58#include "llvm/IR/IntrinsicsAArch64.h"
59#include "llvm/IR/IntrinsicsAMDGPU.h"
60#include "llvm/IR/IntrinsicsRISCV.h"
61#include "llvm/IR/IntrinsicsX86.h"
96 if (
unsigned BitWidth = Ty->getScalarSizeInBits())
99 return DL.getPointerTypeSizeInBits(Ty);
119 const APInt &DemandedElts,
123 DemandedLHS = DemandedRHS = DemandedElts;
130 DemandedElts, DemandedLHS, DemandedRHS);
151 bool UseInstrInfo,
unsigned Depth) {
226 R->uge(
LHS->getType()->getScalarSizeInBits()))
239 assert(LHS->getType() == RHS->getType() &&
240 "LHS and RHS should have the same type");
241 assert(LHS->getType()->isIntOrIntVectorTy() &&
242 "LHS and RHS should be integers");
253 return !
I->user_empty() &&
all_of(
I->users(), [](
const User *U) {
254 return match(U, m_ICmp(m_Value(), m_Zero()));
259 return !
I->user_empty() &&
all_of(
I->users(), [](
const User *U) {
261 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
270 return ::isKnownToBeAPowerOfTwo(
286 return CI->getValue().isStrictlyPositive();
312 return ::isKnownNonEqual(V1, V2, DemandedElts, Q,
Depth);
319 return Mask.isSubsetOf(Known.
Zero);
326 unsigned Depth = 0) {
337 return ::ComputeNumSignBits(
347 return V->getType()->getScalarSizeInBits() - SignBits + 1;
352 const APInt &DemandedElts,
359 if (KnownOut.
isUnknown() && !NSW && !NUW)
372 bool NUW,
const APInt &DemandedElts,
389 bool isKnownNegativeOp0 = Known2.
isNegative();
392 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
404 (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
406 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.
isNonZero());
410 bool SelfMultiply = Op0 == Op1;
419 unsigned OutValidBits = 2 * (TyBits - SignBits + 1);
421 if (OutValidBits < TyBits) {
422 APInt KnownZeroMask =
424 Known.
Zero |= KnownZeroMask;
442 unsigned NumRanges = Ranges.getNumOperands() / 2;
448 for (
unsigned i = 0; i < NumRanges; ++i) {
457 "Known bit width must match range bit width!");
460 unsigned CommonPrefixBits =
461 (
Range.getUnsignedMax() ^
Range.getUnsignedMin()).countl_zero();
464 Known.
One &= UnsignedMax & Mask;
465 Known.
Zero &= ~UnsignedMax & Mask;
480 while (!WorkSet.
empty()) {
482 if (!Visited.
insert(V).second)
487 return EphValues.count(cast<Instruction>(U));
492 if (V ==
I || (!V->mayHaveSideEffects() && !V->isTerminator())) {
496 for (
const Use &U : U->operands()) {
511 return CI->isAssumeLikeIntrinsic();
519 bool AllowEphemerals) {
537 if (!AllowEphemerals && Inv == CxtI)
592 for (
unsigned ElemIdx = 0, NElem = VC->getNumElements(); ElemIdx < NElem;
595 Pred, VC->getElementAsAPInt(ElemIdx));
604 const PHINode **PhiOut =
nullptr) {
608 CtxIOut =
PHI->getIncomingBlock(*U)->getTerminator();
624 IncPhi && IncPhi->getNumIncomingValues() == 2) {
625 for (
int Idx = 0; Idx < 2; ++Idx) {
626 if (IncPhi->getIncomingValue(Idx) ==
PHI) {
627 ValOut = IncPhi->getIncomingValue(1 - Idx);
630 CtxIOut = IncPhi->getIncomingBlock(1 - Idx)->getTerminator();
649 "Got assumption for the wrong function!");
652 if (!V->getType()->isPointerTy())
655 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
657 (RK.AttrKind == Attribute::NonNull ||
658 (RK.AttrKind == Attribute::Dereferenceable &&
687 if (
RHS->getType()->isPointerTy()) {
729 Known.
Zero |= ~*
C & *Mask;
735 Known.
One |= *
C & ~*Mask;
794 Invert ? Cmp->getInversePredicate() : Cmp->getPredicate();
800 KnownBits DstKnown(
LHS->getType()->getScalarSizeInBits());
814 bool Invert,
unsigned Depth) {
896 "Got assumption for the wrong function!");
899 if (!V->getType()->isPointerTy())
902 *
I,
I->bundle_op_info_begin()[Elem.Index])) {
906 if (RK.WasOn == V && RK.AttrKind == Attribute::Alignment &&
918 Value *Arg =
I->getArgOperand(0);
934 if (Trunc && Trunc->getOperand(0) == V &&
936 if (Trunc->hasNoUnsignedWrap()) {
984 Known = KF(Known2, Known, ShAmtNonZero);
995 Value *
X =
nullptr, *
Y =
nullptr;
997 switch (
I->getOpcode()) {
998 case Instruction::And:
999 KnownOut = KnownLHS & KnownRHS;
1009 KnownOut = KnownLHS.
blsi();
1011 KnownOut = KnownRHS.
blsi();
1014 case Instruction::Or:
1015 KnownOut = KnownLHS | KnownRHS;
1017 case Instruction::Xor:
1018 KnownOut = KnownLHS ^ KnownRHS;
1028 const KnownBits &XBits =
I->getOperand(0) ==
X ? KnownLHS : KnownRHS;
1029 KnownOut = XBits.
blsmsk();
1042 if (!KnownOut.
Zero[0] && !KnownOut.
One[0] &&
1063 APInt DemandedEltsLHS, DemandedEltsRHS;
1065 DemandedElts, DemandedEltsLHS,
1068 const auto ComputeForSingleOpFunc =
1070 return KnownBitsFunc(
1075 if (DemandedEltsRHS.
isZero())
1076 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS);
1077 if (DemandedEltsLHS.
isZero())
1078 return ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS);
1080 return ComputeForSingleOpFunc(
I->getOperand(0), DemandedEltsLHS)
1081 .intersectWith(ComputeForSingleOpFunc(
I->getOperand(1), DemandedEltsRHS));
1091 APInt DemandedElts =
1099 Attribute Attr =
F->getFnAttribute(Attribute::VScaleRange);
1107 return ConstantRange::getEmpty(
BitWidth);
1118 Value *Arm,
bool Invert,
1157 "Input should be a Select!");
1167 const Value *LHS2 =
nullptr, *RHS2 =
nullptr;
1179 return CLow->
sle(*CHigh);
1184 const APInt *&CHigh) {
1185 assert((
II->getIntrinsicID() == Intrinsic::smin ||
1186 II->getIntrinsicID() == Intrinsic::smax) &&
1187 "Must be smin/smax");
1191 if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
1196 if (
II->getIntrinsicID() == Intrinsic::smin)
1198 return CLow->
sle(*CHigh);
1203 const APInt *CLow, *CHigh;
1210 const APInt &DemandedElts,
1217 switch (
I->getOpcode()) {
1219 case Instruction::Load:
1224 case Instruction::And:
1230 case Instruction::Or:
1236 case Instruction::Xor:
1242 case Instruction::Mul: {
1246 DemandedElts, Known, Known2, Q,
Depth);
1249 case Instruction::UDiv: {
1256 case Instruction::SDiv: {
1263 case Instruction::Select: {
1264 auto ComputeForArm = [&](
Value *Arm,
bool Invert) {
1272 ComputeForArm(
I->getOperand(1),
false)
1276 case Instruction::FPTrunc:
1277 case Instruction::FPExt:
1278 case Instruction::FPToUI:
1279 case Instruction::FPToSI:
1280 case Instruction::SIToFP:
1281 case Instruction::UIToFP:
1283 case Instruction::PtrToInt:
1284 case Instruction::IntToPtr:
1287 case Instruction::ZExt:
1288 case Instruction::Trunc: {
1289 Type *SrcTy =
I->getOperand(0)->getType();
1291 unsigned SrcBitWidth;
1299 assert(SrcBitWidth &&
"SrcBitWidth can't be zero");
1303 Inst && Inst->hasNonNeg() && !Known.
isNegative())
1308 case Instruction::BitCast: {
1309 Type *SrcTy =
I->getOperand(0)->getType();
1310 if (SrcTy->isIntOrPtrTy() &&
1313 !
I->getType()->isVectorTy()) {
1321 V->getType()->isFPOrFPVectorTy()) {
1322 Type *FPType = V->getType()->getScalarType();
1335 if (FPClasses &
fcInf)
1347 if (Result.SignBit) {
1348 if (*Result.SignBit)
1359 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1360 !
I->getType()->isIntOrIntVectorTy() ||
1368 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1384 unsigned SubScale =
BitWidth / SubBitWidth;
1386 for (
unsigned i = 0; i != NumElts; ++i) {
1387 if (DemandedElts[i])
1388 SubDemandedElts.
setBit(i * SubScale);
1392 for (
unsigned i = 0; i != SubScale; ++i) {
1395 unsigned ShiftElt = IsLE ? i : SubScale - 1 - i;
1396 Known.
insertBits(KnownSrc, ShiftElt * SubBitWidth);
1402 unsigned SubScale = SubBitWidth /
BitWidth;
1404 APInt SubDemandedElts =
1411 for (
unsigned i = 0; i != NumElts; ++i) {
1412 if (DemandedElts[i]) {
1413 unsigned Shifts = IsLE ? i : NumElts - 1 - i;
1423 case Instruction::SExt: {
1425 unsigned SrcBitWidth =
I->getOperand(0)->getType()->getScalarSizeInBits();
1427 Known = Known.
trunc(SrcBitWidth);
1434 case Instruction::Shl: {
1438 bool ShAmtNonZero) {
1439 return KnownBits::shl(KnownVal, KnownAmt, NUW, NSW, ShAmtNonZero);
1449 case Instruction::LShr: {
1452 bool ShAmtNonZero) {
1463 case Instruction::AShr: {
1466 bool ShAmtNonZero) {
1473 case Instruction::Sub: {
1477 DemandedElts, Known, Known2, Q,
Depth);
1480 case Instruction::Add: {
1484 DemandedElts, Known, Known2, Q,
Depth);
1487 case Instruction::SRem:
1493 case Instruction::URem:
1498 case Instruction::Alloca:
1501 case Instruction::GetElementPtr: {
1508 APInt AccConstIndices(IndexWidth, 0);
1510 auto AddIndexToKnown = [&](
KnownBits IndexBits) {
1519 "Index width can't be larger than pointer width");
1525 for (
unsigned i = 1, e =
I->getNumOperands(); i != e; ++i, ++GTI) {
1530 Value *Index =
I->getOperand(i);
1541 "Access to structure field must be known at compile time");
1549 AccConstIndices +=
Offset;
1566 CI->getValue().
sextOrTrunc(IndexWidth) * StrideInBytes;
1590 case Instruction::PHI: {
1593 Value *R =
nullptr, *L =
nullptr;
1606 case Instruction::LShr:
1607 case Instruction::AShr:
1608 case Instruction::Shl:
1609 case Instruction::UDiv:
1616 case Instruction::URem: {
1629 case Instruction::Shl:
1633 case Instruction::LShr:
1634 case Instruction::UDiv:
1635 case Instruction::URem:
1640 case Instruction::AShr:
1652 case Instruction::Add:
1653 case Instruction::Sub:
1654 case Instruction::And:
1655 case Instruction::Or:
1656 case Instruction::Mul: {
1663 unsigned OpNum =
P->getOperand(0) == R ? 0 : 1;
1664 Instruction *RInst =
P->getIncomingBlock(OpNum)->getTerminator();
1665 Instruction *LInst =
P->getIncomingBlock(1 - OpNum)->getTerminator();
1694 case Instruction::Add: {
1704 case Instruction::Sub: {
1715 case Instruction::Mul:
1732 if (
P->getNumIncomingValues() == 0)
1744 for (
const Use &U :
P->operands()) {
1779 if ((TrueSucc == CxtPhi->
getParent()) !=
1796 Known2 = KnownUnion;
1810 case Instruction::Call:
1811 case Instruction::Invoke: {
1821 if (std::optional<ConstantRange>
Range = CB->getRange())
1824 if (
const Value *RV = CB->getReturnedArgOperand()) {
1825 if (RV->getType() ==
I->getType()) {
1837 switch (
II->getIntrinsicID()) {
1840 case Intrinsic::abs: {
1842 bool IntMinIsPoison =
match(
II->getArgOperand(1),
m_One());
1846 case Intrinsic::bitreverse:
1850 case Intrinsic::bswap:
1854 case Intrinsic::ctlz: {
1860 PossibleLZ = std::min(PossibleLZ,
BitWidth - 1);
1865 case Intrinsic::cttz: {
1871 PossibleTZ = std::min(PossibleTZ,
BitWidth - 1);
1876 case Intrinsic::ctpop: {
1887 case Intrinsic::fshr:
1888 case Intrinsic::fshl: {
1895 if (
II->getIntrinsicID() == Intrinsic::fshr)
1902 Known2 <<= ShiftAmt;
1907 case Intrinsic::uadd_sat:
1912 case Intrinsic::usub_sat:
1917 case Intrinsic::sadd_sat:
1922 case Intrinsic::ssub_sat:
1928 case Intrinsic::vector_reverse:
1934 case Intrinsic::vector_reduce_and:
1935 case Intrinsic::vector_reduce_or:
1936 case Intrinsic::vector_reduce_umax:
1937 case Intrinsic::vector_reduce_umin:
1938 case Intrinsic::vector_reduce_smax:
1939 case Intrinsic::vector_reduce_smin:
1942 case Intrinsic::vector_reduce_xor: {
1949 bool EvenCnt = VecTy->getElementCount().isKnownEven();
1953 if (VecTy->isScalableTy() || EvenCnt)
1957 case Intrinsic::umin:
1962 case Intrinsic::umax:
1967 case Intrinsic::smin:
1973 case Intrinsic::smax:
1979 case Intrinsic::ptrmask: {
1982 const Value *Mask =
I->getOperand(1);
1983 Known2 =
KnownBits(Mask->getType()->getScalarSizeInBits());
1989 case Intrinsic::x86_sse2_pmulh_w:
1990 case Intrinsic::x86_avx2_pmulh_w:
1991 case Intrinsic::x86_avx512_pmulh_w_512:
1996 case Intrinsic::x86_sse2_pmulhu_w:
1997 case Intrinsic::x86_avx2_pmulhu_w:
1998 case Intrinsic::x86_avx512_pmulhu_w_512:
2003 case Intrinsic::x86_sse42_crc32_64_64:
2006 case Intrinsic::x86_ssse3_phadd_d_128:
2007 case Intrinsic::x86_ssse3_phadd_w_128:
2008 case Intrinsic::x86_avx2_phadd_d:
2009 case Intrinsic::x86_avx2_phadd_w: {
2011 I, DemandedElts, Q,
Depth,
2017 case Intrinsic::x86_ssse3_phadd_sw_128:
2018 case Intrinsic::x86_avx2_phadd_sw: {
2023 case Intrinsic::x86_ssse3_phsub_d_128:
2024 case Intrinsic::x86_ssse3_phsub_w_128:
2025 case Intrinsic::x86_avx2_phsub_d:
2026 case Intrinsic::x86_avx2_phsub_w: {
2028 I, DemandedElts, Q,
Depth,
2034 case Intrinsic::x86_ssse3_phsub_sw_128:
2035 case Intrinsic::x86_avx2_phsub_sw: {
2040 case Intrinsic::riscv_vsetvli:
2041 case Intrinsic::riscv_vsetvlimax: {
2042 bool HasAVL =
II->getIntrinsicID() == Intrinsic::riscv_vsetvli;
2055 MaxVL = std::min(MaxVL, CI->getZExtValue());
2057 unsigned KnownZeroFirstBit =
Log2_32(MaxVL) + 1;
2062 case Intrinsic::vscale: {
2063 if (!
II->getParent() || !
II->getFunction())
2073 case Instruction::ShuffleVector: {
2082 APInt DemandedLHS, DemandedRHS;
2089 if (!!DemandedLHS) {
2090 const Value *
LHS = Shuf->getOperand(0);
2096 if (!!DemandedRHS) {
2097 const Value *
RHS = Shuf->getOperand(1);
2103 case Instruction::InsertElement: {
2108 const Value *Vec =
I->getOperand(0);
2109 const Value *Elt =
I->getOperand(1);
2112 APInt DemandedVecElts = DemandedElts;
2113 bool NeedsElt =
true;
2115 if (CIdx && CIdx->getValue().ult(NumElts)) {
2116 DemandedVecElts.
clearBit(CIdx->getZExtValue());
2117 NeedsElt = DemandedElts[CIdx->getZExtValue()];
2129 if (!DemandedVecElts.
isZero()) {
2135 case Instruction::ExtractElement: {
2138 const Value *Vec =
I->getOperand(0);
2139 const Value *Idx =
I->getOperand(1);
2148 if (CIdx && CIdx->getValue().ult(NumElts))
2153 case Instruction::ExtractValue:
2158 switch (
II->getIntrinsicID()) {
2160 case Intrinsic::uadd_with_overflow:
2161 case Intrinsic::sadd_with_overflow:
2163 true,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2164 false, DemandedElts, Known, Known2, Q,
Depth);
2166 case Intrinsic::usub_with_overflow:
2167 case Intrinsic::ssub_with_overflow:
2169 false,
II->getArgOperand(0),
II->getArgOperand(1),
false,
2170 false, DemandedElts, Known, Known2, Q,
Depth);
2172 case Intrinsic::umul_with_overflow:
2173 case Intrinsic::smul_with_overflow:
2175 false, DemandedElts, Known, Known2, Q,
Depth);
2181 case Instruction::Freeze:
2225 if (!DemandedElts) {
2231 assert(V &&
"No Value?");
2235 Type *Ty = V->getType();
2238 assert((Ty->isIntOrIntVectorTy(
BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
2239 "Not integer or pointer type!");
2243 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
2244 "DemandedElt width should equal the fixed vector number of elements");
2247 "DemandedElt width should be 1 for scalars or scalable vectors");
2253 "V and Known should have same BitWidth");
2256 "V and Known should have same BitWidth");
2278 for (
unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
2279 if (!DemandedElts[i])
2281 APInt Elt = CDV->getElementAsAPInt(i);
2295 for (
unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
2296 if (!DemandedElts[i])
2306 const APInt &Elt = ElementCI->getValue();
2327 if (std::optional<ConstantRange>
Range =
A->getRange())
2328 Known =
Range->toKnownBits();
2337 if (!GA->isInterposable())
2345 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2346 Known = CR->toKnownBits();
2351 Align Alignment = V->getPointerAlignment(Q.
DL);
2367 Value *Start =
nullptr, *Step =
nullptr;
2373 if (U.get() == Start) {
2389 case Instruction::Mul:
2394 case Instruction::SDiv:
2400 case Instruction::UDiv:
2406 case Instruction::Shl:
2408 case Instruction::AShr:
2412 case Instruction::LShr:
2450 if (OrZero && V->getType()->getScalarSizeInBits() == 1)
2492 return F->hasFnAttribute(Attribute::VScaleRange);
2509 switch (
I->getOpcode()) {
2510 case Instruction::ZExt:
2512 case Instruction::Trunc:
2514 case Instruction::Shl:
2518 case Instruction::LShr:
2522 case Instruction::UDiv:
2526 case Instruction::Mul:
2530 case Instruction::And:
2541 case Instruction::Add: {
2547 if (
match(
I->getOperand(0),
2551 if (
match(
I->getOperand(1),
2556 unsigned BitWidth = V->getType()->getScalarSizeInBits();
2565 if ((~(LHSBits.
Zero & RHSBits.
Zero)).isPowerOf2())
2578 case Instruction::Select:
2581 case Instruction::PHI: {
2602 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2603 return isKnownToBeAPowerOfTwo(U.get(), OrZero, RecQ, NewDepth);
2606 case Instruction::Invoke:
2607 case Instruction::Call: {
2609 switch (
II->getIntrinsicID()) {
2610 case Intrinsic::umax:
2611 case Intrinsic::smax:
2612 case Intrinsic::umin:
2613 case Intrinsic::smin:
2618 case Intrinsic::bitreverse:
2619 case Intrinsic::bswap:
2621 case Intrinsic::fshr:
2622 case Intrinsic::fshl:
2624 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
2648 F =
I->getFunction();
2652 if (!
GEP->hasNoUnsignedWrap() &&
2653 !(
GEP->isInBounds() &&
2658 assert(
GEP->getType()->isPointerTy() &&
"We only support plain pointer GEP");
2669 GTI != GTE; ++GTI) {
2671 if (
StructType *STy = GTI.getStructTypeOrNull()) {
2676 if (ElementOffset > 0)
2682 if (GTI.getSequentialElementStride(Q.
DL).isZero())
2716 unsigned NumUsesExplored = 0;
2717 for (
auto &U : V->uses()) {
2726 if (V->getType()->isPointerTy()) {
2728 if (CB->isArgOperand(&U) &&
2729 CB->paramHasNonNullAttr(CB->getArgOperandNo(&U),
2757 NonNullIfTrue =
true;
2759 NonNullIfTrue =
false;
2765 for (
const auto *CmpU : UI->
users()) {
2767 if (Visited.
insert(CmpU).second)
2770 while (!WorkList.
empty()) {
2779 for (
const auto *CurrU : Curr->users())
2780 if (Visited.
insert(CurrU).second)
2786 assert(BI->isConditional() &&
"uses a comparison!");
2789 BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2793 }
else if (NonNullIfTrue &&
isGuard(Curr) &&
2808 const unsigned NumRanges = Ranges->getNumOperands() / 2;
2810 for (
unsigned i = 0; i < NumRanges; ++i) {
2826 Value *Start =
nullptr, *Step =
nullptr;
2827 const APInt *StartC, *StepC;
2833 case Instruction::Add:
2839 case Instruction::Mul:
2842 case Instruction::Shl:
2844 case Instruction::AShr:
2845 case Instruction::LShr:
2861 bool NUW,
unsigned Depth) {
2918 return ::isKnownNonEqual(
X,
Y, DemandedElts, Q,
Depth);
2923 bool NUW,
unsigned Depth) {
2952 auto ShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
2953 switch (
I->getOpcode()) {
2954 case Instruction::Shl:
2955 return Lhs.
shl(Rhs);
2956 case Instruction::LShr:
2957 return Lhs.
lshr(Rhs);
2958 case Instruction::AShr:
2959 return Lhs.
ashr(Rhs);
2965 auto InvShiftOp = [&](
const APInt &Lhs,
const APInt &Rhs) {
2966 switch (
I->getOpcode()) {
2967 case Instruction::Shl:
2968 return Lhs.
lshr(Rhs);
2969 case Instruction::LShr:
2970 case Instruction::AShr:
2971 return Lhs.
shl(Rhs);
2984 if (MaxShift.
uge(NumBits))
2987 if (!ShiftOp(KnownVal.
One, MaxShift).isZero())
2992 if (InvShiftOp(KnownVal.
Zero, NumBits - MaxShift)
3001 const APInt &DemandedElts,
3004 switch (
I->getOpcode()) {
3005 case Instruction::Alloca:
3007 return I->getType()->getPointerAddressSpace() == 0;
3008 case Instruction::GetElementPtr:
3009 if (
I->getType()->isPointerTy())
3012 case Instruction::BitCast: {
3040 Type *FromTy =
I->getOperand(0)->getType();
3045 case Instruction::IntToPtr:
3054 case Instruction::PtrToInt:
3062 case Instruction::Trunc:
3065 if (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap())
3071 case Instruction::Xor:
3072 case Instruction::Sub:
3074 I->getOperand(1),
Depth);
3075 case Instruction::Or:
3086 case Instruction::SExt:
3087 case Instruction::ZExt:
3091 case Instruction::Shl: {
3106 case Instruction::LShr:
3107 case Instruction::AShr: {
3122 case Instruction::UDiv:
3123 case Instruction::SDiv: {
3138 if (
I->getOpcode() == Instruction::SDiv) {
3140 XKnown = XKnown.
abs(
false);
3141 YKnown = YKnown.
abs(
false);
3147 return XUgeY && *XUgeY;
3149 case Instruction::Add: {
3159 case Instruction::Mul: {
3165 case Instruction::Select: {
3172 auto SelectArmIsNonZero = [&](
bool IsTrueArm) {
3174 Op = IsTrueArm ?
I->getOperand(1) :
I->getOperand(2);
3192 if (SelectArmIsNonZero(
true) &&
3193 SelectArmIsNonZero(
false))
3197 case Instruction::PHI: {
3208 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
3212 BasicBlock *TrueSucc, *FalseSucc;
3213 if (match(RecQ.CxtI,
3214 m_Br(m_c_ICmp(Pred, m_Specific(U.get()), m_Value(X)),
3215 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) {
3217 if ((TrueSucc == PN->getParent()) != (FalseSucc == PN->getParent())) {
3219 if (FalseSucc == PN->getParent())
3220 Pred = CmpInst::getInversePredicate(Pred);
3221 if (cmpExcludesZero(Pred, X))
3229 case Instruction::InsertElement: {
3233 const Value *Vec =
I->getOperand(0);
3234 const Value *Elt =
I->getOperand(1);
3238 APInt DemandedVecElts = DemandedElts;
3239 bool SkipElt =
false;
3241 if (CIdx && CIdx->getValue().ult(NumElts)) {
3242 DemandedVecElts.
clearBit(CIdx->getZExtValue());
3243 SkipElt = !DemandedElts[CIdx->getZExtValue()];
3249 (DemandedVecElts.
isZero() ||
3252 case Instruction::ExtractElement:
3254 const Value *Vec = EEI->getVectorOperand();
3255 const Value *Idx = EEI->getIndexOperand();
3258 unsigned NumElts = VecTy->getNumElements();
3260 if (CIdx && CIdx->getValue().ult(NumElts))
3266 case Instruction::ShuffleVector: {
3270 APInt DemandedLHS, DemandedRHS;
3276 return (DemandedRHS.
isZero() ||
3281 case Instruction::Freeze:
3285 case Instruction::Load: {
3302 case Instruction::ExtractValue: {
3308 case Instruction::Add:
3313 case Instruction::Sub:
3316 case Instruction::Mul:
3319 false,
false,
Depth);
3325 case Instruction::Call:
3326 case Instruction::Invoke: {
3328 if (
I->getType()->isPointerTy()) {
3329 if (
Call->isReturnNonNull())
3336 if (std::optional<ConstantRange>
Range =
Call->getRange()) {
3337 const APInt ZeroValue(
Range->getBitWidth(), 0);
3338 if (!
Range->contains(ZeroValue))
3341 if (
const Value *RV =
Call->getReturnedArgOperand())
3347 switch (
II->getIntrinsicID()) {
3348 case Intrinsic::sshl_sat:
3349 case Intrinsic::ushl_sat:
3350 case Intrinsic::abs:
3351 case Intrinsic::bitreverse:
3352 case Intrinsic::bswap:
3353 case Intrinsic::ctpop:
3357 case Intrinsic::ssub_sat:
3360 case Intrinsic::sadd_sat:
3362 II->getArgOperand(1),
3363 true,
false,
Depth);
3365 case Intrinsic::vector_reverse:
3369 case Intrinsic::vector_reduce_or:
3370 case Intrinsic::vector_reduce_umax:
3371 case Intrinsic::vector_reduce_umin:
3372 case Intrinsic::vector_reduce_smax:
3373 case Intrinsic::vector_reduce_smin:
3375 case Intrinsic::umax:
3376 case Intrinsic::uadd_sat:
3384 case Intrinsic::smax: {
3387 auto IsNonZero = [&](
Value *
Op, std::optional<bool> &OpNonZero,
3389 if (!OpNonZero.has_value())
3390 OpNonZero = OpKnown.isNonZero() ||
3395 std::optional<bool> Op0NonZero, Op1NonZero;
3399 IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known))
3404 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known))
3406 return IsNonZero(
II->getArgOperand(1), Op1NonZero, Op1Known) &&
3407 IsNonZero(
II->getArgOperand(0), Op0NonZero, Op0Known);
3409 case Intrinsic::smin: {
3425 case Intrinsic::umin:
3428 case Intrinsic::cttz:
3431 case Intrinsic::ctlz:
3434 case Intrinsic::fshr:
3435 case Intrinsic::fshl:
3437 if (
II->getArgOperand(0) ==
II->getArgOperand(1))
3440 case Intrinsic::vscale:
3442 case Intrinsic::experimental_get_vector_length:
3456 return Known.
One != 0;
3467 Type *Ty = V->getType();
3474 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
3475 "DemandedElt width should equal the fixed vector number of elements");
3478 "DemandedElt width should be 1 for scalars");
3483 if (
C->isNullValue())
3492 for (
unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
3493 if (!DemandedElts[i])
3495 Constant *Elt =
C->getAggregateElement(i);
3512 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3513 GV->getType()->getAddressSpace() == 0)
3523 if (std::optional<ConstantRange>
Range =
A->getRange()) {
3524 const APInt ZeroValue(
Range->getBitWidth(), 0);
3525 if (!
Range->contains(ZeroValue))
3542 if (((
A->hasPassPointeeByValueCopyAttr() &&
3544 A->hasNonNullAttr()))
3566 APInt DemandedElts =
3568 return ::isKnownNonZero(V, DemandedElts, Q,
Depth);
3577static std::optional<std::pair<Value*, Value*>>
3581 return std::nullopt;
3590 case Instruction::Or:
3595 case Instruction::Xor:
3596 case Instruction::Add: {
3604 case Instruction::Sub:
3610 case Instruction::Mul: {
3616 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3617 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3627 case Instruction::Shl: {
3632 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
3633 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
3640 case Instruction::AShr:
3641 case Instruction::LShr: {
3644 if (!PEO1->isExact() || !PEO2->isExact())
3651 case Instruction::SExt:
3652 case Instruction::ZExt:
3656 case Instruction::PHI: {
3664 Value *Start1 =
nullptr, *Step1 =
nullptr;
3666 Value *Start2 =
nullptr, *Step2 =
nullptr;
3682 if (Values->first != PN1 || Values->second != PN2)
3685 return std::make_pair(Start1, Start2);
3688 return std::nullopt;
3695 const APInt &DemandedElts,
3703 case Instruction::Or:
3707 case Instruction::Xor:
3708 case Instruction::Add:
3729 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3730 !
C->isZero() && !
C->isOne() &&
3744 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
3758 bool UsedFullRecursion =
false;
3760 if (!VisitedBBs.
insert(IncomBB).second)
3764 const APInt *C1, *C2;
3769 if (UsedFullRecursion)
3773 RecQ.
CxtI = IncomBB->getTerminator();
3776 UsedFullRecursion =
true;
3790 const Value *Cond2 = SI2->getCondition();
3793 DemandedElts, Q,
Depth + 1) &&
3795 DemandedElts, Q,
Depth + 1);
3808 if (!
A->getType()->isPointerTy() || !
B->getType()->isPointerTy())
3812 if (!GEPA || GEPA->getNumIndices() != 1 || !
isa<Constant>(GEPA->idx_begin()))
3817 if (!PN || PN->getNumIncomingValues() != 2)
3822 Value *Start =
nullptr;
3824 if (PN->getIncomingValue(0) == Step)
3825 Start = PN->getIncomingValue(1);
3826 else if (PN->getIncomingValue(1) == Step)
3827 Start = PN->getIncomingValue(0);
3838 APInt StartOffset(IndexWidth, 0);
3839 Start = Start->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, StartOffset);
3840 APInt StepOffset(IndexWidth, 0);
3846 APInt OffsetB(IndexWidth, 0);
3847 B =
B->stripAndAccumulateInBoundsConstantOffsets(Q.
DL, OffsetB);
3848 return Start ==
B &&
3860 auto IsKnownNonEqualFromDominatingCondition = [&](
const Value *V) {
3881 if (IsKnownNonEqualFromDominatingCondition(V1) ||
3882 IsKnownNonEqualFromDominatingCondition(V2))
3896 "Got assumption for the wrong function!");
3897 assert(
I->getIntrinsicID() == Intrinsic::assume &&
3898 "must be an assume intrinsic");
3928 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
3930 return isKnownNonEqual(Values->first, Values->second, DemandedElts, Q,
3992 const APInt &DemandedElts,
3998 unsigned MinSignBits = TyBits;
4000 for (
unsigned i = 0; i != NumElts; ++i) {
4001 if (!DemandedElts[i])
4008 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
4015 const APInt &DemandedElts,
4021 assert(Result > 0 &&
"At least one sign bit needs to be present!");
4033 const APInt &DemandedElts,
4035 Type *Ty = V->getType();
4041 FVTy->getNumElements() == DemandedElts.
getBitWidth() &&
4042 "DemandedElt width should equal the fixed vector number of elements");
4045 "DemandedElt width should be 1 for scalars");
4059 unsigned FirstAnswer = 1;
4070 case Instruction::BitCast: {
4071 Value *Src = U->getOperand(0);
4072 Type *SrcTy = Src->getType();
4076 if (!SrcTy->isIntOrIntVectorTy())
4082 if ((SrcBits % TyBits) != 0)
4095 case Instruction::SExt:
4096 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
4100 case Instruction::SDiv: {
4101 const APInt *Denominator;
4114 return std::min(TyBits, NumBits + Denominator->
logBase2());
4119 case Instruction::SRem: {
4122 const APInt *Denominator;
4143 unsigned ResBits = TyBits - Denominator->
ceilLogBase2();
4144 Tmp = std::max(Tmp, ResBits);
4150 case Instruction::AShr: {
4155 if (ShAmt->
uge(TyBits))
4158 Tmp += ShAmtLimited;
4159 if (Tmp > TyBits) Tmp = TyBits;
4163 case Instruction::Shl: {
4168 if (ShAmt->
uge(TyBits))
4173 ShAmt->
uge(TyBits -
X->getType()->getScalarSizeInBits())) {
4175 Tmp += TyBits -
X->getType()->getScalarSizeInBits();
4179 if (ShAmt->
uge(Tmp))
4186 case Instruction::And:
4187 case Instruction::Or:
4188 case Instruction::Xor:
4193 FirstAnswer = std::min(Tmp, Tmp2);
4200 case Instruction::Select: {
4204 const APInt *CLow, *CHigh;
4212 return std::min(Tmp, Tmp2);
4215 case Instruction::Add:
4219 if (Tmp == 1)
break;
4223 if (CRHS->isAllOnesValue()) {
4229 if ((Known.
Zero | 1).isAllOnes())
4241 return std::min(Tmp, Tmp2) - 1;
4243 case Instruction::Sub:
4250 if (CLHS->isNullValue()) {
4255 if ((Known.
Zero | 1).isAllOnes())
4272 return std::min(Tmp, Tmp2) - 1;
4274 case Instruction::Mul: {
4277 unsigned SignBitsOp0 =
4279 if (SignBitsOp0 == 1)
4281 unsigned SignBitsOp1 =
4283 if (SignBitsOp1 == 1)
4285 unsigned OutValidBits =
4286 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
4287 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
4290 case Instruction::PHI: {
4294 if (NumIncomingValues > 4)
break;
4296 if (NumIncomingValues == 0)
break;
4302 for (
unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
4303 if (Tmp == 1)
return Tmp;
4306 DemandedElts, RecQ,
Depth + 1));
4311 case Instruction::Trunc: {
4316 unsigned OperandTyBits = U->getOperand(0)->getType()->getScalarSizeInBits();
4317 if (Tmp > (OperandTyBits - TyBits))
4318 return Tmp - (OperandTyBits - TyBits);
4323 case Instruction::ExtractElement:
4330 case Instruction::ShuffleVector: {
4338 APInt DemandedLHS, DemandedRHS;
4343 Tmp = std::numeric_limits<unsigned>::max();
4344 if (!!DemandedLHS) {
4345 const Value *
LHS = Shuf->getOperand(0);
4352 if (!!DemandedRHS) {
4353 const Value *
RHS = Shuf->getOperand(1);
4355 Tmp = std::min(Tmp, Tmp2);
4361 assert(Tmp <= TyBits &&
"Failed to determine minimum sign bits");
4364 case Instruction::Call: {
4366 switch (
II->getIntrinsicID()) {
4369 case Intrinsic::abs:
4377 case Intrinsic::smin:
4378 case Intrinsic::smax: {
4379 const APInt *CLow, *CHigh;
4394 if (
unsigned VecSignBits =
4412 if (
F->isIntrinsic())
4413 return F->getIntrinsicID();
4419 if (
F->hasLocalLinkage() || !TLI || !TLI->
getLibFunc(CB, Func) ||
4429 return Intrinsic::sin;
4433 return Intrinsic::cos;
4437 return Intrinsic::tan;
4441 return Intrinsic::asin;
4445 return Intrinsic::acos;
4449 return Intrinsic::atan;
4451 case LibFunc_atan2f:
4452 case LibFunc_atan2l:
4453 return Intrinsic::atan2;
4457 return Intrinsic::sinh;
4461 return Intrinsic::cosh;
4465 return Intrinsic::tanh;
4469 return Intrinsic::exp;
4473 return Intrinsic::exp2;
4475 case LibFunc_exp10f:
4476 case LibFunc_exp10l:
4477 return Intrinsic::exp10;
4481 return Intrinsic::log;
4483 case LibFunc_log10f:
4484 case LibFunc_log10l:
4485 return Intrinsic::log10;
4489 return Intrinsic::log2;
4493 return Intrinsic::fabs;
4497 return Intrinsic::minnum;
4501 return Intrinsic::maxnum;
4502 case LibFunc_copysign:
4503 case LibFunc_copysignf:
4504 case LibFunc_copysignl:
4505 return Intrinsic::copysign;
4507 case LibFunc_floorf:
4508 case LibFunc_floorl:
4509 return Intrinsic::floor;
4513 return Intrinsic::ceil;
4515 case LibFunc_truncf:
4516 case LibFunc_truncl:
4517 return Intrinsic::trunc;
4521 return Intrinsic::rint;
4522 case LibFunc_nearbyint:
4523 case LibFunc_nearbyintf:
4524 case LibFunc_nearbyintl:
4525 return Intrinsic::nearbyint;
4527 case LibFunc_roundf:
4528 case LibFunc_roundl:
4529 return Intrinsic::round;
4530 case LibFunc_roundeven:
4531 case LibFunc_roundevenf:
4532 case LibFunc_roundevenl:
4533 return Intrinsic::roundeven;
4537 return Intrinsic::pow;
4541 return Intrinsic::sqrt;
4548 Ty = Ty->getScalarType();
4557 bool &TrueIfSigned) {
4560 TrueIfSigned =
true;
4561 return RHS.isZero();
4563 TrueIfSigned =
true;
4564 return RHS.isAllOnes();
4566 TrueIfSigned =
false;
4567 return RHS.isAllOnes();
4569 TrueIfSigned =
false;
4570 return RHS.isZero();
4573 TrueIfSigned =
true;
4574 return RHS.isMaxSignedValue();
4577 TrueIfSigned =
true;
4578 return RHS.isMinSignedValue();
4581 TrueIfSigned =
false;
4582 return RHS.isMinSignedValue();
4585 TrueIfSigned =
false;
4586 return RHS.isMaxSignedValue();
4596 unsigned Depth = 0) {
4621 KnownFromContext.
knownNot(~(CondIsTrue ? MaskIfTrue : MaskIfFalse));
4625 KnownFromContext.
knownNot(CondIsTrue ? ~Mask : Mask);
4631 if (TrueIfSigned == CondIsTrue)
4647 return KnownFromContext;
4667 return KnownFromContext;
4677 "Got assumption for the wrong function!");
4678 assert(
I->getIntrinsicID() == Intrinsic::assume &&
4679 "must be an assume intrinsic");
4685 true, Q.
CxtI, KnownFromContext);
4688 return KnownFromContext;
4699 APInt DemandedElts =
4705 const APInt &DemandedElts,
4710 if ((InterestedClasses &
4716 KnownSrc, Q,
Depth + 1);
4731 assert(Known.
isUnknown() &&
"should not be called with known information");
4733 if (!DemandedElts) {
4743 Known.
SignBit = CFP->isNegative();
4764 bool SignBitAllZero =
true;
4765 bool SignBitAllOne =
true;
4768 unsigned NumElts = VFVTy->getNumElements();
4769 for (
unsigned i = 0; i != NumElts; ++i) {
4770 if (!DemandedElts[i])
4786 const APFloat &
C = CElt->getValueAPF();
4789 SignBitAllZero =
false;
4791 SignBitAllOne =
false;
4793 if (SignBitAllOne != SignBitAllZero)
4794 Known.
SignBit = SignBitAllOne;
4800 KnownNotFromFlags |= CB->getRetNoFPClass();
4802 KnownNotFromFlags |= Arg->getNoFPClass();
4806 if (FPOp->hasNoNaNs())
4807 KnownNotFromFlags |=
fcNan;
4808 if (FPOp->hasNoInfs())
4809 KnownNotFromFlags |=
fcInf;
4813 KnownNotFromFlags |= ~AssumedClasses.KnownFPClasses;
4817 InterestedClasses &= ~KnownNotFromFlags;
4836 const unsigned Opc =
Op->getOpcode();
4838 case Instruction::FNeg: {
4840 Known, Q,
Depth + 1);
4844 case Instruction::Select: {
4852 Value *TestedValue =
nullptr;
4858 Value *CmpLHS, *CmpRHS;
4865 bool LookThroughFAbsFNeg = CmpLHS !=
LHS && CmpLHS !=
RHS;
4866 std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
4872 MaskIfTrue = TestedMask;
4873 MaskIfFalse = ~TestedMask;
4876 if (TestedValue ==
LHS) {
4878 FilterLHS = MaskIfTrue;
4879 }
else if (TestedValue ==
RHS) {
4881 FilterRHS = MaskIfFalse;
4890 Known2, Q,
Depth + 1);
4896 case Instruction::Call: {
4900 case Intrinsic::fabs: {
4905 InterestedClasses, Known, Q,
Depth + 1);
4911 case Intrinsic::copysign: {
4915 Known, Q,
Depth + 1);
4917 KnownSign, Q,
Depth + 1);
4921 case Intrinsic::fma:
4922 case Intrinsic::fmuladd: {
4926 if (
II->getArgOperand(0) !=
II->getArgOperand(1))
4935 KnownAddend, Q,
Depth + 1);
4941 case Intrinsic::sqrt:
4942 case Intrinsic::experimental_constrained_sqrt: {
4945 if (InterestedClasses &
fcNan)
4949 KnownSrc, Q,
Depth + 1);
4967 II->getType()->getScalarType()->getFltSemantics();
4976 case Intrinsic::sin:
4977 case Intrinsic::cos: {
4981 KnownSrc, Q,
Depth + 1);
4987 case Intrinsic::maxnum:
4988 case Intrinsic::minnum:
4989 case Intrinsic::minimum:
4990 case Intrinsic::maximum:
4991 case Intrinsic::minimumnum:
4992 case Intrinsic::maximumnum: {
4995 KnownLHS, Q,
Depth + 1);
4997 KnownRHS, Q,
Depth + 1);
5000 Known = KnownLHS | KnownRHS;
5004 (IID == Intrinsic::minnum || IID == Intrinsic::maxnum ||
5005 IID == Intrinsic::minimumnum || IID == Intrinsic::maximumnum))
5008 if (IID == Intrinsic::maxnum || IID == Intrinsic::maximumnum) {
5016 }
else if (IID == Intrinsic::maximum) {
5022 }
else if (IID == Intrinsic::minnum || IID == Intrinsic::minimumnum) {
5030 }
else if (IID == Intrinsic::minimum) {
5053 II->getType()->getScalarType()->getFltSemantics());
5065 }
else if ((IID == Intrinsic::maximum || IID == Intrinsic::minimum ||
5066 IID == Intrinsic::maximumnum ||
5067 IID == Intrinsic::minimumnum) ||
5073 if ((IID == Intrinsic::maximum || IID == Intrinsic::maximumnum ||
5074 IID == Intrinsic::maxnum) &&
5077 else if ((IID == Intrinsic::minimum || IID == Intrinsic::minimumnum ||
5078 IID == Intrinsic::minnum) &&
5085 case Intrinsic::canonicalize: {
5088 KnownSrc, Q,
Depth + 1);
5112 II->getType()->getScalarType()->getFltSemantics();
5132 case Intrinsic::vector_reduce_fmax:
5133 case Intrinsic::vector_reduce_fmin:
5134 case Intrinsic::vector_reduce_fmaximum:
5135 case Intrinsic::vector_reduce_fminimum: {
5139 InterestedClasses, Q,
Depth + 1);
5146 case Intrinsic::vector_reverse:
5149 II->getFastMathFlags(), InterestedClasses, Q,
Depth + 1);
5151 case Intrinsic::trunc:
5152 case Intrinsic::floor:
5153 case Intrinsic::ceil:
5154 case Intrinsic::rint:
5155 case Intrinsic::nearbyint:
5156 case Intrinsic::round:
5157 case Intrinsic::roundeven: {
5165 KnownSrc, Q,
Depth + 1);
5174 if (IID == Intrinsic::trunc || !V->getType()->isMultiUnitFPType()) {
5189 case Intrinsic::exp:
5190 case Intrinsic::exp2:
5191 case Intrinsic::exp10: {
5198 KnownSrc, Q,
Depth + 1);
5206 case Intrinsic::fptrunc_round: {
5211 case Intrinsic::log:
5212 case Intrinsic::log10:
5213 case Intrinsic::log2:
5214 case Intrinsic::experimental_constrained_log:
5215 case Intrinsic::experimental_constrained_log10:
5216 case Intrinsic::experimental_constrained_log2: {
5232 KnownSrc, Q,
Depth + 1);
5246 II->getType()->getScalarType()->getFltSemantics();
5254 case Intrinsic::powi: {
5258 const Value *Exp =
II->getArgOperand(1);
5259 Type *ExpTy = Exp->getType();
5263 ExponentKnownBits, Q,
Depth + 1);
5265 if (ExponentKnownBits.
Zero[0]) {
5280 KnownSrc, Q,
Depth + 1);
5285 case Intrinsic::ldexp: {
5288 KnownSrc, Q,
Depth + 1);
5304 if ((InterestedClasses & ExpInfoMask) ==
fcNone)
5310 II->getType()->getScalarType()->getFltSemantics();
5312 const Value *ExpArg =
II->getArgOperand(1);
5316 const int MantissaBits = Precision - 1;
5323 II->getType()->getScalarType()->getFltSemantics();
5324 if (ConstVal && ConstVal->
isZero()) {
5349 case Intrinsic::arithmetic_fence: {
5351 Known, Q,
Depth + 1);
5354 case Intrinsic::experimental_constrained_sitofp:
5355 case Intrinsic::experimental_constrained_uitofp:
5365 if (IID == Intrinsic::experimental_constrained_uitofp)
5376 case Instruction::FAdd:
5377 case Instruction::FSub: {
5380 Op->getOpcode() == Instruction::FAdd &&
5382 bool WantNaN = (InterestedClasses &
fcNan) !=
fcNone;
5385 if (!WantNaN && !WantNegative && !WantNegZero)
5391 if (InterestedClasses &
fcNan)
5392 InterestedSrcs |=
fcInf;
5394 KnownRHS, Q,
Depth + 1);
5398 WantNegZero ||
Opc == Instruction::FSub) {
5403 KnownLHS, Q,
Depth + 1);
5413 if (
Op->getOpcode() == Instruction::FAdd) {
5421 Op->getType()->getScalarType()->getFltSemantics();
5435 Op->getType()->getScalarType()->getFltSemantics();
5449 case Instruction::FMul: {
5451 if (
Op->getOperand(0) ==
Op->getOperand(1))
5488 Type *OpTy =
Op->getType()->getScalarType();
5500 case Instruction::FDiv:
5501 case Instruction::FRem: {
5502 if (
Op->getOperand(0) ==
Op->getOperand(1)) {
5504 if (
Op->getOpcode() == Instruction::FDiv) {
5515 const bool WantNan = (InterestedClasses &
fcNan) !=
fcNone;
5517 const bool WantPositive =
5519 if (!WantNan && !WantNegative && !WantPositive)
5528 bool KnowSomethingUseful =
5531 if (KnowSomethingUseful || WantPositive) {
5537 InterestedClasses & InterestedLHS, KnownLHS, Q,
5543 Op->getType()->getScalarType()->getFltSemantics();
5545 if (
Op->getOpcode() == Instruction::FDiv) {
5584 case Instruction::FPExt: {
5587 Known, Q,
Depth + 1);
5590 Op->getType()->getScalarType()->getFltSemantics();
5592 Op->getOperand(0)->getType()->getScalarType()->getFltSemantics();
5608 case Instruction::FPTrunc: {
5613 case Instruction::SIToFP:
5614 case Instruction::UIToFP: {
5623 if (
Op->getOpcode() == Instruction::UIToFP)
5626 if (InterestedClasses &
fcInf) {
5630 int IntSize =
Op->getOperand(0)->getType()->getScalarSizeInBits();
5631 if (
Op->getOpcode() == Instruction::SIToFP)
5636 Type *FPTy =
Op->getType()->getScalarType();
5643 case Instruction::ExtractElement: {
5646 const Value *Vec =
Op->getOperand(0);
5648 APInt DemandedVecElts;
5650 unsigned NumElts = VecTy->getNumElements();
5653 if (CIdx && CIdx->getValue().ult(NumElts))
5656 DemandedVecElts =
APInt(1, 1);
5662 case Instruction::InsertElement: {
5666 const Value *Vec =
Op->getOperand(0);
5667 const Value *Elt =
Op->getOperand(1);
5670 APInt DemandedVecElts = DemandedElts;
5671 bool NeedsElt =
true;
5673 if (CIdx && CIdx->getValue().ult(NumElts)) {
5674 DemandedVecElts.
clearBit(CIdx->getZExtValue());
5675 NeedsElt = DemandedElts[CIdx->getZExtValue()];
5689 if (!DemandedVecElts.
isZero()) {
5698 case Instruction::ShuffleVector: {
5701 APInt DemandedLHS, DemandedRHS;
5706 if (!!DemandedLHS) {
5707 const Value *
LHS = Shuf->getOperand(0);
5718 if (!!DemandedRHS) {
5720 const Value *
RHS = Shuf->getOperand(1);
5728 case Instruction::ExtractValue: {
5735 switch (
II->getIntrinsicID()) {
5736 case Intrinsic::frexp: {
5741 InterestedClasses, KnownSrc, Q,
Depth + 1);
5745 Op->getType()->getScalarType()->getFltSemantics();
5780 case Instruction::PHI: {
5783 if (
P->getNumIncomingValues() == 0)
5790 if (
Depth < PhiRecursionLimit) {
5797 for (
const Use &U :
P->operands()) {
5827 case Instruction::BitCast: {
5830 !Src->getType()->isIntOrIntVectorTy())
5833 const Type *Ty =
Op->getType()->getScalarType();
5834 KnownBits Bits(Ty->getScalarSizeInBits());
5838 if (Bits.isNonNegative())
5840 else if (Bits.isNegative())
5843 if (Ty->isIEEELikeFPTy()) {
5853 else if (!
APFloat(Ty->getFltSemantics(), ~Bits.Zero).
isNaN())
5860 InfKB.Zero.clearSignBit();
5862 assert(!InfResult.value());
5864 }
else if (Bits == InfKB) {
5872 ZeroKB.Zero.clearSignBit();
5874 assert(!ZeroResult.value());
5876 }
else if (Bits == ZeroKB) {
5889 const APInt &DemandedElts,
5896 return KnownClasses;
5922 InterestedClasses &=
~fcNan;
5924 InterestedClasses &=
~fcInf;
5930 Result.KnownFPClasses &=
~fcNan;
5932 Result.KnownFPClasses &=
~fcInf;
5941 APInt DemandedElts =
5995 if (FPOp->hasNoSignedZeros())
5999 switch (
User->getOpcode()) {
6000 case Instruction::FPToSI:
6001 case Instruction::FPToUI:
6003 case Instruction::FCmp:
6006 case Instruction::Call:
6008 switch (
II->getIntrinsicID()) {
6009 case Intrinsic::fabs:
6011 case Intrinsic::copysign:
6012 return U.getOperandNo() == 0;
6013 case Intrinsic::is_fpclass:
6014 case Intrinsic::vp_is_fpclass: {
6034 if (FPOp->hasNoNaNs())
6038 switch (
User->getOpcode()) {
6039 case Instruction::FPToSI:
6040 case Instruction::FPToUI:
6043 case Instruction::FAdd:
6044 case Instruction::FSub:
6045 case Instruction::FMul:
6046 case Instruction::FDiv:
6047 case Instruction::FRem:
6048 case Instruction::FPTrunc:
6049 case Instruction::FPExt:
6050 case Instruction::FCmp:
6053 case Instruction::FNeg:
6054 case Instruction::Select:
6055 case Instruction::PHI:
6057 case Instruction::Ret:
6058 return User->getFunction()->getAttributes().getRetNoFPClass() &
6060 case Instruction::Call:
6061 case Instruction::Invoke: {
6063 switch (
II->getIntrinsicID()) {
6064 case Intrinsic::fabs:
6066 case Intrinsic::copysign:
6067 return U.getOperandNo() == 0;
6069 case Intrinsic::maxnum:
6070 case Intrinsic::minnum:
6071 case Intrinsic::maximum:
6072 case Intrinsic::minimum:
6073 case Intrinsic::maximumnum:
6074 case Intrinsic::minimumnum:
6075 case Intrinsic::canonicalize:
6076 case Intrinsic::fma:
6077 case Intrinsic::fmuladd:
6078 case Intrinsic::sqrt:
6079 case Intrinsic::pow:
6080 case Intrinsic::powi:
6081 case Intrinsic::fptoui_sat:
6082 case Intrinsic::fptosi_sat:
6083 case Intrinsic::is_fpclass:
6084 case Intrinsic::vp_is_fpclass:
6103 if (V->getType()->isIntegerTy(8))
6114 if (
DL.getTypeStoreSize(V->getType()).isZero())
6129 if (
C->isNullValue())
6136 if (CFP->getType()->isHalfTy())
6138 else if (CFP->getType()->isFloatTy())
6140 else if (CFP->getType()->isDoubleTy())
6149 if (CI->getBitWidth() % 8 == 0) {
6150 assert(CI->getBitWidth() > 8 &&
"8 bits should be handled above!");
6151 if (!CI->getValue().isSplat(8))
6153 return ConstantInt::get(Ctx, CI->getValue().trunc(8));
6158 if (CE->getOpcode() == Instruction::IntToPtr) {
6160 unsigned BitWidth =
DL.getPointerSizeInBits(PtrTy->getAddressSpace());
6173 if (LHS == UndefInt8)
6175 if (RHS == UndefInt8)
6181 Value *Val = UndefInt8;
6182 for (
uint64_t I = 0, E = CA->getNumElements();
I != E; ++
I)
6189 Value *Val = UndefInt8;
6224 while (PrevTo != OrigTo) {
6271 unsigned IdxSkip = Idxs.
size();
6284 std::optional<BasicBlock::iterator> InsertBefore) {
6287 if (idx_range.
empty())
6290 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
6291 "Not looking at a struct or array?");
6293 "Invalid indices for type?");
6296 C =
C->getAggregateElement(idx_range[0]);
6297 if (!
C)
return nullptr;
6304 const unsigned *req_idx = idx_range.
begin();
6305 for (
const unsigned *i =
I->idx_begin(), *e =
I->idx_end();
6306 i != e; ++i, ++req_idx) {
6307 if (req_idx == idx_range.
end()) {
6337 ArrayRef(req_idx, idx_range.
end()), InsertBefore);
6346 unsigned size =
I->getNumIndices() + idx_range.
size();
6351 Idxs.
append(
I->idx_begin(),
I->idx_end());
6357 &&
"Number of indices added not correct?");
6374 assert(V &&
"V should not be null.");
6375 assert((ElementSize % 8) == 0 &&
6376 "ElementSize expected to be a multiple of the size of a byte.");
6377 unsigned ElementSizeInBytes = ElementSize / 8;
6389 APInt Off(
DL.getIndexTypeSizeInBits(V->getType()), 0);
6396 uint64_t StartIdx = Off.getLimitedValue();
6403 if ((StartIdx % ElementSizeInBytes) != 0)
6406 Offset += StartIdx / ElementSizeInBytes;
6412 uint64_t SizeInBytes =
DL.getTypeStoreSize(GVTy).getFixedValue();
6415 Slice.Array =
nullptr;
6427 Type *InitElTy = ArrayInit->getElementType();
6432 ArrayTy = ArrayInit->getType();
6437 if (ElementSize != 8)
6456 Slice.Array = Array;
6458 Slice.Length = NumElts -
Offset;
6472 if (Slice.Array ==
nullptr) {
6483 if (Slice.Length == 1) {
6495 Str = Str.
substr(Slice.Offset);
6501 Str = Str.substr(0, Str.find(
'\0'));
6514 unsigned CharSize) {
6516 V = V->stripPointerCasts();
6521 if (!PHIs.
insert(PN).second)
6526 for (
Value *IncValue : PN->incoming_values()) {
6528 if (Len == 0)
return 0;
6530 if (Len == ~0ULL)
continue;
6532 if (Len != LenSoFar && LenSoFar != ~0ULL)
6544 if (Len1 == 0)
return 0;
6546 if (Len2 == 0)
return 0;
6547 if (Len1 == ~0ULL)
return Len2;
6548 if (Len2 == ~0ULL)
return Len1;
6549 if (Len1 != Len2)
return 0;
6558 if (Slice.Array ==
nullptr)
6566 unsigned NullIndex = 0;
6567 for (
unsigned E = Slice.Length; NullIndex <
E; ++NullIndex) {
6568 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
6572 return NullIndex + 1;
6578 if (!V->getType()->isPointerTy())
6585 return Len == ~0ULL ? 1 : Len;
6590 bool MustPreserveNullness) {
6592 "getArgumentAliasingToReturnedPointer only works on nonnull calls");
6593 if (
const Value *RV =
Call->getReturnedArgOperand())
6597 Call, MustPreserveNullness))
6598 return Call->getArgOperand(0);
6604 switch (
Call->getIntrinsicID()) {
6605 case Intrinsic::launder_invariant_group:
6606 case Intrinsic::strip_invariant_group:
6607 case Intrinsic::aarch64_irg:
6608 case Intrinsic::aarch64_tagp:
6618 case Intrinsic::amdgcn_make_buffer_rsrc:
6620 case Intrinsic::ptrmask:
6621 return !MustPreserveNullness;
6622 case Intrinsic::threadlocal_address:
6625 return !
Call->getParent()->getParent()->isPresplitCoroutine();
6642 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6644 if (!PrevValue || LI->
getLoopFor(PrevValue->getParent()) != L)
6653 if (!L->isLoopInvariant(Load->getPointerOperand()))
6659 for (
unsigned Count = 0; MaxLookup == 0 ||
Count < MaxLookup; ++
Count) {
6661 const Value *PtrOp =
GEP->getPointerOperand();
6672 if (GA->isInterposable())
6674 V = GA->getAliasee();
6678 if (
PHI->getNumIncomingValues() == 1) {
6679 V =
PHI->getIncomingValue(0);
6700 assert(V->getType()->isPointerTy() &&
"Unexpected operand type!");
6707 const LoopInfo *LI,
unsigned MaxLookup) {
6715 if (!Visited.
insert(
P).second)
6744 }
while (!Worklist.
empty());
6748 const unsigned MaxVisited = 8;
6753 const Value *Object =
nullptr;
6763 if (!Visited.
insert(
P).second)
6766 if (Visited.
size() == MaxVisited)
6782 else if (Object !=
P)
6784 }
while (!Worklist.
empty());
6786 return Object ? Object : FirstObject;
6796 if (U->getOpcode() == Instruction::PtrToInt)
6797 return U->getOperand(0);
6804 if (U->getOpcode() != Instruction::Add ||
6809 V = U->getOperand(0);
6813 assert(V->getType()->isIntegerTy() &&
"Unexpected operand type!");
6830 for (
const Value *V : Objs) {
6831 if (!Visited.
insert(V).second)
6836 if (O->getType()->isPointerTy()) {
6849 }
while (!Working.
empty());
6858 auto AddWork = [&](
Value *V) {
6859 if (Visited.
insert(V).second)
6869 if (Result && Result != AI)
6873 AddWork(CI->getOperand(0));
6875 for (
Value *IncValue : PN->incoming_values())
6878 AddWork(
SI->getTrueValue());
6879 AddWork(
SI->getFalseValue());
6881 if (OffsetZero && !
GEP->hasAllZeroIndices())
6883 AddWork(
GEP->getPointerOperand());
6885 Value *Returned = CB->getReturnedArgOperand();
6893 }
while (!Worklist.
empty());
6899 const Value *V,
bool AllowLifetime,
bool AllowDroppable) {
6905 if (AllowLifetime &&
II->isLifetimeStartOrEnd())
6908 if (AllowDroppable &&
II->isDroppable())
6929 return (!Shuffle || Shuffle->isSelect()) &&
6936 bool IgnoreUBImplyingAttrs) {
6938 AC, DT, TLI, UseVariableInfo,
6939 IgnoreUBImplyingAttrs);
6945 bool UseVariableInfo,
bool IgnoreUBImplyingAttrs) {
6949 auto hasEqualReturnAndLeadingOperandTypes =
6950 [](
const Instruction *Inst,
unsigned NumLeadingOperands) {
6954 for (
unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
6960 hasEqualReturnAndLeadingOperandTypes(Inst, 2));
6962 hasEqualReturnAndLeadingOperandTypes(Inst, 1));
6969 case Instruction::UDiv:
6970 case Instruction::URem: {
6977 case Instruction::SDiv:
6978 case Instruction::SRem: {
6980 const APInt *Numerator, *Denominator;
6984 if (*Denominator == 0)
6996 case Instruction::Load: {
6997 if (!UseVariableInfo)
7010 case Instruction::Call: {
7014 const Function *Callee = CI->getCalledFunction();
7018 if (!Callee || !Callee->isSpeculatable())
7022 return IgnoreUBImplyingAttrs || !CI->hasUBImplyingAttrs();
7024 case Instruction::VAArg:
7025 case Instruction::Alloca:
7026 case Instruction::Invoke:
7027 case Instruction::CallBr:
7028 case Instruction::PHI:
7029 case Instruction::Store:
7030 case Instruction::Ret:
7031 case Instruction::Br:
7032 case Instruction::IndirectBr:
7033 case Instruction::Switch:
7034 case Instruction::Unreachable:
7035 case Instruction::Fence:
7036 case Instruction::AtomicRMW:
7037 case Instruction::AtomicCmpXchg:
7038 case Instruction::LandingPad:
7039 case Instruction::Resume:
7040 case Instruction::CatchSwitch:
7041 case Instruction::CatchPad:
7042 case Instruction::CatchRet:
7043 case Instruction::CleanupPad:
7044 case Instruction::CleanupRet:
7050 if (
I.mayReadOrWriteMemory())
7118 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
7163 if (
Add &&
Add->hasNoSignedWrap()) {
7202 bool LHSOrRHSKnownNonNegative =
7204 bool LHSOrRHSKnownNegative =
7206 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
7209 if ((AddKnown.
isNonNegative() && LHSOrRHSKnownNonNegative) ||
7210 (AddKnown.
isNegative() && LHSOrRHSKnownNegative))
7285 assert(EVI->getNumIndices() == 1 &&
"Obvious from CI's type");
7287 if (EVI->getIndices()[0] == 0)
7290 assert(EVI->getIndices()[0] == 1 &&
"Obvious from CI's type");
7292 for (
const auto *U : EVI->users())
7294 assert(
B->isConditional() &&
"How else is it using an i1?");
7305 auto AllUsesGuardedByBranch = [&](
const BranchInst *BI) {
7311 for (
const auto *Result :
Results) {
7314 if (DT.
dominates(NoWrapEdge, Result->getParent()))
7317 for (
const auto &RU : Result->uses())
7325 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
7337 unsigned NumElts = FVTy->getNumElements();
7338 for (
unsigned i = 0; i < NumElts; ++i)
7339 ShiftAmounts.
push_back(
C->getAggregateElement(i));
7347 return CI && CI->getValue().ult(
C->getType()->getIntegerBitWidth());
7368 bool ConsiderFlagsAndMetadata) {
7371 Op->hasPoisonGeneratingAnnotations())
7374 unsigned Opcode =
Op->getOpcode();
7378 case Instruction::Shl:
7379 case Instruction::AShr:
7380 case Instruction::LShr:
7382 case Instruction::FPToSI:
7383 case Instruction::FPToUI:
7387 case Instruction::Call:
7389 switch (
II->getIntrinsicID()) {
7391 case Intrinsic::ctlz:
7392 case Intrinsic::cttz:
7393 case Intrinsic::abs:
7397 case Intrinsic::ctpop:
7398 case Intrinsic::bswap:
7399 case Intrinsic::bitreverse:
7400 case Intrinsic::fshl:
7401 case Intrinsic::fshr:
7402 case Intrinsic::smax:
7403 case Intrinsic::smin:
7404 case Intrinsic::scmp:
7405 case Intrinsic::umax:
7406 case Intrinsic::umin:
7407 case Intrinsic::ucmp:
7408 case Intrinsic::ptrmask:
7409 case Intrinsic::fptoui_sat:
7410 case Intrinsic::fptosi_sat:
7411 case Intrinsic::sadd_with_overflow:
7412 case Intrinsic::ssub_with_overflow:
7413 case Intrinsic::smul_with_overflow:
7414 case Intrinsic::uadd_with_overflow:
7415 case Intrinsic::usub_with_overflow:
7416 case Intrinsic::umul_with_overflow:
7417 case Intrinsic::sadd_sat:
7418 case Intrinsic::uadd_sat:
7419 case Intrinsic::ssub_sat:
7420 case Intrinsic::usub_sat:
7422 case Intrinsic::sshl_sat:
7423 case Intrinsic::ushl_sat:
7426 case Intrinsic::fma:
7427 case Intrinsic::fmuladd:
7428 case Intrinsic::sqrt:
7429 case Intrinsic::powi:
7430 case Intrinsic::sin:
7431 case Intrinsic::cos:
7432 case Intrinsic::pow:
7433 case Intrinsic::log:
7434 case Intrinsic::log10:
7435 case Intrinsic::log2:
7436 case Intrinsic::exp:
7437 case Intrinsic::exp2:
7438 case Intrinsic::exp10:
7439 case Intrinsic::fabs:
7440 case Intrinsic::copysign:
7441 case Intrinsic::floor:
7442 case Intrinsic::ceil:
7443 case Intrinsic::trunc:
7444 case Intrinsic::rint:
7445 case Intrinsic::nearbyint:
7446 case Intrinsic::round:
7447 case Intrinsic::roundeven:
7448 case Intrinsic::fptrunc_round:
7449 case Intrinsic::canonicalize:
7450 case Intrinsic::arithmetic_fence:
7451 case Intrinsic::minnum:
7452 case Intrinsic::maxnum:
7453 case Intrinsic::minimum:
7454 case Intrinsic::maximum:
7455 case Intrinsic::minimumnum:
7456 case Intrinsic::maximumnum:
7457 case Intrinsic::is_fpclass:
7458 case Intrinsic::ldexp:
7459 case Intrinsic::frexp:
7461 case Intrinsic::lround:
7462 case Intrinsic::llround:
7463 case Intrinsic::lrint:
7464 case Intrinsic::llrint:
7471 case Instruction::CallBr:
7472 case Instruction::Invoke: {
7474 return !CB->hasRetAttr(Attribute::NoUndef);
7476 case Instruction::InsertElement:
7477 case Instruction::ExtractElement: {
7480 unsigned IdxOp =
Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
7484 Idx->getValue().uge(VTy->getElementCount().getKnownMinValue());
7487 case Instruction::ShuffleVector: {
7493 case Instruction::FNeg:
7494 case Instruction::PHI:
7495 case Instruction::Select:
7496 case Instruction::ExtractValue:
7497 case Instruction::InsertValue:
7498 case Instruction::Freeze:
7499 case Instruction::ICmp:
7500 case Instruction::FCmp:
7501 case Instruction::GetElementPtr:
7503 case Instruction::AddrSpaceCast:
7518 bool ConsiderFlagsAndMetadata) {
7520 ConsiderFlagsAndMetadata);
7525 ConsiderFlagsAndMetadata);
7530 if (ValAssumedPoison == V)
7533 const unsigned MaxDepth = 2;
7534 if (
Depth >= MaxDepth)
7539 return propagatesPoison(Op) &&
7540 directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
7564 const unsigned MaxDepth = 2;
7565 if (
Depth >= MaxDepth)
7571 return impliesPoison(Op, V, Depth + 1);
7578 return ::impliesPoison(ValAssumedPoison, V, 0);
7593 if (
A->hasAttribute(Attribute::NoUndef) ||
7594 A->hasAttribute(Attribute::Dereferenceable) ||
7595 A->hasAttribute(Attribute::DereferenceableOrNull))
7610 if (
C->getType()->isVectorTy()) {
7613 if (
Constant *SplatC =
C->getSplatValue())
7621 return !
C->containsConstantExpression();
7634 auto *StrippedV = V->stripPointerCastsSameRepresentation();
7639 auto OpCheck = [&](
const Value *V) {
7650 if (CB->hasRetAttr(Attribute::NoUndef) ||
7651 CB->hasRetAttr(Attribute::Dereferenceable) ||
7652 CB->hasRetAttr(Attribute::DereferenceableOrNull))
7657 unsigned Num = PN->getNumIncomingValues();
7658 bool IsWellDefined =
true;
7659 for (
unsigned i = 0; i < Num; ++i) {
7660 if (PN == PN->getIncomingValue(i))
7662 auto *TI = PN->getIncomingBlock(i)->getTerminator();
7664 DT,
Depth + 1, Kind)) {
7665 IsWellDefined =
false;
7673 all_of(Opr->operands(), OpCheck))
7678 if (
I->hasMetadata(LLVMContext::MD_noundef) ||
7679 I->hasMetadata(LLVMContext::MD_dereferenceable) ||
7680 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
7700 auto *Dominator = DNode->
getIDom();
7705 auto *TI = Dominator->getBlock()->getTerminator();
7709 if (BI->isConditional())
7710 Cond = BI->getCondition();
7712 Cond =
SI->getCondition();
7721 if (
any_of(Opr->operands(), [V](
const Use &U) {
7722 return V == U && propagatesPoison(U);
7728 Dominator = Dominator->getIDom();
7741 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7748 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7755 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT,
Depth,
7779 while (!Worklist.
empty()) {
7788 if (
I != Root && !
any_of(
I->operands(), [&KnownPoison](
const Use &U) {
7789 return KnownPoison.contains(U) && propagatesPoison(U);
7793 if (KnownPoison.
insert(
I).second)
7805 return ::computeOverflowForSignedAdd(
Add->getOperand(0),
Add->getOperand(1),
7813 return ::computeOverflowForSignedAdd(LHS, RHS,
nullptr, SQ);
7845 return !
I->mayThrow() &&
I->willReturn();
7859 unsigned ScanLimit) {
7866 assert(ScanLimit &&
"scan limit must be non-zero");
7868 if (--ScanLimit == 0)
7882 if (
I->getParent() != L->getHeader())
return false;
7885 if (&LI ==
I)
return true;
7888 llvm_unreachable(
"Instruction not contained in its own parent basic block.");
7894 case Intrinsic::sadd_with_overflow:
7895 case Intrinsic::ssub_with_overflow:
7896 case Intrinsic::smul_with_overflow:
7897 case Intrinsic::uadd_with_overflow:
7898 case Intrinsic::usub_with_overflow:
7899 case Intrinsic::umul_with_overflow:
7904 case Intrinsic::ctpop:
7905 case Intrinsic::ctlz:
7906 case Intrinsic::cttz:
7907 case Intrinsic::abs:
7908 case Intrinsic::smax:
7909 case Intrinsic::smin:
7910 case Intrinsic::umax:
7911 case Intrinsic::umin:
7912 case Intrinsic::scmp:
7913 case Intrinsic::is_fpclass:
7914 case Intrinsic::ptrmask:
7915 case Intrinsic::ucmp:
7916 case Intrinsic::bitreverse:
7917 case Intrinsic::bswap:
7918 case Intrinsic::sadd_sat:
7919 case Intrinsic::ssub_sat:
7920 case Intrinsic::sshl_sat:
7921 case Intrinsic::uadd_sat:
7922 case Intrinsic::usub_sat:
7923 case Intrinsic::ushl_sat:
7924 case Intrinsic::smul_fix:
7925 case Intrinsic::smul_fix_sat:
7926 case Intrinsic::umul_fix:
7927 case Intrinsic::umul_fix_sat:
7928 case Intrinsic::pow:
7929 case Intrinsic::powi:
7930 case Intrinsic::sin:
7931 case Intrinsic::sinh:
7932 case Intrinsic::cos:
7933 case Intrinsic::cosh:
7934 case Intrinsic::sincos:
7935 case Intrinsic::sincospi:
7936 case Intrinsic::tan:
7937 case Intrinsic::tanh:
7938 case Intrinsic::asin:
7939 case Intrinsic::acos:
7940 case Intrinsic::atan:
7941 case Intrinsic::atan2:
7942 case Intrinsic::canonicalize:
7943 case Intrinsic::sqrt:
7944 case Intrinsic::exp:
7945 case Intrinsic::exp2:
7946 case Intrinsic::exp10:
7947 case Intrinsic::log:
7948 case Intrinsic::log2:
7949 case Intrinsic::log10:
7950 case Intrinsic::modf:
7951 case Intrinsic::floor:
7952 case Intrinsic::ceil:
7953 case Intrinsic::trunc:
7954 case Intrinsic::rint:
7955 case Intrinsic::nearbyint:
7956 case Intrinsic::round:
7957 case Intrinsic::roundeven:
7958 case Intrinsic::lrint:
7959 case Intrinsic::llrint:
7968 switch (
I->getOpcode()) {
7969 case Instruction::Freeze:
7970 case Instruction::PHI:
7971 case Instruction::Invoke:
7973 case Instruction::Select:
7975 case Instruction::Call:
7979 case Instruction::ICmp:
7980 case Instruction::FCmp:
7981 case Instruction::GetElementPtr:
7995template <
typename CallableT>
7997 const CallableT &Handle) {
7998 switch (
I->getOpcode()) {
7999 case Instruction::Store:
8004 case Instruction::Load:
8011 case Instruction::AtomicCmpXchg:
8016 case Instruction::AtomicRMW:
8021 case Instruction::Call:
8022 case Instruction::Invoke: {
8026 for (
unsigned i = 0; i < CB->
arg_size(); ++i)
8029 CB->
paramHasAttr(i, Attribute::DereferenceableOrNull)) &&
8034 case Instruction::Ret:
8035 if (
I->getFunction()->hasRetAttribute(Attribute::NoUndef) &&
8036 Handle(
I->getOperand(0)))
8039 case Instruction::Switch:
8043 case Instruction::Br: {
8045 if (BR->isConditional() && Handle(BR->getCondition()))
8057template <
typename CallableT>
8059 const CallableT &Handle) {
8062 switch (
I->getOpcode()) {
8064 case Instruction::UDiv:
8065 case Instruction::SDiv:
8066 case Instruction::URem:
8067 case Instruction::SRem:
8068 return Handle(
I->getOperand(1));
8077 I, [&](
const Value *V) {
return KnownPoison.
count(V); });
8096 if (Arg->getParent()->isDeclaration())
8099 Begin = BB->
begin();
8106 unsigned ScanLimit = 32;
8115 if (--ScanLimit == 0)
8119 return WellDefinedOp == V;
8139 if (--ScanLimit == 0)
8147 for (
const Use &
Op :
I.operands()) {
8157 if (
I.getOpcode() == Instruction::Select &&
8158 YieldsPoison.
count(
I.getOperand(1)) &&
8159 YieldsPoison.
count(
I.getOperand(2))) {
8165 if (!BB || !Visited.
insert(BB).second)
8175 return ::programUndefinedIfUndefOrPoison(Inst,
false);
8179 return ::programUndefinedIfUndefOrPoison(Inst,
true);
8190 if (!
C->getElementType()->isFloatingPointTy())
8192 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8193 if (
C->getElementAsAPFloat(
I).isNaN())
8207 return !
C->isZero();
8210 if (!
C->getElementType()->isFloatingPointTy())
8212 for (
unsigned I = 0,
E =
C->getNumElements();
I <
E; ++
I) {
8213 if (
C->getElementAsAPFloat(
I).isZero())
8236 if (CmpRHS == FalseVal) {
8280 if (CmpRHS != TrueVal) {
8319 Value *
A =
nullptr, *
B =
nullptr;
8324 Value *
C =
nullptr, *
D =
nullptr;
8326 if (L.Flavor != R.Flavor)
8378 return {L.Flavor,
SPNB_NA,
false};
8385 return {L.Flavor,
SPNB_NA,
false};
8392 return {L.Flavor,
SPNB_NA,
false};
8399 return {L.Flavor,
SPNB_NA,
false};
8415 return ConstantInt::get(V->getType(), ~(*
C));
8472 if ((CmpLHS == TrueVal &&
match(FalseVal,
m_APInt(C2))) ||
8492 assert(
X &&
Y &&
"Invalid operand");
8494 auto IsNegationOf = [&](
const Value *
X,
const Value *
Y) {
8499 if (NeedNSW && !BO->hasNoSignedWrap())
8503 if (!AllowPoison && !Zero->isNullValue())
8510 if (IsNegationOf(
X,
Y) || IsNegationOf(
Y,
X))
8537 const APInt *RHSC1, *RHSC2;
8548 return CR1.inverse() == CR2;
8582std::optional<std::pair<CmpPredicate, Constant *>>
8585 "Only for relational integer predicates.");
8587 return std::nullopt;
8593 bool WillIncrement =
8598 auto ConstantIsOk = [WillIncrement, IsSigned](
ConstantInt *
C) {
8599 return WillIncrement ? !
C->isMaxValue(IsSigned) : !
C->isMinValue(IsSigned);
8602 Constant *SafeReplacementConstant =
nullptr;
8605 if (!ConstantIsOk(CI))
8606 return std::nullopt;
8608 unsigned NumElts = FVTy->getNumElements();
8609 for (
unsigned i = 0; i != NumElts; ++i) {
8610 Constant *Elt =
C->getAggregateElement(i);
8612 return std::nullopt;
8620 if (!CI || !ConstantIsOk(CI))
8621 return std::nullopt;
8623 if (!SafeReplacementConstant)
8624 SafeReplacementConstant = CI;
8628 Value *SplatC =
C->getSplatValue();
8631 if (!CI || !ConstantIsOk(CI))
8632 return std::nullopt;
8635 return std::nullopt;
8642 if (
C->containsUndefOrPoisonElement()) {
8643 assert(SafeReplacementConstant &&
"Replacement constant not set");
8650 Constant *OneOrNegOne = ConstantInt::get(
Type, WillIncrement ? 1 : -1,
true);
8653 return std::make_pair(NewPred, NewC);
8662 bool HasMismatchedZeros =
false;
8668 Value *OutputZeroVal =
nullptr;
8671 OutputZeroVal = TrueVal;
8674 OutputZeroVal = FalseVal;
8676 if (OutputZeroVal) {
8678 HasMismatchedZeros =
true;
8679 CmpLHS = OutputZeroVal;
8682 HasMismatchedZeros =
true;
8683 CmpRHS = OutputZeroVal;
8700 if (!HasMismatchedZeros)
8711 bool Ordered =
false;
8722 if (LHSSafe && RHSSafe) {
8753 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
8764 if (TrueVal == CmpLHS && FalseVal == CmpRHS)
8770 auto MaybeSExtCmpLHS =
8774 if (
match(TrueVal, MaybeSExtCmpLHS)) {
8796 else if (
match(FalseVal, MaybeSExtCmpLHS)) {
8836 case Instruction::ZExt:
8840 case Instruction::SExt:
8844 case Instruction::Trunc:
8847 CmpConst->
getType() == SrcTy) {
8869 CastedTo = CmpConst;
8871 unsigned ExtOp = CmpI->
isSigned() ? Instruction::SExt : Instruction::ZExt;
8875 case Instruction::FPTrunc:
8878 case Instruction::FPExt:
8881 case Instruction::FPToUI:
8884 case Instruction::FPToSI:
8887 case Instruction::UIToFP:
8890 case Instruction::SIToFP:
8903 if (CastedBack && CastedBack !=
C)
8931 *CastOp = Cast1->getOpcode();
8932 Type *SrcTy = Cast1->getSrcTy();
8935 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
8936 return Cast2->getOperand(0);
8944 Value *CastedTo =
nullptr;
8945 if (*CastOp == Instruction::Trunc) {
8959 "V2 and Cast1 should be the same type.");
8978 Value *TrueVal =
SI->getTrueValue();
8979 Value *FalseVal =
SI->getFalseValue();
8982 CmpI, TrueVal, FalseVal, LHS, RHS,
9001 if (CastOp && CmpLHS->
getType() != TrueVal->getType()) {
9005 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9007 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9014 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
9016 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
9021 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
9040 return Intrinsic::umin;
9042 return Intrinsic::umax;
9044 return Intrinsic::smin;
9046 return Intrinsic::smax;
9062 case Intrinsic::smax:
return Intrinsic::smin;
9063 case Intrinsic::smin:
return Intrinsic::smax;
9064 case Intrinsic::umax:
return Intrinsic::umin;
9065 case Intrinsic::umin:
return Intrinsic::umax;
9068 case Intrinsic::maximum:
return Intrinsic::minimum;
9069 case Intrinsic::minimum:
return Intrinsic::maximum;
9070 case Intrinsic::maxnum:
return Intrinsic::minnum;
9071 case Intrinsic::minnum:
return Intrinsic::maxnum;
9086std::pair<Intrinsic::ID, bool>
9091 bool AllCmpSingleUse =
true;
9094 if (
all_of(VL, [&SelectPattern, &AllCmpSingleUse](
Value *
I) {
9100 SelectPattern.
Flavor != CurrentPattern.Flavor)
9102 SelectPattern = CurrentPattern;
9107 switch (SelectPattern.
Flavor) {
9109 return {Intrinsic::smin, AllCmpSingleUse};
9111 return {Intrinsic::umin, AllCmpSingleUse};
9113 return {Intrinsic::smax, AllCmpSingleUse};
9115 return {Intrinsic::umax, AllCmpSingleUse};
9117 return {Intrinsic::maxnum, AllCmpSingleUse};
9119 return {Intrinsic::minnum, AllCmpSingleUse};
9127template <
typename InstTy>
9137 for (
unsigned I = 0;
I != 2; ++
I) {
9142 if (
LHS != PN &&
RHS != PN)
9178 if (
I->arg_size() != 2 ||
I->getType() !=
I->getArgOperand(0)->getType() ||
9179 I->getType() !=
I->getArgOperand(1)->getType())
9207 return !
C->isNegative();
9219 const APInt *CLHS, *CRHS;
9222 return CLHS->
sle(*CRHS);
9260 const APInt *CLHS, *CRHS;
9263 return CLHS->
ule(*CRHS);
9272static std::optional<bool>
9277 return std::nullopt;
9284 return std::nullopt;
9291 return std::nullopt;
9298 return std::nullopt;
9305 return std::nullopt;
9312static std::optional<bool>
9318 if (CR.
icmp(Pred, RCR))
9325 return std::nullopt;
9338 return std::nullopt;
9344static std::optional<bool>
9375 const APInt *Unused;
9394 return std::nullopt;
9398 if (L0 == R0 && L1 == R1)
9434 return std::nullopt;
9441static std::optional<bool>
9446 assert((
LHS->getOpcode() == Instruction::And ||
9447 LHS->getOpcode() == Instruction::Or ||
9448 LHS->getOpcode() == Instruction::Select) &&
9449 "Expected LHS to be 'and', 'or', or 'select'.");
9456 const Value *ALHS, *ARHS;
9461 ALHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9464 ARHS, RHSPred, RHSOp0, RHSOp1,
DL, LHSIsTrue,
Depth + 1))
9466 return std::nullopt;
9468 return std::nullopt;
9477 return std::nullopt;
9482 return std::nullopt;
9484 assert(LHS->getType()->isIntOrIntVectorTy(1) &&
9485 "Expected integer type only!");
9489 LHSIsTrue = !LHSIsTrue;
9494 LHSCmp->getOperand(1), RHSPred, RHSOp0, RHSOp1,
9499 ConstantInt::get(V->getType(), 0), RHSPred,
9500 RHSOp0, RHSOp1,
DL, LHSIsTrue);
9506 if ((LHSI->getOpcode() == Instruction::And ||
9507 LHSI->getOpcode() == Instruction::Or ||
9508 LHSI->getOpcode() == Instruction::Select))
9512 return std::nullopt;
9517 bool LHSIsTrue,
unsigned Depth) {
9523 bool InvertRHS =
false;
9532 LHS, RHSCmp->getCmpPredicate(), RHSCmp->getOperand(0),
9533 RHSCmp->getOperand(1),
DL, LHSIsTrue,
Depth))
9534 return InvertRHS ? !*Implied : *Implied;
9535 return std::nullopt;
9541 ConstantInt::get(V->getType(), 0),
DL,
9543 return InvertRHS ? !*Implied : *Implied;
9544 return std::nullopt;
9548 return std::nullopt;
9552 const Value *RHS1, *RHS2;
9554 if (std::optional<bool> Imp =
9558 if (std::optional<bool> Imp =
9564 if (std::optional<bool> Imp =
9568 if (std::optional<bool> Imp =
9574 return std::nullopt;
9579static std::pair<Value *, bool>
9581 if (!ContextI || !ContextI->
getParent())
9582 return {
nullptr,
false};
9589 return {
nullptr,
false};
9595 return {
nullptr,
false};
9598 if (TrueBB == FalseBB)
9599 return {
nullptr,
false};
9601 assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
9602 "Predecessor block does not point to successor?");
9605 return {PredCond, TrueBB == ContextBB};
9611 assert(
Cond->getType()->isIntOrIntVectorTy(1) &&
"Condition must be bool");
9615 return std::nullopt;
9627 return std::nullopt;
9632 bool PreferSignedRange) {
9633 unsigned Width =
Lower.getBitWidth();
9636 case Instruction::Sub:
9646 if (PreferSignedRange && HasNSW && HasNUW)
9652 }
else if (HasNSW) {
9653 if (
C->isNegative()) {
9666 case Instruction::Add:
9675 if (PreferSignedRange && HasNSW && HasNUW)
9681 }
else if (HasNSW) {
9682 if (
C->isNegative()) {
9695 case Instruction::And:
9706 case Instruction::Or:
9712 case Instruction::AShr:
9718 unsigned ShiftAmount = Width - 1;
9719 if (!
C->isZero() && IIQ.
isExact(&BO))
9720 ShiftAmount =
C->countr_zero();
9721 if (
C->isNegative()) {
9724 Upper =
C->ashr(ShiftAmount) + 1;
9727 Lower =
C->ashr(ShiftAmount);
9733 case Instruction::LShr:
9739 unsigned ShiftAmount = Width - 1;
9740 if (!
C->isZero() && IIQ.
isExact(&BO))
9741 ShiftAmount =
C->countr_zero();
9742 Lower =
C->lshr(ShiftAmount);
9747 case Instruction::Shl:
9754 if (
C->isNegative()) {
9756 unsigned ShiftAmount =
C->countl_one() - 1;
9757 Lower =
C->shl(ShiftAmount);
9761 unsigned ShiftAmount =
C->countl_zero() - 1;
9763 Upper =
C->shl(ShiftAmount) + 1;
9782 case Instruction::SDiv:
9786 if (
C->isAllOnes()) {
9791 }
else if (
C->countl_zero() < Width - 1) {
9802 if (
C->isMinSignedValue()) {
9814 case Instruction::UDiv:
9824 case Instruction::SRem:
9830 if (
C->isNegative()) {
9841 case Instruction::URem:
9856 bool UseInstrInfo) {
9857 unsigned Width =
II.getType()->getScalarSizeInBits();
9859 switch (
II.getIntrinsicID()) {
9860 case Intrinsic::ctlz:
9861 case Intrinsic::cttz: {
9863 if (!UseInstrInfo || !
match(
II.getArgOperand(1),
m_One()))
9868 case Intrinsic::ctpop:
9871 APInt(Width, Width) + 1);
9872 case Intrinsic::uadd_sat:
9878 case Intrinsic::sadd_sat:
9881 if (
C->isNegative())
9892 case Intrinsic::usub_sat:
9902 case Intrinsic::ssub_sat:
9904 if (
C->isNegative())
9914 if (
C->isNegative())
9925 case Intrinsic::umin:
9926 case Intrinsic::umax:
9927 case Intrinsic::smin:
9928 case Intrinsic::smax:
9933 switch (
II.getIntrinsicID()) {
9934 case Intrinsic::umin:
9936 case Intrinsic::umax:
9938 case Intrinsic::smin:
9941 case Intrinsic::smax:
9948 case Intrinsic::abs:
9957 case Intrinsic::vscale:
9958 if (!
II.getParent() || !
II.getFunction())
9965 return ConstantRange::getFull(Width);
9970 unsigned BitWidth =
SI.getType()->getScalarSizeInBits();
9974 return ConstantRange::getFull(
BitWidth);
9997 return ConstantRange::getFull(
BitWidth);
10011 return ConstantRange::getFull(
BitWidth);
10018 unsigned BitWidth =
I->getType()->getScalarSizeInBits();
10019 if (!
I->getOperand(0)->getType()->getScalarType()->isHalfTy())
10037 assert(V->getType()->isIntOrIntVectorTy() &&
"Expected integer instruction");
10040 return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
10043 return C->toConstantRange();
10045 unsigned BitWidth = V->getType()->getScalarSizeInBits();
10058 SI->getTrueValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10060 SI->getFalseValue(), ForSigned, UseInstrInfo, AC, CtxI, DT,
Depth + 1);
10070 if (std::optional<ConstantRange>
Range =
A->getRange())
10078 if (std::optional<ConstantRange>
Range = CB->getRange())
10089 "Got assumption for the wrong function!");
10090 assert(
I->getIntrinsicID() == Intrinsic::assume &&
10091 "must be an assume intrinsic");
10095 Value *Arg =
I->getArgOperand(0);
10098 if (!Cmp || Cmp->getOperand(0) != V)
10103 UseInstrInfo, AC,
I, DT,
Depth + 1);
10125 InsertAffected(
Op);
10132 auto AddAffected = [&InsertAffected](
Value *V) {
10136 auto AddCmpOperands = [&AddAffected, IsAssume](
Value *LHS,
Value *RHS) {
10147 while (!Worklist.
empty()) {
10149 if (!Visited.
insert(V).second)
10190 AddCmpOperands(
A,
B);
10227 AddCmpOperands(
A,
B);
10255 if (BO->getOpcode() == Instruction::Add ||
10256 BO->getOpcode() == Instruction::Or) {
10258 const APInt *C1, *C2;
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
This file contains the simple types necessary to represent the attributes associated with functions a...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Utilities for dealing with flags related to floating point properties and mode controls.
Module.h This file contains the declarations for the Module class.
static bool hasNoUnsignedWrap(BinaryOperator &I)
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
PowerPC Reduce CR logical Operation
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysisLegacy::AdvisorMode::Development, "development", "for training")))
std::pair< BasicBlock *, BasicBlock * > Edge
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static SmallVector< VPValue *, 4 > getOperands(ArrayRef< VPValue * > Values, unsigned OperandIndex)
static void computeKnownFPClassFromCond(const Value *V, Value *Cond, bool CondIsTrue, const Instruction *CxtI, KnownFPClass &KnownFromContext, unsigned Depth=0)
static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero, SimplifyQuery &Q, unsigned Depth)
Try to detect a recurrence that the value of the induction variable is always a power of two (or zero...
static cl::opt< unsigned > DomConditionsMaxUses("dom-conditions-max-uses", cl::Hidden, cl::init(20))
static unsigned computeNumSignBitsVectorConstant(const Value *V, const APInt &DemandedElts, unsigned TyBits)
For vector constants, loop over the elements and find the constant with the minimum number of sign bi...
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, const Value *RHS)
Return true if "icmp Pred LHS RHS" is always true.
static bool isModifyingBinopOfNonZero(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V1 == (binop V2, X), where X is known non-zero.
static bool isGEPKnownNonNull(const GEPOperator *GEP, const SimplifyQuery &Q, unsigned Depth)
Test whether a GEP's result is known to be non-null.
static bool isNonEqualShl(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and the shift is nuw or nsw.
static bool isKnownNonNullFromDominatingCondition(const Value *V, const Instruction *CtxI, const DominatorTree *DT)
static const Value * getUnderlyingObjectFromInt(const Value *V)
This is the function that does the work of looking through basic ptrtoint+arithmetic+inttoptr sequenc...
static bool isNonZeroMul(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool rangeMetadataExcludesValue(const MDNode *Ranges, const APInt &Value)
Does the 'Range' metadata (which must be a valid MD_range operand list) ensure that the value it's at...
static bool outputDenormalIsIEEEOrPosZero(const Function &F, const Type *Ty)
static KnownBits getKnownBitsFromAndXorOr(const Operator *I, const APInt &DemandedElts, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &Q, unsigned Depth)
static void breakSelfRecursivePHI(const Use *U, const PHINode *PHI, Value *&ValOut, Instruction *&CtxIOut, const PHINode **PhiOut=nullptr)
static bool isNonZeroSub(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, unsigned Depth)
static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR)
Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
static void addValueAffectedByCondition(Value *V, function_ref< void(Value *)> InsertAffected)
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
static bool haveNoCommonBitsSetSpecialCases(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, APInt &Upper, const InstrInfoQuery &IIQ, bool PreferSignedRange)
static Value * lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, Instruction::CastOps *CastOp)
Helps to match a select pattern in case of a type mismatch.
static std::pair< Value *, bool > getDomPredecessorCondition(const Instruction *ContextI)
static bool isNonZeroShift(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, const KnownBits &KnownVal, unsigned Depth)
static bool isKnownNonEqualFromContext(const Value *V1, const Value *V2, const SimplifyQuery &Q, unsigned Depth)
static bool includesPoison(UndefPoisonKind Kind)
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS)
Match clamp pattern for float types without care about NaNs or signed zeros.
static std::optional< bool > isImpliedCondICmps(CmpPredicate LPred, const Value *L0, const Value *L1, CmpPredicate RPred, const Value *R0, const Value *R1, const DataLayout &DL, bool LHSIsTrue)
Return true if LHS implies RHS (expanded to its components as "R0 RPred R1") is true.
static bool includesUndef(UndefPoisonKind Kind)
static std::optional< bool > isImpliedCondCommonOperandWithCR(CmpPredicate LPred, const ConstantRange &LCR, CmpPredicate RPred, const ConstantRange &RCR)
Return true if "icmp LPred X, LCR" implies "icmp RPred X, RCR" is true.
static ConstantRange getRangeForSelectPattern(const SelectInst &SI, const InstrInfoQuery &IIQ)
static void computeKnownBitsFromOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth)
static uint64_t GetStringLengthH(const Value *V, SmallPtrSetImpl< const PHINode * > &PHIs, unsigned CharSize)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
static void computeKnownBitsFromShiftOperator(const Operator *I, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth, function_ref< KnownBits(const KnownBits &, const KnownBits &, bool)> KF)
Compute known bits from a shift operator, including those with a non-constant shift amount.
static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(const Value *V, bool AllowLifetime, bool AllowDroppable)
static std::optional< bool > isImpliedCondAndOr(const Instruction *LHS, CmpPredicate RHSPred, const Value *RHSOp0, const Value *RHSOp1, const DataLayout &DL, bool LHSIsTrue, unsigned Depth)
Return true if LHS implies RHS is true.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, const APInt *&CLow, const APInt *&CHigh)
static bool isNonZeroAdd(const APInt &DemandedElts, const SimplifyQuery &Q, unsigned BitWidth, Value *X, Value *Y, bool NSW, bool NUW, unsigned Depth)
static bool directlyImpliesPoison(const Value *ValAssumedPoison, const Value *V, unsigned Depth)
static bool isNonEqualSelect(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchTwoInputRecurrence(const PHINode *PN, InstTy *&Inst, Value *&Init, Value *&OtherOp)
static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static void computeKnownBitsFromCmp(const Value *V, CmpInst::Predicate Pred, Value *LHS, Value *RHS, KnownBits &Known, const SimplifyQuery &Q)
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TVal, Value *FVal, unsigned Depth)
Recognize variations of: a < c ?
static void unionWithMinMaxIntrinsicClamp(const IntrinsicInst *II, KnownBits &Known)
static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper)
static bool isSameUnderlyingObjectInLoop(const PHINode *PN, const LoopInfo *LI)
PN defines a loop-variant pointer to an object.
static bool isNonEqualPointersWithRecursiveGEP(const Value *A, const Value *B, const SimplifyQuery &Q)
static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, const APInt *&CLow, const APInt *&CHigh)
static Value * lookThroughCastConst(CmpInst *CmpI, Type *SrcTy, Constant *C, Instruction::CastOps *CastOp)
static bool handleGuaranteedWellDefinedOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be undef or poison.
static KnownFPClass computeKnownFPClassFromContext(const Value *V, const SimplifyQuery &Q)
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &KnownOut, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static Value * getNotValue(Value *V)
If the input value is the result of a 'not' op, constant integer, or vector splat of a constant integ...
static unsigned ComputeNumSignBitsImpl(const Value *V, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return the number of times the sign bit of the register is replicated into the other bits.
static void computeKnownBitsFromICmpCond(const Value *V, ICmpInst *Cmp, KnownBits &Known, const SimplifyQuery &SQ, bool Invert)
static bool isKnownNonZeroFromOperator(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
static bool matchOpWithOpEqZero(Value *Op0, Value *Op1)
static bool isNonZeroRecurrence(const PHINode *PN)
Try to detect a recurrence that monotonically increases/decreases from a non-zero starting value.
static SelectPatternResult matchClamp(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal)
Recognize variations of: CLAMP(v,l,h) ==> ((v) < (l) ?
static bool shiftAmountKnownInRange(const Value *ShiftAmount)
Shifts return poison if shiftwidth is larger than the bitwidth.
static bool isEphemeralValueOf(const Instruction *I, const Value *E)
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, Value *CmpLHS, Value *CmpRHS, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, unsigned Depth)
Match non-obvious integer minimum and maximum sequences.
static KnownBits computeKnownBitsForHorizontalOperation(const Operator *I, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth, const function_ref< KnownBits(const KnownBits &, const KnownBits &)> KnownBitsFunc)
static bool handleGuaranteedNonPoisonOps(const Instruction *I, const CallableT &Handle)
Enumerates all operands of I that are guaranteed to not be poison.
static std::optional< std::pair< Value *, Value * > > getInvertibleOperands(const Operator *Op1, const Operator *Op2)
If the pair of operators are the same invertible function, return the the operands of the function co...
static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS)
static void computeKnownBitsFromCond(const Value *V, Value *Cond, KnownBits &Known, const SimplifyQuery &SQ, bool Invert, unsigned Depth)
static bool isKnownNonZeroFromAssume(const Value *V, const SimplifyQuery &Q)
static std::optional< bool > isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, const Value *ARHS, const Value *BLHS, const Value *BRHS)
Return true if "icmp Pred BLHS BRHS" is true whenever "icmp PredALHS ARHS" is true.
static const Instruction * safeCxtI(const Value *V, const Instruction *CxtI)
static bool isNonEqualMul(const Value *V1, const Value *V2, const APInt &DemandedElts, const SimplifyQuery &Q, unsigned Depth)
Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and the multiplication is nuw o...
static bool isImpliedToBeAPowerOfTwoFromCond(const Value *V, bool OrZero, const Value *Cond, bool CondIsTrue)
Return true if we can infer that V is known to be a power of 2 from dominating condition Cond (e....
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, bool NUW, const APInt &DemandedElts, KnownBits &Known, KnownBits &Known2, const SimplifyQuery &Q, unsigned Depth)
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF)
static ConstantRange getRangeForIntrinsic(const IntrinsicInst &II, bool UseInstrInfo)
static void computeKnownFPClassForFPTrunc(const Operator *Op, const APInt &DemandedElts, FPClassTest InterestedClasses, KnownFPClass &Known, const SimplifyQuery &Q, unsigned Depth)
static Value * BuildSubAggregate(Value *From, Value *To, Type *IndexedType, SmallVectorImpl< unsigned > &Idxs, unsigned IdxSkip, BasicBlock::iterator InsertBefore)
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Infinity.
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Factory for Positive and Negative Zero.
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
void clearBit(unsigned BitPosition)
Set a given bit to 0.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
uint64_t getZExtValue() const
Get zero extended value.
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
unsigned popcount() const
Count the number of bits set.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
unsigned ceilLogBase2() const
bool sgt(const APInt &RHS) const
Signed greater than comparison.
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool ult(const APInt &RHS) const
Unsigned less than comparison.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
bool isNegative() const
Determine sign of this APInt.
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
void clearAllBits()
Set every bit to 0.
LLVM_ABI APInt reverseBits() const
bool sle(const APInt &RHS) const
Signed less or equal comparison.
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
LLVM_ABI APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
void setAllBits()
Set every bit to 1.
bool getBoolValue() const
Convert APInt to a boolean value.
bool isMaxSignedValue() const
Determine if this is the largest signed value.
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
APInt shl(unsigned shiftAmt) const
Left-shift function.
bool slt(const APInt &RHS) const
Signed less than comparison.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
void clearSignBit()
Set the sign bit to 0.
an instruction to allocate memory on the stack
This class represents an incoming formal argument to a Function.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
Class to represent array types.
This represents the llvm.assume intrinsic.
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
Functions, function parameters, and return types can have attributes to indicate how they should be t...
LLVM_ABI std::optional< unsigned > getVScaleRangeMax() const
Returns the maximum value for the vscale_range attribute or std::nullopt when unknown.
LLVM_ABI unsigned getVScaleRangeMin() const
Returns the minimum value for the vscale_range attribute.
bool isValid() const
Return true if the attribute is any kind of attribute.
LLVM_ABI bool isSingleEdge() const
Check if this is the only edge between Start and End.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
const Function * getParent() const
Return the enclosing method, or null if none.
LLVM_ABI InstListType::const_iterator getFirstNonPHIIt() const
Returns an iterator to the first instruction in this block that is not a PHINode instruction.
InstListType::const_iterator const_iterator
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
LLVM_ABI Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
BinaryOps getOpcode() const
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
LLVM_ABI bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
bool onlyReadsMemory(unsigned OpNo) const
Value * getCalledOperand() const
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
This class is the base class for the comparison instructions.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ ICMP_ULT
unsigned less than
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
static LLVM_ABI bool isEquality(Predicate pred)
Determine if this is an equals/not equals predicate.
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isFPPredicate(Predicate P)
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static bool isIntPredicate(Predicate P)
static LLVM_ABI bool isOrdered(Predicate predicate)
Determine if the predicate is an ordered operation.
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI std::optional< CmpPredicate > getMatching(CmpPredicate A, CmpPredicate B)
Compares two CmpPredicates taking samesign into account and returns the canonicalized CmpPredicate if...
LLVM_ABI CmpInst::Predicate getPreferredSignedPredicate() const
Attempts to return a signed CmpInst::Predicate from the CmpPredicate.
CmpInst::Predicate dropSameSign() const
Drops samesign information.
bool hasSameSign() const
Query samesign information, for optimizations.
An array constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
A vector constant whose element type is a simple 1/2/4/8-byte integer or float/double,...
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
This class represents a range of values.
PreferredRangeType
If represented precisely, the result of some range operations may consist of multiple disjoint ranges...
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
static LLVM_ABI ConstantRange fromKnownBits(const KnownBits &Known, bool IsSigned)
Initialize a range based on a known bits constraint.
LLVM_ABI OverflowResult unsignedSubMayOverflow(const ConstantRange &Other) const
Return whether unsigned sub of the two ranges always/never overflows.
LLVM_ABI bool isAllNegative() const
Return true if all values in this range are negative.
LLVM_ABI OverflowResult unsignedAddMayOverflow(const ConstantRange &Other) const
Return whether unsigned add of the two ranges always/never overflows.
LLVM_ABI KnownBits toKnownBits() const
Return known bits for values in this range.
LLVM_ABI bool icmp(CmpInst::Predicate Pred, const ConstantRange &Other) const
Does the predicate Pred hold between ranges this and Other?
LLVM_ABI APInt getSignedMin() const
Return the smallest signed value contained in the ConstantRange.
LLVM_ABI OverflowResult unsignedMulMayOverflow(const ConstantRange &Other) const
Return whether unsigned mul of the two ranges always/never overflows.
LLVM_ABI bool isAllNonNegative() const
Return true if all values in this range are non-negative.
static LLVM_ABI ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
LLVM_ABI ConstantRange unionWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the union of this range with another range.
static LLVM_ABI ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
LLVM_ABI bool contains(const APInt &Val) const
Return true if the specified value is in the set.
LLVM_ABI OverflowResult signedAddMayOverflow(const ConstantRange &Other) const
Return whether signed add of the two ranges always/never overflows.
LLVM_ABI ConstantRange intersectWith(const ConstantRange &CR, PreferredRangeType Type=Smallest) const
Return the range that results from the intersection of this range with another range.
OverflowResult
Represents whether an operation on the given constant range is known to always or never overflow.
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
static ConstantRange getNonEmpty(APInt Lower, APInt Upper)
Create non-empty constant range with the given bounds.
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
LLVM_ABI OverflowResult signedSubMayOverflow(const ConstantRange &Other) const
Return whether signed sub of the two ranges always/never overflows.
LLVM_ABI ConstantRange sub(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a subtraction of a value in this r...
This is an important base class in LLVM.
static LLVM_ABI Constant * replaceUndefsWith(Constant *C, Constant *Replacement)
Try to replace undefined constant C or undefined elements in C with Replacement.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isZeroValue() const
Return true if the value is negative zero or null value.
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
bool isLittleEndian() const
Layout endianness...
LLVM_ABI const StructLayout * getStructLayout(StructType *Ty) const
Returns a StructLayout object, indicating the alignment of the struct, its size, and the offsets of i...
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const
The size in bits of the index used in GEP calculation for this type.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const
The pointer representation size in bits for this type.
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
ArrayRef< BranchInst * > conditionsFor(const Value *V) const
Access the list of branches which affect this value.
DomTreeNodeBase * getIDom() const
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Utility class for floating point operations which can have information about relaxed accuracy require...
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void setNoSignedZeros(bool B=true)
void setNoNaNs(bool B=true)
const BasicBlock & getEntryBlock() const
DenormalMode getDenormalMode(const fltSemantics &FPType) const
Returns the denormal handling type for the default rounding mode of the function.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
PointerType * getType() const
Global values are always pointers.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
bool hasDefinitiveInitializer() const
hasDefinitiveInitializer - Whether the global variable has an initializer, and any other instances of...
This instruction compares its operands according to the predicate given to the constructor.
CmpPredicate getSwappedCmpPredicate() const
CmpPredicate getInverseCmpPredicate() const
Predicate getFlippedSignednessPredicate() const
For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->EQ.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
static LLVM_ABI std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
bool isRelational() const
Return true if the predicate is relational (not EQ or NE).
Predicate getUnsignedPredicate() const
For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
This instruction inserts a struct field of array element value into an aggregate value.
Value * getAggregateOperand()
static InsertValueInst * Create(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
LLVM_ABI bool hasNoNaNs() const LLVM_READONLY
Determine whether the no-NaNs flag is set.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
LLVM_ABI const Function * getFunction() const
Return the function this instruction belongs to.
LLVM_ABI bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
A wrapper class for inspecting calls to intrinsic functions.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
Align getAlign() const
Return the alignment of the access that is being performed.
bool isLoopHeader(const BlockT *BB) const
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
This is a utility class that provides an abstraction for the common functionality between Instruction...
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
iterator_range< const_block_iterator > blocks() const
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
A udiv, sdiv, lshr, or ashr instruction, which can be marked as "exact", indicating that no bits are ...
bool isExact() const
Test whether this division is known to be exact, with zero remainder.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getCondition() const
const Value * getTrueValue() const
This instruction constructs a fixed permutation of two input vectors.
VectorType * getType() const
Overload to return most specific vector type.
static LLVM_ABI void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void reserve(size_type N)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
TypeSize getElementOffset(unsigned Idx) const
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Type * getElementType(unsigned N) const
Provides information about what library functions are available for the current target.
bool getLibFunc(StringRef funcName, LibFunc &F) const
Searches for a particular function name.
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
LLVM_ABI unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
LLVM_ABI uint64_t getArrayNumElements() const
static LLVM_ABI IntegerType * getInt8Ty(LLVMContext &C)
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static LLVM_ABI IntegerType * getInt16Ty(LLVMContext &C)
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
User * getUser() const
Returns the User that contains this Use.
LLVM_ABI unsigned getOperandNo() const
Return the operand # of this use in its User.
Value * getOperand(unsigned i) const
unsigned getNumOperands() const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
iterator_range< user_iterator > users()
LLVM_ABI const Value * stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, bool AllowInvariantGroup=false, function_ref< bool(Value &Value, APInt &Offset)> ExternalAnalysis=nullptr, bool LookThroughIntToPtr=false) const
Accumulate the constant offset this value has compared to a base pointer.
const KnownBits & getKnownBits(const SimplifyQuery &Q) const
PointerType getValue() const
Represents an op.with.overflow intrinsic.
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
An efficient, type-erasing, non-owning reference to a callable.
StructType * getStructTypeOrNull() const
TypeSize getSequentialElementStride(const DataLayout &DL) const
Type * getIndexedType() const
const ParentTy * getParent() const
self_iterator getIterator()
A range adaptor for a pair of iterators.
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ABI APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, bool MatchAllBits=false)
Splat/Merge neighboring bits to widen/narrow the bitmask represented by.
@ C
The default llvm calling convention, compatible with C.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, FCmpInst > m_FCmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
cst_pred_ty< is_sign_mask > m_SignMask()
Match an integer or vector with only the sign bit(s) set.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
auto m_LogicalOp()
Matches either L && R or L || R where L and R are arbitrary values.
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
cst_pred_ty< is_power2_or_zero > m_Power2OrZero()
Match an integer or vector of 0 or power-of-2 values.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
BinOpPred_match< LHS, RHS, is_idiv_op > m_IDiv(const LHS &L, const RHS &R)
Matches integer division operations.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
BinOpPred_match< LHS, RHS, is_right_shift_op > m_Shr(const LHS &L, const RHS &R)
Matches logical shift operations.
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true > m_c_NUWAdd(const LHS &L, const RHS &R)
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
IntrinsicID_match m_VScale()
Matches a call to llvm.vscale().
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmin_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmin_pred_ty > > m_OrdOrUnordFMin(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point minimum function.
ExtractValue_match< Ind, Val_t > m_ExtractValue(const Val_t &V)
Match a single index ExtractValue instruction.
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty > m_SMin(const LHS &L, const RHS &R)
bind_ty< WithOverflowInst > m_WithOverflowInst(WithOverflowInst *&I)
Match a with overflow intrinsic, capturing it if we match.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
NoWrapTrunc_match< OpTy, TruncInst::NoUnsignedWrap > m_NUWTrunc(const OpTy &Op)
Matches trunc nuw.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
match_combine_or< MaxMin_match< FCmpInst, LHS, RHS, ofmax_pred_ty >, MaxMin_match< FCmpInst, LHS, RHS, ufmax_pred_ty > > m_OrdOrUnordFMax(const LHS &L, const RHS &R)
Match an 'ordered' or 'unordered' floating point maximum function.
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty > m_SMax(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinOpPred_match< LHS, RHS, is_shift_op > m_Shift(const LHS &L, const RHS &R)
Matches shift operations.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
class_match< BasicBlock > m_BasicBlock()
Match an arbitrary basic block value and ignore it.
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
cst_pred_ty< is_nonpositive > m_NonPositive()
Match an integer or vector of non-positive values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
ElementWiseBitCast_match< OpTy > m_ElementWiseBitCast(const OpTy &Op)
m_Intrinsic_Ty< Opnd0 >::Ty m_FAbs(const Opnd0 &Op0)
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
static unsigned decodeVSEW(unsigned VSEW)
LLVM_ABI unsigned getSEWLMULRatio(unsigned SEW, VLMUL VLMul)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, Instruction *OnPathTo, DominatorTree *DT)
Return true if undefined behavior would provable be executed on the path to OnPathTo if Root produced...
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ NeverOverflows
Never overflows.
@ AlwaysOverflowsHigh
Always overflows in the direction of signed/unsigned max value.
@ AlwaysOverflowsLow
Always overflows in the direction of signed/unsigned min value.
@ MayOverflow
May or may not overflow.
LLVM_ABI KnownFPClass computeKnownFPClass(const Value *V, const APInt &DemandedElts, FPClassTest InterestedClasses, const SimplifyQuery &SQ, unsigned Depth=0)
Determine which floating-point classes are valid for V, and return them in KnownFPClass bit sets.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
MaybeAlign getAlign(const CallInst &I, unsigned Index)
LLVM_ABI bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI, const DominatorTree *DT=nullptr, bool AllowEphemerals=false)
Return true if it is valid to use the assumptions provided by an assume intrinsic,...
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
LLVM_ABI bool canCreatePoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
LLVM_ABI bool mustTriggerUB(const Instruction *I, const SmallPtrSetImpl< const Value * > &KnownPoison)
Return true if the given instruction must trigger undefined behavior when I is executed with any oper...
LLVM_ABI bool isKnownNeverInfinity(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not an infinity or if the floating-point vector val...
LLVM_ABI void computeKnownBitsFromContext(const Value *V, KnownBits &Known, const SimplifyQuery &Q, unsigned Depth=0)
Merge bits known from context-dependent facts into Known.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI)
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ABI const Value * getArgumentAliasingToReturnedPointer(const CallBase *Call, bool MustPreserveNullness)
This function returns call pointer argument that is considered the same by aliasing rules.
LLVM_ABI bool isAssumeLikeIntrinsic(const Instruction *I)
Return true if it is an intrinsic that cannot be speculated but also cannot trap.
LLVM_ABI AllocaInst * findAllocaForValue(Value *V, bool OffsetZero=false)
Returns unique alloca where the value comes from, or nullptr.
LLVM_ABI APInt getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth)
Return the minimum or maximum constant value for the specified integer min/max flavor and type.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isOnlyUsedInZeroComparison(const Instruction *CxtI)
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
LLVM_ABI bool getConstantStringInfo(const Value *V, StringRef &Str, bool TrimAtNul=true)
This function computes the length of a null-terminated C string pointed to by V.
LLVM_ABI bool isDereferenceableAndAlignedPointer(const Value *V, Type *Ty, Align Alignment, const DataLayout &DL, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Returns true if V is always a dereferenceable pointer with alignment greater or equal than requested.
LLVM_ABI bool onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V)
Return true if the only users of this pointer are lifetime markers or droppable instructions.
LLVM_ABI Constant * ReadByteArrayFromGlobal(const GlobalVariable *GV, uint64_t Offset)
LLVM_ABI Value * stripNullTest(Value *V)
Returns the inner value X if the expression has the form f(X) where f(X) == 0 if and only if X == 0,...
LLVM_ABI bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
LLVM_ABI std::pair< Intrinsic::ID, bool > canConvertToMinOrMaxIntrinsic(ArrayRef< Value * > VL)
Check if the values in VL are select instructions that can be converted to a min or max (vector) intr...
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
LLVM_ABI bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice, unsigned ElementSize, uint64_t Offset=0)
Returns true if the value V is a pointer into a ConstantDataArray.
int bit_width(T Value)
Returns the number of bits needed to represent Value if Value is nonzero.
LLVM_ABI bool isGuaranteedToExecuteForEveryIteration(const Instruction *I, const Loop *L)
Return true if this function can prove that the instruction I is executed for every iteration of the ...
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
LLVM_ABI bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
gep_type_iterator gep_type_end(const User *GEP)
int ilogb(const APFloat &Arg)
Returns the exponent of the internal representation of the APFloat.
LLVM_ABI bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
LLVM_ABI CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF, bool Ordered=false)
Return the canonical comparison predicate for the specified minimum/maximum flavor.
bool isa_and_nonnull(const Y &Val)
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
std::tuple< Value *, FPClassTest, FPClassTest > fcmpImpliesClass(CmpInst::Predicate Pred, const Function &F, Value *LHS, FPClassTest RHSClass, bool LookThroughSrc=true)
LLVM_ABI ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
const Value * getPointerOperand(const Value *V)
A helper function that returns the pointer operand of a load, store or GEP instruction.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
LLVM_ABI bool isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, const DominatorTree &DT)
Returns true if the arithmetic part of the WO 's result is used only along the paths control dependen...
LLVM_ABI RetainedKnowledge getKnowledgeFromBundle(AssumeInst &Assume, const CallBase::BundleOpInfo &BOI)
This extracts the Knowledge from an element of an operand bundle.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
auto dyn_cast_or_null(const Y &Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI OverflowResult computeOverflowForUnsignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ, bool IsNSW=false)
LLVM_ABI bool getShuffleDemandedElts(int SrcWidth, ArrayRef< int > Mask, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS, bool AllowUndefElts=false)
Transform a shuffle mask's output demanded element mask into demanded element masks for the 2 operand...
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF)
Return the inverse minimum/maximum flavor of the specified flavor.
constexpr unsigned MaxAnalysisRecursionDepth
LLVM_ABI void adjustKnownBitsForSelectArm(KnownBits &Known, Value *Cond, Value *Arm, bool Invert, const SimplifyQuery &Q, unsigned Depth=0)
Adjust Known for the given select Arm to include information from the select Cond.
LLVM_ABI bool isKnownNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be negative (i.e.
LLVM_ABI OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_NABS
Absolute value.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
LLVM_ABI bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(const CallBase *Call, bool MustPreserveNullness)
{launder,strip}.invariant.group returns pointer that aliases its argument, and it only captures point...
LLVM_ABI bool impliesPoison(const Value *ValAssumedPoison, const Value *V)
Return true if V is poison given that ValAssumedPoison is already poison.
LLVM_ABI void getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, const APInt &DemandedElts, APInt &DemandedLHS, APInt &DemandedRHS)
Compute the demanded elements mask of horizontal binary operations.
LLVM_ABI SelectPatternResult getSelectPattern(CmpInst::Predicate Pred, SelectPatternNaNBehavior NaNBehavior=SPNB_NA, bool Ordered=false)
Determine the pattern for predicate X Pred Y ? X : Y.
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool programUndefinedIfPoison(const Instruction *Inst)
LLVM_ABI SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
LLVM_ABI bool matchSimpleBinaryIntrinsicRecurrence(const IntrinsicInst *I, PHINode *&P, Value *&Init, Value *&OtherOp)
Attempt to match a simple value-accumulating recurrence of the form: llvm.intrinsic....
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
LLVM_ABI bool programUndefinedIfUndefOrPoison(const Instruction *Inst)
Return true if this function can prove that if Inst is executed and yields a poison value or undef bi...
generic_gep_type_iterator<> gep_type_iterator
FunctionAddr VTableAddr Count
LLVM_ABI uint64_t GetStringLength(const Value *V, unsigned CharSize=8)
If we can compute the length of the string pointed to by the specified pointer, return 'len+1'.
LLVM_ABI OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI ConstantRange getVScaleRange(const Function *F, unsigned BitWidth)
Determine the possible constant range of vscale with the given bit width, based on the vscale_range f...
LLVM_ABI Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
LLVM_ABI bool canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlagsAndMetadata=true)
canCreateUndefOrPoison returns true if Op can create undef or poison from non-undef & non-poison oper...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
LLVM_ABI bool isKnownInversion(const Value *X, const Value *Y)
Return true iff:
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI bool intrinsicPropagatesPoison(Intrinsic::ID IID)
Return whether this intrinsic propagates poison for all operands.
LLVM_ABI bool isNotCrossLaneOperation(const Instruction *I)
Return true if the instruction doesn't potentially cross vector lanes.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
LLVM_ABI RetainedKnowledge getKnowledgeValidInContext(const Value *V, ArrayRef< Attribute::AttrKind > AttrKinds, AssumptionCache &AC, const Instruction *CtxI, const DominatorTree *DT=nullptr)
Return a valid Knowledge associated to the Value V if its Attribute kind is in AttrKinds and the know...
LLVM_ABI bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true, bool IgnoreUBImplyingAttrs=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
LLVM_ABI bool onlyUsedByLifetimeMarkers(const Value *V)
Return true if the only users of this pointer are lifetime markers.
LLVM_ABI Intrinsic::ID getIntrinsicForCallSite(const CallBase &CB, const TargetLibraryInfo *TLI)
Map a call instruction to an intrinsic ID.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI const Value * getUnderlyingObjectAggressive(const Value *V)
Like getUnderlyingObject(), but will try harder to find a single underlying object.
LLVM_ABI Intrinsic::ID getMinMaxIntrinsic(SelectPatternFlavor SPF)
Convert given SPF to equivalent min/max intrinsic.
LLVM_ABI SelectPatternResult matchDecomposedSelectPattern(CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, FastMathFlags FMF=FastMathFlags(), Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Determine the pattern that a select with the given compare as its predicate and given values as its t...
LLVM_ABI OverflowResult computeOverflowForSignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
LLVM_ABI bool propagatesPoison(const Use &PoisonOp)
Return true if PoisonOp's user yields poison or raises UB if its operand PoisonOp is poison.
LLVM_ABI ConstantRange computeConstantRangeIncludingKnownBits(const WithCache< const Value * > &V, bool ForSigned, const SimplifyQuery &SQ)
Combine constant ranges from computeConstantRange() and computeKnownBits().
SelectPatternNaNBehavior
Behavior when a floating point min/max is given one NaN and one non-NaN as input.
@ SPNB_RETURNS_NAN
NaN behavior not applicable.
@ SPNB_RETURNS_OTHER
Given one NaN input, returns the NaN.
@ SPNB_RETURNS_ANY
Given one NaN input, returns the non-NaN.
LLVM_ABI bool isKnownNonEqual(const Value *V1, const Value *V2, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the given values are known to be non-equal when defined.
DWARFExpression::Operation Op
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return the number of times the sign bit of the register is replicated into the other bits.
constexpr unsigned BitWidth
LLVM_ABI KnownBits analyzeKnownBitsFromAndXorOr(const Operator *I, const KnownBits &KnownLHS, const KnownBits &KnownRHS, const SimplifyQuery &SQ, unsigned Depth=0)
Using KnownBits LHS/RHS produce the known bits for logic op (and/xor/or).
LLVM_ABI OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS, const SimplifyQuery &SQ)
LLVM_ABI bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
LLVM_ABI bool isKnownNeverInfOrNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point value can never contain a NaN or infinity.
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
LLVM_ABI bool isKnownNeverNaN(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if the floating-point scalar value is not a NaN or if the floating-point vector value has...
gep_type_iterator gep_type_begin(const User *GEP)
LLVM_ABI Value * isBytewiseValue(Value *V, const DataLayout &DL)
If the specified value can be set by repeating the same byte in memory, return the i8 value that it i...
LLVM_ABI std::optional< std::pair< CmpPredicate, Constant * > > getFlippedStrictnessPredicateAndConstant(CmpPredicate Pred, Constant *C)
Convert an integer comparison with a constant RHS into an equivalent form with the strictness flipped...
LLVM_ABI unsigned ComputeMaxSignificantBits(const Value *Op, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Get the upper bound on bit size for this Value Op as a signed integer.
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
LLVM_ABI OverflowResult computeOverflowForUnsignedAdd(const WithCache< const Value * > &LHS, const WithCache< const Value * > &RHS, const SimplifyQuery &SQ)
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, bool OrZero=false, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Return true if the given value is known to have exactly one bit set when defined.
LLVM_ABI std::optional< bool > isImpliedByDomCondition(const Value *Cond, const Instruction *ContextI, const DataLayout &DL)
Return the boolean condition value in the context of the given instruction if it is known based on do...
LLVM_ABI bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
LLVM_ABI void computeKnownBitsFromRangeMetadata(const MDNode &Ranges, KnownBits &Known)
Compute known bits from the range metadata.
LLVM_ABI Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, std::optional< BasicBlock::iterator > InsertBefore=std::nullopt)
Given an aggregate and an sequence of indices, see if the scalar value indexed is already around as a...
LLVM_ABI bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW=false, bool AllowPoison=true)
Return true if the two given values are negation.
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
LLVM_ABI bool isKnownPositive(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the given value is known be positive (i.e.
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI bool isKnownNonNegative(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Returns true if the give value is known to be non-negative.
LLVM_ABI bool cannotBeOrderedLessThanZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is either NaN or never less than -0....
LLVM_ABI void getUnderlyingObjects(const Value *V, SmallVectorImpl< const Value * > &Objects, const LoopInfo *LI=nullptr, unsigned MaxLookup=MaxLookupSearchDepth)
This method is similar to getUnderlyingObject except that it can look through phi and select instruct...
LLVM_ABI bool mayHaveNonDefUseDependency(const Instruction &I)
Returns true if the result or effects of the given instructions I depend values not reachable through...
LLVM_ABI bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
LLVM_ABI bool isIdentifiedObject(const Value *V)
Return true if this pointer refers to a distinct and identifiable object.
LLVM_ABI std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
LLVM_ABI std::optional< bool > computeKnownFPSignBit(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return false if we can prove that the specified FP value's sign bit is 0.
LLVM_ABI bool canIgnoreSignBitOfNaN(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is NaN.
LLVM_ABI void findValuesAffectedByCondition(Value *Cond, bool IsAssume, function_ref< void(Value *)> InsertAffected)
Call InsertAffected on all Values whose known bits / value may be affected by the condition Cond.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
static LLVM_ABI unsigned int semanticsPrecision(const fltSemantics &)
static LLVM_ABI bool isRepresentableAsNormalIn(const fltSemantics &Src, const fltSemantics &Dst)
This struct is a compact representation of a valid (non-zero power of two) alignment.
SmallPtrSet< Value *, 4 > AffectedValues
Represents offset+length into a ConstantDataArray.
const ConstantDataArray * Array
ConstantDataArray pointer.
Represent subnormal handling kind for floating point instruction inputs and outputs.
DenormalModeKind Input
Denormal treatment kind for floating point instruction inputs in the default floating-point environme...
constexpr bool outputsAreZero() const
Return true if output denormals should be flushed to 0.
@ PositiveZero
Denormals are flushed to positive zero.
@ IEEE
IEEE-754 denormal numbers preserved.
constexpr bool inputsAreZero() const
Return true if input denormals must be implicitly treated as 0.
DenormalModeKind Output
Denormal flushing mode for floating point instruction results in the default floating point environme...
static constexpr DenormalMode getIEEE()
InstrInfoQuery provides an interface to query additional information for instructions like metadata o...
bool isExact(const BinaryOperator *Op) const
MDNode * getMetadata(const Instruction *I, unsigned KindID) const
bool hasNoSignedZeros(const InstT *Op) const
bool hasNoSignedWrap(const InstT *Op) const
bool hasNoUnsignedWrap(const InstT *Op) const
static KnownBits makeConstant(const APInt &C)
Create known bits from a known constant.
static LLVM_ABI KnownBits sadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.sadd.sat(LHS, RHS)
static LLVM_ABI std::optional< bool > eq(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_EQ result.
KnownBits anyextOrTrunc(unsigned BitWidth) const
Return known bits for an "any" extension or truncation of the value we're tracking.
static LLVM_ABI KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from zero-extended multiply-hi.
unsigned countMinSignBits() const
Returns the number of times the sign bit is replicated into the other bits.
static LLVM_ABI KnownBits smax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smax(LHS, RHS).
bool isNonNegative() const
Returns true if this value is known to be non-negative.
LLVM_ABI KnownBits blsi() const
Compute known bits for X & -X, which has only the lowest bit set of X set.
void makeNonNegative()
Make this value non-negative.
static LLVM_ABI KnownBits usub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.usub.sat(LHS, RHS)
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
unsigned countMinTrailingZeros() const
Returns the minimum number of trailing zero bits.
static LLVM_ABI KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for ashr(LHS, RHS).
static LLVM_ABI KnownBits ssub_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.ssub.sat(LHS, RHS)
static LLVM_ABI KnownBits urem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for urem(LHS, RHS).
bool isUnknown() const
Returns true if we don't know any bits.
unsigned countMaxTrailingZeros() const
Returns the maximum number of trailing zero bits possible.
LLVM_ABI KnownBits blsmsk() const
Compute known bits for X ^ (X - 1), which has all bits up to and including the lowest set bit of X se...
void makeNegative()
Make this value negative.
KnownBits trunc(unsigned BitWidth) const
Return known bits for a truncation of the value we're tracking.
KnownBits byteSwap() const
bool hasConflict() const
Returns true if there is conflicting information.
unsigned countMaxPopulation() const
Returns the maximum number of bits that could be one.
void setAllZero()
Make all bits known to be zero and discard any previous information.
KnownBits reverseBits() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI KnownBits umax(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umax(LHS, RHS).
KnownBits zext(unsigned BitWidth) const
Return known bits for a zero extension of the value we're tracking.
bool isConstant() const
Returns true if we know the value of all bits.
void resetAll()
Resets the known state of all bits.
KnownBits unionWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for either this or RHS or both.
static LLVM_ABI KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS, bool ShAmtNonZero=false, bool Exact=false)
Compute known bits for lshr(LHS, RHS).
bool isNonZero() const
Returns true if this value is known to be non-zero.
KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const
Return a subset of the known bits from [bitPosition,bitPosition+numBits).
KnownBits intersectWith(const KnownBits &RHS) const
Returns KnownBits information that is known to be true for both this and RHS.
KnownBits sext(unsigned BitWidth) const
Return known bits for a sign extension of the value we're tracking.
unsigned countMinTrailingOnes() const
Returns the minimum number of trailing one bits.
static KnownBits add(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from addition of LHS and RHS.
KnownBits zextOrTrunc(unsigned BitWidth) const
Return known bits for a zero extension or truncation of the value we're tracking.
unsigned countMinLeadingZeros() const
Returns the minimum number of leading zero bits.
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
static LLVM_ABI KnownBits smin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for smin(LHS, RHS).
static LLVM_ABI KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits from sign-extended multiply-hi.
static LLVM_ABI KnownBits srem(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for srem(LHS, RHS).
static LLVM_ABI KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for udiv(LHS, RHS).
static LLVM_ABI KnownBits computeForAddSub(bool Add, bool NSW, bool NUW, const KnownBits &LHS, const KnownBits &RHS)
Compute known bits resulting from adding LHS and RHS.
static LLVM_ABI KnownBits sdiv(const KnownBits &LHS, const KnownBits &RHS, bool Exact=false)
Compute known bits for sdiv(LHS, RHS).
static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS)
Return true if LHS and RHS have no common bits set.
bool isNegative() const
Returns true if this value is known to be negative.
static KnownBits sub(const KnownBits &LHS, const KnownBits &RHS, bool NSW=false, bool NUW=false)
Compute knownbits resulting from subtraction of LHS and RHS.
unsigned countMaxLeadingZeros() const
Returns the maximum number of leading zero bits possible.
void setAllOnes()
Make all bits known to be one and discard any previous information.
void insertBits(const KnownBits &SubBits, unsigned BitPosition)
Insert the bits from a smaller known bits starting at bitPosition.
static LLVM_ABI KnownBits uadd_sat(const KnownBits &LHS, const KnownBits &RHS)
Compute knownbits resulting from llvm.uadd.sat(LHS, RHS)
static LLVM_ABI KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, bool NoUndefSelfMultiply=false)
Compute known bits resulting from multiplying LHS and RHS.
KnownBits anyext(unsigned BitWidth) const
Return known bits for an "any" extension of the value we're tracking, where we don't know anything ab...
LLVM_ABI KnownBits abs(bool IntMinIsPoison=false) const
Compute known bits for the absolute value.
static LLVM_ABI std::optional< bool > sgt(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_SGT result.
static LLVM_ABI std::optional< bool > uge(const KnownBits &LHS, const KnownBits &RHS)
Determine if these known bits always give the same ICMP_UGE result.
static LLVM_ABI KnownBits shl(const KnownBits &LHS, const KnownBits &RHS, bool NUW=false, bool NSW=false, bool ShAmtNonZero=false)
Compute known bits for shl(LHS, RHS).
static LLVM_ABI KnownBits umin(const KnownBits &LHS, const KnownBits &RHS)
Compute known bits for umin(LHS, RHS).
KnownBits sextOrTrunc(unsigned BitWidth) const
Return known bits for a sign extension or truncation of the value we're tracking.
FPClassTest KnownFPClasses
Floating-point classes the value could be one of.
bool isKnownNeverInfinity() const
Return true if it's known this can never be an infinity.
bool cannotBeOrderedGreaterThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never greater tha...
static constexpr FPClassTest OrderedGreaterThanZeroMask
static constexpr FPClassTest OrderedLessThanZeroMask
void knownNot(FPClassTest RuleOut)
void copysign(const KnownFPClass &Sign)
bool isKnownNeverSubnormal() const
Return true if it's known this can never be a subnormal.
LLVM_ABI bool isKnownNeverLogicalZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a zero.
bool isKnownNeverNegInfinity() const
Return true if it's known this can never be -infinity.
bool isKnownNeverNegSubnormal() const
Return true if it's known this can never be a negative subnormal.
bool isKnownNeverPosZero() const
Return true if it's known this can never be a literal positive zero.
std::optional< bool > SignBit
std::nullopt if the sign bit is unknown, true if the sign bit is definitely set or false if the sign ...
bool isKnownNeverNaN() const
Return true if it's known this can never be a nan.
bool isKnownNever(FPClassTest Mask) const
Return true if it's known this can never be one of the mask entries.
bool isKnownNeverNegZero() const
Return true if it's known this can never be a negative zero.
void propagateNaN(const KnownFPClass &Src, bool PreserveSign=false)
bool cannotBeOrderedLessThanZero() const
Return true if we can prove that the analyzed floating-point value is either NaN or never less than -...
void signBitMustBeOne()
Assume the sign bit is one.
LLVM_ABI void propagateCanonicalizingSrc(const KnownFPClass &Src, DenormalMode Mode)
Report known classes if Src is evaluated through a potentially canonicalizing operation.
void signBitMustBeZero()
Assume the sign bit is zero.
LLVM_ABI bool isKnownNeverLogicalPosZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a positive zero.
bool isKnownNeverPosInfinity() const
Return true if it's known this can never be +infinity.
LLVM_ABI bool isKnownNeverLogicalNegZero(DenormalMode Mode) const
Return true if it's know this can never be interpreted as a negative zero.
bool isKnownNeverPosSubnormal() const
Return true if it's known this can never be a positive subnormal.
Represent one information held inside an operand bundle of an llvm.assume.
SelectPatternFlavor Flavor
static bool isMinOrMax(SelectPatternFlavor SPF)
When implementing this min/max pattern as fcmp; select, does the fcmp have to be ordered?
SimplifyQuery getWithoutCondContext() const
SimplifyQuery getWithInstruction(const Instruction *I) const
const DomConditionCache * DC