LLVM 22.0.0git
VPlan.cpp
Go to the documentation of this file.
1//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This is the LLVM vectorization plan. It represents a candidate for
11/// vectorization, allowing to plan and optimize how to vectorize a given loop
12/// before generating LLVM-IR.
13/// The vectorizer uses vectorization plans to estimate the costs of potential
14/// candidates and if profitable to execute the desired plan, generating vector
15/// LLVM-IR code.
16///
17//===----------------------------------------------------------------------===//
18
19#include "VPlan.h"
21#include "VPlanCFG.h"
22#include "VPlanDominatorTree.h"
23#include "VPlanHelpers.h"
24#include "VPlanPatternMatch.h"
25#include "VPlanTransforms.h"
26#include "VPlanUtils.h"
28#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/Twine.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/CFG.h"
36#include "llvm/IR/IRBuilder.h"
37#include "llvm/IR/Instruction.h"
39#include "llvm/IR/Type.h"
40#include "llvm/IR/Value.h"
43#include "llvm/Support/Debug.h"
48#include <cassert>
49#include <string>
50
51using namespace llvm;
52using namespace llvm::VPlanPatternMatch;
53
54namespace llvm {
56}
57
59
61 "vplan-print-in-dot-format", cl::Hidden,
62 cl::desc("Use dot format instead of plain text when dumping VPlans"));
63
64#define DEBUG_TYPE "loop-vectorize"
65
66#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
68 const VPBasicBlock *Parent = R.getParent();
69 VPSlotTracker SlotTracker(Parent ? Parent->getPlan() : nullptr);
70 R.print(OS, "", SlotTracker);
71 return OS;
72}
73#endif
74
76 const ElementCount &VF) const {
77 switch (LaneKind) {
79 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
80 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
81 Builder.getInt32(VF.getKnownMinValue() - Lane));
83 return Builder.getInt32(Lane);
84 }
85 llvm_unreachable("Unknown lane kind");
86}
87
88VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
89 : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
90 if (Def)
91 Def->addDefinedValue(this);
92}
93
95 assert(Users.empty() && "trying to delete a VPValue with remaining users");
96 if (Def)
97 Def->removeDefinedValue(this);
98}
99
100#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
102 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
103 R->print(OS, "", SlotTracker);
104 else
106}
107
108void VPValue::dump() const {
109 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
111 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
113 dbgs() << "\n";
114}
115
116void VPDef::dump() const {
117 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
119 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
120 print(dbgs(), "", SlotTracker);
121 dbgs() << "\n";
122}
123#endif
124
126 return cast_or_null<VPRecipeBase>(Def);
127}
128
130 return cast_or_null<VPRecipeBase>(Def);
131}
132
133// Get the top-most entry block of \p Start. This is the entry block of the
134// containing VPlan. This function is templated to support both const and non-const blocks
135template <typename T> static T *getPlanEntry(T *Start) {
136 T *Next = Start;
137 T *Current = Start;
138 while ((Next = Next->getParent()))
139 Current = Next;
140
141 SmallSetVector<T *, 8> WorkList;
142 WorkList.insert(Current);
143
144 for (unsigned i = 0; i < WorkList.size(); i++) {
145 T *Current = WorkList[i];
146 if (!Current->hasPredecessors())
147 return Current;
148 auto &Predecessors = Current->getPredecessors();
149 WorkList.insert_range(Predecessors);
150 }
151
152 llvm_unreachable("VPlan without any entry node without predecessors");
153}
154
155VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
156
157const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
158
159/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
161 const VPBlockBase *Block = this;
162 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
163 Block = Region->getEntry();
164 return cast<VPBasicBlock>(Block);
165}
166
168 VPBlockBase *Block = this;
169 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
170 Block = Region->getEntry();
171 return cast<VPBasicBlock>(Block);
172}
173
174void VPBlockBase::setPlan(VPlan *ParentPlan) {
175 assert(ParentPlan->getEntry() == this && "Can only set plan on its entry.");
176 Plan = ParentPlan;
177}
178
179/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
181 const VPBlockBase *Block = this;
182 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
183 Block = Region->getExiting();
184 return cast<VPBasicBlock>(Block);
185}
186
188 VPBlockBase *Block = this;
189 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
190 Block = Region->getExiting();
191 return cast<VPBasicBlock>(Block);
192}
193
195 if (!Successors.empty() || !Parent)
196 return this;
197 assert(Parent->getExiting() == this &&
198 "Block w/o successors not the exiting block of its parent.");
199 return Parent->getEnclosingBlockWithSuccessors();
200}
201
203 if (!Predecessors.empty() || !Parent)
204 return this;
205 assert(Parent->getEntry() == this &&
206 "Block w/o predecessors not the entry of its parent.");
207 return Parent->getEnclosingBlockWithPredecessors();
208}
209
211 const VPDominatorTree &VPDT) {
212 auto *VPBB = dyn_cast<VPBasicBlock>(VPB);
213 if (!VPBB)
214 return false;
215
216 // If VPBB is in a region R, VPBB is a loop header if R is a loop region with
217 // VPBB as its entry, i.e., free of predecessors.
218 if (auto *R = VPBB->getParent())
219 return !R->isReplicator() && !VPBB->hasPredecessors();
220
221 // A header dominates its second predecessor (the latch), with the other
222 // predecessor being the preheader
223 return VPB->getPredecessors().size() == 2 &&
224 VPDT.dominates(VPB, VPB->getPredecessors()[1]);
225}
226
228 const VPDominatorTree &VPDT) {
229 // A latch has a header as its second successor, with its other successor
230 // leaving the loop. A preheader OTOH has a header as its first (and only)
231 // successor.
232 return VPB->getNumSuccessors() == 2 &&
233 VPBlockUtils::isHeader(VPB->getSuccessors()[1], VPDT);
234}
235
237 iterator It = begin();
238 while (It != end() && It->isPhi())
239 It++;
240 return It;
241}
242
244 ElementCount VF, LoopInfo *LI,
246 IRBuilderBase &Builder, VPlan *Plan,
247 Loop *CurrentParentLoop, Type *CanonicalIVTy)
248 : TTI(TTI), VF(VF), CFG(DT), LI(LI), AC(AC), Builder(Builder), Plan(Plan),
249 CurrentParentLoop(CurrentParentLoop), TypeAnalysis(*Plan), VPDT(*Plan) {}
250
251Value *VPTransformState::get(const VPValue *Def, const VPLane &Lane) {
252 if (Def->isLiveIn())
253 return Def->getLiveInIRValue();
254
255 if (hasScalarValue(Def, Lane))
256 return Data.VPV2Scalars[Def][Lane.mapToCacheIndex(VF)];
257
258 if (!Lane.isFirstLane() && vputils::isSingleScalar(Def) &&
260 return Data.VPV2Scalars[Def][0];
261 }
262
263 // Look through BuildVector to avoid redundant extracts.
264 // TODO: Remove once replicate regions are unrolled explicitly.
265 if (Lane.getKind() == VPLane::Kind::First && match(Def, m_BuildVector())) {
266 auto *BuildVector = cast<VPInstruction>(Def);
267 return get(BuildVector->getOperand(Lane.getKnownLane()), true);
268 }
269
271 auto *VecPart = Data.VPV2Vector[Def];
272 if (!VecPart->getType()->isVectorTy()) {
273 assert(Lane.isFirstLane() && "cannot get lane > 0 for scalar");
274 return VecPart;
275 }
276 // TODO: Cache created scalar values.
277 Value *LaneV = Lane.getAsRuntimeExpr(Builder, VF);
278 auto *Extract = Builder.CreateExtractElement(VecPart, LaneV);
279 // set(Def, Extract, Instance);
280 return Extract;
281}
282
283Value *VPTransformState::get(const VPValue *Def, bool NeedsScalar) {
284 if (NeedsScalar) {
285 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def) ||
287 (hasScalarValue(Def, VPLane(0)) &&
288 Data.VPV2Scalars[Def].size() == 1)) &&
289 "Trying to access a single scalar per part but has multiple scalars "
290 "per part.");
291 return get(Def, VPLane(0));
292 }
293
294 // If Values have been set for this Def return the one relevant for \p Part.
295 if (hasVectorValue(Def))
296 return Data.VPV2Vector[Def];
297
298 auto GetBroadcastInstrs = [this](Value *V) {
299 if (VF.isScalar())
300 return V;
301 // Broadcast the scalar into all locations in the vector.
302 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
303 return Shuf;
304 };
305
306 if (!hasScalarValue(Def, {0})) {
307 assert(Def->isLiveIn() && "expected a live-in");
308 Value *IRV = Def->getLiveInIRValue();
309 Value *B = GetBroadcastInstrs(IRV);
310 set(Def, B);
311 return B;
312 }
313
314 Value *ScalarValue = get(Def, VPLane(0));
315 // If we aren't vectorizing, we can just copy the scalar map values over
316 // to the vector map.
317 if (VF.isScalar()) {
318 set(Def, ScalarValue);
319 return ScalarValue;
320 }
321
322 bool IsSingleScalar = vputils::isSingleScalar(Def);
323
324 VPLane LastLane(IsSingleScalar ? 0 : VF.getFixedValue() - 1);
325 // Check if there is a scalar value for the selected lane.
326 if (!hasScalarValue(Def, LastLane)) {
327 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
328 // VPExpandSCEVRecipes can also be a single scalar.
330 VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
331 "unexpected recipe found to be invariant");
332 IsSingleScalar = true;
333 LastLane = 0;
334 }
335
336 auto *LastInst = cast<Instruction>(get(Def, LastLane));
337 // Set the insert point after the last scalarized instruction or after the
338 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
339 // will directly follow the scalar definitions.
340 auto OldIP = Builder.saveIP();
341 auto NewIP = isa<PHINode>(LastInst)
342 ? LastInst->getParent()->getFirstNonPHIIt()
343 : std::next(BasicBlock::iterator(LastInst));
344 Builder.SetInsertPoint(&*NewIP);
345
346 // However, if we are vectorizing, we need to construct the vector values.
347 // If the value is known to be uniform after vectorization, we can just
348 // broadcast the scalar value corresponding to lane zero. Otherwise, we
349 // construct the vector values using insertelement instructions. Since the
350 // resulting vectors are stored in State, we will only generate the
351 // insertelements once.
352 Value *VectorValue = nullptr;
353 if (IsSingleScalar) {
354 VectorValue = GetBroadcastInstrs(ScalarValue);
355 set(Def, VectorValue);
356 } else {
357 assert(!VF.isScalable() && "VF is assumed to be non scalable.");
358 assert(isa<VPInstruction>(Def) &&
359 "Explicit BuildVector recipes must have"
360 "handled packing for non-VPInstructions.");
361 // Initialize packing with insertelements to start from poison.
362 VectorValue = PoisonValue::get(toVectorizedTy(LastInst->getType(), VF));
363 for (unsigned Lane = 0; Lane < VF.getFixedValue(); ++Lane)
364 VectorValue = packScalarIntoVectorizedValue(Def, VectorValue, Lane);
365 set(Def, VectorValue);
366 }
367 Builder.restoreIP(OldIP);
368 return VectorValue;
369}
372 const DILocation *DIL = DL;
373 // When a FSDiscriminator is enabled, we don't need to add the multiply
374 // factors to the discriminators.
375 if (DIL &&
377 ->getParent()
380 // FIXME: For scalable vectors, assume vscale=1.
381 unsigned UF = Plan->getUF();
382 auto NewDIL =
384 if (NewDIL)
386 else
387 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
388 << DIL->getFilename() << " Line: " << DIL->getLine());
389 } else
391}
392
394 Value *WideValue,
395 const VPLane &Lane) {
396 Value *ScalarInst = get(Def, Lane);
397 Value *LaneExpr = Lane.getAsRuntimeExpr(Builder, VF);
398 if (auto *StructTy = dyn_cast<StructType>(WideValue->getType())) {
399 // We must handle each element of a vectorized struct type.
400 for (unsigned I = 0, E = StructTy->getNumElements(); I != E; I++) {
401 Value *ScalarValue = Builder.CreateExtractValue(ScalarInst, I);
402 Value *VectorValue = Builder.CreateExtractValue(WideValue, I);
403 VectorValue =
404 Builder.CreateInsertElement(VectorValue, ScalarValue, LaneExpr);
405 WideValue = Builder.CreateInsertValue(WideValue, VectorValue, I);
406 }
407 } else {
408 WideValue = Builder.CreateInsertElement(WideValue, ScalarInst, LaneExpr);
409 }
410 return WideValue;
411}
412
413BasicBlock *VPBasicBlock::createEmptyBasicBlock(VPTransformState &State) {
414 auto &CFG = State.CFG;
415 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
416 // Pred stands for Predessor. Prev stands for Previous - last visited/created.
417 BasicBlock *PrevBB = CFG.PrevBB;
418 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
419 PrevBB->getParent(), CFG.ExitBB);
420 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
421
422 return NewBB;
423}
424
426 auto &CFG = State.CFG;
427 BasicBlock *NewBB = CFG.VPBB2IRBB[this];
428
429 // Register NewBB in its loop. In innermost loops its the same for all
430 // BB's.
431 Loop *ParentLoop = State.CurrentParentLoop;
432 // If this block has a sole successor that is an exit block or is an exit
433 // block itself then it needs adding to the same parent loop as the exit
434 // block.
435 VPBlockBase *SuccOrExitVPB = getSingleSuccessor();
436 SuccOrExitVPB = SuccOrExitVPB ? SuccOrExitVPB : this;
437 if (State.Plan->isExitBlock(SuccOrExitVPB)) {
438 ParentLoop = State.LI->getLoopFor(
439 cast<VPIRBasicBlock>(SuccOrExitVPB)->getIRBasicBlock());
440 }
441
442 if (ParentLoop && !State.LI->getLoopFor(NewBB))
443 ParentLoop->addBasicBlockToLoop(NewBB, *State.LI);
444
446 if (VPBlockUtils::isHeader(this, State.VPDT)) {
447 // There's no block for the latch yet, connect to the preheader only.
448 Preds = {getPredecessors()[0]};
449 } else {
450 Preds = to_vector(getPredecessors());
451 }
452
453 // Hook up the new basic block to its predecessors.
454 for (VPBlockBase *PredVPBlock : Preds) {
455 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
456 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
457 assert(CFG.VPBB2IRBB.contains(PredVPBB) &&
458 "Predecessor basic-block not found building successor.");
459 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
460 auto *PredBBTerminator = PredBB->getTerminator();
461 LLVM_DEBUG(dbgs() << "LV: draw edge from " << PredBB->getName() << '\n');
462
463 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
464 if (isa<UnreachableInst>(PredBBTerminator)) {
465 assert(PredVPSuccessors.size() == 1 &&
466 "Predecessor ending w/o branch must have single successor.");
467 DebugLoc DL = PredBBTerminator->getDebugLoc();
468 PredBBTerminator->eraseFromParent();
469 auto *Br = BranchInst::Create(NewBB, PredBB);
470 Br->setDebugLoc(DL);
471 } else if (TermBr && !TermBr->isConditional()) {
472 TermBr->setSuccessor(0, NewBB);
473 } else {
474 // Set each forward successor here when it is created, excluding
475 // backedges. A backward successor is set when the branch is created.
476 // Branches to VPIRBasicBlocks must have the same successors in VPlan as
477 // in the original IR, except when the predecessor is the entry block.
478 // This enables including SCEV and memory runtime check blocks in VPlan.
479 // TODO: Remove exception by modeling the terminator of entry block using
480 // BranchOnCond.
481 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
482 assert((TermBr && (!TermBr->getSuccessor(idx) ||
483 (isa<VPIRBasicBlock>(this) &&
484 (TermBr->getSuccessor(idx) == NewBB ||
485 PredVPBlock == getPlan()->getEntry())))) &&
486 "Trying to reset an existing successor block.");
487 TermBr->setSuccessor(idx, NewBB);
488 }
489 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
490 }
491}
492
495 "VPIRBasicBlock can have at most two successors at the moment!");
496 // Move completely disconnected blocks to their final position.
497 if (IRBB->hasNPredecessors(0) && succ_begin(IRBB) == succ_end(IRBB))
498 IRBB->moveAfter(State->CFG.PrevBB);
499 State->Builder.SetInsertPoint(IRBB->getTerminator());
500 State->CFG.PrevBB = IRBB;
501 State->CFG.VPBB2IRBB[this] = IRBB;
502 executeRecipes(State, IRBB);
503 // Create a branch instruction to terminate IRBB if one was not created yet
504 // and is needed.
505 if (getSingleSuccessor() && isa<UnreachableInst>(IRBB->getTerminator())) {
506 auto *Br = State->Builder.CreateBr(IRBB);
507 Br->setOperand(0, nullptr);
509 } else {
510 assert(
511 (getNumSuccessors() == 0 || isa<BranchInst>(IRBB->getTerminator())) &&
512 "other blocks must be terminated by a branch");
513 }
514
515 connectToPredecessors(*State);
516}
517
519 auto *NewBlock = getPlan()->createEmptyVPIRBasicBlock(IRBB);
520 for (VPRecipeBase &R : Recipes)
521 NewBlock->appendRecipe(R.clone());
522 return NewBlock;
523}
524
526 bool Replica = bool(State->Lane);
527 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
528
529 if (VPBlockUtils::isHeader(this, State->VPDT)) {
530 // Create and register the new vector loop.
531 Loop *PrevParentLoop = State->CurrentParentLoop;
532 State->CurrentParentLoop = State->LI->AllocateLoop();
533
534 // Insert the new loop into the loop nest and register the new basic blocks
535 // before calling any utilities such as SCEV that require valid LoopInfo.
536 if (PrevParentLoop)
537 PrevParentLoop->addChildLoop(State->CurrentParentLoop);
538 else
539 State->LI->addTopLevelLoop(State->CurrentParentLoop);
540 }
541
542 auto IsReplicateRegion = [](VPBlockBase *BB) {
543 auto *R = dyn_cast_or_null<VPRegionBlock>(BB);
544 assert((!R || R->isReplicator()) &&
545 "only replicate region blocks should remain");
546 return R;
547 };
548 // 1. Create an IR basic block.
549 if ((Replica && this == getParent()->getEntry()) ||
550 IsReplicateRegion(getSingleHierarchicalPredecessor())) {
551 // Reuse the previous basic block if the current VPBB is either
552 // * the entry to a replicate region, or
553 // * the exit of a replicate region.
554 State->CFG.VPBB2IRBB[this] = NewBB;
555 } else {
556 NewBB = createEmptyBasicBlock(*State);
557
558 State->Builder.SetInsertPoint(NewBB);
559 // Temporarily terminate with unreachable until CFG is rewired.
560 UnreachableInst *Terminator = State->Builder.CreateUnreachable();
561 State->Builder.SetInsertPoint(Terminator);
562
563 State->CFG.PrevBB = NewBB;
564 State->CFG.VPBB2IRBB[this] = NewBB;
565 connectToPredecessors(*State);
566 }
567
568 // 2. Fill the IR basic block with IR instructions.
569 executeRecipes(State, NewBB);
570
571 // If this block is a latch, update CurrentParentLoop.
572 if (VPBlockUtils::isLatch(this, State->VPDT))
574}
575
577 auto *NewBlock = getPlan()->createVPBasicBlock(getName());
578 for (VPRecipeBase &R : *this)
579 NewBlock->appendRecipe(R.clone());
580 return NewBlock;
581}
582
584 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB: " << getName()
585 << " in BB: " << BB->getName() << '\n');
586
587 State->CFG.PrevVPBB = this;
588
589 for (VPRecipeBase &Recipe : Recipes) {
590 State->setDebugLocFrom(Recipe.getDebugLoc());
591 Recipe.execute(*State);
592 }
593
594 LLVM_DEBUG(dbgs() << "LV: filled BB: " << *BB);
595}
596
598 assert((SplitAt == end() || SplitAt->getParent() == this) &&
599 "can only split at a position in the same block");
600
601 // Create new empty block after the block to split.
602 auto *SplitBlock = getPlan()->createVPBasicBlock(getName() + ".split");
604
605 // Finally, move the recipes starting at SplitAt to new block.
606 for (VPRecipeBase &ToMove :
607 make_early_inc_range(make_range(SplitAt, this->end())))
608 ToMove.moveBefore(*SplitBlock, SplitBlock->end());
609
610 return SplitBlock;
611}
612
613/// Return the enclosing loop region for region \p P. The templated version is
614/// used to support both const and non-const block arguments.
615template <typename T> static T *getEnclosingLoopRegionForRegion(T *P) {
616 if (P && P->isReplicator()) {
617 P = P->getParent();
618 // Multiple loop regions can be nested, but replicate regions can only be
619 // nested inside a loop region or must be outside any other region.
620 assert((!P || !P->isReplicator()) && "unexpected nested replicate regions");
621 }
622 return P;
623}
624
627}
628
631}
632
633static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
634 if (VPBB->empty()) {
635 assert(
636 VPBB->getNumSuccessors() < 2 &&
637 "block with multiple successors doesn't have a recipe as terminator");
638 return false;
639 }
640
641 const VPRecipeBase *R = &VPBB->back();
642 bool IsSwitch = isa<VPInstruction>(R) &&
643 cast<VPInstruction>(R)->getOpcode() == Instruction::Switch;
644 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
647 (void)IsCondBranch;
648 (void)IsSwitch;
649 if (VPBB->getNumSuccessors() == 2 ||
650 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
651 assert((IsCondBranch || IsSwitch) &&
652 "block with multiple successors not terminated by "
653 "conditional branch nor switch recipe");
654
655 return true;
656 }
657
658 if (VPBB->getNumSuccessors() > 2) {
659 assert(IsSwitch && "block with more than 2 successors not terminated by "
660 "a switch recipe");
661 return true;
662 }
663
664 assert(
665 !IsCondBranch &&
666 "block with 0 or 1 successors terminated by conditional branch recipe");
667 return false;
668}
669
671 if (hasConditionalTerminator(this))
672 return &back();
673 return nullptr;
674}
675
677 if (hasConditionalTerminator(this))
678 return &back();
679 return nullptr;
680}
681
683 return getParent() && getParent()->getExitingBasicBlock() == this;
684}
685
686#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
689 print(O, "", SlotTracker);
690}
691
692void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
693 if (getSuccessors().empty()) {
694 O << Indent << "No successors\n";
695 } else {
696 O << Indent << "Successor(s): ";
697 ListSeparator LS;
698 for (auto *Succ : getSuccessors())
699 O << LS << Succ->getName();
700 O << '\n';
701 }
702}
703
704void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
705 VPSlotTracker &SlotTracker) const {
706 O << Indent << getName() << ":\n";
707
708 auto RecipeIndent = Indent + " ";
709 for (const VPRecipeBase &Recipe : *this) {
710 Recipe.print(O, RecipeIndent, SlotTracker);
711 O << '\n';
712 }
713
714 printSuccessors(O, Indent);
715}
716#endif
717
718static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
719
720// Clone the CFG for all nodes reachable from \p Entry, this includes cloning
721// the blocks and their recipes. Operands of cloned recipes will NOT be updated.
722// Remapping of operands must be done separately. Returns a pair with the new
723// entry and exiting blocks of the cloned region. If \p Entry isn't part of a
724// region, return nullptr for the exiting block.
725static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
727 VPBlockBase *Exiting = nullptr;
728 bool InRegion = Entry->getParent();
729 // First, clone blocks reachable from Entry.
730 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
731 VPBlockBase *NewBB = BB->clone();
732 Old2NewVPBlocks[BB] = NewBB;
733 if (InRegion && BB->getNumSuccessors() == 0) {
734 assert(!Exiting && "Multiple exiting blocks?");
735 Exiting = BB;
736 }
737 }
738 assert((!InRegion || Exiting) && "regions must have a single exiting block");
739
740 // Second, update the predecessors & successors of the cloned blocks.
741 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
742 VPBlockBase *NewBB = Old2NewVPBlocks[BB];
744 for (VPBlockBase *Pred : BB->getPredecessors()) {
745 NewPreds.push_back(Old2NewVPBlocks[Pred]);
746 }
747 NewBB->setPredecessors(NewPreds);
749 for (VPBlockBase *Succ : BB->successors()) {
750 NewSuccs.push_back(Old2NewVPBlocks[Succ]);
751 }
752 NewBB->setSuccessors(NewSuccs);
753 }
754
755#if !defined(NDEBUG)
756 // Verify that the order of predecessors and successors matches in the cloned
757 // version.
758 for (const auto &[OldBB, NewBB] :
760 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
761 for (const auto &[OldPred, NewPred] :
762 zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
763 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
764
765 for (const auto &[OldSucc, NewSucc] :
766 zip(OldBB->successors(), NewBB->successors()))
767 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
768 }
769#endif
770
771 return std::make_pair(Old2NewVPBlocks[Entry],
772 Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
773}
774
776 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
777 auto *NewRegion = getPlan()->createVPRegionBlock(NewEntry, NewExiting,
778 getName(), isReplicator());
779 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
780 Block->setParent(NewRegion);
781 return NewRegion;
782}
783
786 "Loop regions should have been lowered to plain CFG");
787 assert(!State->Lane && "Replicating a Region with non-null instance.");
788 assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
789
791 Entry);
792 State->Lane = VPLane(0);
793 for (unsigned Lane = 0, VF = State->VF.getFixedValue(); Lane < VF; ++Lane) {
794 State->Lane = VPLane(Lane, VPLane::Kind::First);
795 // Visit the VPBlocks connected to \p this, starting from it.
796 for (VPBlockBase *Block : RPOT) {
797 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
798 Block->execute(State);
799 }
800 }
801
802 // Exit replicating mode.
803 State->Lane.reset();
804}
805
808 for (VPRecipeBase &R : Recipes)
809 Cost += R.cost(VF, Ctx);
810 return Cost;
811}
812
814 const VPBlockBase *Pred = nullptr;
815 if (hasPredecessors()) {
816 Pred = getPredecessors()[Idx];
817 } else {
818 auto *Region = getParent();
819 assert(Region && !Region->isReplicator() && Region->getEntry() == this &&
820 "must be in the entry block of a non-replicate region");
821 assert(Idx < 2 && Region->getNumPredecessors() == 1 &&
822 "loop region has a single predecessor (preheader), its entry block "
823 "has 2 incoming blocks");
824
825 // Idx == 0 selects the predecessor of the region, Idx == 1 selects the
826 // region itself whose exiting block feeds the phi across the backedge.
827 Pred = Idx == 0 ? Region->getSinglePredecessor() : Region;
828 }
829 return Pred->getExitingBasicBlock();
830}
831
833 if (!isReplicator()) {
836 Cost += Block->cost(VF, Ctx);
837 InstructionCost BackedgeCost =
838 ForceTargetInstructionCost.getNumOccurrences()
839 ? InstructionCost(ForceTargetInstructionCost.getNumOccurrences())
840 : Ctx.TTI.getCFInstrCost(Instruction::Br, Ctx.CostKind);
841 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
842 << ": vector loop backedge\n");
843 Cost += BackedgeCost;
844 return Cost;
845 }
846
847 // Compute the cost of a replicate region. Replicating isn't supported for
848 // scalable vectors, return an invalid cost for them.
849 // TODO: Discard scalable VPlans with replicate recipes earlier after
850 // construction.
851 if (VF.isScalable())
853
854 // First compute the cost of the conditionally executed recipes, followed by
855 // account for the branching cost, except if the mask is a header mask or
856 // uniform condition.
857 using namespace llvm::VPlanPatternMatch;
858 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
859 InstructionCost ThenCost = Then->cost(VF, Ctx);
860
861 // For the scalar case, we may not always execute the original predicated
862 // block, Thus, scale the block's cost by the probability of executing it.
863 if (VF.isScalar())
864 return ThenCost / getPredBlockCostDivisor(Ctx.CostKind);
865
866 return ThenCost;
867}
868
869#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
871 VPSlotTracker &SlotTracker) const {
872 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
873 auto NewIndent = Indent + " ";
874 for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
875 O << '\n';
876 BlockBase->print(O, NewIndent, SlotTracker);
877 }
878 O << Indent << "}\n";
879
880 printSuccessors(O, Indent);
881}
882#endif
883
885 auto *Header = cast<VPBasicBlock>(getEntry());
886 if (auto *CanIV = dyn_cast<VPCanonicalIVPHIRecipe>(&Header->front())) {
887 assert(this == getPlan()->getVectorLoopRegion() &&
888 "Canonical IV must be in the entry of the top-level loop region");
889 auto *ScalarR = VPBuilder(CanIV).createScalarPhi(
890 {CanIV->getStartValue(), CanIV->getBackedgeValue()},
891 CanIV->getDebugLoc(), "index");
892 CanIV->replaceAllUsesWith(ScalarR);
893 CanIV->eraseFromParent();
894 }
895
896 VPBlockBase *Preheader = getSinglePredecessor();
897 auto *ExitingLatch = cast<VPBasicBlock>(getExiting());
899 VPBlockUtils::disconnectBlocks(Preheader, this);
900 VPBlockUtils::disconnectBlocks(this, Middle);
901
902 for (VPBlockBase *VPB : vp_depth_first_shallow(Entry))
903 VPB->setParent(getParent());
904
905 VPBlockUtils::connectBlocks(Preheader, Header);
906 VPBlockUtils::connectBlocks(ExitingLatch, Middle);
907 VPBlockUtils::connectBlocks(ExitingLatch, Header);
908}
909
910VPlan::VPlan(Loop *L) {
911 setEntry(createVPIRBasicBlock(L->getLoopPreheader()));
912 ScalarHeader = createVPIRBasicBlock(L->getHeader());
913
914 SmallVector<BasicBlock *> IRExitBlocks;
915 L->getUniqueExitBlocks(IRExitBlocks);
916 for (BasicBlock *EB : IRExitBlocks)
917 ExitBlocks.push_back(createVPIRBasicBlock(EB));
918}
919
921 VPValue DummyValue;
922
923 for (auto *VPB : CreatedBlocks) {
924 if (auto *VPBB = dyn_cast<VPBasicBlock>(VPB)) {
925 // Replace all operands of recipes and all VPValues defined in VPBB with
926 // DummyValue so the block can be deleted.
927 for (VPRecipeBase &R : *VPBB) {
928 for (auto *Def : R.definedValues())
929 Def->replaceAllUsesWith(&DummyValue);
930
931 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
932 R.setOperand(I, &DummyValue);
933 }
934 }
935 delete VPB;
936 }
937 for (VPValue *VPV : getLiveIns())
938 delete VPV;
939 if (BackedgeTakenCount)
940 delete BackedgeTakenCount;
941}
942
944 auto Iter = find_if(getExitBlocks(), [IRBB](const VPIRBasicBlock *VPIRBB) {
945 return VPIRBB->getIRBasicBlock() == IRBB;
946 });
947 assert(Iter != getExitBlocks().end() && "no exit block found");
948 return *Iter;
949}
950
952 return is_contained(ExitBlocks, VPBB);
953}
954
955/// Generate the code inside the preheader and body of the vectorized loop.
956/// Assumes a single pre-header basic-block was created for this. Introduce
957/// additional basic-blocks as needed, and fill them all.
959 // Initialize CFG state.
960 State->CFG.PrevVPBB = nullptr;
961 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
962
963 // Update VPDominatorTree since VPBasicBlock may be removed after State was
964 // constructed.
965 State->VPDT.recalculate(*this);
966
967 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
968 BasicBlock *VectorPreHeader = State->CFG.PrevBB;
969 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
970 State->CFG.DTU.applyUpdates(
971 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
972
973 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << State->VF
974 << ", UF=" << getUF() << '\n');
975 setName("Final VPlan");
976 LLVM_DEBUG(dump());
977
978 // Disconnect scalar preheader and scalar header, as the dominator tree edge
979 // will be updated as part of VPlan execution. This allows keeping the DTU
980 // logic generic during VPlan execution.
981 BasicBlock *ScalarPh = State->CFG.ExitBB;
982 State->CFG.DTU.applyUpdates(
983 {{DominatorTree::Delete, ScalarPh, ScalarPh->getSingleSuccessor()}});
984
986 Entry);
987 // Generate code for the VPlan, in parts of the vector skeleton, loop body and
988 // successor blocks including the middle, exit and scalar preheader blocks.
989 for (VPBlockBase *Block : RPOT)
990 Block->execute(State);
991
992 State->CFG.DTU.flush();
993
994 VPBasicBlock *Header = vputils::getFirstLoopHeader(*this, State->VPDT);
995 if (!Header)
996 return;
997
998 auto *LatchVPBB = cast<VPBasicBlock>(Header->getPredecessors()[1]);
999 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1000
1001 // Fix the latch value of canonical, reduction and first-order recurrences
1002 // phis in the vector loop.
1003 for (VPRecipeBase &R : Header->phis()) {
1004 // Skip phi-like recipes that generate their backedege values themselves.
1005 if (isa<VPWidenPHIRecipe>(&R))
1006 continue;
1007
1008 auto *PhiR = cast<VPSingleDefRecipe>(&R);
1009 // VPInstructions currently model scalar Phis only.
1010 bool NeedsScalar = isa<VPInstruction>(PhiR) ||
1011 (isa<VPReductionPHIRecipe>(PhiR) &&
1012 cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1013
1014 Value *Phi = State->get(PhiR, NeedsScalar);
1015 // VPHeaderPHIRecipe supports getBackedgeValue() but VPInstruction does
1016 // not.
1017 Value *Val = State->get(PhiR->getOperand(1), NeedsScalar);
1018 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1019 }
1020}
1021
1023 // For now only return the cost of the vector loop region, ignoring any other
1024 // blocks, like the preheader or middle blocks, expect for checking them for
1025 // recipes with invalid costs.
1027
1028 // If the cost of the loop region is invalid or any recipe in the skeleton
1029 // outside loop regions are invalid return an invalid cost.
1030 if (!Cost.isValid() || any_of(VPBlockUtils::blocksOnly<VPBasicBlock>(
1032 [&VF, &Ctx](VPBasicBlock *VPBB) {
1033 return !VPBB->cost(VF, Ctx).isValid();
1034 }))
1036
1037 return Cost;
1038}
1039
1041 // TODO: Cache if possible.
1043 if (auto *R = dyn_cast<VPRegionBlock>(B))
1044 return R->isReplicator() ? nullptr : R;
1045 return nullptr;
1046}
1047
1050 if (auto *R = dyn_cast<VPRegionBlock>(B))
1051 return R->isReplicator() ? nullptr : R;
1052 return nullptr;
1053}
1054
1055#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1058
1059 if (VF.getNumUsers() > 0) {
1060 O << "\nLive-in ";
1062 O << " = VF";
1063 }
1064
1065 if (VFxUF.getNumUsers() > 0) {
1066 O << "\nLive-in ";
1067 VFxUF.printAsOperand(O, SlotTracker);
1068 O << " = VF * UF";
1069 }
1070
1071 if (VectorTripCount.getNumUsers() > 0) {
1072 O << "\nLive-in ";
1073 VectorTripCount.printAsOperand(O, SlotTracker);
1074 O << " = vector-trip-count";
1075 }
1076
1077 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1078 O << "\nLive-in ";
1079 BackedgeTakenCount->printAsOperand(O, SlotTracker);
1080 O << " = backedge-taken count";
1081 }
1082
1083 O << "\n";
1084 if (TripCount) {
1085 if (TripCount->isLiveIn())
1086 O << "Live-in ";
1087 TripCount->printAsOperand(O, SlotTracker);
1088 O << " = original trip-count";
1089 O << "\n";
1090 }
1091}
1092
1096
1097 O << "VPlan '" << getName() << "' {";
1098
1099 printLiveIns(O);
1100
1102 RPOT(getEntry());
1103 for (const VPBlockBase *Block : RPOT) {
1104 O << '\n';
1105 Block->print(O, "", SlotTracker);
1106 }
1107
1108 O << "}\n";
1109}
1110
1111std::string VPlan::getName() const {
1112 std::string Out;
1113 raw_string_ostream RSO(Out);
1114 RSO << Name << " for ";
1115 if (!VFs.empty()) {
1116 RSO << "VF={" << VFs[0];
1117 for (ElementCount VF : drop_begin(VFs))
1118 RSO << "," << VF;
1119 RSO << "},";
1120 }
1121
1122 if (UFs.empty()) {
1123 RSO << "UF>=1";
1124 } else {
1125 RSO << "UF={" << UFs[0];
1126 for (unsigned UF : drop_begin(UFs))
1127 RSO << "," << UF;
1128 RSO << "}";
1129 }
1130
1131 return Out;
1132}
1133
1136 VPlanPrinter Printer(O, *this);
1137 Printer.dump();
1138}
1139
1141void VPlan::dump() const { print(dbgs()); }
1142#endif
1143
1144static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1145 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1146 // Update the operands of all cloned recipes starting at NewEntry. This
1147 // traverses all reachable blocks. This is done in two steps, to handle cycles
1148 // in PHI recipes.
1150 OldDeepRPOT(Entry);
1152 NewDeepRPOT(NewEntry);
1153 // First, collect all mappings from old to new VPValues defined by cloned
1154 // recipes.
1155 for (const auto &[OldBB, NewBB] :
1156 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1157 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1158 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1159 "blocks must have the same number of recipes");
1160 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1161 assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1162 "recipes must have the same number of operands");
1163 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1164 "recipes must define the same number of operands");
1165 for (const auto &[OldV, NewV] :
1166 zip(OldR.definedValues(), NewR.definedValues()))
1167 Old2NewVPValues[OldV] = NewV;
1168 }
1169 }
1170
1171 // Update all operands to use cloned VPValues.
1172 for (VPBasicBlock *NewBB :
1173 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1174 for (VPRecipeBase &NewR : *NewBB)
1175 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1176 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1177 NewR.setOperand(I, NewOp);
1178 }
1179 }
1180}
1181
1183 unsigned NumBlocksBeforeCloning = CreatedBlocks.size();
1184 // Clone blocks.
1185 const auto &[NewEntry, __] = cloneFrom(Entry);
1186
1187 BasicBlock *ScalarHeaderIRBB = getScalarHeader()->getIRBasicBlock();
1188 VPIRBasicBlock *NewScalarHeader = nullptr;
1189 if (getScalarHeader()->hasPredecessors()) {
1190 NewScalarHeader = cast<VPIRBasicBlock>(*find_if(
1191 vp_depth_first_shallow(NewEntry), [ScalarHeaderIRBB](VPBlockBase *VPB) {
1192 auto *VPIRBB = dyn_cast<VPIRBasicBlock>(VPB);
1193 return VPIRBB && VPIRBB->getIRBasicBlock() == ScalarHeaderIRBB;
1194 }));
1195 } else {
1196 NewScalarHeader = createVPIRBasicBlock(ScalarHeaderIRBB);
1197 }
1198 // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1199 auto *NewPlan = new VPlan(cast<VPBasicBlock>(NewEntry), NewScalarHeader);
1200 DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1201 for (VPValue *OldLiveIn : getLiveIns()) {
1202 Old2NewVPValues[OldLiveIn] =
1203 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1204 }
1205 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1206 Old2NewVPValues[&VF] = &NewPlan->VF;
1207 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1208 if (BackedgeTakenCount) {
1209 NewPlan->BackedgeTakenCount = new VPValue();
1210 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1211 }
1212 if (TripCount && TripCount->isLiveIn())
1213 Old2NewVPValues[TripCount] =
1214 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1215 // else NewTripCount will be created and inserted into Old2NewVPValues when
1216 // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1217
1218 remapOperands(Entry, NewEntry, Old2NewVPValues);
1219
1220 // Initialize remaining fields of cloned VPlan.
1221 NewPlan->VFs = VFs;
1222 NewPlan->UFs = UFs;
1223 // TODO: Adjust names.
1224 NewPlan->Name = Name;
1225 if (TripCount) {
1226 assert(Old2NewVPValues.contains(TripCount) &&
1227 "TripCount must have been added to Old2NewVPValues");
1228 NewPlan->TripCount = Old2NewVPValues[TripCount];
1229 }
1230
1231 // Transfer all cloned blocks (the second half of all current blocks) from
1232 // current to new VPlan.
1233 unsigned NumBlocksAfterCloning = CreatedBlocks.size();
1234 for (unsigned I :
1235 seq<unsigned>(NumBlocksBeforeCloning, NumBlocksAfterCloning))
1236 NewPlan->CreatedBlocks.push_back(this->CreatedBlocks[I]);
1237 CreatedBlocks.truncate(NumBlocksBeforeCloning);
1238
1239 // Update ExitBlocks of the new plan.
1240 for (VPBlockBase *VPB : NewPlan->CreatedBlocks) {
1241 if (VPB->getNumSuccessors() == 0 && isa<VPIRBasicBlock>(VPB) &&
1242 VPB != NewScalarHeader)
1243 NewPlan->ExitBlocks.push_back(cast<VPIRBasicBlock>(VPB));
1244 }
1245
1246 return NewPlan;
1247}
1248
1250 auto *VPIRBB = new VPIRBasicBlock(IRBB);
1251 CreatedBlocks.push_back(VPIRBB);
1252 return VPIRBB;
1253}
1254
1256 auto *VPIRBB = createEmptyVPIRBasicBlock(IRBB);
1257 for (Instruction &I :
1258 make_range(IRBB->begin(), IRBB->getTerminator()->getIterator()))
1259 VPIRBB->appendRecipe(VPIRInstruction::create(I));
1260 return VPIRBB;
1261}
1262
1263#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1264
1265Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1266 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1267 Twine(getOrCreateBID(Block));
1268}
1269
1270Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1271 const std::string &Name = Block->getName();
1272 if (!Name.empty())
1273 return Name;
1274 return "VPB" + Twine(getOrCreateBID(Block));
1275}
1276
1278 Depth = 1;
1279 bumpIndent(0);
1280 OS << "digraph VPlan {\n";
1281 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1282 if (!Plan.getName().empty())
1283 OS << "\\n" << DOT::EscapeString(Plan.getName());
1284
1285 {
1286 // Print live-ins.
1287 std::string Str;
1288 raw_string_ostream SS(Str);
1289 Plan.printLiveIns(SS);
1291 StringRef(Str).rtrim('\n').split(Lines, "\n");
1292 for (auto Line : Lines)
1293 OS << DOT::EscapeString(Line.str()) << "\\n";
1294 }
1295
1296 OS << "\"]\n";
1297 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1298 OS << "edge [fontname=Courier, fontsize=30]\n";
1299 OS << "compound=true\n";
1300
1301 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1302 dumpBlock(Block);
1303
1304 OS << "}\n";
1305}
1306
1307void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1308 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1309 dumpBasicBlock(BasicBlock);
1310 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1311 dumpRegion(Region);
1312 else
1313 llvm_unreachable("Unsupported kind of VPBlock.");
1314}
1315
1316void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1317 bool Hidden, const Twine &Label) {
1318 // Due to "dot" we print an edge between two regions as an edge between the
1319 // exiting basic block and the entry basic of the respective regions.
1320 const VPBlockBase *Tail = From->getExitingBasicBlock();
1321 const VPBlockBase *Head = To->getEntryBasicBlock();
1322 OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1323 OS << " [ label=\"" << Label << '\"';
1324 if (Tail != From)
1325 OS << " ltail=" << getUID(From);
1326 if (Head != To)
1327 OS << " lhead=" << getUID(To);
1328 if (Hidden)
1329 OS << "; splines=none";
1330 OS << "]\n";
1331}
1332
1333void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1334 auto &Successors = Block->getSuccessors();
1335 if (Successors.size() == 1)
1336 drawEdge(Block, Successors.front(), false, "");
1337 else if (Successors.size() == 2) {
1338 drawEdge(Block, Successors.front(), false, "T");
1339 drawEdge(Block, Successors.back(), false, "F");
1340 } else {
1341 unsigned SuccessorNumber = 0;
1342 for (auto *Successor : Successors)
1343 drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1344 }
1345}
1346
1347void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1348 // Implement dot-formatted dump by performing plain-text dump into the
1349 // temporary storage followed by some post-processing.
1350 OS << Indent << getUID(BasicBlock) << " [label =\n";
1351 bumpIndent(1);
1352 std::string Str;
1354 // Use no indentation as we need to wrap the lines into quotes ourselves.
1355 BasicBlock->print(SS, "", SlotTracker);
1356
1357 // We need to process each line of the output separately, so split
1358 // single-string plain-text dump.
1360 StringRef(Str).rtrim('\n').split(Lines, "\n");
1361
1362 auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1363 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1364 };
1365
1366 // Don't need the "+" after the last line.
1367 for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1368 EmitLine(Line, " +\n");
1369 EmitLine(Lines.back(), "\n");
1370
1371 bumpIndent(-1);
1372 OS << Indent << "]\n";
1373
1374 dumpEdges(BasicBlock);
1375}
1376
1377void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1378 OS << Indent << "subgraph " << getUID(Region) << " {\n";
1379 bumpIndent(1);
1380 OS << Indent << "fontname=Courier\n"
1381 << Indent << "label=\""
1382 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1383 << DOT::EscapeString(Region->getName()) << "\"\n";
1384 // Dump the blocks of the region.
1385 assert(Region->getEntry() && "Region contains no inner blocks.");
1387 dumpBlock(Block);
1388 bumpIndent(-1);
1389 OS << Indent << "}\n";
1390 dumpEdges(Region);
1391}
1392
1393#endif
1394
1395/// Returns true if there is a vector loop region and \p VPV is defined in a
1396/// loop region.
1397static bool isDefinedInsideLoopRegions(const VPValue *VPV) {
1398 const VPRecipeBase *DefR = VPV->getDefiningRecipe();
1399 return DefR && (!DefR->getParent()->getPlan()->getVectorLoopRegion() ||
1401}
1402
1404 return !isDefinedInsideLoopRegions(this);
1405}
1407 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1408}
1409
1411 VPValue *New,
1412 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1413 // Note that this early exit is required for correctness; the implementation
1414 // below relies on the number of users for this VPValue to decrease, which
1415 // isn't the case if this == New.
1416 if (this == New)
1417 return;
1418
1419 for (unsigned J = 0; J < getNumUsers();) {
1420 VPUser *User = Users[J];
1421 bool RemovedUser = false;
1422 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1423 if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1424 continue;
1425
1426 RemovedUser = true;
1427 User->setOperand(I, New);
1428 }
1429 // If a user got removed after updating the current user, the next user to
1430 // update will be moved to the current position, so we only need to
1431 // increment the index if the number of users did not change.
1432 if (!RemovedUser)
1433 J++;
1434 }
1435}
1436
1438 for (unsigned Idx = 0; Idx != getNumOperands(); ++Idx) {
1439 if (getOperand(Idx) == From)
1440 setOperand(Idx, To);
1441 }
1442}
1443
1444#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1446 OS << Tracker.getOrCreateName(this);
1447}
1448
1451 Op->printAsOperand(O, SlotTracker);
1452 });
1453}
1454#endif
1455
1456void VPSlotTracker::assignName(const VPValue *V) {
1457 assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1458 auto *UV = V->getUnderlyingValue();
1459 auto *VPI = dyn_cast_or_null<VPInstruction>(V->getDefiningRecipe());
1460 if (!UV && !(VPI && !VPI->getName().empty())) {
1461 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1462 NextSlot++;
1463 return;
1464 }
1465
1466 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1467 // appending ".Number" to the name if there are multiple uses.
1468 std::string Name;
1469 if (UV)
1470 Name = getName(UV);
1471 else
1472 Name = VPI->getName();
1473
1474 assert(!Name.empty() && "Name cannot be empty.");
1475 StringRef Prefix = UV ? "ir<" : "vp<%";
1476 std::string BaseName = (Twine(Prefix) + Name + Twine(">")).str();
1477
1478 // First assign the base name for V.
1479 const auto &[A, _] = VPValue2Name.try_emplace(V, BaseName);
1480 // Integer or FP constants with different types will result in he same string
1481 // due to stripping types.
1482 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1483 return;
1484
1485 // If it is already used by C > 0 other VPValues, increase the version counter
1486 // C and use it for V.
1487 const auto &[C, UseInserted] = BaseName2Version.try_emplace(BaseName, 0);
1488 if (!UseInserted) {
1489 C->second++;
1490 A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1491 }
1492}
1493
1494void VPSlotTracker::assignNames(const VPlan &Plan) {
1495 if (Plan.VF.getNumUsers() > 0)
1496 assignName(&Plan.VF);
1497 if (Plan.VFxUF.getNumUsers() > 0)
1498 assignName(&Plan.VFxUF);
1499 assignName(&Plan.VectorTripCount);
1500 if (Plan.BackedgeTakenCount)
1501 assignName(Plan.BackedgeTakenCount);
1502 for (VPValue *LI : Plan.getLiveIns())
1503 assignName(LI);
1504
1507 for (const VPBasicBlock *VPBB :
1508 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1509 assignNames(VPBB);
1510}
1511
1512void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1513 for (const VPRecipeBase &Recipe : *VPBB)
1514 for (VPValue *Def : Recipe.definedValues())
1515 assignName(Def);
1516}
1517
1518std::string VPSlotTracker::getName(const Value *V) {
1519 std::string Name;
1521 if (V->hasName() || !isa<Instruction>(V)) {
1522 V->printAsOperand(S, false);
1523 return Name;
1524 }
1525
1526 if (!MST) {
1527 // Lazily create the ModuleSlotTracker when we first hit an unnamed
1528 // instruction.
1529 auto *I = cast<Instruction>(V);
1530 // This check is required to support unit tests with incomplete IR.
1531 if (I->getParent()) {
1532 MST = std::make_unique<ModuleSlotTracker>(I->getModule());
1533 MST->incorporateFunction(*I->getFunction());
1534 } else {
1535 MST = std::make_unique<ModuleSlotTracker>(nullptr);
1536 }
1537 }
1538 V->printAsOperand(S, false, *MST);
1539 return Name;
1540}
1541
1542std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1543 std::string Name = VPValue2Name.lookup(V);
1544 if (!Name.empty())
1545 return Name;
1546
1547 // If no name was assigned, no VPlan was provided when creating the slot
1548 // tracker or it is not reachable from the provided VPlan. This can happen,
1549 // e.g. when trying to print a recipe that has not been inserted into a VPlan
1550 // in a debugger.
1551 // TODO: Update VPSlotTracker constructor to assign names to recipes &
1552 // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1553 // here.
1554 const VPRecipeBase *DefR = V->getDefiningRecipe();
1555 (void)DefR;
1556 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1557 "VPValue defined by a recipe in a VPlan?");
1558
1559 // Use the underlying value's name, if there is one.
1560 if (auto *UV = V->getUnderlyingValue()) {
1561 std::string Name;
1563 UV->printAsOperand(S, false);
1564 return (Twine("ir<") + Name + ">").str();
1565 }
1566
1567 return "<badref>";
1568}
1569
1571 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
1572 assert(!Range.isEmpty() && "Trying to test an empty VF range.");
1573 bool PredicateAtRangeStart = Predicate(Range.Start);
1574
1575 for (ElementCount TmpVF : VFRange(Range.Start * 2, Range.End))
1576 if (Predicate(TmpVF) != PredicateAtRangeStart) {
1577 Range.End = TmpVF;
1578 break;
1579 }
1580
1581 return PredicateAtRangeStart;
1582}
1583
1584/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
1585/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
1586/// of VF's starting at a given VF and extending it as much as possible. Each
1587/// vectorization decision can potentially shorten this sub-range during
1588/// buildVPlan().
1590 ElementCount MaxVF) {
1591 auto MaxVFTimes2 = MaxVF * 2;
1592 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFTimes2);) {
1593 VFRange SubRange = {VF, MaxVFTimes2};
1594 if (auto Plan = tryToBuildVPlan(SubRange)) {
1596 // Update the name of the latch of the top-level vector loop region region
1597 // after optimizations which includes block folding.
1598 Plan->getVectorLoopRegion()->getExiting()->setName("vector.latch");
1599 VPlans.push_back(std::move(Plan));
1600 }
1601 VF = SubRange.End;
1602 }
1603}
1604
1606 assert(count_if(VPlans,
1607 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
1608 1 &&
1609 "Multiple VPlans for VF.");
1610
1611 for (const VPlanPtr &Plan : VPlans) {
1612 if (Plan->hasVF(VF))
1613 return *Plan.get();
1614 }
1615 llvm_unreachable("No plan found!");
1616}
1617
1618#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1620 if (VPlans.empty()) {
1621 O << "LV: No VPlans built.\n";
1622 return;
1623 }
1624 for (const auto &Plan : VPlans)
1626 Plan->printDOT(O);
1627 else
1628 Plan->print(O);
1629}
1630#endif
1631
1634 if (!V->isLiveIn())
1635 return {};
1636
1637 return TTI::getOperandInfo(V->getLiveInIRValue());
1638}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:638
dxil pretty DXIL Metadata Pretty Printer
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
std::string Name
Flatten the CFG
#define _
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
This file provides a LoopVectorizationPlanner class.
#define I(x, y, z)
Definition: MD5.cpp:58
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
#define P(N)
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
#define LLVM_DEBUG(...)
Definition: Debug.h:119
This file implements dominator tree analysis for a single level of a VPlan's H-CFG.
This file contains the declarations of different VPlan-related auxiliary helpers.
This file provides utility VPlan to VPlan transformations.
static T * getPlanEntry(T *Start)
Definition: VPlan.cpp:135
static T * getEnclosingLoopRegionForRegion(T *P)
Return the enclosing loop region for region P.
Definition: VPlan.cpp:615
static bool isDefinedInsideLoopRegions(const VPValue *VPV)
Returns true if there is a vector loop region and VPV is defined in a loop region.
Definition: VPlan.cpp:1397
cl::opt< unsigned > ForceTargetInstructionCost
static bool hasConditionalTerminator(const VPBasicBlock *VPBB)
Definition: VPlan.cpp:633
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, DenseMap< VPValue *, VPValue * > &Old2NewVPValues)
Definition: VPlan.cpp:1144
static std::pair< VPBlockBase *, VPBlockBase * > cloneFrom(VPBlockBase *Entry)
Definition: VPlan.cpp:725
static cl::opt< bool > PrintVPlansInDotFormat("vplan-print-in-dot-format", cl::Hidden, cl::desc("Use dot format instead of plain text when dumping VPlans"))
This file contains the declarations of the Vectorization Plan base classes:
static bool IsCondBranch(unsigned BrOpc)
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:62
iterator end()
Definition: BasicBlock.h:472
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:459
LLVM_ABI void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW=nullptr, bool ShouldPreserveUseListOrder=false, bool IsForDebug=false) const
Print the basic block to an output stream with an optional AssemblyAnnotationWriter.
Definition: AsmWriter.cpp:5062
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:206
LLVM_ABI void moveAfter(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it right after MovePos in the function M...
Definition: BasicBlock.cpp:243
LLVM_ABI bool hasNPredecessors(unsigned N) const
Return true if this block has exactly N predecessors.
Definition: BasicBlock.cpp:459
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:467
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:213
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:170
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:131
size_t size() const
Definition: BasicBlock.h:480
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:233
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
Debug location.
std::optional< const DILocation * > cloneByMultiplyingDuplicationFactor(unsigned DF) const
Returns a new DILocation with duplication factor DF * current duplication factor encoded in the discr...
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:124
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:187
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:156
bool dominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
dominates - Returns true iff A dominates B.
void recalculate(ParentType &Func)
recalculate - compute a dominator tree for the given function
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:165
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:323
bool shouldEmitDebugInfoForProfiling() const
Returns true if we should emit debug info for profiling.
Definition: Metadata.cpp:1919
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:114
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2571
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:2625
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2559
UnreachableInst * CreateUnreachable()
Definition: IRBuilder.h:1339
LLVM_ABI Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1115
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:2618
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:562
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:201
void SetCurrentDebugLocation(DebugLoc L)
Set location information used by debugging information.
Definition: IRBuilder.h:247
InsertPoint saveIP() const
Returns the current insert point.
Definition: IRBuilder.h:311
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:522
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1420
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:1191
void restoreIP(InsertPoint IP)
Sets the current insert point to a previously-saved location.
Definition: IRBuilder.h:323
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:207
static InstructionCost getInvalid(CostType Val=0)
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
This method is used by other analyses to update loop information.
void addChildLoop(LoopT *NewChild)
Add the specified loop to be a child of this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
VPlan & getPlanFor(ElementCount VF) const
Return the VPlan for VF.
Definition: VPlan.cpp:1605
void buildVPlans(ElementCount MinVF, ElementCount MaxVF)
Build VPlans for power-of-2 VF's between MinVF and MaxVF inclusive, according to the information gath...
Definition: VPlan.cpp:1589
static bool getDecisionAndClampRange(const std::function< bool(ElementCount)> &Predicate, VFRange &Range)
Test a Predicate on a Range of VF's.
Definition: VPlan.cpp:1570
void printPlans(raw_ostream &O)
Definition: VPlan.cpp:1619
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:40
LLVM_ABI void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
LLVM_ABI void dump() const
User-friendly dump.
Definition: AsmWriter.cpp:5498
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1885
BlockT * getEntry() const
Get the entry BasicBlock of the Region.
Definition: RegionInfo.h:320
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:104
void insert_range(Range &&R)
Definition: SetVector.h:193
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:99
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:168
This class provides computation of slot numbers for LLVM Assembly writing.
Definition: AsmWriter.cpp:757
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:356
bool empty() const
Definition: SmallVector.h:82
size_t size() const
Definition: SmallVector.h:79
void push_back(const T &Elt)
Definition: SmallVector.h:414
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1197
std::pair< iterator, bool > try_emplace(StringRef Key, ArgsTy &&...Args)
Emplace a new element for the specified key into the map if the key isn't already in the map.
Definition: StringMap.h:370
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:55
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:710
StringRef rtrim(char Char) const
Return string with consecutive Char characters starting from the right removed.
Definition: StringRef.h:812
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
static LLVM_ABI OperandValueInfo getOperandInfo(const Value *V)
Collect properties of V used in cost analysis, e.g. OP_PowerOf2.
LLVM_ABI InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
This function has undefined behavior.
void setOperand(unsigned i, Value *Val)
Definition: User.h:237
Value * getOperand(unsigned i) const
Definition: User.h:232
unsigned getNumOperands() const
Definition: User.h:254
VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:3745
void appendRecipe(VPRecipeBase *Recipe)
Augment the existing recipes of a VPBasicBlock with an additional Recipe as the last recipe.
Definition: VPlan.h:3820
RecipeListTy::iterator iterator
Instruction iterators...
Definition: VPlan.h:3772
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:525
iterator end()
Definition: VPlan.h:3782
iterator begin()
Recipe iterator methods.
Definition: VPlan.h:3780
VPBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition: VPlan.cpp:576
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of this VPBasicBlock.
Definition: VPlan.cpp:806
const VPBasicBlock * getCFGPredecessor(unsigned Idx) const
Returns the predecessor block at index Idx with the predecessors as per the corresponding plain CFG.
Definition: VPlan.cpp:813
iterator getFirstNonPhi()
Return the position of the first non-phi node recipe in the block.
Definition: VPlan.cpp:236
void connectToPredecessors(VPTransformState &State)
Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block generated for this VPBB.
Definition: VPlan.cpp:425
VPRegionBlock * getEnclosingLoopRegion()
Definition: VPlan.cpp:625
VPBasicBlock * splitAt(iterator SplitAt)
Split current block at SplitAt by inserting a new block between the current block and its successors ...
Definition: VPlan.cpp:597
RecipeListTy Recipes
The VPRecipes held in the order of output instructions to generate.
Definition: VPlan.h:3760
void executeRecipes(VPTransformState *State, BasicBlock *BB)
Execute the recipes in the IR basic block BB.
Definition: VPlan.cpp:583
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPBsicBlock to O, prefixing all lines with Indent.
Definition: VPlan.cpp:704
bool isExiting() const
Returns true if the block is exiting it's parent region.
Definition: VPlan.cpp:682
VPRecipeBase * getTerminator()
If the block has multiple successors, return the branch recipe terminating the block.
Definition: VPlan.cpp:670
const VPRecipeBase & back() const
Definition: VPlan.h:3794
bool empty() const
Definition: VPlan.h:3791
size_t size() const
Definition: VPlan.h:3790
VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
Definition: VPlan.h:81
void setSuccessors(ArrayRef< VPBlockBase * > NewSuccs)
Set each VPBasicBlock in NewSuccss as successor of this VPBlockBase.
Definition: VPlan.h:300
VPRegionBlock * getParent()
Definition: VPlan.h:173
const VPBasicBlock * getExitingBasicBlock() const
Definition: VPlan.cpp:180
void setName(const Twine &newName)
Definition: VPlan.h:166
size_t getNumSuccessors() const
Definition: VPlan.h:219
iterator_range< VPBlockBase ** > successors()
Definition: VPlan.h:201
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Print plain-text dump of this VPBlockBase to O, prefixing all lines with Indent.
bool hasPredecessors() const
Returns true if this block has any predecessors.
Definition: VPlan.h:223
void printSuccessors(raw_ostream &O, const Twine &Indent) const
Print the successors of this block to O, prefixing all lines with Indent.
Definition: VPlan.cpp:692
size_t getNumPredecessors() const
Definition: VPlan.h:220
void setPredecessors(ArrayRef< VPBlockBase * > NewPreds)
Set each VPBasicBlock in NewPreds as predecessor of this VPBlockBase.
Definition: VPlan.h:291
VPBlockBase * getEnclosingBlockWithPredecessors()
Definition: VPlan.cpp:202
const VPBlocksTy & getPredecessors() const
Definition: VPlan.h:204
VPlan * getPlan()
Definition: VPlan.cpp:155
void setPlan(VPlan *ParentPlan)
Sets the pointer of the plan containing the block.
Definition: VPlan.cpp:174
const std::string & getName() const
Definition: VPlan.h:164
VPBlockBase * getSinglePredecessor() const
Definition: VPlan.h:215
const VPBlocksTy & getHierarchicalSuccessors()
Definition: VPlan.h:242
VPBlockBase * getEnclosingBlockWithSuccessors()
An Enclosing Block of a block B is any block containing B, including B itself.
Definition: VPlan.cpp:194
const VPBasicBlock * getEntryBasicBlock() const
Definition: VPlan.cpp:160
VPBlockBase * getSingleHierarchicalPredecessor()
Definition: VPlan.h:264
VPBlockBase * getSingleSuccessor() const
Definition: VPlan.h:209
const VPBlocksTy & getSuccessors() const
Definition: VPlan.h:198
Helper for GraphTraits specialization that traverses through VPRegionBlocks.
Definition: VPlanCFG.h:117
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr)
Insert disconnected VPBlockBase NewBlock after BlockPtr.
Definition: VPlanUtils.h:119
static bool isLatch(const VPBlockBase *VPB, const VPDominatorTree &VPDT)
Returns true if VPB is a loop latch, using isHeader().
Definition: VPlan.cpp:227
static bool isHeader(const VPBlockBase *VPB, const VPDominatorTree &VPDT)
Returns true if VPB is a loop header, based on regions or VPDT in their absence.
Definition: VPlan.cpp:210
static void connectBlocks(VPBlockBase *From, VPBlockBase *To, unsigned PredIdx=-1u, unsigned SuccIdx=-1u)
Connect VPBlockBases From and To bi-directionally.
Definition: VPlanUtils.h:175
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To)
Disconnect VPBlockBases From and To bi-directionally.
Definition: VPlanUtils.h:194
VPlan-based builder utility analogous to IRBuilder.
VPPhi * createScalarPhi(ArrayRef< VPValue * > IncomingValues, DebugLoc DL, const Twine &Name="")
This class augments a recipe with a set of VPValues defined by the recipe.
Definition: VPlanValue.h:300
void dump() const
Dump the VPDef to stderr (for debugging).
Definition: VPlan.cpp:116
virtual void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const =0
Each concrete VPDef prints itself.
Template specialization of the standard LLVM dominator tree utility for VPBlockBases.
Recipe to expand a SCEV expression.
Definition: VPlan.h:3364
A special type of VPBasicBlock that wraps an existing IR basic block.
Definition: VPlan.h:3898
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPBasicBlock,...
Definition: VPlan.cpp:493
BasicBlock * getIRBasicBlock() const
Definition: VPlan.h:3922
VPIRBasicBlock * clone() override
Clone the current block and it's recipes, without updating the operands of the cloned recipes.
Definition: VPlan.cpp:518
static LLVM_ABI_FOR_TEST VPIRInstruction * create(Instruction &I)
Create a new VPIRPhi for \I , if it is a PHINode, otherwise create a VPIRInstruction.
In what follows, the term "input IR" refers to code that is fed into the vectorizer whereas the term ...
Definition: VPlanHelpers.h:125
Value * getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const
Returns an expression describing the lane index that can be used at runtime.
Definition: VPlan.cpp:75
static VPLane getFirstLane()
Definition: VPlanHelpers.h:150
@ ScalableLast
For ScalableLast, Lane is the offset from the start of the last N-element subvector in a scalable vec...
@ First
For First, Lane is the index into the first N elements of a fixed-vector <N x <ElTy>> or a scalable v...
VPRecipeBase is a base class modeling a sequence of one or more output IR instructions.
Definition: VPlan.h:394
VPBasicBlock * getParent()
Definition: VPlan.h:415
VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks which form a Single-Entry-S...
Definition: VPlan.h:3933
VPRegionBlock * clone() override
Clone all blocks in the single-entry single-exit region of the block and their recipes without updati...
Definition: VPlan.cpp:775
const VPBlockBase * getEntry() const
Definition: VPlan.h:3969
void dissolveToCFGLoop()
Remove the current region from its VPlan, connecting its predecessor to its entry,...
Definition: VPlan.cpp:884
bool isReplicator() const
An indicator whether this region is to generate multiple replicated instances of output IR correspond...
Definition: VPlan.h:4001
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override
Return the cost of the block.
Definition: VPlan.cpp:832
void print(raw_ostream &O, const Twine &Indent, VPSlotTracker &SlotTracker) const override
Print this VPRegionBlock to O (recursively), prefixing all lines with Indent.
Definition: VPlan.cpp:870
void execute(VPTransformState *State) override
The method which generates the output IR instructions that correspond to this VPRegionBlock,...
Definition: VPlan.cpp:784
const VPBlockBase * getExiting() const
Definition: VPlan.h:3981
A recipe for handling phi nodes of integer and floating-point inductions, producing their scalar valu...
Definition: VPlan.h:3635
This class can be used to assign names to VPValues.
Definition: VPlanHelpers.h:382
std::string getOrCreateName(const VPValue *V) const
Returns the name assigned to V, if there is one, otherwise try to construct one from the underlying v...
Definition: VPlan.cpp:1542
This class augments VPValue with operands which provide the inverse def-use edges from VPValue's user...
Definition: VPlanValue.h:197
void replaceUsesOfWith(VPValue *From, VPValue *To)
Replaces all uses of From in the VPUser with To.
Definition: VPlan.cpp:1437
void printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const
Print the operands to O.
Definition: VPlan.cpp:1449
operand_range operands()
Definition: VPlanValue.h:265
void setOperand(unsigned I, VPValue *New)
Definition: VPlanValue.h:241
unsigned getNumOperands() const
Definition: VPlanValue.h:235
VPValue * getOperand(unsigned N) const
Definition: VPlanValue.h:236
bool isDefinedOutsideLoopRegions() const
Returns true if the VPValue is defined outside any loop.
Definition: VPlan.cpp:1403
VPRecipeBase * getDefiningRecipe()
Returns the recipe defining this VPValue or nullptr if it is not defined by a recipe,...
Definition: VPlan.cpp:125
void printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:1445
Value * getLiveInIRValue() const
Returns the underlying IR value, if this VPValue is defined outside the scope of VPlan.
Definition: VPlanValue.h:174
void dump() const
Dump the value to stderr (for debugging).
Definition: VPlan.cpp:108
VPValue(const unsigned char SC, Value *UV=nullptr, VPDef *Def=nullptr)
Definition: VPlan.cpp:88
virtual ~VPValue()
Definition: VPlan.cpp:94
void print(raw_ostream &OS, VPSlotTracker &Tracker) const
Definition: VPlan.cpp:101
void replaceAllUsesWith(VPValue *New)
Definition: VPlan.cpp:1406
unsigned getNumUsers() const
Definition: VPlanValue.h:113
bool isLiveIn() const
Returns true if this VPValue is a live-in, i.e. defined outside the VPlan.
Definition: VPlanValue.h:169
void replaceUsesWithIf(VPValue *New, llvm::function_ref< bool(VPUser &U, unsigned Idx)> ShouldReplace)
Go through the uses list for this VPValue and make each use point to New if the callback ShouldReplac...
Definition: VPlan.cpp:1410
VPDef * Def
Pointer to the VPDef that defines this VPValue.
Definition: VPlanValue.h:65
A recipe for handling phi nodes of integer and floating-point inductions, producing their vector valu...
Definition: VPlan.h:2104
VPlanPrinter prints a given VPlan to a given output stream.
Definition: VPlanHelpers.h:416
LLVM_DUMP_METHOD void dump()
Definition: VPlan.cpp:1277
VPlan models a candidate for vectorization, encoding various decisions take to produce efficient outp...
Definition: VPlan.h:4036
void printDOT(raw_ostream &O) const
Print this VPlan in DOT format to O.
Definition: VPlan.cpp:1135
std::string getName() const
Return a string with the name of the plan and the applicable VFs and UFs.
Definition: VPlan.cpp:1111
VPBasicBlock * getEntry()
Definition: VPlan.h:4135
VPRegionBlock * createVPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, const std::string &Name="", bool IsReplicator=false)
Create a new VPRegionBlock with Entry, Exiting and Name.
Definition: VPlan.h:4376
void setName(const Twine &newName)
Definition: VPlan.h:4283
VPIRBasicBlock * getExitBlock(BasicBlock *IRBB) const
Return the VPIRBasicBlock corresponding to IRBB.
Definition: VPlan.cpp:943
LLVM_ABI_FOR_TEST ~VPlan()
Definition: VPlan.cpp:920
bool isExitBlock(VPBlockBase *VPBB)
Returns true if VPBB is an exit block.
Definition: VPlan.cpp:951
unsigned getUF() const
Definition: VPlan.h:4265
VPIRBasicBlock * createEmptyVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock wrapping IRBB, but do not create VPIRInstructions wrapping the instructions i...
Definition: VPlan.cpp:1249
ArrayRef< VPIRBasicBlock * > getExitBlocks() const
Return an ArrayRef containing VPIRBasicBlocks wrapping the exit blocks of the original scalar loop.
Definition: VPlan.h:4187
LLVM_ABI_FOR_TEST VPRegionBlock * getVectorLoopRegion()
Returns the VPRegionBlock of the vector loop.
Definition: VPlan.cpp:1040
InstructionCost cost(ElementCount VF, VPCostContext &Ctx)
Return the cost of this plan.
Definition: VPlan.cpp:1022
void setEntry(VPBasicBlock *VPBB)
Definition: VPlan.h:4124
VPBasicBlock * createVPBasicBlock(const Twine &Name, VPRecipeBase *Recipe=nullptr)
Create a new VPBasicBlock with Name and containing Recipe if present.
Definition: VPlan.h:4366
LLVM_ABI_FOR_TEST VPIRBasicBlock * createVPIRBasicBlock(BasicBlock *IRBB)
Create a VPIRBasicBlock from IRBB containing VPIRInstructions for all instructions in IRBB,...
Definition: VPlan.cpp:1255
LLVM_DUMP_METHOD void dump() const
Dump the plan to stderr (for debugging).
Definition: VPlan.cpp:1141
void execute(VPTransformState *State)
Generate the IR code for this VPlan.
Definition: VPlan.cpp:958
ArrayRef< VPValue * > getLiveIns() const
Return the list of live-in VPValues available in the VPlan.
Definition: VPlan.h:4317
void print(raw_ostream &O) const
Print this VPlan to O.
Definition: VPlan.cpp:1094
VPIRBasicBlock * getScalarHeader() const
Return the VPIRBasicBlock wrapping the header of the scalar loop.
Definition: VPlan.h:4183
void printLiveIns(raw_ostream &O) const
Print the live-ins of this VPlan to O.
Definition: VPlan.cpp:1056
VPlan * duplicate()
Clone the current VPlan, update all VPValues of the new VPlan and cloned recipes to refer to the clon...
Definition: VPlan.cpp:1182
LLVM Value Representation.
Definition: Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:256
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:322
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:203
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition: TypeSize.h:219
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
Definition: TypeSize.h:172
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:169
An efficient, type-erasing, non-owning reference to a callable.
self_iterator getIterator()
Definition: ilist_node.h:134
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:53
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:662
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
LLVM_ABI std::string EscapeString(const std::string &Label)
Definition: GraphWriter.cpp:56
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
VPInstruction_match< VPInstruction::BranchOnCount, Op0_t, Op1_t > m_BranchOnCount(const Op0_t &Op0, const Op1_t &Op1)
class_match< VPValue > m_VPValue()
Match an arbitrary VPValue and ignore it.
VPInstruction_match< VPInstruction::BuildVector > m_BuildVector()
BuildVector is matches only its opcode, w/o matching its operands as the number of operands is not fi...
VPInstruction_match< VPInstruction::BranchOnCond, Op0_t > m_BranchOnCond(const Op0_t &Op0)
@ SS
Definition: X86.h:215
bool isSingleScalar(const VPValue *VPV)
Returns true if VPV is a single scalar, either because it produces the same value for all lanes or on...
Definition: VPlanUtils.h:44
VPBasicBlock * getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT)
Returns the header block of the first, top-level loop, or null if none exist.
Definition: VPlanUtils.cpp:138
bool onlyFirstLaneUsed(const VPValue *Def)
Returns true if only the first lane of Def is used.
Definition: VPlanUtils.cpp:17
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:338
detail::zippy< detail::zip_shortest, T, U, Args... > zip(T &&t, U &&u, Args &&...args)
zip iterator for two or more iteratable types.
Definition: STLExtras.h:860
Value * getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF)
Return the runtime value for VF.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
void interleaveComma(const Container &c, StreamT &os, UnaryFunctor each_fn)
Definition: STLExtras.h:2250
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:663
iterator_range< df_iterator< VPBlockShallowTraversalWrapper< VPBlockBase * > > > vp_depth_first_shallow(VPBlockBase *G)
Returns an iterator range to traverse the graph starting at G in depth-first order.
Definition: VPlanCFG.h:216
LLVM_ABI cl::opt< bool > EnableFSDiscriminator
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1751
std::unique_ptr< VPlan > VPlanPtr
Definition: VPlan.h:77
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:207
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
Definition: SmallVector.h:1300
Type * toVectorizedTy(Type *Ty, ElementCount EC)
A helper for converting to vectorized types.
cl::opt< unsigned > ForceTargetInstructionCost
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition: Casting.h:548
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:312
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1980
LLVM_ABI BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1777
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1916
cl::opt< bool > EnableVPlanNativePath
Definition: VPlan.cpp:55
InstructionCost Cost
unsigned getPredBlockCostDivisor(TargetTransformInfo::TargetCostKind CostKind)
A helper function that returns how much we should divide the cost of a predicated block by.
Definition: VPlanHelpers.h:64
A range of powers-of-2 vectorization factors with fixed start and adjustable end.
Definition: VPlanHelpers.h:71
ElementCount End
Definition: VPlanHelpers.h:76
Struct to hold various analysis needed for cost computations.
Definition: VPlanHelpers.h:344
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const
Returns the OperandInfo for V, if it is a live-in.
Definition: VPlan.cpp:1633
TargetTransformInfo::TargetCostKind CostKind
Definition: VPlanHelpers.h:351
const TargetTransformInfo & TTI
Definition: VPlanHelpers.h:345
BasicBlock * PrevBB
The previous IR BasicBlock created or used.
Definition: VPlanHelpers.h:303
VPBasicBlock * PrevVPBB
The previous VPBasicBlock visited. Initially set to null.
Definition: VPlanHelpers.h:299
BasicBlock * ExitBB
The last IR BasicBlock in the output IR.
Definition: VPlanHelpers.h:307
SmallDenseMap< const VPBasicBlock *, BasicBlock * > VPBB2IRBB
A mapping of each VPBasicBlock to the corresponding BasicBlock.
Definition: VPlanHelpers.h:311
DomTreeUpdater DTU
Updater for the DominatorTree.
Definition: VPlanHelpers.h:314
DenseMap< const VPValue *, SmallVector< Value *, 4 > > VPV2Scalars
Definition: VPlanHelpers.h:226
DenseMap< const VPValue *, Value * > VPV2Vector
Definition: VPlanHelpers.h:224
VPTransformState holds information passed down when "executing" a VPlan, needed for generating the ou...
Definition: VPlanHelpers.h:205
LoopInfo * LI
Hold a pointer to LoopInfo to register new basic blocks in the loop.
Definition: VPlanHelpers.h:321
struct llvm::VPTransformState::DataState Data
struct llvm::VPTransformState::CFGState CFG
Value * get(const VPValue *Def, bool IsScalar=false)
Get the generated vector Value for a given VPValue Def if IsScalar is false, otherwise return the gen...
Definition: VPlan.cpp:283
VPTransformState(const TargetTransformInfo *TTI, ElementCount VF, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, IRBuilderBase &Builder, VPlan *Plan, Loop *CurrentParentLoop, Type *CanonicalIVTy)
Definition: VPlan.cpp:243
std::optional< VPLane > Lane
Hold the index to generate specific scalar instructions.
Definition: VPlanHelpers.h:219
IRBuilderBase & Builder
Hold a reference to the IRBuilder used to generate output IR code.
Definition: VPlanHelpers.h:328
bool hasScalarValue(const VPValue *Def, VPLane Lane)
Definition: VPlanHelpers.h:240
VPlan * Plan
Pointer to the VPlan code is generated for.
Definition: VPlanHelpers.h:331
void set(const VPValue *Def, Value *V, bool IsScalar=false)
Set the generated vector Value for a given VPValue, if IsScalar is false.
Definition: VPlanHelpers.h:250
bool hasVectorValue(const VPValue *Def)
Definition: VPlanHelpers.h:236
VPDominatorTree VPDT
VPlan-based dominator tree.
Definition: VPlanHelpers.h:340
ElementCount VF
The chosen Vectorization Factor of the loop being vectorized.
Definition: VPlanHelpers.h:214
Value * packScalarIntoVectorizedValue(const VPValue *Def, Value *WideValue, const VPLane &Lane)
Insert the scalar value of Def at Lane into Lane of WideValue and return the resulting value.
Definition: VPlan.cpp:393
void setDebugLocFrom(DebugLoc DL)
Set the debug location in the builder using the debug location DL.
Definition: VPlan.cpp:371
Loop * CurrentParentLoop
The parent loop object for the current scope, or nullptr.
Definition: VPlanHelpers.h:334
static void optimize(VPlan &Plan)
Apply VPlan-to-VPlan optimizations to Plan, including induction recipe optimizations,...