
Deterministic Policy Gradient Algorithms

David Silver DAVID@DEEPMIND.COM
DeepMind Technologies, London, UK
Guy Lever GUY.LEVER@UCL.AC.UK
University College London, UK
Nicolas Heess, Thomas Degris, Daan Wierstra, Martin Riedmiller *@DEEPMIND.COM
DeepMind Technologies, London, UK

Abstract
In this paper we consider deterministic policy
gradient algorithms for reinforcement learning
with continuous actions. The deterministic pol-
icy gradient has a particularly appealing form: it
is the expected gradient of the action-value func-
tion. This simple form means that the deter-
ministic policy gradient can be estimated much
more efficiently than the usual stochastic pol-
icy gradient. To ensure adequate exploration,
we introduce an off-policy actor-critic algorithm
that learns a deterministic target policy from an
exploratory behaviour policy. We demonstrate
that deterministic policy gradient algorithms can
significantly outperform their stochastic counter-
parts in high-dimensional action spaces.

1. Introduction
Policy gradient algorithms are widely used in reinforce-
ment learning problems with continuous action spaces. The
basic idea is to represent the policy by a parametric prob-
ability distribution πθ(a|s) = P [a|s; θ] that stochastically
selects action a in state s according to parameter vector θ.
Policy gradient algorithms typically proceed by sampling
this stochastic policy and adjusting the policy parameters
in the direction of greater cumulative reward.
In this paper we instead consider deterministic policies
a = µθ(s). It is natural to wonder whether the same ap-
proach can be followed as for stochastic policies: adjusting
the policy parameters in the direction of the policy gradi-
ent. It was previously believed that the deterministic pol-
icy gradient did not exist, or could only be obtained when
using a model (Peters, 2010). However, we show that the
deterministic policy gradient does indeed exist, and further-
more it has a simple model-free form that simply follows
the gradient of the action-value function. In addition, we
show that the deterministic policy gradient is the limiting

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

case, as policy variance tends to zero, of the stochastic pol-
icy gradient.
From a practical viewpoint, there is a crucial difference be-
tween the stochastic and deterministic policy gradients. In
the stochastic case, the policy gradient integrates over both
state and action spaces, whereas in the deterministic case it
only integrates over the state space. As a result, computing
the stochastic policy gradient may require more samples,
especially if the action space has many dimensions.
In order to explore the full state and action space, a stochas-
tic policy is often necessary. To ensure that our determinis-
tic policy gradient algorithms continue to explore satisfac-
torily, we introduce an off-policy learning algorithm. The
basic idea is to choose actions according to a stochastic
behaviour policy (to ensure adequate exploration), but to
learn about a deterministic target policy (exploiting the ef-
ficiency of the deterministic policy gradient). We use the
deterministic policy gradient to derive an off-policy actor-
critic algorithm that estimates the action-value function us-
ing a differentiable function approximator, and then up-
dates the policy parameters in the direction of the approx-
imate action-value gradient. We also introduce a notion of
compatible function approximation for deterministic policy
gradients, to ensure that the approximation does not bias
the policy gradient.
We apply our deterministic actor-critic algorithms to sev-
eral benchmark problems: a high-dimensional bandit; sev-
eral standard benchmark reinforcement learning tasks with
low dimensional action spaces; and a high-dimensional
task for controlling an octopus arm. Our results demon-
strate a significant performance advantage to using deter-
ministic policy gradients over stochastic policy gradients,
particularly in high dimensional tasks. Furthermore, our
algorithms require no more computation than prior meth-
ods: the computational cost of each update is linear in the
action dimensionality and the number of policy parameters.
Finally, there are many applications (for example in
robotics) where a differentiable control policy is provided,
but where there is no functionality to inject noise into the
controller. In these cases, the stochastic policy gradient is
inapplicable, whereas our methods may still be useful.

Deterministic Policy Gradient Algorithms

2. Background
2.1. Preliminaries
We study reinforcement learning and control problems in
which an agent acts in a stochastic environment by sequen-
tially choosing actions over a sequence of time steps, in
order to maximise a cumulative reward. We model the
problem as a Markov decision process (MDP) which com-
prises: a state space S, an action space A, an initial state
distribution with density p1(s1), a stationary transition dy-
namics distribution with conditional density p(st+1|st, at)
satisfying the Markov property p(st+1|s1, a1, ..., st, at) =
p(st+1|st, at), for any trajectory s1, a1, s2, a2, ..., sT , aT
in state-action space, and a reward function r : S×A → R.
A policy is used to select actions in the MDP. In general
the policy is stochastic and denoted by πθ : S → P(A),
where P(A) is the set of probability measures on A and
θ ∈ Rn is a vector of n parameters, and πθ(at|st) is
the conditional probability density at at associated with
the policy. The agent uses its policy to interact with the
MDP to give a trajectory of states, actions and rewards,
h1:T = s1, a1, r1..., sT , aT , rT over S × A × R. The
return rγt is the total discounted reward from time-step t
onwards, rγt =

∑∞
k=t γ

k−tr(sk, ak) where 0 < γ < 1.
Value functions are defined to be the expected total dis-
counted reward, V π(s) = E [rγ1 |S1 = s;π] andQπ(s, a) =
E [rγ1 |S1 = s,A1 = a;π].1 The agent’s goal is to obtain a
policy which maximises the cumulative discounted reward
from the start state, denoted by the performance objective
J(π) = E [rγ1 |π].
We denote the density at state s′ after transitioning for t
time steps from state s by p(s → s′, t, π). We also denote
the (improper) discounted state distribution by ρπ(s′) :=∫
S
∑∞
t=1 γ

t−1p1(s)p(s → s′, t, π)ds. We can then write
the performance objective as an expectation,

J(πθ) =

∫
S
ρπ(s)

∫
A
πθ(s, a)r(s, a)dads

= Es∼ρπ,a∼πθ [r(s, a)] (1)

where Es∼ρ [·] denotes the (improper) expected value with
respect to discounted state distribution ρ(s).2 In the re-
mainder of the paper we suppose for simplicity that A =
Rm and that S is a compact subset of Rd.

2.2. Stochastic Policy Gradient Theorem
Policy gradient algorithms are perhaps the most popular
class of continuous action reinforcement learning algo-
rithms. The basic idea behind these algorithms is to adjust

1To simplify notation, we frequently drop the random vari-
able in the conditional density and write p(st+1|st, at) =
p(st+1|St = st, At = at); furthermore we superscript value
functions by π rather than πθ .

2The results in this paper may be extended to an average re-
ward performance objective by choosing ρ(s) to be the stationary
distribution of an ergodic MDP.

the parameters θ of the policy in the direction of the perfor-
mance gradient∇θJ(πθ). The fundamental result underly-
ing these algorithms is the policy gradient theorem (Sutton
et al., 1999),

∇θJ(πθ) =
∫
S
ρπ(s)

∫
A
∇θπθ(a|s)Qπ(s, a)dads

= Es∼ρπ,a∼πθ [∇θ log πθ(a|s)Qπ(s, a)] (2)

The policy gradient is surprisingly simple. In particular,
despite the fact that the state distribution ρπ(s) depends on
the policy parameters, the policy gradient does not depend
on the gradient of the state distribution.
This theorem has important practical value, because it re-
duces the computation of the performance gradient to a
simple expectation. The policy gradient theorem has been
used to derive a variety of policy gradient algorithms (De-
gris et al., 2012a), by forming a sample-based estimate of
this expectation. One issue that these algorithms must ad-
dress is how to estimate the action-value functionQπ(s, a).
Perhaps the simplest approach is to use a sample return rγt
to estimate the value ofQπ(st, at), which leads to a variant
of the REINFORCE algorithm (Williams, 1992).

2.3. Stochastic Actor-Critic Algorithms
The actor-critic is a widely used architecture based on the
policy gradient theorem (Sutton et al., 1999; Peters et al.,
2005; Bhatnagar et al., 2007; Degris et al., 2012a). The
actor-critic consists of two eponymous components. An ac-
tor adjusts the parameters θ of the stochastic policy πθ(s)
by stochastic gradient ascent of Equation 2. Instead of the
unknown true action-value function Qπ(s, a) in Equation
2, an action-value function Qw(s, a) is used, with param-
eter vector w. A critic estimates the action-value function
Qw(s, a) ≈ Qπ(s, a) using an appropriate policy evalua-
tion algorithm such as temporal-difference learning.
In general, substituting a function approximator Qw(s, a)
for the true action-value function Qπ(s, a) may introduce
bias. However, if the function approximator is compati-
ble such that i) Qw(s, a) = ∇θ log πθ(a|s)>w and ii) the
parameters w are chosen to minimise the mean-squared er-
ror ε2(w) = Es∼ρπ,a∼πθ

[
(Qw(s, a)−Qπ(s, a))2

]
, then

there is no bias (Sutton et al., 1999),

∇θJ(πθ) = Es∼ρπ,a∼πθ [∇θ log πθ(a|s)Qw(s, a)] (3)

More intuitively, condition i) says that compatible function
approximators are linear in “features” of the stochastic pol-
icy, ∇θ log πθ(a|s), and condition ii) requires that the pa-
rameters are the solution to the linear regression problem
that estimates Qπ(s, a) from these features. In practice,
condition ii) is usually relaxed in favour of policy evalu-
ation algorithms that estimate the value function more ef-
ficiently by temporal-difference learning (Bhatnagar et al.,
2007; Degris et al., 2012b; Peters et al., 2005); indeed if

Deterministic Policy Gradient Algorithms

both i) and ii) are satisfied then the overall algorithm is
equivalent to not using a critic at all (Sutton et al., 2000),
much like the REINFORCE algorithm (Williams, 1992).

2.4. Off-Policy Actor-Critic
It is often useful to estimate the policy gradient off-policy
from trajectories sampled from a distinct behaviour policy
β(a|s) 6= πθ(a|s). In an off-policy setting, the perfor-
mance objective is typically modified to be the value func-
tion of the target policy, averaged over the state distribution
of the behaviour policy (Degris et al., 2012b),

Jβ(πθ) =

∫
S
ρβ(s)V π(s)ds

=

∫
S

∫
A
ρβ(s)πθ(a|s)Qπ(s, a)dads

Differentiating the performance objective and applying an
approximation gives the off-policy policy-gradient (Degris
et al., 2012b)

∇θJβ(πθ) ≈
∫
S

∫
A
ρβ(s)∇θπθ(a|s)Qπ(s, a)dads (4)

= Es∼ρβ ,a∼β
[
πθ(a|s)
βθ(a|s)

∇θ log πθ(a|s)Qπ(s, a)
]

(5)

This approximation drops a term that depends on the
action-value gradient ∇θQπ(s, a); Degris et al. (2012b)
argue that this is a good approximation since it can pre-
serve the set of local optima to which gradient ascent con-
verges. The Off-Policy Actor-Critic (OffPAC) algorithm
(Degris et al., 2012b) uses a behaviour policy β(a|s) to
generate trajectories. A critic estimates a state-value func-
tion, V v(s) ≈ V π(s), off-policy from these trajectories, by
gradient temporal-difference learning (Sutton et al., 2009).
An actor updates the policy parameters θ, also off-policy
from these trajectories, by stochastic gradient ascent of
Equation 5. Instead of the unknown action-value function
Qπ(s, a) in Equation 5, the temporal-difference error δt is
used, δt = rt+1 + γV v(st+1)− V v(st); this can be shown
to provide an approximation to the true gradient (Bhatna-
gar et al., 2007). Both the actor and the critic use an im-
portance sampling ratio πθ(a|s)

βθ(a|s) to adjust for the fact that
actions were selected according to π rather than β.

3. Gradients of Deterministic Policies
We now consider how the policy gradient framework may
be extended to deterministic policies. Our main result is
a deterministic policy gradient theorem, analogous to the
stochastic policy gradient theorem presented in the previ-
ous section. We provide several ways to derive and un-
derstand this result. First we provide an informal intuition
behind the form of the deterministic policy gradient. We

then give a formal proof of the deterministic policy gradi-
ent theorem from first principles. Finally, we show that the
deterministic policy gradient theorem is in fact a limiting
case of the stochastic policy gradient theorem. Details of
the proofs are deferred until the appendices.

3.1. Action-Value Gradients
The majority of model-free reinforcement learning algo-
rithms are based on generalised policy iteration: inter-
leaving policy evaluation with policy improvement (Sut-
ton and Barto, 1998). Policy evaluation methods estimate
the action-value function Qπ(s, a) or Qµ(s, a), for ex-
ample by Monte-Carlo evaluation or temporal-difference
learning. Policy improvement methods update the pol-
icy with respect to the (estimated) action-value function.
The most common approach is a greedy maximisation (or
soft maximisation) of the action-value function, µk+1(s) =

argmax Q
a

µk(s, a).

In continuous action spaces, greedy policy improvement
becomes problematic, requiring a global maximisation at
every step. Instead, a simple and computationally attrac-
tive alternative is to move the policy in the direction of the
gradient of Q, rather than globally maximising Q. Specif-
ically, for each visited state s, the policy parameters θk+1

are updated in proportion to the gradient∇θQµ
k

(s, µθ(s)).
Each state suggests a different direction of policy improve-
ment; these may be averaged together by taking an expec-
tation with respect to the state distribution ρµ(s),

θk+1 = θk + αE
s∼ρµk

[
∇θQµ

k

(s, µθ(s))
]

(6)

By applying the chain rule we see that the policy improve-
ment may be decomposed into the gradient of the action-
value with respect to actions, and the gradient of the policy
with respect to the policy parameters.

θk+1 = θk + αE
s∼ρµk

[
∇θµθ(s) ∇aQµ

k

(s, a)
∣∣∣
a=µθ(s)

]
(7)

By convention∇θµθ(s) is a Jacobian matrix such that each
column is the gradient∇θ[µθ(s)]d of the dth action dimen-
sion of the policy with respect to the policy parameters θ.
However, by changing the policy, different states are vis-
ited and the state distribution ρµ will change. As a result
it is not immediately obvious that this approach guaran-
tees improvement, without taking account of the change to
distribution. However, the theory below shows that, like
the stochastic policy gradient theorem, there is no need to
compute the gradient of the state distribution; and that the
intuitive update outlined above is following precisely the
gradient of the performance objective.

Deterministic Policy Gradient Algorithms

3.2. Deterministic Policy Gradient Theorem
We now formally consider a deterministic policy µθ : S →
A with parameter vector θ ∈ Rn. We define a performance
objective J(µθ) = E [rγ1 |µ], and define probability dis-
tribution p(s → s′, t, µ) and discounted state distribution
ρµ(s) analogously to the stochastic case. This again lets us
to write the performance objective as an expectation,

J(µθ) =

∫
S
ρµ(s)r(s, µθ(s))ds

= Es∼ρµ [r(s, µθ(s))] (8)

We now provide the deterministic analogue to the policy
gradient theorem. The proof follows a similar scheme to
(Sutton et al., 1999) and is provided in Appendix B.

Theorem 1 (Deterministic Policy Gradient Theorem).
Suppose that the MDP satisfies conditions A.1 (see Ap-
pendix; these imply that ∇θµθ(s) and ∇aQµ(s, a) exist
and that the deterministic policy gradient exists. Then,

∇θJ(µθ) =
∫
S
ρµ(s)∇θµθ(s) ∇aQµ(s, a)|a=µθ(s) ds

= Es∼ρµ
[
∇θµθ(s) ∇aQµ(s, a)|a=µθ(s)

]
(9)

3.3. Limit of the Stochastic Policy Gradient
The deterministic policy gradient theorem does not at first
glance look like the stochastic version (Equation 2). How-
ever, we now show that, for a wide class of stochastic
policies, including many bump functions, the determinis-
tic policy gradient is indeed a special (limiting) case of the
stochastic policy gradient. We parametrise stochastic poli-
cies πµθ,σ by a deterministic policy µθ : S → A and a
variance parameter σ, such that for σ = 0 the stochastic
policy is equivalent to the deterministic policy, πµθ,0 ≡ µθ.
Then we show that as σ → 0 the stochastic policy gradi-
ent converges to the deterministic gradient (see Appendix
C for proof and technical conditions).

Theorem 2. Consider a stochastic policy πµθ,σ such that
πµθ,σ(a|s) = νσ(µθ(s), a), where σ is a parameter con-
trolling the variance and νσ satisfy conditions B.1 and the
MDP satisfies conditions A.1 and A.2. Then,

lim
σ↓0
∇θJ(πµθ,σ) = ∇θJ(µθ) (10)

where on the l.h.s. the gradient is the standard stochastic
policy gradient and on the r.h.s. the gradient is the deter-
ministic policy gradient.

This is an important result because it shows that the famil-
iar machinery of policy gradients, for example compatible
function approximation (Sutton et al., 1999), natural gradi-
ents (Kakade, 2001), actor-critic (Bhatnagar et al., 2007),
or episodic/batch methods (Peters et al., 2005), is also ap-
plicable to deterministic policy gradients.

4. Deterministic Actor-Critic Algorithms
We now use the deterministic policy gradient theorem
to derive both on-policy and off-policy actor-critic algo-
rithms. We begin with the simplest case – on-policy up-
dates, using a simple Sarsa critic – so as to illustrate the
ideas as clearly as possible. We then consider the off-policy
case, this time using a simple Q-learning critic to illustrate
the key ideas. These simple algorithms may have conver-
gence issues in practice, due both to bias introduced by the
function approximator, and also the instabilities caused by
off-policy learning. We then turn to a more principled ap-
proach using compatible function approximation and gra-
dient temporal-difference learning.

4.1. On-Policy Deterministic Actor-Critic
In general, behaving according to a deterministic policy
will not ensure adequate exploration and may lead to sub-
optimal solutions. Nevertheless, our first algorithm is an
on-policy actor-critic algorithm that learns and follows a
deterministic policy. Its primary purpose is didactic; how-
ever, it may be useful for environments in which there is
sufficient noise in the environment to ensure adequate ex-
ploration, even with a deterministic behaviour policy.
Like the stochastic actor-critic, the deterministic actor-
critic consists of two components. The critic estimates
the action-value function while the actor ascends the gradi-
ent of the action-value function. Specifically, an actor ad-
justs the parameters θ of the deterministic policy µθ(s) by
stochastic gradient ascent of Equation 9. As in the stochas-
tic actor-critic, we substitute a differentiable action-value
function Qw(s, a) in place of the true action-value func-
tion Qµ(s, a). A critic estimates the action-value function
Qw(s, a) ≈ Qµ(s, a), using an appropriate policy evalua-
tion algorithm. For example, in the following deterministic
actor-critic algorithm, the critic uses Sarsa updates to esti-
mate the action-value function (Sutton and Barto, 1998),

δt = rt + γQw(st+1, at+1)−Qw(st, at) (11)
wt+1 = wt + αwδt∇wQw(st, at) (12)
θt+1 = θt + αθ∇θµθ(st) ∇aQw(st, at)|a=µθ(s) (13)

4.2. Off-Policy Deterministic Actor-Critic
We now consider off-policy methods that learn a determin-
istic target policy µθ(s) from trajectories generated by an
arbitrary stochastic behaviour policy π(s, a). As before, we
modify the performance objective to be the value function
of the target policy, averaged over the state distribution of
the behaviour policy,

Jβ(µθ) =

∫
S
ρβ(s)V µ(s)ds

=

∫
S
ρβ(s)Qµ(s, µθ(s))ds

(14)

Deterministic Policy Gradient Algorithms

∇θJβ(µθ) ≈
∫
S
ρβ(s)∇θµθ(a|s)Qµ(s, a)ds

= Es∼ρβ
[
∇θµθ(s) ∇aQµ(s, a)|a=µθ(s)

]
(15)

This equation gives the off-policy deterministic policy gra-
dient. Analogous to the stochastic case (see Equation 4),
we have dropped a term that depends on∇θQµθ (s, a); jus-
tification similar to Degris et al. (2012b) can be made in
support of this approximation.
We now develop an actor-critic algorithm that updates the
policy in the direction of the off-policy deterministic policy
gradient. We again substitute a differentiable action-value
functionQw(s, a) in place of the true action-value function
Qµ(s, a) in Equation 15. A critic estimates the action-value
function Qw(s, a) ≈ Qµ(s, a), off-policy from trajectories
generated by β(a|s), using an appropriate policy evaluation
algorithm. In the following off-policy deterministic actor-
critic (OPDAC) algorithm, the critic uses Q-learning up-
dates to estimate the action-value function.

δt = rt + γQw(st+1, µθ(st+1))−Qw(st, at) (16)
wt+1 = wt + αwδt∇wQw(st, at) (17)
θt+1 = θt + αθ∇θµθ(st) ∇aQw(st, at)|a=µθ(s) (18)

We note that stochastic off-policy actor-critic algorithms
typically use importance sampling for both actor and critic
(Degris et al., 2012b). However, because the deterministic
policy gradient removes the integral over actions, we can
avoid importance sampling in the actor; and by using Q-
learning, we can avoid importance sampling in the critic.

4.3. Compatible Function Approximation
In general, substituting an approximate Qw(s, a) into the
deterministic policy gradient will not necessarily follow the
true gradient (nor indeed will it necessarily be an ascent di-
rection at all). Similar to the stochastic case, we now find a
class of compatible function approximators Qw(s, a) such
that the true gradient is preserved. In other words, we find
a critic Qw(s, a) such that the gradient ∇aQµ(s, a) can be
replaced by ∇aQw(s, a), without affecting the determinis-
tic policy gradient. The following theorem applies to both
on-policy, E[·] = Es∼ρµ [·], and off-policy, E[·] = Es∼ρβ [·],
Theorem 3. A function approximator Qw(s, a) is com-
patible with a deterministic policy µθ(s), ∇θJβ(θ) =

E
[
∇θµθ(s) ∇aQw(s, a)|a=µθ(s)

]
, if

1. ∇aQw(s, a)|a=µθ(s) = ∇θµθ(s)
>w and

2. w minimises the mean-squared error, MSE(θ, w) =
E
[
ε(s; θ, w)>ε(s; θ, w)

]
where ε(s; θ, w) =

∇aQw(s, a)|a=µθ(s) − ∇aQ
µ(s, a)|a=µθ(s)

Proof. If w minimises the MSE then the gradient of ε2

w.r.t. w must be zero. We then use the fact that, by condi-
tion 1, ∇wε(s; θ, w) = ∇θµθ(s),

∇wMSE(θ, w) = 0

E [∇θµθ(s)ε(s; θ, w)] = 0

E
[
∇θµθ(s) ∇aQw(s, a)|a=µθ(s)

]
=

E
[
∇θµθ(s) ∇aQµ(s, a)|a=µθ(s)

]
= ∇θJβ(µθ) or∇θJ(µθ)

For any deterministic policy µθ(s), there always exists a
compatible function approximator of the form Qw(s, a) =
(a − µθ(s))>∇θµθ(s)>w + V v(s), where V v(s) may be
any differentiable baseline function that is independent of
the action a; for example a linear combination of state fea-
tures φ(s) and parameters v, V v(s) = v>φ(s) for param-
eters v. A natural interpretation is that V v(s) estimates
the value of state s, while the first term estimates the ad-
vantage Aw(s, a) of taking action a over action µθ(s) in
state s. The advantage function can be viewed as a linear
function approximator, Aw(s, a) = φ(s, a)>w with state-

action features φ(s, a)
def
= ∇θµθ(s)(a − µθ(s)) and pa-

rameters w. Note that if there are m action dimensions and
n policy parameters, then ∇θµθ(s) is an n × m Jacobian
matrix, so the feature vector is n × 1, and the parameter
vector w is also n × 1. A function approximator of this
form satisfies condition 1 of Theorem 3.
We note that a linear function approximator is not very use-
ful for predicting action-values globally, since the action-
value diverges to ±∞ for large actions. However, it can
still be highly effective as a local critic. In particular, it
represents the local advantage of deviating from the cur-
rent policy, Aw(s, µθ(s) + δ) = δ>∇θµθ(s)>w, where δ
represents a small deviation from the deterministic policy.
As a result, a linear function approximator is sufficient to
select the direction in which the actor should adjust its pol-
icy parameters.
To satisfy condition 2 we need to find the parameters w
that minimise the mean-squared error between the gradi-
ent of Qw and the true gradient. This can be viewed as a
linear regression problem with “features” φ(s, a) and “tar-
gets” ∇aQµ(s, a)|a=µθ(s). In other words, features of the
policy are used to predict the true gradient ∇aQµ(s, a) at
state s. However, acquiring unbiased samples of the true
gradient is difficult. In practice, we use a linear func-
tion approximator Qw(s, a) = φ(s, a)>w to satisfy con-
dition 1, but we learn w by a standard policy evaluation
method (for example Sarsa or Q-learning, for the on-policy
or off-policy deterministic actor-critic algorithms respec-
tively) that does not exactly satisfy condition 2. We note
that a reasonable solution to the policy evaluation prob-
lem will find Qw(s, a) ≈ Qµ(s, a) and will therefore ap-

Deterministic Policy Gradient Algorithms

proximately (for smooth function approximators) satisfy
∇aQw(s, a)|a=µθ(s) ≈ ∇aQ

µ(s, a)|a=µθ(s).
To summarise, a compatible off-policy deterministic actor-
critic (COPDAC) algorithm consists of two components.
The critic is a linear function approximator that estimates
the action-value from features φ(s, a) = a>∇θµθ(s). This
may be learnt off-policy from samples of a behaviour pol-
icy β(a|s), for example using Q-learning or gradient Q-
learning. The actor then updates its parameters in the di-
rection of the critic’s action-value gradient. The following
COPDAC-Q algorithm uses a simple Q-learning critic.

δt = rt + γQw(st+1, µθ(st+1))−Qw(st, at) (19)

θt+1 = θt + αθ∇θµθ(st)
(
∇θµθ(st)>wt

)
(20)

wt+1 = wt + αwδtφ(st, at) (21)
vt+1 = vt + αvδtφ(st) (22)

It is well-known that off-policy Q-learning may diverge
when using linear function approximation. A more recent
family of methods, based on gradient temporal-difference
learning, are true gradient descent algorithm and are there-
fore sure to converge (Sutton et al., 2009). The basic idea of
these methods is to minimise the mean-squared projected
Bellman error (MSPBE) by stochastic gradient descent;
full details are beyond the scope of this paper. Similar to
the OffPAC algorithm (Degris et al., 2012b), we use gradi-
ent temporal-difference learning in the critic. Specifically,
we use gradient Q-learning in the critic (Maei et al., 2010),
and note that under suitable conditions on the step-sizes,
αθ, αw, αu, to ensure that the critic is updated on a faster
time-scale than the actor, the critic will converge to the pa-
rameters minimising the MSPBE (Sutton et al., 2009; De-
gris et al., 2012b). The following COPDAC-GQ algorithm
combines COPDAC with a gradient Q-learning critic,

δt = rt + γQw(st+1, µθ(st+1))−Qw(st, at) (23)

θt+1 = θt + αθ∇θµθ(st)
(
∇θµθ(st)>wt

)
(24)

wt+1 = wt + αwδtφ(st, at)

− αwγφ(st+1, µθ(st+1))
(
φ(st, at)

>ut
)

(25)
vt+1 = vt + αvδtφ(st)

− αvγφ(st+1)
(
φ(st, at)

>ut
)

(26)

ut+1 = ut + αu
(
δt − φ(st, at)>ut

)
φ(st, at) (27)

Like stochastic actor-critic algorithms, the computational
complexity of all these updates is O(mn) per time-step.
Finally, we show that the natural policy gradient (Kakade,
2001; Peters et al., 2005) can be extended to deter-
ministic policies. The steepest ascent direction of our
performance objective with respect to any metric M(θ)
is given by M(θ)−1∇θJ(µθ) (Toussaint, 2012). The
natural gradient is the steepest ascent direction with
respect to the Fisher information metric Mπ(θ) =

Es∼ρπ,a∼πθ
[
∇θ log πθ(a|s)∇θ log πθ(a|s)>

]
; this metric

is invariant to reparameterisations of the policy (Bagnell
and Schneider, 2003). For deterministic policies, we use
the metric Mµ(θ) = Es∼ρµ

[
∇θµθ(s)∇θµθ(s)>

]
which

can be viewed as the limiting case of the Fisher informa-
tion metric as policy variance is reduced to zero. By com-
bining the deterministic policy gradient theorem with com-
patible function approximation we see that ∇θJ(µθ) =
Es∼ρµ

[
∇θµθ(s)∇θµθ(s)>w

]
and so the steepest ascent

direction is simply Mµ(θ)
−1∇θJβ(µθ) = w. This algo-

rithm can be implemented by simplifying Equations 20 or
24 to θt+1 = θt + αθwt.

5. Experiments
5.1. Continuous Bandit
Our first experiment focuses on a direct comparison be-
tween the stochastic policy gradient and the determinis-
tic policy gradient. The problem is a continuous ban-
dit problem with a high-dimensional quadratic cost func-
tion, −r(a) = (a − a∗)>C(a − a∗). The matrix C is
positive definite with eigenvalues chosen from {0.1, 1},
and a∗ = [4, ..., 4]>. We consider action dimensions of
m = 10, 25, 50. Although this problem could be solved
analytically, given full knowledge of the quadratic, we are
interested here in the relative performance of model-free
stochastic and deterministic policy gradient algorithms.
For the stochastic actor-critic in the bandit task (SAC-B) we
use an isotropic Gaussian policy, πθ,y(·) ∼ N (θ, exp(y)),
and adapt both the mean and the variance of the policy. The
deterministic actor-critic algorithm is based on COPDAC,
using a target policy, µθ = θ and a fixed-width Gaussian
behaviour policy, β(·) ∼ N (θ, σ2

β). The criticQ(a) is sim-
ply estimated by linear regression from the compatible fea-
tures to the costs: for SAC-B the compatible features are
∇θ log πθ(a); for COPDAC-B they are ∇θµθ(a)(a− θ); a
bias feature is also included in both cases. For this exper-
iment the critic is recomputed from each successive batch
of 2m steps; the actor is updated once per batch. To eval-
uate performance we measure the average cost per step in-
curred by the mean (i.e. exploration is not penalised for
the on-policy algorithm). We performed a parameter sweep
over all step-size parameters and variance parameters (ini-
tial y for SAC; σ2

β for COPDAC). Figure 1 shows the per-
formance of the best performing parameters for each algo-
rithm, averaged over 5 runs. The results illustrate a signif-
icant performance advantage to the deterministic update,
which grows larger with increasing dimensionality.
We also ran an experiment in which the stochastic actor-
critic used the same fixed variance σ2

β as the deterministic
actor-critic, so that only the mean was adapted. This did
not improve the performance of the stochastic actor-critic:
COPDAC-B still outperforms SAC-B by a very wide mar-
gin that grows larger with increasing dimension.

Deterministic Policy Gradient Algorithms

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

50 action dimensions

Time−steps

SAC−B

COPDAC−B

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

25 action dimensions

Time−steps
10

2
10

3
10

4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10 action dimensions
C

os
t

Time−steps

Figure 1. Comparison of stochastic actor-critic (SAC-B) and deterministic actor-critic (COPDAC-B) on the continuous bandit task.

0.0 2.0 4.0 6.0 8.0 10.0
Time-steps (x10000)

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

To
ta

lR
ew

ar
d

Pe
rE

pi
so

de
(x

10
00

)

COPDAC-Q
SAC
OffPAC-TD

(a) Mountain Car

0.0 10.0 20.0 30.0 40.0 50.0
Time-steps (x10000)

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0
To

ta
lR

ew
ar

d
Pe

rE
pi

so
de

(x
10

00
)

COPDAC-Q
SAC
OffPAC-TD

(b) Pendulum

0.0 10.0 20.0 30.0 40.0 50.0
Time-steps (x10000)

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

To
ta

lR
ew

ar
d

Pe
rE

pi
so

de
(x

10
00

)

COPDAC-Q
SAC
OffPAC-TD

(c) 2D Puddle World

Figure 2. Comparison of stochastic on-policy actor-critic (SAC), stochastic off-policy actor-critic (OffPAC), and deterministic off-policy
actor-critic (COPDAC) on continuous-action reinforcement learning. Each point is the average test performance of the mean policy.

5.2. Continuous Reinforcement Learning
In our second experiment we consider continuous-action
variants of standard reinforcement learning benchmarks:
mountain car, pendulum and 2D puddle world. Our goal
is to see whether stochastic or deterministic actor-critic is
more efficient under Gaussian exploration. The stochas-
tic actor-critic (SAC) algorithm was the actor-critic algo-
rithm in Degris et al. (2012a); this algorithm performed
best out of several incremental actor-critic methods in a
comparison on mountain car. It uses a Gaussian policy
based on a linear combination of features, πθ,y(s, ·) ∼
N (θ>φ(s), exp(y>φ(s))), which adapts both the mean
and the variance of the policy; the critic uses a linear value
function approximator V (s) = v>φ(s) with the same fea-
tures, updated by temporal-difference learning. The deter-
ministic algorithm is based on COPDAC-Q, using a lin-
ear target policy, µθ(s) = θ>φ(s) and a fixed-width Gaus-
sian behaviour policy, β(·|s) ∼ N (θ>φ(s), σ2

β). The critic
again uses a linear value function V (s) = v>φ(s), as a
baseline for the compatible action-value function. In both
cases the features φ(s) are generated by tile-coding the
state-space. We also compare to an off-policy stochastic
actor-critic algorithm (OffPAC), using the same behaviour
policy β as just described, but learning a stochastic pol-
icy πθ,y(s, ·) as in SAC. This algorithm also used the same
critic V (s) = v>φ(s) algorithm and the update algorithm
described in Degris et al. (2012b) with λ = 0 and αu = 0.

For all algorithms, episodes were truncated after a maxi-
mum of 5000 steps. The discount was γ = 0.99 for moun-
tain car and pendulum and γ = 0.999 for puddle world.
Actions outside the legal range were capped. We performed
a parameter sweep over step-size parameters; variance was
initialised to 1/2 the legal range. Figure 2 shows the per-
formance of the best performing parameters for each algo-
rithm, averaged over 30 runs. COPDAC-Q slightly outper-
formed both SAC and OffPAC in all three domains.

5.3. Octopus Arm
Finally, we tested our algorithms on an octopus arm (Engel
et al., 2005) task. The aim is to learn to control a simulated
octopus arm to hit a target. The arm consists of 6 segments
and is attached to a rotating base. There are 50 continu-
ous state variables (x,y position/velocity of the nodes along
the upper/lower side of the arm; angular position/velocity
of the base) and 20 action variables that control three mus-
cles (dorsal, transversal, central) in each segment as well as
the clockwise and counter-clockwise rotation of the base.
The goal is to strike the target with any part of the arm.
The reward function is proportional to the change in dis-
tance between the arm and the target. An episode ends
when the target is hit (with an additional reward of +50)
or after 300 steps. Previous work (Engel et al., 2005) sim-
plified the high-dimensional action space using 6 “macro-
actions” corresponding to particular patterns of muscle ac-
tivations; or applied stochastic policy gradients to a lower

Deterministic Policy Gradient Algorithms

0 100000 200000 300000
0

100

200

300

Time steps

St
ep

s
to

 ta
rg

et

0

5

10

15

R
et

ur
n

pe
r e

pi
so

de

Figure 3. Ten runs of COPDAC on a 6-segment octopus arm with
20 action dimensions and 50 state dimensions; each point repre-
sents the return per episode (above) and the number of time-steps
for the arm to reach the target (below).

dimensional octopus arm with 4 segments (Heess et al.,
2012). Here, we apply deterministic policy gradients di-
rectly to a high-dimensional octopus arm with 6 segments.
We applied the COPDAC-Q algorithm, using a sigmoidal
multi-layer perceptron (8 hidden units and sigmoidal out-
put units) to represent the policy µ(s). The advantage func-
tion Aw(s, a) was represented by compatible function ap-
proximation (see Section 4.3), while the state value func-
tion V v(s) was represented by a second multi-layer percep-
tron (40 hidden units and linear output units).3 The results
of 10 training runs are shown in Figure 3; the octopus arm
converged to a good solution in all cases. A video of an 8
segment arm, trained by COPDAC-Q, is also available.4

6. Discussion and Related Work
Using a stochastic policy gradient algorithm, the policy be-
comes more deterministic as the algorithm homes in on a
good strategy. Unfortunately this makes the stochastic pol-
icy gradient harder to estimate, because the policy gradient
∇θπθ(a|s) changes more rapidly near the mean. Indeed,
the variance of the stochastic policy gradient for a Gaus-
sian policy N (µ, σ2) is proportional to 1/σ2 (Zhao et al.,
2012), which grows to infinity as the policy becomes deter-
ministic. This problem is compounded in high dimensions,
as illustrated by the continuous bandit task. The stochas-
tic actor-critic estimates the stochastic policy gradient in
Equation 2. The inner integral,

∫
A∇θπθ(a|s)Q

π(s, a)da,
is computed by sampling a high dimensional action space.
In contrast, the deterministic policy gradient can be com-
puted immediately in closed form.
One may view our deterministic actor-critic as analogous,
in a policy gradient context, to Q-learning (Watkins and
Dayan, 1992). Q-learning learns a deterministic greedy
policy, off-policy, while executing a noisy version of the

3Recall that the compatibility criteria apply to any differen-
tiable baseline, including non-linear state-value functions.

4http://www0.cs.ucl.ac.uk/staff/D.Silver/
web/Applications.html

greedy policy. Similarly, in our experiments COPDAC-Q
was used to learn a deterministic policy, off-policy, while
executing a noisy version of that policy. Note that we com-
pared on-policy and off-policy algorithms in our experi-
ments, which may at first sight appear odd. However, it
is analogous to asking whether Q-learning or Sarsa is more
efficient, by measuring the greedy policy learnt by each al-
gorithm (Sutton and Barto, 1998).
Our actor-critic algorithms are based on model-free, in-
cremental, stochastic gradient updates; these methods are
suitable when the model is unknown, data is plentiful and
computation is the bottleneck. It is straightforward in prin-
ciple to extend these methods to batch/episodic updates, for
example by using LSTDQ (Lagoudakis and Parr, 2003) in
place of the incremental Q-learning critic. There has also
been a substantial literature on model-based policy gradi-
ent methods, largely focusing on deterministic and fully-
known transition dynamics (Werbos, 1990). These meth-
ods are strongly related to deterministic policy gradients
when the transition dynamics are also deterministic.
We are not the first to notice that the action-value gradient
provides a useful signal for reinforcement learning. The
NFQCA algorithm (Hafner and Riedmiller, 2011) uses two
neural networks to represent the actor and critic respec-
tively. The actor adjusts the policy, represented by the first
neural network, in the direction of the action-value gradi-
ent, using an update similar to Equation 7. The critic up-
dates the action-value function, represented by the second
neural network, using neural fitted-Q learning (a batch Q-
learning update for approximate value iteration). However,
its critic network is incompatible with the actor network; it
is unclear how the local optima learnt by the critic (assum-
ing it converges) will interact with actor updates.

7. Conclusion
We have presented a framework for deterministic policy
gradient algorithms. These gradients can be estimated
more efficiently than their stochastic counterparts, avoiding
a problematic integral over the action space. In practice,
the deterministic actor-critic significantly outperformed its
stochastic counterpart by several orders of magnitude in a
bandit with 50 continuous action dimensions, and solved a
challenging reinforcement learning problem with 20 con-
tinuous action dimensions and 50 state dimensions.

Acknowledgements
This work was supported by the European Community Seventh
Framework Programme (FP7/2007-2013) under grant agreement
270327 (CompLACS), the Gatsby Charitable Foundation, the
Royal Society, the ANR MACSi project, INRIA Bordeaux Sud-
Ouest, Mesocentre de Calcul Intensif Aquitain, and the French
National Grid Infrastructure via France Grille.

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Applications.html
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Applications.html

Deterministic Policy Gradient Algorithms

References
Bagnell, J. A. D. and Schneider, J. (2003). Covariant policy

search. In Proceeding of the International Joint Confer-
ence on Artifical Intelligence.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and Lee,
M. (2007). Incremental natural actor-critic algorithms.
In Neural Information Processing Systems 21.

Degris, T., Pilarski, P. M., and Sutton, R. S. (2012a).
Model-free reinforcement learning with continuous ac-
tion in practice. In American Control Conference.

Degris, T., White, M., and Sutton, R. S. (2012b). Linear
off-policy actor-critic. In 29th International Conference
on Machine Learning.

Engel, Y., Szabó, P., and Volkinshtein, D. (2005). Learning
to control an octopus arm with gaussian process tempo-
ral difference methods. In Neural Information Process-
ing Systems 18.

Hafner, R. and Riedmiller, M. (2011). Reinforcement
learning in feedback control. Machine Learning, 84(1-
2):137–169.

Heess, N., Silver, D., and Teh, Y. (2012). Actor-critic rein-
forcement learning with energy-based policies. JMLR
Workshop and Conference Proceedings: EWRL 2012,
24:43–58.

Kakade, S. (2001). A natural policy gradient. In Neural
Information Processing Systems 14, pages 1531–1538.

Lagoudakis, M. G. and Parr, R. (2003). Least-squares pol-
icy iteration. Journal of Machine Learning Research,
4:1107–1149.

Maei, H. R., Szepesvári, C., Bhatnagar, S., and Sutton,
R. S. (2010). Toward off-policy learning control with
function approximation. In 27th International Confer-
ence on Machine Learning, pages 719–726.

Peters, J. (2010). Policy gradient methods. Scholarpedia,
5(11):3698.

Peters, J., Vijayakumar, S., and Schaal, S. (2005). Natural
actor-critic. In 16th European Conference on Machine
Learning, pages 280–291.

Sutton, R. and Barto, A. (1998). Reinforcement Learning:
an Introduction. MIT Press.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Sil-
ver, D., Szepesvári, C., and Wiewiora, E. (2009). Fast
gradient-descent methods for temporal-difference learn-
ing with linear function approximation. In 26th Interna-
tional Conference on Machine Learning, page 125.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Man-
sour, Y. (1999). Policy gradient methods for reinforce-
ment learning with function approximation. In Neural
Information Processing Systems 12, pages 1057–1063.

Sutton, R. S., Singh, S. P., and McAllester, D. A.
(2000). Comparing policy-gradient algorithms.
http://webdocs.cs.ualberta.ca/ sutton/papers/SSM-
unpublished.pdf.

Toussaint, M. (2012). Some notes on gradient descent.
http://ipvs.informatik.uni-stuttgart.
de/mlr/marc/notes/gradientDescent.pdf.

Watkins, C. and Dayan, P. (1992). Q-learning. Machine
Learning, 8(3):279–292.

Werbos, P. J. (1990). A menu of designs for reinforcement
learning over time. In Neural networks for control, pages
67–95. Bradford.

Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M. (2012).
Analysis and improvement of policy gradient estimation.
Neural Networks, 26:118–129.

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gradientDescent.pdf
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gradientDescent.pdf

