isMinSignedValue();
7251 HadOneDivisor |=
D.isOne();
7252 AllDivisorsAreOnes &=
D.isOne();
7255 unsigned K =
D.countr_zero();
7256 assert((!
D.isOne() || (K == 0)) &&
"For divisor '1' we won't rotate.");
7257 APInt D0 =
D.
lshr(K);
7259 if (!
D.isMinSignedValue()) {
7262 HadEvenDivisor |= (
K != 0);
7267 AllDivisorsArePowerOfTwo &= D0.
isOne();
7271 unsigned W =
D.getBitWidth();
7273 assert((D0 *
P).isOne() &&
"Multiplicative inverse basic check failed.");
7279 if (!
D.isMinSignedValue()) {
7282 NeedToApplyOffset |=
A != 0;
7289 "We are expecting that A is always less than all-ones for SVT");
7291 "We are expecting that K is always less than all-ones for ShSVT");
7331 if (AllDivisorsAreOnes)
7336 if (AllDivisorsArePowerOfTwo)
7339 SDValue PVal, AVal, KVal, QVal;
7341 if (HadOneDivisor) {
7361 QAmts.
size() == 1 &&
7362 "Expected matchUnaryPredicate to return one element for scalable "
7380 if (NeedToApplyOffset) {
7392 if (HadEvenDivisor) {
7407 if (!HadIntMinDivisor)
7413 assert(VT.
isVector() &&
"Can/should only get here for vectors.");
7448 MaskedIsZero, Fold);
7456 EVT VT =
Op.getValueType();
7479 bool LegalOps,
bool OptForSize,
7481 unsigned Depth)
const {
7483 if (
Op.getOpcode() == ISD::FNEG ||
Op.getOpcode() == ISD::VP_FNEG) {
7485 return Op.getOperand(0);
7496 EVT VT =
Op.getValueType();
7497 unsigned Opcode =
Op.getOpcode();
7501 bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
7507 auto RemoveDeadNode = [&](
SDValue N) {
7508 if (
N &&
N.getNode()->use_empty())
7517 std::list<HandleSDNode> Handles;
7528 if (LegalOps && !IsOpLegal)
7545 return !N.isUndef() && !isa<ConstantFPSDNode>(N);
7553 return N.isUndef() ||
7554 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
7558 if (LegalOps && !IsOpLegal)
7575 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7589 Handles.emplace_back(NegX);
7600 if (NegX && (CostX <= CostY)) {
7604 RemoveDeadNode(NegY);
7613 RemoveDeadNode(NegX);
7620 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7645 Handles.emplace_back(NegX);
7656 if (NegX && (CostX <= CostY)) {
7660 RemoveDeadNode(NegY);
7666 if (
C->isExactlyValue(2.0) &&
Op.getOpcode() ==
ISD::FMUL)
7674 RemoveDeadNode(NegX);
7681 if (!
Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
7684 SDValue X =
Op.getOperand(0),
Y =
Op.getOperand(1), Z =
Op.getOperand(2);
7693 Handles.emplace_back(NegZ);
7701 Handles.emplace_back(NegX);
7712 if (NegX && (CostX <= CostY)) {
7713 Cost = std::min(CostX, CostZ);
7716 RemoveDeadNode(NegY);
7722 Cost = std::min(CostY, CostZ);
7725 RemoveDeadNode(NegX);
7731 case ISD::FP_EXTEND:
7735 return DAG.
getNode(Opcode,
DL, VT, NegV);
7751 RemoveDeadNode(NegLHS);
7756 Handles.emplace_back(NegLHS);
7769 RemoveDeadNode(NegLHS);
7770 RemoveDeadNode(NegRHS);
7774 Cost = std::min(CostLHS, CostRHS);
7775 return DAG.
getSelect(
DL, VT,
Op.getOperand(0), NegLHS, NegRHS);
7804 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
7817 if ((
Signed && HasSMUL_LOHI) || (!
Signed && HasUMUL_LOHI)) {
7845 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false)) {
7846 Result.push_back(
Lo);
7847 Result.push_back(
Hi);
7850 Result.push_back(Zero);
7851 Result.push_back(Zero);
7862 if (MakeMUL_LOHI(LL, RL,
Lo,
Hi,
true)) {
7863 Result.push_back(
Lo);
7864 Result.push_back(
Hi);
7869 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
7884 if (!MakeMUL_LOHI(LL, RL,
Lo,
Hi,
false))
7887 Result.push_back(
Lo);
7894 Result.push_back(
Hi);
7907 if (!MakeMUL_LOHI(LL, RH,
Lo,
Hi,
false))
7914 if (!MakeMUL_LOHI(LH, RL,
Lo,
Hi,
false))
7967 N->getOperand(0),
N->getOperand(1), Result, HiLoVT,
7968 DAG, Kind, LL, LH, RL, RH);
7970 assert(Result.size() == 2);
8002 unsigned Opcode =
N->getOpcode();
8003 EVT VT =
N->getValueType(0);
8010 "Unexpected opcode");
8016 APInt Divisor = CN->getAPIntValue();
8024 if (Divisor.
uge(HalfMaxPlus1))
8042 unsigned TrailingZeros = 0;
8056 if (HalfMaxPlus1.
urem(Divisor).
isOne()) {
8057 assert(!LL == !LH &&
"Expected both input halves or no input halves!");
8059 std::tie(LL, LH) = DAG.
SplitScalar(
N->getOperand(0), dl, HiLoVT, HiLoVT);
8063 if (TrailingZeros) {
8131 std::tie(QuotL, QuotH) = DAG.
SplitScalar(Quotient, dl, HiLoVT, HiLoVT);
8132 Result.push_back(QuotL);
8133 Result.push_back(QuotH);
8139 if (TrailingZeros) {
8144 Result.push_back(RemL);
8160 EVT VT =
Node->getValueType(0);
8170 bool IsFSHL =
Node->getOpcode() == ISD::VP_FSHL;
8173 EVT ShVT = Z.getValueType();
8179 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
8180 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitWidthC, ShAmt, Mask, VL);
8181 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, IsFSHL ? ShAmt : InvShAmt, Mask,
8183 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, IsFSHL ? InvShAmt : ShAmt, Mask,
8191 ShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, Z, BitMask, Mask, VL);
8195 InvShAmt = DAG.
getNode(ISD::VP_AND,
DL, ShVT, NotZ, BitMask, Mask, VL);
8198 ShAmt = DAG.
getNode(ISD::VP_UREM,
DL, ShVT, Z, BitWidthC, Mask, VL);
8199 InvShAmt = DAG.
getNode(ISD::VP_SUB,
DL, ShVT, BitMask, ShAmt, Mask, VL);
8204 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT,
X, ShAmt, Mask, VL);
8206 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT, ShY1, InvShAmt, Mask, VL);
8209 ShX = DAG.
getNode(ISD::VP_SHL,
DL, VT, ShX1, InvShAmt, Mask, VL);
8210 ShY = DAG.
getNode(ISD::VP_SRL,
DL, VT,
Y, ShAmt, Mask, VL);
8213 return DAG.
getNode(ISD::VP_OR,
DL, VT, ShX, ShY, Mask, VL);
8218 if (
Node->isVPOpcode())
8221 EVT VT =
Node->getValueType(0);
8237 EVT ShVT = Z.getValueType();
8307 EVT VT =
Node->getValueType(0);
8325 if (!AllowVectorOps && VT.
isVector() &&
8343 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8345 HsVal = DAG.
getNode(HsOpc,
DL, VT, Op0, HsAmt);
8351 ShVal = DAG.
getNode(ShOpc,
DL, VT, Op0, ShAmt);
8362 assert(
Node->getNumOperands() == 3 &&
"Not a double-shift!");
8363 EVT VT =
Node->getValueType(0);
8414 unsigned OpNo =
Node->isStrictFPOpcode() ? 1 : 0;
8416 EVT SrcVT = Src.getValueType();
8417 EVT DstVT =
Node->getValueType(0);
8421 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
8424 if (
Node->isStrictFPOpcode())
8487 unsigned OpNo =
Node->isStrictFPOpcode() ? 1 : 0;
8490 EVT SrcVT = Src.getValueType();
8491 EVT DstVT =
Node->getValueType(0);
8512 if (
Node->isStrictFPOpcode()) {
8514 {
Node->getOperand(0), Src });
8515 Chain = Result.getValue(1);
8529 if (
Node->isStrictFPOpcode()) {
8531 Node->getOperand(0),
true);
8537 bool Strict =
Node->isStrictFPOpcode() ||
8556 if (
Node->isStrictFPOpcode()) {
8558 { Chain, Src, FltOfs });
8580 Result = DAG.
getSelect(dl, DstVT, Sel, True, False);
8590 if (
Node->isStrictFPOpcode())
8594 EVT SrcVT = Src.getValueType();
8595 EVT DstVT =
Node->getValueType(0);
8599 if (
Node->getFlags().hasNonNeg() &&
8647 unsigned Opcode =
Node->getOpcode();
8648 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
8652 if (
Node->getFlags().hasNoNaNs()) {
8654 EVT VT =
Node->getValueType(0);
8673 EVT VT =
Node->getValueType(0);
8676 "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
8680 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8686 if (!
Node->getFlags().hasNoNaNs()) {
8699 return DAG.
getNode(NewOp, dl, VT, Quiet0, Quiet1,
Node->getFlags());
8705 if ((
Node->getFlags().hasNoNaNs() ||
8708 (
Node->getFlags().hasNoSignedZeros() ||
8711 unsigned IEEE2018Op =
8712 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8714 return DAG.
getNode(IEEE2018Op, dl, VT,
Node->getOperand(0),
8715 Node->getOperand(1),
Node->getFlags());
8732 unsigned Opc =
N->getOpcode();
8733 EVT VT =
N->getValueType(0);
8735 bool IsMax =
Opc == ISD::FMAXIMUM;
8741 unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
8742 unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM;
8746 bool MinMaxMustRespectOrderedZero =
false;
8750 MinMaxMustRespectOrderedZero =
true;
8764 if (!
N->getFlags().hasNoNaNs() &&
8773 if (!MinMaxMustRespectOrderedZero && !
N->getFlags().hasNoSignedZeros() &&
8796 unsigned Opc =
Node->getOpcode();
8797 EVT VT =
Node->getValueType(0);
8799 bool IsMax =
Opc == ISD::FMAXIMUMNUM;
8804 Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
8807 if (!Flags.hasNoNaNs()) {
8818 return DAG.
getNode(NewOp,
DL, VT, LHS, RHS, Flags);
8823 if (Flags.hasNoNaNs() ||
8825 unsigned IEEE2019Op =
8826 Opc == ISD::FMINIMUMNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
8828 return DAG.
getNode(IEEE2019Op,
DL, VT, LHS, RHS, Flags);
8833 if ((Flags.hasNoNaNs() ||
8837 unsigned IEEE2008Op =
Opc == ISD::FMINIMUMNUM ? ISD::FMINNUM : ISD::FMAXNUM;
8839 return DAG.
getNode(IEEE2008Op,
DL, VT, LHS, RHS, Flags);
8859 if (
Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros() ||
8884 bool IsOrdered = NanTest ==
fcNone;
8885 bool IsUnordered = NanTest ==
fcNan;
8888 if (!IsOrdered && !IsUnordered)
8889 return std::nullopt;
8891 if (OrderedMask ==
fcZero &&
8897 return std::nullopt;
8904 EVT OperandVT =
Op.getValueType();
8916 if (OperandVT == MVT::ppcf128) {
8919 OperandVT = MVT::f64;
8926 bool IsF80 = (ScalarFloatVT == MVT::f80);
8930 if (Flags.hasNoFPExcept() &&
8933 bool IsInvertedFP =
false;
8937 FPTestMask = InvertedFPCheck;
8938 IsInvertedFP =
true;
8950 OrderedFPTestMask = FPTestMask;
8952 const bool IsOrdered = FPTestMask == OrderedFPTestMask;
8954 if (std::optional<bool> IsCmp0 =
8957 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode,
8964 *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode);
8967 if (FPTestMask ==
fcNan &&
8973 bool IsOrderedInf = FPTestMask ==
fcInf;
8976 : UnorderedCmpOpcode,
8987 IsOrderedInf ? OrderedCmpOpcode : UnorderedCmpOpcode);
8992 : UnorderedCmpOpcode,
9003 IsOrdered ? OrderedCmpOpcode : UnorderedCmpOpcode);
9022 return DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal,
9023 IsOrdered ? OrderedOp : UnorderedOp);
9046 DAG.
getSetCC(
DL, ResultVT, Abs, SmallestNormal, IsNormalOp);
9048 return DAG.
getNode(LogicOp,
DL, ResultVT, IsFinite, IsNormal);
9055 bool IsInverted =
false;
9058 Test = InvertedCheck;
9074 const unsigned ExplicitIntBitInF80 = 63;
9075 APInt ExpMask = Inf;
9077 ExpMask.
clearBit(ExplicitIntBitInF80);
9091 const auto appendResult = [&](
SDValue PartialRes) {
9101 const auto getIntBitIsSet = [&]() ->
SDValue {
9102 if (!IntBitIsSetV) {
9103 APInt IntBitMask(BitSize, 0);
9104 IntBitMask.
setBit(ExplicitIntBitInF80);
9109 return IntBitIsSetV;
9137 appendResult(PartialRes);
9146 appendResult(ExpIsZero);
9156 else if (PartialCheck ==
fcZero)
9160 appendResult(PartialRes);
9173 appendResult(PartialRes);
9176 if (
unsigned PartialCheck =
Test &
fcInf) {
9179 else if (PartialCheck ==
fcInf)
9186 appendResult(PartialRes);
9189 if (
unsigned PartialCheck =
Test &
fcNan) {
9190 APInt InfWithQnanBit = Inf | QNaNBitMask;
9192 if (PartialCheck ==
fcNan) {
9205 }
else if (PartialCheck ==
fcQNan) {
9217 appendResult(PartialRes);
9222 APInt ExpLSB = ExpMask & ~(ExpMask.
shl(1));
9225 APInt ExpLimit = ExpMask - ExpLSB;
9238 appendResult(PartialRes);
9261 EVT VT =
Node->getValueType(0);
9268 if (!(Len <= 128 && Len % 8 == 0))
9327 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9338 EVT VT =
Node->getValueType(0);
9347 if (!(Len <= 128 && Len % 8 == 0))
9359 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5;
9362 Tmp1 = DAG.
getNode(ISD::VP_AND, dl, VT,
9366 Op = DAG.
getNode(ISD::VP_SUB, dl, VT,
Op, Tmp1, Mask, VL);
9369 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op, Mask33, Mask, VL);
9370 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT,
9374 Op = DAG.
getNode(ISD::VP_ADD, dl, VT, Tmp2, Tmp3, Mask, VL);
9379 Tmp5 = DAG.
getNode(ISD::VP_ADD, dl, VT,
Op, Tmp4, Mask, VL);
9380 Op = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp5, Mask0F, Mask, VL);
9391 V = DAG.
getNode(ISD::VP_MUL, dl, VT,
Op, Mask01, Mask, VL);
9394 for (
unsigned Shift = 8; Shift < Len; Shift *= 2) {
9396 V = DAG.
getNode(ISD::VP_ADD, dl, VT, V,
9397 DAG.
getNode(ISD::VP_SHL, dl, VT, V, ShiftC, Mask, VL),
9407 EVT VT =
Node->getValueType(0);
9446 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9457 EVT VT =
Node->getValueType(0);
9471 for (
unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) {
9474 DAG.
getNode(ISD::VP_SRL, dl, VT,
Op, Tmp, Mask, VL), Mask,
9479 return DAG.
getNode(ISD::VP_CTPOP, dl, VT,
Op, Mask, VL);
9488 :
APInt(64, 0x0218A392CD3D5DBFULL);
9502 for (
unsigned i = 0; i <
BitWidth; i++) {
9528 EVT VT =
Node->getValueType(0);
9588 EVT VT =
Node->getValueType(0);
9596 return DAG.
getNode(ISD::VP_CTPOP, dl, VT, Tmp, Mask, VL);
9610 EVT SrcVT = Source.getValueType();
9611 EVT ResVT =
N->getValueType(0);
9620 Source = DAG.
getNode(ISD::VP_SETCC,
DL, SrcVT, Source, AllZero,
9628 DAG.
getNode(ISD::VP_SELECT,
DL, ResVecVT, Source, StepVec,
Splat, EVL);
9629 return DAG.
getNode(ISD::VP_REDUCE_UMIN,
DL, ResVT, ExtEVL,
Select, Mask, EVL);
9636 EVT MaskVT = Mask.getValueType();
9646 true, &VScaleRange);
9665 SDValue HighestIdx = DAG.
getNode(ISD::VECREDUCE_UMAX,
DL, StepVT, ActiveElts);
9670 bool IsNegative)
const {
9672 EVT VT =
N->getValueType(0);
9726 EVT VT =
N->getValueType(0);
9803 EVT VT =
N->getValueType(0);
9807 unsigned Opc =
N->getOpcode();
9816 "Unknown AVG node");
9828 return DAG.
getNode(ShiftOpc, dl, VT, Sum,
9837 LHS = DAG.
getNode(ExtOpc, dl, ExtVT, LHS);
9838 RHS = DAG.
getNode(ExtOpc, dl, ExtVT, RHS);
9880 return DAG.
getNode(SumOpc, dl, VT, Sign, Shift);
9885 EVT VT =
N->getValueType(0);
9892 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9943 EVT VT =
N->getValueType(0);
9952 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
9961 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp1, Tmp2, Mask, EVL);
9971 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
9975 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
9976 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
9977 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
9981 Tmp7 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9985 Tmp6 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9986 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
9989 Tmp5 = DAG.
getNode(ISD::VP_AND, dl, VT,
Op,
9990 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
9995 Tmp4 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp4,
9996 DAG.
getConstant(255ULL << 24, dl, VT), Mask, EVL);
9999 Tmp3 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp3,
10000 DAG.
getConstant(255ULL << 16, dl, VT), Mask, EVL);
10003 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10004 DAG.
getConstant(255ULL << 8, dl, VT), Mask, EVL);
10007 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp7, Mask, EVL);
10008 Tmp6 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp6, Tmp5, Mask, EVL);
10009 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp3, Mask, EVL);
10010 Tmp2 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp1, Mask, EVL);
10011 Tmp8 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp6, Mask, EVL);
10012 Tmp4 = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp4, Tmp2, Mask, EVL);
10013 return DAG.
getNode(ISD::VP_OR, dl, VT, Tmp8, Tmp4, Mask, EVL);
10019 EVT VT =
N->getValueType(0);
10062 for (
unsigned I = 0, J = Sz-1;
I < Sz; ++
I, --J) {
10079 assert(
N->getOpcode() == ISD::VP_BITREVERSE);
10082 EVT VT =
N->getValueType(0);
10101 Tmp = (Sz > 8 ? DAG.
getNode(ISD::VP_BSWAP, dl, VT,
Op, Mask, EVL) :
Op);
10106 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10112 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10117 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10123 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10128 Tmp2 = DAG.
getNode(ISD::VP_AND, dl, VT, Tmp2,
10134 Tmp = DAG.
getNode(ISD::VP_OR, dl, VT, Tmp2, Tmp3, Mask, EVL);
10140std::pair<SDValue, SDValue>
10144 SDValue Chain = LD->getChain();
10145 SDValue BasePTR = LD->getBasePtr();
10146 EVT SrcVT = LD->getMemoryVT();
10147 EVT DstVT = LD->getValueType(0);
10179 LD->getPointerInfo(), SrcIntVT, LD->getBaseAlign(),
10180 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10183 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10184 unsigned ShiftIntoIdx =
10195 Scalar = DAG.
getNode(ExtendOp, SL, DstEltVT, Scalar);
10202 return std::make_pair(
Value, Load.getValue(1));
10211 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10213 ExtType, SL, DstEltVT, Chain, BasePTR,
10214 LD->getPointerInfo().getWithOffset(Idx * Stride), SrcEltVT,
10215 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10226 return std::make_pair(
Value, NewChain);
10233 SDValue Chain = ST->getChain();
10234 SDValue BasePtr = ST->getBasePtr();
10236 EVT StVT = ST->getMemoryVT();
10262 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10266 unsigned ShiftIntoIdx =
10275 return DAG.
getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
10276 ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10282 assert(Stride &&
"Zero stride!");
10286 for (
unsigned Idx = 0; Idx < NumElem; ++Idx) {
10294 Chain, SL, Elt,
Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
10295 MemSclVT, ST->getBaseAlign(), ST->getMemOperand()->getFlags(),
10304std::pair<SDValue, SDValue>
10307 "unaligned indexed loads not implemented!");
10308 SDValue Chain = LD->getChain();
10310 EVT VT = LD->getValueType(0);
10311 EVT LoadedVT = LD->getMemoryVT();
10327 LD->getMemOperand());
10328 SDValue Result = DAG.
getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
10329 if (LoadedVT != VT)
10333 return std::make_pair(Result, newLoad.
getValue(1));
10341 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
10347 SDValue StackPtr = StackBase;
10350 EVT PtrVT =
Ptr.getValueType();
10351 EVT StackPtrVT = StackPtr.getValueType();
10357 for (
unsigned i = 1; i < NumRegs; i++) {
10360 RegVT, dl, Chain,
Ptr, LD->getPointerInfo().getWithOffset(
Offset),
10361 LD->getBaseAlign(), LD->getMemOperand()->getFlags(), LD->getAAInfo());
10364 Load.getValue(1), dl, Load, StackPtr,
10375 8 * (LoadedBytes -
Offset));
10378 LD->getPointerInfo().getWithOffset(
Offset), MemVT, LD->getBaseAlign(),
10379 LD->getMemOperand()->getFlags(), LD->getAAInfo());
10384 Load.getValue(1), dl, Load, StackPtr,
10391 Load = DAG.
getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
10396 return std::make_pair(Load, TF);
10400 "Unaligned load of unsupported type.");
10409 Align Alignment = LD->getBaseAlign();
10410 unsigned IncrementSize = NumBits / 8;
10421 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10426 LD->getPointerInfo().getWithOffset(IncrementSize),
10427 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10430 Hi = DAG.
getExtLoad(HiExtType, dl, VT, Chain,
Ptr, LD->getPointerInfo(),
10431 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10436 LD->getPointerInfo().getWithOffset(IncrementSize),
10437 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
10449 return std::make_pair(Result, TF);
10455 "unaligned indexed stores not implemented!");
10456 SDValue Chain = ST->getChain();
10458 SDValue Val = ST->getValue();
10460 Align Alignment = ST->getBaseAlign();
10462 EVT StoreMemVT = ST->getMemoryVT();
10478 Result = DAG.
getStore(Chain, dl, Result,
Ptr, ST->getPointerInfo(),
10479 Alignment, ST->getMemOperand()->getFlags());
10487 EVT PtrVT =
Ptr.getValueType();
10490 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
10498 Chain, dl, Val, StackPtr,
10501 EVT StackPtrVT = StackPtr.getValueType();
10509 for (
unsigned i = 1; i < NumRegs; i++) {
10512 RegVT, dl, Store, StackPtr,
10516 ST->getPointerInfo().getWithOffset(
Offset),
10517 ST->getBaseAlign(),
10518 ST->getMemOperand()->getFlags()));
10537 Load.getValue(1), dl, Load,
Ptr,
10538 ST->getPointerInfo().getWithOffset(
Offset), LoadMemVT,
10539 ST->getBaseAlign(), ST->getMemOperand()->getFlags(), ST->getAAInfo()));
10546 "Unaligned store of unknown type.");
10550 unsigned IncrementSize = NumBits / 8;
10570 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
10571 ST->getMemOperand()->getFlags());
10576 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
10577 ST->getMemOperand()->getFlags(), ST->getAAInfo());
10588 bool IsCompressedMemory)
const {
10591 EVT MaskVT = Mask.getValueType();
10593 "Incompatible types of Data and Mask");
10594 if (IsCompressedMemory) {
10597 "Cannot currently handle compressed memory with scalable vectors");
10603 MaskIntVT = MVT::i32;
10627 "Cannot index a scalable vector within a fixed-width vector");
10638 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
10652 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
10661 DAG, VecPtr, VecVT,
10679 "Converting bits to bytes lost precision");
10681 "Sub-vector must be a vector with matching element type");
10685 EVT IdxVT = Index.getValueType();
10716 assert(EmuTlsVar &&
"Cannot find EmuTlsVar ");
10717 Args.emplace_back(DAG.
getGlobalAddress(EmuTlsVar, dl, PtrVT), VoidPtrType);
10724 std::pair<SDValue, SDValue> CallResult =
LowerCallTo(CLI);
10733 "Emulated TLS must have zero offset in GlobalAddressSDNode");
10734 return CallResult.first;
10745 EVT VT =
Op.getOperand(0).getValueType();
10747 if (VT.
bitsLT(MVT::i32)) {
10765 unsigned Opcode =
Node->getOpcode();
10807 {Op0, Op1, DAG.getCondCode(CC)})) {
10814 {Op0, Op1, DAG.getCondCode(CC)})) {
10842 unsigned Opcode =
Node->getOpcode();
10845 EVT VT = LHS.getValueType();
10848 assert(VT == RHS.getValueType() &&
"Expected operands to be the same type");
10864 unsigned OverflowOp;
10879 llvm_unreachable(
"Expected method to receive signed or unsigned saturation "
10880 "addition or subtraction node.");
10888 unsigned BitWidth = LHS.getScalarValueSizeInBits();
10891 SDValue SumDiff = Result.getValue(0);
10892 SDValue Overflow = Result.getValue(1);
10914 return DAG.
getSelect(dl, VT, Overflow, Zero, SumDiff);
10934 if (LHSIsNonNegative || RHSIsNonNegative) {
10936 return DAG.
getSelect(dl, VT, Overflow, SatMax, SumDiff);
10942 if (LHSIsNegative || RHSIsNegative) {
10944 return DAG.
getSelect(dl, VT, Overflow, SatMin, SumDiff);
10954 return DAG.
getSelect(dl, VT, Overflow, Result, SumDiff);
10958 unsigned Opcode =
Node->getOpcode();
10961 EVT VT = LHS.getValueType();
10962 EVT ResVT =
Node->getValueType(0);
10993 unsigned Opcode =
Node->getOpcode();
10997 EVT VT = LHS.getValueType();
11002 "Expected a SHLSAT opcode");
11003 assert(VT == RHS.getValueType() &&
"Expected operands to be the same type");
11035 EVT VT = LHS.getValueType();
11036 assert(RHS.getValueType() == VT &&
"Mismatching operand types");
11038 assert((HiLHS && HiRHS) || (!HiLHS && !HiRHS));
11040 "Signed flag should only be set when HiLHS and RiRHS are null");
11048 unsigned HalfBits = Bits / 2;
11093 EVT VT = LHS.getValueType();
11094 assert(RHS.getValueType() == VT &&
"Mismatching operand types");
11098 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
11099 if (WideVT == MVT::i16)
11100 LC = RTLIB::MUL_I16;
11101 else if (WideVT == MVT::i32)
11102 LC = RTLIB::MUL_I32;
11103 else if (WideVT == MVT::i64)
11104 LC = RTLIB::MUL_I64;
11105 else if (WideVT == MVT::i128)
11106 LC = RTLIB::MUL_I128;
11136 SDValue Args[] = {LHS, HiLHS, RHS, HiRHS};
11137 Ret =
makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11139 SDValue Args[] = {HiLHS, LHS, HiRHS, RHS};
11140 Ret =
makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
11143 "Ret value is a collection of constituent nodes holding result.");
11146 Lo = Ret.getOperand(0);
11147 Hi = Ret.getOperand(1);
11149 Lo = Ret.getOperand(1);
11150 Hi = Ret.getOperand(0);
11160 "Expected a fixed point multiplication opcode");
11165 EVT VT = LHS.getValueType();
11166 unsigned Scale =
Node->getConstantOperandVal(2);
11182 SDValue Product = Result.getValue(0);
11183 SDValue Overflow = Result.getValue(1);
11194 Result = DAG.
getSelect(dl, VT, ProdNeg, SatMin, SatMax);
11195 return DAG.
getSelect(dl, VT, Overflow, Result, Product);
11199 SDValue Product = Result.getValue(0);
11200 SDValue Overflow = Result.getValue(1);
11204 return DAG.
getSelect(dl, VT, Overflow, SatMax, Product);
11209 "Expected scale to be less than the number of bits if signed or at "
11210 "most the number of bits if unsigned.");
11211 assert(LHS.getValueType() == RHS.getValueType() &&
11212 "Expected both operands to be the same type");
11224 Lo = Result.getValue(0);
11225 Hi = Result.getValue(1);
11228 Hi = DAG.
getNode(HiOp, dl, VT, LHS, RHS);
11246 if (Scale == VTSize)
11292 return DAG.
getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
11317 "Expected a fixed point division opcode");
11319 EVT VT = LHS.getValueType();
11341 if (LHSLead + RHSTrail < Scale + (
unsigned)(Saturating &&
Signed))
11344 unsigned LHSShift = std::min(LHSLead, Scale);
11345 unsigned RHSShift = Scale - LHSShift;
11409 { LHS, RHS, CarryIn });
11416 LHS.getValueType(), LHS, RHS);
11418 EVT ResultType =
Node->getValueType(1);
11429 DAG.
getSetCC(dl, SetCCType, Result,
11438 SetCC = DAG.
getSetCC(dl, SetCCType, Result, LHS, CC);
11451 LHS.getValueType(), LHS, RHS);
11453 EVT ResultType =
Node->getValueType(1);
11460 SDValue Sat = DAG.
getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
11479 DAG.
getNode(
ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
11480 ResultType, ResultType);
11486 EVT VT =
Node->getValueType(0);
11494 const APInt &
C = RHSC->getAPIntValue();
11496 if (
C.isPowerOf2()) {
11498 bool UseArithShift =
isSigned && !
C.isMinSignedValue();
11501 Overflow = DAG.
getSetCC(dl, SetCCVT,
11503 dl, VT, Result, ShiftAmt),
11516 static const unsigned Ops[2][3] =
11542 Result = BottomHalf;
11549 Overflow = DAG.
getSetCC(dl, SetCCVT, TopHalf,
11554 EVT RType =
Node->getValueType(1);
11559 "Unexpected result type for S/UMULO legalization");
11567 EVT VT =
Op.getValueType();
11590 "Expanding reductions for scalable vectors is undefined.");
11599 for (
unsigned i = 1; i < NumElts; i++)
11600 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res,
Ops[i],
Node->getFlags());
11603 if (EltVT !=
Node->getValueType(0))
11619 "Expanding reductions for scalable vectors is undefined.");
11629 for (
unsigned i = 0; i < NumElts; i++)
11630 Res = DAG.
getNode(BaseOpcode, dl, EltVT, Res,
Ops[i], Flags);
11637 EVT VT =
Node->getValueType(0);
11646 Result = DAG.
getNode(DivRemOpc, dl, VTs, Dividend, Divisor).
getValue(1);
11651 SDValue Divide = DAG.
getNode(DivOpc, dl, VT, Dividend, Divisor);
11666 EVT SrcVT = Src.getValueType();
11667 EVT DstVT =
Node->getValueType(0);
11672 assert(SatWidth <= DstWidth &&
11673 "Expected saturation width smaller than result width");
11677 APInt MinInt, MaxInt;
11688 if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) {
11689 Src = DAG.
getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
11690 SrcVT = Src.getValueType();
11712 if (AreExactFloatBounds && MinMaxLegal) {
11716 Clamped = DAG.
getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
11718 Clamped = DAG.
getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
11721 dl, DstVT, Clamped);
11733 return DAG.
getSelect(dl, DstVT, IsNan, ZeroInt, FpToInt);
11772 EVT OperandVT =
Op.getValueType();
11787 SDValue NarrowBits = DAG.
getNode(ISD::BITCAST, dl, ResultIntVT, Narrow);
11798 Op.getValueType());
11802 KeepNarrow = DAG.
getNode(
ISD::OR, dl, WideSetCCVT, KeepNarrow, AlreadyOdd);
11806 SDValue AbsNarrowAsWide = DAG.
getNode(ISD::FABS, dl, OperandVT, NarrowAsWide);
11813 SDValue Adjust = DAG.
getSelect(dl, ResultIntVT, NarrowIsRd, One, NegativeOne);
11815 Op = DAG.
getSelect(dl, ResultIntVT, KeepNarrow, NarrowBits, Adjusted);
11816 return DAG.
getNode(ISD::BITCAST, dl, ResultVT,
Op);
11822 EVT VT =
Node->getValueType(0);
11825 if (
Node->getConstantOperandVal(1) == 1) {
11826 return DAG.
getNode(ISD::FP_TO_BF16, dl, VT,
Node->getOperand(0));
11828 EVT OperandVT =
Op.getValueType();
11840 EVT I32 =
F32.changeTypeToInteger();
11866 EVT I16 = I32.
isVector() ? I32.changeVectorElementType(MVT::i16) : MVT::i16;
11868 return DAG.
getNode(ISD::BITCAST, dl, VT,
Op);
11876 assert(
Node->getValueType(0).isScalableVector() &&
11877 "Fixed length vector types expected to use SHUFFLE_VECTOR!");
11879 EVT VT =
Node->getValueType(0);
11901 EVT PtrVT = StackPtr.getValueType();
11920 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr,
11943 return DAG.
getLoad(VT,
DL, StoreV2, StackPtr2,
11956 EVT MaskVT = Mask.getValueType();
11973 bool HasPassthru = !Passthru.
isUndef();
11979 Chain = DAG.
getStore(Chain,
DL, Passthru, StackPtr, PtrInfo);
11982 APInt PassthruSplatVal;
11983 bool IsSplatPassthru =
11986 if (IsSplatPassthru) {
11990 LastWriteVal = DAG.
getConstant(PassthruSplatVal,
DL, ScalarVT);
11991 }
else if (HasPassthru) {
12001 Popcount = DAG.
getNode(ISD::VECREDUCE_ADD,
DL, PopcountVT, Popcount);
12005 ScalarVT,
DL, Chain, LastElmtPtr,
12011 for (
unsigned I = 0;
I < NumElms;
I++) {
12015 Chain,
DL, ValI, OutPtr,
12027 if (HasPassthru &&
I == NumElms - 1) {
12037 LastWriteVal = DAG.
getSelect(
DL, ScalarVT, AllLanesSelected, ValI,
12040 Chain,
DL, LastWriteVal, OutPtr,
12045 return DAG.
getLoad(VecVT,
DL, Chain, StackPtr, PtrInfo);
12052 SDValue MulLHS =
N->getOperand(1);
12053 SDValue MulRHS =
N->getOperand(2);
12061 unsigned ExtOpcLHS =
N->getOpcode() == ISD::PARTIAL_REDUCE_UMLA
12064 unsigned ExtOpcRHS =
N->getOpcode() == ISD::PARTIAL_REDUCE_SMLA
12068 if (ExtMulOpVT != MulOpVT) {
12069 MulLHS = DAG.
getNode(ExtOpcLHS,
DL, ExtMulOpVT, MulLHS);
12070 MulRHS = DAG.
getNode(ExtOpcRHS,
DL, ExtMulOpVT, MulRHS);
12075 !ConstantOne.
isOne())
12082 std::deque<SDValue> Subvectors = {Acc};
12083 for (
unsigned I = 0;
I < ScaleFactor;
I++)
12087 while (Subvectors.size() > 1) {
12088 Subvectors.push_back(
12090 Subvectors.pop_front();
12091 Subvectors.pop_front();
12094 assert(Subvectors.size() == 1 &&
12095 "There should only be one subvector after tree flattening");
12097 return Subvectors[0];
12103 SDValue EVL,
bool &NeedInvert,
12105 bool IsSignaling)
const {
12106 MVT OpVT = LHS.getSimpleValueType();
12108 NeedInvert =
false;
12109 assert(!EVL == !Mask &&
"VP Mask and EVL must either both be set or unset");
12110 bool IsNonVP = !EVL;
12125 bool NeedSwap =
false;
12126 InvCC = getSetCCInverse(CCCode, OpVT);
12142 if (OpVT == MVT::i1) {
12157 DAG.
getNOT(dl, LHS, MVT::i1));
12162 DAG.
getNOT(dl, RHS, MVT::i1));
12167 DAG.
getNOT(dl, LHS, MVT::i1));
12172 DAG.
getNOT(dl, RHS, MVT::i1));
12195 "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
12200 "If SETO is expanded, SETOEQ must be legal!");
12217 NeedInvert = ((
unsigned)CCCode & 0x8U);
12258 SetCC1 = DAG.
getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
12259 SetCC2 = DAG.
getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
12261 SetCC1 = DAG.
getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
12262 SetCC2 = DAG.
getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
12267 SetCC1 = DAG.
getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
12268 SetCC2 = DAG.
getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
12270 SetCC1 = DAG.
getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
12271 SetCC2 = DAG.
getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
12278 LHS = DAG.
getNode(
Opc, dl, VT, SetCC1, SetCC2);
12283 LHS = DAG.
getNode(
Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
12295 EVT VT =
Node->getValueType(0);
12307 unsigned Opcode =
Node->getOpcode();
12345 std::optional<unsigned> ByteOffset;
12349 int Elt = ConstEltNo->getZExtValue();
12363 unsigned IsFast = 0;
12376 if (ResultVT.
bitsGT(VecEltVT)) {
12383 NewPtr, MPI, VecEltVT, Alignment,
12393 if (ResultVT.
bitsLT(VecEltVT))
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
block Block Frequency Analysis
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static std::optional< bool > isBigEndian(const SmallDenseMap< int64_t, int64_t, 8 > &MemOffset2Idx, int64_t LowestIdx)
Given a map from byte offsets in memory to indices in a load/store, determine if that map corresponds...
static bool isSigned(unsigned int Opcode)
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, const APInt &Demanded)
Check to see if the specified operand of the specified instruction is a constant integer.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, Register Reg, unsigned BW)
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
static bool isUndef(const MachineInstr &MI)
Register const TargetRegisterInfo * TRI
Function const char * Passes
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, SDValue Op, SelectionDAG *DAG, const TargetLowering &TLI)
If we have an immediate, see if we can lower it.
static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG)
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, const APInt &UndefOp0, const APInt &UndefOp1)
Given a vector binary operation and known undefined elements for each input operand,...
static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact UDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, EVT VecVT, const SDLoc &dl, ElementCount SubEC)
static unsigned getConstraintPiority(TargetLowering::ConstraintType CT)
Return a number indicating our preference for chosing a type of constraint over another,...
static std::optional< bool > isFCmpEqualZero(FPClassTest Test, const fltSemantics &Semantics, const MachineFunction &MF)
Returns a true value if if this FPClassTest can be performed with an ordered fcmp to 0,...
static void turnVectorIntoSplatVector(MutableArrayRef< SDValue > Values, std::function< bool(SDValue)> Predicate, SDValue AlternativeReplacement=SDValue())
If all values in Values that don't match the predicate are same 'splat' value, then replace all value...
static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT)
static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created)
Given an exact SDIV by a constant, create a multiplication with the multiplicative inverse of the con...
static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, SDValue N0, const APInt &C1, ISD::CondCode Cond, const SDLoc &dl, SelectionDAG &DAG)
static SDValue combineShiftToAVG(SDValue Op, TargetLowering::TargetLoweringOpt &TLO, const TargetLowering &TLI, const APInt &DemandedBits, const APInt &DemandedElts, unsigned Depth)
This file describes how to lower LLVM code to machine code.
static int Lookup(ArrayRef< TableEntry > Table, unsigned Opcode)
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT, SelectionDAG &DAG)
Scalarize a vector store, bitcasting to TargetVT to determine the scalar type.
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Returns the smallest (by magnitude) normalized finite number in the given semantics.
APInt bitcastToAPInt() const
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, uint64_t payload=0)
Factory for NaN values.
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
static LLVM_ABI void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
LLVM_ABI APInt zext(unsigned width) const
Zero extend to a new width.
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
LLVM_ABI APInt zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
unsigned getActiveBits() const
Compute the number of active bits in the value.
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
void setSignBit()
Set the sign bit to 1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
void clearAllBits()
Set every bit to 0.
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
void negate()
Negate this APInt in place.
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
unsigned countLeadingZeros() const
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
unsigned logBase2() const
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
void setAllBits()
Set every bit to 1.
LLVM_ABI APInt multiplicativeInverse() const
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
void clearBits(unsigned LoBit, unsigned HiBit)
Clear the bits from LoBit (inclusive) to HiBit (exclusive) to 0.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
LLVM_ABI APInt extractBits(unsigned numBits, unsigned bitPosition) const
Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
bool isOne() const
Determine if this is a value of 1.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
int64_t getSExtValue() const
Get sign extended value.
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
unsigned countr_one() const
Count the number of trailing one bits.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
A "pseudo-class" with methods for operating on BUILD_VECTORs.
LLVM_ABI ConstantSDNode * getConstantSplatNode(const APInt &DemandedElts, BitVector *UndefElements=nullptr) const
Returns the demanded splatted constant or null if this is not a constant splat.
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
This class represents a function call, abstracting a target machine's calling convention.
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
ConstantFP - Floating Point Values [float, double].
This class represents a range of values.
const APInt & getAPIntValue() const
This is an important base class in LLVM.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const
Returns the preferred stack/global alignment for the specified type.
AttributeList getAttributes() const
Return the attribute list for this Function.
int64_t getOffset() const
const GlobalValue * getGlobal() const
Module * getParent()
Get the module that this global value is contained inside of...
std::vector< std::string > ConstraintCodeVector
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
This is an important class for using LLVM in a threaded context.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
Context object for machine code objects.
Base class for the full range of assembler expressions which are needed for parsing.
Wrapper class representing physical registers. Should be passed by value.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setAdjustsStack(bool V)
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
MCSymbol * getJTISymbol(unsigned JTI, MCContext &Ctx, bool isLinkerPrivate=false) const
getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
Function & getFunction()
Return the LLVM function that this machine code represents.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
Flags getFlags() const
Return the raw flags of the source value,.
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
unsigned getAddressSpace() const
Return the address space for the associated pointer.
AAMDNodes getAAInfo() const
Returns the AA info that describes the dereference.
bool isSimple() const
Returns true if the memory operation is neither atomic or volatile.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const MachinePointerInfo & getPointerInfo() const
const SDValue & getChain() const
const GlobalVariable * getNamedGlobal(StringRef Name) const
Return the global variable in the module with the specified name, of arbitrary type.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Class to represent pointers.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
bool hasOneUse() const
Return true if there is exactly one use of this node.
SDNodeFlags getFlags() const
const SDValue & getOperand(unsigned Num) const
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
TypeSize getValueSizeInBits() const
Returns the size of the value in bits.
const SDValue & getOperand(unsigned i) const
bool use_empty() const
Return true if there are no nodes using value ResNo of Node.
const APInt & getConstantOperandAPInt(unsigned i) const
uint64_t getScalarValueSizeInBits() const
uint64_t getConstantOperandVal(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
bool willNotOverflowAdd(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the addition of 2 nodes can never overflow.
LLVM_ABI Align getReducedAlign(EVT VT, bool UseABI)
In most cases this function returns the ABI alignment for a given type, except for illegal vector typ...
LLVM_ABI SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT, unsigned Opcode)
Convert Op, which must be of integer type, to the integer type VT, by either any/sign/zero-extending ...
SDValue getExtractVectorElt(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Extract element at Idx from Vec.
LLVM_ABI unsigned ComputeMaxSignificantBits(SDValue Op, unsigned Depth=0) const
Get the upper bound on bit size for this Value Op as a signed integer.
bool isKnownNeverSNaN(SDValue Op, const APInt &DemandedElts, unsigned Depth=0) const
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl)
Constant fold a setcc to true or false.
LLVM_ABI SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget=false, bool IsOpaque=false)
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
LLVM_ABI SDValue getVScale(const SDLoc &DL, EVT VT, APInt MulImm, bool ConstantFold=true)
Return a node that represents the runtime scaling 'MulImm * RuntimeVL'.
LLVM_ABI SDValue getFreeze(SDValue V)
Return a freeze using the SDLoc of the value operand.
LLVM_ABI SDValue getConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offs=0, bool isT=false, unsigned TargetFlags=0)
LLVM_ABI SDValue makeEquivalentMemoryOrdering(SDValue OldChain, SDValue NewMemOpChain)
If an existing load has uses of its chain, create a token factor node with that chain and the new mem...
LLVM_ABI bool isConstantIntBuildVectorOrConstantInt(SDValue N, bool AllowOpaques=true) const
Test whether the given value is a constant int or similar node.
LLVM_ABI SDValue getJumpTableDebugInfo(int JTI, SDValue Chain, const SDLoc &DL)
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI std::optional< unsigned > getValidMaximumShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has shift amounts that are all less than the element bit-width of the shift n...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
SDValue getExtractSubvector(const SDLoc &DL, EVT VT, SDValue Vec, unsigned Idx)
Return the VT typed sub-vector of Vec at Idx.
LLVM_ABI SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, MaybeAlign Alignment=MaybeAlign(), MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr)
Loads are not normal binary operators: their result type is not determined by their operands,...
LLVM_ABI SDValue getStepVector(const SDLoc &DL, EVT ResVT, const APInt &StepVal)
Returns a vector of type ResVT whose elements contain the linear sequence <0, Step,...
bool willNotOverflowSub(bool IsSigned, SDValue N0, SDValue N1) const
Determine if the result of the sub of 2 nodes can never overflow.
LLVM_ABI bool shouldOptForSize() const
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
const TargetLowering & getTargetLoweringInfo() const
static constexpr unsigned MaxRecursionDepth
LLVM_ABI std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
Compute the VTs needed for the low/hi parts of a type which is split (or expanded) into two not neces...
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build Select's if you just have operands and don't want to check...
LLVM_ABI std::optional< unsigned > getValidShiftAmount(SDValue V, const APInt &DemandedElts, unsigned Depth=0) const
If a SHL/SRA/SRL node V has a uniform shift amount that is less than the element bit-width of the shi...
LLVM_ABI SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT)
Return the expression required to zero extend the Op value assuming it was the smaller SrcTy value.
const DataLayout & getDataLayout() const
LLVM_ABI bool doesNodeExist(unsigned Opcode, SDVTList VTList, ArrayRef< SDValue > Ops)
Check if a node exists without modifying its flags.
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getMemBasePlusOffset(SDValue Base, TypeSize Offset, const SDLoc &DL, const SDNodeFlags Flags=SDNodeFlags())
Returns sum of the base pointer and offset.
LLVM_ABI SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, bool isTargetGA=false, unsigned TargetFlags=0)
LLVM_ABI SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
LLVM_ABI std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the vector with EXTRACT_SUBVECTOR using the provided VTs and return the low/high part.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(SDValue Op, bool PoisonOnly=false, unsigned Depth=0) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI SDValue getSignedConstant(int64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
SDValue getSplatVector(EVT VT, const SDLoc &DL, SDValue Op)
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond, SDNodeFlags Flags=SDNodeFlags())
Helper function to make it easier to build SelectCC's if you just have an ISD::CondCode instead of an...
LLVM_ABI SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either sign-extending or trunca...
LLVM_ABI bool isKnownToBeAPowerOfTwo(SDValue Val, unsigned Depth=0) const
Test if the given value is known to have exactly one bit set.
LLVM_ABI bool isKnownNeverZero(SDValue Op, unsigned Depth=0) const
Test whether the given SDValue is known to contain non-zero value(s).
LLVM_ABI SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDValue > Ops, SDNodeFlags Flags=SDNodeFlags())
LLVM_ABI SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT)
Convert Op, which must be of integer type, to the integer type VT, by using an extension appropriate ...
LLVM_ABI SDValue getExternalSymbol(const char *Sym, EVT VT)
const TargetMachine & getTarget() const
LLVM_ABI bool isKnownNeverZeroFloat(SDValue Op) const
Test whether the given floating point SDValue is known to never be positive or negative zero.
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
LLVM_ABI SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of float type, to the float type VT, by either extending or rounding (by tr...
LLVM_ABI bool isKnownNeverNaN(SDValue Op, const APInt &DemandedElts, bool SNaN=false, unsigned Depth=0) const
Test whether the given SDValue (or all elements of it, if it is a vector) is known to never be NaN in...
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
LLVM_ABI unsigned ComputeNumSignBits(SDValue Op, unsigned Depth=0) const
Return the number of times the sign bit of the register is replicated into the other bits.
LLVM_ABI SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT)
Create a true or false constant of type VT using the target's BooleanContent for type OpVT.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
MachineFunction & getMachineFunction() const
LLVM_ABI KnownBits computeKnownBits(SDValue Op, unsigned Depth=0) const
Determine which bits of Op are known to be either zero or one and return them in Known.
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVM_ABI SDValue getCondCode(ISD::CondCode Cond)
LLVM_ABI bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth=0) const
Return true if 'Op & Mask' is known to be zero.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Ptr, TypeSize Offset)
Create an add instruction with appropriate flags when used for addressing some offset of an object.
LLVMContext * getContext() const
SDValue getSetCCVP(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Mask, SDValue EVL)
Helper function to make it easier to build VP_SETCCs if you just have an ISD::CondCode instead of an ...
LLVM_ABI SDValue CreateStackTemporary(TypeSize Bytes, Align Alignment)
Create a stack temporary based on the size in bytes and the alignment.
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getSplat(EVT VT, const SDLoc &DL, SDValue Op)
Returns a node representing a splat of one value into all lanes of the provided vector type.
LLVM_ABI std::pair< SDValue, SDValue > SplitScalar(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
Split the scalar node with EXTRACT_ELEMENT using the provided VTs and return the low/high part.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
static void commuteMask(MutableArrayRef< int > Mask)
Change values in a shuffle permute mask assuming the two vector operands have swapped position.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
constexpr size_t size() const
size - Get the string size.
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Class to represent struct types.
LLVM_ABI void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT, std::optional< unsigned > ByteOffset=std::nullopt) const
Return true if it is profitable to reduce a load to a smaller type.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
const TargetMachine & getTargetMachine() const
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual bool shouldExpandCmpUsingSelects(EVT VT) const
Should we expand [US]CMP nodes using two selects and two compares, or by doing arithmetic on boolean ...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL) const
Returns the type for the shift amount of a shift opcode.
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal for a comparison of the specified types on this ...
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
ISD::CondCode getSoftFloatCmpLibcallPredicate(RTLIB::LibcallImpl Call) const
Get the comparison predicate that's to be used to test the result of the comparison libcall against z...
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
BooleanContent
Enum that describes how the target represents true/false values.
@ ZeroOrOneBooleanContent
@ UndefinedBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y ---> (~X & Y) == 0 (X & Y) !...
virtual bool isNarrowingProfitable(SDNode *N, EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
RTLIB::LibcallImpl getLibcallImpl(RTLIB::Libcall Call) const
Get the libcall impl routine name for the specified libcall.
TargetLoweringBase(const TargetMachine &TM)
NOTE: The TargetMachine owns TLOF.
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
NegatibleCost
Enum that specifies when a float negation is beneficial.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
virtual bool shouldSignExtendTypeInLibCall(Type *Ty, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
std::vector< ArgListEntry > ArgListTy
virtual EVT getOptimalMemOpType(LLVMContext &Context, const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom for a comparison of the specified type...
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
SmallVector< ConstraintPair > ConstraintGroup
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
virtual Align computeKnownAlignForTargetInstr(GISelValueTracking &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
virtual bool findOptimalMemOpLowering(LLVMContext &Context, std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, const SDValue LHS, const SDValue RHS, SDValue &Lo, SDValue &Hi) const
Calculate full product of LHS and RHS either via a libcall or through brute force expansion of the mu...
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
virtual unsigned computeNumSignBitsForTargetInstr(GISelValueTracking &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
SDValue expandFMINIMUMNUM_FMAXIMUMNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimumnum/fmaximumnum into multiple comparison with selects.
void forceExpandMultiply(SelectionDAG &DAG, const SDLoc &dl, bool Signed, SDValue &Lo, SDValue &Hi, SDValue LHS, SDValue RHS, SDValue HiLHS=SDValue(), SDValue HiRHS=SDValue()) const
Calculate the product twice the width of LHS and RHS.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
virtual void computeKnownBitsForTargetInstr(GISelValueTracking &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, bool IsAfterLegalTypes, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue expandVectorNaryOpBySplitting(SDNode *Node, SelectionDAG &DAG) const
~TargetLowering() override
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "lookthrough" ops that don't contrib...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
SDValue expandVECTOR_COMPRESS(SDNode *Node, SelectionDAG &DAG) const
Expand a vector VECTOR_COMPRESS into a sequence of extract element, store temporarily,...
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
virtual void computeKnownFPClassForTargetInstr(GISelValueTracking &Analysis, Register R, KnownFPClass &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
SDValue expandCMP(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]CMP.
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
SDValue expandVectorFindLastActive(SDNode *N, SelectionDAG &DAG) const
Expand VECTOR_FIND_LAST_ACTIVE nodes.
SDValue expandPartialReduceMLA(SDNode *Node, SelectionDAG &DAG) const
Expands PARTIAL_REDUCE_S/UMLA nodes to a series of simpler operations, consisting of zext/sext,...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
SDValue scalarizeExtractedVectorLoad(EVT ResultVT, const SDLoc &DL, EVT InVecVT, SDValue EltNo, LoadSDNode *OriginalLoad, SelectionDAG &DAG) const
Replace an extraction of a load with a narrowed load.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
SDValue expandAVG(SDNode *N, SelectionDAG &DAG) const
Expand vector/scalar AVGCEILS/AVGCEILU/AVGFLOORS/AVGFLOORU nodes.
Primary interface to the complete machine description for the target machine.
bool isPositionIndependent() const
const Triple & getTargetTriple() const
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
iterator_range< regclass_iterator > regclasses() const
virtual StringRef getRegAsmName(MCRegister Reg) const
Return the assembly name for Reg.
bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const
Return true if the given TargetRegisterClass has the ValueType T.
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isIntegerTy() const
True if this is an instance of IntegerType.
LLVM_ABI const fltSemantics & getFltSemantics() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ MERGE_VALUES
MERGE_VALUES - This node takes multiple discrete operands and returns them all as its individual resu...
@ FGETSIGN
INT = FGETSIGN(FP) - Return the sign bit of the specified floating point value as an integer 0/1 valu...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
@ BSWAP
Byte Swap and Counting operators.
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
@ ADD
Simple integer binary arithmetic operators.
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ FADD
Simple binary floating point operators.
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SSUBO
Same for subtraction.
@ FCANONICALIZE
Returns platform specific canonical encoding of a floating point number.
@ IS_FPCLASS
Performs a check of floating point class property, defined by IEEE-754.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ CopyFromReg
CopyFromReg - This node indicates that the input value is a virtual or physical register that is defi...
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SSHLSAT
RESULT = [US]SHLSAT(LHS, RHS) - Perform saturation left shift.
@ SMULO
Same for multiplication.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
@ VSELECT
Select with a vector condition (op #0) and two vector operands (ops #1 and #2), returning a vector re...
@ UADDO_CARRY
Carry-using nodes for multiple precision addition and subtraction.
@ STRICT_FP_TO_SINT
STRICT_FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ FREEZE
FREEZE - FREEZE(VAL) returns an arbitrary value if VAL is UNDEF (or is evaluated to UNDEF),...
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ VECTOR_SPLICE
VECTOR_SPLICE(VEC1, VEC2, IMM) - Returns a subvector of the same type as VEC1/VEC2 from CONCAT_VECTOR...
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ ABDS
ABDS/ABDU - Absolute difference - Return the absolute difference between two numbers interpreted as s...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isBuildVectorOfConstantSDNodes(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR node of all ConstantSDNode or undef.
LLVM_ABI NodeType getExtForLoadExtType(bool IsFP, LoadExtType)
bool isZEXTLoad(const SDNode *N)
Returns true if the specified node is a ZEXTLOAD.
LLVM_ABI CondCode getSetCCInverse(CondCode Operation, EVT Type)
Return the operation corresponding to !(X op Y), where 'op' is a valid SetCC operation.
bool isTrueWhenEqual(CondCode Cond)
Return true if the specified condition returns true if the two operands to the condition are equal.
unsigned getUnorderedFlavor(CondCode Cond)
This function returns 0 if the condition is always false if an operand is a NaN, 1 if the condition i...
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
LLVM_ABI bool isBuildVectorAllZeros(const SDNode *N)
Return true if the specified node is a BUILD_VECTOR where all of the elements are 0 or undef.
bool isSignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs a signed comparison when used with integer o...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
LLVM_ABI bool matchBinaryPredicate(SDValue LHS, SDValue RHS, std::function< bool(ConstantSDNode *, ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTypeMismatch=false)
Attempt to match a binary predicate against a pair of scalar/splat constants or every element of a pa...
bool matchUnaryPredicate(SDValue Op, std::function< bool(ConstantSDNode *)> Match, bool AllowUndefs=false, bool AllowTruncation=false)
Hook for matching ConstantSDNode predicate.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
LLVM_ABI NodeType getVecReduceBaseOpcode(unsigned VecReduceOpcode)
Get underlying scalar opcode for VECREDUCE opcode.
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
bool isUnsignedIntSetCC(CondCode Code)
Return true if this is a setcc instruction that performs an unsigned comparison when used with intege...
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
This is an optimization pass for GlobalISel generic memory operations.
void stable_sort(R &&Range)
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
FPClassTest invertFPClassTestIfSimpler(FPClassTest Test, bool UseFCmp)
Evaluates if the specified FP class test is better performed as the inverse (i.e.
constexpr T alignDown(U Value, V Align, W Skew=0)
Returns the largest unsigned integer less than or equal to Value and is Skew mod Align.
T bit_ceil(T Value)
Returns the smallest integral power of two no smaller than Value if Value is nonzero.
LLVM_ABI void reportFatalInternalError(Error Err)
Report a fatal error that indicates a bug in LLVM.
LLVM_ABI ConstantFPSDNode * isConstOrConstSplatFP(SDValue N, bool AllowUndefs=false)
Returns the SDNode if it is a constant splat BuildVector or constant float.
constexpr bool has_single_bit(T Value) noexcept
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool isBitwiseNot(SDValue V, bool AllowUndefs=false)
Returns true if V is a bitwise not operation.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
auto find_if_not(R &&Range, UnaryPredicate P)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool isOneOrOneSplat(SDValue V, bool AllowUndefs=false)
Return true if the value is a constant 1 integer or a splatted vector of a constant 1 integer (with n...
To bit_cast(const From &from) noexcept
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ Sub
Subtraction of integers.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
FunctionAddr VTableAddr Next
DWARFExpression::Operation Op
LLVM_ABI ConstantSDNode * isConstOrConstSplat(SDValue N, bool AllowUndefs=false, bool AllowTruncation=false)
Returns the SDNode if it is a constant splat BuildVector or constant int.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOneConstant(SDValue V)
Returns true if V is a constant integer one.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI bool isNullFPConstant(SDValue V)
Returns true if V is an FP constant with a value of positive zero.
APFloat neg(APFloat X)
Returns the negated value of the argument.
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static constexpr roundingMode rmNearestTiesToEven
static constexpr roundingMode rmTowardZero
opStatus
IEEE-754R 7: Default exception handling.
This struct is a compact representation of a valid (non-zero power of two) alignment.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
@ PreserveSign
The sign of a flushed-to-zero number is preserved in the sign of 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
EVT changeTypeToInteger() const
Return the type converted to an equivalently sized integer or vector with integer element type.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
ElementCount getVectorElementCount() const
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
EVT getHalfSizedIntegerVT(LLVMContext &Context) const
Finds the smallest simple value type that is greater than or equal to half the width of this EVT.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
TypeSize getStoreSizeInBits() const
Return the number of bits overwritten by a store of the specified value type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
EVT changeVectorElementType(EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
LLVM_ABI const fltSemantics & getFltSemantics() const
Returns an APFloat semantics tag appropriate for the value type.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool bitsLE(EVT VT) const
Return true if this has no more bits than VT.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInteger() const
Return true if this is an integer or a vector integer type.
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
bool isZero() const
Returns true if value is all zero.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
bool isUnknown() const
Returns true if we don't know any bits.
void setAllConflict()
Make all bits known to be both zero and one.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
static LLVM_ABI std::optional< bool > sge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGE result.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
KnownBits reverseBits() const
KnownBits concat(const KnownBits &Lo) const
Concatenate the bits from Lo onto the bottom of *this.
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
bool isSignUnknown() const
Returns true if we don't know the sign bit.
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI std::optional< bool > ugt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGT result.
static LLVM_ABI std::optional< bool > slt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLT result.
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI std::optional< bool > ult(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULT result.
static LLVM_ABI std::optional< bool > ule(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_ULE result.
bool isNegative() const
Returns true if this value is known to be negative.
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
static LLVM_ABI std::optional< bool > sle(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SLE result.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
unsigned countMinPopulation() const
Returns the number of bits known to be one.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
This class contains a discriminated union of information about pointers in memory operands,...
LLVM_ABI unsigned getAddrSpace() const
Return the LLVM IR address space number that this pointer points into.
static LLVM_ABI MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
MachinePointerInfo getWithOffset(int64_t O) const
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
These are IR-level optimization flags that may be propagated to SDNodes.
bool hasNoUnsignedWrap() const
bool hasNoSignedWrap() const
void setNoSignedWrap(bool b)
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
Magic data for optimising signed division by a constant.
unsigned ShiftAmount
shift amount
static LLVM_ABI SignedDivisionByConstantInfo get(const APInt &D)
Calculate the magic numbers required to implement a signed integer division by a constant as a sequen...
This contains information for each constraint that we are lowering.
std::string ConstraintCode
This contains the actual string for the code, like "m".
LLVM_ABI unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
LLVM_ABI bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setChain(SDValue InChain)
bool isBeforeLegalizeOps() const
LLVM_ABI void AddToWorklist(SDNode *N)
bool isCalledByLegalizer() const
bool isBeforeLegalize() const
LLVM_ABI void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
ArrayRef< EVT > OpsVTBeforeSoften
bool IsPostTypeLegalization
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT)
ArrayRef< Type * > OpsTypeOverrides
MakeLibCallOptions & setIsSigned(bool Value=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)
bool LegalOperations() const
Magic data for optimising unsigned division by a constant.
unsigned PreShift
pre-shift amount
static LLVM_ABI UnsignedDivisionByConstantInfo get(const APInt &D, unsigned LeadingZeros=0, bool AllowEvenDivisorOptimization=true)
Calculate the magic numbers required to implement an unsigned integer division by a constant as a seq...
unsigned PostShift
post-shift amount