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Abstract 

Dynamic (temporal) graphs are a convenient mathematical abstraction for many prac-
tical complex systems including social contacts, business transactions, and computer 
communications. Community discovery is an extensively used graph analysis kernel 
with rich literature for static graphs. However, community discovery in a dynamic set-
ting is challenging for two specific reasons. Firstly, the notion of temporal community 
lacks a widely accepted formalization, and only limited work exists on understand-
ing how communities emerge over time. Secondly, the added temporal dimension 
along with the sheer size of modern graph data necessitates new scalable algorithms. 
In this paper, we investigate how communities evolve over time based on several 
graph metrics under a temporal formalization. We compare six different algorith-
mic approaches for dynamic community detection for their quality and runtime. 
We identify that a vertex-centric (local) optimization method works as efficiently 
as the classical modularity-based methods. To its advantage, such local computation 
allows for the efficient design of parallel algorithms without incurring a significant 
parallel overhead. Based on this insight, we design a shared-memory parallel algorithm 
DyComPar, which demonstrates between 4 and 18 fold speed-up on a multi-core 
machine with 20 threads, for several real-world and synthetic graphs from different 
domains.

Keywords: Dynamic network, Community detection, Community evolution, Temporal 
network, Permanence, Parallel algorithm, Multi-threading

Introduction
Community detection (Blondel et  al. 2008; Lancichinetti and Fortunato 2009; Girvan 
and Newman 2002) is a fundamental problem in network science with a wide range of 
applications in different scientific domains. Complex networks are generated at a fast 
pace nowadays; social, biological, and communication networks are some of the promi-
nent examples. It is difficult to model these networks as static relations because time 
plays an important role in the evolution of connectivity and patterns. For instance, com-
plex networks in the social domain (e.g., Facebook, Twitter) are fully dynamic, and inter-
action between the entities changes over time. Such dynamic nature of many real-world 
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networks makes the problem of community detection even more challenging, as the 
community structure can change over time.

Community detection is a versatile tool in network science with diverse practical 
applications (Naik et al. 2022; Karimi et al. 2020). In epidemiology, identifying high-risk 
communities in epidemic networks can help minimize the spread of diseases such as 
Covid-19 (Agapito et al. 2022), influenza, HIV, and Ebola. In biological networks, com-
munity detection can reveal the functional modules of protein–protein interaction 
networks (Dilmaghani et  al. 2022), gene regulatory networks, and gene co-expression 
networks. In neuroscience, clustering neural units into densely interconnected groups 
can help identify functional groups (Martinet et al. 2020).

Understanding the evolution of community structures in complex networks can pro-
vide valuable contextual insights. The ability to detect changes in community structures 
can help detect anomalies or shifts in network behavior. Moreover, predicting future 
trends of the network can be useful in various domains such as social media (Kazemza-
deh et al. 2022), transportation, and public health (Fang et al. 2022). These motivate us to 
perform the study on the evolving community structures throughout several time inter-
vals in dynamic networks.

Dynamic community detection is challenging and hence an active area of research 
(Sarıyüce et al. 2016; Halappanavar et al. 2017; Wheatman and Xu 2018; Liu et al. 2020; 
Li et al. 2020; Pereira et al. 2018; Peixoto and Rosvall 2019; Qiao et al. 2020; Gabert et al. 
2021; Ammar 2023; Zou et al. 2023). Many existing works focus on synthetic networks 
(Zhang et al. 2018; Cazabet et al. 2020; Gabert et al. 2021), which may not fully capture 
the complexity of real-world networks. Moreover, the rate of edge addition and dele-
tion in real-world networks (Sarıyüce et al. 2016; Pandey et al. 2021; Khanda et al. 2021) 
may not be uniform, and can be affected by various factors such as seasonality, events, 
and external interventions. The evaluation and comparison of different dynamic com-
munity detection algorithms on the same networks are crucial to understanding their 
relative strengths and weaknesses. This can help identify the most appropriate method 
for a given application and network type.

In this study, first, we aim at investigating different dynamic community detection 
methods. We evaluate six prominent dynamic community detection algorithms. We 
compare the output communities derived from each of the methods and assess their 
performance. Based on our findings, we identify a vertex-based metric, to be called per-
manence henceforth, to design a parallel community detection algorithm, DyComPar, 
for dynamic networks. A brief schematic overview of our work is shown in Fig. 1. The 
use of permanence as a vertex-based metric proves useful, as it follows a local optimi-
zation approach, unlike approaches based on modularity, for instance. This may help 
avoid the arbitrary tie-breaking scenario that can occur with modularity-based methods. 
The development of a parallel community detection algorithm, DyComPar, addresses 
the computational challenges of applying static algorithms repeatedly to evolving net-
works. Therefore, our study contributes to the understanding of community evolution 
in complex networks in a scalable manner, with applications including predicting future 
trends and identifying high-risk communities in disease-spread networks. We anticipate 
that such a study can be useful for analyzing large dynamic graphs from many emerging 
data-rich disciplines.
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We summarize the contributions of our work as follows.

• For networks with ground-truth communities, we identify the change of communi-
ties in different time phases by computing several graph metrics based on their tem-
poral definition.

• We select the best sequential algorithm by comparing six state-of-the-art dynamic 
community detection (DCD) methods. Based on the best algorithm, we design our 
shared memory parallel algorithm for community detection in dynamic graphs using 
permanence, a vertex-based graph metric for different real-world and synthetic net-
works from different domains.

The rest of this paper is organized as follows. In “Preliminaries” section we describe in 
brief the background of dynamic networks and the definition of several graph metrics 
used for community evolution. We describe the related works in “Related works” sec-
tion. In “Methodology” section we describe different steps we have performed to under-
stand the evolving community structures per snapshot. We also describe the selection of 
the DCD algorithms and our method to implement a shared memory parallel algorithm 
for dynamic community detection using permanence. Our datasets and experimental 
environment are described in “Experimental setup” section. A detailed analysis of the 
results is presented in “Results and discussion” section. Finally, “Conclusion” section 
summarizes the findings and concludes the paper.

Preliminaries
This section provides an explanation of the notations, definitions, and computational 
models we have used.

Notation

We use dynamic, evolving, and temporal networks interchangeably throughout 
the paper. We denote the input network as a collection of multiple network snap-
shots over time for dynamic graphs. There is a change of network in these multiple 
snapshots for different time frames. We consider multiple edges that appear and 
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disappear in different time frames. So, the full dynamic network can be represented 
as G = G0 ∪ G1 ∪ G2 . . . ∪ Gt ∪ Gt+1

A network snapshot at time t is denoted by Gt(Vt ,Et) , where Vt and Et are the sets of 
vertices and edges at time t, respectively. Vertices are labeled as v0, v1, . . . . vn−1 in dif-
ferent snapshots.. We use the words node and vertex interchangeably as well as links 
and edges.

Graph metrics for evaluation of dynamic communities

In this section, we describe the graph metrics (Yang and Leskovec 2015) in brief that 
we use to evaluate the community structures in the dynamic networks. Some met-
rics only use the community members’ internal connectivity, as shown in Table 1. The 
external connectivity metrics and their definitions are listed in Table 2. Graph metrics 
that consider both internal and external connectivity are shown in Table 3.

Table 1 Metrics using internal connectivity for dynamic community evolution

Metrics Function Definition

Intra-community edges Eintra Edges between the members of C

Internal density 2Eintra
nc(nc−1)

Internal edge density of the nodes in community C 
where nc denotes number of vertices in community C

Average degree 2Eintra
nc

Average internal degree of the members of community C

Fraction over median 
degree (FOMD)

|u:u∈C ,|(u,v):v∈C|>dm|

nc

Fraction of nodes of C that have an internal degree 
higher than dm where dm is the median value of the full 
graph

Table 2 Metrics using external connectivity for dynamic community evolution

Metrics Function Definition

Inter-community edges Einter Number of edges on the boundary of C

Expansion Einter
nc

Number of edges per node that point outside the community

Cut ratio Einter
nc(n−nc)

Fraction of existing edges (out of all possible edges) leaving 
the community, where n is total number of vertices

Table 3 Metrics using both internal and external connectivity for dynamic community evolution

Metrics Function Definition

Normalized cut Einter
2Eintra+Einter

+
Einter

2(E−Eintra)+Einter
Computes the cut cost as a fraction of the total edge con-
nections to all the nodes in the graph

Conductance Einter
2Eintra+Einter

Fraction of total edge volume that points outside the com-
munity

Clustering coefficient CC(v) = ei

D(v)

2

Measures the “clumpiness” of a graph, the ratio of the exist-
ing edges and the total number of possible edges among 
the neighbors of a node. Where, ei : number of edges 

between the neighbors, and 

(

D(v)

2

)

:

 the total number of 
possible connections among the neighbors

Separability Eintra
Einter

Measures the ratio between the internal and the external 
number of edges on the boundary of C
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Permanence

Permanence is a local vertex-based metric used to extract the community structure 
of large networks based on permanence optimization. It is better in the sense that 
it can be computed locally and does not require global optimization such as other 
modularity-based methods. It outperforms well-known community detection meth-
ods in terms of runtime complexity as shown in Agarwal et al. (2018). Permanence, 
Perm is calculated using Eq. 1, where −1 ≤ Perm ≤ 1 . The meanings are described in 
Table 4.

Related works
Community detection has been a well-known problem in graph mining for a long time 
(Newman and Girvan 2004; Guo et  al. 2014; Sattar and Arifuzzaman 2018a, b, 2020; 
Sattar 2019, 2022, 2021; Mucha et al. 2010; Sattar and Arifuzzaman 2022). While there 
are few works on dynamic community detection using various methods (Pereira et al. 
2018; Qiao et al. 2020) in the literature, many studies focus on designing efficient data 
structures for processing dynamic graphs (Ammar 2023; Zou et  al. 2023; Green and 
Bader 2016; Feng et al. 2015). In contrast to the community detection problem, a differ-
ent study on temporal graph (Bautista and Latapy 2023) focuses on developing a frame-
work for analyzing link streams. This framework can be beneficial for understanding the 
dynamics and structures of temporal graphs.

However, there are very few works similar to ours performed in this study. Pre-
vious studies have focused on progressively evolving graphs only (Cazabet et  al. 
2020) or evaluated community quality based on a single graph metric conductance 
(Badlani et  al. 2018).  Authors in Cazabet et  al. (2020) experiment on very small 
synthetic graphs with a higher number of snapshots. On average those synthetic 
networks have only 100 vertices and 1200 steps (snapshots). They have shown 
an evaluation of the smoothness of dynamic partitions (snapshots). They have 

(1)Perm(v) =

[

I(v)

Emax(v)
×

1

d(v)

]

− [1− Cin]

Table 4 Symbols used for calculating permanence in Eq. 1

Symbol Meaning

Perm(v) Permanence of vertex v

I(v) Internal neighbors of vertex v

Emax(v) Maximum connections to a single external community

Cin Internal clustering coefficient

Cin =
x

C(I(v),2)
x = existing connections among the internal neighbors of v and 
C(I(v), 2) means the total number of possible connections among 
the internal neighbors of v

Perm(v) = 1 v strongly connected to assigned community

Perm(v) = 0 v equally pulled by all neighbors (singleton community)

Perm(v) = −1 v weakly connected to assigned community (wrong community)
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compared the output community based on modularity (Newman and Girvan 2004), 
Adjusted Mutual Information (AMI), and Adjusted Rand Index (ARI). For AMI and 
ARI calculations what they consider as ground truth is not mentioned in the work. 
In our work, we include both real-world as well as synthetic networks from differ-
ent domains. In our analysis, we select networks from varied size ranges, starting 
with a few hundred vertices and increasing up to millions of vertices and edges. 
We compare the community quality depending on 12 different graph metrics. We 
also include the runtime comparison of the 6 DCD methods and choose the best-
performing algorithm to present a scalable parallel algorithm for dynamic commu-
nity detection, DyComPar. In Badlani et al. (2018) authors show community quality 
evaluation at each time slice based on a single graph metric conductance. The value 
of conductance is compared for each community across the time slices to measure 
how community structure changes over time. Other than this, no prior works ana-
lyzed the community structure quality over the snapshots. In our case, we include 
12 different graph metrics to measure how community evolution is taking place per 
snapshot.

In another study, similar to ours, the authors have compared different static CD 
methods only for temporal social networks by applying the static methods in multi-
ple snapshots of a network (Rajita et al. 2021). This is similar to the “No Smoothing” 
technique, where including the Louvain method, they apply some other static CD 
methods. Their experiments involve using a single dataset only, whereas we com-
pare different dynamic community detection methods for networks from multiple 
domains.

In a prior study Chakraborty et al. (2017), the authors conducted a comprehensive 
assessment involving a range of metrics including modularity, conductance, per-
manence, and others, to determine the most effective metric for static community 
detection. Within this context, their findings emphasized the potential of perma-
nence as a robust optimization function, showcasing its superiority over alternative 
metrics in the context of static community detection. Building upon this founda-
tional work, our investigation diverges by encompassing a broader spectrum of 
metrics and dynamic network scenarios. Through rigorous experimentation across 
diverse dynamic networks, we arrive at a notable observation: the applicability of 
permanence as a discriminative metric extends beyond static scenarios. Indeed, per-
manence emerges as a potent measure, aptly suited for identifying and characteriz-
ing dynamic communities. In essence, our study highlights the enduring significance 
of permanence across dynamic contexts, thereby contributing to the broader under-
standing of its utility as a pivotal discriminator in the dynamic community detection 
domain. Our study involves evaluating various metrics and experimenting with dif-
ferent dynamic networks. Our observations indicate that permanence is a reliable 
measure for detecting dynamic communities.

Overall, our study is unique as we analyze community quality per snapshot based 
on 12 different graph metrics. Our analysis includes real-world as well as synthetic 
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networks from different domains, varying in size from a few hundred vertices to mil-
lions of vertices and edges. We compare the output community structure of six different 
dynamic community detection methods and choose the best-performing algorithm to 
present a scalable parallel algorithm for dynamic community detection, DyComPar.

Methodology
In this section, we will outline the various steps we took to observe how ground truth 
communities evolved in specific networks. Additionally, we will detail the different 
methods we used and select the optimal DCD algorithm to design our parallel DCD 
algorithm, DyComPar.

Community evolution for ground truth communities

Pre‑processing input graph

In our dynamic network experiments, we use the edge-list network format. The input 
data includes the tuple (source-node, destination-node, timestamp). Depending on 
the timestamp value and the network duration, we obtain various numbers of snap-
shots from the input graphs. Networks with connections spanning several years are 
split into yearly snapshots, while shorter timeframes are divided into monthly snap-
shots. If the input network has a specified number of ground truth communities per 
snapshot, we do not need to divide it into multiple snapshots in the pre-processing 
step. This step is unnecessary for synthetic networks as well, as we generate them 
using the input parameter for the number of snapshots.

Mapping ground truth communities per snapshot

In order to identify the evolution of ground truth communities throughout the snap-
shots, we map the communities with one another in all of the snapshots based on Jac-
card scorethat is widely accepted and used in several studies for community mapping 
(Duan et al. 2009; Badlani et al. 2018). We consider choosing 10 communities from 
the last snapshot and backtracing them in the previous snapshots. We select the 10 
communities in the last snapshot based on the largest number of members in each 
community. We choose communities from the latest snapshot since they tend to be 
more stable. Conversely, communities in the initial snapshot are more prone to defor-
mation because of the network changes. This observance is shown with an example in 
“ Understanding the evolution of ground truth communities based on different graph 
metrics” section. Mapping ensures that the evolution of the same community is por-
trayed throughout the snapshots.

Evaluating community structures using graph metrics per snapshot

Next, we compute the graph metrics values described in “Graph metrics for evalua-
tion of dynamic communities” section for each of the communities. Based on these 
values we evaluate the community structures per snapshot to understand the evolu-
tion of the ground truth communities.
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Best sequential algorithm selection from different DCD algorithms

Several algorithms have been proposed in the scientific literature for the detection of 
dynamic communities within complex networks. In order to ensure a comprehensive 
analysis, our selection of algorithms is predicated on the prevalent and widely adopted 
modularity metric. However, recognizing the need for a holistic evaluation, we also 
incorporate alternative algorithms that leverage distinct metrics. This approach ena-
bles us to conduct a rigorous empirical comparison of the various methodologies. In 
the course of our investigation, we employ six distinct Dynamic Community Detec-
tion (DCD) algorithms to meticulously assess and contrast the community qual-
ity engendered by each algorithm. This assessment is grounded in a suite of graph 
metrics elaborated upon in “Graph metrics for evaluation of dynamic communities” 
section. Concurrently, we extend our inquiry to encompass the runtime performance 
of each algorithm. The suite of DCD algorithms embraced in this study is succinctly 
expounded upon below.

No Smoothing Louvain (NoSL)  The No Smoothing Louvain (NoSL) method (Caz-
abet et  al. 2020) is a community detection method for evolving networks, where 
the static Louvain (Newman and Girvan 2004) community detection algorithm 
is applied at each snapshot of the network without any smoothing or information 
propagation from the previous snapshots. The Louvain algorithm is a well-known 
and widely used community detection algorithm that optimizes the modularity of 
the network to detect communities. In NoSL, the community structure obtained 
from the Louvain algorithm at each snapshot is considered the community structure 
of that snapshot without any further modifications. This means that the community 
structure of each snapshot is independent of the community structure of the previ-
ous snapshots, which may not be ideal for evolving networks with gradual changes in 
community structure over time. However, this approach is computationally efficient 
and easy to implement, making it useful for such evolving networks where computa-
tional resources are limited.

Smoothed Louvain (SmoL)  SmoL is a modification of the NoSL method where instead 
of starting from scratch in every snapshot, the community structure from the previous 
snapshot is used as the initial guess for the community structure of the current snap-
shot. The method then optimizes the modularity locally in the same way as the Louvain 
method. This approach ensures that the community structure evolves smoothly over 
time and reduces the noise in the community detection results.

DynaMo  DynaMo is an adaptive and incremental algorithm that updates the commu-
nity structure of evolving networks in a non-overlapping manner (Zhuang et al. 2019). 
Its two-step approach initializes an intermediate community structure based on incre-
mental network changes and the previous network community structure, followed by 
local modularity optimization and network compression until no further modularity 
gain improvement is possible.
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Estrangement Confinement(EsCon) In the Estrangement Confinement (Kawadia 
and Sreenivasan 2012) method, the idea of the estrangement metric is used to detect 
communities in dynamic networks. The estrangement metric is a measure of partition 
distance based on the inertia of inter-node relationships. It quantifies the extent to 
which two nodes are interacting with each other within a community. In this method, 
the goal is to maximize the estrangement between nodes in different communities 
and minimize the estrangement within a community. In the dynamic setting, the 
algorithm works by initially dividing the nodes into singleton communities and itera-
tively merging communities based on the estrangement metric. The algorithm takes 
into account both the current and previous snapshots of the network to update the 
communities. This method uses a constrained optimization approach to ensure that 
the resulting communities are meaningful and have a high estrangement value.
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Transversal-Network (TraN)  In this method, (Mucha et  al. 2010) communities at 
snapshot t depend on the previous t − 1 and later t + 1 snapshots of the network. 
So, a single transversal network is formed by adding inter-snapshot coupling links 
between the previous t − 1 and later t + 1 snapshots of the network. On this network, 
an adapted version of the modularity optimization algorithm is applied.

DyPerm The DyPerm algorithm (Agarwal et al. 2018) relies on the initial informa-
tion of the network and community structure to detect communities in the subse-
quent snapshots. It takes into account the addition and removal of vertices or edges in 
the subsequent snapshots to update the community structure.

Designing parallel DyComPar algorithm

We have described the design of our shared-memory-based parallel algorithm, 
DyComPar in Algorithm  1. we parallelize the computationally intensive tasks with 
loop parallelization, and atomic updates.

When we need to iterate over the entire network or the neighbors of a vertex, the 
members in a community, or any other list, we distribute the work among multiple 
threads to reduce the workload and perform computations faster, given the large net-
work size. From Algorithm 1, we get the simplistic idea where the parallelization is 
applied. We have not included a detailed description of each of the computations, 
rather provide an overview in brief. DyComPar takes as input the initial snapshot 
of the graph, its subsequent snapshot, and the community information of the initial 
snapshot. Based on this information, the community assignment for the subsequent 
snapshot is calculated. If the network has ground-truth community assignments, 
it is provided as input. For networks with no known ground-truth, the community 
assignments from the static Louvain method are provided as the initial community 
assignment. The dynamic changes are captured by identifying the edges being added 
or deleted in the current snapshot. We maintain two separate lists to separate the 
deletions and additions of edges. The deleted edges are processed first, as given in line 
4, to ensure the graph size is kept smaller with the deletions applied, making the ver-
tices list or community list smaller for the scenarios where a vertex is deleted. Then 
each edge from the addition list is processed. During edge deletions, if the edge is an 
inter-community edge, computation of permanence is not needed, and only updating 
the network occurs. For an intra-community edge, there are three different cases, and 
only if the vertices of the edges have a non-unit degree, permanence maximization 
is required to decide the community. For the unit-degree cases, to append or delete 
the communities from the list, there is a need to iterate over the list where we apply 
parallelization given in lines 9, and 13 of Algorithm 1. The permanence maximization 
for community assignments is given in Algorithm 2. Here the source and destination 
vertices, u and v respectively check for the maximum gain in the permanence value 
by iterating the neighbors, and checking the permanence value in the neighbor’s com-
munity, which is parallelized.
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For checking the gain in permanence value, the permanence value of the community 
needs to be calculated. This is done by computing the permanence value of each member 
in the community, and by parallel reduction operation done in Algorithm 3. The compu-
tation for the permanence value of a vertex is shown in Algorithm 4. The counting of 
the number of connections among the internal neighbors of the vertex is done parallelly 
with atomic update. For edge addition, in the case of intra-community edge, no parallel 
computation is needed. In the case of inter-community edge, permanence computation 
and community assignment update are done similarly as given by Algorithm 2.

Experimental setup
In this section, we provide details on the experimental environments and datasets used 
in our experiments.

Environment

The experiments for community evolution are run on a Desktop computer with the fol-
lowing specifications: Intel Core i7-4770 CPU 3.40 GHz × 8 Processor, 16 GB of RAM, 1 
TB hard disk, and Ubuntu 16.04 LTS.

To parallelize the tasks in a multi-threaded environment for our shared memory imple-
mentation, we use the Python Joblib and Multiprocessing modules. The experiments are 
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performed on the Louisiana Optical Network Infrastructure (LONI), specifically on QB2 
(QB2 http:// www. hpc. lsu. edu/ docs/ guides. php?  system= QB2), which is a cluster with a 
peak performance of 1.5 Petaflops and contains 504 compute nodes with over 10,000 
Intel Xeon processing cores of 2.8 GHz. Due to the 20 cores per node limitation on QB2, 
we have used a maximum number of 20 threads. Our approach is similar to the C++ 
OpenMP implementation.

Dataset

We use both real-world and synthetic networks for our experiments. The real-world 
networks are depicted in Table  5. For synthetic networks we use the dynamic LFR 

Table 5 Real-world networks used in the experiment

Network Vertices Edges Snapshots Time interval Description

Collaboration networks

Cumulative co-authorship 708,497 1,166,376 17 Cumulative years Cumulatively Aggregated 
(year) undirected co-author-
ship network in DBLP reposi-
tory from 1960 to 2009 ( 
vertex: author, edge: a pair 
of authors are co-authors at 
least once) (Chakrabort et al. 
2013)

Non-cumulative co-
authorship

708,497 1,166,376 17 1 year Undirected co-authorship 
network in DBLP reposi-
tory from 1960 to 2009 
(vertex: author, edge: a pair 
of authors are co-authors 
at least once) (Chakraborty 
et al. 2014)

Social networks

CollegeMsg 1899 59,835 7 193 days (month ) Messages on a Facebook-
like platform at UC-Irvine 
(vertex: user, edge: private 
message between users at 
t timestamp) (Leskovec and 
Krevl 2014)

fb-forum 899 33,720 7 193 days (month ) This network focuses on 
users’ activity in the forum 
rather than private mes-
sages exchanged among 
users (vertex: user, edge: 
users’ activity in the forum) 
(Rossi and Ahmed 2015)

Primary school 242 77,602 6 20 s Contacts between the 
children and teachers (DATA-
SETS http:// www. socio patte 
rns. org/ datas ets; Stehlé et al. 
2011; Gemmetto et al. 2014)

Citation network

cit-HepTh 22,768 352,807 7 10 years (year) Arxiv HEP-TH (high energy 
physics theory) citation 
graph is from arXiv and 
covers all the citations 
from April 1993 to 2003. 
(vertex: paper, edge: a pair 
of papers) Edges from u to 
v indicate that the paper u 
cited another paper v (Rossi 
and Ahmed 2015)

http://www.hpc.lsu.edu/docs/guides.php?%20system=QB2
http://www.sociopatterns.org/datasets
http://www.sociopatterns.org/datasets
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benchmark model (Lancichinetti et al. 2008) with parameters Number of Vertices (N), 
Mixing Coefficient (µ) and Number of Snapshots (s). The parameters for the synthetic 
networks are given in Table 6.

Results and discussion
In this section, we present the findings of our experiments.

Understanding the evolution of ground truth communities based on different graph 

metrics

Community mapping in each of the snapshots is crucial to understand the community 
evolution over snapshots. We observe that communities in the last snapshot are more 
stable compared to the first snapshot. So we have backtraced the stable communities 
from the last snapshot to the first snapshots to track their evolution. We have shown this 
for the ground truth communities for the Primary School network and a synthetic net-
work given in Fig. 2.

If we map communities with respect to the first snapshot, all communities have a 
very low value of the Jaccard coefficient in the following snapshots observed in Fig. 2a. 
Instead, if we map communities with respect to the last snapshot, the communities show 
better values for the Jaccard coefficient in the previous snapshots. There is a mix-up 
of high and low Jaccard scores found in Fig. 2b. While we experiment with this similar 
mapping with the synthetic networks, we observe that mapping w.r.t. the first (Fig. 2c) or 
last (Fig. 2d) snapshot does not show any significant difference drop in the Jaccard val-
ues. As in our study, we emphasize real-world networks, that’s why we map communities 
in the reverse order. This makes it easier to follow the evolution in communities.

Community Size  In the Primary School network (Fig. 3a), the selected communities 
are mostly constant in size per snapshot. Only communities with id 4, and (8, 9) shrink 
in size in time-slice 2 and 6 respectively. In the Cumulative CoAuthorship network 
(Fig. 3b), the selected communities increase in size (mostly linearly, exponentially) per 
snapshot. In the Syn-1 network (Fig. 3c), the selected communities follow a mixed trend. 
The increase or decrease is very minimal for most communities. In the Syn-3 network 
(Fig. 3d), the selected communities also follow a mixed trend similar to the Syn-1 net-
work. The increase or decrease varies within the range of 2 to 9 for each snapshot.

Intra‑community edge

In the Primary School network (Fig. 4a), the values of the intra-community edge of the 
community members for the selected communities follow a mixed trend. All of the com-
munities have a decrease in snapshot 2. A few decreases can be observed in snapshot 4 
(community id 5, 9). In snapshot 6, 50% of the communities have a decreased value and 

Table 6 Synthetic networks generated using LFR benchmarks used in the experiment

Network N µ s

Syn-1 3500 0.2 20

Syn-2 1000 0.2 30

Syn-3 1000 0.2 10
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Fig. 2 Community mapping using Jaccard coefficient for the ground truth communities of Primary School 
network (a, b) and a synthetic network Syn-3 (c, d)
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the rest remain constant (30%) or increase (20%) . In the Cumulative Co-Authorship net-
work (Fig. 4b), the intra-community edges for the selected communities increase mostly 
linearly, power (community id 0), and logarithmic (community id 1). The increase is 
more significant in the last two snapshots.

Internal density

In the Primary School network (Fig. 5a), the values of the internal edge density of the 
community members for the selected communities mostly follow a zig-zagged pattern. 
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Half of the communities have values above average (0.5 to 1) indicating a good quality of 
the communities throughout the snapshots. In the Cumulative CoAuthorship network 
(Fig.  5b), the values are within the range of 0.01–0.15 and can be considered negligi-
ble. For this network, the size of the communities grows, so does the number of intra-
community edges. The range of increase is also high compared to the other networks. 
This results in a small value for the internal density ratio, such as 0.0006 for community 
4 (calculated as 2 multiplied by 300, divided by 1000, and then by 999). As a result, this 
metric does not provide much insight into the strengths or weakness of the connections 
among community members. In the Syn-1 network (Fig. 5c), the selected communities 
follow mostly a decreasing trend of internal edge density of the community members 
over time, with a few spikes in some of the snapshots. In the Syn-3 network (Fig. 5d), the 
selected communities follow a similar pattern to the Syn-1 network. Only communities 
with ids 0,6, and 9 show a spike in snapshots 7,4, and 8 respectively.

Average degree

In the Primary School network (Fig.  6a), the average internal degrees for the selected 
communities mostly follow a similar pattern as the intra-community edge metric. The 
average degree is correlated with the intra-community edge given in Fig. 4a. As many 
intra-connected edges are cut down, the average degree reflects the decreasing nature 
and vice-versa. For the Cumulative Co-authorship network (Fig. 6b), the change is very 
trivial and remains within the range 0.5–2.5. In the Syn-1 network (Fig. 6c), most com-
munities follow a decreasing trend of the average internal degree of the community 
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members over time, with a few spikes in some of the snapshots. The change is very mini-
mal within the range of 1.3 to 2.4. The Syn-3 network (Fig. 6d) follows a similar pattern 
as the Syn-1 network.

FOMD

In the Primary School network (Fig. 7a), the values of FOMD for the selected communi-
ties follow an almost similar pattern as the Intra-Community Edge metric seen in Fig. 4a. 
For the Cumulative Co-Authorship network (Fig. 7b), most of the communities share the 
same values and follow a decreasing trend over the snapshots. In both Syn-1 (Fig. 7c) 
and Syn-3 (Fig. 7d) networks, the values of the FOMD metric vary within a very small 
range (0.01), close to 0.

Inter‑community edge

In the Primary School network (Fig.  8a), the inter-community edges for the selected 
communities have a sharp increase and (decrease) in snapshots 2, 5 and (3, 6) respec-
tively. In the Cumulative CoAuthorship network (Fig. 8b), the inter-community edges for 
the selected communities follow a mixed pattern including both increasing and decreas-
ing nature throughout the snapshots. In both Syn-1 (Fig.  8c) and Syn-3 (Fig.  8d) net-
works, the selected communities follow a mixed trend of both increasing and decreasing 
patterns but very small changes in values.
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Expansion

In the Primary School network (Fig.  9a), the values indicate a positive correlation 
with cut ratio and normalized cut. The graph also follows a similar pattern as given 
in Figs.  10a and 11a. In the Cumulative CoAuthorship network (Fig.  9b), the value of 
expansion maintains a positive relationship with the cut ratio (Fig. 10b) and normalized 
cut (Fig. 11b).
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Fig. 8 Inter-community edges for different networks (a–d) in distinct snapshots of the networks
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Cut ratio

In the Primary School network (Fig. 10a), the values indicate a positive correlation with 
expansion and normalized cut. The graph follows a similar pattern as given in Figs. 9a 
and 11a. In the Cumulative CoAuthorship network (Fig. 10b), the value of the cut ratio 
maintains a positive relationship with expansion (Fig. 9b) and normalized cut (Fig. 11b).

Normalized cut

For both the Primary School (Fig.  11a) and the Cumulative CoAuthorship networks 
(Fig. 11b), the values and graph patterns are almost the same as conductance given in 
Fig. 12a, b respectively.

Conductance

In the Primary School network (Fig. 12a), the values indicate a positive correlation with 
expansion, cut ratio, and normalized cut. The plot also follows a similar pattern as given 
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Fig. 10 Cut Ratio values for different networks (a, b) in distinct snapshots of the networks. Both Syn-1 
and Syn-3 networks have almost constant and very small values for this graph metric and are considered 
negligible
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in Figs. 9a, 10a, and 11a. In the Cumulative CoAuthorship network (Fig. 12b), the value 
of conductance maintains a positive relationship with expansion (Fig.  9b), cut ratio 
(Fig. 10b), and normalized cut (Fig. 11b). In both Syn-1 (Fig. 12c) and Syn-3 networks 
(Fig. 12d), the value of conductance is very low within the range 0–0.01, very close to 0. 
These small values indicate very strong connectivity among the members of the commu-
nities. It also shows the inverse relation with permanence given in Fig. 15c, d.

Clustering coefficient

In the Primary School network (Fig. 13a), the selected communities mostly follow the 
opposite pattern of expansion (Fig. 9a)/cut ratio (Fig. 10a) /normalized cut (Fig. 11a)/
conductance (Fig. 12a) metrics as expected by the definition. We notice a few exceptions 
for communities with id 4, 5. In the Cumulative CoAuthorship network (Fig. 13b), the 
values of the clustering coefficient follow an inverse relation with conductance (Fig. 12b). 
In both Syn-1 (Fig. 13c) and Syn-3 networks (Fig. 13d), the values of the clustering coef-
ficient follow a decreasing trend throughout the snapshots.

Separability

In the Primary School network (Fig.  14a), the positive correlation with permanence 
(Fig. 15a) and an inverse correlation with expansion (Fig. 9a), cut ratio (Fig. 10a), nor-
malized cut (Fig.  11a) and conductance (Fig.  12a) is maintained well. In the Cumula-
tive CoAuthorship network (Fig. 14b), positive correlation with permanence (Fig. 15b) is 
maintained except for a few exceptions (comm-id 6).
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Fig. 12 Conductance values for different networks (a–d) in distinct snapshots of the networks
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Permanence

In the Primary School network (Fig. 15a), the selected communities mostly follow the 
opposite pattern of expansion (Fig.  9a)/cut ratio (Fig.  10a) /normalized cut (Fig.  11a) 
metrics as expected by the definition. In the Cumulative CoAuthorship network 
(Fig. 15b), the selected communities follow a mixed trend. If we follow some particular 
communities, the relation with the other graph metrics becomes prominent. For com-
munities with ids 2, 4 and 6, we observe that these communities have a sharp increase, 
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Fig. 13 Clustering coefficient values for different networks (a–d) in distinct snapshots of the networks
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Fig. 14 Separability values for different networks (a, b) in distinct snapshots of the networks. 
Intra-Community Edge being 0 for most communities in the Syn-1 and the Syn-3 networks, the value of 
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decrease and decrease at snapshots 6, 5, and 4 respectively. We can observe from the 
values of conductance (Fig. 12b) that these same communities follow just the opposite 
pattern. In both Syn-1 (Fig. 15c) and Syn-3 networks (Fig. 15d), the value of permanence 
is very high within the range 0.97–1. This indicates very strong connectivity among the 
members of the communities.

After analyzing all 12 graph metrics to understand the community evolution for the 
ground truth communities, aside from the metrics definition, experimentally we also 
observe that the metrics using both internal and external connections portray a bet-
ter concept of community qualities. So, normalized cut, conductance, and permanence 
take a major role in providing more valuable insights about the community structure. In 
some cases, the clustering coefficient is also helpful but shows some exceptions for some 
of the networks. Based on this observation, we use these four graph metrics to evaluate 
the DCD algorithms in “Comparison of different dynamic community detection meth-
ods” section.

Comparison of different dynamic community detection methods

We have conducted a comparison of different dynamic community detection methods 
to observe how community structures change over time using different techniques. We 
use various graph metrics to understand the quality of the community structure and 
explain its changes. Initially, we begin with six dynamic community detection methods 
for comparison of the community structures throughout the snapshots. However, two 
of the methods, EstCon and TraN, show increasingly longer run times compared to the 
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Fig. 15 Permanence values for different networks (a–d) in distinct snapshots of the networks
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other four methods in Table 7. Therefore, we eliminate these two methods from further 
comparisons.

From Figs. 16, 17, 18, and 19, we observe that the community quality is similar as indi-
cated by the graph metric values. To simplify the results, we present the graph metrics: 
Conductance, Normalized Cut, Clustering Coefficient, and Permanence, which con-
sider both internal and external connectivity. We also observe a close correlation among 
these four metrics from Figs.  16, 17, 18, and 19. Conductance and Normalized Cut 
are inversely correlated to Clustering Coefficient, and Permanence in most cases. We 
also consider the algorithms’ runtime given in Table 7. We find that both DynaMo and 
DyPerm have the least processing time, but we prioritize the “Permanence” metric over 
“Modularity” because it involves local optimization compared to global optimization. 
Again, the order in which edges are added or deleted has no impact on the permanence 
maximization (Agarwal et al. 2018). But in modularity optimization, the order of vertex 
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Fig. 16 Four different DCD methods (a–d), compared with Ground Truth (e), for a particular community 
in Primary School Network based on the graph metrics: Conductance, Normalized Cut, Modularity, and 
Permanence 

Table 7 Runtime of 6 different dynamic community detection algorithms for different networks

Network DyPerm (s) NoSL (s) SmoL (s) DynaMo (s) EstCon (h) TraN (h)

Primary School 0.61 6.50 9.30 0.55 10.01 1.09

CollegeMsg 10.10 28.40 100.51 8.21 22.29 12.83

fb-forum 88.15 297.10 151.92 92.73 – –

citHepTh 16,896.09 18,751.00 20,900.47 18,551.91 – –

Cumulative CoAuthorship 3765.90 2971.60 4011.66 4197.10 – –

Non-cumulative CoAuthorship 3525.50 8193.70 6957.10 4212.97 – –

syn-1 677.26 1889.54 1511.64 507.94 – –

syn-2 2258.98 5076.01 3549.30 2713.04 – –

syn-3 218.47 507.72 392.81 220.24 – –
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Fig. 17 Four different DCD methods (a–d), compared with Ground Truth (e), for a particular community in 
Cumulative CoAuthorship Network based on the graph metrics: Conductance, Normalized Cut, Modularity, and 
Permanence 
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Fig. 18 Comparison of four different DCD methods (a–d) for a particular community in College Message 
Network based on the graph metrics: Conductance, Normalized Cut, Modularity, and Permanence. Ground 
Truth communities are not available for this dataset
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changes the convergence, and randomness is introduced depending on the order. Both 
of these make “Permanence” a good choice in designing a parallel algorithm.

Parallel performance: DyComPar

We evaluate the performance of DyComPar in terms of speed-up, which is a measure of 
how much faster the parallel implementation is compared to the serial implementation.

Figure 20 shows the speed-up achieved by DyComPar for different types of networks. 
The speed-up values range from 4× to 18× , indicating that DyComPar performs signifi-
cantly faster than the serial implementation, DyPerm. Specifically, the speed-up of 4× to 
18× implies that DyComPar can process the input data in a fraction of the time required 
by the serial implementation, DyPerm, which is a considerable performance improve-
ment. Overall, the parallel performance of DyComPar suggests that the algorithm can 
be an effective solution for detecting dynamic communities in large-scale networks, par-
ticularly for networks with a high degree of complexity and dynamic behavior.

Discussion

This study provides valuable insights to researchers seeking to explore various commu-
nity detection methods for dynamic networks. They can evaluate the performance of 
each algorithm by analyzing the quality of the community structures and the effective-
ness of all DCD algorithms. To enhance the design of a parallel algorithm, we leverage 
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Fig. 19 Comparison of four different DCD methods (a–d) for a particular community in Facebook Forum 
Network based on the graph metrics: Conductance, Normalized Cut, Modularity, and Permanence. Ground 
Truth communities are not available for this dataset
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the benefits of completing more independent tasks in parallel using a local optimization 
metric. Thus, we developed our parallel algorithm using the vertex-based local optimi-
zation metric of permanence. Additionally, we examine the evolution of communities 
in various snapshots to identify any relationship between permanence and other graph 
metrics that could optimize our parallel algorithm. We discovered that normalized cut 
and conductance metrics demonstrate an inverse relationship with permanence across 
most of the networks used in our experiments. However, both of these metrics require 
almost similar or more computing complexity than permanence calculation. Further-
more, due to the distinct characteristics of networks from different domains, establish-
ing a universal relationship with other simple metrics is challenging. As a result, we did 
not incorporate any optimization into our algorithm based on these observed metrics. 
In summary, our study contributes to the understanding of community evolution and 
quality by analyzing multiple graph metrics and different dynamic community detection 
methods. We provide a scalable parallel algorithm, DyComPar, for dynamic community 
detection.

Conclusion
In this work, we focus on investigating how community structures change over time in 
various real-world dynamic networks. We analyze the evolution of ground truth com-
munities across snapshots using different graph metrics that depend on the internal, 
external, or both (internal and external) connectivity among community members. 
We conduct experiments on several real-world and synthetic networks from different 
domains and evaluate six state-of-the-art dynamic community detection (DCD) meth-
ods. We verify the quality of the community structures derived from these methods 
with respect to ground truth. We observe that for certain networks, the quality of the 
community is almost similar using different methods. Our experiments reveal that 
runtime plays a significant role in choosing the algorithms for detecting dynamic com-
munities. DynaMo and DyPerm are comparable to each other in terms of runtime, and 
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we prioritize choosing the “permanence” metric over “modularity” to emphasize local 
optimization rather than global optimization for an efficient parallel algorithm design. 
Our study will be useful for the research community to quickly learn about the derived 
output community quality or structure found from different DCD algorithms. Based on 
our findings, we choose to implement a parallel dynamic community detection algo-
rithm based on DyPerm due to the advantages it provides as a vertex-centric metric. We 
implement a shared-memory parallel algorithm called DyComPar using multi-threading 
and loop parallelization. Our results show a 4–18 fold speed-up on different networks. 
Future research includes extending and designing a distributed parallel DCD algorithm 
using the local optimization benefit of permanence.
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