alloc/sync.rs
1#![stable(feature = "rust1", since = "1.0.0")]
2
3//! Thread-safe reference-counting pointers.
4//!
5//! See the [`Arc<T>`][Arc] documentation for more details.
6//!
7//! **Note**: This module is only available on platforms that support atomic
8//! loads and stores of pointers. This may be detected at compile time using
9//! `#[cfg(target_has_atomic = "ptr")]`.
10
11use core::any::Any;
12use core::cell::CloneFromCell;
13#[cfg(not(no_global_oom_handling))]
14use core::clone::CloneToUninit;
15use core::clone::UseCloned;
16use core::cmp::Ordering;
17use core::hash::{Hash, Hasher};
18use core::intrinsics::abort;
19#[cfg(not(no_global_oom_handling))]
20use core::iter;
21use core::marker::{PhantomData, Unsize};
22use core::mem::{self, ManuallyDrop, align_of_val_raw};
23use core::num::NonZeroUsize;
24use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
25use core::panic::{RefUnwindSafe, UnwindSafe};
26use core::pin::{Pin, PinCoerceUnsized};
27use core::ptr::{self, NonNull};
28#[cfg(not(no_global_oom_handling))]
29use core::slice::from_raw_parts_mut;
30use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
31use core::sync::atomic::{self, Atomic};
32use core::{borrow, fmt, hint};
33
34#[cfg(not(no_global_oom_handling))]
35use crate::alloc::handle_alloc_error;
36use crate::alloc::{AllocError, Allocator, Global, Layout};
37use crate::borrow::{Cow, ToOwned};
38use crate::boxed::Box;
39use crate::rc::is_dangling;
40#[cfg(not(no_global_oom_handling))]
41use crate::string::String;
42#[cfg(not(no_global_oom_handling))]
43use crate::vec::Vec;
44
45/// A soft limit on the amount of references that may be made to an `Arc`.
46///
47/// Going above this limit will abort your program (although not
48/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
49/// Trying to go above it might call a `panic` (if not actually going above it).
50///
51/// This is a global invariant, and also applies when using a compare-exchange loop.
52///
53/// See comment in `Arc::clone`.
54const MAX_REFCOUNT: usize = (isize::MAX) as usize;
55
56/// The error in case either counter reaches above `MAX_REFCOUNT`, and we can `panic` safely.
57const INTERNAL_OVERFLOW_ERROR: &str = "Arc counter overflow";
58
59#[cfg(not(sanitize = "thread"))]
60macro_rules! acquire {
61 ($x:expr) => {
62 atomic::fence(Acquire)
63 };
64}
65
66// ThreadSanitizer does not support memory fences. To avoid false positive
67// reports in Arc / Weak implementation use atomic loads for synchronization
68// instead.
69#[cfg(sanitize = "thread")]
70macro_rules! acquire {
71 ($x:expr) => {
72 $x.load(Acquire)
73 };
74}
75
76/// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
77/// Reference Counted'.
78///
79/// The type `Arc<T>` provides shared ownership of a value of type `T`,
80/// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
81/// a new `Arc` instance, which points to the same allocation on the heap as the
82/// source `Arc`, while increasing a reference count. When the last `Arc`
83/// pointer to a given allocation is destroyed, the value stored in that allocation (often
84/// referred to as "inner value") is also dropped.
85///
86/// Shared references in Rust disallow mutation by default, and `Arc` is no
87/// exception: you cannot generally obtain a mutable reference to something
88/// inside an `Arc`. If you do need to mutate through an `Arc`, you have several options:
89///
90/// 1. Use interior mutability with synchronization primitives like [`Mutex`][mutex],
91/// [`RwLock`][rwlock], or one of the [`Atomic`][atomic] types.
92///
93/// 2. Use clone-on-write semantics with [`Arc::make_mut`] which provides efficient mutation
94/// without requiring interior mutability. This approach clones the data only when
95/// needed (when there are multiple references) and can be more efficient when mutations
96/// are infrequent.
97///
98/// 3. Use [`Arc::get_mut`] when you know your `Arc` is not shared (has a reference count of 1),
99/// which provides direct mutable access to the inner value without any cloning.
100///
101/// ```
102/// use std::sync::Arc;
103///
104/// let mut data = Arc::new(vec![1, 2, 3]);
105///
106/// // This will clone the vector only if there are other references to it
107/// Arc::make_mut(&mut data).push(4);
108///
109/// assert_eq!(*data, vec![1, 2, 3, 4]);
110/// ```
111///
112/// **Note**: This type is only available on platforms that support atomic
113/// loads and stores of pointers, which includes all platforms that support
114/// the `std` crate but not all those which only support [`alloc`](crate).
115/// This may be detected at compile time using `#[cfg(target_has_atomic = "ptr")]`.
116///
117/// ## Thread Safety
118///
119/// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
120/// counting. This means that it is thread-safe. The disadvantage is that
121/// atomic operations are more expensive than ordinary memory accesses. If you
122/// are not sharing reference-counted allocations between threads, consider using
123/// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
124/// compiler will catch any attempt to send an [`Rc<T>`] between threads.
125/// However, a library might choose `Arc<T>` in order to give library consumers
126/// more flexibility.
127///
128/// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
129/// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
130/// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
131/// first: after all, isn't the point of `Arc<T>` thread safety? The key is
132/// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
133/// data, but it doesn't add thread safety to its data. Consider
134/// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
135/// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem:
136/// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
137/// non-atomic operations.
138///
139/// In the end, this means that you may need to pair `Arc<T>` with some sort of
140/// [`std::sync`] type, usually [`Mutex<T>`][mutex].
141///
142/// ## Breaking cycles with `Weak`
143///
144/// The [`downgrade`][downgrade] method can be used to create a non-owning
145/// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
146/// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
147/// already been dropped. In other words, `Weak` pointers do not keep the value
148/// inside the allocation alive; however, they *do* keep the allocation
149/// (the backing store for the value) alive.
150///
151/// A cycle between `Arc` pointers will never be deallocated. For this reason,
152/// [`Weak`] is used to break cycles. For example, a tree could have
153/// strong `Arc` pointers from parent nodes to children, and [`Weak`]
154/// pointers from children back to their parents.
155///
156/// # Cloning references
157///
158/// Creating a new reference from an existing reference-counted pointer is done using the
159/// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
160///
161/// ```
162/// use std::sync::Arc;
163/// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
164/// // The two syntaxes below are equivalent.
165/// let a = foo.clone();
166/// let b = Arc::clone(&foo);
167/// // a, b, and foo are all Arcs that point to the same memory location
168/// ```
169///
170/// ## `Deref` behavior
171///
172/// `Arc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
173/// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
174/// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
175/// functions, called using [fully qualified syntax]:
176///
177/// ```
178/// use std::sync::Arc;
179///
180/// let my_arc = Arc::new(());
181/// let my_weak = Arc::downgrade(&my_arc);
182/// ```
183///
184/// `Arc<T>`'s implementations of traits like `Clone` may also be called using
185/// fully qualified syntax. Some people prefer to use fully qualified syntax,
186/// while others prefer using method-call syntax.
187///
188/// ```
189/// use std::sync::Arc;
190///
191/// let arc = Arc::new(());
192/// // Method-call syntax
193/// let arc2 = arc.clone();
194/// // Fully qualified syntax
195/// let arc3 = Arc::clone(&arc);
196/// ```
197///
198/// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
199/// already been dropped.
200///
201/// [`Rc<T>`]: crate::rc::Rc
202/// [clone]: Clone::clone
203/// [mutex]: ../../std/sync/struct.Mutex.html
204/// [rwlock]: ../../std/sync/struct.RwLock.html
205/// [atomic]: core::sync::atomic
206/// [downgrade]: Arc::downgrade
207/// [upgrade]: Weak::upgrade
208/// [RefCell\<T>]: core::cell::RefCell
209/// [`RefCell<T>`]: core::cell::RefCell
210/// [`std::sync`]: ../../std/sync/index.html
211/// [`Arc::clone(&from)`]: Arc::clone
212/// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
213///
214/// # Examples
215///
216/// Sharing some immutable data between threads:
217///
218/// ```
219/// use std::sync::Arc;
220/// use std::thread;
221///
222/// let five = Arc::new(5);
223///
224/// for _ in 0..10 {
225/// let five = Arc::clone(&five);
226///
227/// thread::spawn(move || {
228/// println!("{five:?}");
229/// });
230/// }
231/// ```
232///
233/// Sharing a mutable [`AtomicUsize`]:
234///
235/// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize"
236///
237/// ```
238/// use std::sync::Arc;
239/// use std::sync::atomic::{AtomicUsize, Ordering};
240/// use std::thread;
241///
242/// let val = Arc::new(AtomicUsize::new(5));
243///
244/// for _ in 0..10 {
245/// let val = Arc::clone(&val);
246///
247/// thread::spawn(move || {
248/// let v = val.fetch_add(1, Ordering::Relaxed);
249/// println!("{v:?}");
250/// });
251/// }
252/// ```
253///
254/// See the [`rc` documentation][rc_examples] for more examples of reference
255/// counting in general.
256///
257/// [rc_examples]: crate::rc#examples
258#[doc(search_unbox)]
259#[rustc_diagnostic_item = "Arc"]
260#[stable(feature = "rust1", since = "1.0.0")]
261#[rustc_insignificant_dtor]
262pub struct Arc<
263 T: ?Sized,
264 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
265> {
266 ptr: NonNull<ArcInner<T>>,
267 phantom: PhantomData<ArcInner<T>>,
268 alloc: A,
269}
270
271#[stable(feature = "rust1", since = "1.0.0")]
272unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Arc<T, A> {}
273#[stable(feature = "rust1", since = "1.0.0")]
274unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Arc<T, A> {}
275
276#[stable(feature = "catch_unwind", since = "1.9.0")]
277impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Arc<T, A> {}
278
279#[unstable(feature = "coerce_unsized", issue = "18598")]
280impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Arc<U, A>> for Arc<T, A> {}
281
282#[unstable(feature = "dispatch_from_dyn", issue = "none")]
283impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
284
285// SAFETY: `Arc::clone` doesn't access any `Cell`s which could contain the `Arc` being cloned.
286#[unstable(feature = "cell_get_cloned", issue = "145329")]
287unsafe impl<T: ?Sized> CloneFromCell for Arc<T> {}
288
289impl<T: ?Sized> Arc<T> {
290 unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
291 unsafe { Self::from_inner_in(ptr, Global) }
292 }
293
294 unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
295 unsafe { Self::from_ptr_in(ptr, Global) }
296 }
297}
298
299impl<T: ?Sized, A: Allocator> Arc<T, A> {
300 #[inline]
301 fn into_inner_with_allocator(this: Self) -> (NonNull<ArcInner<T>>, A) {
302 let this = mem::ManuallyDrop::new(this);
303 (this.ptr, unsafe { ptr::read(&this.alloc) })
304 }
305
306 #[inline]
307 unsafe fn from_inner_in(ptr: NonNull<ArcInner<T>>, alloc: A) -> Self {
308 Self { ptr, phantom: PhantomData, alloc }
309 }
310
311 #[inline]
312 unsafe fn from_ptr_in(ptr: *mut ArcInner<T>, alloc: A) -> Self {
313 unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
314 }
315}
316
317/// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
318/// managed allocation.
319///
320/// The allocation is accessed by calling [`upgrade`] on the `Weak`
321/// pointer, which returns an <code>[Option]<[Arc]\<T>></code>.
322///
323/// Since a `Weak` reference does not count towards ownership, it will not
324/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
325/// guarantees about the value still being present. Thus it may return [`None`]
326/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
327/// itself (the backing store) from being deallocated.
328///
329/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
330/// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
331/// prevent circular references between [`Arc`] pointers, since mutual owning references
332/// would never allow either [`Arc`] to be dropped. For example, a tree could
333/// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
334/// pointers from children back to their parents.
335///
336/// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
337///
338/// [`upgrade`]: Weak::upgrade
339#[stable(feature = "arc_weak", since = "1.4.0")]
340#[rustc_diagnostic_item = "ArcWeak"]
341pub struct Weak<
342 T: ?Sized,
343 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
344> {
345 // This is a `NonNull` to allow optimizing the size of this type in enums,
346 // but it is not necessarily a valid pointer.
347 // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
348 // to allocate space on the heap. That's not a value a real pointer
349 // will ever have because ArcInner has alignment at least 2.
350 ptr: NonNull<ArcInner<T>>,
351 alloc: A,
352}
353
354#[stable(feature = "arc_weak", since = "1.4.0")]
355unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for Weak<T, A> {}
356#[stable(feature = "arc_weak", since = "1.4.0")]
357unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for Weak<T, A> {}
358
359#[unstable(feature = "coerce_unsized", issue = "18598")]
360impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}
361#[unstable(feature = "dispatch_from_dyn", issue = "none")]
362impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
363
364// SAFETY: `Weak::clone` doesn't access any `Cell`s which could contain the `Weak` being cloned.
365#[unstable(feature = "cell_get_cloned", issue = "145329")]
366unsafe impl<T: ?Sized> CloneFromCell for Weak<T> {}
367
368#[stable(feature = "arc_weak", since = "1.4.0")]
369impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
370 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
371 write!(f, "(Weak)")
372 }
373}
374
375// This is repr(C) to future-proof against possible field-reordering, which
376// would interfere with otherwise safe [into|from]_raw() of transmutable
377// inner types.
378// Unlike RcInner, repr(align(2)) is not strictly required because atomic types
379// have the alignment same as its size, but we use it for consistency and clarity.
380#[repr(C, align(2))]
381struct ArcInner<T: ?Sized> {
382 strong: Atomic<usize>,
383
384 // the value usize::MAX acts as a sentinel for temporarily "locking" the
385 // ability to upgrade weak pointers or downgrade strong ones; this is used
386 // to avoid races in `make_mut` and `get_mut`.
387 weak: Atomic<usize>,
388
389 data: T,
390}
391
392/// Calculate layout for `ArcInner<T>` using the inner value's layout
393fn arcinner_layout_for_value_layout(layout: Layout) -> Layout {
394 // Calculate layout using the given value layout.
395 // Previously, layout was calculated on the expression
396 // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
397 // reference (see #54908).
398 Layout::new::<ArcInner<()>>().extend(layout).unwrap().0.pad_to_align()
399}
400
401unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
402unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
403
404impl<T> Arc<T> {
405 /// Constructs a new `Arc<T>`.
406 ///
407 /// # Examples
408 ///
409 /// ```
410 /// use std::sync::Arc;
411 ///
412 /// let five = Arc::new(5);
413 /// ```
414 #[cfg(not(no_global_oom_handling))]
415 #[inline]
416 #[stable(feature = "rust1", since = "1.0.0")]
417 pub fn new(data: T) -> Arc<T> {
418 // Start the weak pointer count as 1 which is the weak pointer that's
419 // held by all the strong pointers (kinda), see std/rc.rs for more info
420 let x: Box<_> = Box::new(ArcInner {
421 strong: atomic::AtomicUsize::new(1),
422 weak: atomic::AtomicUsize::new(1),
423 data,
424 });
425 unsafe { Self::from_inner(Box::leak(x).into()) }
426 }
427
428 /// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation,
429 /// to allow you to construct a `T` which holds a weak pointer to itself.
430 ///
431 /// Generally, a structure circularly referencing itself, either directly or
432 /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
433 /// Using this function, you get access to the weak pointer during the
434 /// initialization of `T`, before the `Arc<T>` is created, such that you can
435 /// clone and store it inside the `T`.
436 ///
437 /// `new_cyclic` first allocates the managed allocation for the `Arc<T>`,
438 /// then calls your closure, giving it a `Weak<T>` to this allocation,
439 /// and only afterwards completes the construction of the `Arc<T>` by placing
440 /// the `T` returned from your closure into the allocation.
441 ///
442 /// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic`
443 /// returns, calling [`upgrade`] on the weak reference inside your closure will
444 /// fail and result in a `None` value.
445 ///
446 /// # Panics
447 ///
448 /// If `data_fn` panics, the panic is propagated to the caller, and the
449 /// temporary [`Weak<T>`] is dropped normally.
450 ///
451 /// # Example
452 ///
453 /// ```
454 /// # #![allow(dead_code)]
455 /// use std::sync::{Arc, Weak};
456 ///
457 /// struct Gadget {
458 /// me: Weak<Gadget>,
459 /// }
460 ///
461 /// impl Gadget {
462 /// /// Constructs a reference counted Gadget.
463 /// fn new() -> Arc<Self> {
464 /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the
465 /// // `Arc` we're constructing.
466 /// Arc::new_cyclic(|me| {
467 /// // Create the actual struct here.
468 /// Gadget { me: me.clone() }
469 /// })
470 /// }
471 ///
472 /// /// Returns a reference counted pointer to Self.
473 /// fn me(&self) -> Arc<Self> {
474 /// self.me.upgrade().unwrap()
475 /// }
476 /// }
477 /// ```
478 /// [`upgrade`]: Weak::upgrade
479 #[cfg(not(no_global_oom_handling))]
480 #[inline]
481 #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
482 pub fn new_cyclic<F>(data_fn: F) -> Arc<T>
483 where
484 F: FnOnce(&Weak<T>) -> T,
485 {
486 Self::new_cyclic_in(data_fn, Global)
487 }
488
489 /// Constructs a new `Arc` with uninitialized contents.
490 ///
491 /// # Examples
492 ///
493 /// ```
494 /// use std::sync::Arc;
495 ///
496 /// let mut five = Arc::<u32>::new_uninit();
497 ///
498 /// // Deferred initialization:
499 /// Arc::get_mut(&mut five).unwrap().write(5);
500 ///
501 /// let five = unsafe { five.assume_init() };
502 ///
503 /// assert_eq!(*five, 5)
504 /// ```
505 #[cfg(not(no_global_oom_handling))]
506 #[inline]
507 #[stable(feature = "new_uninit", since = "1.82.0")]
508 #[must_use]
509 pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
510 unsafe {
511 Arc::from_ptr(Arc::allocate_for_layout(
512 Layout::new::<T>(),
513 |layout| Global.allocate(layout),
514 <*mut u8>::cast,
515 ))
516 }
517 }
518
519 /// Constructs a new `Arc` with uninitialized contents, with the memory
520 /// being filled with `0` bytes.
521 ///
522 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
523 /// of this method.
524 ///
525 /// # Examples
526 ///
527 /// ```
528 /// use std::sync::Arc;
529 ///
530 /// let zero = Arc::<u32>::new_zeroed();
531 /// let zero = unsafe { zero.assume_init() };
532 ///
533 /// assert_eq!(*zero, 0)
534 /// ```
535 ///
536 /// [zeroed]: mem::MaybeUninit::zeroed
537 #[cfg(not(no_global_oom_handling))]
538 #[inline]
539 #[stable(feature = "new_zeroed_alloc", since = "CURRENT_RUSTC_VERSION")]
540 #[must_use]
541 pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
542 unsafe {
543 Arc::from_ptr(Arc::allocate_for_layout(
544 Layout::new::<T>(),
545 |layout| Global.allocate_zeroed(layout),
546 <*mut u8>::cast,
547 ))
548 }
549 }
550
551 /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
552 /// `data` will be pinned in memory and unable to be moved.
553 #[cfg(not(no_global_oom_handling))]
554 #[stable(feature = "pin", since = "1.33.0")]
555 #[must_use]
556 pub fn pin(data: T) -> Pin<Arc<T>> {
557 unsafe { Pin::new_unchecked(Arc::new(data)) }
558 }
559
560 /// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails.
561 #[unstable(feature = "allocator_api", issue = "32838")]
562 #[inline]
563 pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> {
564 unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) }
565 }
566
567 /// Constructs a new `Arc<T>`, returning an error if allocation fails.
568 ///
569 /// # Examples
570 ///
571 /// ```
572 /// #![feature(allocator_api)]
573 /// use std::sync::Arc;
574 ///
575 /// let five = Arc::try_new(5)?;
576 /// # Ok::<(), std::alloc::AllocError>(())
577 /// ```
578 #[unstable(feature = "allocator_api", issue = "32838")]
579 #[inline]
580 pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
581 // Start the weak pointer count as 1 which is the weak pointer that's
582 // held by all the strong pointers (kinda), see std/rc.rs for more info
583 let x: Box<_> = Box::try_new(ArcInner {
584 strong: atomic::AtomicUsize::new(1),
585 weak: atomic::AtomicUsize::new(1),
586 data,
587 })?;
588 unsafe { Ok(Self::from_inner(Box::leak(x).into())) }
589 }
590
591 /// Constructs a new `Arc` with uninitialized contents, returning an error
592 /// if allocation fails.
593 ///
594 /// # Examples
595 ///
596 /// ```
597 /// #![feature(allocator_api)]
598 ///
599 /// use std::sync::Arc;
600 ///
601 /// let mut five = Arc::<u32>::try_new_uninit()?;
602 ///
603 /// // Deferred initialization:
604 /// Arc::get_mut(&mut five).unwrap().write(5);
605 ///
606 /// let five = unsafe { five.assume_init() };
607 ///
608 /// assert_eq!(*five, 5);
609 /// # Ok::<(), std::alloc::AllocError>(())
610 /// ```
611 #[unstable(feature = "allocator_api", issue = "32838")]
612 pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
613 unsafe {
614 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
615 Layout::new::<T>(),
616 |layout| Global.allocate(layout),
617 <*mut u8>::cast,
618 )?))
619 }
620 }
621
622 /// Constructs a new `Arc` with uninitialized contents, with the memory
623 /// being filled with `0` bytes, returning an error if allocation fails.
624 ///
625 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
626 /// of this method.
627 ///
628 /// # Examples
629 ///
630 /// ```
631 /// #![feature( allocator_api)]
632 ///
633 /// use std::sync::Arc;
634 ///
635 /// let zero = Arc::<u32>::try_new_zeroed()?;
636 /// let zero = unsafe { zero.assume_init() };
637 ///
638 /// assert_eq!(*zero, 0);
639 /// # Ok::<(), std::alloc::AllocError>(())
640 /// ```
641 ///
642 /// [zeroed]: mem::MaybeUninit::zeroed
643 #[unstable(feature = "allocator_api", issue = "32838")]
644 pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
645 unsafe {
646 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
647 Layout::new::<T>(),
648 |layout| Global.allocate_zeroed(layout),
649 <*mut u8>::cast,
650 )?))
651 }
652 }
653}
654
655impl<T, A: Allocator> Arc<T, A> {
656 /// Constructs a new `Arc<T>` in the provided allocator.
657 ///
658 /// # Examples
659 ///
660 /// ```
661 /// #![feature(allocator_api)]
662 ///
663 /// use std::sync::Arc;
664 /// use std::alloc::System;
665 ///
666 /// let five = Arc::new_in(5, System);
667 /// ```
668 #[inline]
669 #[cfg(not(no_global_oom_handling))]
670 #[unstable(feature = "allocator_api", issue = "32838")]
671 pub fn new_in(data: T, alloc: A) -> Arc<T, A> {
672 // Start the weak pointer count as 1 which is the weak pointer that's
673 // held by all the strong pointers (kinda), see std/rc.rs for more info
674 let x = Box::new_in(
675 ArcInner {
676 strong: atomic::AtomicUsize::new(1),
677 weak: atomic::AtomicUsize::new(1),
678 data,
679 },
680 alloc,
681 );
682 let (ptr, alloc) = Box::into_unique(x);
683 unsafe { Self::from_inner_in(ptr.into(), alloc) }
684 }
685
686 /// Constructs a new `Arc` with uninitialized contents in the provided allocator.
687 ///
688 /// # Examples
689 ///
690 /// ```
691 /// #![feature(get_mut_unchecked)]
692 /// #![feature(allocator_api)]
693 ///
694 /// use std::sync::Arc;
695 /// use std::alloc::System;
696 ///
697 /// let mut five = Arc::<u32, _>::new_uninit_in(System);
698 ///
699 /// let five = unsafe {
700 /// // Deferred initialization:
701 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
702 ///
703 /// five.assume_init()
704 /// };
705 ///
706 /// assert_eq!(*five, 5)
707 /// ```
708 #[cfg(not(no_global_oom_handling))]
709 #[unstable(feature = "allocator_api", issue = "32838")]
710 #[inline]
711 pub fn new_uninit_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
712 unsafe {
713 Arc::from_ptr_in(
714 Arc::allocate_for_layout(
715 Layout::new::<T>(),
716 |layout| alloc.allocate(layout),
717 <*mut u8>::cast,
718 ),
719 alloc,
720 )
721 }
722 }
723
724 /// Constructs a new `Arc` with uninitialized contents, with the memory
725 /// being filled with `0` bytes, in the provided allocator.
726 ///
727 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
728 /// of this method.
729 ///
730 /// # Examples
731 ///
732 /// ```
733 /// #![feature(allocator_api)]
734 ///
735 /// use std::sync::Arc;
736 /// use std::alloc::System;
737 ///
738 /// let zero = Arc::<u32, _>::new_zeroed_in(System);
739 /// let zero = unsafe { zero.assume_init() };
740 ///
741 /// assert_eq!(*zero, 0)
742 /// ```
743 ///
744 /// [zeroed]: mem::MaybeUninit::zeroed
745 #[cfg(not(no_global_oom_handling))]
746 #[unstable(feature = "allocator_api", issue = "32838")]
747 #[inline]
748 pub fn new_zeroed_in(alloc: A) -> Arc<mem::MaybeUninit<T>, A> {
749 unsafe {
750 Arc::from_ptr_in(
751 Arc::allocate_for_layout(
752 Layout::new::<T>(),
753 |layout| alloc.allocate_zeroed(layout),
754 <*mut u8>::cast,
755 ),
756 alloc,
757 )
758 }
759 }
760
761 /// Constructs a new `Arc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
762 /// to allow you to construct a `T` which holds a weak pointer to itself.
763 ///
764 /// Generally, a structure circularly referencing itself, either directly or
765 /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
766 /// Using this function, you get access to the weak pointer during the
767 /// initialization of `T`, before the `Arc<T, A>` is created, such that you can
768 /// clone and store it inside the `T`.
769 ///
770 /// `new_cyclic_in` first allocates the managed allocation for the `Arc<T, A>`,
771 /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
772 /// and only afterwards completes the construction of the `Arc<T, A>` by placing
773 /// the `T` returned from your closure into the allocation.
774 ///
775 /// Since the new `Arc<T, A>` is not fully-constructed until `Arc<T, A>::new_cyclic_in`
776 /// returns, calling [`upgrade`] on the weak reference inside your closure will
777 /// fail and result in a `None` value.
778 ///
779 /// # Panics
780 ///
781 /// If `data_fn` panics, the panic is propagated to the caller, and the
782 /// temporary [`Weak<T>`] is dropped normally.
783 ///
784 /// # Example
785 ///
786 /// See [`new_cyclic`]
787 ///
788 /// [`new_cyclic`]: Arc::new_cyclic
789 /// [`upgrade`]: Weak::upgrade
790 #[cfg(not(no_global_oom_handling))]
791 #[inline]
792 #[unstable(feature = "allocator_api", issue = "32838")]
793 pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Arc<T, A>
794 where
795 F: FnOnce(&Weak<T, A>) -> T,
796 {
797 // Construct the inner in the "uninitialized" state with a single
798 // weak reference.
799 let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
800 ArcInner {
801 strong: atomic::AtomicUsize::new(0),
802 weak: atomic::AtomicUsize::new(1),
803 data: mem::MaybeUninit::<T>::uninit(),
804 },
805 alloc,
806 ));
807 let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
808 let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
809
810 let weak = Weak { ptr: init_ptr, alloc };
811
812 // It's important we don't give up ownership of the weak pointer, or
813 // else the memory might be freed by the time `data_fn` returns. If
814 // we really wanted to pass ownership, we could create an additional
815 // weak pointer for ourselves, but this would result in additional
816 // updates to the weak reference count which might not be necessary
817 // otherwise.
818 let data = data_fn(&weak);
819
820 // Now we can properly initialize the inner value and turn our weak
821 // reference into a strong reference.
822 let strong = unsafe {
823 let inner = init_ptr.as_ptr();
824 ptr::write(&raw mut (*inner).data, data);
825
826 // The above write to the data field must be visible to any threads which
827 // observe a non-zero strong count. Therefore we need at least "Release" ordering
828 // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
829 //
830 // "Acquire" ordering is not required. When considering the possible behaviors
831 // of `data_fn` we only need to look at what it could do with a reference to a
832 // non-upgradeable `Weak`:
833 // - It can *clone* the `Weak`, increasing the weak reference count.
834 // - It can drop those clones, decreasing the weak reference count (but never to zero).
835 //
836 // These side effects do not impact us in any way, and no other side effects are
837 // possible with safe code alone.
838 let prev_value = (*inner).strong.fetch_add(1, Release);
839 debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
840
841 // Strong references should collectively own a shared weak reference,
842 // so don't run the destructor for our old weak reference.
843 // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
844 // and forgetting the weak reference.
845 let alloc = weak.into_raw_with_allocator().1;
846
847 Arc::from_inner_in(init_ptr, alloc)
848 };
849
850 strong
851 }
852
853 /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator. If `T` does not implement `Unpin`,
854 /// then `data` will be pinned in memory and unable to be moved.
855 #[cfg(not(no_global_oom_handling))]
856 #[unstable(feature = "allocator_api", issue = "32838")]
857 #[inline]
858 pub fn pin_in(data: T, alloc: A) -> Pin<Arc<T, A>>
859 where
860 A: 'static,
861 {
862 unsafe { Pin::new_unchecked(Arc::new_in(data, alloc)) }
863 }
864
865 /// Constructs a new `Pin<Arc<T, A>>` in the provided allocator, return an error if allocation
866 /// fails.
867 #[inline]
868 #[unstable(feature = "allocator_api", issue = "32838")]
869 pub fn try_pin_in(data: T, alloc: A) -> Result<Pin<Arc<T, A>>, AllocError>
870 where
871 A: 'static,
872 {
873 unsafe { Ok(Pin::new_unchecked(Arc::try_new_in(data, alloc)?)) }
874 }
875
876 /// Constructs a new `Arc<T, A>` in the provided allocator, returning an error if allocation fails.
877 ///
878 /// # Examples
879 ///
880 /// ```
881 /// #![feature(allocator_api)]
882 ///
883 /// use std::sync::Arc;
884 /// use std::alloc::System;
885 ///
886 /// let five = Arc::try_new_in(5, System)?;
887 /// # Ok::<(), std::alloc::AllocError>(())
888 /// ```
889 #[inline]
890 #[unstable(feature = "allocator_api", issue = "32838")]
891 #[inline]
892 pub fn try_new_in(data: T, alloc: A) -> Result<Arc<T, A>, AllocError> {
893 // Start the weak pointer count as 1 which is the weak pointer that's
894 // held by all the strong pointers (kinda), see std/rc.rs for more info
895 let x = Box::try_new_in(
896 ArcInner {
897 strong: atomic::AtomicUsize::new(1),
898 weak: atomic::AtomicUsize::new(1),
899 data,
900 },
901 alloc,
902 )?;
903 let (ptr, alloc) = Box::into_unique(x);
904 Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
905 }
906
907 /// Constructs a new `Arc` with uninitialized contents, in the provided allocator, returning an
908 /// error if allocation fails.
909 ///
910 /// # Examples
911 ///
912 /// ```
913 /// #![feature(allocator_api)]
914 /// #![feature(get_mut_unchecked)]
915 ///
916 /// use std::sync::Arc;
917 /// use std::alloc::System;
918 ///
919 /// let mut five = Arc::<u32, _>::try_new_uninit_in(System)?;
920 ///
921 /// let five = unsafe {
922 /// // Deferred initialization:
923 /// Arc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
924 ///
925 /// five.assume_init()
926 /// };
927 ///
928 /// assert_eq!(*five, 5);
929 /// # Ok::<(), std::alloc::AllocError>(())
930 /// ```
931 #[unstable(feature = "allocator_api", issue = "32838")]
932 #[inline]
933 pub fn try_new_uninit_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
934 unsafe {
935 Ok(Arc::from_ptr_in(
936 Arc::try_allocate_for_layout(
937 Layout::new::<T>(),
938 |layout| alloc.allocate(layout),
939 <*mut u8>::cast,
940 )?,
941 alloc,
942 ))
943 }
944 }
945
946 /// Constructs a new `Arc` with uninitialized contents, with the memory
947 /// being filled with `0` bytes, in the provided allocator, returning an error if allocation
948 /// fails.
949 ///
950 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
951 /// of this method.
952 ///
953 /// # Examples
954 ///
955 /// ```
956 /// #![feature(allocator_api)]
957 ///
958 /// use std::sync::Arc;
959 /// use std::alloc::System;
960 ///
961 /// let zero = Arc::<u32, _>::try_new_zeroed_in(System)?;
962 /// let zero = unsafe { zero.assume_init() };
963 ///
964 /// assert_eq!(*zero, 0);
965 /// # Ok::<(), std::alloc::AllocError>(())
966 /// ```
967 ///
968 /// [zeroed]: mem::MaybeUninit::zeroed
969 #[unstable(feature = "allocator_api", issue = "32838")]
970 #[inline]
971 pub fn try_new_zeroed_in(alloc: A) -> Result<Arc<mem::MaybeUninit<T>, A>, AllocError> {
972 unsafe {
973 Ok(Arc::from_ptr_in(
974 Arc::try_allocate_for_layout(
975 Layout::new::<T>(),
976 |layout| alloc.allocate_zeroed(layout),
977 <*mut u8>::cast,
978 )?,
979 alloc,
980 ))
981 }
982 }
983 /// Returns the inner value, if the `Arc` has exactly one strong reference.
984 ///
985 /// Otherwise, an [`Err`] is returned with the same `Arc` that was
986 /// passed in.
987 ///
988 /// This will succeed even if there are outstanding weak references.
989 ///
990 /// It is strongly recommended to use [`Arc::into_inner`] instead if you don't
991 /// keep the `Arc` in the [`Err`] case.
992 /// Immediately dropping the [`Err`]-value, as the expression
993 /// `Arc::try_unwrap(this).ok()` does, can cause the strong count to
994 /// drop to zero and the inner value of the `Arc` to be dropped.
995 /// For instance, if two threads execute such an expression in parallel,
996 /// there is a race condition without the possibility of unsafety:
997 /// The threads could first both check whether they own the last instance
998 /// in `Arc::try_unwrap`, determine that they both do not, and then both
999 /// discard and drop their instance in the call to [`ok`][`Result::ok`].
1000 /// In this scenario, the value inside the `Arc` is safely destroyed
1001 /// by exactly one of the threads, but neither thread will ever be able
1002 /// to use the value.
1003 ///
1004 /// # Examples
1005 ///
1006 /// ```
1007 /// use std::sync::Arc;
1008 ///
1009 /// let x = Arc::new(3);
1010 /// assert_eq!(Arc::try_unwrap(x), Ok(3));
1011 ///
1012 /// let x = Arc::new(4);
1013 /// let _y = Arc::clone(&x);
1014 /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
1015 /// ```
1016 #[inline]
1017 #[stable(feature = "arc_unique", since = "1.4.0")]
1018 pub fn try_unwrap(this: Self) -> Result<T, Self> {
1019 if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
1020 return Err(this);
1021 }
1022
1023 acquire!(this.inner().strong);
1024
1025 let this = ManuallyDrop::new(this);
1026 let elem: T = unsafe { ptr::read(&this.ptr.as_ref().data) };
1027 let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator
1028
1029 // Make a weak pointer to clean up the implicit strong-weak reference
1030 let _weak = Weak { ptr: this.ptr, alloc };
1031
1032 Ok(elem)
1033 }
1034
1035 /// Returns the inner value, if the `Arc` has exactly one strong reference.
1036 ///
1037 /// Otherwise, [`None`] is returned and the `Arc` is dropped.
1038 ///
1039 /// This will succeed even if there are outstanding weak references.
1040 ///
1041 /// If `Arc::into_inner` is called on every clone of this `Arc`,
1042 /// it is guaranteed that exactly one of the calls returns the inner value.
1043 /// This means in particular that the inner value is not dropped.
1044 ///
1045 /// [`Arc::try_unwrap`] is conceptually similar to `Arc::into_inner`, but it
1046 /// is meant for different use-cases. If used as a direct replacement
1047 /// for `Arc::into_inner` anyway, such as with the expression
1048 /// <code>[Arc::try_unwrap]\(this).[ok][Result::ok]()</code>, then it does
1049 /// **not** give the same guarantee as described in the previous paragraph.
1050 /// For more information, see the examples below and read the documentation
1051 /// of [`Arc::try_unwrap`].
1052 ///
1053 /// # Examples
1054 ///
1055 /// Minimal example demonstrating the guarantee that `Arc::into_inner` gives.
1056 /// ```
1057 /// use std::sync::Arc;
1058 ///
1059 /// let x = Arc::new(3);
1060 /// let y = Arc::clone(&x);
1061 ///
1062 /// // Two threads calling `Arc::into_inner` on both clones of an `Arc`:
1063 /// let x_thread = std::thread::spawn(|| Arc::into_inner(x));
1064 /// let y_thread = std::thread::spawn(|| Arc::into_inner(y));
1065 ///
1066 /// let x_inner_value = x_thread.join().unwrap();
1067 /// let y_inner_value = y_thread.join().unwrap();
1068 ///
1069 /// // One of the threads is guaranteed to receive the inner value:
1070 /// assert!(matches!(
1071 /// (x_inner_value, y_inner_value),
1072 /// (None, Some(3)) | (Some(3), None)
1073 /// ));
1074 /// // The result could also be `(None, None)` if the threads called
1075 /// // `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead.
1076 /// ```
1077 ///
1078 /// A more practical example demonstrating the need for `Arc::into_inner`:
1079 /// ```
1080 /// use std::sync::Arc;
1081 ///
1082 /// // Definition of a simple singly linked list using `Arc`:
1083 /// #[derive(Clone)]
1084 /// struct LinkedList<T>(Option<Arc<Node<T>>>);
1085 /// struct Node<T>(T, Option<Arc<Node<T>>>);
1086 ///
1087 /// // Dropping a long `LinkedList<T>` relying on the destructor of `Arc`
1088 /// // can cause a stack overflow. To prevent this, we can provide a
1089 /// // manual `Drop` implementation that does the destruction in a loop:
1090 /// impl<T> Drop for LinkedList<T> {
1091 /// fn drop(&mut self) {
1092 /// let mut link = self.0.take();
1093 /// while let Some(arc_node) = link.take() {
1094 /// if let Some(Node(_value, next)) = Arc::into_inner(arc_node) {
1095 /// link = next;
1096 /// }
1097 /// }
1098 /// }
1099 /// }
1100 ///
1101 /// // Implementation of `new` and `push` omitted
1102 /// impl<T> LinkedList<T> {
1103 /// /* ... */
1104 /// # fn new() -> Self {
1105 /// # LinkedList(None)
1106 /// # }
1107 /// # fn push(&mut self, x: T) {
1108 /// # self.0 = Some(Arc::new(Node(x, self.0.take())));
1109 /// # }
1110 /// }
1111 ///
1112 /// // The following code could have still caused a stack overflow
1113 /// // despite the manual `Drop` impl if that `Drop` impl had used
1114 /// // `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`.
1115 ///
1116 /// // Create a long list and clone it
1117 /// let mut x = LinkedList::new();
1118 /// let size = 100000;
1119 /// # let size = if cfg!(miri) { 100 } else { size };
1120 /// for i in 0..size {
1121 /// x.push(i); // Adds i to the front of x
1122 /// }
1123 /// let y = x.clone();
1124 ///
1125 /// // Drop the clones in parallel
1126 /// let x_thread = std::thread::spawn(|| drop(x));
1127 /// let y_thread = std::thread::spawn(|| drop(y));
1128 /// x_thread.join().unwrap();
1129 /// y_thread.join().unwrap();
1130 /// ```
1131 #[inline]
1132 #[stable(feature = "arc_into_inner", since = "1.70.0")]
1133 pub fn into_inner(this: Self) -> Option<T> {
1134 // Make sure that the ordinary `Drop` implementation isn’t called as well
1135 let mut this = mem::ManuallyDrop::new(this);
1136
1137 // Following the implementation of `drop` and `drop_slow`
1138 if this.inner().strong.fetch_sub(1, Release) != 1 {
1139 return None;
1140 }
1141
1142 acquire!(this.inner().strong);
1143
1144 // SAFETY: This mirrors the line
1145 //
1146 // unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
1147 //
1148 // in `drop_slow`. Instead of dropping the value behind the pointer,
1149 // it is read and eventually returned; `ptr::read` has the same
1150 // safety conditions as `ptr::drop_in_place`.
1151
1152 let inner = unsafe { ptr::read(Self::get_mut_unchecked(&mut this)) };
1153 let alloc = unsafe { ptr::read(&this.alloc) };
1154
1155 drop(Weak { ptr: this.ptr, alloc });
1156
1157 Some(inner)
1158 }
1159}
1160
1161impl<T> Arc<[T]> {
1162 /// Constructs a new atomically reference-counted slice with uninitialized contents.
1163 ///
1164 /// # Examples
1165 ///
1166 /// ```
1167 /// use std::sync::Arc;
1168 ///
1169 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1170 ///
1171 /// // Deferred initialization:
1172 /// let data = Arc::get_mut(&mut values).unwrap();
1173 /// data[0].write(1);
1174 /// data[1].write(2);
1175 /// data[2].write(3);
1176 ///
1177 /// let values = unsafe { values.assume_init() };
1178 ///
1179 /// assert_eq!(*values, [1, 2, 3])
1180 /// ```
1181 #[cfg(not(no_global_oom_handling))]
1182 #[inline]
1183 #[stable(feature = "new_uninit", since = "1.82.0")]
1184 #[must_use]
1185 pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1186 unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
1187 }
1188
1189 /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1190 /// filled with `0` bytes.
1191 ///
1192 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1193 /// incorrect usage of this method.
1194 ///
1195 /// # Examples
1196 ///
1197 /// ```
1198 /// use std::sync::Arc;
1199 ///
1200 /// let values = Arc::<[u32]>::new_zeroed_slice(3);
1201 /// let values = unsafe { values.assume_init() };
1202 ///
1203 /// assert_eq!(*values, [0, 0, 0])
1204 /// ```
1205 ///
1206 /// [zeroed]: mem::MaybeUninit::zeroed
1207 #[cfg(not(no_global_oom_handling))]
1208 #[inline]
1209 #[stable(feature = "new_zeroed_alloc", since = "CURRENT_RUSTC_VERSION")]
1210 #[must_use]
1211 pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
1212 unsafe {
1213 Arc::from_ptr(Arc::allocate_for_layout(
1214 Layout::array::<T>(len).unwrap(),
1215 |layout| Global.allocate_zeroed(layout),
1216 |mem| {
1217 ptr::slice_from_raw_parts_mut(mem as *mut T, len)
1218 as *mut ArcInner<[mem::MaybeUninit<T>]>
1219 },
1220 ))
1221 }
1222 }
1223
1224 /// Converts the reference-counted slice into a reference-counted array.
1225 ///
1226 /// This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.
1227 ///
1228 /// If `N` is not exactly equal to the length of `self`, then this method returns `None`.
1229 #[unstable(feature = "slice_as_array", issue = "133508")]
1230 #[inline]
1231 #[must_use]
1232 pub fn into_array<const N: usize>(self) -> Option<Arc<[T; N]>> {
1233 if self.len() == N {
1234 let ptr = Self::into_raw(self) as *const [T; N];
1235
1236 // SAFETY: The underlying array of a slice has the exact same layout as an actual array `[T; N]` if `N` is equal to the slice's length.
1237 let me = unsafe { Arc::from_raw(ptr) };
1238 Some(me)
1239 } else {
1240 None
1241 }
1242 }
1243}
1244
1245impl<T, A: Allocator> Arc<[T], A> {
1246 /// Constructs a new atomically reference-counted slice with uninitialized contents in the
1247 /// provided allocator.
1248 ///
1249 /// # Examples
1250 ///
1251 /// ```
1252 /// #![feature(get_mut_unchecked)]
1253 /// #![feature(allocator_api)]
1254 ///
1255 /// use std::sync::Arc;
1256 /// use std::alloc::System;
1257 ///
1258 /// let mut values = Arc::<[u32], _>::new_uninit_slice_in(3, System);
1259 ///
1260 /// let values = unsafe {
1261 /// // Deferred initialization:
1262 /// Arc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
1263 /// Arc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
1264 /// Arc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
1265 ///
1266 /// values.assume_init()
1267 /// };
1268 ///
1269 /// assert_eq!(*values, [1, 2, 3])
1270 /// ```
1271 #[cfg(not(no_global_oom_handling))]
1272 #[unstable(feature = "allocator_api", issue = "32838")]
1273 #[inline]
1274 pub fn new_uninit_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1275 unsafe { Arc::from_ptr_in(Arc::allocate_for_slice_in(len, &alloc), alloc) }
1276 }
1277
1278 /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
1279 /// filled with `0` bytes, in the provided allocator.
1280 ///
1281 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
1282 /// incorrect usage of this method.
1283 ///
1284 /// # Examples
1285 ///
1286 /// ```
1287 /// #![feature(allocator_api)]
1288 ///
1289 /// use std::sync::Arc;
1290 /// use std::alloc::System;
1291 ///
1292 /// let values = Arc::<[u32], _>::new_zeroed_slice_in(3, System);
1293 /// let values = unsafe { values.assume_init() };
1294 ///
1295 /// assert_eq!(*values, [0, 0, 0])
1296 /// ```
1297 ///
1298 /// [zeroed]: mem::MaybeUninit::zeroed
1299 #[cfg(not(no_global_oom_handling))]
1300 #[unstable(feature = "allocator_api", issue = "32838")]
1301 #[inline]
1302 pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Arc<[mem::MaybeUninit<T>], A> {
1303 unsafe {
1304 Arc::from_ptr_in(
1305 Arc::allocate_for_layout(
1306 Layout::array::<T>(len).unwrap(),
1307 |layout| alloc.allocate_zeroed(layout),
1308 |mem| {
1309 ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
1310 as *mut ArcInner<[mem::MaybeUninit<T>]>
1311 },
1312 ),
1313 alloc,
1314 )
1315 }
1316 }
1317}
1318
1319impl<T, A: Allocator> Arc<mem::MaybeUninit<T>, A> {
1320 /// Converts to `Arc<T>`.
1321 ///
1322 /// # Safety
1323 ///
1324 /// As with [`MaybeUninit::assume_init`],
1325 /// it is up to the caller to guarantee that the inner value
1326 /// really is in an initialized state.
1327 /// Calling this when the content is not yet fully initialized
1328 /// causes immediate undefined behavior.
1329 ///
1330 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1331 ///
1332 /// # Examples
1333 ///
1334 /// ```
1335 /// use std::sync::Arc;
1336 ///
1337 /// let mut five = Arc::<u32>::new_uninit();
1338 ///
1339 /// // Deferred initialization:
1340 /// Arc::get_mut(&mut five).unwrap().write(5);
1341 ///
1342 /// let five = unsafe { five.assume_init() };
1343 ///
1344 /// assert_eq!(*five, 5)
1345 /// ```
1346 #[stable(feature = "new_uninit", since = "1.82.0")]
1347 #[must_use = "`self` will be dropped if the result is not used"]
1348 #[inline]
1349 pub unsafe fn assume_init(self) -> Arc<T, A> {
1350 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1351 unsafe { Arc::from_inner_in(ptr.cast(), alloc) }
1352 }
1353}
1354
1355impl<T, A: Allocator> Arc<[mem::MaybeUninit<T>], A> {
1356 /// Converts to `Arc<[T]>`.
1357 ///
1358 /// # Safety
1359 ///
1360 /// As with [`MaybeUninit::assume_init`],
1361 /// it is up to the caller to guarantee that the inner value
1362 /// really is in an initialized state.
1363 /// Calling this when the content is not yet fully initialized
1364 /// causes immediate undefined behavior.
1365 ///
1366 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
1367 ///
1368 /// # Examples
1369 ///
1370 /// ```
1371 /// use std::sync::Arc;
1372 ///
1373 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
1374 ///
1375 /// // Deferred initialization:
1376 /// let data = Arc::get_mut(&mut values).unwrap();
1377 /// data[0].write(1);
1378 /// data[1].write(2);
1379 /// data[2].write(3);
1380 ///
1381 /// let values = unsafe { values.assume_init() };
1382 ///
1383 /// assert_eq!(*values, [1, 2, 3])
1384 /// ```
1385 #[stable(feature = "new_uninit", since = "1.82.0")]
1386 #[must_use = "`self` will be dropped if the result is not used"]
1387 #[inline]
1388 pub unsafe fn assume_init(self) -> Arc<[T], A> {
1389 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
1390 unsafe { Arc::from_ptr_in(ptr.as_ptr() as _, alloc) }
1391 }
1392}
1393
1394impl<T: ?Sized> Arc<T> {
1395 /// Constructs an `Arc<T>` from a raw pointer.
1396 ///
1397 /// The raw pointer must have been previously returned by a call to
1398 /// [`Arc<U>::into_raw`][into_raw] with the following requirements:
1399 ///
1400 /// * If `U` is sized, it must have the same size and alignment as `T`. This
1401 /// is trivially true if `U` is `T`.
1402 /// * If `U` is unsized, its data pointer must have the same size and
1403 /// alignment as `T`. This is trivially true if `Arc<U>` was constructed
1404 /// through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1405 /// coercion].
1406 ///
1407 /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1408 /// and alignment, this is basically like transmuting references of
1409 /// different types. See [`mem::transmute`][transmute] for more information
1410 /// on what restrictions apply in this case.
1411 ///
1412 /// The raw pointer must point to a block of memory allocated by the global allocator.
1413 ///
1414 /// The user of `from_raw` has to make sure a specific value of `T` is only
1415 /// dropped once.
1416 ///
1417 /// This function is unsafe because improper use may lead to memory unsafety,
1418 /// even if the returned `Arc<T>` is never accessed.
1419 ///
1420 /// [into_raw]: Arc::into_raw
1421 /// [transmute]: core::mem::transmute
1422 /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1423 ///
1424 /// # Examples
1425 ///
1426 /// ```
1427 /// use std::sync::Arc;
1428 ///
1429 /// let x = Arc::new("hello".to_owned());
1430 /// let x_ptr = Arc::into_raw(x);
1431 ///
1432 /// unsafe {
1433 /// // Convert back to an `Arc` to prevent leak.
1434 /// let x = Arc::from_raw(x_ptr);
1435 /// assert_eq!(&*x, "hello");
1436 ///
1437 /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1438 /// }
1439 ///
1440 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1441 /// ```
1442 ///
1443 /// Convert a slice back into its original array:
1444 ///
1445 /// ```
1446 /// use std::sync::Arc;
1447 ///
1448 /// let x: Arc<[u32]> = Arc::new([1, 2, 3]);
1449 /// let x_ptr: *const [u32] = Arc::into_raw(x);
1450 ///
1451 /// unsafe {
1452 /// let x: Arc<[u32; 3]> = Arc::from_raw(x_ptr.cast::<[u32; 3]>());
1453 /// assert_eq!(&*x, &[1, 2, 3]);
1454 /// }
1455 /// ```
1456 #[inline]
1457 #[stable(feature = "rc_raw", since = "1.17.0")]
1458 pub unsafe fn from_raw(ptr: *const T) -> Self {
1459 unsafe { Arc::from_raw_in(ptr, Global) }
1460 }
1461
1462 /// Consumes the `Arc`, returning the wrapped pointer.
1463 ///
1464 /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1465 /// [`Arc::from_raw`].
1466 ///
1467 /// # Examples
1468 ///
1469 /// ```
1470 /// use std::sync::Arc;
1471 ///
1472 /// let x = Arc::new("hello".to_owned());
1473 /// let x_ptr = Arc::into_raw(x);
1474 /// assert_eq!(unsafe { &*x_ptr }, "hello");
1475 /// # // Prevent leaks for Miri.
1476 /// # drop(unsafe { Arc::from_raw(x_ptr) });
1477 /// ```
1478 #[must_use = "losing the pointer will leak memory"]
1479 #[stable(feature = "rc_raw", since = "1.17.0")]
1480 #[rustc_never_returns_null_ptr]
1481 pub fn into_raw(this: Self) -> *const T {
1482 let this = ManuallyDrop::new(this);
1483 Self::as_ptr(&*this)
1484 }
1485
1486 /// Increments the strong reference count on the `Arc<T>` associated with the
1487 /// provided pointer by one.
1488 ///
1489 /// # Safety
1490 ///
1491 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1492 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1493 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1494 /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1495 /// allocated by the global allocator.
1496 ///
1497 /// [from_raw_in]: Arc::from_raw_in
1498 ///
1499 /// # Examples
1500 ///
1501 /// ```
1502 /// use std::sync::Arc;
1503 ///
1504 /// let five = Arc::new(5);
1505 ///
1506 /// unsafe {
1507 /// let ptr = Arc::into_raw(five);
1508 /// Arc::increment_strong_count(ptr);
1509 ///
1510 /// // This assertion is deterministic because we haven't shared
1511 /// // the `Arc` between threads.
1512 /// let five = Arc::from_raw(ptr);
1513 /// assert_eq!(2, Arc::strong_count(&five));
1514 /// # // Prevent leaks for Miri.
1515 /// # Arc::decrement_strong_count(ptr);
1516 /// }
1517 /// ```
1518 #[inline]
1519 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1520 pub unsafe fn increment_strong_count(ptr: *const T) {
1521 unsafe { Arc::increment_strong_count_in(ptr, Global) }
1522 }
1523
1524 /// Decrements the strong reference count on the `Arc<T>` associated with the
1525 /// provided pointer by one.
1526 ///
1527 /// # Safety
1528 ///
1529 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1530 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1531 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1532 /// least 1) when invoking this method, and `ptr` must point to a block of memory
1533 /// allocated by the global allocator. This method can be used to release the final
1534 /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1535 /// released.
1536 ///
1537 /// [from_raw_in]: Arc::from_raw_in
1538 ///
1539 /// # Examples
1540 ///
1541 /// ```
1542 /// use std::sync::Arc;
1543 ///
1544 /// let five = Arc::new(5);
1545 ///
1546 /// unsafe {
1547 /// let ptr = Arc::into_raw(five);
1548 /// Arc::increment_strong_count(ptr);
1549 ///
1550 /// // Those assertions are deterministic because we haven't shared
1551 /// // the `Arc` between threads.
1552 /// let five = Arc::from_raw(ptr);
1553 /// assert_eq!(2, Arc::strong_count(&five));
1554 /// Arc::decrement_strong_count(ptr);
1555 /// assert_eq!(1, Arc::strong_count(&five));
1556 /// }
1557 /// ```
1558 #[inline]
1559 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1560 pub unsafe fn decrement_strong_count(ptr: *const T) {
1561 unsafe { Arc::decrement_strong_count_in(ptr, Global) }
1562 }
1563}
1564
1565impl<T: ?Sized, A: Allocator> Arc<T, A> {
1566 /// Returns a reference to the underlying allocator.
1567 ///
1568 /// Note: this is an associated function, which means that you have
1569 /// to call it as `Arc::allocator(&a)` instead of `a.allocator()`. This
1570 /// is so that there is no conflict with a method on the inner type.
1571 #[inline]
1572 #[unstable(feature = "allocator_api", issue = "32838")]
1573 pub fn allocator(this: &Self) -> &A {
1574 &this.alloc
1575 }
1576
1577 /// Consumes the `Arc`, returning the wrapped pointer and allocator.
1578 ///
1579 /// To avoid a memory leak the pointer must be converted back to an `Arc` using
1580 /// [`Arc::from_raw_in`].
1581 ///
1582 /// # Examples
1583 ///
1584 /// ```
1585 /// #![feature(allocator_api)]
1586 /// use std::sync::Arc;
1587 /// use std::alloc::System;
1588 ///
1589 /// let x = Arc::new_in("hello".to_owned(), System);
1590 /// let (ptr, alloc) = Arc::into_raw_with_allocator(x);
1591 /// assert_eq!(unsafe { &*ptr }, "hello");
1592 /// let x = unsafe { Arc::from_raw_in(ptr, alloc) };
1593 /// assert_eq!(&*x, "hello");
1594 /// ```
1595 #[must_use = "losing the pointer will leak memory"]
1596 #[unstable(feature = "allocator_api", issue = "32838")]
1597 pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
1598 let this = mem::ManuallyDrop::new(this);
1599 let ptr = Self::as_ptr(&this);
1600 // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
1601 let alloc = unsafe { ptr::read(&this.alloc) };
1602 (ptr, alloc)
1603 }
1604
1605 /// Provides a raw pointer to the data.
1606 ///
1607 /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
1608 /// as long as there are strong counts in the `Arc`.
1609 ///
1610 /// # Examples
1611 ///
1612 /// ```
1613 /// use std::sync::Arc;
1614 ///
1615 /// let x = Arc::new("hello".to_owned());
1616 /// let y = Arc::clone(&x);
1617 /// let x_ptr = Arc::as_ptr(&x);
1618 /// assert_eq!(x_ptr, Arc::as_ptr(&y));
1619 /// assert_eq!(unsafe { &*x_ptr }, "hello");
1620 /// ```
1621 #[must_use]
1622 #[stable(feature = "rc_as_ptr", since = "1.45.0")]
1623 #[rustc_never_returns_null_ptr]
1624 pub fn as_ptr(this: &Self) -> *const T {
1625 let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
1626
1627 // SAFETY: This cannot go through Deref::deref or ArcInnerPtr::inner because
1628 // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1629 // write through the pointer after the Arc is recovered through `from_raw`.
1630 unsafe { &raw mut (*ptr).data }
1631 }
1632
1633 /// Constructs an `Arc<T, A>` from a raw pointer.
1634 ///
1635 /// The raw pointer must have been previously returned by a call to [`Arc<U,
1636 /// A>::into_raw`][into_raw] with the following requirements:
1637 ///
1638 /// * If `U` is sized, it must have the same size and alignment as `T`. This
1639 /// is trivially true if `U` is `T`.
1640 /// * If `U` is unsized, its data pointer must have the same size and
1641 /// alignment as `T`. This is trivially true if `Arc<U>` was constructed
1642 /// through `Arc<T>` and then converted to `Arc<U>` through an [unsized
1643 /// coercion].
1644 ///
1645 /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
1646 /// and alignment, this is basically like transmuting references of
1647 /// different types. See [`mem::transmute`][transmute] for more information
1648 /// on what restrictions apply in this case.
1649 ///
1650 /// The raw pointer must point to a block of memory allocated by `alloc`
1651 ///
1652 /// The user of `from_raw` has to make sure a specific value of `T` is only
1653 /// dropped once.
1654 ///
1655 /// This function is unsafe because improper use may lead to memory unsafety,
1656 /// even if the returned `Arc<T>` is never accessed.
1657 ///
1658 /// [into_raw]: Arc::into_raw
1659 /// [transmute]: core::mem::transmute
1660 /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
1661 ///
1662 /// # Examples
1663 ///
1664 /// ```
1665 /// #![feature(allocator_api)]
1666 ///
1667 /// use std::sync::Arc;
1668 /// use std::alloc::System;
1669 ///
1670 /// let x = Arc::new_in("hello".to_owned(), System);
1671 /// let (x_ptr, alloc) = Arc::into_raw_with_allocator(x);
1672 ///
1673 /// unsafe {
1674 /// // Convert back to an `Arc` to prevent leak.
1675 /// let x = Arc::from_raw_in(x_ptr, System);
1676 /// assert_eq!(&*x, "hello");
1677 ///
1678 /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1679 /// }
1680 ///
1681 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1682 /// ```
1683 ///
1684 /// Convert a slice back into its original array:
1685 ///
1686 /// ```
1687 /// #![feature(allocator_api)]
1688 ///
1689 /// use std::sync::Arc;
1690 /// use std::alloc::System;
1691 ///
1692 /// let x: Arc<[u32], _> = Arc::new_in([1, 2, 3], System);
1693 /// let x_ptr: *const [u32] = Arc::into_raw_with_allocator(x).0;
1694 ///
1695 /// unsafe {
1696 /// let x: Arc<[u32; 3], _> = Arc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
1697 /// assert_eq!(&*x, &[1, 2, 3]);
1698 /// }
1699 /// ```
1700 #[inline]
1701 #[unstable(feature = "allocator_api", issue = "32838")]
1702 pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
1703 unsafe {
1704 let offset = data_offset(ptr);
1705
1706 // Reverse the offset to find the original ArcInner.
1707 let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>;
1708
1709 Self::from_ptr_in(arc_ptr, alloc)
1710 }
1711 }
1712
1713 /// Creates a new [`Weak`] pointer to this allocation.
1714 ///
1715 /// # Examples
1716 ///
1717 /// ```
1718 /// use std::sync::Arc;
1719 ///
1720 /// let five = Arc::new(5);
1721 ///
1722 /// let weak_five = Arc::downgrade(&five);
1723 /// ```
1724 #[must_use = "this returns a new `Weak` pointer, \
1725 without modifying the original `Arc`"]
1726 #[stable(feature = "arc_weak", since = "1.4.0")]
1727 pub fn downgrade(this: &Self) -> Weak<T, A>
1728 where
1729 A: Clone,
1730 {
1731 // This Relaxed is OK because we're checking the value in the CAS
1732 // below.
1733 let mut cur = this.inner().weak.load(Relaxed);
1734
1735 loop {
1736 // check if the weak counter is currently "locked"; if so, spin.
1737 if cur == usize::MAX {
1738 hint::spin_loop();
1739 cur = this.inner().weak.load(Relaxed);
1740 continue;
1741 }
1742
1743 // We can't allow the refcount to increase much past `MAX_REFCOUNT`.
1744 assert!(cur <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
1745
1746 // NOTE: this code currently ignores the possibility of overflow
1747 // into usize::MAX; in general both Rc and Arc need to be adjusted
1748 // to deal with overflow.
1749
1750 // Unlike with Clone(), we need this to be an Acquire read to
1751 // synchronize with the write coming from `is_unique`, so that the
1752 // events prior to that write happen before this read.
1753 match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
1754 Ok(_) => {
1755 // Make sure we do not create a dangling Weak
1756 debug_assert!(!is_dangling(this.ptr.as_ptr()));
1757 return Weak { ptr: this.ptr, alloc: this.alloc.clone() };
1758 }
1759 Err(old) => cur = old,
1760 }
1761 }
1762 }
1763
1764 /// Gets the number of [`Weak`] pointers to this allocation.
1765 ///
1766 /// # Safety
1767 ///
1768 /// This method by itself is safe, but using it correctly requires extra care.
1769 /// Another thread can change the weak count at any time,
1770 /// including potentially between calling this method and acting on the result.
1771 ///
1772 /// # Examples
1773 ///
1774 /// ```
1775 /// use std::sync::Arc;
1776 ///
1777 /// let five = Arc::new(5);
1778 /// let _weak_five = Arc::downgrade(&five);
1779 ///
1780 /// // This assertion is deterministic because we haven't shared
1781 /// // the `Arc` or `Weak` between threads.
1782 /// assert_eq!(1, Arc::weak_count(&five));
1783 /// ```
1784 #[inline]
1785 #[must_use]
1786 #[stable(feature = "arc_counts", since = "1.15.0")]
1787 pub fn weak_count(this: &Self) -> usize {
1788 let cnt = this.inner().weak.load(Relaxed);
1789 // If the weak count is currently locked, the value of the
1790 // count was 0 just before taking the lock.
1791 if cnt == usize::MAX { 0 } else { cnt - 1 }
1792 }
1793
1794 /// Gets the number of strong (`Arc`) pointers to this allocation.
1795 ///
1796 /// # Safety
1797 ///
1798 /// This method by itself is safe, but using it correctly requires extra care.
1799 /// Another thread can change the strong count at any time,
1800 /// including potentially between calling this method and acting on the result.
1801 ///
1802 /// # Examples
1803 ///
1804 /// ```
1805 /// use std::sync::Arc;
1806 ///
1807 /// let five = Arc::new(5);
1808 /// let _also_five = Arc::clone(&five);
1809 ///
1810 /// // This assertion is deterministic because we haven't shared
1811 /// // the `Arc` between threads.
1812 /// assert_eq!(2, Arc::strong_count(&five));
1813 /// ```
1814 #[inline]
1815 #[must_use]
1816 #[stable(feature = "arc_counts", since = "1.15.0")]
1817 pub fn strong_count(this: &Self) -> usize {
1818 this.inner().strong.load(Relaxed)
1819 }
1820
1821 /// Increments the strong reference count on the `Arc<T>` associated with the
1822 /// provided pointer by one.
1823 ///
1824 /// # Safety
1825 ///
1826 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1827 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1828 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1829 /// least 1) for the duration of this method, and `ptr` must point to a block of memory
1830 /// allocated by `alloc`.
1831 ///
1832 /// [from_raw_in]: Arc::from_raw_in
1833 ///
1834 /// # Examples
1835 ///
1836 /// ```
1837 /// #![feature(allocator_api)]
1838 ///
1839 /// use std::sync::Arc;
1840 /// use std::alloc::System;
1841 ///
1842 /// let five = Arc::new_in(5, System);
1843 ///
1844 /// unsafe {
1845 /// let (ptr, _alloc) = Arc::into_raw_with_allocator(five);
1846 /// Arc::increment_strong_count_in(ptr, System);
1847 ///
1848 /// // This assertion is deterministic because we haven't shared
1849 /// // the `Arc` between threads.
1850 /// let five = Arc::from_raw_in(ptr, System);
1851 /// assert_eq!(2, Arc::strong_count(&five));
1852 /// # // Prevent leaks for Miri.
1853 /// # Arc::decrement_strong_count_in(ptr, System);
1854 /// }
1855 /// ```
1856 #[inline]
1857 #[unstable(feature = "allocator_api", issue = "32838")]
1858 pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
1859 where
1860 A: Clone,
1861 {
1862 // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
1863 let arc = unsafe { mem::ManuallyDrop::new(Arc::from_raw_in(ptr, alloc)) };
1864 // Now increase refcount, but don't drop new refcount either
1865 let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
1866 }
1867
1868 /// Decrements the strong reference count on the `Arc<T>` associated with the
1869 /// provided pointer by one.
1870 ///
1871 /// # Safety
1872 ///
1873 /// The pointer must have been obtained through `Arc::into_raw` and must satisfy the
1874 /// same layout requirements specified in [`Arc::from_raw_in`][from_raw_in].
1875 /// The associated `Arc` instance must be valid (i.e. the strong count must be at
1876 /// least 1) when invoking this method, and `ptr` must point to a block of memory
1877 /// allocated by `alloc`. This method can be used to release the final
1878 /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1879 /// released.
1880 ///
1881 /// [from_raw_in]: Arc::from_raw_in
1882 ///
1883 /// # Examples
1884 ///
1885 /// ```
1886 /// #![feature(allocator_api)]
1887 ///
1888 /// use std::sync::Arc;
1889 /// use std::alloc::System;
1890 ///
1891 /// let five = Arc::new_in(5, System);
1892 ///
1893 /// unsafe {
1894 /// let (ptr, _alloc) = Arc::into_raw_with_allocator(five);
1895 /// Arc::increment_strong_count_in(ptr, System);
1896 ///
1897 /// // Those assertions are deterministic because we haven't shared
1898 /// // the `Arc` between threads.
1899 /// let five = Arc::from_raw_in(ptr, System);
1900 /// assert_eq!(2, Arc::strong_count(&five));
1901 /// Arc::decrement_strong_count_in(ptr, System);
1902 /// assert_eq!(1, Arc::strong_count(&five));
1903 /// }
1904 /// ```
1905 #[inline]
1906 #[unstable(feature = "allocator_api", issue = "32838")]
1907 pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
1908 unsafe { drop(Arc::from_raw_in(ptr, alloc)) };
1909 }
1910
1911 #[inline]
1912 fn inner(&self) -> &ArcInner<T> {
1913 // This unsafety is ok because while this arc is alive we're guaranteed
1914 // that the inner pointer is valid. Furthermore, we know that the
1915 // `ArcInner` structure itself is `Sync` because the inner data is
1916 // `Sync` as well, so we're ok loaning out an immutable pointer to these
1917 // contents.
1918 unsafe { self.ptr.as_ref() }
1919 }
1920
1921 // Non-inlined part of `drop`.
1922 #[inline(never)]
1923 unsafe fn drop_slow(&mut self) {
1924 // Drop the weak ref collectively held by all strong references when this
1925 // variable goes out of scope. This ensures that the memory is deallocated
1926 // even if the destructor of `T` panics.
1927 // Take a reference to `self.alloc` instead of cloning because 1. it'll last long
1928 // enough, and 2. you should be able to drop `Arc`s with unclonable allocators
1929 let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
1930
1931 // Destroy the data at this time, even though we must not free the box
1932 // allocation itself (there might still be weak pointers lying around).
1933 // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
1934 unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
1935 }
1936
1937 /// Returns `true` if the two `Arc`s point to the same allocation in a vein similar to
1938 /// [`ptr::eq`]. This function ignores the metadata of `dyn Trait` pointers.
1939 ///
1940 /// # Examples
1941 ///
1942 /// ```
1943 /// use std::sync::Arc;
1944 ///
1945 /// let five = Arc::new(5);
1946 /// let same_five = Arc::clone(&five);
1947 /// let other_five = Arc::new(5);
1948 ///
1949 /// assert!(Arc::ptr_eq(&five, &same_five));
1950 /// assert!(!Arc::ptr_eq(&five, &other_five));
1951 /// ```
1952 ///
1953 /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
1954 #[inline]
1955 #[must_use]
1956 #[stable(feature = "ptr_eq", since = "1.17.0")]
1957 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1958 ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
1959 }
1960}
1961
1962impl<T: ?Sized> Arc<T> {
1963 /// Allocates an `ArcInner<T>` with sufficient space for
1964 /// a possibly-unsized inner value where the value has the layout provided.
1965 ///
1966 /// The function `mem_to_arcinner` is called with the data pointer
1967 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1968 #[cfg(not(no_global_oom_handling))]
1969 unsafe fn allocate_for_layout(
1970 value_layout: Layout,
1971 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1972 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1973 ) -> *mut ArcInner<T> {
1974 let layout = arcinner_layout_for_value_layout(value_layout);
1975
1976 let ptr = allocate(layout).unwrap_or_else(|_| handle_alloc_error(layout));
1977
1978 unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) }
1979 }
1980
1981 /// Allocates an `ArcInner<T>` with sufficient space for
1982 /// a possibly-unsized inner value where the value has the layout provided,
1983 /// returning an error if allocation fails.
1984 ///
1985 /// The function `mem_to_arcinner` is called with the data pointer
1986 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1987 unsafe fn try_allocate_for_layout(
1988 value_layout: Layout,
1989 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1990 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1991 ) -> Result<*mut ArcInner<T>, AllocError> {
1992 let layout = arcinner_layout_for_value_layout(value_layout);
1993
1994 let ptr = allocate(layout)?;
1995
1996 let inner = unsafe { Self::initialize_arcinner(ptr, layout, mem_to_arcinner) };
1997
1998 Ok(inner)
1999 }
2000
2001 unsafe fn initialize_arcinner(
2002 ptr: NonNull<[u8]>,
2003 layout: Layout,
2004 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
2005 ) -> *mut ArcInner<T> {
2006 let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
2007 debug_assert_eq!(unsafe { Layout::for_value_raw(inner) }, layout);
2008
2009 unsafe {
2010 (&raw mut (*inner).strong).write(atomic::AtomicUsize::new(1));
2011 (&raw mut (*inner).weak).write(atomic::AtomicUsize::new(1));
2012 }
2013
2014 inner
2015 }
2016}
2017
2018impl<T: ?Sized, A: Allocator> Arc<T, A> {
2019 /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
2020 #[inline]
2021 #[cfg(not(no_global_oom_handling))]
2022 unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut ArcInner<T> {
2023 // Allocate for the `ArcInner<T>` using the given value.
2024 unsafe {
2025 Arc::allocate_for_layout(
2026 Layout::for_value_raw(ptr),
2027 |layout| alloc.allocate(layout),
2028 |mem| mem.with_metadata_of(ptr as *const ArcInner<T>),
2029 )
2030 }
2031 }
2032
2033 #[cfg(not(no_global_oom_handling))]
2034 fn from_box_in(src: Box<T, A>) -> Arc<T, A> {
2035 unsafe {
2036 let value_size = size_of_val(&*src);
2037 let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));
2038
2039 // Copy value as bytes
2040 ptr::copy_nonoverlapping(
2041 (&raw const *src) as *const u8,
2042 (&raw mut (*ptr).data) as *mut u8,
2043 value_size,
2044 );
2045
2046 // Free the allocation without dropping its contents
2047 let (bptr, alloc) = Box::into_raw_with_allocator(src);
2048 let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
2049 drop(src);
2050
2051 Self::from_ptr_in(ptr, alloc)
2052 }
2053 }
2054}
2055
2056impl<T> Arc<[T]> {
2057 /// Allocates an `ArcInner<[T]>` with the given length.
2058 #[cfg(not(no_global_oom_handling))]
2059 unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
2060 unsafe {
2061 Self::allocate_for_layout(
2062 Layout::array::<T>(len).unwrap(),
2063 |layout| Global.allocate(layout),
2064 |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2065 )
2066 }
2067 }
2068
2069 /// Copy elements from slice into newly allocated `Arc<[T]>`
2070 ///
2071 /// Unsafe because the caller must either take ownership or bind `T: Copy`.
2072 #[cfg(not(no_global_oom_handling))]
2073 unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
2074 unsafe {
2075 let ptr = Self::allocate_for_slice(v.len());
2076
2077 ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).data) as *mut T, v.len());
2078
2079 Self::from_ptr(ptr)
2080 }
2081 }
2082
2083 /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
2084 ///
2085 /// Behavior is undefined should the size be wrong.
2086 #[cfg(not(no_global_oom_handling))]
2087 unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Arc<[T]> {
2088 // Panic guard while cloning T elements.
2089 // In the event of a panic, elements that have been written
2090 // into the new ArcInner will be dropped, then the memory freed.
2091 struct Guard<T> {
2092 mem: NonNull<u8>,
2093 elems: *mut T,
2094 layout: Layout,
2095 n_elems: usize,
2096 }
2097
2098 impl<T> Drop for Guard<T> {
2099 fn drop(&mut self) {
2100 unsafe {
2101 let slice = from_raw_parts_mut(self.elems, self.n_elems);
2102 ptr::drop_in_place(slice);
2103
2104 Global.deallocate(self.mem, self.layout);
2105 }
2106 }
2107 }
2108
2109 unsafe {
2110 let ptr = Self::allocate_for_slice(len);
2111
2112 let mem = ptr as *mut _ as *mut u8;
2113 let layout = Layout::for_value_raw(ptr);
2114
2115 // Pointer to first element
2116 let elems = (&raw mut (*ptr).data) as *mut T;
2117
2118 let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
2119
2120 for (i, item) in iter.enumerate() {
2121 ptr::write(elems.add(i), item);
2122 guard.n_elems += 1;
2123 }
2124
2125 // All clear. Forget the guard so it doesn't free the new ArcInner.
2126 mem::forget(guard);
2127
2128 Self::from_ptr(ptr)
2129 }
2130 }
2131}
2132
2133impl<T, A: Allocator> Arc<[T], A> {
2134 /// Allocates an `ArcInner<[T]>` with the given length.
2135 #[inline]
2136 #[cfg(not(no_global_oom_handling))]
2137 unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut ArcInner<[T]> {
2138 unsafe {
2139 Arc::allocate_for_layout(
2140 Layout::array::<T>(len).unwrap(),
2141 |layout| alloc.allocate(layout),
2142 |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut ArcInner<[T]>,
2143 )
2144 }
2145 }
2146}
2147
2148/// Specialization trait used for `From<&[T]>`.
2149#[cfg(not(no_global_oom_handling))]
2150trait ArcFromSlice<T> {
2151 fn from_slice(slice: &[T]) -> Self;
2152}
2153
2154#[cfg(not(no_global_oom_handling))]
2155impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
2156 #[inline]
2157 default fn from_slice(v: &[T]) -> Self {
2158 unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
2159 }
2160}
2161
2162#[cfg(not(no_global_oom_handling))]
2163impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
2164 #[inline]
2165 fn from_slice(v: &[T]) -> Self {
2166 unsafe { Arc::copy_from_slice(v) }
2167 }
2168}
2169
2170#[stable(feature = "rust1", since = "1.0.0")]
2171impl<T: ?Sized, A: Allocator + Clone> Clone for Arc<T, A> {
2172 /// Makes a clone of the `Arc` pointer.
2173 ///
2174 /// This creates another pointer to the same allocation, increasing the
2175 /// strong reference count.
2176 ///
2177 /// # Examples
2178 ///
2179 /// ```
2180 /// use std::sync::Arc;
2181 ///
2182 /// let five = Arc::new(5);
2183 ///
2184 /// let _ = Arc::clone(&five);
2185 /// ```
2186 #[inline]
2187 fn clone(&self) -> Arc<T, A> {
2188 // Using a relaxed ordering is alright here, as knowledge of the
2189 // original reference prevents other threads from erroneously deleting
2190 // the object.
2191 //
2192 // As explained in the [Boost documentation][1], Increasing the
2193 // reference counter can always be done with memory_order_relaxed: New
2194 // references to an object can only be formed from an existing
2195 // reference, and passing an existing reference from one thread to
2196 // another must already provide any required synchronization.
2197 //
2198 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2199 let old_size = self.inner().strong.fetch_add(1, Relaxed);
2200
2201 // However we need to guard against massive refcounts in case someone is `mem::forget`ing
2202 // Arcs. If we don't do this the count can overflow and users will use-after free. This
2203 // branch will never be taken in any realistic program. We abort because such a program is
2204 // incredibly degenerate, and we don't care to support it.
2205 //
2206 // This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`.
2207 // But we do that check *after* having done the increment, so there is a chance here that
2208 // the worst already happened and we actually do overflow the `usize` counter. However, that
2209 // requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment
2210 // above and the `abort` below, which seems exceedingly unlikely.
2211 //
2212 // This is a global invariant, and also applies when using a compare-exchange loop to increment
2213 // counters in other methods.
2214 // Otherwise, the counter could be brought to an almost-overflow using a compare-exchange loop,
2215 // and then overflow using a few `fetch_add`s.
2216 if old_size > MAX_REFCOUNT {
2217 abort();
2218 }
2219
2220 unsafe { Self::from_inner_in(self.ptr, self.alloc.clone()) }
2221 }
2222}
2223
2224#[unstable(feature = "ergonomic_clones", issue = "132290")]
2225impl<T: ?Sized, A: Allocator + Clone> UseCloned for Arc<T, A> {}
2226
2227#[stable(feature = "rust1", since = "1.0.0")]
2228impl<T: ?Sized, A: Allocator> Deref for Arc<T, A> {
2229 type Target = T;
2230
2231 #[inline]
2232 fn deref(&self) -> &T {
2233 &self.inner().data
2234 }
2235}
2236
2237#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2238unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Arc<T, A> {}
2239
2240#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2241unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}
2242
2243#[unstable(feature = "deref_pure_trait", issue = "87121")]
2244unsafe impl<T: ?Sized, A: Allocator> DerefPure for Arc<T, A> {}
2245
2246#[unstable(feature = "legacy_receiver_trait", issue = "none")]
2247impl<T: ?Sized> LegacyReceiver for Arc<T> {}
2248
2249#[cfg(not(no_global_oom_handling))]
2250impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Arc<T, A> {
2251 /// Makes a mutable reference into the given `Arc`.
2252 ///
2253 /// If there are other `Arc` pointers to the same allocation, then `make_mut` will
2254 /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
2255 /// referred to as clone-on-write.
2256 ///
2257 /// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`]
2258 /// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not
2259 /// be cloned.
2260 ///
2261 /// See also [`get_mut`], which will fail rather than cloning the inner value
2262 /// or dissociating [`Weak`] pointers.
2263 ///
2264 /// [`clone`]: Clone::clone
2265 /// [`get_mut`]: Arc::get_mut
2266 ///
2267 /// # Examples
2268 ///
2269 /// ```
2270 /// use std::sync::Arc;
2271 ///
2272 /// let mut data = Arc::new(5);
2273 ///
2274 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
2275 /// let mut other_data = Arc::clone(&data); // Won't clone inner data
2276 /// *Arc::make_mut(&mut data) += 1; // Clones inner data
2277 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
2278 /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything
2279 ///
2280 /// // Now `data` and `other_data` point to different allocations.
2281 /// assert_eq!(*data, 8);
2282 /// assert_eq!(*other_data, 12);
2283 /// ```
2284 ///
2285 /// [`Weak`] pointers will be dissociated:
2286 ///
2287 /// ```
2288 /// use std::sync::Arc;
2289 ///
2290 /// let mut data = Arc::new(75);
2291 /// let weak = Arc::downgrade(&data);
2292 ///
2293 /// assert!(75 == *data);
2294 /// assert!(75 == *weak.upgrade().unwrap());
2295 ///
2296 /// *Arc::make_mut(&mut data) += 1;
2297 ///
2298 /// assert!(76 == *data);
2299 /// assert!(weak.upgrade().is_none());
2300 /// ```
2301 #[inline]
2302 #[stable(feature = "arc_unique", since = "1.4.0")]
2303 pub fn make_mut(this: &mut Self) -> &mut T {
2304 let size_of_val = size_of_val::<T>(&**this);
2305
2306 // Note that we hold both a strong reference and a weak reference.
2307 // Thus, releasing our strong reference only will not, by itself, cause
2308 // the memory to be deallocated.
2309 //
2310 // Use Acquire to ensure that we see any writes to `weak` that happen
2311 // before release writes (i.e., decrements) to `strong`. Since we hold a
2312 // weak count, there's no chance the ArcInner itself could be
2313 // deallocated.
2314 if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
2315 // Another strong pointer exists, so we must clone.
2316
2317 let this_data_ref: &T = &**this;
2318 // `in_progress` drops the allocation if we panic before finishing initializing it.
2319 let mut in_progress: UniqueArcUninit<T, A> =
2320 UniqueArcUninit::new(this_data_ref, this.alloc.clone());
2321
2322 let initialized_clone = unsafe {
2323 // Clone. If the clone panics, `in_progress` will be dropped and clean up.
2324 this_data_ref.clone_to_uninit(in_progress.data_ptr().cast());
2325 // Cast type of pointer, now that it is initialized.
2326 in_progress.into_arc()
2327 };
2328 *this = initialized_clone;
2329 } else if this.inner().weak.load(Relaxed) != 1 {
2330 // Relaxed suffices in the above because this is fundamentally an
2331 // optimization: we are always racing with weak pointers being
2332 // dropped. Worst case, we end up allocated a new Arc unnecessarily.
2333
2334 // We removed the last strong ref, but there are additional weak
2335 // refs remaining. We'll move the contents to a new Arc, and
2336 // invalidate the other weak refs.
2337
2338 // Note that it is not possible for the read of `weak` to yield
2339 // usize::MAX (i.e., locked), since the weak count can only be
2340 // locked by a thread with a strong reference.
2341
2342 // Materialize our own implicit weak pointer, so that it can clean
2343 // up the ArcInner as needed.
2344 let _weak = Weak { ptr: this.ptr, alloc: this.alloc.clone() };
2345
2346 // Can just steal the data, all that's left is Weaks
2347 //
2348 // We don't need panic-protection like the above branch does, but we might as well
2349 // use the same mechanism.
2350 let mut in_progress: UniqueArcUninit<T, A> =
2351 UniqueArcUninit::new(&**this, this.alloc.clone());
2352 unsafe {
2353 // Initialize `in_progress` with move of **this.
2354 // We have to express this in terms of bytes because `T: ?Sized`; there is no
2355 // operation that just copies a value based on its `size_of_val()`.
2356 ptr::copy_nonoverlapping(
2357 ptr::from_ref(&**this).cast::<u8>(),
2358 in_progress.data_ptr().cast::<u8>(),
2359 size_of_val,
2360 );
2361
2362 ptr::write(this, in_progress.into_arc());
2363 }
2364 } else {
2365 // We were the sole reference of either kind; bump back up the
2366 // strong ref count.
2367 this.inner().strong.store(1, Release);
2368 }
2369
2370 // As with `get_mut()`, the unsafety is ok because our reference was
2371 // either unique to begin with, or became one upon cloning the contents.
2372 unsafe { Self::get_mut_unchecked(this) }
2373 }
2374}
2375
2376impl<T: Clone, A: Allocator> Arc<T, A> {
2377 /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
2378 /// clone.
2379 ///
2380 /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to
2381 /// `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
2382 ///
2383 /// # Examples
2384 ///
2385 /// ```
2386 /// # use std::{ptr, sync::Arc};
2387 /// let inner = String::from("test");
2388 /// let ptr = inner.as_ptr();
2389 ///
2390 /// let arc = Arc::new(inner);
2391 /// let inner = Arc::unwrap_or_clone(arc);
2392 /// // The inner value was not cloned
2393 /// assert!(ptr::eq(ptr, inner.as_ptr()));
2394 ///
2395 /// let arc = Arc::new(inner);
2396 /// let arc2 = arc.clone();
2397 /// let inner = Arc::unwrap_or_clone(arc);
2398 /// // Because there were 2 references, we had to clone the inner value.
2399 /// assert!(!ptr::eq(ptr, inner.as_ptr()));
2400 /// // `arc2` is the last reference, so when we unwrap it we get back
2401 /// // the original `String`.
2402 /// let inner = Arc::unwrap_or_clone(arc2);
2403 /// assert!(ptr::eq(ptr, inner.as_ptr()));
2404 /// ```
2405 #[inline]
2406 #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
2407 pub fn unwrap_or_clone(this: Self) -> T {
2408 Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone())
2409 }
2410}
2411
2412impl<T: ?Sized, A: Allocator> Arc<T, A> {
2413 /// Returns a mutable reference into the given `Arc`, if there are
2414 /// no other `Arc` or [`Weak`] pointers to the same allocation.
2415 ///
2416 /// Returns [`None`] otherwise, because it is not safe to
2417 /// mutate a shared value.
2418 ///
2419 /// See also [`make_mut`][make_mut], which will [`clone`][clone]
2420 /// the inner value when there are other `Arc` pointers.
2421 ///
2422 /// [make_mut]: Arc::make_mut
2423 /// [clone]: Clone::clone
2424 ///
2425 /// # Examples
2426 ///
2427 /// ```
2428 /// use std::sync::Arc;
2429 ///
2430 /// let mut x = Arc::new(3);
2431 /// *Arc::get_mut(&mut x).unwrap() = 4;
2432 /// assert_eq!(*x, 4);
2433 ///
2434 /// let _y = Arc::clone(&x);
2435 /// assert!(Arc::get_mut(&mut x).is_none());
2436 /// ```
2437 #[inline]
2438 #[stable(feature = "arc_unique", since = "1.4.0")]
2439 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
2440 if Self::is_unique(this) {
2441 // This unsafety is ok because we're guaranteed that the pointer
2442 // returned is the *only* pointer that will ever be returned to T. Our
2443 // reference count is guaranteed to be 1 at this point, and we required
2444 // the Arc itself to be `mut`, so we're returning the only possible
2445 // reference to the inner data.
2446 unsafe { Some(Arc::get_mut_unchecked(this)) }
2447 } else {
2448 None
2449 }
2450 }
2451
2452 /// Returns a mutable reference into the given `Arc`,
2453 /// without any check.
2454 ///
2455 /// See also [`get_mut`], which is safe and does appropriate checks.
2456 ///
2457 /// [`get_mut`]: Arc::get_mut
2458 ///
2459 /// # Safety
2460 ///
2461 /// If any other `Arc` or [`Weak`] pointers to the same allocation exist, then
2462 /// they must not be dereferenced or have active borrows for the duration
2463 /// of the returned borrow, and their inner type must be exactly the same as the
2464 /// inner type of this Arc (including lifetimes). This is trivially the case if no
2465 /// such pointers exist, for example immediately after `Arc::new`.
2466 ///
2467 /// # Examples
2468 ///
2469 /// ```
2470 /// #![feature(get_mut_unchecked)]
2471 ///
2472 /// use std::sync::Arc;
2473 ///
2474 /// let mut x = Arc::new(String::new());
2475 /// unsafe {
2476 /// Arc::get_mut_unchecked(&mut x).push_str("foo")
2477 /// }
2478 /// assert_eq!(*x, "foo");
2479 /// ```
2480 /// Other `Arc` pointers to the same allocation must be to the same type.
2481 /// ```no_run
2482 /// #![feature(get_mut_unchecked)]
2483 ///
2484 /// use std::sync::Arc;
2485 ///
2486 /// let x: Arc<str> = Arc::from("Hello, world!");
2487 /// let mut y: Arc<[u8]> = x.clone().into();
2488 /// unsafe {
2489 /// // this is Undefined Behavior, because x's inner type is str, not [u8]
2490 /// Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
2491 /// }
2492 /// println!("{}", &*x); // Invalid UTF-8 in a str
2493 /// ```
2494 /// Other `Arc` pointers to the same allocation must be to the exact same type, including lifetimes.
2495 /// ```no_run
2496 /// #![feature(get_mut_unchecked)]
2497 ///
2498 /// use std::sync::Arc;
2499 ///
2500 /// let x: Arc<&str> = Arc::new("Hello, world!");
2501 /// {
2502 /// let s = String::from("Oh, no!");
2503 /// let mut y: Arc<&str> = x.clone();
2504 /// unsafe {
2505 /// // this is Undefined Behavior, because x's inner type
2506 /// // is &'long str, not &'short str
2507 /// *Arc::get_mut_unchecked(&mut y) = &s;
2508 /// }
2509 /// }
2510 /// println!("{}", &*x); // Use-after-free
2511 /// ```
2512 #[inline]
2513 #[unstable(feature = "get_mut_unchecked", issue = "63292")]
2514 pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
2515 // We are careful to *not* create a reference covering the "count" fields, as
2516 // this would alias with concurrent access to the reference counts (e.g. by `Weak`).
2517 unsafe { &mut (*this.ptr.as_ptr()).data }
2518 }
2519
2520 /// Determine whether this is the unique reference to the underlying data.
2521 ///
2522 /// Returns `true` if there are no other `Arc` or [`Weak`] pointers to the same allocation;
2523 /// returns `false` otherwise.
2524 ///
2525 /// If this function returns `true`, then is guaranteed to be safe to call [`get_mut_unchecked`]
2526 /// on this `Arc`, so long as no clones occur in between.
2527 ///
2528 /// # Examples
2529 ///
2530 /// ```
2531 /// #![feature(arc_is_unique)]
2532 ///
2533 /// use std::sync::Arc;
2534 ///
2535 /// let x = Arc::new(3);
2536 /// assert!(Arc::is_unique(&x));
2537 ///
2538 /// let y = Arc::clone(&x);
2539 /// assert!(!Arc::is_unique(&x));
2540 /// drop(y);
2541 ///
2542 /// // Weak references also count, because they could be upgraded at any time.
2543 /// let z = Arc::downgrade(&x);
2544 /// assert!(!Arc::is_unique(&x));
2545 /// ```
2546 ///
2547 /// # Pointer invalidation
2548 ///
2549 /// This function will always return the same value as `Arc::get_mut(arc).is_some()`. However,
2550 /// unlike that operation it does not produce any mutable references to the underlying data,
2551 /// meaning no pointers to the data inside the `Arc` are invalidated by the call. Thus, the
2552 /// following code is valid, even though it would be UB if it used `Arc::get_mut`:
2553 ///
2554 /// ```
2555 /// #![feature(arc_is_unique)]
2556 ///
2557 /// use std::sync::Arc;
2558 ///
2559 /// let arc = Arc::new(5);
2560 /// let pointer: *const i32 = &*arc;
2561 /// assert!(Arc::is_unique(&arc));
2562 /// assert_eq!(unsafe { *pointer }, 5);
2563 /// ```
2564 ///
2565 /// # Atomic orderings
2566 ///
2567 /// Concurrent drops to other `Arc` pointers to the same allocation will synchronize with this
2568 /// call - that is, this call performs an `Acquire` operation on the underlying strong and weak
2569 /// ref counts. This ensures that calling `get_mut_unchecked` is safe.
2570 ///
2571 /// Note that this operation requires locking the weak ref count, so concurrent calls to
2572 /// `downgrade` may spin-loop for a short period of time.
2573 ///
2574 /// [`get_mut_unchecked`]: Self::get_mut_unchecked
2575 #[inline]
2576 #[unstable(feature = "arc_is_unique", issue = "138938")]
2577 pub fn is_unique(this: &Self) -> bool {
2578 // lock the weak pointer count if we appear to be the sole weak pointer
2579 // holder.
2580 //
2581 // The acquire label here ensures a happens-before relationship with any
2582 // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
2583 // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
2584 // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
2585 if this.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
2586 // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
2587 // counter in `drop` -- the only access that happens when any but the last reference
2588 // is being dropped.
2589 let unique = this.inner().strong.load(Acquire) == 1;
2590
2591 // The release write here synchronizes with a read in `downgrade`,
2592 // effectively preventing the above read of `strong` from happening
2593 // after the write.
2594 this.inner().weak.store(1, Release); // release the lock
2595 unique
2596 } else {
2597 false
2598 }
2599 }
2600}
2601
2602#[stable(feature = "rust1", since = "1.0.0")]
2603unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Arc<T, A> {
2604 /// Drops the `Arc`.
2605 ///
2606 /// This will decrement the strong reference count. If the strong reference
2607 /// count reaches zero then the only other references (if any) are
2608 /// [`Weak`], so we `drop` the inner value.
2609 ///
2610 /// # Examples
2611 ///
2612 /// ```
2613 /// use std::sync::Arc;
2614 ///
2615 /// struct Foo;
2616 ///
2617 /// impl Drop for Foo {
2618 /// fn drop(&mut self) {
2619 /// println!("dropped!");
2620 /// }
2621 /// }
2622 ///
2623 /// let foo = Arc::new(Foo);
2624 /// let foo2 = Arc::clone(&foo);
2625 ///
2626 /// drop(foo); // Doesn't print anything
2627 /// drop(foo2); // Prints "dropped!"
2628 /// ```
2629 #[inline]
2630 fn drop(&mut self) {
2631 // Because `fetch_sub` is already atomic, we do not need to synchronize
2632 // with other threads unless we are going to delete the object. This
2633 // same logic applies to the below `fetch_sub` to the `weak` count.
2634 if self.inner().strong.fetch_sub(1, Release) != 1 {
2635 return;
2636 }
2637
2638 // This fence is needed to prevent reordering of use of the data and
2639 // deletion of the data. Because it is marked `Release`, the decreasing
2640 // of the reference count synchronizes with this `Acquire` fence. This
2641 // means that use of the data happens before decreasing the reference
2642 // count, which happens before this fence, which happens before the
2643 // deletion of the data.
2644 //
2645 // As explained in the [Boost documentation][1],
2646 //
2647 // > It is important to enforce any possible access to the object in one
2648 // > thread (through an existing reference) to *happen before* deleting
2649 // > the object in a different thread. This is achieved by a "release"
2650 // > operation after dropping a reference (any access to the object
2651 // > through this reference must obviously happened before), and an
2652 // > "acquire" operation before deleting the object.
2653 //
2654 // In particular, while the contents of an Arc are usually immutable, it's
2655 // possible to have interior writes to something like a Mutex<T>. Since a
2656 // Mutex is not acquired when it is deleted, we can't rely on its
2657 // synchronization logic to make writes in thread A visible to a destructor
2658 // running in thread B.
2659 //
2660 // Also note that the Acquire fence here could probably be replaced with an
2661 // Acquire load, which could improve performance in highly-contended
2662 // situations. See [2].
2663 //
2664 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
2665 // [2]: (https://github.com/rust-lang/rust/pull/41714)
2666 acquire!(self.inner().strong);
2667
2668 // Make sure we aren't trying to "drop" the shared static for empty slices
2669 // used by Default::default.
2670 debug_assert!(
2671 !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
2672 "Arcs backed by a static should never reach a strong count of 0. \
2673 Likely decrement_strong_count or from_raw were called too many times.",
2674 );
2675
2676 unsafe {
2677 self.drop_slow();
2678 }
2679 }
2680}
2681
2682impl<A: Allocator> Arc<dyn Any + Send + Sync, A> {
2683 /// Attempts to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
2684 ///
2685 /// # Examples
2686 ///
2687 /// ```
2688 /// use std::any::Any;
2689 /// use std::sync::Arc;
2690 ///
2691 /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
2692 /// if let Ok(string) = value.downcast::<String>() {
2693 /// println!("String ({}): {}", string.len(), string);
2694 /// }
2695 /// }
2696 ///
2697 /// let my_string = "Hello World".to_string();
2698 /// print_if_string(Arc::new(my_string));
2699 /// print_if_string(Arc::new(0i8));
2700 /// ```
2701 #[inline]
2702 #[stable(feature = "rc_downcast", since = "1.29.0")]
2703 pub fn downcast<T>(self) -> Result<Arc<T, A>, Self>
2704 where
2705 T: Any + Send + Sync,
2706 {
2707 if (*self).is::<T>() {
2708 unsafe {
2709 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2710 Ok(Arc::from_inner_in(ptr.cast(), alloc))
2711 }
2712 } else {
2713 Err(self)
2714 }
2715 }
2716
2717 /// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type.
2718 ///
2719 /// For a safe alternative see [`downcast`].
2720 ///
2721 /// # Examples
2722 ///
2723 /// ```
2724 /// #![feature(downcast_unchecked)]
2725 ///
2726 /// use std::any::Any;
2727 /// use std::sync::Arc;
2728 ///
2729 /// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize);
2730 ///
2731 /// unsafe {
2732 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2733 /// }
2734 /// ```
2735 ///
2736 /// # Safety
2737 ///
2738 /// The contained value must be of type `T`. Calling this method
2739 /// with the incorrect type is *undefined behavior*.
2740 ///
2741 ///
2742 /// [`downcast`]: Self::downcast
2743 #[inline]
2744 #[unstable(feature = "downcast_unchecked", issue = "90850")]
2745 pub unsafe fn downcast_unchecked<T>(self) -> Arc<T, A>
2746 where
2747 T: Any + Send + Sync,
2748 {
2749 unsafe {
2750 let (ptr, alloc) = Arc::into_inner_with_allocator(self);
2751 Arc::from_inner_in(ptr.cast(), alloc)
2752 }
2753 }
2754}
2755
2756impl<T> Weak<T> {
2757 /// Constructs a new `Weak<T>`, without allocating any memory.
2758 /// Calling [`upgrade`] on the return value always gives [`None`].
2759 ///
2760 /// [`upgrade`]: Weak::upgrade
2761 ///
2762 /// # Examples
2763 ///
2764 /// ```
2765 /// use std::sync::Weak;
2766 ///
2767 /// let empty: Weak<i64> = Weak::new();
2768 /// assert!(empty.upgrade().is_none());
2769 /// ```
2770 #[inline]
2771 #[stable(feature = "downgraded_weak", since = "1.10.0")]
2772 #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
2773 #[must_use]
2774 pub const fn new() -> Weak<T> {
2775 Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc: Global }
2776 }
2777}
2778
2779impl<T, A: Allocator> Weak<T, A> {
2780 /// Constructs a new `Weak<T, A>`, without allocating any memory, technically in the provided
2781 /// allocator.
2782 /// Calling [`upgrade`] on the return value always gives [`None`].
2783 ///
2784 /// [`upgrade`]: Weak::upgrade
2785 ///
2786 /// # Examples
2787 ///
2788 /// ```
2789 /// #![feature(allocator_api)]
2790 ///
2791 /// use std::sync::Weak;
2792 /// use std::alloc::System;
2793 ///
2794 /// let empty: Weak<i64, _> = Weak::new_in(System);
2795 /// assert!(empty.upgrade().is_none());
2796 /// ```
2797 #[inline]
2798 #[unstable(feature = "allocator_api", issue = "32838")]
2799 pub fn new_in(alloc: A) -> Weak<T, A> {
2800 Weak { ptr: NonNull::without_provenance(NonZeroUsize::MAX), alloc }
2801 }
2802}
2803
2804/// Helper type to allow accessing the reference counts without
2805/// making any assertions about the data field.
2806struct WeakInner<'a> {
2807 weak: &'a Atomic<usize>,
2808 strong: &'a Atomic<usize>,
2809}
2810
2811impl<T: ?Sized> Weak<T> {
2812 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
2813 ///
2814 /// This can be used to safely get a strong reference (by calling [`upgrade`]
2815 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2816 ///
2817 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2818 /// as these don't own anything; the method still works on them).
2819 ///
2820 /// # Safety
2821 ///
2822 /// The pointer must have originated from the [`into_raw`] and must still own its potential
2823 /// weak reference, and must point to a block of memory allocated by global allocator.
2824 ///
2825 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
2826 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
2827 /// count is not modified by this operation) and therefore it must be paired with a previous
2828 /// call to [`into_raw`].
2829 /// # Examples
2830 ///
2831 /// ```
2832 /// use std::sync::{Arc, Weak};
2833 ///
2834 /// let strong = Arc::new("hello".to_owned());
2835 ///
2836 /// let raw_1 = Arc::downgrade(&strong).into_raw();
2837 /// let raw_2 = Arc::downgrade(&strong).into_raw();
2838 ///
2839 /// assert_eq!(2, Arc::weak_count(&strong));
2840 ///
2841 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
2842 /// assert_eq!(1, Arc::weak_count(&strong));
2843 ///
2844 /// drop(strong);
2845 ///
2846 /// // Decrement the last weak count.
2847 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
2848 /// ```
2849 ///
2850 /// [`new`]: Weak::new
2851 /// [`into_raw`]: Weak::into_raw
2852 /// [`upgrade`]: Weak::upgrade
2853 #[inline]
2854 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2855 pub unsafe fn from_raw(ptr: *const T) -> Self {
2856 unsafe { Weak::from_raw_in(ptr, Global) }
2857 }
2858
2859 /// Consumes the `Weak<T>` and turns it into a raw pointer.
2860 ///
2861 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2862 /// one weak reference (the weak count is not modified by this operation). It can be turned
2863 /// back into the `Weak<T>` with [`from_raw`].
2864 ///
2865 /// The same restrictions of accessing the target of the pointer as with
2866 /// [`as_ptr`] apply.
2867 ///
2868 /// # Examples
2869 ///
2870 /// ```
2871 /// use std::sync::{Arc, Weak};
2872 ///
2873 /// let strong = Arc::new("hello".to_owned());
2874 /// let weak = Arc::downgrade(&strong);
2875 /// let raw = weak.into_raw();
2876 ///
2877 /// assert_eq!(1, Arc::weak_count(&strong));
2878 /// assert_eq!("hello", unsafe { &*raw });
2879 ///
2880 /// drop(unsafe { Weak::from_raw(raw) });
2881 /// assert_eq!(0, Arc::weak_count(&strong));
2882 /// ```
2883 ///
2884 /// [`from_raw`]: Weak::from_raw
2885 /// [`as_ptr`]: Weak::as_ptr
2886 #[must_use = "losing the pointer will leak memory"]
2887 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2888 pub fn into_raw(self) -> *const T {
2889 ManuallyDrop::new(self).as_ptr()
2890 }
2891}
2892
2893impl<T: ?Sized, A: Allocator> Weak<T, A> {
2894 /// Returns a reference to the underlying allocator.
2895 #[inline]
2896 #[unstable(feature = "allocator_api", issue = "32838")]
2897 pub fn allocator(&self) -> &A {
2898 &self.alloc
2899 }
2900
2901 /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
2902 ///
2903 /// The pointer is valid only if there are some strong references. The pointer may be dangling,
2904 /// unaligned or even [`null`] otherwise.
2905 ///
2906 /// # Examples
2907 ///
2908 /// ```
2909 /// use std::sync::Arc;
2910 /// use std::ptr;
2911 ///
2912 /// let strong = Arc::new("hello".to_owned());
2913 /// let weak = Arc::downgrade(&strong);
2914 /// // Both point to the same object
2915 /// assert!(ptr::eq(&*strong, weak.as_ptr()));
2916 /// // The strong here keeps it alive, so we can still access the object.
2917 /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
2918 ///
2919 /// drop(strong);
2920 /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
2921 /// // undefined behavior.
2922 /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
2923 /// ```
2924 ///
2925 /// [`null`]: core::ptr::null "ptr::null"
2926 #[must_use]
2927 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2928 pub fn as_ptr(&self) -> *const T {
2929 let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
2930
2931 if is_dangling(ptr) {
2932 // If the pointer is dangling, we return the sentinel directly. This cannot be
2933 // a valid payload address, as the payload is at least as aligned as ArcInner (usize).
2934 ptr as *const T
2935 } else {
2936 // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
2937 // The payload may be dropped at this point, and we have to maintain provenance,
2938 // so use raw pointer manipulation.
2939 unsafe { &raw mut (*ptr).data }
2940 }
2941 }
2942
2943 /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
2944 ///
2945 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2946 /// one weak reference (the weak count is not modified by this operation). It can be turned
2947 /// back into the `Weak<T>` with [`from_raw_in`].
2948 ///
2949 /// The same restrictions of accessing the target of the pointer as with
2950 /// [`as_ptr`] apply.
2951 ///
2952 /// # Examples
2953 ///
2954 /// ```
2955 /// #![feature(allocator_api)]
2956 /// use std::sync::{Arc, Weak};
2957 /// use std::alloc::System;
2958 ///
2959 /// let strong = Arc::new_in("hello".to_owned(), System);
2960 /// let weak = Arc::downgrade(&strong);
2961 /// let (raw, alloc) = weak.into_raw_with_allocator();
2962 ///
2963 /// assert_eq!(1, Arc::weak_count(&strong));
2964 /// assert_eq!("hello", unsafe { &*raw });
2965 ///
2966 /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
2967 /// assert_eq!(0, Arc::weak_count(&strong));
2968 /// ```
2969 ///
2970 /// [`from_raw_in`]: Weak::from_raw_in
2971 /// [`as_ptr`]: Weak::as_ptr
2972 #[must_use = "losing the pointer will leak memory"]
2973 #[unstable(feature = "allocator_api", issue = "32838")]
2974 pub fn into_raw_with_allocator(self) -> (*const T, A) {
2975 let this = mem::ManuallyDrop::new(self);
2976 let result = this.as_ptr();
2977 // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
2978 let alloc = unsafe { ptr::read(&this.alloc) };
2979 (result, alloc)
2980 }
2981
2982 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>` in the provided
2983 /// allocator.
2984 ///
2985 /// This can be used to safely get a strong reference (by calling [`upgrade`]
2986 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2987 ///
2988 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2989 /// as these don't own anything; the method still works on them).
2990 ///
2991 /// # Safety
2992 ///
2993 /// The pointer must have originated from the [`into_raw`] and must still own its potential
2994 /// weak reference, and must point to a block of memory allocated by `alloc`.
2995 ///
2996 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
2997 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
2998 /// count is not modified by this operation) and therefore it must be paired with a previous
2999 /// call to [`into_raw`].
3000 /// # Examples
3001 ///
3002 /// ```
3003 /// use std::sync::{Arc, Weak};
3004 ///
3005 /// let strong = Arc::new("hello".to_owned());
3006 ///
3007 /// let raw_1 = Arc::downgrade(&strong).into_raw();
3008 /// let raw_2 = Arc::downgrade(&strong).into_raw();
3009 ///
3010 /// assert_eq!(2, Arc::weak_count(&strong));
3011 ///
3012 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
3013 /// assert_eq!(1, Arc::weak_count(&strong));
3014 ///
3015 /// drop(strong);
3016 ///
3017 /// // Decrement the last weak count.
3018 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
3019 /// ```
3020 ///
3021 /// [`new`]: Weak::new
3022 /// [`into_raw`]: Weak::into_raw
3023 /// [`upgrade`]: Weak::upgrade
3024 #[inline]
3025 #[unstable(feature = "allocator_api", issue = "32838")]
3026 pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
3027 // See Weak::as_ptr for context on how the input pointer is derived.
3028
3029 let ptr = if is_dangling(ptr) {
3030 // This is a dangling Weak.
3031 ptr as *mut ArcInner<T>
3032 } else {
3033 // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
3034 // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
3035 let offset = unsafe { data_offset(ptr) };
3036 // Thus, we reverse the offset to get the whole ArcInner.
3037 // SAFETY: the pointer originated from a Weak, so this offset is safe.
3038 unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> }
3039 };
3040
3041 // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
3042 Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
3043 }
3044}
3045
3046impl<T: ?Sized, A: Allocator> Weak<T, A> {
3047 /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
3048 /// dropping of the inner value if successful.
3049 ///
3050 /// Returns [`None`] if the inner value has since been dropped.
3051 ///
3052 /// # Examples
3053 ///
3054 /// ```
3055 /// use std::sync::Arc;
3056 ///
3057 /// let five = Arc::new(5);
3058 ///
3059 /// let weak_five = Arc::downgrade(&five);
3060 ///
3061 /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
3062 /// assert!(strong_five.is_some());
3063 ///
3064 /// // Destroy all strong pointers.
3065 /// drop(strong_five);
3066 /// drop(five);
3067 ///
3068 /// assert!(weak_five.upgrade().is_none());
3069 /// ```
3070 #[must_use = "this returns a new `Arc`, \
3071 without modifying the original weak pointer"]
3072 #[stable(feature = "arc_weak", since = "1.4.0")]
3073 pub fn upgrade(&self) -> Option<Arc<T, A>>
3074 where
3075 A: Clone,
3076 {
3077 #[inline]
3078 fn checked_increment(n: usize) -> Option<usize> {
3079 // Any write of 0 we can observe leaves the field in permanently zero state.
3080 if n == 0 {
3081 return None;
3082 }
3083 // See comments in `Arc::clone` for why we do this (for `mem::forget`).
3084 assert!(n <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
3085 Some(n + 1)
3086 }
3087
3088 // We use a CAS loop to increment the strong count instead of a
3089 // fetch_add as this function should never take the reference count
3090 // from zero to one.
3091 //
3092 // Relaxed is fine for the failure case because we don't have any expectations about the new state.
3093 // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
3094 // value can be initialized after `Weak` references have already been created. In that case, we
3095 // expect to observe the fully initialized value.
3096 if self.inner()?.strong.fetch_update(Acquire, Relaxed, checked_increment).is_ok() {
3097 // SAFETY: pointer is not null, verified in checked_increment
3098 unsafe { Some(Arc::from_inner_in(self.ptr, self.alloc.clone())) }
3099 } else {
3100 None
3101 }
3102 }
3103
3104 /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
3105 ///
3106 /// If `self` was created using [`Weak::new`], this will return 0.
3107 #[must_use]
3108 #[stable(feature = "weak_counts", since = "1.41.0")]
3109 pub fn strong_count(&self) -> usize {
3110 if let Some(inner) = self.inner() { inner.strong.load(Relaxed) } else { 0 }
3111 }
3112
3113 /// Gets an approximation of the number of `Weak` pointers pointing to this
3114 /// allocation.
3115 ///
3116 /// If `self` was created using [`Weak::new`], or if there are no remaining
3117 /// strong pointers, this will return 0.
3118 ///
3119 /// # Accuracy
3120 ///
3121 /// Due to implementation details, the returned value can be off by 1 in
3122 /// either direction when other threads are manipulating any `Arc`s or
3123 /// `Weak`s pointing to the same allocation.
3124 #[must_use]
3125 #[stable(feature = "weak_counts", since = "1.41.0")]
3126 pub fn weak_count(&self) -> usize {
3127 if let Some(inner) = self.inner() {
3128 let weak = inner.weak.load(Acquire);
3129 let strong = inner.strong.load(Relaxed);
3130 if strong == 0 {
3131 0
3132 } else {
3133 // Since we observed that there was at least one strong pointer
3134 // after reading the weak count, we know that the implicit weak
3135 // reference (present whenever any strong references are alive)
3136 // was still around when we observed the weak count, and can
3137 // therefore safely subtract it.
3138 weak - 1
3139 }
3140 } else {
3141 0
3142 }
3143 }
3144
3145 /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
3146 /// (i.e., when this `Weak` was created by `Weak::new`).
3147 #[inline]
3148 fn inner(&self) -> Option<WeakInner<'_>> {
3149 let ptr = self.ptr.as_ptr();
3150 if is_dangling(ptr) {
3151 None
3152 } else {
3153 // We are careful to *not* create a reference covering the "data" field, as
3154 // the field may be mutated concurrently (for example, if the last `Arc`
3155 // is dropped, the data field will be dropped in-place).
3156 Some(unsafe { WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak } })
3157 }
3158 }
3159
3160 /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
3161 /// both don't point to any allocation (because they were created with `Weak::new()`). However,
3162 /// this function ignores the metadata of `dyn Trait` pointers.
3163 ///
3164 /// # Notes
3165 ///
3166 /// Since this compares pointers it means that `Weak::new()` will equal each
3167 /// other, even though they don't point to any allocation.
3168 ///
3169 /// # Examples
3170 ///
3171 /// ```
3172 /// use std::sync::Arc;
3173 ///
3174 /// let first_rc = Arc::new(5);
3175 /// let first = Arc::downgrade(&first_rc);
3176 /// let second = Arc::downgrade(&first_rc);
3177 ///
3178 /// assert!(first.ptr_eq(&second));
3179 ///
3180 /// let third_rc = Arc::new(5);
3181 /// let third = Arc::downgrade(&third_rc);
3182 ///
3183 /// assert!(!first.ptr_eq(&third));
3184 /// ```
3185 ///
3186 /// Comparing `Weak::new`.
3187 ///
3188 /// ```
3189 /// use std::sync::{Arc, Weak};
3190 ///
3191 /// let first = Weak::new();
3192 /// let second = Weak::new();
3193 /// assert!(first.ptr_eq(&second));
3194 ///
3195 /// let third_rc = Arc::new(());
3196 /// let third = Arc::downgrade(&third_rc);
3197 /// assert!(!first.ptr_eq(&third));
3198 /// ```
3199 ///
3200 /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
3201 #[inline]
3202 #[must_use]
3203 #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
3204 pub fn ptr_eq(&self, other: &Self) -> bool {
3205 ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
3206 }
3207}
3208
3209#[stable(feature = "arc_weak", since = "1.4.0")]
3210impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
3211 /// Makes a clone of the `Weak` pointer that points to the same allocation.
3212 ///
3213 /// # Examples
3214 ///
3215 /// ```
3216 /// use std::sync::{Arc, Weak};
3217 ///
3218 /// let weak_five = Arc::downgrade(&Arc::new(5));
3219 ///
3220 /// let _ = Weak::clone(&weak_five);
3221 /// ```
3222 #[inline]
3223 fn clone(&self) -> Weak<T, A> {
3224 if let Some(inner) = self.inner() {
3225 // See comments in Arc::clone() for why this is relaxed. This can use a
3226 // fetch_add (ignoring the lock) because the weak count is only locked
3227 // where are *no other* weak pointers in existence. (So we can't be
3228 // running this code in that case).
3229 let old_size = inner.weak.fetch_add(1, Relaxed);
3230
3231 // See comments in Arc::clone() for why we do this (for mem::forget).
3232 if old_size > MAX_REFCOUNT {
3233 abort();
3234 }
3235 }
3236
3237 Weak { ptr: self.ptr, alloc: self.alloc.clone() }
3238 }
3239}
3240
3241#[unstable(feature = "ergonomic_clones", issue = "132290")]
3242impl<T: ?Sized, A: Allocator + Clone> UseCloned for Weak<T, A> {}
3243
3244#[stable(feature = "downgraded_weak", since = "1.10.0")]
3245impl<T> Default for Weak<T> {
3246 /// Constructs a new `Weak<T>`, without allocating memory.
3247 /// Calling [`upgrade`] on the return value always
3248 /// gives [`None`].
3249 ///
3250 /// [`upgrade`]: Weak::upgrade
3251 ///
3252 /// # Examples
3253 ///
3254 /// ```
3255 /// use std::sync::Weak;
3256 ///
3257 /// let empty: Weak<i64> = Default::default();
3258 /// assert!(empty.upgrade().is_none());
3259 /// ```
3260 fn default() -> Weak<T> {
3261 Weak::new()
3262 }
3263}
3264
3265#[stable(feature = "arc_weak", since = "1.4.0")]
3266unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
3267 /// Drops the `Weak` pointer.
3268 ///
3269 /// # Examples
3270 ///
3271 /// ```
3272 /// use std::sync::{Arc, Weak};
3273 ///
3274 /// struct Foo;
3275 ///
3276 /// impl Drop for Foo {
3277 /// fn drop(&mut self) {
3278 /// println!("dropped!");
3279 /// }
3280 /// }
3281 ///
3282 /// let foo = Arc::new(Foo);
3283 /// let weak_foo = Arc::downgrade(&foo);
3284 /// let other_weak_foo = Weak::clone(&weak_foo);
3285 ///
3286 /// drop(weak_foo); // Doesn't print anything
3287 /// drop(foo); // Prints "dropped!"
3288 ///
3289 /// assert!(other_weak_foo.upgrade().is_none());
3290 /// ```
3291 fn drop(&mut self) {
3292 // If we find out that we were the last weak pointer, then its time to
3293 // deallocate the data entirely. See the discussion in Arc::drop() about
3294 // the memory orderings
3295 //
3296 // It's not necessary to check for the locked state here, because the
3297 // weak count can only be locked if there was precisely one weak ref,
3298 // meaning that drop could only subsequently run ON that remaining weak
3299 // ref, which can only happen after the lock is released.
3300 let inner = if let Some(inner) = self.inner() { inner } else { return };
3301
3302 if inner.weak.fetch_sub(1, Release) == 1 {
3303 acquire!(inner.weak);
3304
3305 // Make sure we aren't trying to "deallocate" the shared static for empty slices
3306 // used by Default::default.
3307 debug_assert!(
3308 !ptr::addr_eq(self.ptr.as_ptr(), &STATIC_INNER_SLICE.inner),
3309 "Arc/Weaks backed by a static should never be deallocated. \
3310 Likely decrement_strong_count or from_raw were called too many times.",
3311 );
3312
3313 unsafe {
3314 self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()))
3315 }
3316 }
3317 }
3318}
3319
3320#[stable(feature = "rust1", since = "1.0.0")]
3321trait ArcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
3322 fn eq(&self, other: &Arc<T, A>) -> bool;
3323 fn ne(&self, other: &Arc<T, A>) -> bool;
3324}
3325
3326#[stable(feature = "rust1", since = "1.0.0")]
3327impl<T: ?Sized + PartialEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3328 #[inline]
3329 default fn eq(&self, other: &Arc<T, A>) -> bool {
3330 **self == **other
3331 }
3332 #[inline]
3333 default fn ne(&self, other: &Arc<T, A>) -> bool {
3334 **self != **other
3335 }
3336}
3337
3338/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
3339/// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
3340/// store large values, that are slow to clone, but also heavy to check for equality, causing this
3341/// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
3342/// the same value, than two `&T`s.
3343///
3344/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
3345#[stable(feature = "rust1", since = "1.0.0")]
3346impl<T: ?Sized + crate::rc::MarkerEq, A: Allocator> ArcEqIdent<T, A> for Arc<T, A> {
3347 #[inline]
3348 fn eq(&self, other: &Arc<T, A>) -> bool {
3349 Arc::ptr_eq(self, other) || **self == **other
3350 }
3351
3352 #[inline]
3353 fn ne(&self, other: &Arc<T, A>) -> bool {
3354 !Arc::ptr_eq(self, other) && **self != **other
3355 }
3356}
3357
3358#[stable(feature = "rust1", since = "1.0.0")]
3359impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Arc<T, A> {
3360 /// Equality for two `Arc`s.
3361 ///
3362 /// Two `Arc`s are equal if their inner values are equal, even if they are
3363 /// stored in different allocation.
3364 ///
3365 /// If `T` also implements `Eq` (implying reflexivity of equality),
3366 /// two `Arc`s that point to the same allocation are always equal.
3367 ///
3368 /// # Examples
3369 ///
3370 /// ```
3371 /// use std::sync::Arc;
3372 ///
3373 /// let five = Arc::new(5);
3374 ///
3375 /// assert!(five == Arc::new(5));
3376 /// ```
3377 #[inline]
3378 fn eq(&self, other: &Arc<T, A>) -> bool {
3379 ArcEqIdent::eq(self, other)
3380 }
3381
3382 /// Inequality for two `Arc`s.
3383 ///
3384 /// Two `Arc`s are not equal if their inner values are not equal.
3385 ///
3386 /// If `T` also implements `Eq` (implying reflexivity of equality),
3387 /// two `Arc`s that point to the same value are always equal.
3388 ///
3389 /// # Examples
3390 ///
3391 /// ```
3392 /// use std::sync::Arc;
3393 ///
3394 /// let five = Arc::new(5);
3395 ///
3396 /// assert!(five != Arc::new(6));
3397 /// ```
3398 #[inline]
3399 fn ne(&self, other: &Arc<T, A>) -> bool {
3400 ArcEqIdent::ne(self, other)
3401 }
3402}
3403
3404#[stable(feature = "rust1", since = "1.0.0")]
3405impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Arc<T, A> {
3406 /// Partial comparison for two `Arc`s.
3407 ///
3408 /// The two are compared by calling `partial_cmp()` on their inner values.
3409 ///
3410 /// # Examples
3411 ///
3412 /// ```
3413 /// use std::sync::Arc;
3414 /// use std::cmp::Ordering;
3415 ///
3416 /// let five = Arc::new(5);
3417 ///
3418 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
3419 /// ```
3420 fn partial_cmp(&self, other: &Arc<T, A>) -> Option<Ordering> {
3421 (**self).partial_cmp(&**other)
3422 }
3423
3424 /// Less-than comparison for two `Arc`s.
3425 ///
3426 /// The two are compared by calling `<` on their inner values.
3427 ///
3428 /// # Examples
3429 ///
3430 /// ```
3431 /// use std::sync::Arc;
3432 ///
3433 /// let five = Arc::new(5);
3434 ///
3435 /// assert!(five < Arc::new(6));
3436 /// ```
3437 fn lt(&self, other: &Arc<T, A>) -> bool {
3438 *(*self) < *(*other)
3439 }
3440
3441 /// 'Less than or equal to' comparison for two `Arc`s.
3442 ///
3443 /// The two are compared by calling `<=` on their inner values.
3444 ///
3445 /// # Examples
3446 ///
3447 /// ```
3448 /// use std::sync::Arc;
3449 ///
3450 /// let five = Arc::new(5);
3451 ///
3452 /// assert!(five <= Arc::new(5));
3453 /// ```
3454 fn le(&self, other: &Arc<T, A>) -> bool {
3455 *(*self) <= *(*other)
3456 }
3457
3458 /// Greater-than comparison for two `Arc`s.
3459 ///
3460 /// The two are compared by calling `>` on their inner values.
3461 ///
3462 /// # Examples
3463 ///
3464 /// ```
3465 /// use std::sync::Arc;
3466 ///
3467 /// let five = Arc::new(5);
3468 ///
3469 /// assert!(five > Arc::new(4));
3470 /// ```
3471 fn gt(&self, other: &Arc<T, A>) -> bool {
3472 *(*self) > *(*other)
3473 }
3474
3475 /// 'Greater than or equal to' comparison for two `Arc`s.
3476 ///
3477 /// The two are compared by calling `>=` on their inner values.
3478 ///
3479 /// # Examples
3480 ///
3481 /// ```
3482 /// use std::sync::Arc;
3483 ///
3484 /// let five = Arc::new(5);
3485 ///
3486 /// assert!(five >= Arc::new(5));
3487 /// ```
3488 fn ge(&self, other: &Arc<T, A>) -> bool {
3489 *(*self) >= *(*other)
3490 }
3491}
3492#[stable(feature = "rust1", since = "1.0.0")]
3493impl<T: ?Sized + Ord, A: Allocator> Ord for Arc<T, A> {
3494 /// Comparison for two `Arc`s.
3495 ///
3496 /// The two are compared by calling `cmp()` on their inner values.
3497 ///
3498 /// # Examples
3499 ///
3500 /// ```
3501 /// use std::sync::Arc;
3502 /// use std::cmp::Ordering;
3503 ///
3504 /// let five = Arc::new(5);
3505 ///
3506 /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
3507 /// ```
3508 fn cmp(&self, other: &Arc<T, A>) -> Ordering {
3509 (**self).cmp(&**other)
3510 }
3511}
3512#[stable(feature = "rust1", since = "1.0.0")]
3513impl<T: ?Sized + Eq, A: Allocator> Eq for Arc<T, A> {}
3514
3515#[stable(feature = "rust1", since = "1.0.0")]
3516impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Arc<T, A> {
3517 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3518 fmt::Display::fmt(&**self, f)
3519 }
3520}
3521
3522#[stable(feature = "rust1", since = "1.0.0")]
3523impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Arc<T, A> {
3524 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3525 fmt::Debug::fmt(&**self, f)
3526 }
3527}
3528
3529#[stable(feature = "rust1", since = "1.0.0")]
3530impl<T: ?Sized, A: Allocator> fmt::Pointer for Arc<T, A> {
3531 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3532 fmt::Pointer::fmt(&(&raw const **self), f)
3533 }
3534}
3535
3536#[cfg(not(no_global_oom_handling))]
3537#[stable(feature = "rust1", since = "1.0.0")]
3538impl<T: Default> Default for Arc<T> {
3539 /// Creates a new `Arc<T>`, with the `Default` value for `T`.
3540 ///
3541 /// # Examples
3542 ///
3543 /// ```
3544 /// use std::sync::Arc;
3545 ///
3546 /// let x: Arc<i32> = Default::default();
3547 /// assert_eq!(*x, 0);
3548 /// ```
3549 fn default() -> Arc<T> {
3550 unsafe {
3551 Self::from_inner(
3552 Box::leak(Box::write(
3553 Box::new_uninit(),
3554 ArcInner {
3555 strong: atomic::AtomicUsize::new(1),
3556 weak: atomic::AtomicUsize::new(1),
3557 data: T::default(),
3558 },
3559 ))
3560 .into(),
3561 )
3562 }
3563 }
3564}
3565
3566/// Struct to hold the static `ArcInner` used for empty `Arc<str/CStr/[T]>` as
3567/// returned by `Default::default`.
3568///
3569/// Layout notes:
3570/// * `repr(align(16))` so we can use it for `[T]` with `align_of::<T>() <= 16`.
3571/// * `repr(C)` so `inner` is at offset 0 (and thus guaranteed to actually be aligned to 16).
3572/// * `[u8; 1]` (to be initialized with 0) so it can be used for `Arc<CStr>`.
3573#[repr(C, align(16))]
3574struct SliceArcInnerForStatic {
3575 inner: ArcInner<[u8; 1]>,
3576}
3577#[cfg(not(no_global_oom_handling))]
3578const MAX_STATIC_INNER_SLICE_ALIGNMENT: usize = 16;
3579
3580static STATIC_INNER_SLICE: SliceArcInnerForStatic = SliceArcInnerForStatic {
3581 inner: ArcInner {
3582 strong: atomic::AtomicUsize::new(1),
3583 weak: atomic::AtomicUsize::new(1),
3584 data: [0],
3585 },
3586};
3587
3588#[cfg(not(no_global_oom_handling))]
3589#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3590impl Default for Arc<str> {
3591 /// Creates an empty str inside an Arc
3592 ///
3593 /// This may or may not share an allocation with other Arcs.
3594 #[inline]
3595 fn default() -> Self {
3596 let arc: Arc<[u8]> = Default::default();
3597 debug_assert!(core::str::from_utf8(&*arc).is_ok());
3598 let (ptr, alloc) = Arc::into_inner_with_allocator(arc);
3599 unsafe { Arc::from_ptr_in(ptr.as_ptr() as *mut ArcInner<str>, alloc) }
3600 }
3601}
3602
3603#[cfg(not(no_global_oom_handling))]
3604#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3605impl Default for Arc<core::ffi::CStr> {
3606 /// Creates an empty CStr inside an Arc
3607 ///
3608 /// This may or may not share an allocation with other Arcs.
3609 #[inline]
3610 fn default() -> Self {
3611 use core::ffi::CStr;
3612 let inner: NonNull<ArcInner<[u8]>> = NonNull::from(&STATIC_INNER_SLICE.inner);
3613 let inner: NonNull<ArcInner<CStr>> =
3614 NonNull::new(inner.as_ptr() as *mut ArcInner<CStr>).unwrap();
3615 // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3616 let this: mem::ManuallyDrop<Arc<CStr>> =
3617 unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3618 (*this).clone()
3619 }
3620}
3621
3622#[cfg(not(no_global_oom_handling))]
3623#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
3624impl<T> Default for Arc<[T]> {
3625 /// Creates an empty `[T]` inside an Arc
3626 ///
3627 /// This may or may not share an allocation with other Arcs.
3628 #[inline]
3629 fn default() -> Self {
3630 if align_of::<T>() <= MAX_STATIC_INNER_SLICE_ALIGNMENT {
3631 // We take a reference to the whole struct instead of the ArcInner<[u8; 1]> inside it so
3632 // we don't shrink the range of bytes the ptr is allowed to access under Stacked Borrows.
3633 // (Miri complains on 32-bit targets with Arc<[Align16]> otherwise.)
3634 // (Note that NonNull::from(&STATIC_INNER_SLICE.inner) is fine under Tree Borrows.)
3635 let inner: NonNull<SliceArcInnerForStatic> = NonNull::from(&STATIC_INNER_SLICE);
3636 let inner: NonNull<ArcInner<[T; 0]>> = inner.cast();
3637 // `this` semantically is the Arc "owned" by the static, so make sure not to drop it.
3638 let this: mem::ManuallyDrop<Arc<[T; 0]>> =
3639 unsafe { mem::ManuallyDrop::new(Arc::from_inner(inner)) };
3640 return (*this).clone();
3641 }
3642
3643 // If T's alignment is too large for the static, make a new unique allocation.
3644 let arr: [T; 0] = [];
3645 Arc::from(arr)
3646 }
3647}
3648
3649#[cfg(not(no_global_oom_handling))]
3650#[stable(feature = "pin_default_impls", since = "1.91.0")]
3651impl<T> Default for Pin<Arc<T>>
3652where
3653 T: ?Sized,
3654 Arc<T>: Default,
3655{
3656 #[inline]
3657 fn default() -> Self {
3658 unsafe { Pin::new_unchecked(Arc::<T>::default()) }
3659 }
3660}
3661
3662#[stable(feature = "rust1", since = "1.0.0")]
3663impl<T: ?Sized + Hash, A: Allocator> Hash for Arc<T, A> {
3664 fn hash<H: Hasher>(&self, state: &mut H) {
3665 (**self).hash(state)
3666 }
3667}
3668
3669#[cfg(not(no_global_oom_handling))]
3670#[stable(feature = "from_for_ptrs", since = "1.6.0")]
3671impl<T> From<T> for Arc<T> {
3672 /// Converts a `T` into an `Arc<T>`
3673 ///
3674 /// The conversion moves the value into a
3675 /// newly allocated `Arc`. It is equivalent to
3676 /// calling `Arc::new(t)`.
3677 ///
3678 /// # Example
3679 /// ```rust
3680 /// # use std::sync::Arc;
3681 /// let x = 5;
3682 /// let arc = Arc::new(5);
3683 ///
3684 /// assert_eq!(Arc::from(x), arc);
3685 /// ```
3686 fn from(t: T) -> Self {
3687 Arc::new(t)
3688 }
3689}
3690
3691#[cfg(not(no_global_oom_handling))]
3692#[stable(feature = "shared_from_array", since = "1.74.0")]
3693impl<T, const N: usize> From<[T; N]> for Arc<[T]> {
3694 /// Converts a [`[T; N]`](prim@array) into an `Arc<[T]>`.
3695 ///
3696 /// The conversion moves the array into a newly allocated `Arc`.
3697 ///
3698 /// # Example
3699 ///
3700 /// ```
3701 /// # use std::sync::Arc;
3702 /// let original: [i32; 3] = [1, 2, 3];
3703 /// let shared: Arc<[i32]> = Arc::from(original);
3704 /// assert_eq!(&[1, 2, 3], &shared[..]);
3705 /// ```
3706 #[inline]
3707 fn from(v: [T; N]) -> Arc<[T]> {
3708 Arc::<[T; N]>::from(v)
3709 }
3710}
3711
3712#[cfg(not(no_global_oom_handling))]
3713#[stable(feature = "shared_from_slice", since = "1.21.0")]
3714impl<T: Clone> From<&[T]> for Arc<[T]> {
3715 /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3716 ///
3717 /// # Example
3718 ///
3719 /// ```
3720 /// # use std::sync::Arc;
3721 /// let original: &[i32] = &[1, 2, 3];
3722 /// let shared: Arc<[i32]> = Arc::from(original);
3723 /// assert_eq!(&[1, 2, 3], &shared[..]);
3724 /// ```
3725 #[inline]
3726 fn from(v: &[T]) -> Arc<[T]> {
3727 <Self as ArcFromSlice<T>>::from_slice(v)
3728 }
3729}
3730
3731#[cfg(not(no_global_oom_handling))]
3732#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3733impl<T: Clone> From<&mut [T]> for Arc<[T]> {
3734 /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
3735 ///
3736 /// # Example
3737 ///
3738 /// ```
3739 /// # use std::sync::Arc;
3740 /// let mut original = [1, 2, 3];
3741 /// let original: &mut [i32] = &mut original;
3742 /// let shared: Arc<[i32]> = Arc::from(original);
3743 /// assert_eq!(&[1, 2, 3], &shared[..]);
3744 /// ```
3745 #[inline]
3746 fn from(v: &mut [T]) -> Arc<[T]> {
3747 Arc::from(&*v)
3748 }
3749}
3750
3751#[cfg(not(no_global_oom_handling))]
3752#[stable(feature = "shared_from_slice", since = "1.21.0")]
3753impl From<&str> for Arc<str> {
3754 /// Allocates a reference-counted `str` and copies `v` into it.
3755 ///
3756 /// # Example
3757 ///
3758 /// ```
3759 /// # use std::sync::Arc;
3760 /// let shared: Arc<str> = Arc::from("eggplant");
3761 /// assert_eq!("eggplant", &shared[..]);
3762 /// ```
3763 #[inline]
3764 fn from(v: &str) -> Arc<str> {
3765 let arc = Arc::<[u8]>::from(v.as_bytes());
3766 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
3767 }
3768}
3769
3770#[cfg(not(no_global_oom_handling))]
3771#[stable(feature = "shared_from_mut_slice", since = "1.84.0")]
3772impl From<&mut str> for Arc<str> {
3773 /// Allocates a reference-counted `str` and copies `v` into it.
3774 ///
3775 /// # Example
3776 ///
3777 /// ```
3778 /// # use std::sync::Arc;
3779 /// let mut original = String::from("eggplant");
3780 /// let original: &mut str = &mut original;
3781 /// let shared: Arc<str> = Arc::from(original);
3782 /// assert_eq!("eggplant", &shared[..]);
3783 /// ```
3784 #[inline]
3785 fn from(v: &mut str) -> Arc<str> {
3786 Arc::from(&*v)
3787 }
3788}
3789
3790#[cfg(not(no_global_oom_handling))]
3791#[stable(feature = "shared_from_slice", since = "1.21.0")]
3792impl From<String> for Arc<str> {
3793 /// Allocates a reference-counted `str` and copies `v` into it.
3794 ///
3795 /// # Example
3796 ///
3797 /// ```
3798 /// # use std::sync::Arc;
3799 /// let unique: String = "eggplant".to_owned();
3800 /// let shared: Arc<str> = Arc::from(unique);
3801 /// assert_eq!("eggplant", &shared[..]);
3802 /// ```
3803 #[inline]
3804 fn from(v: String) -> Arc<str> {
3805 Arc::from(&v[..])
3806 }
3807}
3808
3809#[cfg(not(no_global_oom_handling))]
3810#[stable(feature = "shared_from_slice", since = "1.21.0")]
3811impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Arc<T, A> {
3812 /// Move a boxed object to a new, reference-counted allocation.
3813 ///
3814 /// # Example
3815 ///
3816 /// ```
3817 /// # use std::sync::Arc;
3818 /// let unique: Box<str> = Box::from("eggplant");
3819 /// let shared: Arc<str> = Arc::from(unique);
3820 /// assert_eq!("eggplant", &shared[..]);
3821 /// ```
3822 #[inline]
3823 fn from(v: Box<T, A>) -> Arc<T, A> {
3824 Arc::from_box_in(v)
3825 }
3826}
3827
3828#[cfg(not(no_global_oom_handling))]
3829#[stable(feature = "shared_from_slice", since = "1.21.0")]
3830impl<T, A: Allocator + Clone> From<Vec<T, A>> for Arc<[T], A> {
3831 /// Allocates a reference-counted slice and moves `v`'s items into it.
3832 ///
3833 /// # Example
3834 ///
3835 /// ```
3836 /// # use std::sync::Arc;
3837 /// let unique: Vec<i32> = vec![1, 2, 3];
3838 /// let shared: Arc<[i32]> = Arc::from(unique);
3839 /// assert_eq!(&[1, 2, 3], &shared[..]);
3840 /// ```
3841 #[inline]
3842 fn from(v: Vec<T, A>) -> Arc<[T], A> {
3843 unsafe {
3844 let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
3845
3846 let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
3847 ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).data) as *mut T, len);
3848
3849 // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
3850 // without dropping its contents or the allocator
3851 let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);
3852
3853 Self::from_ptr_in(rc_ptr, alloc)
3854 }
3855 }
3856}
3857
3858#[stable(feature = "shared_from_cow", since = "1.45.0")]
3859impl<'a, B> From<Cow<'a, B>> for Arc<B>
3860where
3861 B: ToOwned + ?Sized,
3862 Arc<B>: From<&'a B> + From<B::Owned>,
3863{
3864 /// Creates an atomically reference-counted pointer from a clone-on-write
3865 /// pointer by copying its content.
3866 ///
3867 /// # Example
3868 ///
3869 /// ```rust
3870 /// # use std::sync::Arc;
3871 /// # use std::borrow::Cow;
3872 /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
3873 /// let shared: Arc<str> = Arc::from(cow);
3874 /// assert_eq!("eggplant", &shared[..]);
3875 /// ```
3876 #[inline]
3877 fn from(cow: Cow<'a, B>) -> Arc<B> {
3878 match cow {
3879 Cow::Borrowed(s) => Arc::from(s),
3880 Cow::Owned(s) => Arc::from(s),
3881 }
3882 }
3883}
3884
3885#[stable(feature = "shared_from_str", since = "1.62.0")]
3886impl From<Arc<str>> for Arc<[u8]> {
3887 /// Converts an atomically reference-counted string slice into a byte slice.
3888 ///
3889 /// # Example
3890 ///
3891 /// ```
3892 /// # use std::sync::Arc;
3893 /// let string: Arc<str> = Arc::from("eggplant");
3894 /// let bytes: Arc<[u8]> = Arc::from(string);
3895 /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
3896 /// ```
3897 #[inline]
3898 fn from(rc: Arc<str>) -> Self {
3899 // SAFETY: `str` has the same layout as `[u8]`.
3900 unsafe { Arc::from_raw(Arc::into_raw(rc) as *const [u8]) }
3901 }
3902}
3903
3904#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
3905impl<T, A: Allocator, const N: usize> TryFrom<Arc<[T], A>> for Arc<[T; N], A> {
3906 type Error = Arc<[T], A>;
3907
3908 fn try_from(boxed_slice: Arc<[T], A>) -> Result<Self, Self::Error> {
3909 if boxed_slice.len() == N {
3910 let (ptr, alloc) = Arc::into_inner_with_allocator(boxed_slice);
3911 Ok(unsafe { Arc::from_inner_in(ptr.cast(), alloc) })
3912 } else {
3913 Err(boxed_slice)
3914 }
3915 }
3916}
3917
3918#[cfg(not(no_global_oom_handling))]
3919#[stable(feature = "shared_from_iter", since = "1.37.0")]
3920impl<T> FromIterator<T> for Arc<[T]> {
3921 /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
3922 ///
3923 /// # Performance characteristics
3924 ///
3925 /// ## The general case
3926 ///
3927 /// In the general case, collecting into `Arc<[T]>` is done by first
3928 /// collecting into a `Vec<T>`. That is, when writing the following:
3929 ///
3930 /// ```rust
3931 /// # use std::sync::Arc;
3932 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
3933 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3934 /// ```
3935 ///
3936 /// this behaves as if we wrote:
3937 ///
3938 /// ```rust
3939 /// # use std::sync::Arc;
3940 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
3941 /// .collect::<Vec<_>>() // The first set of allocations happens here.
3942 /// .into(); // A second allocation for `Arc<[T]>` happens here.
3943 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
3944 /// ```
3945 ///
3946 /// This will allocate as many times as needed for constructing the `Vec<T>`
3947 /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
3948 ///
3949 /// ## Iterators of known length
3950 ///
3951 /// When your `Iterator` implements `TrustedLen` and is of an exact size,
3952 /// a single allocation will be made for the `Arc<[T]>`. For example:
3953 ///
3954 /// ```rust
3955 /// # use std::sync::Arc;
3956 /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
3957 /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
3958 /// ```
3959 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
3960 ToArcSlice::to_arc_slice(iter.into_iter())
3961 }
3962}
3963
3964#[cfg(not(no_global_oom_handling))]
3965/// Specialization trait used for collecting into `Arc<[T]>`.
3966trait ToArcSlice<T>: Iterator<Item = T> + Sized {
3967 fn to_arc_slice(self) -> Arc<[T]>;
3968}
3969
3970#[cfg(not(no_global_oom_handling))]
3971impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
3972 default fn to_arc_slice(self) -> Arc<[T]> {
3973 self.collect::<Vec<T>>().into()
3974 }
3975}
3976
3977#[cfg(not(no_global_oom_handling))]
3978impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
3979 fn to_arc_slice(self) -> Arc<[T]> {
3980 // This is the case for a `TrustedLen` iterator.
3981 let (low, high) = self.size_hint();
3982 if let Some(high) = high {
3983 debug_assert_eq!(
3984 low,
3985 high,
3986 "TrustedLen iterator's size hint is not exact: {:?}",
3987 (low, high)
3988 );
3989
3990 unsafe {
3991 // SAFETY: We need to ensure that the iterator has an exact length and we have.
3992 Arc::from_iter_exact(self, low)
3993 }
3994 } else {
3995 // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
3996 // length exceeding `usize::MAX`.
3997 // The default implementation would collect into a vec which would panic.
3998 // Thus we panic here immediately without invoking `Vec` code.
3999 panic!("capacity overflow");
4000 }
4001 }
4002}
4003
4004#[stable(feature = "rust1", since = "1.0.0")]
4005impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Arc<T, A> {
4006 fn borrow(&self) -> &T {
4007 &**self
4008 }
4009}
4010
4011#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
4012impl<T: ?Sized, A: Allocator> AsRef<T> for Arc<T, A> {
4013 fn as_ref(&self) -> &T {
4014 &**self
4015 }
4016}
4017
4018#[stable(feature = "pin", since = "1.33.0")]
4019impl<T: ?Sized, A: Allocator> Unpin for Arc<T, A> {}
4020
4021/// Gets the offset within an `ArcInner` for the payload behind a pointer.
4022///
4023/// # Safety
4024///
4025/// The pointer must point to (and have valid metadata for) a previously
4026/// valid instance of T, but the T is allowed to be dropped.
4027unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
4028 // Align the unsized value to the end of the ArcInner.
4029 // Because ArcInner is repr(C), it will always be the last field in memory.
4030 // SAFETY: since the only unsized types possible are slices, trait objects,
4031 // and extern types, the input safety requirement is currently enough to
4032 // satisfy the requirements of align_of_val_raw; this is an implementation
4033 // detail of the language that must not be relied upon outside of std.
4034 unsafe { data_offset_align(align_of_val_raw(ptr)) }
4035}
4036
4037#[inline]
4038fn data_offset_align(align: usize) -> usize {
4039 let layout = Layout::new::<ArcInner<()>>();
4040 layout.size() + layout.padding_needed_for(align)
4041}
4042
4043/// A unique owning pointer to an [`ArcInner`] **that does not imply the contents are initialized,**
4044/// but will deallocate it (without dropping the value) when dropped.
4045///
4046/// This is a helper for [`Arc::make_mut()`] to ensure correct cleanup on panic.
4047#[cfg(not(no_global_oom_handling))]
4048struct UniqueArcUninit<T: ?Sized, A: Allocator> {
4049 ptr: NonNull<ArcInner<T>>,
4050 layout_for_value: Layout,
4051 alloc: Option<A>,
4052}
4053
4054#[cfg(not(no_global_oom_handling))]
4055impl<T: ?Sized, A: Allocator> UniqueArcUninit<T, A> {
4056 /// Allocates an ArcInner with layout suitable to contain `for_value` or a clone of it.
4057 fn new(for_value: &T, alloc: A) -> UniqueArcUninit<T, A> {
4058 let layout = Layout::for_value(for_value);
4059 let ptr = unsafe {
4060 Arc::allocate_for_layout(
4061 layout,
4062 |layout_for_arcinner| alloc.allocate(layout_for_arcinner),
4063 |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const ArcInner<T>),
4064 )
4065 };
4066 Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
4067 }
4068
4069 /// Returns the pointer to be written into to initialize the [`Arc`].
4070 fn data_ptr(&mut self) -> *mut T {
4071 let offset = data_offset_align(self.layout_for_value.align());
4072 unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
4073 }
4074
4075 /// Upgrade this into a normal [`Arc`].
4076 ///
4077 /// # Safety
4078 ///
4079 /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
4080 unsafe fn into_arc(self) -> Arc<T, A> {
4081 let mut this = ManuallyDrop::new(self);
4082 let ptr = this.ptr.as_ptr();
4083 let alloc = this.alloc.take().unwrap();
4084
4085 // SAFETY: The pointer is valid as per `UniqueArcUninit::new`, and the caller is responsible
4086 // for having initialized the data.
4087 unsafe { Arc::from_ptr_in(ptr, alloc) }
4088 }
4089}
4090
4091#[cfg(not(no_global_oom_handling))]
4092impl<T: ?Sized, A: Allocator> Drop for UniqueArcUninit<T, A> {
4093 fn drop(&mut self) {
4094 // SAFETY:
4095 // * new() produced a pointer safe to deallocate.
4096 // * We own the pointer unless into_arc() was called, which forgets us.
4097 unsafe {
4098 self.alloc.take().unwrap().deallocate(
4099 self.ptr.cast(),
4100 arcinner_layout_for_value_layout(self.layout_for_value),
4101 );
4102 }
4103 }
4104}
4105
4106#[stable(feature = "arc_error", since = "1.52.0")]
4107impl<T: core::error::Error + ?Sized> core::error::Error for Arc<T> {
4108 #[allow(deprecated)]
4109 fn cause(&self) -> Option<&dyn core::error::Error> {
4110 core::error::Error::cause(&**self)
4111 }
4112
4113 fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
4114 core::error::Error::source(&**self)
4115 }
4116
4117 fn provide<'a>(&'a self, req: &mut core::error::Request<'a>) {
4118 core::error::Error::provide(&**self, req);
4119 }
4120}
4121
4122/// A uniquely owned [`Arc`].
4123///
4124/// This represents an `Arc` that is known to be uniquely owned -- that is, have exactly one strong
4125/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
4126/// references will fail unless the `UniqueArc` they point to has been converted into a regular `Arc`.
4127///
4128/// Because it is uniquely owned, the contents of a `UniqueArc` can be freely mutated. A common
4129/// use case is to have an object be mutable during its initialization phase but then have it become
4130/// immutable and converted to a normal `Arc`.
4131///
4132/// This can be used as a flexible way to create cyclic data structures, as in the example below.
4133///
4134/// ```
4135/// #![feature(unique_rc_arc)]
4136/// use std::sync::{Arc, Weak, UniqueArc};
4137///
4138/// struct Gadget {
4139/// me: Weak<Gadget>,
4140/// }
4141///
4142/// fn create_gadget() -> Option<Arc<Gadget>> {
4143/// let mut rc = UniqueArc::new(Gadget {
4144/// me: Weak::new(),
4145/// });
4146/// rc.me = UniqueArc::downgrade(&rc);
4147/// Some(UniqueArc::into_arc(rc))
4148/// }
4149///
4150/// create_gadget().unwrap();
4151/// ```
4152///
4153/// An advantage of using `UniqueArc` over [`Arc::new_cyclic`] to build cyclic data structures is that
4154/// [`Arc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
4155/// previous example, `UniqueArc` allows for more flexibility in the construction of cyclic data,
4156/// including fallible or async constructors.
4157#[unstable(feature = "unique_rc_arc", issue = "112566")]
4158pub struct UniqueArc<
4159 T: ?Sized,
4160 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
4161> {
4162 ptr: NonNull<ArcInner<T>>,
4163 // Define the ownership of `ArcInner<T>` for drop-check
4164 _marker: PhantomData<ArcInner<T>>,
4165 // Invariance is necessary for soundness: once other `Weak`
4166 // references exist, we already have a form of shared mutability!
4167 _marker2: PhantomData<*mut T>,
4168 alloc: A,
4169}
4170
4171#[unstable(feature = "unique_rc_arc", issue = "112566")]
4172unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Send> Send for UniqueArc<T, A> {}
4173
4174#[unstable(feature = "unique_rc_arc", issue = "112566")]
4175unsafe impl<T: ?Sized + Sync + Send, A: Allocator + Sync> Sync for UniqueArc<T, A> {}
4176
4177#[unstable(feature = "unique_rc_arc", issue = "112566")]
4178// #[unstable(feature = "coerce_unsized", issue = "18598")]
4179impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueArc<U, A>>
4180 for UniqueArc<T, A>
4181{
4182}
4183
4184//#[unstable(feature = "unique_rc_arc", issue = "112566")]
4185#[unstable(feature = "dispatch_from_dyn", issue = "none")]
4186impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<UniqueArc<U>> for UniqueArc<T> {}
4187
4188#[unstable(feature = "unique_rc_arc", issue = "112566")]
4189impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for UniqueArc<T, A> {
4190 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4191 fmt::Display::fmt(&**self, f)
4192 }
4193}
4194
4195#[unstable(feature = "unique_rc_arc", issue = "112566")]
4196impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for UniqueArc<T, A> {
4197 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4198 fmt::Debug::fmt(&**self, f)
4199 }
4200}
4201
4202#[unstable(feature = "unique_rc_arc", issue = "112566")]
4203impl<T: ?Sized, A: Allocator> fmt::Pointer for UniqueArc<T, A> {
4204 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4205 fmt::Pointer::fmt(&(&raw const **self), f)
4206 }
4207}
4208
4209#[unstable(feature = "unique_rc_arc", issue = "112566")]
4210impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for UniqueArc<T, A> {
4211 fn borrow(&self) -> &T {
4212 &**self
4213 }
4214}
4215
4216#[unstable(feature = "unique_rc_arc", issue = "112566")]
4217impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for UniqueArc<T, A> {
4218 fn borrow_mut(&mut self) -> &mut T {
4219 &mut **self
4220 }
4221}
4222
4223#[unstable(feature = "unique_rc_arc", issue = "112566")]
4224impl<T: ?Sized, A: Allocator> AsRef<T> for UniqueArc<T, A> {
4225 fn as_ref(&self) -> &T {
4226 &**self
4227 }
4228}
4229
4230#[unstable(feature = "unique_rc_arc", issue = "112566")]
4231impl<T: ?Sized, A: Allocator> AsMut<T> for UniqueArc<T, A> {
4232 fn as_mut(&mut self) -> &mut T {
4233 &mut **self
4234 }
4235}
4236
4237#[unstable(feature = "unique_rc_arc", issue = "112566")]
4238impl<T: ?Sized, A: Allocator> Unpin for UniqueArc<T, A> {}
4239
4240#[unstable(feature = "unique_rc_arc", issue = "112566")]
4241impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for UniqueArc<T, A> {
4242 /// Equality for two `UniqueArc`s.
4243 ///
4244 /// Two `UniqueArc`s are equal if their inner values are equal.
4245 ///
4246 /// # Examples
4247 ///
4248 /// ```
4249 /// #![feature(unique_rc_arc)]
4250 /// use std::sync::UniqueArc;
4251 ///
4252 /// let five = UniqueArc::new(5);
4253 ///
4254 /// assert!(five == UniqueArc::new(5));
4255 /// ```
4256 #[inline]
4257 fn eq(&self, other: &Self) -> bool {
4258 PartialEq::eq(&**self, &**other)
4259 }
4260}
4261
4262#[unstable(feature = "unique_rc_arc", issue = "112566")]
4263impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for UniqueArc<T, A> {
4264 /// Partial comparison for two `UniqueArc`s.
4265 ///
4266 /// The two are compared by calling `partial_cmp()` on their inner values.
4267 ///
4268 /// # Examples
4269 ///
4270 /// ```
4271 /// #![feature(unique_rc_arc)]
4272 /// use std::sync::UniqueArc;
4273 /// use std::cmp::Ordering;
4274 ///
4275 /// let five = UniqueArc::new(5);
4276 ///
4277 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&UniqueArc::new(6)));
4278 /// ```
4279 #[inline(always)]
4280 fn partial_cmp(&self, other: &UniqueArc<T, A>) -> Option<Ordering> {
4281 (**self).partial_cmp(&**other)
4282 }
4283
4284 /// Less-than comparison for two `UniqueArc`s.
4285 ///
4286 /// The two are compared by calling `<` on their inner values.
4287 ///
4288 /// # Examples
4289 ///
4290 /// ```
4291 /// #![feature(unique_rc_arc)]
4292 /// use std::sync::UniqueArc;
4293 ///
4294 /// let five = UniqueArc::new(5);
4295 ///
4296 /// assert!(five < UniqueArc::new(6));
4297 /// ```
4298 #[inline(always)]
4299 fn lt(&self, other: &UniqueArc<T, A>) -> bool {
4300 **self < **other
4301 }
4302
4303 /// 'Less than or equal to' comparison for two `UniqueArc`s.
4304 ///
4305 /// The two are compared by calling `<=` on their inner values.
4306 ///
4307 /// # Examples
4308 ///
4309 /// ```
4310 /// #![feature(unique_rc_arc)]
4311 /// use std::sync::UniqueArc;
4312 ///
4313 /// let five = UniqueArc::new(5);
4314 ///
4315 /// assert!(five <= UniqueArc::new(5));
4316 /// ```
4317 #[inline(always)]
4318 fn le(&self, other: &UniqueArc<T, A>) -> bool {
4319 **self <= **other
4320 }
4321
4322 /// Greater-than comparison for two `UniqueArc`s.
4323 ///
4324 /// The two are compared by calling `>` on their inner values.
4325 ///
4326 /// # Examples
4327 ///
4328 /// ```
4329 /// #![feature(unique_rc_arc)]
4330 /// use std::sync::UniqueArc;
4331 ///
4332 /// let five = UniqueArc::new(5);
4333 ///
4334 /// assert!(five > UniqueArc::new(4));
4335 /// ```
4336 #[inline(always)]
4337 fn gt(&self, other: &UniqueArc<T, A>) -> bool {
4338 **self > **other
4339 }
4340
4341 /// 'Greater than or equal to' comparison for two `UniqueArc`s.
4342 ///
4343 /// The two are compared by calling `>=` on their inner values.
4344 ///
4345 /// # Examples
4346 ///
4347 /// ```
4348 /// #![feature(unique_rc_arc)]
4349 /// use std::sync::UniqueArc;
4350 ///
4351 /// let five = UniqueArc::new(5);
4352 ///
4353 /// assert!(five >= UniqueArc::new(5));
4354 /// ```
4355 #[inline(always)]
4356 fn ge(&self, other: &UniqueArc<T, A>) -> bool {
4357 **self >= **other
4358 }
4359}
4360
4361#[unstable(feature = "unique_rc_arc", issue = "112566")]
4362impl<T: ?Sized + Ord, A: Allocator> Ord for UniqueArc<T, A> {
4363 /// Comparison for two `UniqueArc`s.
4364 ///
4365 /// The two are compared by calling `cmp()` on their inner values.
4366 ///
4367 /// # Examples
4368 ///
4369 /// ```
4370 /// #![feature(unique_rc_arc)]
4371 /// use std::sync::UniqueArc;
4372 /// use std::cmp::Ordering;
4373 ///
4374 /// let five = UniqueArc::new(5);
4375 ///
4376 /// assert_eq!(Ordering::Less, five.cmp(&UniqueArc::new(6)));
4377 /// ```
4378 #[inline]
4379 fn cmp(&self, other: &UniqueArc<T, A>) -> Ordering {
4380 (**self).cmp(&**other)
4381 }
4382}
4383
4384#[unstable(feature = "unique_rc_arc", issue = "112566")]
4385impl<T: ?Sized + Eq, A: Allocator> Eq for UniqueArc<T, A> {}
4386
4387#[unstable(feature = "unique_rc_arc", issue = "112566")]
4388impl<T: ?Sized + Hash, A: Allocator> Hash for UniqueArc<T, A> {
4389 fn hash<H: Hasher>(&self, state: &mut H) {
4390 (**self).hash(state);
4391 }
4392}
4393
4394impl<T> UniqueArc<T, Global> {
4395 /// Creates a new `UniqueArc`.
4396 ///
4397 /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4398 /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4399 /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4400 /// point to the new [`Arc`].
4401 #[cfg(not(no_global_oom_handling))]
4402 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4403 #[must_use]
4404 pub fn new(value: T) -> Self {
4405 Self::new_in(value, Global)
4406 }
4407}
4408
4409impl<T, A: Allocator> UniqueArc<T, A> {
4410 /// Creates a new `UniqueArc` in the provided allocator.
4411 ///
4412 /// Weak references to this `UniqueArc` can be created with [`UniqueArc::downgrade`]. Upgrading
4413 /// these weak references will fail before the `UniqueArc` has been converted into an [`Arc`].
4414 /// After converting the `UniqueArc` into an [`Arc`], any weak references created beforehand will
4415 /// point to the new [`Arc`].
4416 #[cfg(not(no_global_oom_handling))]
4417 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4418 #[must_use]
4419 // #[unstable(feature = "allocator_api", issue = "32838")]
4420 pub fn new_in(data: T, alloc: A) -> Self {
4421 let (ptr, alloc) = Box::into_unique(Box::new_in(
4422 ArcInner {
4423 strong: atomic::AtomicUsize::new(0),
4424 // keep one weak reference so if all the weak pointers that are created are dropped
4425 // the UniqueArc still stays valid.
4426 weak: atomic::AtomicUsize::new(1),
4427 data,
4428 },
4429 alloc,
4430 ));
4431 Self { ptr: ptr.into(), _marker: PhantomData, _marker2: PhantomData, alloc }
4432 }
4433}
4434
4435impl<T: ?Sized, A: Allocator> UniqueArc<T, A> {
4436 /// Converts the `UniqueArc` into a regular [`Arc`].
4437 ///
4438 /// This consumes the `UniqueArc` and returns a regular [`Arc`] that contains the `value` that
4439 /// is passed to `into_arc`.
4440 ///
4441 /// Any weak references created before this method is called can now be upgraded to strong
4442 /// references.
4443 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4444 #[must_use]
4445 pub fn into_arc(this: Self) -> Arc<T, A> {
4446 let this = ManuallyDrop::new(this);
4447
4448 // Move the allocator out.
4449 // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
4450 // a `ManuallyDrop`.
4451 let alloc: A = unsafe { ptr::read(&this.alloc) };
4452
4453 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4454 unsafe {
4455 // Convert our weak reference into a strong reference
4456 (*this.ptr.as_ptr()).strong.store(1, Release);
4457 Arc::from_inner_in(this.ptr, alloc)
4458 }
4459 }
4460}
4461
4462impl<T: ?Sized, A: Allocator + Clone> UniqueArc<T, A> {
4463 /// Creates a new weak reference to the `UniqueArc`.
4464 ///
4465 /// Attempting to upgrade this weak reference will fail before the `UniqueArc` has been converted
4466 /// to a [`Arc`] using [`UniqueArc::into_arc`].
4467 #[unstable(feature = "unique_rc_arc", issue = "112566")]
4468 #[must_use]
4469 pub fn downgrade(this: &Self) -> Weak<T, A> {
4470 // Using a relaxed ordering is alright here, as knowledge of the
4471 // original reference prevents other threads from erroneously deleting
4472 // the object or converting the object to a normal `Arc<T, A>`.
4473 //
4474 // Note that we don't need to test if the weak counter is locked because there
4475 // are no such operations like `Arc::get_mut` or `Arc::make_mut` that will lock
4476 // the weak counter.
4477 //
4478 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4479 let old_size = unsafe { (*this.ptr.as_ptr()).weak.fetch_add(1, Relaxed) };
4480
4481 // See comments in Arc::clone() for why we do this (for mem::forget).
4482 if old_size > MAX_REFCOUNT {
4483 abort();
4484 }
4485
4486 Weak { ptr: this.ptr, alloc: this.alloc.clone() }
4487 }
4488}
4489
4490#[unstable(feature = "unique_rc_arc", issue = "112566")]
4491impl<T: ?Sized, A: Allocator> Deref for UniqueArc<T, A> {
4492 type Target = T;
4493
4494 fn deref(&self) -> &T {
4495 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4496 unsafe { &self.ptr.as_ref().data }
4497 }
4498}
4499
4500// #[unstable(feature = "unique_rc_arc", issue = "112566")]
4501#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
4502unsafe impl<T: ?Sized> PinCoerceUnsized for UniqueArc<T> {}
4503
4504#[unstable(feature = "unique_rc_arc", issue = "112566")]
4505impl<T: ?Sized, A: Allocator> DerefMut for UniqueArc<T, A> {
4506 fn deref_mut(&mut self) -> &mut T {
4507 // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
4508 // have unique ownership and therefore it's safe to make a mutable reference because
4509 // `UniqueArc` owns the only strong reference to itself.
4510 // We also need to be careful to only create a mutable reference to the `data` field,
4511 // as a mutable reference to the entire `ArcInner` would assert uniqueness over the
4512 // ref count fields too, invalidating any attempt by `Weak`s to access the ref count.
4513 unsafe { &mut (*self.ptr.as_ptr()).data }
4514 }
4515}
4516
4517#[unstable(feature = "unique_rc_arc", issue = "112566")]
4518// #[unstable(feature = "deref_pure_trait", issue = "87121")]
4519unsafe impl<T: ?Sized, A: Allocator> DerefPure for UniqueArc<T, A> {}
4520
4521#[unstable(feature = "unique_rc_arc", issue = "112566")]
4522unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueArc<T, A> {
4523 fn drop(&mut self) {
4524 // See `Arc::drop_slow` which drops an `Arc` with a strong count of 0.
4525 // SAFETY: This pointer was allocated at creation time so we know it is valid.
4526 let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };
4527
4528 unsafe { ptr::drop_in_place(&mut (*self.ptr.as_ptr()).data) };
4529 }
4530}