alloc/collections/btree/map.rs
1use core::borrow::Borrow;
2use core::cmp::Ordering;
3use core::error::Error;
4use core::fmt::{self, Debug};
5use core::hash::{Hash, Hasher};
6use core::iter::FusedIterator;
7use core::marker::PhantomData;
8use core::mem::{self, ManuallyDrop};
9use core::ops::{Bound, Index, RangeBounds};
10use core::ptr;
11
12use super::borrow::DormantMutRef;
13use super::dedup_sorted_iter::DedupSortedIter;
14use super::navigate::{LazyLeafRange, LeafRange};
15use super::node::ForceResult::*;
16use super::node::{self, Handle, NodeRef, Root, marker};
17use super::search::SearchBound;
18use super::search::SearchResult::*;
19use super::set_val::SetValZST;
20use crate::alloc::{Allocator, Global};
21use crate::vec::Vec;
22
23mod entry;
24
25use Entry::*;
26#[stable(feature = "rust1", since = "1.0.0")]
27pub use entry::{Entry, OccupiedEntry, OccupiedError, VacantEntry};
28
29/// Minimum number of elements in a node that is not a root.
30/// We might temporarily have fewer elements during methods.
31pub(super) const MIN_LEN: usize = node::MIN_LEN_AFTER_SPLIT;
32
33// A tree in a `BTreeMap` is a tree in the `node` module with additional invariants:
34// - Keys must appear in ascending order (according to the key's type).
35// - Every non-leaf node contains at least 1 element (has at least 2 children).
36// - Every non-root node contains at least MIN_LEN elements.
37//
38// An empty map is represented either by the absence of a root node or by a
39// root node that is an empty leaf.
40
41/// An ordered map based on a [B-Tree].
42///
43/// Given a key type with a [total order], an ordered map stores its entries in key order.
44/// That means that keys must be of a type that implements the [`Ord`] trait,
45/// such that two keys can always be compared to determine their [`Ordering`].
46/// Examples of keys with a total order are strings with lexicographical order,
47/// and numbers with their natural order.
48///
49/// Iterators obtained from functions such as [`BTreeMap::iter`], [`BTreeMap::into_iter`], [`BTreeMap::values`], or
50/// [`BTreeMap::keys`] produce their items in key order, and take worst-case logarithmic and
51/// amortized constant time per item returned.
52///
53/// It is a logic error for a key to be modified in such a way that the key's ordering relative to
54/// any other key, as determined by the [`Ord`] trait, changes while it is in the map. This is
55/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
56/// The behavior resulting from such a logic error is not specified, but will be encapsulated to the
57/// `BTreeMap` that observed the logic error and not result in undefined behavior. This could
58/// include panics, incorrect results, aborts, memory leaks, and non-termination.
59///
60/// # Examples
61///
62/// ```
63/// use std::collections::BTreeMap;
64///
65/// // type inference lets us omit an explicit type signature (which
66/// // would be `BTreeMap<&str, &str>` in this example).
67/// let mut movie_reviews = BTreeMap::new();
68///
69/// // review some movies.
70/// movie_reviews.insert("Office Space", "Deals with real issues in the workplace.");
71/// movie_reviews.insert("Pulp Fiction", "Masterpiece.");
72/// movie_reviews.insert("The Godfather", "Very enjoyable.");
73/// movie_reviews.insert("The Blues Brothers", "Eye lyked it a lot.");
74///
75/// // check for a specific one.
76/// if !movie_reviews.contains_key("Les Misérables") {
77/// println!("We've got {} reviews, but Les Misérables ain't one.",
78/// movie_reviews.len());
79/// }
80///
81/// // oops, this review has a lot of spelling mistakes, let's delete it.
82/// movie_reviews.remove("The Blues Brothers");
83///
84/// // look up the values associated with some keys.
85/// let to_find = ["Up!", "Office Space"];
86/// for movie in &to_find {
87/// match movie_reviews.get(movie) {
88/// Some(review) => println!("{movie}: {review}"),
89/// None => println!("{movie} is unreviewed.")
90/// }
91/// }
92///
93/// // Look up the value for a key (will panic if the key is not found).
94/// println!("Movie review: {}", movie_reviews["Office Space"]);
95///
96/// // iterate over everything.
97/// for (movie, review) in &movie_reviews {
98/// println!("{movie}: \"{review}\"");
99/// }
100/// ```
101///
102/// A `BTreeMap` with a known list of items can be initialized from an array:
103///
104/// ```
105/// use std::collections::BTreeMap;
106///
107/// let solar_distance = BTreeMap::from([
108/// ("Mercury", 0.4),
109/// ("Venus", 0.7),
110/// ("Earth", 1.0),
111/// ("Mars", 1.5),
112/// ]);
113/// ```
114///
115/// ## `Entry` API
116///
117/// `BTreeMap` implements an [`Entry API`], which allows for complex
118/// methods of getting, setting, updating and removing keys and their values:
119///
120/// [`Entry API`]: BTreeMap::entry
121///
122/// ```
123/// use std::collections::BTreeMap;
124///
125/// // type inference lets us omit an explicit type signature (which
126/// // would be `BTreeMap<&str, u8>` in this example).
127/// let mut player_stats = BTreeMap::new();
128///
129/// fn random_stat_buff() -> u8 {
130/// // could actually return some random value here - let's just return
131/// // some fixed value for now
132/// 42
133/// }
134///
135/// // insert a key only if it doesn't already exist
136/// player_stats.entry("health").or_insert(100);
137///
138/// // insert a key using a function that provides a new value only if it
139/// // doesn't already exist
140/// player_stats.entry("defence").or_insert_with(random_stat_buff);
141///
142/// // update a key, guarding against the key possibly not being set
143/// let stat = player_stats.entry("attack").or_insert(100);
144/// *stat += random_stat_buff();
145///
146/// // modify an entry before an insert with in-place mutation
147/// player_stats.entry("mana").and_modify(|mana| *mana += 200).or_insert(100);
148/// ```
149///
150/// # Background
151///
152/// A B-tree is (like) a [binary search tree], but adapted to the natural granularity that modern
153/// machines like to consume data at. This means that each node contains an entire array of elements,
154/// instead of just a single element.
155///
156/// B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing
157/// the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal
158/// choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum number of
159/// comparisons necessary to find an element (log<sub>2</sub>n). However, in practice the way this
160/// is done is *very* inefficient for modern computer architectures. In particular, every element
161/// is stored in its own individually heap-allocated node. This means that every single insertion
162/// triggers a heap-allocation, and every comparison is a potential cache-miss due to the indirection.
163/// Since both heap-allocations and cache-misses are notably expensive in practice, we are forced to,
164/// at the very least, reconsider the BST strategy.
165///
166/// A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing
167/// this, we reduce the number of allocations by a factor of B, and improve cache efficiency in
168/// searches. However, this does mean that searches will have to do *more* comparisons on average.
169/// The precise number of comparisons depends on the node search strategy used. For optimal cache
170/// efficiency, one could search the nodes linearly. For optimal comparisons, one could search
171/// the node using binary search. As a compromise, one could also perform a linear search
172/// that initially only checks every i<sup>th</sup> element for some choice of i.
173///
174/// Currently, our implementation simply performs naive linear search. This provides excellent
175/// performance on *small* nodes of elements which are cheap to compare. However in the future we
176/// would like to further explore choosing the optimal search strategy based on the choice of B,
177/// and possibly other factors. Using linear search, searching for a random element is expected
178/// to take B * log(n) comparisons, which is generally worse than a BST. In practice,
179/// however, performance is excellent.
180///
181/// [B-Tree]: https://en.wikipedia.org/wiki/B-tree
182/// [binary search tree]: https://en.wikipedia.org/wiki/Binary_search_tree
183/// [total order]: https://en.wikipedia.org/wiki/Total_order
184/// [`Cell`]: core::cell::Cell
185/// [`RefCell`]: core::cell::RefCell
186#[stable(feature = "rust1", since = "1.0.0")]
187#[cfg_attr(not(test), rustc_diagnostic_item = "BTreeMap")]
188#[rustc_insignificant_dtor]
189pub struct BTreeMap<
190 K,
191 V,
192 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
193> {
194 root: Option<Root<K, V>>,
195 length: usize,
196 /// `ManuallyDrop` to control drop order (needs to be dropped after all the nodes).
197 // Although some of the accessory types store a copy of the allocator, the nodes do not.
198 // Because allocations will remain live as long as any copy (like this one) of the allocator
199 // is live, it's unnecessary to store the allocator in each node.
200 pub(super) alloc: ManuallyDrop<A>,
201 // For dropck; the `Box` avoids making the `Unpin` impl more strict than before
202 _marker: PhantomData<crate::boxed::Box<(K, V), A>>,
203}
204
205#[stable(feature = "btree_drop", since = "1.7.0")]
206unsafe impl<#[may_dangle] K, #[may_dangle] V, A: Allocator + Clone> Drop for BTreeMap<K, V, A> {
207 fn drop(&mut self) {
208 drop(unsafe { ptr::read(self) }.into_iter())
209 }
210}
211
212// FIXME: This implementation is "wrong", but changing it would be a breaking change.
213// (The bounds of the automatic `UnwindSafe` implementation have been like this since Rust 1.50.)
214// Maybe we can fix it nonetheless with a crater run, or if the `UnwindSafe`
215// traits are deprecated, or disarmed (no longer causing hard errors) in the future.
216#[stable(feature = "btree_unwindsafe", since = "1.64.0")]
217impl<K, V, A: Allocator + Clone> core::panic::UnwindSafe for BTreeMap<K, V, A>
218where
219 A: core::panic::UnwindSafe,
220 K: core::panic::RefUnwindSafe,
221 V: core::panic::RefUnwindSafe,
222{
223}
224
225#[stable(feature = "rust1", since = "1.0.0")]
226impl<K: Clone, V: Clone, A: Allocator + Clone> Clone for BTreeMap<K, V, A> {
227 fn clone(&self) -> BTreeMap<K, V, A> {
228 fn clone_subtree<'a, K: Clone, V: Clone, A: Allocator + Clone>(
229 node: NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>,
230 alloc: A,
231 ) -> BTreeMap<K, V, A>
232 where
233 K: 'a,
234 V: 'a,
235 {
236 match node.force() {
237 Leaf(leaf) => {
238 let mut out_tree = BTreeMap {
239 root: Some(Root::new(alloc.clone())),
240 length: 0,
241 alloc: ManuallyDrop::new(alloc),
242 _marker: PhantomData,
243 };
244
245 {
246 let root = out_tree.root.as_mut().unwrap(); // unwrap succeeds because we just wrapped
247 let mut out_node = match root.borrow_mut().force() {
248 Leaf(leaf) => leaf,
249 Internal(_) => unreachable!(),
250 };
251
252 let mut in_edge = leaf.first_edge();
253 while let Ok(kv) = in_edge.right_kv() {
254 let (k, v) = kv.into_kv();
255 in_edge = kv.right_edge();
256
257 out_node.push(k.clone(), v.clone());
258 out_tree.length += 1;
259 }
260 }
261
262 out_tree
263 }
264 Internal(internal) => {
265 let mut out_tree =
266 clone_subtree(internal.first_edge().descend(), alloc.clone());
267
268 {
269 let out_root = out_tree.root.as_mut().unwrap();
270 let mut out_node = out_root.push_internal_level(alloc.clone());
271 let mut in_edge = internal.first_edge();
272 while let Ok(kv) = in_edge.right_kv() {
273 let (k, v) = kv.into_kv();
274 in_edge = kv.right_edge();
275
276 let k = (*k).clone();
277 let v = (*v).clone();
278 let subtree = clone_subtree(in_edge.descend(), alloc.clone());
279
280 // We can't destructure subtree directly
281 // because BTreeMap implements Drop
282 let (subroot, sublength) = unsafe {
283 let subtree = ManuallyDrop::new(subtree);
284 let root = ptr::read(&subtree.root);
285 let length = subtree.length;
286 (root, length)
287 };
288
289 out_node.push(
290 k,
291 v,
292 subroot.unwrap_or_else(|| Root::new(alloc.clone())),
293 );
294 out_tree.length += 1 + sublength;
295 }
296 }
297
298 out_tree
299 }
300 }
301 }
302
303 if self.is_empty() {
304 BTreeMap::new_in((*self.alloc).clone())
305 } else {
306 clone_subtree(self.root.as_ref().unwrap().reborrow(), (*self.alloc).clone()) // unwrap succeeds because not empty
307 }
308 }
309}
310
311// Internal functionality for `BTreeSet`.
312impl<K, A: Allocator + Clone> BTreeMap<K, SetValZST, A> {
313 pub(super) fn replace(&mut self, key: K) -> Option<K>
314 where
315 K: Ord,
316 {
317 let (map, dormant_map) = DormantMutRef::new(self);
318 let root_node =
319 map.root.get_or_insert_with(|| Root::new((*map.alloc).clone())).borrow_mut();
320 match root_node.search_tree::<K>(&key) {
321 Found(mut kv) => Some(mem::replace(kv.key_mut(), key)),
322 GoDown(handle) => {
323 VacantEntry {
324 key,
325 handle: Some(handle),
326 dormant_map,
327 alloc: (*map.alloc).clone(),
328 _marker: PhantomData,
329 }
330 .insert(SetValZST);
331 None
332 }
333 }
334 }
335
336 pub(super) fn get_or_insert_with<Q: ?Sized, F>(&mut self, q: &Q, f: F) -> &K
337 where
338 K: Borrow<Q> + Ord,
339 Q: Ord,
340 F: FnOnce(&Q) -> K,
341 {
342 let (map, dormant_map) = DormantMutRef::new(self);
343 let root_node =
344 map.root.get_or_insert_with(|| Root::new((*map.alloc).clone())).borrow_mut();
345 match root_node.search_tree(q) {
346 Found(handle) => handle.into_kv_mut().0,
347 GoDown(handle) => {
348 let key = f(q);
349 assert!(*key.borrow() == *q, "new value is not equal");
350 VacantEntry {
351 key,
352 handle: Some(handle),
353 dormant_map,
354 alloc: (*map.alloc).clone(),
355 _marker: PhantomData,
356 }
357 .insert_entry(SetValZST)
358 .into_key()
359 }
360 }
361 }
362}
363
364/// An iterator over the entries of a `BTreeMap`.
365///
366/// This `struct` is created by the [`iter`] method on [`BTreeMap`]. See its
367/// documentation for more.
368///
369/// [`iter`]: BTreeMap::iter
370#[must_use = "iterators are lazy and do nothing unless consumed"]
371#[stable(feature = "rust1", since = "1.0.0")]
372pub struct Iter<'a, K: 'a, V: 'a> {
373 range: LazyLeafRange<marker::Immut<'a>, K, V>,
374 length: usize,
375}
376
377#[stable(feature = "collection_debug", since = "1.17.0")]
378impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Iter<'_, K, V> {
379 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
380 f.debug_list().entries(self.clone()).finish()
381 }
382}
383
384#[stable(feature = "default_iters", since = "1.70.0")]
385impl<'a, K: 'a, V: 'a> Default for Iter<'a, K, V> {
386 /// Creates an empty `btree_map::Iter`.
387 ///
388 /// ```
389 /// # use std::collections::btree_map;
390 /// let iter: btree_map::Iter<'_, u8, u8> = Default::default();
391 /// assert_eq!(iter.len(), 0);
392 /// ```
393 fn default() -> Self {
394 Iter { range: Default::default(), length: 0 }
395 }
396}
397
398/// A mutable iterator over the entries of a `BTreeMap`.
399///
400/// This `struct` is created by the [`iter_mut`] method on [`BTreeMap`]. See its
401/// documentation for more.
402///
403/// [`iter_mut`]: BTreeMap::iter_mut
404#[must_use = "iterators are lazy and do nothing unless consumed"]
405#[stable(feature = "rust1", since = "1.0.0")]
406pub struct IterMut<'a, K: 'a, V: 'a> {
407 range: LazyLeafRange<marker::ValMut<'a>, K, V>,
408 length: usize,
409
410 // Be invariant in `K` and `V`
411 _marker: PhantomData<&'a mut (K, V)>,
412}
413
414#[stable(feature = "collection_debug", since = "1.17.0")]
415impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IterMut<'_, K, V> {
416 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
417 let range = Iter { range: self.range.reborrow(), length: self.length };
418 f.debug_list().entries(range).finish()
419 }
420}
421
422#[stable(feature = "default_iters", since = "1.70.0")]
423impl<'a, K: 'a, V: 'a> Default for IterMut<'a, K, V> {
424 /// Creates an empty `btree_map::IterMut`.
425 ///
426 /// ```
427 /// # use std::collections::btree_map;
428 /// let iter: btree_map::IterMut<'_, u8, u8> = Default::default();
429 /// assert_eq!(iter.len(), 0);
430 /// ```
431 fn default() -> Self {
432 IterMut { range: Default::default(), length: 0, _marker: PhantomData {} }
433 }
434}
435
436/// An owning iterator over the entries of a `BTreeMap`, sorted by key.
437///
438/// This `struct` is created by the [`into_iter`] method on [`BTreeMap`]
439/// (provided by the [`IntoIterator`] trait). See its documentation for more.
440///
441/// [`into_iter`]: IntoIterator::into_iter
442#[stable(feature = "rust1", since = "1.0.0")]
443#[rustc_insignificant_dtor]
444pub struct IntoIter<
445 K,
446 V,
447 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
448> {
449 range: LazyLeafRange<marker::Dying, K, V>,
450 length: usize,
451 /// The BTreeMap will outlive this IntoIter so we don't care about drop order for `alloc`.
452 alloc: A,
453}
454
455impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> {
456 /// Returns an iterator of references over the remaining items.
457 #[inline]
458 pub(super) fn iter(&self) -> Iter<'_, K, V> {
459 Iter { range: self.range.reborrow(), length: self.length }
460 }
461}
462
463#[stable(feature = "collection_debug", since = "1.17.0")]
464impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for IntoIter<K, V, A> {
465 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
466 f.debug_list().entries(self.iter()).finish()
467 }
468}
469
470#[stable(feature = "default_iters", since = "1.70.0")]
471impl<K, V, A> Default for IntoIter<K, V, A>
472where
473 A: Allocator + Default + Clone,
474{
475 /// Creates an empty `btree_map::IntoIter`.
476 ///
477 /// ```
478 /// # use std::collections::btree_map;
479 /// let iter: btree_map::IntoIter<u8, u8> = Default::default();
480 /// assert_eq!(iter.len(), 0);
481 /// ```
482 fn default() -> Self {
483 IntoIter { range: Default::default(), length: 0, alloc: Default::default() }
484 }
485}
486
487/// An iterator over the keys of a `BTreeMap`.
488///
489/// This `struct` is created by the [`keys`] method on [`BTreeMap`]. See its
490/// documentation for more.
491///
492/// [`keys`]: BTreeMap::keys
493#[must_use = "iterators are lazy and do nothing unless consumed"]
494#[stable(feature = "rust1", since = "1.0.0")]
495pub struct Keys<'a, K, V> {
496 inner: Iter<'a, K, V>,
497}
498
499#[stable(feature = "collection_debug", since = "1.17.0")]
500impl<K: fmt::Debug, V> fmt::Debug for Keys<'_, K, V> {
501 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
502 f.debug_list().entries(self.clone()).finish()
503 }
504}
505
506/// An iterator over the values of a `BTreeMap`.
507///
508/// This `struct` is created by the [`values`] method on [`BTreeMap`]. See its
509/// documentation for more.
510///
511/// [`values`]: BTreeMap::values
512#[must_use = "iterators are lazy and do nothing unless consumed"]
513#[stable(feature = "rust1", since = "1.0.0")]
514pub struct Values<'a, K, V> {
515 inner: Iter<'a, K, V>,
516}
517
518#[stable(feature = "collection_debug", since = "1.17.0")]
519impl<K, V: fmt::Debug> fmt::Debug for Values<'_, K, V> {
520 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
521 f.debug_list().entries(self.clone()).finish()
522 }
523}
524
525/// A mutable iterator over the values of a `BTreeMap`.
526///
527/// This `struct` is created by the [`values_mut`] method on [`BTreeMap`]. See its
528/// documentation for more.
529///
530/// [`values_mut`]: BTreeMap::values_mut
531#[must_use = "iterators are lazy and do nothing unless consumed"]
532#[stable(feature = "map_values_mut", since = "1.10.0")]
533pub struct ValuesMut<'a, K, V> {
534 inner: IterMut<'a, K, V>,
535}
536
537#[stable(feature = "map_values_mut", since = "1.10.0")]
538impl<K, V: fmt::Debug> fmt::Debug for ValuesMut<'_, K, V> {
539 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
540 f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish()
541 }
542}
543
544/// An owning iterator over the keys of a `BTreeMap`.
545///
546/// This `struct` is created by the [`into_keys`] method on [`BTreeMap`].
547/// See its documentation for more.
548///
549/// [`into_keys`]: BTreeMap::into_keys
550#[must_use = "iterators are lazy and do nothing unless consumed"]
551#[stable(feature = "map_into_keys_values", since = "1.54.0")]
552pub struct IntoKeys<
553 K,
554 V,
555 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
556> {
557 inner: IntoIter<K, V, A>,
558}
559
560#[stable(feature = "map_into_keys_values", since = "1.54.0")]
561impl<K: fmt::Debug, V, A: Allocator + Clone> fmt::Debug for IntoKeys<K, V, A> {
562 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
563 f.debug_list().entries(self.inner.iter().map(|(key, _)| key)).finish()
564 }
565}
566
567/// An owning iterator over the values of a `BTreeMap`.
568///
569/// This `struct` is created by the [`into_values`] method on [`BTreeMap`].
570/// See its documentation for more.
571///
572/// [`into_values`]: BTreeMap::into_values
573#[must_use = "iterators are lazy and do nothing unless consumed"]
574#[stable(feature = "map_into_keys_values", since = "1.54.0")]
575pub struct IntoValues<
576 K,
577 V,
578 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
579> {
580 inner: IntoIter<K, V, A>,
581}
582
583#[stable(feature = "map_into_keys_values", since = "1.54.0")]
584impl<K, V: fmt::Debug, A: Allocator + Clone> fmt::Debug for IntoValues<K, V, A> {
585 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
586 f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish()
587 }
588}
589
590/// An iterator over a sub-range of entries in a `BTreeMap`.
591///
592/// This `struct` is created by the [`range`] method on [`BTreeMap`]. See its
593/// documentation for more.
594///
595/// [`range`]: BTreeMap::range
596#[must_use = "iterators are lazy and do nothing unless consumed"]
597#[stable(feature = "btree_range", since = "1.17.0")]
598pub struct Range<'a, K: 'a, V: 'a> {
599 inner: LeafRange<marker::Immut<'a>, K, V>,
600}
601
602#[stable(feature = "collection_debug", since = "1.17.0")]
603impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Range<'_, K, V> {
604 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
605 f.debug_list().entries(self.clone()).finish()
606 }
607}
608
609/// A mutable iterator over a sub-range of entries in a `BTreeMap`.
610///
611/// This `struct` is created by the [`range_mut`] method on [`BTreeMap`]. See its
612/// documentation for more.
613///
614/// [`range_mut`]: BTreeMap::range_mut
615#[must_use = "iterators are lazy and do nothing unless consumed"]
616#[stable(feature = "btree_range", since = "1.17.0")]
617pub struct RangeMut<'a, K: 'a, V: 'a> {
618 inner: LeafRange<marker::ValMut<'a>, K, V>,
619
620 // Be invariant in `K` and `V`
621 _marker: PhantomData<&'a mut (K, V)>,
622}
623
624#[stable(feature = "collection_debug", since = "1.17.0")]
625impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for RangeMut<'_, K, V> {
626 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
627 let range = Range { inner: self.inner.reborrow() };
628 f.debug_list().entries(range).finish()
629 }
630}
631
632impl<K, V> BTreeMap<K, V> {
633 /// Makes a new, empty `BTreeMap`.
634 ///
635 /// Does not allocate anything on its own.
636 ///
637 /// # Examples
638 ///
639 /// ```
640 /// use std::collections::BTreeMap;
641 ///
642 /// let mut map = BTreeMap::new();
643 ///
644 /// // entries can now be inserted into the empty map
645 /// map.insert(1, "a");
646 /// ```
647 #[stable(feature = "rust1", since = "1.0.0")]
648 #[rustc_const_stable(feature = "const_btree_new", since = "1.66.0")]
649 #[inline]
650 #[must_use]
651 pub const fn new() -> BTreeMap<K, V> {
652 BTreeMap { root: None, length: 0, alloc: ManuallyDrop::new(Global), _marker: PhantomData }
653 }
654}
655
656impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
657 /// Clears the map, removing all elements.
658 ///
659 /// # Examples
660 ///
661 /// ```
662 /// use std::collections::BTreeMap;
663 ///
664 /// let mut a = BTreeMap::new();
665 /// a.insert(1, "a");
666 /// a.clear();
667 /// assert!(a.is_empty());
668 /// ```
669 #[stable(feature = "rust1", since = "1.0.0")]
670 pub fn clear(&mut self) {
671 // avoid moving the allocator
672 drop(BTreeMap {
673 root: mem::replace(&mut self.root, None),
674 length: mem::replace(&mut self.length, 0),
675 alloc: self.alloc.clone(),
676 _marker: PhantomData,
677 });
678 }
679
680 /// Makes a new empty BTreeMap with a reasonable choice for B.
681 ///
682 /// # Examples
683 ///
684 /// ```
685 /// # #![feature(allocator_api)]
686 /// # #![feature(btreemap_alloc)]
687 /// use std::collections::BTreeMap;
688 /// use std::alloc::Global;
689 ///
690 /// let mut map = BTreeMap::new_in(Global);
691 ///
692 /// // entries can now be inserted into the empty map
693 /// map.insert(1, "a");
694 /// ```
695 #[unstable(feature = "btreemap_alloc", issue = "32838")]
696 pub const fn new_in(alloc: A) -> BTreeMap<K, V, A> {
697 BTreeMap { root: None, length: 0, alloc: ManuallyDrop::new(alloc), _marker: PhantomData }
698 }
699}
700
701impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
702 /// Returns a reference to the value corresponding to the key.
703 ///
704 /// The key may be any borrowed form of the map's key type, but the ordering
705 /// on the borrowed form *must* match the ordering on the key type.
706 ///
707 /// # Examples
708 ///
709 /// ```
710 /// use std::collections::BTreeMap;
711 ///
712 /// let mut map = BTreeMap::new();
713 /// map.insert(1, "a");
714 /// assert_eq!(map.get(&1), Some(&"a"));
715 /// assert_eq!(map.get(&2), None);
716 /// ```
717 #[stable(feature = "rust1", since = "1.0.0")]
718 pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V>
719 where
720 K: Borrow<Q> + Ord,
721 Q: Ord,
722 {
723 let root_node = self.root.as_ref()?.reborrow();
724 match root_node.search_tree(key) {
725 Found(handle) => Some(handle.into_kv().1),
726 GoDown(_) => None,
727 }
728 }
729
730 /// Returns the key-value pair corresponding to the supplied key. This is
731 /// potentially useful:
732 /// - for key types where non-identical keys can be considered equal;
733 /// - for getting the `&K` stored key value from a borrowed `&Q` lookup key; or
734 /// - for getting a reference to a key with the same lifetime as the collection.
735 ///
736 /// The supplied key may be any borrowed form of the map's key type, but the ordering
737 /// on the borrowed form *must* match the ordering on the key type.
738 ///
739 /// # Examples
740 ///
741 /// ```
742 /// use std::cmp::Ordering;
743 /// use std::collections::BTreeMap;
744 ///
745 /// #[derive(Clone, Copy, Debug)]
746 /// struct S {
747 /// id: u32,
748 /// # #[allow(unused)] // prevents a "field `name` is never read" error
749 /// name: &'static str, // ignored by equality and ordering operations
750 /// }
751 ///
752 /// impl PartialEq for S {
753 /// fn eq(&self, other: &S) -> bool {
754 /// self.id == other.id
755 /// }
756 /// }
757 ///
758 /// impl Eq for S {}
759 ///
760 /// impl PartialOrd for S {
761 /// fn partial_cmp(&self, other: &S) -> Option<Ordering> {
762 /// self.id.partial_cmp(&other.id)
763 /// }
764 /// }
765 ///
766 /// impl Ord for S {
767 /// fn cmp(&self, other: &S) -> Ordering {
768 /// self.id.cmp(&other.id)
769 /// }
770 /// }
771 ///
772 /// let j_a = S { id: 1, name: "Jessica" };
773 /// let j_b = S { id: 1, name: "Jess" };
774 /// let p = S { id: 2, name: "Paul" };
775 /// assert_eq!(j_a, j_b);
776 ///
777 /// let mut map = BTreeMap::new();
778 /// map.insert(j_a, "Paris");
779 /// assert_eq!(map.get_key_value(&j_a), Some((&j_a, &"Paris")));
780 /// assert_eq!(map.get_key_value(&j_b), Some((&j_a, &"Paris"))); // the notable case
781 /// assert_eq!(map.get_key_value(&p), None);
782 /// ```
783 #[stable(feature = "map_get_key_value", since = "1.40.0")]
784 pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)>
785 where
786 K: Borrow<Q> + Ord,
787 Q: Ord,
788 {
789 let root_node = self.root.as_ref()?.reborrow();
790 match root_node.search_tree(k) {
791 Found(handle) => Some(handle.into_kv()),
792 GoDown(_) => None,
793 }
794 }
795
796 /// Returns the first key-value pair in the map.
797 /// The key in this pair is the minimum key in the map.
798 ///
799 /// # Examples
800 ///
801 /// ```
802 /// use std::collections::BTreeMap;
803 ///
804 /// let mut map = BTreeMap::new();
805 /// assert_eq!(map.first_key_value(), None);
806 /// map.insert(1, "b");
807 /// map.insert(2, "a");
808 /// assert_eq!(map.first_key_value(), Some((&1, &"b")));
809 /// ```
810 #[stable(feature = "map_first_last", since = "1.66.0")]
811 pub fn first_key_value(&self) -> Option<(&K, &V)>
812 where
813 K: Ord,
814 {
815 let root_node = self.root.as_ref()?.reborrow();
816 root_node.first_leaf_edge().right_kv().ok().map(Handle::into_kv)
817 }
818
819 /// Returns the first entry in the map for in-place manipulation.
820 /// The key of this entry is the minimum key in the map.
821 ///
822 /// # Examples
823 ///
824 /// ```
825 /// use std::collections::BTreeMap;
826 ///
827 /// let mut map = BTreeMap::new();
828 /// map.insert(1, "a");
829 /// map.insert(2, "b");
830 /// if let Some(mut entry) = map.first_entry() {
831 /// if *entry.key() > 0 {
832 /// entry.insert("first");
833 /// }
834 /// }
835 /// assert_eq!(*map.get(&1).unwrap(), "first");
836 /// assert_eq!(*map.get(&2).unwrap(), "b");
837 /// ```
838 #[stable(feature = "map_first_last", since = "1.66.0")]
839 pub fn first_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
840 where
841 K: Ord,
842 {
843 let (map, dormant_map) = DormantMutRef::new(self);
844 let root_node = map.root.as_mut()?.borrow_mut();
845 let kv = root_node.first_leaf_edge().right_kv().ok()?;
846 Some(OccupiedEntry {
847 handle: kv.forget_node_type(),
848 dormant_map,
849 alloc: (*map.alloc).clone(),
850 _marker: PhantomData,
851 })
852 }
853
854 /// Removes and returns the first element in the map.
855 /// The key of this element is the minimum key that was in the map.
856 ///
857 /// # Examples
858 ///
859 /// Draining elements in ascending order, while keeping a usable map each iteration.
860 ///
861 /// ```
862 /// use std::collections::BTreeMap;
863 ///
864 /// let mut map = BTreeMap::new();
865 /// map.insert(1, "a");
866 /// map.insert(2, "b");
867 /// while let Some((key, _val)) = map.pop_first() {
868 /// assert!(map.iter().all(|(k, _v)| *k > key));
869 /// }
870 /// assert!(map.is_empty());
871 /// ```
872 #[stable(feature = "map_first_last", since = "1.66.0")]
873 pub fn pop_first(&mut self) -> Option<(K, V)>
874 where
875 K: Ord,
876 {
877 self.first_entry().map(|entry| entry.remove_entry())
878 }
879
880 /// Returns the last key-value pair in the map.
881 /// The key in this pair is the maximum key in the map.
882 ///
883 /// # Examples
884 ///
885 /// ```
886 /// use std::collections::BTreeMap;
887 ///
888 /// let mut map = BTreeMap::new();
889 /// map.insert(1, "b");
890 /// map.insert(2, "a");
891 /// assert_eq!(map.last_key_value(), Some((&2, &"a")));
892 /// ```
893 #[stable(feature = "map_first_last", since = "1.66.0")]
894 pub fn last_key_value(&self) -> Option<(&K, &V)>
895 where
896 K: Ord,
897 {
898 let root_node = self.root.as_ref()?.reborrow();
899 root_node.last_leaf_edge().left_kv().ok().map(Handle::into_kv)
900 }
901
902 /// Returns the last entry in the map for in-place manipulation.
903 /// The key of this entry is the maximum key in the map.
904 ///
905 /// # Examples
906 ///
907 /// ```
908 /// use std::collections::BTreeMap;
909 ///
910 /// let mut map = BTreeMap::new();
911 /// map.insert(1, "a");
912 /// map.insert(2, "b");
913 /// if let Some(mut entry) = map.last_entry() {
914 /// if *entry.key() > 0 {
915 /// entry.insert("last");
916 /// }
917 /// }
918 /// assert_eq!(*map.get(&1).unwrap(), "a");
919 /// assert_eq!(*map.get(&2).unwrap(), "last");
920 /// ```
921 #[stable(feature = "map_first_last", since = "1.66.0")]
922 pub fn last_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
923 where
924 K: Ord,
925 {
926 let (map, dormant_map) = DormantMutRef::new(self);
927 let root_node = map.root.as_mut()?.borrow_mut();
928 let kv = root_node.last_leaf_edge().left_kv().ok()?;
929 Some(OccupiedEntry {
930 handle: kv.forget_node_type(),
931 dormant_map,
932 alloc: (*map.alloc).clone(),
933 _marker: PhantomData,
934 })
935 }
936
937 /// Removes and returns the last element in the map.
938 /// The key of this element is the maximum key that was in the map.
939 ///
940 /// # Examples
941 ///
942 /// Draining elements in descending order, while keeping a usable map each iteration.
943 ///
944 /// ```
945 /// use std::collections::BTreeMap;
946 ///
947 /// let mut map = BTreeMap::new();
948 /// map.insert(1, "a");
949 /// map.insert(2, "b");
950 /// while let Some((key, _val)) = map.pop_last() {
951 /// assert!(map.iter().all(|(k, _v)| *k < key));
952 /// }
953 /// assert!(map.is_empty());
954 /// ```
955 #[stable(feature = "map_first_last", since = "1.66.0")]
956 pub fn pop_last(&mut self) -> Option<(K, V)>
957 where
958 K: Ord,
959 {
960 self.last_entry().map(|entry| entry.remove_entry())
961 }
962
963 /// Returns `true` if the map contains a value for the specified key.
964 ///
965 /// The key may be any borrowed form of the map's key type, but the ordering
966 /// on the borrowed form *must* match the ordering on the key type.
967 ///
968 /// # Examples
969 ///
970 /// ```
971 /// use std::collections::BTreeMap;
972 ///
973 /// let mut map = BTreeMap::new();
974 /// map.insert(1, "a");
975 /// assert_eq!(map.contains_key(&1), true);
976 /// assert_eq!(map.contains_key(&2), false);
977 /// ```
978 #[stable(feature = "rust1", since = "1.0.0")]
979 #[cfg_attr(not(test), rustc_diagnostic_item = "btreemap_contains_key")]
980 pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
981 where
982 K: Borrow<Q> + Ord,
983 Q: Ord,
984 {
985 self.get(key).is_some()
986 }
987
988 /// Returns a mutable reference to the value corresponding to the key.
989 ///
990 /// The key may be any borrowed form of the map's key type, but the ordering
991 /// on the borrowed form *must* match the ordering on the key type.
992 ///
993 /// # Examples
994 ///
995 /// ```
996 /// use std::collections::BTreeMap;
997 ///
998 /// let mut map = BTreeMap::new();
999 /// map.insert(1, "a");
1000 /// if let Some(x) = map.get_mut(&1) {
1001 /// *x = "b";
1002 /// }
1003 /// assert_eq!(map[&1], "b");
1004 /// ```
1005 // See `get` for implementation notes, this is basically a copy-paste with mut's added
1006 #[stable(feature = "rust1", since = "1.0.0")]
1007 pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
1008 where
1009 K: Borrow<Q> + Ord,
1010 Q: Ord,
1011 {
1012 let root_node = self.root.as_mut()?.borrow_mut();
1013 match root_node.search_tree(key) {
1014 Found(handle) => Some(handle.into_val_mut()),
1015 GoDown(_) => None,
1016 }
1017 }
1018
1019 /// Inserts a key-value pair into the map.
1020 ///
1021 /// If the map did not have this key present, `None` is returned.
1022 ///
1023 /// If the map did have this key present, the value is updated, and the old
1024 /// value is returned. The key is not updated, though; this matters for
1025 /// types that can be `==` without being identical. See the [module-level
1026 /// documentation] for more.
1027 ///
1028 /// [module-level documentation]: index.html#insert-and-complex-keys
1029 ///
1030 /// # Examples
1031 ///
1032 /// ```
1033 /// use std::collections::BTreeMap;
1034 ///
1035 /// let mut map = BTreeMap::new();
1036 /// assert_eq!(map.insert(37, "a"), None);
1037 /// assert_eq!(map.is_empty(), false);
1038 ///
1039 /// map.insert(37, "b");
1040 /// assert_eq!(map.insert(37, "c"), Some("b"));
1041 /// assert_eq!(map[&37], "c");
1042 /// ```
1043 #[stable(feature = "rust1", since = "1.0.0")]
1044 #[rustc_confusables("push", "put", "set")]
1045 #[cfg_attr(not(test), rustc_diagnostic_item = "btreemap_insert")]
1046 pub fn insert(&mut self, key: K, value: V) -> Option<V>
1047 where
1048 K: Ord,
1049 {
1050 match self.entry(key) {
1051 Occupied(mut entry) => Some(entry.insert(value)),
1052 Vacant(entry) => {
1053 entry.insert(value);
1054 None
1055 }
1056 }
1057 }
1058
1059 /// Tries to insert a key-value pair into the map, and returns
1060 /// a mutable reference to the value in the entry.
1061 ///
1062 /// If the map already had this key present, nothing is updated, and
1063 /// an error containing the occupied entry and the value is returned.
1064 ///
1065 /// # Examples
1066 ///
1067 /// ```
1068 /// #![feature(map_try_insert)]
1069 ///
1070 /// use std::collections::BTreeMap;
1071 ///
1072 /// let mut map = BTreeMap::new();
1073 /// assert_eq!(map.try_insert(37, "a").unwrap(), &"a");
1074 ///
1075 /// let err = map.try_insert(37, "b").unwrap_err();
1076 /// assert_eq!(err.entry.key(), &37);
1077 /// assert_eq!(err.entry.get(), &"a");
1078 /// assert_eq!(err.value, "b");
1079 /// ```
1080 #[unstable(feature = "map_try_insert", issue = "82766")]
1081 pub fn try_insert(&mut self, key: K, value: V) -> Result<&mut V, OccupiedError<'_, K, V, A>>
1082 where
1083 K: Ord,
1084 {
1085 match self.entry(key) {
1086 Occupied(entry) => Err(OccupiedError { entry, value }),
1087 Vacant(entry) => Ok(entry.insert(value)),
1088 }
1089 }
1090
1091 /// Removes a key from the map, returning the value at the key if the key
1092 /// was previously in the map.
1093 ///
1094 /// The key may be any borrowed form of the map's key type, but the ordering
1095 /// on the borrowed form *must* match the ordering on the key type.
1096 ///
1097 /// # Examples
1098 ///
1099 /// ```
1100 /// use std::collections::BTreeMap;
1101 ///
1102 /// let mut map = BTreeMap::new();
1103 /// map.insert(1, "a");
1104 /// assert_eq!(map.remove(&1), Some("a"));
1105 /// assert_eq!(map.remove(&1), None);
1106 /// ```
1107 #[stable(feature = "rust1", since = "1.0.0")]
1108 #[rustc_confusables("delete", "take")]
1109 pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
1110 where
1111 K: Borrow<Q> + Ord,
1112 Q: Ord,
1113 {
1114 self.remove_entry(key).map(|(_, v)| v)
1115 }
1116
1117 /// Removes a key from the map, returning the stored key and value if the key
1118 /// was previously in the map.
1119 ///
1120 /// The key may be any borrowed form of the map's key type, but the ordering
1121 /// on the borrowed form *must* match the ordering on the key type.
1122 ///
1123 /// # Examples
1124 ///
1125 /// ```
1126 /// use std::collections::BTreeMap;
1127 ///
1128 /// let mut map = BTreeMap::new();
1129 /// map.insert(1, "a");
1130 /// assert_eq!(map.remove_entry(&1), Some((1, "a")));
1131 /// assert_eq!(map.remove_entry(&1), None);
1132 /// ```
1133 #[stable(feature = "btreemap_remove_entry", since = "1.45.0")]
1134 pub fn remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)>
1135 where
1136 K: Borrow<Q> + Ord,
1137 Q: Ord,
1138 {
1139 let (map, dormant_map) = DormantMutRef::new(self);
1140 let root_node = map.root.as_mut()?.borrow_mut();
1141 match root_node.search_tree(key) {
1142 Found(handle) => Some(
1143 OccupiedEntry {
1144 handle,
1145 dormant_map,
1146 alloc: (*map.alloc).clone(),
1147 _marker: PhantomData,
1148 }
1149 .remove_entry(),
1150 ),
1151 GoDown(_) => None,
1152 }
1153 }
1154
1155 /// Retains only the elements specified by the predicate.
1156 ///
1157 /// In other words, remove all pairs `(k, v)` for which `f(&k, &mut v)` returns `false`.
1158 /// The elements are visited in ascending key order.
1159 ///
1160 /// # Examples
1161 ///
1162 /// ```
1163 /// use std::collections::BTreeMap;
1164 ///
1165 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
1166 /// // Keep only the elements with even-numbered keys.
1167 /// map.retain(|&k, _| k % 2 == 0);
1168 /// assert!(map.into_iter().eq(vec![(0, 0), (2, 20), (4, 40), (6, 60)]));
1169 /// ```
1170 #[inline]
1171 #[stable(feature = "btree_retain", since = "1.53.0")]
1172 pub fn retain<F>(&mut self, mut f: F)
1173 where
1174 K: Ord,
1175 F: FnMut(&K, &mut V) -> bool,
1176 {
1177 self.extract_if(.., |k, v| !f(k, v)).for_each(drop);
1178 }
1179
1180 /// Moves all elements from `other` into `self`, leaving `other` empty.
1181 ///
1182 /// If a key from `other` is already present in `self`, the respective
1183 /// value from `self` will be overwritten with the respective value from `other`.
1184 ///
1185 /// # Examples
1186 ///
1187 /// ```
1188 /// use std::collections::BTreeMap;
1189 ///
1190 /// let mut a = BTreeMap::new();
1191 /// a.insert(1, "a");
1192 /// a.insert(2, "b");
1193 /// a.insert(3, "c"); // Note: Key (3) also present in b.
1194 ///
1195 /// let mut b = BTreeMap::new();
1196 /// b.insert(3, "d"); // Note: Key (3) also present in a.
1197 /// b.insert(4, "e");
1198 /// b.insert(5, "f");
1199 ///
1200 /// a.append(&mut b);
1201 ///
1202 /// assert_eq!(a.len(), 5);
1203 /// assert_eq!(b.len(), 0);
1204 ///
1205 /// assert_eq!(a[&1], "a");
1206 /// assert_eq!(a[&2], "b");
1207 /// assert_eq!(a[&3], "d"); // Note: "c" has been overwritten.
1208 /// assert_eq!(a[&4], "e");
1209 /// assert_eq!(a[&5], "f");
1210 /// ```
1211 #[stable(feature = "btree_append", since = "1.11.0")]
1212 pub fn append(&mut self, other: &mut Self)
1213 where
1214 K: Ord,
1215 A: Clone,
1216 {
1217 // Do we have to append anything at all?
1218 if other.is_empty() {
1219 return;
1220 }
1221
1222 // We can just swap `self` and `other` if `self` is empty.
1223 if self.is_empty() {
1224 mem::swap(self, other);
1225 return;
1226 }
1227
1228 let self_iter = mem::replace(self, Self::new_in((*self.alloc).clone())).into_iter();
1229 let other_iter = mem::replace(other, Self::new_in((*self.alloc).clone())).into_iter();
1230 let root = self.root.get_or_insert_with(|| Root::new((*self.alloc).clone()));
1231 root.append_from_sorted_iters(
1232 self_iter,
1233 other_iter,
1234 &mut self.length,
1235 (*self.alloc).clone(),
1236 )
1237 }
1238
1239 /// Constructs a double-ended iterator over a sub-range of elements in the map.
1240 /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
1241 /// yield elements from min (inclusive) to max (exclusive).
1242 /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
1243 /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
1244 /// range from 4 to 10.
1245 ///
1246 /// # Panics
1247 ///
1248 /// Panics if range `start > end`.
1249 /// Panics if range `start == end` and both bounds are `Excluded`.
1250 ///
1251 /// # Examples
1252 ///
1253 /// ```
1254 /// use std::collections::BTreeMap;
1255 /// use std::ops::Bound::Included;
1256 ///
1257 /// let mut map = BTreeMap::new();
1258 /// map.insert(3, "a");
1259 /// map.insert(5, "b");
1260 /// map.insert(8, "c");
1261 /// for (&key, &value) in map.range((Included(&4), Included(&8))) {
1262 /// println!("{key}: {value}");
1263 /// }
1264 /// assert_eq!(Some((&5, &"b")), map.range(4..).next());
1265 /// ```
1266 #[stable(feature = "btree_range", since = "1.17.0")]
1267 pub fn range<T: ?Sized, R>(&self, range: R) -> Range<'_, K, V>
1268 where
1269 T: Ord,
1270 K: Borrow<T> + Ord,
1271 R: RangeBounds<T>,
1272 {
1273 if let Some(root) = &self.root {
1274 Range { inner: root.reborrow().range_search(range) }
1275 } else {
1276 Range { inner: LeafRange::none() }
1277 }
1278 }
1279
1280 /// Constructs a mutable double-ended iterator over a sub-range of elements in the map.
1281 /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
1282 /// yield elements from min (inclusive) to max (exclusive).
1283 /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
1284 /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
1285 /// range from 4 to 10.
1286 ///
1287 /// # Panics
1288 ///
1289 /// Panics if range `start > end`.
1290 /// Panics if range `start == end` and both bounds are `Excluded`.
1291 ///
1292 /// # Examples
1293 ///
1294 /// ```
1295 /// use std::collections::BTreeMap;
1296 ///
1297 /// let mut map: BTreeMap<&str, i32> =
1298 /// [("Alice", 0), ("Bob", 0), ("Carol", 0), ("Cheryl", 0)].into();
1299 /// for (_, balance) in map.range_mut("B".."Cheryl") {
1300 /// *balance += 100;
1301 /// }
1302 /// for (name, balance) in &map {
1303 /// println!("{name} => {balance}");
1304 /// }
1305 /// ```
1306 #[stable(feature = "btree_range", since = "1.17.0")]
1307 pub fn range_mut<T: ?Sized, R>(&mut self, range: R) -> RangeMut<'_, K, V>
1308 where
1309 T: Ord,
1310 K: Borrow<T> + Ord,
1311 R: RangeBounds<T>,
1312 {
1313 if let Some(root) = &mut self.root {
1314 RangeMut { inner: root.borrow_valmut().range_search(range), _marker: PhantomData }
1315 } else {
1316 RangeMut { inner: LeafRange::none(), _marker: PhantomData }
1317 }
1318 }
1319
1320 /// Gets the given key's corresponding entry in the map for in-place manipulation.
1321 ///
1322 /// # Examples
1323 ///
1324 /// ```
1325 /// use std::collections::BTreeMap;
1326 ///
1327 /// let mut count: BTreeMap<&str, usize> = BTreeMap::new();
1328 ///
1329 /// // count the number of occurrences of letters in the vec
1330 /// for x in ["a", "b", "a", "c", "a", "b"] {
1331 /// count.entry(x).and_modify(|curr| *curr += 1).or_insert(1);
1332 /// }
1333 ///
1334 /// assert_eq!(count["a"], 3);
1335 /// assert_eq!(count["b"], 2);
1336 /// assert_eq!(count["c"], 1);
1337 /// ```
1338 #[stable(feature = "rust1", since = "1.0.0")]
1339 pub fn entry(&mut self, key: K) -> Entry<'_, K, V, A>
1340 where
1341 K: Ord,
1342 {
1343 let (map, dormant_map) = DormantMutRef::new(self);
1344 match map.root {
1345 None => Vacant(VacantEntry {
1346 key,
1347 handle: None,
1348 dormant_map,
1349 alloc: (*map.alloc).clone(),
1350 _marker: PhantomData,
1351 }),
1352 Some(ref mut root) => match root.borrow_mut().search_tree(&key) {
1353 Found(handle) => Occupied(OccupiedEntry {
1354 handle,
1355 dormant_map,
1356 alloc: (*map.alloc).clone(),
1357 _marker: PhantomData,
1358 }),
1359 GoDown(handle) => Vacant(VacantEntry {
1360 key,
1361 handle: Some(handle),
1362 dormant_map,
1363 alloc: (*map.alloc).clone(),
1364 _marker: PhantomData,
1365 }),
1366 },
1367 }
1368 }
1369
1370 /// Splits the collection into two at the given key. Returns everything after the given key,
1371 /// including the key.
1372 ///
1373 /// # Examples
1374 ///
1375 /// ```
1376 /// use std::collections::BTreeMap;
1377 ///
1378 /// let mut a = BTreeMap::new();
1379 /// a.insert(1, "a");
1380 /// a.insert(2, "b");
1381 /// a.insert(3, "c");
1382 /// a.insert(17, "d");
1383 /// a.insert(41, "e");
1384 ///
1385 /// let b = a.split_off(&3);
1386 ///
1387 /// assert_eq!(a.len(), 2);
1388 /// assert_eq!(b.len(), 3);
1389 ///
1390 /// assert_eq!(a[&1], "a");
1391 /// assert_eq!(a[&2], "b");
1392 ///
1393 /// assert_eq!(b[&3], "c");
1394 /// assert_eq!(b[&17], "d");
1395 /// assert_eq!(b[&41], "e");
1396 /// ```
1397 #[stable(feature = "btree_split_off", since = "1.11.0")]
1398 pub fn split_off<Q: ?Sized + Ord>(&mut self, key: &Q) -> Self
1399 where
1400 K: Borrow<Q> + Ord,
1401 A: Clone,
1402 {
1403 if self.is_empty() {
1404 return Self::new_in((*self.alloc).clone());
1405 }
1406
1407 let total_num = self.len();
1408 let left_root = self.root.as_mut().unwrap(); // unwrap succeeds because not empty
1409
1410 let right_root = left_root.split_off(key, (*self.alloc).clone());
1411
1412 let (new_left_len, right_len) = Root::calc_split_length(total_num, &left_root, &right_root);
1413 self.length = new_left_len;
1414
1415 BTreeMap {
1416 root: Some(right_root),
1417 length: right_len,
1418 alloc: self.alloc.clone(),
1419 _marker: PhantomData,
1420 }
1421 }
1422
1423 /// Creates an iterator that visits elements (key-value pairs) in the specified range in
1424 /// ascending key order and uses a closure to determine if an element
1425 /// should be removed.
1426 ///
1427 /// If the closure returns `true`, the element is removed from the map and
1428 /// yielded. If the closure returns `false`, or panics, the element remains
1429 /// in the map and will not be yielded.
1430 ///
1431 /// The iterator also lets you mutate the value of each element in the
1432 /// closure, regardless of whether you choose to keep or remove it.
1433 ///
1434 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
1435 /// or the iteration short-circuits, then the remaining elements will be retained.
1436 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
1437 ///
1438 /// [`retain`]: BTreeMap::retain
1439 ///
1440 /// # Examples
1441 ///
1442 /// ```
1443 /// use std::collections::BTreeMap;
1444 ///
1445 /// // Splitting a map into even and odd keys, reusing the original map:
1446 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
1447 /// let evens: BTreeMap<_, _> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
1448 /// let odds = map;
1449 /// assert_eq!(evens.keys().copied().collect::<Vec<_>>(), [0, 2, 4, 6]);
1450 /// assert_eq!(odds.keys().copied().collect::<Vec<_>>(), [1, 3, 5, 7]);
1451 ///
1452 /// // Splitting a map into low and high halves, reusing the original map:
1453 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
1454 /// let low: BTreeMap<_, _> = map.extract_if(0..4, |_k, _v| true).collect();
1455 /// let high = map;
1456 /// assert_eq!(low.keys().copied().collect::<Vec<_>>(), [0, 1, 2, 3]);
1457 /// assert_eq!(high.keys().copied().collect::<Vec<_>>(), [4, 5, 6, 7]);
1458 /// ```
1459 #[stable(feature = "btree_extract_if", since = "CURRENT_RUSTC_VERSION")]
1460 pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, R, F, A>
1461 where
1462 K: Ord,
1463 R: RangeBounds<K>,
1464 F: FnMut(&K, &mut V) -> bool,
1465 {
1466 let (inner, alloc) = self.extract_if_inner(range);
1467 ExtractIf { pred, inner, alloc }
1468 }
1469
1470 pub(super) fn extract_if_inner<R>(&mut self, range: R) -> (ExtractIfInner<'_, K, V, R>, A)
1471 where
1472 K: Ord,
1473 R: RangeBounds<K>,
1474 {
1475 if let Some(root) = self.root.as_mut() {
1476 let (root, dormant_root) = DormantMutRef::new(root);
1477 let first = root.borrow_mut().lower_bound(SearchBound::from_range(range.start_bound()));
1478 (
1479 ExtractIfInner {
1480 length: &mut self.length,
1481 dormant_root: Some(dormant_root),
1482 cur_leaf_edge: Some(first),
1483 range,
1484 },
1485 (*self.alloc).clone(),
1486 )
1487 } else {
1488 (
1489 ExtractIfInner {
1490 length: &mut self.length,
1491 dormant_root: None,
1492 cur_leaf_edge: None,
1493 range,
1494 },
1495 (*self.alloc).clone(),
1496 )
1497 }
1498 }
1499
1500 /// Creates a consuming iterator visiting all the keys, in sorted order.
1501 /// The map cannot be used after calling this.
1502 /// The iterator element type is `K`.
1503 ///
1504 /// # Examples
1505 ///
1506 /// ```
1507 /// use std::collections::BTreeMap;
1508 ///
1509 /// let mut a = BTreeMap::new();
1510 /// a.insert(2, "b");
1511 /// a.insert(1, "a");
1512 ///
1513 /// let keys: Vec<i32> = a.into_keys().collect();
1514 /// assert_eq!(keys, [1, 2]);
1515 /// ```
1516 #[inline]
1517 #[stable(feature = "map_into_keys_values", since = "1.54.0")]
1518 pub fn into_keys(self) -> IntoKeys<K, V, A> {
1519 IntoKeys { inner: self.into_iter() }
1520 }
1521
1522 /// Creates a consuming iterator visiting all the values, in order by key.
1523 /// The map cannot be used after calling this.
1524 /// The iterator element type is `V`.
1525 ///
1526 /// # Examples
1527 ///
1528 /// ```
1529 /// use std::collections::BTreeMap;
1530 ///
1531 /// let mut a = BTreeMap::new();
1532 /// a.insert(1, "hello");
1533 /// a.insert(2, "goodbye");
1534 ///
1535 /// let values: Vec<&str> = a.into_values().collect();
1536 /// assert_eq!(values, ["hello", "goodbye"]);
1537 /// ```
1538 #[inline]
1539 #[stable(feature = "map_into_keys_values", since = "1.54.0")]
1540 pub fn into_values(self) -> IntoValues<K, V, A> {
1541 IntoValues { inner: self.into_iter() }
1542 }
1543
1544 /// Makes a `BTreeMap` from a sorted iterator.
1545 pub(crate) fn bulk_build_from_sorted_iter<I>(iter: I, alloc: A) -> Self
1546 where
1547 K: Ord,
1548 I: IntoIterator<Item = (K, V)>,
1549 {
1550 let mut root = Root::new(alloc.clone());
1551 let mut length = 0;
1552 root.bulk_push(DedupSortedIter::new(iter.into_iter()), &mut length, alloc.clone());
1553 BTreeMap { root: Some(root), length, alloc: ManuallyDrop::new(alloc), _marker: PhantomData }
1554 }
1555}
1556
1557#[stable(feature = "rust1", since = "1.0.0")]
1558impl<'a, K, V, A: Allocator + Clone> IntoIterator for &'a BTreeMap<K, V, A> {
1559 type Item = (&'a K, &'a V);
1560 type IntoIter = Iter<'a, K, V>;
1561
1562 fn into_iter(self) -> Iter<'a, K, V> {
1563 self.iter()
1564 }
1565}
1566
1567#[stable(feature = "rust1", since = "1.0.0")]
1568impl<'a, K: 'a, V: 'a> Iterator for Iter<'a, K, V> {
1569 type Item = (&'a K, &'a V);
1570
1571 fn next(&mut self) -> Option<(&'a K, &'a V)> {
1572 if self.length == 0 {
1573 None
1574 } else {
1575 self.length -= 1;
1576 Some(unsafe { self.range.next_unchecked() })
1577 }
1578 }
1579
1580 fn size_hint(&self) -> (usize, Option<usize>) {
1581 (self.length, Some(self.length))
1582 }
1583
1584 fn last(mut self) -> Option<(&'a K, &'a V)> {
1585 self.next_back()
1586 }
1587
1588 fn min(mut self) -> Option<(&'a K, &'a V)>
1589 where
1590 (&'a K, &'a V): Ord,
1591 {
1592 self.next()
1593 }
1594
1595 fn max(mut self) -> Option<(&'a K, &'a V)>
1596 where
1597 (&'a K, &'a V): Ord,
1598 {
1599 self.next_back()
1600 }
1601}
1602
1603#[stable(feature = "fused", since = "1.26.0")]
1604impl<K, V> FusedIterator for Iter<'_, K, V> {}
1605
1606#[stable(feature = "rust1", since = "1.0.0")]
1607impl<'a, K: 'a, V: 'a> DoubleEndedIterator for Iter<'a, K, V> {
1608 fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
1609 if self.length == 0 {
1610 None
1611 } else {
1612 self.length -= 1;
1613 Some(unsafe { self.range.next_back_unchecked() })
1614 }
1615 }
1616}
1617
1618#[stable(feature = "rust1", since = "1.0.0")]
1619impl<K, V> ExactSizeIterator for Iter<'_, K, V> {
1620 fn len(&self) -> usize {
1621 self.length
1622 }
1623}
1624
1625#[stable(feature = "rust1", since = "1.0.0")]
1626impl<K, V> Clone for Iter<'_, K, V> {
1627 fn clone(&self) -> Self {
1628 Iter { range: self.range.clone(), length: self.length }
1629 }
1630}
1631
1632#[stable(feature = "rust1", since = "1.0.0")]
1633impl<'a, K, V, A: Allocator + Clone> IntoIterator for &'a mut BTreeMap<K, V, A> {
1634 type Item = (&'a K, &'a mut V);
1635 type IntoIter = IterMut<'a, K, V>;
1636
1637 fn into_iter(self) -> IterMut<'a, K, V> {
1638 self.iter_mut()
1639 }
1640}
1641
1642#[stable(feature = "rust1", since = "1.0.0")]
1643impl<'a, K, V> Iterator for IterMut<'a, K, V> {
1644 type Item = (&'a K, &'a mut V);
1645
1646 fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
1647 if self.length == 0 {
1648 None
1649 } else {
1650 self.length -= 1;
1651 Some(unsafe { self.range.next_unchecked() })
1652 }
1653 }
1654
1655 fn size_hint(&self) -> (usize, Option<usize>) {
1656 (self.length, Some(self.length))
1657 }
1658
1659 fn last(mut self) -> Option<(&'a K, &'a mut V)> {
1660 self.next_back()
1661 }
1662
1663 fn min(mut self) -> Option<(&'a K, &'a mut V)>
1664 where
1665 (&'a K, &'a mut V): Ord,
1666 {
1667 self.next()
1668 }
1669
1670 fn max(mut self) -> Option<(&'a K, &'a mut V)>
1671 where
1672 (&'a K, &'a mut V): Ord,
1673 {
1674 self.next_back()
1675 }
1676}
1677
1678#[stable(feature = "rust1", since = "1.0.0")]
1679impl<'a, K, V> DoubleEndedIterator for IterMut<'a, K, V> {
1680 fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
1681 if self.length == 0 {
1682 None
1683 } else {
1684 self.length -= 1;
1685 Some(unsafe { self.range.next_back_unchecked() })
1686 }
1687 }
1688}
1689
1690#[stable(feature = "rust1", since = "1.0.0")]
1691impl<K, V> ExactSizeIterator for IterMut<'_, K, V> {
1692 fn len(&self) -> usize {
1693 self.length
1694 }
1695}
1696
1697#[stable(feature = "fused", since = "1.26.0")]
1698impl<K, V> FusedIterator for IterMut<'_, K, V> {}
1699
1700impl<'a, K, V> IterMut<'a, K, V> {
1701 /// Returns an iterator of references over the remaining items.
1702 #[inline]
1703 pub(super) fn iter(&self) -> Iter<'_, K, V> {
1704 Iter { range: self.range.reborrow(), length: self.length }
1705 }
1706}
1707
1708#[stable(feature = "rust1", since = "1.0.0")]
1709impl<K, V, A: Allocator + Clone> IntoIterator for BTreeMap<K, V, A> {
1710 type Item = (K, V);
1711 type IntoIter = IntoIter<K, V, A>;
1712
1713 /// Gets an owning iterator over the entries of the map, sorted by key.
1714 fn into_iter(self) -> IntoIter<K, V, A> {
1715 let mut me = ManuallyDrop::new(self);
1716 if let Some(root) = me.root.take() {
1717 let full_range = root.into_dying().full_range();
1718
1719 IntoIter {
1720 range: full_range,
1721 length: me.length,
1722 alloc: unsafe { ManuallyDrop::take(&mut me.alloc) },
1723 }
1724 } else {
1725 IntoIter {
1726 range: LazyLeafRange::none(),
1727 length: 0,
1728 alloc: unsafe { ManuallyDrop::take(&mut me.alloc) },
1729 }
1730 }
1731 }
1732}
1733
1734#[stable(feature = "btree_drop", since = "1.7.0")]
1735impl<K, V, A: Allocator + Clone> Drop for IntoIter<K, V, A> {
1736 fn drop(&mut self) {
1737 struct DropGuard<'a, K, V, A: Allocator + Clone>(&'a mut IntoIter<K, V, A>);
1738
1739 impl<'a, K, V, A: Allocator + Clone> Drop for DropGuard<'a, K, V, A> {
1740 fn drop(&mut self) {
1741 // Continue the same loop we perform below. This only runs when unwinding, so we
1742 // don't have to care about panics this time (they'll abort).
1743 while let Some(kv) = self.0.dying_next() {
1744 // SAFETY: we consume the dying handle immediately.
1745 unsafe { kv.drop_key_val() };
1746 }
1747 }
1748 }
1749
1750 while let Some(kv) = self.dying_next() {
1751 let guard = DropGuard(self);
1752 // SAFETY: we don't touch the tree before consuming the dying handle.
1753 unsafe { kv.drop_key_val() };
1754 mem::forget(guard);
1755 }
1756 }
1757}
1758
1759impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> {
1760 /// Core of a `next` method returning a dying KV handle,
1761 /// invalidated by further calls to this function and some others.
1762 fn dying_next(
1763 &mut self,
1764 ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>> {
1765 if self.length == 0 {
1766 self.range.deallocating_end(self.alloc.clone());
1767 None
1768 } else {
1769 self.length -= 1;
1770 Some(unsafe { self.range.deallocating_next_unchecked(self.alloc.clone()) })
1771 }
1772 }
1773
1774 /// Core of a `next_back` method returning a dying KV handle,
1775 /// invalidated by further calls to this function and some others.
1776 fn dying_next_back(
1777 &mut self,
1778 ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>> {
1779 if self.length == 0 {
1780 self.range.deallocating_end(self.alloc.clone());
1781 None
1782 } else {
1783 self.length -= 1;
1784 Some(unsafe { self.range.deallocating_next_back_unchecked(self.alloc.clone()) })
1785 }
1786 }
1787}
1788
1789#[stable(feature = "rust1", since = "1.0.0")]
1790impl<K, V, A: Allocator + Clone> Iterator for IntoIter<K, V, A> {
1791 type Item = (K, V);
1792
1793 fn next(&mut self) -> Option<(K, V)> {
1794 // SAFETY: we consume the dying handle immediately.
1795 self.dying_next().map(unsafe { |kv| kv.into_key_val() })
1796 }
1797
1798 fn size_hint(&self) -> (usize, Option<usize>) {
1799 (self.length, Some(self.length))
1800 }
1801}
1802
1803#[stable(feature = "rust1", since = "1.0.0")]
1804impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoIter<K, V, A> {
1805 fn next_back(&mut self) -> Option<(K, V)> {
1806 // SAFETY: we consume the dying handle immediately.
1807 self.dying_next_back().map(unsafe { |kv| kv.into_key_val() })
1808 }
1809}
1810
1811#[stable(feature = "rust1", since = "1.0.0")]
1812impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoIter<K, V, A> {
1813 fn len(&self) -> usize {
1814 self.length
1815 }
1816}
1817
1818#[stable(feature = "fused", since = "1.26.0")]
1819impl<K, V, A: Allocator + Clone> FusedIterator for IntoIter<K, V, A> {}
1820
1821#[stable(feature = "rust1", since = "1.0.0")]
1822impl<'a, K, V> Iterator for Keys<'a, K, V> {
1823 type Item = &'a K;
1824
1825 fn next(&mut self) -> Option<&'a K> {
1826 self.inner.next().map(|(k, _)| k)
1827 }
1828
1829 fn size_hint(&self) -> (usize, Option<usize>) {
1830 self.inner.size_hint()
1831 }
1832
1833 fn last(mut self) -> Option<&'a K> {
1834 self.next_back()
1835 }
1836
1837 fn min(mut self) -> Option<&'a K>
1838 where
1839 &'a K: Ord,
1840 {
1841 self.next()
1842 }
1843
1844 fn max(mut self) -> Option<&'a K>
1845 where
1846 &'a K: Ord,
1847 {
1848 self.next_back()
1849 }
1850}
1851
1852#[stable(feature = "rust1", since = "1.0.0")]
1853impl<'a, K, V> DoubleEndedIterator for Keys<'a, K, V> {
1854 fn next_back(&mut self) -> Option<&'a K> {
1855 self.inner.next_back().map(|(k, _)| k)
1856 }
1857}
1858
1859#[stable(feature = "rust1", since = "1.0.0")]
1860impl<K, V> ExactSizeIterator for Keys<'_, K, V> {
1861 fn len(&self) -> usize {
1862 self.inner.len()
1863 }
1864}
1865
1866#[stable(feature = "fused", since = "1.26.0")]
1867impl<K, V> FusedIterator for Keys<'_, K, V> {}
1868
1869#[stable(feature = "rust1", since = "1.0.0")]
1870impl<K, V> Clone for Keys<'_, K, V> {
1871 fn clone(&self) -> Self {
1872 Keys { inner: self.inner.clone() }
1873 }
1874}
1875
1876#[stable(feature = "default_iters", since = "1.70.0")]
1877impl<K, V> Default for Keys<'_, K, V> {
1878 /// Creates an empty `btree_map::Keys`.
1879 ///
1880 /// ```
1881 /// # use std::collections::btree_map;
1882 /// let iter: btree_map::Keys<'_, u8, u8> = Default::default();
1883 /// assert_eq!(iter.len(), 0);
1884 /// ```
1885 fn default() -> Self {
1886 Keys { inner: Default::default() }
1887 }
1888}
1889
1890#[stable(feature = "rust1", since = "1.0.0")]
1891impl<'a, K, V> Iterator for Values<'a, K, V> {
1892 type Item = &'a V;
1893
1894 fn next(&mut self) -> Option<&'a V> {
1895 self.inner.next().map(|(_, v)| v)
1896 }
1897
1898 fn size_hint(&self) -> (usize, Option<usize>) {
1899 self.inner.size_hint()
1900 }
1901
1902 fn last(mut self) -> Option<&'a V> {
1903 self.next_back()
1904 }
1905}
1906
1907#[stable(feature = "rust1", since = "1.0.0")]
1908impl<'a, K, V> DoubleEndedIterator for Values<'a, K, V> {
1909 fn next_back(&mut self) -> Option<&'a V> {
1910 self.inner.next_back().map(|(_, v)| v)
1911 }
1912}
1913
1914#[stable(feature = "rust1", since = "1.0.0")]
1915impl<K, V> ExactSizeIterator for Values<'_, K, V> {
1916 fn len(&self) -> usize {
1917 self.inner.len()
1918 }
1919}
1920
1921#[stable(feature = "fused", since = "1.26.0")]
1922impl<K, V> FusedIterator for Values<'_, K, V> {}
1923
1924#[stable(feature = "rust1", since = "1.0.0")]
1925impl<K, V> Clone for Values<'_, K, V> {
1926 fn clone(&self) -> Self {
1927 Values { inner: self.inner.clone() }
1928 }
1929}
1930
1931#[stable(feature = "default_iters", since = "1.70.0")]
1932impl<K, V> Default for Values<'_, K, V> {
1933 /// Creates an empty `btree_map::Values`.
1934 ///
1935 /// ```
1936 /// # use std::collections::btree_map;
1937 /// let iter: btree_map::Values<'_, u8, u8> = Default::default();
1938 /// assert_eq!(iter.len(), 0);
1939 /// ```
1940 fn default() -> Self {
1941 Values { inner: Default::default() }
1942 }
1943}
1944
1945/// An iterator produced by calling `extract_if` on BTreeMap.
1946#[stable(feature = "btree_extract_if", since = "CURRENT_RUSTC_VERSION")]
1947#[must_use = "iterators are lazy and do nothing unless consumed"]
1948pub struct ExtractIf<
1949 'a,
1950 K,
1951 V,
1952 R,
1953 F,
1954 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
1955> {
1956 pred: F,
1957 inner: ExtractIfInner<'a, K, V, R>,
1958 /// The BTreeMap will outlive this IntoIter so we don't care about drop order for `alloc`.
1959 alloc: A,
1960}
1961
1962/// Most of the implementation of ExtractIf are generic over the type
1963/// of the predicate, thus also serving for BTreeSet::ExtractIf.
1964pub(super) struct ExtractIfInner<'a, K, V, R> {
1965 /// Reference to the length field in the borrowed map, updated live.
1966 length: &'a mut usize,
1967 /// Buried reference to the root field in the borrowed map.
1968 /// Wrapped in `Option` to allow drop handler to `take` it.
1969 dormant_root: Option<DormantMutRef<'a, Root<K, V>>>,
1970 /// Contains a leaf edge preceding the next element to be returned, or the last leaf edge.
1971 /// Empty if the map has no root, if iteration went beyond the last leaf edge,
1972 /// or if a panic occurred in the predicate.
1973 cur_leaf_edge: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
1974 /// Range over which iteration was requested. We don't need the left side, but we
1975 /// can't extract the right side without requiring K: Clone.
1976 range: R,
1977}
1978
1979#[stable(feature = "btree_extract_if", since = "CURRENT_RUSTC_VERSION")]
1980impl<K, V, R, F, A> fmt::Debug for ExtractIf<'_, K, V, R, F, A>
1981where
1982 K: fmt::Debug,
1983 V: fmt::Debug,
1984 A: Allocator + Clone,
1985{
1986 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1987 f.debug_struct("ExtractIf").field("peek", &self.inner.peek()).finish_non_exhaustive()
1988 }
1989}
1990
1991#[stable(feature = "btree_extract_if", since = "CURRENT_RUSTC_VERSION")]
1992impl<K, V, R, F, A: Allocator + Clone> Iterator for ExtractIf<'_, K, V, R, F, A>
1993where
1994 K: PartialOrd,
1995 R: RangeBounds<K>,
1996 F: FnMut(&K, &mut V) -> bool,
1997{
1998 type Item = (K, V);
1999
2000 fn next(&mut self) -> Option<(K, V)> {
2001 self.inner.next(&mut self.pred, self.alloc.clone())
2002 }
2003
2004 fn size_hint(&self) -> (usize, Option<usize>) {
2005 self.inner.size_hint()
2006 }
2007}
2008
2009impl<'a, K, V, R> ExtractIfInner<'a, K, V, R> {
2010 /// Allow Debug implementations to predict the next element.
2011 pub(super) fn peek(&self) -> Option<(&K, &V)> {
2012 let edge = self.cur_leaf_edge.as_ref()?;
2013 edge.reborrow().next_kv().ok().map(Handle::into_kv)
2014 }
2015
2016 /// Implementation of a typical `ExtractIf::next` method, given the predicate.
2017 pub(super) fn next<F, A: Allocator + Clone>(&mut self, pred: &mut F, alloc: A) -> Option<(K, V)>
2018 where
2019 K: PartialOrd,
2020 R: RangeBounds<K>,
2021 F: FnMut(&K, &mut V) -> bool,
2022 {
2023 while let Ok(mut kv) = self.cur_leaf_edge.take()?.next_kv() {
2024 let (k, v) = kv.kv_mut();
2025
2026 // On creation, we navigated directly to the left bound, so we need only check the
2027 // right bound here to decide whether to stop.
2028 match self.range.end_bound() {
2029 Bound::Included(ref end) if (*k).le(end) => (),
2030 Bound::Excluded(ref end) if (*k).lt(end) => (),
2031 Bound::Unbounded => (),
2032 _ => return None,
2033 }
2034
2035 if pred(k, v) {
2036 *self.length -= 1;
2037 let (kv, pos) = kv.remove_kv_tracking(
2038 || {
2039 // SAFETY: we will touch the root in a way that will not
2040 // invalidate the position returned.
2041 let root = unsafe { self.dormant_root.take().unwrap().awaken() };
2042 root.pop_internal_level(alloc.clone());
2043 self.dormant_root = Some(DormantMutRef::new(root).1);
2044 },
2045 alloc.clone(),
2046 );
2047 self.cur_leaf_edge = Some(pos);
2048 return Some(kv);
2049 }
2050 self.cur_leaf_edge = Some(kv.next_leaf_edge());
2051 }
2052 None
2053 }
2054
2055 /// Implementation of a typical `ExtractIf::size_hint` method.
2056 pub(super) fn size_hint(&self) -> (usize, Option<usize>) {
2057 // In most of the btree iterators, `self.length` is the number of elements
2058 // yet to be visited. Here, it includes elements that were visited and that
2059 // the predicate decided not to drain. Making this upper bound more tight
2060 // during iteration would require an extra field.
2061 (0, Some(*self.length))
2062 }
2063}
2064
2065#[stable(feature = "btree_extract_if", since = "CURRENT_RUSTC_VERSION")]
2066impl<K, V, R, F> FusedIterator for ExtractIf<'_, K, V, R, F>
2067where
2068 K: PartialOrd,
2069 R: RangeBounds<K>,
2070 F: FnMut(&K, &mut V) -> bool,
2071{
2072}
2073
2074#[stable(feature = "btree_range", since = "1.17.0")]
2075impl<'a, K, V> Iterator for Range<'a, K, V> {
2076 type Item = (&'a K, &'a V);
2077
2078 fn next(&mut self) -> Option<(&'a K, &'a V)> {
2079 self.inner.next_checked()
2080 }
2081
2082 fn last(mut self) -> Option<(&'a K, &'a V)> {
2083 self.next_back()
2084 }
2085
2086 fn min(mut self) -> Option<(&'a K, &'a V)>
2087 where
2088 (&'a K, &'a V): Ord,
2089 {
2090 self.next()
2091 }
2092
2093 fn max(mut self) -> Option<(&'a K, &'a V)>
2094 where
2095 (&'a K, &'a V): Ord,
2096 {
2097 self.next_back()
2098 }
2099}
2100
2101#[stable(feature = "default_iters", since = "1.70.0")]
2102impl<K, V> Default for Range<'_, K, V> {
2103 /// Creates an empty `btree_map::Range`.
2104 ///
2105 /// ```
2106 /// # use std::collections::btree_map;
2107 /// let iter: btree_map::Range<'_, u8, u8> = Default::default();
2108 /// assert_eq!(iter.count(), 0);
2109 /// ```
2110 fn default() -> Self {
2111 Range { inner: Default::default() }
2112 }
2113}
2114
2115#[stable(feature = "default_iters_sequel", since = "1.82.0")]
2116impl<K, V> Default for RangeMut<'_, K, V> {
2117 /// Creates an empty `btree_map::RangeMut`.
2118 ///
2119 /// ```
2120 /// # use std::collections::btree_map;
2121 /// let iter: btree_map::RangeMut<'_, u8, u8> = Default::default();
2122 /// assert_eq!(iter.count(), 0);
2123 /// ```
2124 fn default() -> Self {
2125 RangeMut { inner: Default::default(), _marker: PhantomData }
2126 }
2127}
2128
2129#[stable(feature = "map_values_mut", since = "1.10.0")]
2130impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
2131 type Item = &'a mut V;
2132
2133 fn next(&mut self) -> Option<&'a mut V> {
2134 self.inner.next().map(|(_, v)| v)
2135 }
2136
2137 fn size_hint(&self) -> (usize, Option<usize>) {
2138 self.inner.size_hint()
2139 }
2140
2141 fn last(mut self) -> Option<&'a mut V> {
2142 self.next_back()
2143 }
2144}
2145
2146#[stable(feature = "map_values_mut", since = "1.10.0")]
2147impl<'a, K, V> DoubleEndedIterator for ValuesMut<'a, K, V> {
2148 fn next_back(&mut self) -> Option<&'a mut V> {
2149 self.inner.next_back().map(|(_, v)| v)
2150 }
2151}
2152
2153#[stable(feature = "map_values_mut", since = "1.10.0")]
2154impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> {
2155 fn len(&self) -> usize {
2156 self.inner.len()
2157 }
2158}
2159
2160#[stable(feature = "fused", since = "1.26.0")]
2161impl<K, V> FusedIterator for ValuesMut<'_, K, V> {}
2162
2163#[stable(feature = "default_iters_sequel", since = "1.82.0")]
2164impl<K, V> Default for ValuesMut<'_, K, V> {
2165 /// Creates an empty `btree_map::ValuesMut`.
2166 ///
2167 /// ```
2168 /// # use std::collections::btree_map;
2169 /// let iter: btree_map::ValuesMut<'_, u8, u8> = Default::default();
2170 /// assert_eq!(iter.count(), 0);
2171 /// ```
2172 fn default() -> Self {
2173 ValuesMut { inner: Default::default() }
2174 }
2175}
2176
2177#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2178impl<K, V, A: Allocator + Clone> Iterator for IntoKeys<K, V, A> {
2179 type Item = K;
2180
2181 fn next(&mut self) -> Option<K> {
2182 self.inner.next().map(|(k, _)| k)
2183 }
2184
2185 fn size_hint(&self) -> (usize, Option<usize>) {
2186 self.inner.size_hint()
2187 }
2188
2189 fn last(mut self) -> Option<K> {
2190 self.next_back()
2191 }
2192
2193 fn min(mut self) -> Option<K>
2194 where
2195 K: Ord,
2196 {
2197 self.next()
2198 }
2199
2200 fn max(mut self) -> Option<K>
2201 where
2202 K: Ord,
2203 {
2204 self.next_back()
2205 }
2206}
2207
2208#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2209impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoKeys<K, V, A> {
2210 fn next_back(&mut self) -> Option<K> {
2211 self.inner.next_back().map(|(k, _)| k)
2212 }
2213}
2214
2215#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2216impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoKeys<K, V, A> {
2217 fn len(&self) -> usize {
2218 self.inner.len()
2219 }
2220}
2221
2222#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2223impl<K, V, A: Allocator + Clone> FusedIterator for IntoKeys<K, V, A> {}
2224
2225#[stable(feature = "default_iters", since = "1.70.0")]
2226impl<K, V, A> Default for IntoKeys<K, V, A>
2227where
2228 A: Allocator + Default + Clone,
2229{
2230 /// Creates an empty `btree_map::IntoKeys`.
2231 ///
2232 /// ```
2233 /// # use std::collections::btree_map;
2234 /// let iter: btree_map::IntoKeys<u8, u8> = Default::default();
2235 /// assert_eq!(iter.len(), 0);
2236 /// ```
2237 fn default() -> Self {
2238 IntoKeys { inner: Default::default() }
2239 }
2240}
2241
2242#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2243impl<K, V, A: Allocator + Clone> Iterator for IntoValues<K, V, A> {
2244 type Item = V;
2245
2246 fn next(&mut self) -> Option<V> {
2247 self.inner.next().map(|(_, v)| v)
2248 }
2249
2250 fn size_hint(&self) -> (usize, Option<usize>) {
2251 self.inner.size_hint()
2252 }
2253
2254 fn last(mut self) -> Option<V> {
2255 self.next_back()
2256 }
2257}
2258
2259#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2260impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoValues<K, V, A> {
2261 fn next_back(&mut self) -> Option<V> {
2262 self.inner.next_back().map(|(_, v)| v)
2263 }
2264}
2265
2266#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2267impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoValues<K, V, A> {
2268 fn len(&self) -> usize {
2269 self.inner.len()
2270 }
2271}
2272
2273#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2274impl<K, V, A: Allocator + Clone> FusedIterator for IntoValues<K, V, A> {}
2275
2276#[stable(feature = "default_iters", since = "1.70.0")]
2277impl<K, V, A> Default for IntoValues<K, V, A>
2278where
2279 A: Allocator + Default + Clone,
2280{
2281 /// Creates an empty `btree_map::IntoValues`.
2282 ///
2283 /// ```
2284 /// # use std::collections::btree_map;
2285 /// let iter: btree_map::IntoValues<u8, u8> = Default::default();
2286 /// assert_eq!(iter.len(), 0);
2287 /// ```
2288 fn default() -> Self {
2289 IntoValues { inner: Default::default() }
2290 }
2291}
2292
2293#[stable(feature = "btree_range", since = "1.17.0")]
2294impl<'a, K, V> DoubleEndedIterator for Range<'a, K, V> {
2295 fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
2296 self.inner.next_back_checked()
2297 }
2298}
2299
2300#[stable(feature = "fused", since = "1.26.0")]
2301impl<K, V> FusedIterator for Range<'_, K, V> {}
2302
2303#[stable(feature = "btree_range", since = "1.17.0")]
2304impl<K, V> Clone for Range<'_, K, V> {
2305 fn clone(&self) -> Self {
2306 Range { inner: self.inner.clone() }
2307 }
2308}
2309
2310#[stable(feature = "btree_range", since = "1.17.0")]
2311impl<'a, K, V> Iterator for RangeMut<'a, K, V> {
2312 type Item = (&'a K, &'a mut V);
2313
2314 fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
2315 self.inner.next_checked()
2316 }
2317
2318 fn last(mut self) -> Option<(&'a K, &'a mut V)> {
2319 self.next_back()
2320 }
2321
2322 fn min(mut self) -> Option<(&'a K, &'a mut V)>
2323 where
2324 (&'a K, &'a mut V): Ord,
2325 {
2326 self.next()
2327 }
2328
2329 fn max(mut self) -> Option<(&'a K, &'a mut V)>
2330 where
2331 (&'a K, &'a mut V): Ord,
2332 {
2333 self.next_back()
2334 }
2335}
2336
2337#[stable(feature = "btree_range", since = "1.17.0")]
2338impl<'a, K, V> DoubleEndedIterator for RangeMut<'a, K, V> {
2339 fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
2340 self.inner.next_back_checked()
2341 }
2342}
2343
2344#[stable(feature = "fused", since = "1.26.0")]
2345impl<K, V> FusedIterator for RangeMut<'_, K, V> {}
2346
2347#[stable(feature = "rust1", since = "1.0.0")]
2348impl<K: Ord, V> FromIterator<(K, V)> for BTreeMap<K, V> {
2349 /// Constructs a `BTreeMap<K, V>` from an iterator of key-value pairs.
2350 ///
2351 /// If the iterator produces any pairs with equal keys,
2352 /// all but one of the corresponding values will be dropped.
2353 fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> BTreeMap<K, V> {
2354 let mut inputs: Vec<_> = iter.into_iter().collect();
2355
2356 if inputs.is_empty() {
2357 return BTreeMap::new();
2358 }
2359
2360 // use stable sort to preserve the insertion order.
2361 inputs.sort_by(|a, b| a.0.cmp(&b.0));
2362 BTreeMap::bulk_build_from_sorted_iter(inputs, Global)
2363 }
2364}
2365
2366#[stable(feature = "rust1", since = "1.0.0")]
2367impl<K: Ord, V, A: Allocator + Clone> Extend<(K, V)> for BTreeMap<K, V, A> {
2368 #[inline]
2369 fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
2370 iter.into_iter().for_each(move |(k, v)| {
2371 self.insert(k, v);
2372 });
2373 }
2374
2375 #[inline]
2376 fn extend_one(&mut self, (k, v): (K, V)) {
2377 self.insert(k, v);
2378 }
2379}
2380
2381#[stable(feature = "extend_ref", since = "1.2.0")]
2382impl<'a, K: Ord + Copy, V: Copy, A: Allocator + Clone> Extend<(&'a K, &'a V)>
2383 for BTreeMap<K, V, A>
2384{
2385 fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: I) {
2386 self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
2387 }
2388
2389 #[inline]
2390 fn extend_one(&mut self, (&k, &v): (&'a K, &'a V)) {
2391 self.insert(k, v);
2392 }
2393}
2394
2395#[stable(feature = "rust1", since = "1.0.0")]
2396impl<K: Hash, V: Hash, A: Allocator + Clone> Hash for BTreeMap<K, V, A> {
2397 fn hash<H: Hasher>(&self, state: &mut H) {
2398 state.write_length_prefix(self.len());
2399 for elt in self {
2400 elt.hash(state);
2401 }
2402 }
2403}
2404
2405#[stable(feature = "rust1", since = "1.0.0")]
2406impl<K, V> Default for BTreeMap<K, V> {
2407 /// Creates an empty `BTreeMap`.
2408 fn default() -> BTreeMap<K, V> {
2409 BTreeMap::new()
2410 }
2411}
2412
2413#[stable(feature = "rust1", since = "1.0.0")]
2414impl<K: PartialEq, V: PartialEq, A: Allocator + Clone> PartialEq for BTreeMap<K, V, A> {
2415 fn eq(&self, other: &BTreeMap<K, V, A>) -> bool {
2416 self.len() == other.len() && self.iter().zip(other).all(|(a, b)| a == b)
2417 }
2418}
2419
2420#[stable(feature = "rust1", since = "1.0.0")]
2421impl<K: Eq, V: Eq, A: Allocator + Clone> Eq for BTreeMap<K, V, A> {}
2422
2423#[stable(feature = "rust1", since = "1.0.0")]
2424impl<K: PartialOrd, V: PartialOrd, A: Allocator + Clone> PartialOrd for BTreeMap<K, V, A> {
2425 #[inline]
2426 fn partial_cmp(&self, other: &BTreeMap<K, V, A>) -> Option<Ordering> {
2427 self.iter().partial_cmp(other.iter())
2428 }
2429}
2430
2431#[stable(feature = "rust1", since = "1.0.0")]
2432impl<K: Ord, V: Ord, A: Allocator + Clone> Ord for BTreeMap<K, V, A> {
2433 #[inline]
2434 fn cmp(&self, other: &BTreeMap<K, V, A>) -> Ordering {
2435 self.iter().cmp(other.iter())
2436 }
2437}
2438
2439#[stable(feature = "rust1", since = "1.0.0")]
2440impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for BTreeMap<K, V, A> {
2441 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2442 f.debug_map().entries(self.iter()).finish()
2443 }
2444}
2445
2446#[stable(feature = "rust1", since = "1.0.0")]
2447impl<K, Q: ?Sized, V, A: Allocator + Clone> Index<&Q> for BTreeMap<K, V, A>
2448where
2449 K: Borrow<Q> + Ord,
2450 Q: Ord,
2451{
2452 type Output = V;
2453
2454 /// Returns a reference to the value corresponding to the supplied key.
2455 ///
2456 /// # Panics
2457 ///
2458 /// Panics if the key is not present in the `BTreeMap`.
2459 #[inline]
2460 fn index(&self, key: &Q) -> &V {
2461 self.get(key).expect("no entry found for key")
2462 }
2463}
2464
2465#[stable(feature = "std_collections_from_array", since = "1.56.0")]
2466impl<K: Ord, V, const N: usize> From<[(K, V); N]> for BTreeMap<K, V> {
2467 /// Converts a `[(K, V); N]` into a `BTreeMap<K, V>`.
2468 ///
2469 /// If any entries in the array have equal keys,
2470 /// all but one of the corresponding values will be dropped.
2471 ///
2472 /// ```
2473 /// use std::collections::BTreeMap;
2474 ///
2475 /// let map1 = BTreeMap::from([(1, 2), (3, 4)]);
2476 /// let map2: BTreeMap<_, _> = [(1, 2), (3, 4)].into();
2477 /// assert_eq!(map1, map2);
2478 /// ```
2479 fn from(mut arr: [(K, V); N]) -> Self {
2480 if N == 0 {
2481 return BTreeMap::new();
2482 }
2483
2484 // use stable sort to preserve the insertion order.
2485 arr.sort_by(|a, b| a.0.cmp(&b.0));
2486 BTreeMap::bulk_build_from_sorted_iter(arr, Global)
2487 }
2488}
2489
2490impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
2491 /// Gets an iterator over the entries of the map, sorted by key.
2492 ///
2493 /// # Examples
2494 ///
2495 /// ```
2496 /// use std::collections::BTreeMap;
2497 ///
2498 /// let mut map = BTreeMap::new();
2499 /// map.insert(3, "c");
2500 /// map.insert(2, "b");
2501 /// map.insert(1, "a");
2502 ///
2503 /// for (key, value) in map.iter() {
2504 /// println!("{key}: {value}");
2505 /// }
2506 ///
2507 /// let (first_key, first_value) = map.iter().next().unwrap();
2508 /// assert_eq!((*first_key, *first_value), (1, "a"));
2509 /// ```
2510 #[stable(feature = "rust1", since = "1.0.0")]
2511 pub fn iter(&self) -> Iter<'_, K, V> {
2512 if let Some(root) = &self.root {
2513 let full_range = root.reborrow().full_range();
2514
2515 Iter { range: full_range, length: self.length }
2516 } else {
2517 Iter { range: LazyLeafRange::none(), length: 0 }
2518 }
2519 }
2520
2521 /// Gets a mutable iterator over the entries of the map, sorted by key.
2522 ///
2523 /// # Examples
2524 ///
2525 /// ```
2526 /// use std::collections::BTreeMap;
2527 ///
2528 /// let mut map = BTreeMap::from([
2529 /// ("a", 1),
2530 /// ("b", 2),
2531 /// ("c", 3),
2532 /// ]);
2533 ///
2534 /// // add 10 to the value if the key isn't "a"
2535 /// for (key, value) in map.iter_mut() {
2536 /// if key != &"a" {
2537 /// *value += 10;
2538 /// }
2539 /// }
2540 /// ```
2541 #[stable(feature = "rust1", since = "1.0.0")]
2542 pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
2543 if let Some(root) = &mut self.root {
2544 let full_range = root.borrow_valmut().full_range();
2545
2546 IterMut { range: full_range, length: self.length, _marker: PhantomData }
2547 } else {
2548 IterMut { range: LazyLeafRange::none(), length: 0, _marker: PhantomData }
2549 }
2550 }
2551
2552 /// Gets an iterator over the keys of the map, in sorted order.
2553 ///
2554 /// # Examples
2555 ///
2556 /// ```
2557 /// use std::collections::BTreeMap;
2558 ///
2559 /// let mut a = BTreeMap::new();
2560 /// a.insert(2, "b");
2561 /// a.insert(1, "a");
2562 ///
2563 /// let keys: Vec<_> = a.keys().cloned().collect();
2564 /// assert_eq!(keys, [1, 2]);
2565 /// ```
2566 #[stable(feature = "rust1", since = "1.0.0")]
2567 pub fn keys(&self) -> Keys<'_, K, V> {
2568 Keys { inner: self.iter() }
2569 }
2570
2571 /// Gets an iterator over the values of the map, in order by key.
2572 ///
2573 /// # Examples
2574 ///
2575 /// ```
2576 /// use std::collections::BTreeMap;
2577 ///
2578 /// let mut a = BTreeMap::new();
2579 /// a.insert(1, "hello");
2580 /// a.insert(2, "goodbye");
2581 ///
2582 /// let values: Vec<&str> = a.values().cloned().collect();
2583 /// assert_eq!(values, ["hello", "goodbye"]);
2584 /// ```
2585 #[stable(feature = "rust1", since = "1.0.0")]
2586 pub fn values(&self) -> Values<'_, K, V> {
2587 Values { inner: self.iter() }
2588 }
2589
2590 /// Gets a mutable iterator over the values of the map, in order by key.
2591 ///
2592 /// # Examples
2593 ///
2594 /// ```
2595 /// use std::collections::BTreeMap;
2596 ///
2597 /// let mut a = BTreeMap::new();
2598 /// a.insert(1, String::from("hello"));
2599 /// a.insert(2, String::from("goodbye"));
2600 ///
2601 /// for value in a.values_mut() {
2602 /// value.push_str("!");
2603 /// }
2604 ///
2605 /// let values: Vec<String> = a.values().cloned().collect();
2606 /// assert_eq!(values, [String::from("hello!"),
2607 /// String::from("goodbye!")]);
2608 /// ```
2609 #[stable(feature = "map_values_mut", since = "1.10.0")]
2610 pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
2611 ValuesMut { inner: self.iter_mut() }
2612 }
2613
2614 /// Returns the number of elements in the map.
2615 ///
2616 /// # Examples
2617 ///
2618 /// ```
2619 /// use std::collections::BTreeMap;
2620 ///
2621 /// let mut a = BTreeMap::new();
2622 /// assert_eq!(a.len(), 0);
2623 /// a.insert(1, "a");
2624 /// assert_eq!(a.len(), 1);
2625 /// ```
2626 #[must_use]
2627 #[stable(feature = "rust1", since = "1.0.0")]
2628 #[rustc_const_unstable(
2629 feature = "const_btree_len",
2630 issue = "71835",
2631 implied_by = "const_btree_new"
2632 )]
2633 #[rustc_confusables("length", "size")]
2634 pub const fn len(&self) -> usize {
2635 self.length
2636 }
2637
2638 /// Returns `true` if the map contains no elements.
2639 ///
2640 /// # Examples
2641 ///
2642 /// ```
2643 /// use std::collections::BTreeMap;
2644 ///
2645 /// let mut a = BTreeMap::new();
2646 /// assert!(a.is_empty());
2647 /// a.insert(1, "a");
2648 /// assert!(!a.is_empty());
2649 /// ```
2650 #[must_use]
2651 #[stable(feature = "rust1", since = "1.0.0")]
2652 #[rustc_const_unstable(
2653 feature = "const_btree_len",
2654 issue = "71835",
2655 implied_by = "const_btree_new"
2656 )]
2657 pub const fn is_empty(&self) -> bool {
2658 self.len() == 0
2659 }
2660
2661 /// Returns a [`Cursor`] pointing at the gap before the smallest key
2662 /// greater than the given bound.
2663 ///
2664 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2665 /// gap before the smallest key greater than or equal to `x`.
2666 ///
2667 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2668 /// gap before the smallest key greater than `x`.
2669 ///
2670 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2671 /// gap before the smallest key in the map.
2672 ///
2673 /// # Examples
2674 ///
2675 /// ```
2676 /// #![feature(btree_cursors)]
2677 ///
2678 /// use std::collections::BTreeMap;
2679 /// use std::ops::Bound;
2680 ///
2681 /// let map = BTreeMap::from([
2682 /// (1, "a"),
2683 /// (2, "b"),
2684 /// (3, "c"),
2685 /// (4, "d"),
2686 /// ]);
2687 ///
2688 /// let cursor = map.lower_bound(Bound::Included(&2));
2689 /// assert_eq!(cursor.peek_prev(), Some((&1, &"a")));
2690 /// assert_eq!(cursor.peek_next(), Some((&2, &"b")));
2691 ///
2692 /// let cursor = map.lower_bound(Bound::Excluded(&2));
2693 /// assert_eq!(cursor.peek_prev(), Some((&2, &"b")));
2694 /// assert_eq!(cursor.peek_next(), Some((&3, &"c")));
2695 ///
2696 /// let cursor = map.lower_bound(Bound::Unbounded);
2697 /// assert_eq!(cursor.peek_prev(), None);
2698 /// assert_eq!(cursor.peek_next(), Some((&1, &"a")));
2699 /// ```
2700 #[unstable(feature = "btree_cursors", issue = "107540")]
2701 pub fn lower_bound<Q: ?Sized>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
2702 where
2703 K: Borrow<Q> + Ord,
2704 Q: Ord,
2705 {
2706 let root_node = match self.root.as_ref() {
2707 None => return Cursor { current: None, root: None },
2708 Some(root) => root.reborrow(),
2709 };
2710 let edge = root_node.lower_bound(SearchBound::from_range(bound));
2711 Cursor { current: Some(edge), root: self.root.as_ref() }
2712 }
2713
2714 /// Returns a [`CursorMut`] pointing at the gap before the smallest key
2715 /// greater than the given bound.
2716 ///
2717 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2718 /// gap before the smallest key greater than or equal to `x`.
2719 ///
2720 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2721 /// gap before the smallest key greater than `x`.
2722 ///
2723 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2724 /// gap before the smallest key in the map.
2725 ///
2726 /// # Examples
2727 ///
2728 /// ```
2729 /// #![feature(btree_cursors)]
2730 ///
2731 /// use std::collections::BTreeMap;
2732 /// use std::ops::Bound;
2733 ///
2734 /// let mut map = BTreeMap::from([
2735 /// (1, "a"),
2736 /// (2, "b"),
2737 /// (3, "c"),
2738 /// (4, "d"),
2739 /// ]);
2740 ///
2741 /// let mut cursor = map.lower_bound_mut(Bound::Included(&2));
2742 /// assert_eq!(cursor.peek_prev(), Some((&1, &mut "a")));
2743 /// assert_eq!(cursor.peek_next(), Some((&2, &mut "b")));
2744 ///
2745 /// let mut cursor = map.lower_bound_mut(Bound::Excluded(&2));
2746 /// assert_eq!(cursor.peek_prev(), Some((&2, &mut "b")));
2747 /// assert_eq!(cursor.peek_next(), Some((&3, &mut "c")));
2748 ///
2749 /// let mut cursor = map.lower_bound_mut(Bound::Unbounded);
2750 /// assert_eq!(cursor.peek_prev(), None);
2751 /// assert_eq!(cursor.peek_next(), Some((&1, &mut "a")));
2752 /// ```
2753 #[unstable(feature = "btree_cursors", issue = "107540")]
2754 pub fn lower_bound_mut<Q: ?Sized>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
2755 where
2756 K: Borrow<Q> + Ord,
2757 Q: Ord,
2758 {
2759 let (root, dormant_root) = DormantMutRef::new(&mut self.root);
2760 let root_node = match root.as_mut() {
2761 None => {
2762 return CursorMut {
2763 inner: CursorMutKey {
2764 current: None,
2765 root: dormant_root,
2766 length: &mut self.length,
2767 alloc: &mut *self.alloc,
2768 },
2769 };
2770 }
2771 Some(root) => root.borrow_mut(),
2772 };
2773 let edge = root_node.lower_bound(SearchBound::from_range(bound));
2774 CursorMut {
2775 inner: CursorMutKey {
2776 current: Some(edge),
2777 root: dormant_root,
2778 length: &mut self.length,
2779 alloc: &mut *self.alloc,
2780 },
2781 }
2782 }
2783
2784 /// Returns a [`Cursor`] pointing at the gap after the greatest key
2785 /// smaller than the given bound.
2786 ///
2787 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2788 /// gap after the greatest key smaller than or equal to `x`.
2789 ///
2790 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2791 /// gap after the greatest key smaller than `x`.
2792 ///
2793 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2794 /// gap after the greatest key in the map.
2795 ///
2796 /// # Examples
2797 ///
2798 /// ```
2799 /// #![feature(btree_cursors)]
2800 ///
2801 /// use std::collections::BTreeMap;
2802 /// use std::ops::Bound;
2803 ///
2804 /// let map = BTreeMap::from([
2805 /// (1, "a"),
2806 /// (2, "b"),
2807 /// (3, "c"),
2808 /// (4, "d"),
2809 /// ]);
2810 ///
2811 /// let cursor = map.upper_bound(Bound::Included(&3));
2812 /// assert_eq!(cursor.peek_prev(), Some((&3, &"c")));
2813 /// assert_eq!(cursor.peek_next(), Some((&4, &"d")));
2814 ///
2815 /// let cursor = map.upper_bound(Bound::Excluded(&3));
2816 /// assert_eq!(cursor.peek_prev(), Some((&2, &"b")));
2817 /// assert_eq!(cursor.peek_next(), Some((&3, &"c")));
2818 ///
2819 /// let cursor = map.upper_bound(Bound::Unbounded);
2820 /// assert_eq!(cursor.peek_prev(), Some((&4, &"d")));
2821 /// assert_eq!(cursor.peek_next(), None);
2822 /// ```
2823 #[unstable(feature = "btree_cursors", issue = "107540")]
2824 pub fn upper_bound<Q: ?Sized>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
2825 where
2826 K: Borrow<Q> + Ord,
2827 Q: Ord,
2828 {
2829 let root_node = match self.root.as_ref() {
2830 None => return Cursor { current: None, root: None },
2831 Some(root) => root.reborrow(),
2832 };
2833 let edge = root_node.upper_bound(SearchBound::from_range(bound));
2834 Cursor { current: Some(edge), root: self.root.as_ref() }
2835 }
2836
2837 /// Returns a [`CursorMut`] pointing at the gap after the greatest key
2838 /// smaller than the given bound.
2839 ///
2840 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2841 /// gap after the greatest key smaller than or equal to `x`.
2842 ///
2843 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2844 /// gap after the greatest key smaller than `x`.
2845 ///
2846 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2847 /// gap after the greatest key in the map.
2848 ///
2849 /// # Examples
2850 ///
2851 /// ```
2852 /// #![feature(btree_cursors)]
2853 ///
2854 /// use std::collections::BTreeMap;
2855 /// use std::ops::Bound;
2856 ///
2857 /// let mut map = BTreeMap::from([
2858 /// (1, "a"),
2859 /// (2, "b"),
2860 /// (3, "c"),
2861 /// (4, "d"),
2862 /// ]);
2863 ///
2864 /// let mut cursor = map.upper_bound_mut(Bound::Included(&3));
2865 /// assert_eq!(cursor.peek_prev(), Some((&3, &mut "c")));
2866 /// assert_eq!(cursor.peek_next(), Some((&4, &mut "d")));
2867 ///
2868 /// let mut cursor = map.upper_bound_mut(Bound::Excluded(&3));
2869 /// assert_eq!(cursor.peek_prev(), Some((&2, &mut "b")));
2870 /// assert_eq!(cursor.peek_next(), Some((&3, &mut "c")));
2871 ///
2872 /// let mut cursor = map.upper_bound_mut(Bound::Unbounded);
2873 /// assert_eq!(cursor.peek_prev(), Some((&4, &mut "d")));
2874 /// assert_eq!(cursor.peek_next(), None);
2875 /// ```
2876 #[unstable(feature = "btree_cursors", issue = "107540")]
2877 pub fn upper_bound_mut<Q: ?Sized>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
2878 where
2879 K: Borrow<Q> + Ord,
2880 Q: Ord,
2881 {
2882 let (root, dormant_root) = DormantMutRef::new(&mut self.root);
2883 let root_node = match root.as_mut() {
2884 None => {
2885 return CursorMut {
2886 inner: CursorMutKey {
2887 current: None,
2888 root: dormant_root,
2889 length: &mut self.length,
2890 alloc: &mut *self.alloc,
2891 },
2892 };
2893 }
2894 Some(root) => root.borrow_mut(),
2895 };
2896 let edge = root_node.upper_bound(SearchBound::from_range(bound));
2897 CursorMut {
2898 inner: CursorMutKey {
2899 current: Some(edge),
2900 root: dormant_root,
2901 length: &mut self.length,
2902 alloc: &mut *self.alloc,
2903 },
2904 }
2905 }
2906}
2907
2908/// A cursor over a `BTreeMap`.
2909///
2910/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth.
2911///
2912/// Cursors always point to a gap between two elements in the map, and can
2913/// operate on the two immediately adjacent elements.
2914///
2915/// A `Cursor` is created with the [`BTreeMap::lower_bound`] and [`BTreeMap::upper_bound`] methods.
2916#[unstable(feature = "btree_cursors", issue = "107540")]
2917pub struct Cursor<'a, K: 'a, V: 'a> {
2918 // If current is None then it means the tree has not been allocated yet.
2919 current: Option<Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>>,
2920 root: Option<&'a node::Root<K, V>>,
2921}
2922
2923#[unstable(feature = "btree_cursors", issue = "107540")]
2924impl<K, V> Clone for Cursor<'_, K, V> {
2925 fn clone(&self) -> Self {
2926 let Cursor { current, root } = *self;
2927 Cursor { current, root }
2928 }
2929}
2930
2931#[unstable(feature = "btree_cursors", issue = "107540")]
2932impl<K: Debug, V: Debug> Debug for Cursor<'_, K, V> {
2933 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2934 f.write_str("Cursor")
2935 }
2936}
2937
2938/// A cursor over a `BTreeMap` with editing operations.
2939///
2940/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
2941/// safely mutate the map during iteration. This is because the lifetime of its yielded
2942/// references is tied to its own lifetime, instead of just the underlying map. This means
2943/// cursors cannot yield multiple elements at once.
2944///
2945/// Cursors always point to a gap between two elements in the map, and can
2946/// operate on the two immediately adjacent elements.
2947///
2948/// A `CursorMut` is created with the [`BTreeMap::lower_bound_mut`] and [`BTreeMap::upper_bound_mut`]
2949/// methods.
2950#[unstable(feature = "btree_cursors", issue = "107540")]
2951pub struct CursorMut<
2952 'a,
2953 K: 'a,
2954 V: 'a,
2955 #[unstable(feature = "allocator_api", issue = "32838")] A = Global,
2956> {
2957 inner: CursorMutKey<'a, K, V, A>,
2958}
2959
2960#[unstable(feature = "btree_cursors", issue = "107540")]
2961impl<K: Debug, V: Debug, A> Debug for CursorMut<'_, K, V, A> {
2962 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2963 f.write_str("CursorMut")
2964 }
2965}
2966
2967/// A cursor over a `BTreeMap` with editing operations, and which allows
2968/// mutating the key of elements.
2969///
2970/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
2971/// safely mutate the map during iteration. This is because the lifetime of its yielded
2972/// references is tied to its own lifetime, instead of just the underlying map. This means
2973/// cursors cannot yield multiple elements at once.
2974///
2975/// Cursors always point to a gap between two elements in the map, and can
2976/// operate on the two immediately adjacent elements.
2977///
2978/// A `CursorMutKey` is created from a [`CursorMut`] with the
2979/// [`CursorMut::with_mutable_key`] method.
2980///
2981/// # Safety
2982///
2983/// Since this cursor allows mutating keys, you must ensure that the `BTreeMap`
2984/// invariants are maintained. Specifically:
2985///
2986/// * The key of the newly inserted element must be unique in the tree.
2987/// * All keys in the tree must remain in sorted order.
2988#[unstable(feature = "btree_cursors", issue = "107540")]
2989pub struct CursorMutKey<
2990 'a,
2991 K: 'a,
2992 V: 'a,
2993 #[unstable(feature = "allocator_api", issue = "32838")] A = Global,
2994> {
2995 // If current is None then it means the tree has not been allocated yet.
2996 current: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
2997 root: DormantMutRef<'a, Option<node::Root<K, V>>>,
2998 length: &'a mut usize,
2999 alloc: &'a mut A,
3000}
3001
3002#[unstable(feature = "btree_cursors", issue = "107540")]
3003impl<K: Debug, V: Debug, A> Debug for CursorMutKey<'_, K, V, A> {
3004 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3005 f.write_str("CursorMutKey")
3006 }
3007}
3008
3009impl<'a, K, V> Cursor<'a, K, V> {
3010 /// Advances the cursor to the next gap, returning the key and value of the
3011 /// element that it moved over.
3012 ///
3013 /// If the cursor is already at the end of the map then `None` is returned
3014 /// and the cursor is not moved.
3015 #[unstable(feature = "btree_cursors", issue = "107540")]
3016 pub fn next(&mut self) -> Option<(&'a K, &'a V)> {
3017 let current = self.current.take()?;
3018 match current.next_kv() {
3019 Ok(kv) => {
3020 let result = kv.into_kv();
3021 self.current = Some(kv.next_leaf_edge());
3022 Some(result)
3023 }
3024 Err(root) => {
3025 self.current = Some(root.last_leaf_edge());
3026 None
3027 }
3028 }
3029 }
3030
3031 /// Advances the cursor to the previous gap, returning the key and value of
3032 /// the element that it moved over.
3033 ///
3034 /// If the cursor is already at the start of the map then `None` is returned
3035 /// and the cursor is not moved.
3036 #[unstable(feature = "btree_cursors", issue = "107540")]
3037 pub fn prev(&mut self) -> Option<(&'a K, &'a V)> {
3038 let current = self.current.take()?;
3039 match current.next_back_kv() {
3040 Ok(kv) => {
3041 let result = kv.into_kv();
3042 self.current = Some(kv.next_back_leaf_edge());
3043 Some(result)
3044 }
3045 Err(root) => {
3046 self.current = Some(root.first_leaf_edge());
3047 None
3048 }
3049 }
3050 }
3051
3052 /// Returns a reference to the key and value of the next element without
3053 /// moving the cursor.
3054 ///
3055 /// If the cursor is at the end of the map then `None` is returned.
3056 #[unstable(feature = "btree_cursors", issue = "107540")]
3057 pub fn peek_next(&self) -> Option<(&'a K, &'a V)> {
3058 self.clone().next()
3059 }
3060
3061 /// Returns a reference to the key and value of the previous element
3062 /// without moving the cursor.
3063 ///
3064 /// If the cursor is at the start of the map then `None` is returned.
3065 #[unstable(feature = "btree_cursors", issue = "107540")]
3066 pub fn peek_prev(&self) -> Option<(&'a K, &'a V)> {
3067 self.clone().prev()
3068 }
3069}
3070
3071impl<'a, K, V, A> CursorMut<'a, K, V, A> {
3072 /// Advances the cursor to the next gap, returning the key and value of the
3073 /// element that it moved over.
3074 ///
3075 /// If the cursor is already at the end of the map then `None` is returned
3076 /// and the cursor is not moved.
3077 #[unstable(feature = "btree_cursors", issue = "107540")]
3078 pub fn next(&mut self) -> Option<(&K, &mut V)> {
3079 let (k, v) = self.inner.next()?;
3080 Some((&*k, v))
3081 }
3082
3083 /// Advances the cursor to the previous gap, returning the key and value of
3084 /// the element that it moved over.
3085 ///
3086 /// If the cursor is already at the start of the map then `None` is returned
3087 /// and the cursor is not moved.
3088 #[unstable(feature = "btree_cursors", issue = "107540")]
3089 pub fn prev(&mut self) -> Option<(&K, &mut V)> {
3090 let (k, v) = self.inner.prev()?;
3091 Some((&*k, v))
3092 }
3093
3094 /// Returns a reference to the key and value of the next element without
3095 /// moving the cursor.
3096 ///
3097 /// If the cursor is at the end of the map then `None` is returned.
3098 #[unstable(feature = "btree_cursors", issue = "107540")]
3099 pub fn peek_next(&mut self) -> Option<(&K, &mut V)> {
3100 let (k, v) = self.inner.peek_next()?;
3101 Some((&*k, v))
3102 }
3103
3104 /// Returns a reference to the key and value of the previous element
3105 /// without moving the cursor.
3106 ///
3107 /// If the cursor is at the start of the map then `None` is returned.
3108 #[unstable(feature = "btree_cursors", issue = "107540")]
3109 pub fn peek_prev(&mut self) -> Option<(&K, &mut V)> {
3110 let (k, v) = self.inner.peek_prev()?;
3111 Some((&*k, v))
3112 }
3113
3114 /// Returns a read-only cursor pointing to the same location as the
3115 /// `CursorMut`.
3116 ///
3117 /// The lifetime of the returned `Cursor` is bound to that of the
3118 /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
3119 /// `CursorMut` is frozen for the lifetime of the `Cursor`.
3120 #[unstable(feature = "btree_cursors", issue = "107540")]
3121 pub fn as_cursor(&self) -> Cursor<'_, K, V> {
3122 self.inner.as_cursor()
3123 }
3124
3125 /// Converts the cursor into a [`CursorMutKey`], which allows mutating
3126 /// the key of elements in the tree.
3127 ///
3128 /// # Safety
3129 ///
3130 /// Since this cursor allows mutating keys, you must ensure that the `BTreeMap`
3131 /// invariants are maintained. Specifically:
3132 ///
3133 /// * The key of the newly inserted element must be unique in the tree.
3134 /// * All keys in the tree must remain in sorted order.
3135 #[unstable(feature = "btree_cursors", issue = "107540")]
3136 pub unsafe fn with_mutable_key(self) -> CursorMutKey<'a, K, V, A> {
3137 self.inner
3138 }
3139}
3140
3141impl<'a, K, V, A> CursorMutKey<'a, K, V, A> {
3142 /// Advances the cursor to the next gap, returning the key and value of the
3143 /// element that it moved over.
3144 ///
3145 /// If the cursor is already at the end of the map then `None` is returned
3146 /// and the cursor is not moved.
3147 #[unstable(feature = "btree_cursors", issue = "107540")]
3148 pub fn next(&mut self) -> Option<(&mut K, &mut V)> {
3149 let current = self.current.take()?;
3150 match current.next_kv() {
3151 Ok(mut kv) => {
3152 // SAFETY: The key/value pointers remain valid even after the
3153 // cursor is moved forward. The lifetimes then prevent any
3154 // further access to the cursor.
3155 let (k, v) = unsafe { kv.reborrow_mut().into_kv_mut() };
3156 let (k, v) = (k as *mut _, v as *mut _);
3157 self.current = Some(kv.next_leaf_edge());
3158 Some(unsafe { (&mut *k, &mut *v) })
3159 }
3160 Err(root) => {
3161 self.current = Some(root.last_leaf_edge());
3162 None
3163 }
3164 }
3165 }
3166
3167 /// Advances the cursor to the previous gap, returning the key and value of
3168 /// the element that it moved over.
3169 ///
3170 /// If the cursor is already at the start of the map then `None` is returned
3171 /// and the cursor is not moved.
3172 #[unstable(feature = "btree_cursors", issue = "107540")]
3173 pub fn prev(&mut self) -> Option<(&mut K, &mut V)> {
3174 let current = self.current.take()?;
3175 match current.next_back_kv() {
3176 Ok(mut kv) => {
3177 // SAFETY: The key/value pointers remain valid even after the
3178 // cursor is moved forward. The lifetimes then prevent any
3179 // further access to the cursor.
3180 let (k, v) = unsafe { kv.reborrow_mut().into_kv_mut() };
3181 let (k, v) = (k as *mut _, v as *mut _);
3182 self.current = Some(kv.next_back_leaf_edge());
3183 Some(unsafe { (&mut *k, &mut *v) })
3184 }
3185 Err(root) => {
3186 self.current = Some(root.first_leaf_edge());
3187 None
3188 }
3189 }
3190 }
3191
3192 /// Returns a reference to the key and value of the next element without
3193 /// moving the cursor.
3194 ///
3195 /// If the cursor is at the end of the map then `None` is returned.
3196 #[unstable(feature = "btree_cursors", issue = "107540")]
3197 pub fn peek_next(&mut self) -> Option<(&mut K, &mut V)> {
3198 let current = self.current.as_mut()?;
3199 // SAFETY: We're not using this to mutate the tree.
3200 let kv = unsafe { current.reborrow_mut() }.next_kv().ok()?.into_kv_mut();
3201 Some(kv)
3202 }
3203
3204 /// Returns a reference to the key and value of the previous element
3205 /// without moving the cursor.
3206 ///
3207 /// If the cursor is at the start of the map then `None` is returned.
3208 #[unstable(feature = "btree_cursors", issue = "107540")]
3209 pub fn peek_prev(&mut self) -> Option<(&mut K, &mut V)> {
3210 let current = self.current.as_mut()?;
3211 // SAFETY: We're not using this to mutate the tree.
3212 let kv = unsafe { current.reborrow_mut() }.next_back_kv().ok()?.into_kv_mut();
3213 Some(kv)
3214 }
3215
3216 /// Returns a read-only cursor pointing to the same location as the
3217 /// `CursorMutKey`.
3218 ///
3219 /// The lifetime of the returned `Cursor` is bound to that of the
3220 /// `CursorMutKey`, which means it cannot outlive the `CursorMutKey` and that the
3221 /// `CursorMutKey` is frozen for the lifetime of the `Cursor`.
3222 #[unstable(feature = "btree_cursors", issue = "107540")]
3223 pub fn as_cursor(&self) -> Cursor<'_, K, V> {
3224 Cursor {
3225 // SAFETY: The tree is immutable while the cursor exists.
3226 root: unsafe { self.root.reborrow_shared().as_ref() },
3227 current: self.current.as_ref().map(|current| current.reborrow()),
3228 }
3229 }
3230}
3231
3232// Now the tree editing operations
3233impl<'a, K: Ord, V, A: Allocator + Clone> CursorMutKey<'a, K, V, A> {
3234 /// Inserts a new key-value pair into the map in the gap that the
3235 /// cursor is currently pointing to.
3236 ///
3237 /// After the insertion the cursor will be pointing at the gap before the
3238 /// newly inserted element.
3239 ///
3240 /// # Safety
3241 ///
3242 /// You must ensure that the `BTreeMap` invariants are maintained.
3243 /// Specifically:
3244 ///
3245 /// * The key of the newly inserted element must be unique in the tree.
3246 /// * All keys in the tree must remain in sorted order.
3247 #[unstable(feature = "btree_cursors", issue = "107540")]
3248 pub unsafe fn insert_after_unchecked(&mut self, key: K, value: V) {
3249 let edge = match self.current.take() {
3250 None => {
3251 // Tree is empty, allocate a new root.
3252 // SAFETY: We have no other reference to the tree.
3253 let root = unsafe { self.root.reborrow() };
3254 debug_assert!(root.is_none());
3255 let mut node = NodeRef::new_leaf(self.alloc.clone());
3256 // SAFETY: We don't touch the root while the handle is alive.
3257 let handle = unsafe { node.borrow_mut().push_with_handle(key, value) };
3258 *root = Some(node.forget_type());
3259 *self.length += 1;
3260 self.current = Some(handle.left_edge());
3261 return;
3262 }
3263 Some(current) => current,
3264 };
3265
3266 let handle = edge.insert_recursing(key, value, self.alloc.clone(), |ins| {
3267 drop(ins.left);
3268 // SAFETY: The handle to the newly inserted value is always on a
3269 // leaf node, so adding a new root node doesn't invalidate it.
3270 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3271 root.push_internal_level(self.alloc.clone()).push(ins.kv.0, ins.kv.1, ins.right)
3272 });
3273 self.current = Some(handle.left_edge());
3274 *self.length += 1;
3275 }
3276
3277 /// Inserts a new key-value pair into the map in the gap that the
3278 /// cursor is currently pointing to.
3279 ///
3280 /// After the insertion the cursor will be pointing at the gap after the
3281 /// newly inserted element.
3282 ///
3283 /// # Safety
3284 ///
3285 /// You must ensure that the `BTreeMap` invariants are maintained.
3286 /// Specifically:
3287 ///
3288 /// * The key of the newly inserted element must be unique in the tree.
3289 /// * All keys in the tree must remain in sorted order.
3290 #[unstable(feature = "btree_cursors", issue = "107540")]
3291 pub unsafe fn insert_before_unchecked(&mut self, key: K, value: V) {
3292 let edge = match self.current.take() {
3293 None => {
3294 // SAFETY: We have no other reference to the tree.
3295 match unsafe { self.root.reborrow() } {
3296 root @ None => {
3297 // Tree is empty, allocate a new root.
3298 let mut node = NodeRef::new_leaf(self.alloc.clone());
3299 // SAFETY: We don't touch the root while the handle is alive.
3300 let handle = unsafe { node.borrow_mut().push_with_handle(key, value) };
3301 *root = Some(node.forget_type());
3302 *self.length += 1;
3303 self.current = Some(handle.right_edge());
3304 return;
3305 }
3306 Some(root) => root.borrow_mut().last_leaf_edge(),
3307 }
3308 }
3309 Some(current) => current,
3310 };
3311
3312 let handle = edge.insert_recursing(key, value, self.alloc.clone(), |ins| {
3313 drop(ins.left);
3314 // SAFETY: The handle to the newly inserted value is always on a
3315 // leaf node, so adding a new root node doesn't invalidate it.
3316 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3317 root.push_internal_level(self.alloc.clone()).push(ins.kv.0, ins.kv.1, ins.right)
3318 });
3319 self.current = Some(handle.right_edge());
3320 *self.length += 1;
3321 }
3322
3323 /// Inserts a new key-value pair into the map in the gap that the
3324 /// cursor is currently pointing to.
3325 ///
3326 /// After the insertion the cursor will be pointing at the gap before the
3327 /// newly inserted element.
3328 ///
3329 /// If the inserted key is not greater than the key before the cursor
3330 /// (if any), or if it not less than the key after the cursor (if any),
3331 /// then an [`UnorderedKeyError`] is returned since this would
3332 /// invalidate the [`Ord`] invariant between the keys of the map.
3333 #[unstable(feature = "btree_cursors", issue = "107540")]
3334 pub fn insert_after(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3335 if let Some((prev, _)) = self.peek_prev() {
3336 if &key <= prev {
3337 return Err(UnorderedKeyError {});
3338 }
3339 }
3340 if let Some((next, _)) = self.peek_next() {
3341 if &key >= next {
3342 return Err(UnorderedKeyError {});
3343 }
3344 }
3345 unsafe {
3346 self.insert_after_unchecked(key, value);
3347 }
3348 Ok(())
3349 }
3350
3351 /// Inserts a new key-value pair into the map in the gap that the
3352 /// cursor is currently pointing to.
3353 ///
3354 /// After the insertion the cursor will be pointing at the gap after the
3355 /// newly inserted element.
3356 ///
3357 /// If the inserted key is not greater than the key before the cursor
3358 /// (if any), or if it not less than the key after the cursor (if any),
3359 /// then an [`UnorderedKeyError`] is returned since this would
3360 /// invalidate the [`Ord`] invariant between the keys of the map.
3361 #[unstable(feature = "btree_cursors", issue = "107540")]
3362 pub fn insert_before(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3363 if let Some((prev, _)) = self.peek_prev() {
3364 if &key <= prev {
3365 return Err(UnorderedKeyError {});
3366 }
3367 }
3368 if let Some((next, _)) = self.peek_next() {
3369 if &key >= next {
3370 return Err(UnorderedKeyError {});
3371 }
3372 }
3373 unsafe {
3374 self.insert_before_unchecked(key, value);
3375 }
3376 Ok(())
3377 }
3378
3379 /// Removes the next element from the `BTreeMap`.
3380 ///
3381 /// The element that was removed is returned. The cursor position is
3382 /// unchanged (before the removed element).
3383 #[unstable(feature = "btree_cursors", issue = "107540")]
3384 pub fn remove_next(&mut self) -> Option<(K, V)> {
3385 let current = self.current.take()?;
3386 if current.reborrow().next_kv().is_err() {
3387 self.current = Some(current);
3388 return None;
3389 }
3390 let mut emptied_internal_root = false;
3391 let (kv, pos) = current
3392 .next_kv()
3393 // This should be unwrap(), but that doesn't work because NodeRef
3394 // doesn't implement Debug. The condition is checked above.
3395 .ok()?
3396 .remove_kv_tracking(|| emptied_internal_root = true, self.alloc.clone());
3397 self.current = Some(pos);
3398 *self.length -= 1;
3399 if emptied_internal_root {
3400 // SAFETY: This is safe since current does not point within the now
3401 // empty root node.
3402 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3403 root.pop_internal_level(self.alloc.clone());
3404 }
3405 Some(kv)
3406 }
3407
3408 /// Removes the preceding element from the `BTreeMap`.
3409 ///
3410 /// The element that was removed is returned. The cursor position is
3411 /// unchanged (after the removed element).
3412 #[unstable(feature = "btree_cursors", issue = "107540")]
3413 pub fn remove_prev(&mut self) -> Option<(K, V)> {
3414 let current = self.current.take()?;
3415 if current.reborrow().next_back_kv().is_err() {
3416 self.current = Some(current);
3417 return None;
3418 }
3419 let mut emptied_internal_root = false;
3420 let (kv, pos) = current
3421 .next_back_kv()
3422 // This should be unwrap(), but that doesn't work because NodeRef
3423 // doesn't implement Debug. The condition is checked above.
3424 .ok()?
3425 .remove_kv_tracking(|| emptied_internal_root = true, self.alloc.clone());
3426 self.current = Some(pos);
3427 *self.length -= 1;
3428 if emptied_internal_root {
3429 // SAFETY: This is safe since current does not point within the now
3430 // empty root node.
3431 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3432 root.pop_internal_level(self.alloc.clone());
3433 }
3434 Some(kv)
3435 }
3436}
3437
3438impl<'a, K: Ord, V, A: Allocator + Clone> CursorMut<'a, K, V, A> {
3439 /// Inserts a new key-value pair into the map in the gap that the
3440 /// cursor is currently pointing to.
3441 ///
3442 /// After the insertion the cursor will be pointing at the gap after the
3443 /// newly inserted element.
3444 ///
3445 /// # Safety
3446 ///
3447 /// You must ensure that the `BTreeMap` invariants are maintained.
3448 /// Specifically:
3449 ///
3450 /// * The key of the newly inserted element must be unique in the tree.
3451 /// * All keys in the tree must remain in sorted order.
3452 #[unstable(feature = "btree_cursors", issue = "107540")]
3453 pub unsafe fn insert_after_unchecked(&mut self, key: K, value: V) {
3454 unsafe { self.inner.insert_after_unchecked(key, value) }
3455 }
3456
3457 /// Inserts a new key-value pair into the map in the gap that the
3458 /// cursor is currently pointing to.
3459 ///
3460 /// After the insertion the cursor will be pointing at the gap after the
3461 /// newly inserted element.
3462 ///
3463 /// # Safety
3464 ///
3465 /// You must ensure that the `BTreeMap` invariants are maintained.
3466 /// Specifically:
3467 ///
3468 /// * The key of the newly inserted element must be unique in the tree.
3469 /// * All keys in the tree must remain in sorted order.
3470 #[unstable(feature = "btree_cursors", issue = "107540")]
3471 pub unsafe fn insert_before_unchecked(&mut self, key: K, value: V) {
3472 unsafe { self.inner.insert_before_unchecked(key, value) }
3473 }
3474
3475 /// Inserts a new key-value pair into the map in the gap that the
3476 /// cursor is currently pointing to.
3477 ///
3478 /// After the insertion the cursor will be pointing at the gap before the
3479 /// newly inserted element.
3480 ///
3481 /// If the inserted key is not greater than the key before the cursor
3482 /// (if any), or if it not less than the key after the cursor (if any),
3483 /// then an [`UnorderedKeyError`] is returned since this would
3484 /// invalidate the [`Ord`] invariant between the keys of the map.
3485 #[unstable(feature = "btree_cursors", issue = "107540")]
3486 pub fn insert_after(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3487 self.inner.insert_after(key, value)
3488 }
3489
3490 /// Inserts a new key-value pair into the map in the gap that the
3491 /// cursor is currently pointing to.
3492 ///
3493 /// After the insertion the cursor will be pointing at the gap after the
3494 /// newly inserted element.
3495 ///
3496 /// If the inserted key is not greater than the key before the cursor
3497 /// (if any), or if it not less than the key after the cursor (if any),
3498 /// then an [`UnorderedKeyError`] is returned since this would
3499 /// invalidate the [`Ord`] invariant between the keys of the map.
3500 #[unstable(feature = "btree_cursors", issue = "107540")]
3501 pub fn insert_before(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3502 self.inner.insert_before(key, value)
3503 }
3504
3505 /// Removes the next element from the `BTreeMap`.
3506 ///
3507 /// The element that was removed is returned. The cursor position is
3508 /// unchanged (before the removed element).
3509 #[unstable(feature = "btree_cursors", issue = "107540")]
3510 pub fn remove_next(&mut self) -> Option<(K, V)> {
3511 self.inner.remove_next()
3512 }
3513
3514 /// Removes the preceding element from the `BTreeMap`.
3515 ///
3516 /// The element that was removed is returned. The cursor position is
3517 /// unchanged (after the removed element).
3518 #[unstable(feature = "btree_cursors", issue = "107540")]
3519 pub fn remove_prev(&mut self) -> Option<(K, V)> {
3520 self.inner.remove_prev()
3521 }
3522}
3523
3524/// Error type returned by [`CursorMut::insert_before`] and
3525/// [`CursorMut::insert_after`] if the key being inserted is not properly
3526/// ordered with regards to adjacent keys.
3527#[derive(Clone, PartialEq, Eq, Debug)]
3528#[unstable(feature = "btree_cursors", issue = "107540")]
3529pub struct UnorderedKeyError {}
3530
3531#[unstable(feature = "btree_cursors", issue = "107540")]
3532impl fmt::Display for UnorderedKeyError {
3533 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3534 write!(f, "key is not properly ordered relative to neighbors")
3535 }
3536}
3537
3538#[unstable(feature = "btree_cursors", issue = "107540")]
3539impl Error for UnorderedKeyError {}
3540
3541#[cfg(test)]
3542mod tests;