LLVM 22.0.0git
TargetTransformInfo.h
Go to the documentation of this file.
1//===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This pass exposes codegen information to IR-level passes. Every
10/// transformation that uses codegen information is broken into three parts:
11/// 1. The IR-level analysis pass.
12/// 2. The IR-level transformation interface which provides the needed
13/// information.
14/// 3. Codegen-level implementation which uses target-specific hooks.
15///
16/// This file defines #2, which is the interface that IR-level transformations
17/// use for querying the codegen.
18///
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
22#define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/ArrayRef.h"
27#include "llvm/IR/FMF.h"
28#include "llvm/IR/InstrTypes.h"
29#include "llvm/IR/PassManager.h"
30#include "llvm/Pass.h"
35#include <functional>
36#include <optional>
37#include <utility>
38
39namespace llvm {
40
41namespace Intrinsic {
42typedef unsigned ID;
43}
44
45class AllocaInst;
46class AssumptionCache;
48class DominatorTree;
49class BranchInst;
50class Function;
51class GlobalValue;
52class InstCombiner;
55class IntrinsicInst;
56class LoadInst;
57class Loop;
58class LoopInfo;
62class SCEV;
63class ScalarEvolution;
64class SmallBitVector;
65class StoreInst;
66class SwitchInst;
68class Type;
69class VPIntrinsic;
70struct KnownBits;
71
72/// Information about a load/store intrinsic defined by the target.
74 /// This is the pointer that the intrinsic is loading from or storing to.
75 /// If this is non-null, then analysis/optimization passes can assume that
76 /// this intrinsic is functionally equivalent to a load/store from this
77 /// pointer.
78 Value *PtrVal = nullptr;
79
80 // Ordering for atomic operations.
82
83 // Same Id is set by the target for corresponding load/store intrinsics.
84 unsigned short MatchingId = 0;
85
86 bool ReadMem = false;
87 bool WriteMem = false;
88 bool IsVolatile = false;
89
95};
96
97/// Attributes of a target dependent hardware loop.
99 HardwareLoopInfo() = delete;
101 Loop *L = nullptr;
104 const SCEV *ExitCount = nullptr;
106 Value *LoopDecrement = nullptr; // Decrement the loop counter by this
107 // value in every iteration.
108 bool IsNestingLegal = false; // Can a hardware loop be a parent to
109 // another hardware loop?
110 bool CounterInReg = false; // Should loop counter be updated in
111 // the loop via a phi?
112 bool PerformEntryTest = false; // Generate the intrinsic which also performs
113 // icmp ne zero on the loop counter value and
114 // produces an i1 to guard the loop entry.
116 DominatorTree &DT,
117 bool ForceNestedLoop = false,
118 bool ForceHardwareLoopPHI = false);
119 LLVM_ABI bool canAnalyze(LoopInfo &LI);
120};
121
123 const IntrinsicInst *II = nullptr;
124 Type *RetTy = nullptr;
125 Intrinsic::ID IID;
126 SmallVector<Type *, 4> ParamTys;
128 FastMathFlags FMF;
129 // If ScalarizationCost is UINT_MAX, the cost of scalarizing the
130 // arguments and the return value will be computed based on types.
131 InstructionCost ScalarizationCost = InstructionCost::getInvalid();
132 TargetLibraryInfo const *LibInfo = nullptr;
133
134public:
136 Intrinsic::ID Id, const CallBase &CI,
138 bool TypeBasedOnly = false, TargetLibraryInfo const *LibInfo = nullptr);
139
141 Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys,
142 FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr,
144
147
151 const IntrinsicInst *I = nullptr,
153 TargetLibraryInfo const *LibInfo = nullptr);
154
155 Intrinsic::ID getID() const { return IID; }
156 const IntrinsicInst *getInst() const { return II; }
157 Type *getReturnType() const { return RetTy; }
158 FastMathFlags getFlags() const { return FMF; }
159 InstructionCost getScalarizationCost() const { return ScalarizationCost; }
160 const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; }
161 const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; }
162 const TargetLibraryInfo *getLibInfo() const { return LibInfo; }
163
164 bool isTypeBasedOnly() const {
165 return Arguments.empty();
166 }
167
168 bool skipScalarizationCost() const { return ScalarizationCost.isValid(); }
169};
170
172 /// Don't use tail folding
174 /// Use predicate only to mask operations on data in the loop.
175 /// When the VL is not known to be a power-of-2, this method requires a
176 /// runtime overflow check for the i + VL in the loop because it compares the
177 /// scalar induction variable against the tripcount rounded up by VL which may
178 /// overflow. When the VL is a power-of-2, both the increment and uprounded
179 /// tripcount will overflow to 0, which does not require a runtime check
180 /// since the loop is exited when the loop induction variable equals the
181 /// uprounded trip-count, which are both 0.
183 /// Same as Data, but avoids using the get.active.lane.mask intrinsic to
184 /// calculate the mask and instead implements this with a
185 /// splat/stepvector/cmp.
186 /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the
187 /// active.lane.mask intrinsic when it is not natively supported?
189 /// Use predicate to control both data and control flow.
190 /// This method always requires a runtime overflow check for the i + VL
191 /// increment inside the loop, because it uses the result direclty in the
192 /// active.lane.mask to calculate the mask for the next iteration. If the
193 /// increment overflows, the mask is no longer correct.
195 /// Use predicate to control both data and control flow, but modify
196 /// the trip count so that a runtime overflow check can be avoided
197 /// and such that the scalar epilogue loop can always be removed.
199 /// Use predicated EVL instructions for tail-folding.
200 /// Indicates that VP intrinsics should be used.
202};
203
212
213class TargetTransformInfo;
216
217/// This pass provides access to the codegen interfaces that are needed
218/// for IR-level transformations.
220public:
222
223 /// Get the kind of extension that an instruction represents.
226
227 /// Construct a TTI object using a type implementing the \c Concept
228 /// API below.
229 ///
230 /// This is used by targets to construct a TTI wrapping their target-specific
231 /// implementation that encodes appropriate costs for their target.
233 std::unique_ptr<const TargetTransformInfoImplBase> Impl);
234
235 /// Construct a baseline TTI object using a minimal implementation of
236 /// the \c Concept API below.
237 ///
238 /// The TTI implementation will reflect the information in the DataLayout
239 /// provided if non-null.
240 LLVM_ABI explicit TargetTransformInfo(const DataLayout &DL);
241
242 // Provide move semantics.
245
246 // We need to define the destructor out-of-line to define our sub-classes
247 // out-of-line.
249
250 /// Handle the invalidation of this information.
251 ///
252 /// When used as a result of \c TargetIRAnalysis this method will be called
253 /// when the function this was computed for changes. When it returns false,
254 /// the information is preserved across those changes.
256 FunctionAnalysisManager::Invalidator &) {
257 // FIXME: We should probably in some way ensure that the subtarget
258 // information for a function hasn't changed.
259 return false;
260 }
261
262 /// \name Generic Target Information
263 /// @{
264
265 /// The kind of cost model.
266 ///
267 /// There are several different cost models that can be customized by the
268 /// target. The normalization of each cost model may be target specific.
269 /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as
270 /// those derived from MCSchedModel::LoopMicroOpBufferSize etc.
272 TCK_RecipThroughput, ///< Reciprocal throughput.
273 TCK_Latency, ///< The latency of instruction.
274 TCK_CodeSize, ///< Instruction code size.
275 TCK_SizeAndLatency ///< The weighted sum of size and latency.
276 };
277
278 /// Underlying constants for 'cost' values in this interface.
279 ///
280 /// Many APIs in this interface return a cost. This enum defines the
281 /// fundamental values that should be used to interpret (and produce) those
282 /// costs. The costs are returned as an int rather than a member of this
283 /// enumeration because it is expected that the cost of one IR instruction
284 /// may have a multiplicative factor to it or otherwise won't fit directly
285 /// into the enum. Moreover, it is common to sum or average costs which works
286 /// better as simple integral values. Thus this enum only provides constants.
287 /// Also note that the returned costs are signed integers to make it natural
288 /// to add, subtract, and test with zero (a common boundary condition). It is
289 /// not expected that 2^32 is a realistic cost to be modeling at any point.
290 ///
291 /// Note that these costs should usually reflect the intersection of code-size
292 /// cost and execution cost. A free instruction is typically one that folds
293 /// into another instruction. For example, reg-to-reg moves can often be
294 /// skipped by renaming the registers in the CPU, but they still are encoded
295 /// and thus wouldn't be considered 'free' here.
297 TCC_Free = 0, ///< Expected to fold away in lowering.
298 TCC_Basic = 1, ///< The cost of a typical 'add' instruction.
299 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
300 };
301
302 /// Estimate the cost of a GEP operation when lowered.
303 ///
304 /// \p PointeeType is the source element type of the GEP.
305 /// \p Ptr is the base pointer operand.
306 /// \p Operands is the list of indices following the base pointer.
307 ///
308 /// \p AccessType is a hint as to what type of memory might be accessed by
309 /// users of the GEP. getGEPCost will use it to determine if the GEP can be
310 /// folded into the addressing mode of a load/store. If AccessType is null,
311 /// then the resulting target type based off of PointeeType will be used as an
312 /// approximation.
314 getGEPCost(Type *PointeeType, const Value *Ptr,
315 ArrayRef<const Value *> Operands, Type *AccessType = nullptr,
316 TargetCostKind CostKind = TCK_SizeAndLatency) const;
317
318 /// Describe known properties for a set of pointers.
320 /// All the GEPs in a set have same base address.
321 unsigned IsSameBaseAddress : 1;
322 /// These properties only valid if SameBaseAddress is set.
323 /// True if all pointers are separated by a unit stride.
324 unsigned IsUnitStride : 1;
325 /// True if distance between any two neigbouring pointers is a known value.
326 unsigned IsKnownStride : 1;
327 unsigned Reserved : 29;
328
329 bool isSameBase() const { return IsSameBaseAddress; }
330 bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; }
332
334 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1,
335 /*IsKnownStride=*/1, 0};
336 }
338 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
339 /*IsKnownStride=*/1, 0};
340 }
342 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0,
343 /*IsKnownStride=*/0, 0};
344 }
345 };
346 static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?");
347
348 /// Estimate the cost of a chain of pointers (typically pointer operands of a
349 /// chain of loads or stores within same block) operations set when lowered.
350 /// \p AccessTy is the type of the loads/stores that will ultimately use the
351 /// \p Ptrs.
354 const PointersChainInfo &Info, Type *AccessTy,
355 TargetCostKind CostKind = TTI::TCK_RecipThroughput) const;
356
357 /// \returns A value by which our inlining threshold should be multiplied.
358 /// This is primarily used to bump up the inlining threshold wholesale on
359 /// targets where calls are unusually expensive.
360 ///
361 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of
362 /// individual classes of instructions would be better.
364
367
368 /// \returns The bonus of inlining the last call to a static function.
370
371 /// \returns A value to be added to the inlining threshold.
372 LLVM_ABI unsigned adjustInliningThreshold(const CallBase *CB) const;
373
374 /// \returns The cost of having an Alloca in the caller if not inlined, to be
375 /// added to the threshold
376 LLVM_ABI unsigned getCallerAllocaCost(const CallBase *CB,
377 const AllocaInst *AI) const;
378
379 /// \returns Vector bonus in percent.
380 ///
381 /// Vector bonuses: We want to more aggressively inline vector-dense kernels
382 /// and apply this bonus based on the percentage of vector instructions. A
383 /// bonus is applied if the vector instructions exceed 50% and half that
384 /// amount is applied if it exceeds 10%. Note that these bonuses are some what
385 /// arbitrary and evolved over time by accident as much as because they are
386 /// principled bonuses.
387 /// FIXME: It would be nice to base the bonus values on something more
388 /// scientific. A target may has no bonus on vector instructions.
390
391 /// \return the expected cost of a memcpy, which could e.g. depend on the
392 /// source/destination type and alignment and the number of bytes copied.
394
395 /// Returns the maximum memset / memcpy size in bytes that still makes it
396 /// profitable to inline the call.
398
399 /// \return The estimated number of case clusters when lowering \p 'SI'.
400 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
401 /// table.
402 LLVM_ABI unsigned
403 getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize,
405 BlockFrequencyInfo *BFI) const;
406
407 /// Estimate the cost of a given IR user when lowered.
408 ///
409 /// This can estimate the cost of either a ConstantExpr or Instruction when
410 /// lowered.
411 ///
412 /// \p Operands is a list of operands which can be a result of transformations
413 /// of the current operands. The number of the operands on the list must equal
414 /// to the number of the current operands the IR user has. Their order on the
415 /// list must be the same as the order of the current operands the IR user
416 /// has.
417 ///
418 /// The returned cost is defined in terms of \c TargetCostConstants, see its
419 /// comments for a detailed explanation of the cost values.
422 TargetCostKind CostKind) const;
423
424 /// This is a helper function which calls the three-argument
425 /// getInstructionCost with \p Operands which are the current operands U has.
431
432 /// If a branch or a select condition is skewed in one direction by more than
433 /// this factor, it is very likely to be predicted correctly.
435
436 /// Returns estimated penalty of a branch misprediction in latency. Indicates
437 /// how aggressive the target wants for eliminating unpredictable branches. A
438 /// zero return value means extra optimization applied to them should be
439 /// minimal.
441
442 /// Return true if branch divergence exists.
443 ///
444 /// Branch divergence has a significantly negative impact on GPU performance
445 /// when threads in the same wavefront take different paths due to conditional
446 /// branches.
447 ///
448 /// If \p F is passed, provides a context function. If \p F is known to only
449 /// execute in a single threaded environment, the target may choose to skip
450 /// uniformity analysis and assume all values are uniform.
451 LLVM_ABI bool hasBranchDivergence(const Function *F = nullptr) const;
452
453 /// Returns whether V is a source of divergence.
454 ///
455 /// This function provides the target-dependent information for
456 /// the target-independent UniformityAnalysis.
457 LLVM_ABI bool isSourceOfDivergence(const Value *V) const;
458
459 // Returns true for the target specific
460 // set of operations which produce uniform result
461 // even taking non-uniform arguments
462 LLVM_ABI bool isAlwaysUniform(const Value *V) const;
463
464 /// Query the target whether the specified address space cast from FromAS to
465 /// ToAS is valid.
466 LLVM_ABI bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
467
468 /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address.
469 LLVM_ABI bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const;
470
471 /// Returns the address space ID for a target's 'flat' address space. Note
472 /// this is not necessarily the same as addrspace(0), which LLVM sometimes
473 /// refers to as the generic address space. The flat address space is a
474 /// generic address space that can be used access multiple segments of memory
475 /// with different address spaces. Access of a memory location through a
476 /// pointer with this address space is expected to be legal but slower
477 /// compared to the same memory location accessed through a pointer with a
478 /// different address space.
479 //
480 /// This is for targets with different pointer representations which can
481 /// be converted with the addrspacecast instruction. If a pointer is converted
482 /// to this address space, optimizations should attempt to replace the access
483 /// with the source address space.
484 ///
485 /// \returns ~0u if the target does not have such a flat address space to
486 /// optimize away.
487 LLVM_ABI unsigned getFlatAddressSpace() const;
488
489 /// Return any intrinsic address operand indexes which may be rewritten if
490 /// they use a flat address space pointer.
491 ///
492 /// \returns true if the intrinsic was handled.
494 Intrinsic::ID IID) const;
495
496 LLVM_ABI bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const;
497
498 /// Return true if globals in this address space can have initializers other
499 /// than `undef`.
500 LLVM_ABI bool
502
503 LLVM_ABI unsigned getAssumedAddrSpace(const Value *V) const;
504
505 LLVM_ABI bool isSingleThreaded() const;
506
507 LLVM_ABI std::pair<const Value *, unsigned>
508 getPredicatedAddrSpace(const Value *V) const;
509
510 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p
511 /// NewV, which has a different address space. This should happen for every
512 /// operand index that collectFlatAddressOperands returned for the intrinsic.
513 /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the
514 /// new value (which may be the original \p II with modified operands).
516 Value *OldV,
517 Value *NewV) const;
518
519 /// Test whether calls to a function lower to actual program function
520 /// calls.
521 ///
522 /// The idea is to test whether the program is likely to require a 'call'
523 /// instruction or equivalent in order to call the given function.
524 ///
525 /// FIXME: It's not clear that this is a good or useful query API. Client's
526 /// should probably move to simpler cost metrics using the above.
527 /// Alternatively, we could split the cost interface into distinct code-size
528 /// and execution-speed costs. This would allow modelling the core of this
529 /// query more accurately as a call is a single small instruction, but
530 /// incurs significant execution cost.
531 LLVM_ABI bool isLoweredToCall(const Function *F) const;
532
533 struct LSRCost {
534 /// TODO: Some of these could be merged. Also, a lexical ordering
535 /// isn't always optimal.
536 unsigned Insns;
537 unsigned NumRegs;
538 unsigned AddRecCost;
539 unsigned NumIVMuls;
540 unsigned NumBaseAdds;
541 unsigned ImmCost;
542 unsigned SetupCost;
543 unsigned ScaleCost;
544 };
545
546 /// Parameters that control the generic loop unrolling transformation.
548 /// The cost threshold for the unrolled loop. Should be relative to the
549 /// getInstructionCost values returned by this API, and the expectation is
550 /// that the unrolled loop's instructions when run through that interface
551 /// should not exceed this cost. However, this is only an estimate. Also,
552 /// specific loops may be unrolled even with a cost above this threshold if
553 /// deemed profitable. Set this to UINT_MAX to disable the loop body cost
554 /// restriction.
555 unsigned Threshold;
556 /// If complete unrolling will reduce the cost of the loop, we will boost
557 /// the Threshold by a certain percent to allow more aggressive complete
558 /// unrolling. This value provides the maximum boost percentage that we
559 /// can apply to Threshold (The value should be no less than 100).
560 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
561 /// MaxPercentThresholdBoost / 100)
562 /// E.g. if complete unrolling reduces the loop execution time by 50%
563 /// then we boost the threshold by the factor of 2x. If unrolling is not
564 /// expected to reduce the running time, then we do not increase the
565 /// threshold.
567 /// The cost threshold for the unrolled loop when optimizing for size (set
568 /// to UINT_MAX to disable).
570 /// The cost threshold for the unrolled loop, like Threshold, but used
571 /// for partial/runtime unrolling (set to UINT_MAX to disable).
573 /// The cost threshold for the unrolled loop when optimizing for size, like
574 /// OptSizeThreshold, but used for partial/runtime unrolling (set to
575 /// UINT_MAX to disable).
577 /// A forced unrolling factor (the number of concatenated bodies of the
578 /// original loop in the unrolled loop body). When set to 0, the unrolling
579 /// transformation will select an unrolling factor based on the current cost
580 /// threshold and other factors.
581 unsigned Count;
582 /// Default unroll count for loops with run-time trip count.
584 // Set the maximum unrolling factor. The unrolling factor may be selected
585 // using the appropriate cost threshold, but may not exceed this number
586 // (set to UINT_MAX to disable). This does not apply in cases where the
587 // loop is being fully unrolled.
588 unsigned MaxCount;
589 /// Set the maximum upper bound of trip count. Allowing the MaxUpperBound
590 /// to be overrided by a target gives more flexiblity on certain cases.
591 /// By default, MaxUpperBound uses UnrollMaxUpperBound which value is 8.
593 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
594 /// applies even if full unrolling is selected. This allows a target to fall
595 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
597 // Represents number of instructions optimized when "back edge"
598 // becomes "fall through" in unrolled loop.
599 // For now we count a conditional branch on a backedge and a comparison
600 // feeding it.
601 unsigned BEInsns;
602 /// Allow partial unrolling (unrolling of loops to expand the size of the
603 /// loop body, not only to eliminate small constant-trip-count loops).
605 /// Allow runtime unrolling (unrolling of loops to expand the size of the
606 /// loop body even when the number of loop iterations is not known at
607 /// compile time).
609 /// Allow generation of a loop remainder (extra iterations after unroll).
611 /// Allow emitting expensive instructions (such as divisions) when computing
612 /// the trip count of a loop for runtime unrolling.
614 /// Apply loop unroll on any kind of loop
615 /// (mainly to loops that fail runtime unrolling).
616 bool Force;
617 /// Allow using trip count upper bound to unroll loops.
619 /// Allow unrolling of all the iterations of the runtime loop remainder.
621 /// Allow unroll and jam. Used to enable unroll and jam for the target.
623 /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
624 /// value above is used during unroll and jam for the outer loop size.
625 /// This value is used in the same manner to limit the size of the inner
626 /// loop.
628 /// Don't allow loop unrolling to simulate more than this number of
629 /// iterations when checking full unroll profitability
631 /// Don't disable runtime unroll for the loops which were vectorized.
633 /// Don't allow runtime unrolling if expanding the trip count takes more
634 /// than SCEVExpansionBudget.
636 /// Allow runtime unrolling multi-exit loops. Should only be set if the
637 /// target determined that multi-exit unrolling is profitable for the loop.
638 /// Fall back to the generic logic to determine whether multi-exit unrolling
639 /// is profitable if set to false.
641 /// Allow unrolling to add parallel reduction phis.
643 };
644
645 /// Get target-customized preferences for the generic loop unrolling
646 /// transformation. The caller will initialize UP with the current
647 /// target-independent defaults.
650 OptimizationRemarkEmitter *ORE) const;
651
652 /// Query the target whether it would be profitable to convert the given loop
653 /// into a hardware loop.
655 AssumptionCache &AC,
656 TargetLibraryInfo *LibInfo,
657 HardwareLoopInfo &HWLoopInfo) const;
658
659 // Query the target for which minimum vectorization factor epilogue
660 // vectorization should be considered.
662
663 /// Query the target whether it would be prefered to create a predicated
664 /// vector loop, which can avoid the need to emit a scalar epilogue loop.
666
667 /// Query the target what the preferred style of tail folding is.
668 /// \param IVUpdateMayOverflow Tells whether it is known if the IV update
669 /// may (or will never) overflow for the suggested VF/UF in the given loop.
670 /// Targets can use this information to select a more optimal tail folding
671 /// style. The value conservatively defaults to true, such that no assumptions
672 /// are made on overflow.
674 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const;
675
676 // Parameters that control the loop peeling transformation
678 /// A forced peeling factor (the number of bodied of the original loop
679 /// that should be peeled off before the loop body). When set to 0, the
680 /// a peeling factor based on profile information and other factors.
681 unsigned PeelCount;
682 /// Allow peeling off loop iterations.
684 /// Allow peeling off loop iterations for loop nests.
686 /// Allow peeling basing on profile. Uses to enable peeling off all
687 /// iterations basing on provided profile.
688 /// If the value is true the peeling cost model can decide to peel only
689 /// some iterations and in this case it will set this to false.
691
692 /// Peel off the last PeelCount loop iterations.
694 };
695
696 /// Get target-customized preferences for the generic loop peeling
697 /// transformation. The caller will initialize \p PP with the current
698 /// target-independent defaults with information from \p L and \p SE.
700 PeelingPreferences &PP) const;
701
702 /// Targets can implement their own combinations for target-specific
703 /// intrinsics. This function will be called from the InstCombine pass every
704 /// time a target-specific intrinsic is encountered.
705 ///
706 /// \returns std::nullopt to not do anything target specific or a value that
707 /// will be returned from the InstCombiner. It is possible to return null and
708 /// stop further processing of the intrinsic by returning nullptr.
709 LLVM_ABI std::optional<Instruction *>
711 /// Can be used to implement target-specific instruction combining.
712 /// \see instCombineIntrinsic
713 LLVM_ABI std::optional<Value *>
715 APInt DemandedMask, KnownBits &Known,
716 bool &KnownBitsComputed) const;
717 /// Can be used to implement target-specific instruction combining.
718 /// \see instCombineIntrinsic
719 LLVM_ABI std::optional<Value *> simplifyDemandedVectorEltsIntrinsic(
720 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
721 APInt &UndefElts2, APInt &UndefElts3,
722 std::function<void(Instruction *, unsigned, APInt, APInt &)>
723 SimplifyAndSetOp) const;
724 /// @}
725
726 /// \name Scalar Target Information
727 /// @{
728
729 /// Flags indicating the kind of support for population count.
730 ///
731 /// Compared to the SW implementation, HW support is supposed to
732 /// significantly boost the performance when the population is dense, and it
733 /// may or may not degrade performance if the population is sparse. A HW
734 /// support is considered as "Fast" if it can outperform, or is on a par
735 /// with, SW implementation when the population is sparse; otherwise, it is
736 /// considered as "Slow".
738
739 /// Return true if the specified immediate is legal add immediate, that
740 /// is the target has add instructions which can add a register with the
741 /// immediate without having to materialize the immediate into a register.
742 LLVM_ABI bool isLegalAddImmediate(int64_t Imm) const;
743
744 /// Return true if adding the specified scalable immediate is legal, that is
745 /// the target has add instructions which can add a register with the
746 /// immediate (multiplied by vscale) without having to materialize the
747 /// immediate into a register.
748 LLVM_ABI bool isLegalAddScalableImmediate(int64_t Imm) const;
749
750 /// Return true if the specified immediate is legal icmp immediate,
751 /// that is the target has icmp instructions which can compare a register
752 /// against the immediate without having to materialize the immediate into a
753 /// register.
754 LLVM_ABI bool isLegalICmpImmediate(int64_t Imm) const;
755
756 /// Return true if the addressing mode represented by AM is legal for
757 /// this target, for a load/store of the specified type.
758 /// The type may be VoidTy, in which case only return true if the addressing
759 /// mode is legal for a load/store of any legal type.
760 /// If target returns true in LSRWithInstrQueries(), I may be valid.
761 /// \param ScalableOffset represents a quantity of bytes multiplied by vscale,
762 /// an invariant value known only at runtime. Most targets should not accept
763 /// a scalable offset.
764 ///
765 /// TODO: Handle pre/postinc as well.
767 int64_t BaseOffset, bool HasBaseReg,
768 int64_t Scale, unsigned AddrSpace = 0,
769 Instruction *I = nullptr,
770 int64_t ScalableOffset = 0) const;
771
772 /// Return true if LSR cost of C1 is lower than C2.
774 const TargetTransformInfo::LSRCost &C2) const;
775
776 /// Return true if LSR major cost is number of registers. Targets which
777 /// implement their own isLSRCostLess and unset number of registers as major
778 /// cost should return false, otherwise return true.
780
781 /// Return true if LSR should drop a found solution if it's calculated to be
782 /// less profitable than the baseline.
784
785 /// \returns true if LSR should not optimize a chain that includes \p I.
787
788 /// Return true if the target can fuse a compare and branch.
789 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
790 /// calculation for the instructions in a loop.
791 LLVM_ABI bool canMacroFuseCmp() const;
792
793 /// Return true if the target can save a compare for loop count, for example
794 /// hardware loop saves a compare.
797 TargetLibraryInfo *LibInfo) const;
798
804
805 /// Return the preferred addressing mode LSR should make efforts to generate.
808
809 /// Return true if the target supports masked store.
810 LLVM_ABI bool isLegalMaskedStore(Type *DataType, Align Alignment,
811 unsigned AddressSpace) const;
812 /// Return true if the target supports masked load.
813 LLVM_ABI bool isLegalMaskedLoad(Type *DataType, Align Alignment,
814 unsigned AddressSpace) const;
815
816 /// Return true if the target supports nontemporal store.
817 LLVM_ABI bool isLegalNTStore(Type *DataType, Align Alignment) const;
818 /// Return true if the target supports nontemporal load.
819 LLVM_ABI bool isLegalNTLoad(Type *DataType, Align Alignment) const;
820
821 /// \Returns true if the target supports broadcasting a load to a vector of
822 /// type <NumElements x ElementTy>.
823 LLVM_ABI bool isLegalBroadcastLoad(Type *ElementTy,
824 ElementCount NumElements) const;
825
826 /// Return true if the target supports masked scatter.
827 LLVM_ABI bool isLegalMaskedScatter(Type *DataType, Align Alignment) const;
828 /// Return true if the target supports masked gather.
829 LLVM_ABI bool isLegalMaskedGather(Type *DataType, Align Alignment) const;
830 /// Return true if the target forces scalarizing of llvm.masked.gather
831 /// intrinsics.
833 Align Alignment) const;
834 /// Return true if the target forces scalarizing of llvm.masked.scatter
835 /// intrinsics.
837 Align Alignment) const;
838
839 /// Return true if the target supports masked compress store.
841 Align Alignment) const;
842 /// Return true if the target supports masked expand load.
843 LLVM_ABI bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const;
844
845 /// Return true if the target supports strided load.
846 LLVM_ABI bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const;
847
848 /// Return true is the target supports interleaved access for the given vector
849 /// type \p VTy, interleave factor \p Factor, alignment \p Alignment and
850 /// address space \p AddrSpace.
851 LLVM_ABI bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
852 Align Alignment,
853 unsigned AddrSpace) const;
854
855 // Return true if the target supports masked vector histograms.
857 Type *DataType) const;
858
859 /// Return true if this is an alternating opcode pattern that can be lowered
860 /// to a single instruction on the target. In X86 this is for the addsub
861 /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR.
862 /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being
863 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
864 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
865 /// \p VecTy is the vector type of the instruction to be generated.
866 LLVM_ABI bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
867 unsigned Opcode1,
868 const SmallBitVector &OpcodeMask) const;
869
870 /// Return true if we should be enabling ordered reductions for the target.
872
873 /// Return true if the target has a unified operation to calculate division
874 /// and remainder. If so, the additional implicit multiplication and
875 /// subtraction required to calculate a remainder from division are free. This
876 /// can enable more aggressive transformations for division and remainder than
877 /// would typically be allowed using throughput or size cost models.
878 LLVM_ABI bool hasDivRemOp(Type *DataType, bool IsSigned) const;
879
880 /// Return true if the given instruction (assumed to be a memory access
881 /// instruction) has a volatile variant. If that's the case then we can avoid
882 /// addrspacecast to generic AS for volatile loads/stores. Default
883 /// implementation returns false, which prevents address space inference for
884 /// volatile loads/stores.
885 LLVM_ABI bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
886
887 /// Return true if target doesn't mind addresses in vectors.
889
890 /// Return the cost of the scaling factor used in the addressing
891 /// mode represented by AM for this target, for a load/store
892 /// of the specified type.
893 /// If the AM is supported, the return value must be >= 0.
894 /// If the AM is not supported, it returns a negative value.
895 /// TODO: Handle pre/postinc as well.
897 StackOffset BaseOffset,
898 bool HasBaseReg, int64_t Scale,
899 unsigned AddrSpace = 0) const;
900
901 /// Return true if the loop strength reduce pass should make
902 /// Instruction* based TTI queries to isLegalAddressingMode(). This is
903 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
904 /// immediate offset and no index register.
905 LLVM_ABI bool LSRWithInstrQueries() const;
906
907 /// Return true if it's free to truncate a value of type Ty1 to type
908 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
909 /// by referencing its sub-register AX.
910 LLVM_ABI bool isTruncateFree(Type *Ty1, Type *Ty2) const;
911
912 /// Return true if it is profitable to hoist instruction in the
913 /// then/else to before if.
915
916 LLVM_ABI bool useAA() const;
917
918 /// Return true if this type is legal.
919 LLVM_ABI bool isTypeLegal(Type *Ty) const;
920
921 /// Returns the estimated number of registers required to represent \p Ty.
922 LLVM_ABI unsigned getRegUsageForType(Type *Ty) const;
923
924 /// Return true if switches should be turned into lookup tables for the
925 /// target.
927
928 /// Return true if switches should be turned into lookup tables
929 /// containing this constant value for the target.
931
932 /// Return true if lookup tables should be turned into relative lookup tables.
934
935 /// Return true if the input function which is cold at all call sites,
936 /// should use coldcc calling convention.
938
940
941 /// Identifies if the vector form of the intrinsic has a scalar operand.
943 unsigned ScalarOpdIdx) const;
944
945 /// Identifies if the vector form of the intrinsic is overloaded on the type
946 /// of the operand at index \p OpdIdx, or on the return type if \p OpdIdx is
947 /// -1.
949 int OpdIdx) const;
950
951 /// Identifies if the vector form of the intrinsic that returns a struct is
952 /// overloaded at the struct element index \p RetIdx.
953 LLVM_ABI bool
955 int RetIdx) const;
956
957 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
958 /// are set if the demanded result elements need to be inserted and/or
959 /// extracted from vectors. The involved values may be passed in VL if
960 /// Insert is true.
962 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
963 TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
964 ArrayRef<Value *> VL = {}) const;
965
966 /// Estimate the overhead of scalarizing operands with the given types. The
967 /// (potentially vector) types to use for each of argument are passes via Tys.
970
971 /// If target has efficient vector element load/store instructions, it can
972 /// return true here so that insertion/extraction costs are not added to
973 /// the scalarization cost of a load/store.
975
976 /// If the target supports tail calls.
977 LLVM_ABI bool supportsTailCalls() const;
978
979 /// If target supports tail call on \p CB
980 LLVM_ABI bool supportsTailCallFor(const CallBase *CB) const;
981
982 /// Don't restrict interleaved unrolling to small loops.
983 LLVM_ABI bool enableAggressiveInterleaving(bool LoopHasReductions) const;
984
985 /// Returns options for expansion of memcmp. IsZeroCmp is
986 // true if this is the expansion of memcmp(p1, p2, s) == 0.
988 // Return true if memcmp expansion is enabled.
989 operator bool() const { return MaxNumLoads > 0; }
990
991 // Maximum number of load operations.
992 unsigned MaxNumLoads = 0;
993
994 // The list of available load sizes (in bytes), sorted in decreasing order.
996
997 // For memcmp expansion when the memcmp result is only compared equal or
998 // not-equal to 0, allow up to this number of load pairs per block. As an
999 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block:
1000 // a0 = load2bytes &a[0]
1001 // b0 = load2bytes &b[0]
1002 // a2 = load1byte &a[2]
1003 // b2 = load1byte &b[2]
1004 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0
1005 unsigned NumLoadsPerBlock = 1;
1006
1007 // Set to true to allow overlapping loads. For example, 7-byte compares can
1008 // be done with two 4-byte compares instead of 4+2+1-byte compares. This
1009 // requires all loads in LoadSizes to be doable in an unaligned way.
1011
1012 // Sometimes, the amount of data that needs to be compared is smaller than
1013 // the standard register size, but it cannot be loaded with just one load
1014 // instruction. For example, if the size of the memory comparison is 6
1015 // bytes, we can handle it more efficiently by loading all 6 bytes in a
1016 // single block and generating an 8-byte number, instead of generating two
1017 // separate blocks with conditional jumps for 4 and 2 byte loads. This
1018 // approach simplifies the process and produces the comparison result as
1019 // normal. This array lists the allowed sizes of memcmp tails that can be
1020 // merged into one block
1022 };
1024 bool IsZeroCmp) const;
1025
1026 /// Should the Select Optimization pass be enabled and ran.
1027 LLVM_ABI bool enableSelectOptimize() const;
1028
1029 /// Should the Select Optimization pass treat the given instruction like a
1030 /// select, potentially converting it to a conditional branch. This can
1031 /// include select-like instructions like or(zext(c), x) that can be converted
1032 /// to selects.
1034
1035 /// Enable matching of interleaved access groups.
1037
1038 /// Enable matching of interleaved access groups that contain predicated
1039 /// accesses or gaps and therefore vectorized using masked
1040 /// vector loads/stores.
1042
1043 /// Indicate that it is potentially unsafe to automatically vectorize
1044 /// floating-point operations because the semantics of vector and scalar
1045 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
1046 /// does not support IEEE-754 denormal numbers, while depending on the
1047 /// platform, scalar floating-point math does.
1048 /// This applies to floating-point math operations and calls, not memory
1049 /// operations, shuffles, or casts.
1051
1052 /// Determine if the target supports unaligned memory accesses.
1054 unsigned BitWidth,
1055 unsigned AddressSpace = 0,
1056 Align Alignment = Align(1),
1057 unsigned *Fast = nullptr) const;
1058
1059 /// Return hardware support for population count.
1060 LLVM_ABI PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
1061
1062 /// Return true if the hardware has a fast square-root instruction.
1063 LLVM_ABI bool haveFastSqrt(Type *Ty) const;
1064
1065 /// Return true if the cost of the instruction is too high to speculatively
1066 /// execute and should be kept behind a branch.
1067 /// This normally just wraps around a getInstructionCost() call, but some
1068 /// targets might report a low TCK_SizeAndLatency value that is incompatible
1069 /// with the fixed TCC_Expensive value.
1070 /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute().
1072
1073 /// Return true if it is faster to check if a floating-point value is NaN
1074 /// (or not-NaN) versus a comparison against a constant FP zero value.
1075 /// Targets should override this if materializing a 0.0 for comparison is
1076 /// generally as cheap as checking for ordered/unordered.
1078
1079 /// Return the expected cost of supporting the floating point operation
1080 /// of the specified type.
1082
1083 /// Return the expected cost of materializing for the given integer
1084 /// immediate of the specified type.
1086 TargetCostKind CostKind) const;
1087
1088 /// Return the expected cost of materialization for the given integer
1089 /// immediate of the specified type for a given instruction. The cost can be
1090 /// zero if the immediate can be folded into the specified instruction.
1091 LLVM_ABI InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx,
1092 const APInt &Imm, Type *Ty,
1094 Instruction *Inst = nullptr) const;
1096 const APInt &Imm, Type *Ty,
1097 TargetCostKind CostKind) const;
1098
1099 /// Return the expected cost for the given integer when optimising
1100 /// for size. This is different than the other integer immediate cost
1101 /// functions in that it is subtarget agnostic. This is useful when you e.g.
1102 /// target one ISA such as Aarch32 but smaller encodings could be possible
1103 /// with another such as Thumb. This return value is used as a penalty when
1104 /// the total costs for a constant is calculated (the bigger the cost, the
1105 /// more beneficial constant hoisting is).
1106 LLVM_ABI InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx,
1107 const APInt &Imm,
1108 Type *Ty) const;
1109
1110 /// It can be advantageous to detach complex constants from their uses to make
1111 /// their generation cheaper. This hook allows targets to report when such
1112 /// transformations might negatively effect the code generation of the
1113 /// underlying operation. The motivating example is divides whereby hoisting
1114 /// constants prevents the code generator's ability to transform them into
1115 /// combinations of simpler operations.
1117 const Function &Fn) const;
1118
1119 /// @}
1120
1121 /// \name Vector Target Information
1122 /// @{
1123
1124 /// The various kinds of shuffle patterns for vector queries.
1126 SK_Broadcast, ///< Broadcast element 0 to all other elements.
1127 SK_Reverse, ///< Reverse the order of the vector.
1128 SK_Select, ///< Selects elements from the corresponding lane of
1129 ///< either source operand. This is equivalent to a
1130 ///< vector select with a constant condition operand.
1131 SK_Transpose, ///< Transpose two vectors.
1132 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
1133 SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset.
1134 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one
1135 ///< with any shuffle mask.
1136 SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any
1137 ///< shuffle mask.
1138 SK_Splice ///< Concatenates elements from the first input vector
1139 ///< with elements of the second input vector. Returning
1140 ///< a vector of the same type as the input vectors.
1141 ///< Index indicates start offset in first input vector.
1142 };
1143
1144 /// Additional information about an operand's possible values.
1146 OK_AnyValue, // Operand can have any value.
1147 OK_UniformValue, // Operand is uniform (splat of a value).
1148 OK_UniformConstantValue, // Operand is uniform constant.
1149 OK_NonUniformConstantValue // Operand is a non uniform constant value.
1150 };
1151
1152 /// Additional properties of an operand's values.
1158
1159 // Describe the values an operand can take. We're in the process
1160 // of migrating uses of OperandValueKind and OperandValueProperties
1161 // to use this class, and then will change the internal representation.
1165
1166 bool isConstant() const {
1168 }
1169 bool isUniform() const {
1171 }
1172 bool isPowerOf2() const {
1173 return Properties == OP_PowerOf2;
1174 }
1175 bool isNegatedPowerOf2() const {
1177 }
1178
1180 return {Kind, OP_None};
1181 }
1182 };
1183
1184 /// \return the number of registers in the target-provided register class.
1185 LLVM_ABI unsigned getNumberOfRegisters(unsigned ClassID) const;
1186
1187 /// \return true if the target supports load/store that enables fault
1188 /// suppression of memory operands when the source condition is false.
1189 LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const;
1190
1191 /// \return the target-provided register class ID for the provided type,
1192 /// accounting for type promotion and other type-legalization techniques that
1193 /// the target might apply. However, it specifically does not account for the
1194 /// scalarization or splitting of vector types. Should a vector type require
1195 /// scalarization or splitting into multiple underlying vector registers, that
1196 /// type should be mapped to a register class containing no registers.
1197 /// Specifically, this is designed to provide a simple, high-level view of the
1198 /// register allocation later performed by the backend. These register classes
1199 /// don't necessarily map onto the register classes used by the backend.
1200 /// FIXME: It's not currently possible to determine how many registers
1201 /// are used by the provided type.
1203 Type *Ty = nullptr) const;
1204
1205 /// \return the target-provided register class name
1206 LLVM_ABI const char *getRegisterClassName(unsigned ClassID) const;
1207
1209
1210 /// \return The width of the largest scalar or vector register type.
1211 LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const;
1212
1213 /// \return The width of the smallest vector register type.
1214 LLVM_ABI unsigned getMinVectorRegisterBitWidth() const;
1215
1216 /// \return The maximum value of vscale if the target specifies an
1217 /// architectural maximum vector length, and std::nullopt otherwise.
1218 LLVM_ABI std::optional<unsigned> getMaxVScale() const;
1219
1220 /// \return the value of vscale to tune the cost model for.
1221 LLVM_ABI std::optional<unsigned> getVScaleForTuning() const;
1222
1223 /// \return true if vscale is known to be a power of 2
1225
1226 /// \return True if the vectorization factor should be chosen to
1227 /// make the vector of the smallest element type match the size of a
1228 /// vector register. For wider element types, this could result in
1229 /// creating vectors that span multiple vector registers.
1230 /// If false, the vectorization factor will be chosen based on the
1231 /// size of the widest element type.
1232 /// \p K Register Kind for vectorization.
1233 LLVM_ABI bool
1235
1236 /// \return The minimum vectorization factor for types of given element
1237 /// bit width, or 0 if there is no minimum VF. The returned value only
1238 /// applies when shouldMaximizeVectorBandwidth returns true.
1239 /// If IsScalable is true, the returned ElementCount must be a scalable VF.
1240 LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const;
1241
1242 /// \return The maximum vectorization factor for types of given element
1243 /// bit width and opcode, or 0 if there is no maximum VF.
1244 /// Currently only used by the SLP vectorizer.
1245 LLVM_ABI unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const;
1246
1247 /// \return The minimum vectorization factor for the store instruction. Given
1248 /// the initial estimation of the minimum vector factor and store value type,
1249 /// it tries to find possible lowest VF, which still might be profitable for
1250 /// the vectorization.
1251 /// \param VF Initial estimation of the minimum vector factor.
1252 /// \param ScalarMemTy Scalar memory type of the store operation.
1253 /// \param ScalarValTy Scalar type of the stored value.
1254 /// Currently only used by the SLP vectorizer.
1255 LLVM_ABI unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
1256 Type *ScalarValTy) const;
1257
1258 /// \return True if it should be considered for address type promotion.
1259 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
1260 /// profitable without finding other extensions fed by the same input.
1262 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
1263
1264 /// \return The size of a cache line in bytes.
1265 LLVM_ABI unsigned getCacheLineSize() const;
1266
1267 /// The possible cache levels
1268 enum class CacheLevel {
1269 L1D, // The L1 data cache
1270 L2D, // The L2 data cache
1271
1272 // We currently do not model L3 caches, as their sizes differ widely between
1273 // microarchitectures. Also, we currently do not have a use for L3 cache
1274 // size modeling yet.
1275 };
1276
1277 /// \return The size of the cache level in bytes, if available.
1278 LLVM_ABI std::optional<unsigned> getCacheSize(CacheLevel Level) const;
1279
1280 /// \return The associativity of the cache level, if available.
1281 LLVM_ABI std::optional<unsigned>
1282 getCacheAssociativity(CacheLevel Level) const;
1283
1284 /// \return The minimum architectural page size for the target.
1285 LLVM_ABI std::optional<unsigned> getMinPageSize() const;
1286
1287 /// \return How much before a load we should place the prefetch
1288 /// instruction. This is currently measured in number of
1289 /// instructions.
1290 LLVM_ABI unsigned getPrefetchDistance() const;
1291
1292 /// Some HW prefetchers can handle accesses up to a certain constant stride.
1293 /// Sometimes prefetching is beneficial even below the HW prefetcher limit,
1294 /// and the arguments provided are meant to serve as a basis for deciding this
1295 /// for a particular loop.
1296 ///
1297 /// \param NumMemAccesses Number of memory accesses in the loop.
1298 /// \param NumStridedMemAccesses Number of the memory accesses that
1299 /// ScalarEvolution could find a known stride
1300 /// for.
1301 /// \param NumPrefetches Number of software prefetches that will be
1302 /// emitted as determined by the addresses
1303 /// involved and the cache line size.
1304 /// \param HasCall True if the loop contains a call.
1305 ///
1306 /// \return This is the minimum stride in bytes where it makes sense to start
1307 /// adding SW prefetches. The default is 1, i.e. prefetch with any
1308 /// stride.
1309 LLVM_ABI unsigned getMinPrefetchStride(unsigned NumMemAccesses,
1310 unsigned NumStridedMemAccesses,
1311 unsigned NumPrefetches,
1312 bool HasCall) const;
1313
1314 /// \return The maximum number of iterations to prefetch ahead. If
1315 /// the required number of iterations is more than this number, no
1316 /// prefetching is performed.
1317 LLVM_ABI unsigned getMaxPrefetchIterationsAhead() const;
1318
1319 /// \return True if prefetching should also be done for writes.
1320 LLVM_ABI bool enableWritePrefetching() const;
1321
1322 /// \return if target want to issue a prefetch in address space \p AS.
1323 LLVM_ABI bool shouldPrefetchAddressSpace(unsigned AS) const;
1324
1325 /// \return The cost of a partial reduction, which is a reduction from a
1326 /// vector to another vector with fewer elements of larger size. They are
1327 /// represented by the llvm.experimental.partial.reduce.add intrinsic, which
1328 /// takes an accumulator of type \p AccumType and a second vector operand to
1329 /// be accumulated, whose element count is specified by \p VF. The type of
1330 /// reduction is specified by \p Opcode. The second operand passed to the
1331 /// intrinsic could be the result of an extend, such as sext or zext. In
1332 /// this case \p BinOp is nullopt, \p InputTypeA represents the type being
1333 /// extended and \p OpAExtend the operation, i.e. sign- or zero-extend.
1334 /// Also, \p InputTypeB should be nullptr and OpBExtend should be None.
1335 /// Alternatively, the second operand could be the result of a binary
1336 /// operation performed on two extends, i.e.
1337 /// mul(zext i8 %a -> i32, zext i8 %b -> i32).
1338 /// In this case \p BinOp may specify the opcode of the binary operation,
1339 /// \p InputTypeA and \p InputTypeB the types being extended, and
1340 /// \p OpAExtend, \p OpBExtend the form of extensions. An example of an
1341 /// operation that uses a partial reduction is a dot product, which reduces
1342 /// two vectors in binary mul operation to another of 4 times fewer and 4
1343 /// times larger elements.
1345 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
1347 PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
1349
1350 /// \return The maximum interleave factor that any transform should try to
1351 /// perform for this target. This number depends on the level of parallelism
1352 /// and the number of execution units in the CPU.
1353 LLVM_ABI unsigned getMaxInterleaveFactor(ElementCount VF) const;
1354
1355 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
1356 LLVM_ABI static OperandValueInfo getOperandInfo(const Value *V);
1357
1358 /// This is an approximation of reciprocal throughput of a math/logic op.
1359 /// A higher cost indicates less expected throughput.
1360 /// From Agner Fog's guides, reciprocal throughput is "the average number of
1361 /// clock cycles per instruction when the instructions are not part of a
1362 /// limiting dependency chain."
1363 /// Therefore, costs should be scaled to account for multiple execution units
1364 /// on the target that can process this type of instruction. For example, if
1365 /// there are 5 scalar integer units and 2 vector integer units that can
1366 /// calculate an 'add' in a single cycle, this model should indicate that the
1367 /// cost of the vector add instruction is 2.5 times the cost of the scalar
1368 /// add instruction.
1369 /// \p Args is an optional argument which holds the instruction operands
1370 /// values so the TTI can analyze those values searching for special
1371 /// cases or optimizations based on those values.
1372 /// \p CxtI is the optional original context instruction, if one exists, to
1373 /// provide even more information.
1374 /// \p TLibInfo is used to search for platform specific vector library
1375 /// functions for instructions that might be converted to calls (e.g. frem).
1377 unsigned Opcode, Type *Ty,
1381 ArrayRef<const Value *> Args = {}, const Instruction *CxtI = nullptr,
1382 const TargetLibraryInfo *TLibInfo = nullptr) const;
1383
1384 /// Returns the cost estimation for alternating opcode pattern that can be
1385 /// lowered to a single instruction on the target. In X86 this is for the
1386 /// addsub instruction which corrsponds to a Shuffle + Fadd + FSub pattern in
1387 /// IR. This function expects two opcodes: \p Opcode1 and \p Opcode2 being
1388 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0`
1389 /// when \p Opcode0 is selected and `1` when Opcode1 is selected.
1390 /// \p VecTy is the vector type of the instruction to be generated.
1392 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
1393 const SmallBitVector &OpcodeMask,
1395
1396 /// \return The cost of a shuffle instruction of kind Kind with inputs of type
1397 /// SrcTy, producing a vector of type DstTy. The exact mask may be passed as
1398 /// Mask, or else the array will be empty. The Index and SubTp parameters
1399 /// are used by the subvector insertions shuffle kinds to show the insert
1400 /// point and the type of the subvector being inserted. The operands of the
1401 /// shuffle can be passed through \p Args, which helps improve the cost
1402 /// estimation in some cases, like in broadcast loads.
1404 ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy,
1405 ArrayRef<int> Mask = {},
1407 VectorType *SubTp = nullptr, ArrayRef<const Value *> Args = {},
1408 const Instruction *CxtI = nullptr) const;
1409
1410 /// Represents a hint about the context in which a cast is used.
1411 ///
1412 /// For zext/sext, the context of the cast is the operand, which must be a
1413 /// load of some kind. For trunc, the context is of the cast is the single
1414 /// user of the instruction, which must be a store of some kind.
1415 ///
1416 /// This enum allows the vectorizer to give getCastInstrCost an idea of the
1417 /// type of cast it's dealing with, as not every cast is equal. For instance,
1418 /// the zext of a load may be free, but the zext of an interleaving load can
1419 //// be (very) expensive!
1420 ///
1421 /// See \c getCastContextHint to compute a CastContextHint from a cast
1422 /// Instruction*. Callers can use it if they don't need to override the
1423 /// context and just want it to be calculated from the instruction.
1424 ///
1425 /// FIXME: This handles the types of load/store that the vectorizer can
1426 /// produce, which are the cases where the context instruction is most
1427 /// likely to be incorrect. There are other situations where that can happen
1428 /// too, which might be handled here but in the long run a more general
1429 /// solution of costing multiple instructions at the same times may be better.
1431 None, ///< The cast is not used with a load/store of any kind.
1432 Normal, ///< The cast is used with a normal load/store.
1433 Masked, ///< The cast is used with a masked load/store.
1434 GatherScatter, ///< The cast is used with a gather/scatter.
1435 Interleave, ///< The cast is used with an interleaved load/store.
1436 Reversed, ///< The cast is used with a reversed load/store.
1437 };
1438
1439 /// Calculates a CastContextHint from \p I.
1440 /// This should be used by callers of getCastInstrCost if they wish to
1441 /// determine the context from some instruction.
1442 /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr,
1443 /// or if it's another type of cast.
1445
1446 /// \return The expected cost of cast instructions, such as bitcast, trunc,
1447 /// zext, etc. If there is an existing instruction that holds Opcode, it
1448 /// may be passed in the 'I' parameter.
1450 unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH,
1452 const Instruction *I = nullptr) const;
1453
1454 /// \return The expected cost of a sign- or zero-extended vector extract. Use
1455 /// Index = -1 to indicate that there is no information about the index value.
1457 getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1458 unsigned Index, TTI::TargetCostKind CostKind) const;
1459
1460 /// \return The expected cost of control-flow related instructions such as
1461 /// Phi, Ret, Br, Switch.
1464 const Instruction *I = nullptr) const;
1465
1466 /// \returns The expected cost of compare and select instructions. If there
1467 /// is an existing instruction that holds Opcode, it may be passed in the
1468 /// 'I' parameter. The \p VecPred parameter can be used to indicate the select
1469 /// is using a compare with the specified predicate as condition. When vector
1470 /// types are passed, \p VecPred must be used for all lanes. For a
1471 /// comparison, the two operands are the natural values. For a select, the
1472 /// two operands are the *value* operands, not the condition operand.
1474 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
1476 OperandValueInfo Op1Info = {OK_AnyValue, OP_None},
1477 OperandValueInfo Op2Info = {OK_AnyValue, OP_None},
1478 const Instruction *I = nullptr) const;
1479
1480 /// \return The expected cost of vector Insert and Extract.
1481 /// Use -1 to indicate that there is no information on the index value.
1482 /// This is used when the instruction is not available; a typical use
1483 /// case is to provision the cost of vectorization/scalarization in
1484 /// vectorizer passes.
1485 LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
1487 unsigned Index = -1,
1488 const Value *Op0 = nullptr,
1489 const Value *Op1 = nullptr) const;
1490
1491 /// \return The expected cost of vector Insert and Extract.
1492 /// Use -1 to indicate that there is no information on the index value.
1493 /// This is used when the instruction is not available; a typical use
1494 /// case is to provision the cost of vectorization/scalarization in
1495 /// vectorizer passes.
1496 /// \param ScalarUserAndIdx encodes the information about extracts from a
1497 /// vector with 'Scalar' being the value being extracted,'User' being the user
1498 /// of the extract(nullptr if user is not known before vectorization) and
1499 /// 'Idx' being the extract lane.
1501 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
1502 Value *Scalar,
1503 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) const;
1504
1505 /// \return The expected cost of vector Insert and Extract.
1506 /// This is used when instruction is available, and implementation
1507 /// asserts 'I' is not nullptr.
1508 ///
1509 /// A typical suitable use case is cost estimation when vector instruction
1510 /// exists (e.g., from basic blocks during transformation).
1511 LLVM_ABI InstructionCost getVectorInstrCost(const Instruction &I, Type *Val,
1513 unsigned Index = -1) const;
1514
1515 /// \return The expected cost of inserting or extracting a lane that is \p
1516 /// Index elements from the end of a vector, i.e. the mathematical expression
1517 /// for the lane is (VF - 1 - Index). This is required for scalable vectors
1518 /// where the exact lane index is unknown at compile time.
1520 unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind,
1521 unsigned Index) const;
1522
1523 /// \return The expected cost of aggregate inserts and extracts. This is
1524 /// used when the instruction is not available; a typical use case is to
1525 /// provision the cost of vectorization/scalarization in vectorizer passes.
1527 unsigned Opcode, TTI::TargetCostKind CostKind) const;
1528
1529 /// \return The cost of replication shuffle of \p VF elements typed \p EltTy
1530 /// \p ReplicationFactor times.
1531 ///
1532 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
1533 /// <0,0,0,1,1,1,2,2,2,3,3,3>
1535 Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
1537
1538 /// \return The cost of Load and Store instructions.
1540 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1543 const Instruction *I = nullptr) const;
1544
1545 /// \return The cost of VP Load and Store instructions.
1547 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1549 const Instruction *I = nullptr) const;
1550
1551 /// \return The cost of masked Load and Store instructions.
1553 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
1555
1556 /// \return The cost of Gather or Scatter operation
1557 /// \p Opcode - is a type of memory access Load or Store
1558 /// \p DataTy - a vector type of the data to be loaded or stored
1559 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1560 /// \p VariableMask - true when the memory access is predicated with a mask
1561 /// that is not a compile-time constant
1562 /// \p Alignment - alignment of single element
1563 /// \p I - the optional original context instruction, if one exists, e.g. the
1564 /// load/store to transform or the call to the gather/scatter intrinsic
1566 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1568 const Instruction *I = nullptr) const;
1569
1570 /// \return The cost of Expand Load or Compress Store operation
1571 /// \p Opcode - is a type of memory access Load or Store
1572 /// \p Src - a vector type of the data to be loaded or stored
1573 /// \p VariableMask - true when the memory access is predicated with a mask
1574 /// that is not a compile-time constant
1575 /// \p Alignment - alignment of single element
1576 /// \p I - the optional original context instruction, if one exists, e.g. the
1577 /// load/store to transform or the call to the gather/scatter intrinsic
1579 unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment,
1581 const Instruction *I = nullptr) const;
1582
1583 /// \return The cost of strided memory operations.
1584 /// \p Opcode - is a type of memory access Load or Store
1585 /// \p DataTy - a vector type of the data to be loaded or stored
1586 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
1587 /// \p VariableMask - true when the memory access is predicated with a mask
1588 /// that is not a compile-time constant
1589 /// \p Alignment - alignment of single element
1590 /// \p I - the optional original context instruction, if one exists, e.g. the
1591 /// load/store to transform or the call to the gather/scatter intrinsic
1593 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1595 const Instruction *I = nullptr) const;
1596
1597 /// \return The cost of the interleaved memory operation.
1598 /// \p Opcode is the memory operation code
1599 /// \p VecTy is the vector type of the interleaved access.
1600 /// \p Factor is the interleave factor
1601 /// \p Indices is the indices for interleaved load members (as interleaved
1602 /// load allows gaps)
1603 /// \p Alignment is the alignment of the memory operation
1604 /// \p AddressSpace is address space of the pointer.
1605 /// \p UseMaskForCond indicates if the memory access is predicated.
1606 /// \p UseMaskForGaps indicates if gaps should be masked.
1608 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1609 Align Alignment, unsigned AddressSpace,
1611 bool UseMaskForCond = false, bool UseMaskForGaps = false) const;
1612
1613 /// A helper function to determine the type of reduction algorithm used
1614 /// for a given \p Opcode and set of FastMathFlags \p FMF.
1615 static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) {
1616 return FMF && !(*FMF).allowReassoc();
1617 }
1618
1619 /// Calculate the cost of vector reduction intrinsics.
1620 ///
1621 /// This is the cost of reducing the vector value of type \p Ty to a scalar
1622 /// value using the operation denoted by \p Opcode. The FastMathFlags
1623 /// parameter \p FMF indicates what type of reduction we are performing:
1624 /// 1. Tree-wise. This is the typical 'fast' reduction performed that
1625 /// involves successively splitting a vector into half and doing the
1626 /// operation on the pair of halves until you have a scalar value. For
1627 /// example:
1628 /// (v0, v1, v2, v3)
1629 /// ((v0+v2), (v1+v3), undef, undef)
1630 /// ((v0+v2+v1+v3), undef, undef, undef)
1631 /// This is the default behaviour for integer operations, whereas for
1632 /// floating point we only do this if \p FMF indicates that
1633 /// reassociation is allowed.
1634 /// 2. Ordered. For a vector with N elements this involves performing N
1635 /// operations in lane order, starting with an initial scalar value, i.e.
1636 /// result = InitVal + v0
1637 /// result = result + v1
1638 /// result = result + v2
1639 /// result = result + v3
1640 /// This is only the case for FP operations and when reassociation is not
1641 /// allowed.
1642 ///
1644 unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF,
1646
1650
1651 /// Calculate the cost of an extended reduction pattern, similar to
1652 /// getArithmeticReductionCost of an Add/Sub reduction with multiply and
1653 /// optional extensions. This is the cost of as:
1654 /// * ResTy vecreduce.add/sub(mul (A, B)) or,
1655 /// * ResTy vecreduce.add/sub(mul(ext(Ty A), ext(Ty B)).
1657 bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty,
1659
1660 /// Calculate the cost of an extended reduction pattern, similar to
1661 /// getArithmeticReductionCost of a reduction with an extension.
1662 /// This is the cost of as:
1663 /// ResTy vecreduce.opcode(ext(Ty A)).
1665 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty,
1666 std::optional<FastMathFlags> FMF,
1668
1669 /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
1670 /// Three cases are handled: 1. scalar instruction 2. vector instruction
1671 /// 3. scalar instruction which is to be vectorized.
1674
1675 /// \returns The cost of Call instructions.
1677 Function *F, Type *RetTy, ArrayRef<Type *> Tys,
1679
1680 /// \returns The number of pieces into which the provided type must be
1681 /// split during legalization. Zero is returned when the answer is unknown.
1682 LLVM_ABI unsigned getNumberOfParts(Type *Tp) const;
1683
1684 /// \returns The cost of the address computation. For most targets this can be
1685 /// merged into the instruction indexing mode. Some targets might want to
1686 /// distinguish between address computation for memory operations with vector
1687 /// pointer types and scalar pointer types. Such targets should override this
1688 /// function. \p SE holds the pointer for the scalar evolution object which
1689 /// was used in order to get the Ptr step value. \p Ptr holds the SCEV of the
1690 /// access pointer.
1694
1695 /// \returns The cost, if any, of keeping values of the given types alive
1696 /// over a callsite.
1697 ///
1698 /// Some types may require the use of register classes that do not have
1699 /// any callee-saved registers, so would require a spill and fill.
1702
1703 /// \returns True if the intrinsic is a supported memory intrinsic. Info
1704 /// will contain additional information - whether the intrinsic may write
1705 /// or read to memory, volatility and the pointer. Info is undefined
1706 /// if false is returned.
1708 MemIntrinsicInfo &Info) const;
1709
1710 /// \returns The maximum element size, in bytes, for an element
1711 /// unordered-atomic memory intrinsic.
1713
1714 /// \returns A value which is the result of the given memory intrinsic. If \p
1715 /// CanCreate is true, new instructions may be created to extract the result
1716 /// from the given intrinsic memory operation. Returns nullptr if the target
1717 /// cannot create a result from the given intrinsic.
1718 LLVM_ABI Value *
1720 bool CanCreate = true) const;
1721
1722 /// \returns The type to use in a loop expansion of a memcpy call.
1724 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1725 unsigned DestAddrSpace, Align SrcAlign, Align DestAlign,
1726 std::optional<uint32_t> AtomicElementSize = std::nullopt) const;
1727
1728 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
1729 /// \param RemainingBytes The number of bytes to copy.
1730 ///
1731 /// Calculates the operand types to use when copying \p RemainingBytes of
1732 /// memory, where source and destination alignments are \p SrcAlign and
1733 /// \p DestAlign respectively.
1735 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1736 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1737 Align SrcAlign, Align DestAlign,
1738 std::optional<uint32_t> AtomicCpySize = std::nullopt) const;
1739
1740 /// \returns True if the two functions have compatible attributes for inlining
1741 /// purposes.
1742 LLVM_ABI bool areInlineCompatible(const Function *Caller,
1743 const Function *Callee) const;
1744
1745 /// Returns a penalty for invoking call \p Call in \p F.
1746 /// For example, if a function F calls a function G, which in turn calls
1747 /// function H, then getInlineCallPenalty(F, H()) would return the
1748 /// penalty of calling H from F, e.g. after inlining G into F.
1749 /// \p DefaultCallPenalty is passed to give a default penalty that
1750 /// the target can amend or override.
1751 LLVM_ABI unsigned getInlineCallPenalty(const Function *F,
1752 const CallBase &Call,
1753 unsigned DefaultCallPenalty) const;
1754
1755 /// \returns True if the caller and callee agree on how \p Types will be
1756 /// passed to or returned from the callee.
1757 /// to the callee.
1758 /// \param Types List of types to check.
1759 LLVM_ABI bool areTypesABICompatible(const Function *Caller,
1760 const Function *Callee,
1761 const ArrayRef<Type *> &Types) const;
1762
1763 /// The type of load/store indexing.
1765 MIM_Unindexed, ///< No indexing.
1766 MIM_PreInc, ///< Pre-incrementing.
1767 MIM_PreDec, ///< Pre-decrementing.
1768 MIM_PostInc, ///< Post-incrementing.
1769 MIM_PostDec ///< Post-decrementing.
1770 };
1771
1772 /// \returns True if the specified indexed load for the given type is legal.
1773 LLVM_ABI bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
1774
1775 /// \returns True if the specified indexed store for the given type is legal.
1776 LLVM_ABI bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
1777
1778 /// \returns The bitwidth of the largest vector type that should be used to
1779 /// load/store in the given address space.
1780 LLVM_ABI unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
1781
1782 /// \returns True if the load instruction is legal to vectorize.
1784
1785 /// \returns True if the store instruction is legal to vectorize.
1787
1788 /// \returns True if it is legal to vectorize the given load chain.
1789 LLVM_ABI bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1790 Align Alignment,
1791 unsigned AddrSpace) const;
1792
1793 /// \returns True if it is legal to vectorize the given store chain.
1794 LLVM_ABI bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1795 Align Alignment,
1796 unsigned AddrSpace) const;
1797
1798 /// \returns True if it is legal to vectorize the given reduction kind.
1800 ElementCount VF) const;
1801
1802 /// \returns True if the given type is supported for scalable vectors
1804
1805 /// \returns The new vector factor value if the target doesn't support \p
1806 /// SizeInBytes loads or has a better vector factor.
1807 LLVM_ABI unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1808 unsigned ChainSizeInBytes,
1809 VectorType *VecTy) const;
1810
1811 /// \returns The new vector factor value if the target doesn't support \p
1812 /// SizeInBytes stores or has a better vector factor.
1813 LLVM_ABI unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1814 unsigned ChainSizeInBytes,
1815 VectorType *VecTy) const;
1816
1817 /// \returns True if the target prefers fixed width vectorization if the
1818 /// loop vectorizer's cost-model assigns an equal cost to the fixed and
1819 /// scalable version of the vectorized loop.
1820 /// \p IsEpilogue is true if the decision is for the epilogue loop.
1821 LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const;
1822
1823 /// \returns True if target prefers SLP vectorizer with altermate opcode
1824 /// vectorization, false - otherwise.
1826
1827 /// \returns True if the target prefers reductions of \p Kind to be performed
1828 /// in the loop.
1829 LLVM_ABI bool preferInLoopReduction(RecurKind Kind, Type *Ty) const;
1830
1831 /// \returns True if the target prefers reductions select kept in the loop
1832 /// when tail folding. i.e.
1833 /// loop:
1834 /// p = phi (0, s)
1835 /// a = add (p, x)
1836 /// s = select (mask, a, p)
1837 /// vecreduce.add(s)
1838 ///
1839 /// As opposed to the normal scheme of p = phi (0, a) which allows the select
1840 /// to be pulled out of the loop. If the select(.., add, ..) can be predicated
1841 /// by the target, this can lead to cleaner code generation.
1843
1844 /// Return true if the loop vectorizer should consider vectorizing an
1845 /// otherwise scalar epilogue loop.
1847
1848 /// \returns True if the target wants to expand the given reduction intrinsic
1849 /// into a shuffle sequence.
1851
1853
1854 /// \returns The shuffle sequence pattern used to expand the given reduction
1855 /// intrinsic.
1858
1859 /// \returns the size cost of rematerializing a GlobalValue address relative
1860 /// to a stack reload.
1861 LLVM_ABI unsigned getGISelRematGlobalCost() const;
1862
1863 /// \returns the lower bound of a trip count to decide on vectorization
1864 /// while tail-folding.
1866
1867 /// \returns True if the target supports scalable vectors.
1868 LLVM_ABI bool supportsScalableVectors() const;
1869
1870 /// \return true when scalable vectorization is preferred.
1872
1873 /// \name Vector Predication Information
1874 /// @{
1875 /// Whether the target supports the %evl parameter of VP intrinsic efficiently
1876 /// in hardware. (see LLVM Language Reference - "Vector Predication
1877 /// Intrinsics"). Use of %evl is discouraged when that is not the case.
1878 LLVM_ABI bool hasActiveVectorLength() const;
1879
1880 /// Return true if sinking I's operands to the same basic block as I is
1881 /// profitable, e.g. because the operands can be folded into a target
1882 /// instruction during instruction selection. After calling the function
1883 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
1884 /// come first).
1887
1888 /// Return true if it's significantly cheaper to shift a vector by a uniform
1889 /// scalar than by an amount which will vary across each lane. On x86 before
1890 /// AVX2 for example, there is a "psllw" instruction for the former case, but
1891 /// no simple instruction for a general "a << b" operation on vectors.
1892 /// This should also apply to lowering for vector funnel shifts (rotates).
1894
1897 // keep the predicating parameter
1899 // where legal, discard the predicate parameter
1901 // transform into something else that is also predicating
1903 };
1904
1905 // How to transform the EVL parameter.
1906 // Legal: keep the EVL parameter as it is.
1907 // Discard: Ignore the EVL parameter where it is safe to do so.
1908 // Convert: Fold the EVL into the mask parameter.
1910
1911 // How to transform the operator.
1912 // Legal: The target supports this operator.
1913 // Convert: Convert this to a non-VP operation.
1914 // The 'Discard' strategy is invalid.
1916
1917 bool shouldDoNothing() const {
1918 return (EVLParamStrategy == Legal) && (OpStrategy == Legal);
1919 }
1922 };
1923
1924 /// \returns How the target needs this vector-predicated operation to be
1925 /// transformed.
1927 getVPLegalizationStrategy(const VPIntrinsic &PI) const;
1928 /// @}
1929
1930 /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb
1931 /// state.
1932 ///
1933 /// Used by the LowerTypeTests pass, which constructs an IR inline assembler
1934 /// node containing a jump table in a format suitable for the target, so it
1935 /// needs to know what format of jump table it can legally use.
1936 ///
1937 /// For non-Arm targets, this function isn't used. It defaults to returning
1938 /// false, but it shouldn't matter what it returns anyway.
1939 LLVM_ABI bool hasArmWideBranch(bool Thumb) const;
1940
1941 /// Returns a bitmask constructed from the target-features or fmv-features
1942 /// metadata of a function.
1943 LLVM_ABI APInt getFeatureMask(const Function &F) const;
1944
1945 /// Returns true if this is an instance of a function with multiple versions.
1946 LLVM_ABI bool isMultiversionedFunction(const Function &F) const;
1947
1948 /// \return The maximum number of function arguments the target supports.
1949 LLVM_ABI unsigned getMaxNumArgs() const;
1950
1951 /// \return For an array of given Size, return alignment boundary to
1952 /// pad to. Default is no padding.
1953 LLVM_ABI unsigned getNumBytesToPadGlobalArray(unsigned Size,
1954 Type *ArrayType) const;
1955
1956 /// @}
1957
1958 /// Collect kernel launch bounds for \p F into \p LB.
1960 const Function &F,
1961 SmallVectorImpl<std::pair<StringRef, int64_t>> &LB) const;
1962
1963 /// Returns true if GEP should not be used to index into vectors for this
1964 /// target.
1966
1967private:
1968 std::unique_ptr<const TargetTransformInfoImplBase> TTIImpl;
1969};
1970
1971/// Analysis pass providing the \c TargetTransformInfo.
1972///
1973/// The core idea of the TargetIRAnalysis is to expose an interface through
1974/// which LLVM targets can analyze and provide information about the middle
1975/// end's target-independent IR. This supports use cases such as target-aware
1976/// cost modeling of IR constructs.
1977///
1978/// This is a function analysis because much of the cost modeling for targets
1979/// is done in a subtarget specific way and LLVM supports compiling different
1980/// functions targeting different subtargets in order to support runtime
1981/// dispatch according to the observed subtarget.
1982class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
1983public:
1985
1986 /// Default construct a target IR analysis.
1987 ///
1988 /// This will use the module's datalayout to construct a baseline
1989 /// conservative TTI result.
1991
1992 /// Construct an IR analysis pass around a target-provide callback.
1993 ///
1994 /// The callback will be called with a particular function for which the TTI
1995 /// is needed and must return a TTI object for that function.
1996 LLVM_ABI
1997 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
1998
1999 // Value semantics. We spell out the constructors for MSVC.
2001 : TTICallback(Arg.TTICallback) {}
2003 : TTICallback(std::move(Arg.TTICallback)) {}
2005 TTICallback = RHS.TTICallback;
2006 return *this;
2007 }
2009 TTICallback = std::move(RHS.TTICallback);
2010 return *this;
2011 }
2012
2014
2015private:
2017 LLVM_ABI static AnalysisKey Key;
2018
2019 /// The callback used to produce a result.
2020 ///
2021 /// We use a completely opaque callback so that targets can provide whatever
2022 /// mechanism they desire for constructing the TTI for a given function.
2023 ///
2024 /// FIXME: Should we really use std::function? It's relatively inefficient.
2025 /// It might be possible to arrange for even stateful callbacks to outlive
2026 /// the analysis and thus use a function_ref which would be lighter weight.
2027 /// This may also be less error prone as the callback is likely to reference
2028 /// the external TargetMachine, and that reference needs to never dangle.
2029 std::function<Result(const Function &)> TTICallback;
2030
2031 /// Helper function used as the callback in the default constructor.
2032 static Result getDefaultTTI(const Function &F);
2033};
2034
2035/// Wrapper pass for TargetTransformInfo.
2036///
2037/// This pass can be constructed from a TTI object which it stores internally
2038/// and is queried by passes.
2040 TargetIRAnalysis TIRA;
2041 std::optional<TargetTransformInfo> TTI;
2042
2043 virtual void anchor();
2044
2045public:
2046 static char ID;
2047
2048 /// We must provide a default constructor for the pass but it should
2049 /// never be used.
2050 ///
2051 /// Use the constructor below or call one of the creation routines.
2053
2055
2057};
2058
2059/// Create an analysis pass wrapper around a TTI object.
2060///
2061/// This analysis pass just holds the TTI instance and makes it available to
2062/// clients.
2065
2066} // namespace llvm
2067
2068#endif
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Atomic ordering constants.
Analysis containing CSE Info
Definition CSEInfo.cpp:27
#define LLVM_ABI
Definition Compiler.h:213
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
TargetTransformInfo::VPLegalization VPLegalization
static cl::opt< bool > ForceNestedLoop("force-nested-hardware-loop", cl::Hidden, cl::init(false), cl::desc("Force allowance of nested hardware loops"))
static cl::opt< bool > ForceHardwareLoopPHI("force-hardware-loop-phi", cl::Hidden, cl::init(false), cl::desc("Force hardware loop counter to be updated through a phi"))
This header defines various interfaces for pass management in LLVM.
This file defines an InstructionCost class that is used when calculating the cost of an instruction,...
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
mir Rename Register Operands
uint64_t IntrinsicInst * II
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
Value * RHS
Class for arbitrary precision integers.
Definition APInt.h:78
an instruction to allocate memory on the stack
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
Class to represent array types.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition BasicBlock.h:62
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition InstrTypes.h:678
This is an important base class in LLVM.
Definition Constant.h:43
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition Dominators.h:165
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
ImmutablePass class - This class is used to provide information that does not need to be run.
Definition Pass.h:285
ImmutablePass(char &pid)
Definition Pass.h:287
The core instruction combiner logic.
static InstructionCost getInvalid(CostType Val=0)
Class to represent integer types.
Drive the analysis of interleaved memory accesses in the loop.
const TargetLibraryInfo * getLibInfo() const
const SmallVectorImpl< Type * > & getArgTypes() const
const SmallVectorImpl< const Value * > & getArgs() const
LLVM_ABI IntrinsicCostAttributes(Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarCost=InstructionCost::getInvalid(), bool TypeBasedOnly=false, TargetLibraryInfo const *LibInfo=nullptr)
InstructionCost getScalarizationCost() const
const IntrinsicInst * getInst() const
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
An instruction for reading from memory.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
The optimization diagnostic interface.
A set of analyses that are preserved following a run of a transformation pass.
Definition Analysis.h:112
Analysis providing profile information.
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
This class represents an analyzed expression in the program.
The main scalar evolution driver.
This is a 'bitvector' (really, a variable-sized bit array), optimized for the case when the array is ...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
Definition TypeSize.h:31
An instruction for storing to memory.
Multiway switch.
Analysis pass providing the TargetTransformInfo.
TargetIRAnalysis(const TargetIRAnalysis &Arg)
TargetIRAnalysis & operator=(const TargetIRAnalysis &RHS)
LLVM_ABI Result run(const Function &F, FunctionAnalysisManager &)
LLVM_ABI TargetIRAnalysis()
Default construct a target IR analysis.
TargetIRAnalysis & operator=(TargetIRAnalysis &&RHS)
TargetIRAnalysis(TargetIRAnalysis &&Arg)
Provides information about what library functions are available for the current target.
Base class for use as a mix-in that aids implementing a TargetTransformInfo-compatible class.
TargetTransformInfoWrapperPass()
We must provide a default constructor for the pass but it should never be used.
TargetTransformInfo & getTTI(const Function &F)
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
LLVM_ABI bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
LLVM_ABI Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType, bool CanCreate=true) const
LLVM_ABI bool isLegalToVectorizeLoad(LoadInst *LI) const
LLVM_ABI std::optional< unsigned > getVScaleForTuning() const
static LLVM_ABI CastContextHint getCastContextHint(const Instruction *I)
Calculates a CastContextHint from I.
LLVM_ABI unsigned getMaxNumArgs() const
LLVM_ABI bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const
Return false if a AS0 address cannot possibly alias a AS1 address.
LLVM_ABI bool isLegalMaskedScatter(Type *DataType, Align Alignment) const
Return true if the target supports masked scatter.
LLVM_ABI InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
LLVM_ABI bool shouldBuildLookupTables() const
Return true if switches should be turned into lookup tables for the target.
LLVM_ABI bool isLegalToVectorizeStore(StoreInst *SI) const
LLVM_ABI InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index=-1, const Value *Op0=nullptr, const Value *Op1=nullptr) const
LLVM_ABI InstructionCost getMulAccReductionCost(bool IsUnsigned, unsigned RedOpcode, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of an Add/...
LLVM_ABI bool enableAggressiveInterleaving(bool LoopHasReductions) const
Don't restrict interleaved unrolling to small loops.
LLVM_ABI InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
LLVM_ABI bool isLegalMaskedLoad(Type *DataType, Align Alignment, unsigned AddressSpace) const
Return true if the target supports masked load.
LLVM_ABI bool isMultiversionedFunction(const Function &F) const
Returns true if this is an instance of a function with multiple versions.
LLVM_ABI bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const
Return true if it is faster to check if a floating-point value is NaN (or not-NaN) versus a compariso...
LLVM_ABI bool supportsEfficientVectorElementLoadStore() const
If target has efficient vector element load/store instructions, it can return true here so that inser...
LLVM_ABI bool isAlwaysUniform(const Value *V) const
LLVM_ABI unsigned getAssumedAddrSpace(const Value *V) const
LLVM_ABI bool preferAlternateOpcodeVectorization() const
LLVM_ABI bool shouldDropLSRSolutionIfLessProfitable() const
Return true if LSR should drop a found solution if it's calculated to be less profitable than the bas...
LLVM_ABI bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const
Return true if LSR cost of C1 is lower than C2.
LLVM_ABI unsigned getPrefetchDistance() const
LLVM_ABI Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicElementSize=std::nullopt) const
LLVM_ABI bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const
Return true if the target supports masked expand load.
LLVM_ABI bool prefersVectorizedAddressing() const
Return true if target doesn't mind addresses in vectors.
LLVM_ABI InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo Op1Info={OK_AnyValue, OP_None}, OperandValueInfo Op2Info={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI bool hasBranchDivergence(const Function *F=nullptr) const
Return true if branch divergence exists.
LLVM_ABI MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const
bool invalidate(Function &, const PreservedAnalyses &, FunctionAnalysisManager::Invalidator &)
Handle the invalidation of this information.
LLVM_ABI void getUnrollingPreferences(Loop *L, ScalarEvolution &, UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const
Get target-customized preferences for the generic loop unrolling transformation.
LLVM_ABI bool shouldBuildLookupTablesForConstant(Constant *C) const
Return true if switches should be turned into lookup tables containing this constant value for the ta...
LLVM_ABI bool supportsTailCallFor(const CallBase *CB) const
If target supports tail call on CB.
LLVM_ABI std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
Targets can implement their own combinations for target-specific intrinsics.
LLVM_ABI bool isProfitableLSRChainElement(Instruction *I) const
LLVM_ABI TypeSize getRegisterBitWidth(RegisterKind K) const
LLVM_ABI unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const
Returns a penalty for invoking call Call in F.
LLVM_ABI bool hasActiveVectorLength() const
LLVM_ABI bool isExpensiveToSpeculativelyExecute(const Instruction *I) const
Return true if the cost of the instruction is too high to speculatively execute and should be kept be...
LLVM_ABI bool preferFixedOverScalableIfEqualCost(bool IsEpilogue) const
LLVM_ABI bool isLegalMaskedGather(Type *DataType, Align Alignment) const
Return true if the target supports masked gather.
LLVM_ABI InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
LLVM_ABI std::optional< unsigned > getMaxVScale() const
LLVM_ABI InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts, TTI::TargetCostKind CostKind) const
LLVM_ABI bool allowVectorElementIndexingUsingGEP() const
Returns true if GEP should not be used to index into vectors for this target.
LLVM_ABI InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, bool UseMaskForCond=false, bool UseMaskForGaps=false) const
LLVM_ABI bool isSingleThreaded() const
LLVM_ABI std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
Can be used to implement target-specific instruction combining.
LLVM_ABI bool enableOrderedReductions() const
Return true if we should be enabling ordered reductions for the target.
InstructionCost getInstructionCost(const User *U, TargetCostKind CostKind) const
This is a helper function which calls the three-argument getInstructionCost with Operands which are t...
LLVM_ABI unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const
LLVM_ABI InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
LLVM_ABI InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
LLVM_ABI InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of vector reduction intrinsics.
LLVM_ABI unsigned getAtomicMemIntrinsicMaxElementSize() const
LLVM_ABI InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
LLVM_ABI bool LSRWithInstrQueries() const
Return true if the loop strength reduce pass should make Instruction* based TTI queries to isLegalAdd...
LLVM_ABI unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
LLVM_ABI VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const
static LLVM_ABI PartialReductionExtendKind getPartialReductionExtendKind(Instruction *I)
Get the kind of extension that an instruction represents.
LLVM_ABI bool enableWritePrefetching() const
LLVM_ABI bool shouldTreatInstructionLikeSelect(const Instruction *I) const
Should the Select Optimization pass treat the given instruction like a select, potentially converting...
LLVM_ABI bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
LLVM_ABI bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
LLVM_ABI TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
Query the target what the preferred style of tail folding is.
LLVM_ABI InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType=nullptr, TargetCostKind CostKind=TCK_SizeAndLatency) const
Estimate the cost of a GEP operation when lowered.
LLVM_ABI bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
LLVM_ABI bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor, Align Alignment, unsigned AddrSpace) const
Return true is the target supports interleaved access for the given vector type VTy,...
LLVM_ABI unsigned getRegUsageForType(Type *Ty) const
Returns the estimated number of registers required to represent Ty.
LLVM_ABI bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const
\Returns true if the target supports broadcasting a load to a vector of type <NumElements x ElementTy...
LLVM_ABI bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const
LLVM_ABI std::pair< const Value *, unsigned > getPredicatedAddrSpace(const Value *V) const
LLVM_ABI InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of an extended reduction pattern, similar to getArithmeticReductionCost of a reduc...
LLVM_ABI unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
LLVM_ABI ReductionShuffle getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
LLVM_ABI bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0, Instruction *I=nullptr, int64_t ScalableOffset=0) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
LLVM_ABI PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const
Return hardware support for population count.
LLVM_ABI unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
LLVM_ABI bool isElementTypeLegalForScalableVector(Type *Ty) const
LLVM_ABI bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.gather intrinsics.
LLVM_ABI unsigned getMaxPrefetchIterationsAhead() const
LLVM_ABI bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const
Return true if globals in this address space can have initializers other than undef.
LLVM_ABI ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const
LLVM_ABI InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
LLVM_ABI bool enableMaskedInterleavedAccessVectorization() const
Enable matching of interleaved access groups that contain predicated accesses or gaps and therefore v...
LLVM_ABI InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty, TargetCostKind CostKind, Instruction *Inst=nullptr) const
Return the expected cost of materialization for the given integer immediate of the specified type for...
LLVM_ABI bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const
Return true if the target supports strided load.
LLVM_ABI TargetTransformInfo & operator=(TargetTransformInfo &&RHS)
LLVM_ABI InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF=FastMathFlags(), TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
LLVM_ABI InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
LLVM_ABI bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef< Type * > &Types) const
LLVM_ABI bool enableSelectOptimize() const
Should the Select Optimization pass be enabled and ran.
LLVM_ABI bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
Return any intrinsic address operand indexes which may be rewritten if they use a flat address space ...
OperandValueProperties
Additional properties of an operand's values.
LLVM_ABI int getInliningLastCallToStaticBonus() const
LLVM_ABI InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const PointersChainInfo &Info, Type *AccessTy, TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Estimate the cost of a chain of pointers (typically pointer operands of a chain of loads or stores wi...
LLVM_ABI bool isVScaleKnownToBeAPowerOfTwo() const
LLVM_ABI bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const
LLVM_ABI unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
LLVM_ABI bool isSourceOfDivergence(const Value *V) const
Returns whether V is a source of divergence.
LLVM_ABI bool isLegalICmpImmediate(int64_t Imm) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
LLVM_ABI bool isTypeLegal(Type *Ty) const
Return true if this type is legal.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
LLVM_ABI bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const
LLVM_ABI std::optional< unsigned > getCacheAssociativity(CacheLevel Level) const
LLVM_ABI bool isLegalNTLoad(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal load.
LLVM_ABI InstructionCost getMemcpyCost(const Instruction *I) const
LLVM_ABI unsigned adjustInliningThreshold(const CallBase *CB) const
LLVM_ABI bool isLegalAddImmediate(int64_t Imm) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
LLVM_ABI bool isTargetIntrinsicWithStructReturnOverloadAtField(Intrinsic::ID ID, int RetIdx) const
Identifies if the vector form of the intrinsic that returns a struct is overloaded at the struct elem...
LLVM_ABI unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
LLVM_ABI InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
LLVM_ABI bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) const
Return true if the target can save a compare for loop count, for example hardware loop saves a compar...
LLVM_ABI bool isTargetIntrinsicTriviallyScalarizable(Intrinsic::ID ID) const
LLVM_ABI Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
Rewrite intrinsic call II such that OldV will be replaced with NewV, which has a different address sp...
LLVM_ABI InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const
LLVM_ABI unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const
Some HW prefetchers can handle accesses up to a certain constant stride.
LLVM_ABI bool shouldPrefetchAddressSpace(unsigned AS) const
LLVM_ABI InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TargetCostKind CostKind) const
Return the expected cost of materializing for the given integer immediate of the specified type.
LLVM_ABI unsigned getMinVectorRegisterBitWidth() const
LLVM_ABI InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const
LLVM_ABI bool isLegalNTStore(Type *DataType, Align Alignment) const
Return true if the target supports nontemporal store.
LLVM_ABI InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, PartialReductionExtendKind OpAExtend, PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const
LLVM_ABI unsigned getFlatAddressSpace() const
Returns the address space ID for a target's 'flat' address space.
LLVM_ABI bool preferToKeepConstantsAttached(const Instruction &Inst, const Function &Fn) const
It can be advantageous to detach complex constants from their uses to make their generation cheaper.
LLVM_ABI bool hasArmWideBranch(bool Thumb) const
LLVM_ABI const char * getRegisterClassName(unsigned ClassID) const
LLVM_ABI bool preferEpilogueVectorization() const
Return true if the loop vectorizer should consider vectorizing an otherwise scalar epilogue loop.
LLVM_ABI bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const
LLVM_ABI BranchProbability getPredictableBranchThreshold() const
If a branch or a select condition is skewed in one direction by more than this factor,...
LLVM_ABI TargetTransformInfo(std::unique_ptr< const TargetTransformInfoImplBase > Impl)
Construct a TTI object using a type implementing the Concept API below.
LLVM_ABI bool preferInLoopReduction(RecurKind Kind, Type *Ty) const
LLVM_ABI unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
LLVM_ABI bool hasConditionalLoadStoreForType(Type *Ty, bool IsStore) const
LLVM_ABI unsigned getCacheLineSize() const
LLVM_ABI bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace=0, Align Alignment=Align(1), unsigned *Fast=nullptr) const
Determine if the target supports unaligned memory accesses.
LLVM_ABI InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
LLVM_ABI int getInlinerVectorBonusPercent() const
LLVM_ABI unsigned getEpilogueVectorizationMinVF() const
LLVM_ABI void collectKernelLaunchBounds(const Function &F, SmallVectorImpl< std::pair< StringRef, int64_t > > &LB) const
Collect kernel launch bounds for F into LB.
PopcntSupportKind
Flags indicating the kind of support for population count.
LLVM_ABI bool preferPredicatedReductionSelect() const
LLVM_ABI InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, Type *Ty) const
Return the expected cost for the given integer when optimising for size.
LLVM_ABI AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
Return the preferred addressing mode LSR should make efforts to generate.
LLVM_ABI bool isLoweredToCall(const Function *F) const
Test whether calls to a function lower to actual program function calls.
LLVM_ABI bool isLegalMaskedStore(Type *DataType, Align Alignment, unsigned AddressSpace) const
Return true if the target supports masked store.
LLVM_ABI bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
LLVM_ABI bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const
Query the target whether it would be profitable to convert the given loop into a hardware loop.
LLVM_ABI unsigned getInliningThresholdMultiplier() const
LLVM_ABI InstructionCost getBranchMispredictPenalty() const
Returns estimated penalty of a branch misprediction in latency.
LLVM_ABI unsigned getNumberOfRegisters(unsigned ClassID) const
LLVM_ABI bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask) const
Return true if this is an alternating opcode pattern that can be lowered to a single instruction on t...
LLVM_ABI bool isProfitableToHoist(Instruction *I) const
Return true if it is profitable to hoist instruction in the then/else to before if.
LLVM_ABI bool supportsScalableVectors() const
LLVM_ABI bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const
Return true if the given instruction (assumed to be a memory access instruction) has a volatile varia...
LLVM_ABI bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const
Return true if the target supports masked compress store.
LLVM_ABI std::optional< unsigned > getMinPageSize() const
LLVM_ABI bool isFPVectorizationPotentiallyUnsafe() const
Indicate that it is potentially unsafe to automatically vectorize floating-point operations because t...
LLVM_ABI InstructionCost getInsertExtractValueCost(unsigned Opcode, TTI::TargetCostKind CostKind) const
LLVM_ABI bool shouldBuildRelLookupTables() const
Return true if lookup tables should be turned into relative lookup tables.
LLVM_ABI unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, Type *ScalarValTy) const
LLVM_ABI std::optional< unsigned > getCacheSize(CacheLevel Level) const
LLVM_ABI std::optional< Value * > simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, bool &KnownBitsComputed) const
Can be used to implement target-specific instruction combining.
LLVM_ABI bool isLegalAddScalableImmediate(int64_t Imm) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
LLVM_ABI bool isTargetIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx) const
Identifies if the vector form of the intrinsic has a scalar operand.
LLVM_ABI bool hasDivRemOp(Type *DataType, bool IsSigned) const
Return true if the target has a unified operation to calculate division and remainder.
LLVM_ABI InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, const SmallBitVector &OpcodeMask, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Returns the cost estimation for alternating opcode pattern that can be lowered to a single instructio...
TargetCostConstants
Underlying constants for 'cost' values in this interface.
@ TCC_Expensive
The cost of a 'div' instruction on x86.
@ TCC_Free
Expected to fold away in lowering.
@ TCC_Basic
The cost of a typical 'add' instruction.
LLVM_ABI bool enableInterleavedAccessVectorization() const
Enable matching of interleaved access groups.
LLVM_ABI unsigned getMinTripCountTailFoldingThreshold() const
LLVM_ABI InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
LLVM_ABI unsigned getMaxInterleaveFactor(ElementCount VF) const
LLVM_ABI bool enableScalableVectorization() const
LLVM_ABI bool isVectorShiftByScalarCheap(Type *Ty) const
Return true if it's significantly cheaper to shift a vector by a uniform scalar than by an amount whi...
LLVM_ABI bool isNumRegsMajorCostOfLSR() const
Return true if LSR major cost is number of registers.
LLVM_ABI unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const
LLVM_ABI bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const
LLVM_ABI InstructionCost getExpandCompressMemoryOpCost(unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
LLVM_ABI unsigned getGISelRematGlobalCost() const
LLVM_ABI unsigned getNumBytesToPadGlobalArray(unsigned Size, Type *ArrayType) const
MemIndexedMode
The type of load/store indexing.
LLVM_ABI InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const
LLVM_ABI bool areInlineCompatible(const Function *Caller, const Function *Callee) const
LLVM_ABI bool useColdCCForColdCall(Function &F) const
Return true if the input function which is cold at all call sites, should use coldcc calling conventi...
LLVM_ABI InstructionCost getFPOpCost(Type *Ty) const
Return the expected cost of supporting the floating point operation of the specified type.
LLVM_ABI bool supportsTailCalls() const
If the target supports tail calls.
LLVM_ABI bool canMacroFuseCmp() const
Return true if the target can fuse a compare and branch.
LLVM_ABI bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const
Query the target whether the specified address space cast from FromAS to ToAS is valid.
LLVM_ABI unsigned getNumberOfParts(Type *Tp) const
LLVM_ABI InstructionCost getOperandsScalarizationOverhead(ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind) const
Estimate the overhead of scalarizing operands with the given types.
LLVM_ABI InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, const Instruction *I=nullptr) const
LLVM_ABI InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0) const
Return the cost of the scaling factor used in the addressing mode represented by AM for this target,...
LLVM_ABI bool isTruncateFree(Type *Ty1, Type *Ty2) const
Return true if it's free to truncate a value of type Ty1 to type Ty2.
LLVM_ABI bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
Return true if sinking I's operands to the same basic block as I is profitable, e....
LLVM_ABI void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize=std::nullopt) const
LLVM_ABI bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const
Query the target whether it would be prefered to create a predicated vector loop, which can avoid the...
LLVM_ABI bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const
Return true if the target forces scalarizing of llvm.masked.scatter intrinsics.
LLVM_ABI bool isTargetIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, int OpdIdx) const
Identifies if the vector form of the intrinsic is overloaded on the type of the operand at index OpdI...
LLVM_ABI bool haveFastSqrt(Type *Ty) const
Return true if the hardware has a fast square-root instruction.
LLVM_ABI bool shouldExpandReduction(const IntrinsicInst *II) const
LLVM_ABI uint64_t getMaxMemIntrinsicInlineSizeThreshold() const
Returns the maximum memset / memcpy size in bytes that still makes it profitable to inline the call.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
LLVM_ABI APInt getFeatureMask(const Function &F) const
Returns a bitmask constructed from the target-features or fmv-features metadata of a function.
LLVM_ABI void getPeelingPreferences(Loop *L, ScalarEvolution &SE, PeelingPreferences &PP) const
Get target-customized preferences for the generic loop peeling transformation.
LLVM_ABI InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency) const
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
CastContextHint
Represents a hint about the context in which a cast is used.
@ Reversed
The cast is used with a reversed load/store.
@ Masked
The cast is used with a masked load/store.
@ None
The cast is not used with a load/store of any kind.
@ Normal
The cast is used with a normal load/store.
@ Interleave
The cast is used with an interleaved load/store.
@ GatherScatter
The cast is used with a gather/scatter.
LLVM_ABI InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index, TTI::TargetCostKind CostKind) const
OperandValueKind
Additional information about an operand's possible values.
CacheLevel
The possible cache levels.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
This is the common base class for vector predication intrinsics.
LLVM Value Representation.
Definition Value.h:75
Base class of all SIMD vector types.
CallInst * Call
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
@ Length
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
AtomicOrdering
Atomic ordering for LLVM's memory model.
TargetTransformInfo TTI
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
LLVM_ABI ImmutablePass * createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)
Create an analysis pass wrapper around a TTI object.
RecurKind
These are the kinds of recurrences that we support.
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1869
@ DataAndControlFlowWithoutRuntimeCheck
Use predicate to control both data and control flow, but modify the trip count so that a runtime over...
@ DataWithEVL
Use predicated EVL instructions for tail-folding.
@ DataAndControlFlow
Use predicate to control both data and control flow.
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
AnalysisManager< Function > FunctionAnalysisManager
Convenience typedef for the Function analysis manager.
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:851
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
A CRTP mix-in that provides informational APIs needed for analysis passes.
Definition PassManager.h:93
A special type used by analysis passes to provide an address that identifies that particular analysis...
Definition Analysis.h:29
Attributes of a target dependent hardware loop.
LLVM_ABI bool canAnalyze(LoopInfo &LI)
LLVM_ABI bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
Information about a load/store intrinsic defined by the target.
Value * PtrVal
This is the pointer that the intrinsic is loading from or storing to.
InterleavedAccessInfo * IAI
TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL, InterleavedAccessInfo *IAI)
TargetLibraryInfo * TLI
LoopVectorizationLegality * LVL
unsigned Insns
TODO: Some of these could be merged.
Returns options for expansion of memcmp. IsZeroCmp is.
bool AllowPeeling
Allow peeling off loop iterations.
bool AllowLoopNestsPeeling
Allow peeling off loop iterations for loop nests.
bool PeelLast
Peel off the last PeelCount loop iterations.
bool PeelProfiledIterations
Allow peeling basing on profile.
unsigned PeelCount
A forced peeling factor (the number of bodied of the original loop that should be peeled off before t...
Describe known properties for a set of pointers.
unsigned IsKnownStride
True if distance between any two neigbouring pointers is a known value.
unsigned IsUnitStride
These properties only valid if SameBaseAddress is set.
unsigned IsSameBaseAddress
All the GEPs in a set have same base address.
Parameters that control the generic loop unrolling transformation.
unsigned Count
A forced unrolling factor (the number of concatenated bodies of the original loop in the unrolled loo...
bool UpperBound
Allow using trip count upper bound to unroll loops.
unsigned Threshold
The cost threshold for the unrolled loop.
bool Force
Apply loop unroll on any kind of loop (mainly to loops that fail runtime unrolling).
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
unsigned DefaultUnrollRuntimeCount
Default unroll count for loops with run-time trip count.
unsigned MaxPercentThresholdBoost
If complete unrolling will reduce the cost of the loop, we will boost the Threshold by a certain perc...
bool RuntimeUnrollMultiExit
Allow runtime unrolling multi-exit loops.
unsigned SCEVExpansionBudget
Don't allow runtime unrolling if expanding the trip count takes more than SCEVExpansionBudget.
bool AddAdditionalAccumulators
Allow unrolling to add parallel reduction phis.
unsigned UnrollAndJamInnerLoopThreshold
Threshold for unroll and jam, for inner loop size.
unsigned MaxIterationsCountToAnalyze
Don't allow loop unrolling to simulate more than this number of iterations when checking full unroll ...
bool AllowRemainder
Allow generation of a loop remainder (extra iterations after unroll).
bool UnrollAndJam
Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollRemainder
Allow unrolling of all the iterations of the runtime loop remainder.
unsigned FullUnrollMaxCount
Set the maximum unrolling factor for full unrolling.
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).
bool AllowExpensiveTripCount
Allow emitting expensive instructions (such as divisions) when computing the trip count of a loop for...
unsigned MaxUpperBound
Set the maximum upper bound of trip count.
VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy)