alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::cmp;
78use core::cmp::Ordering;
79use core::hash::{Hash, Hasher};
80#[cfg(not(no_global_oom_handling))]
81use core::iter;
82use core::marker::PhantomData;
83use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
84use core::ops::{self, Index, IndexMut, Range, RangeBounds};
85use core::ptr::{self, NonNull};
86use core::slice::{self, SliceIndex};
87use core::{fmt, intrinsics, ub_checks};
88
89#[stable(feature = "extract_if", since = "1.87.0")]
90pub use self::extract_if::ExtractIf;
91use crate::alloc::{Allocator, Global};
92use crate::borrow::{Cow, ToOwned};
93use crate::boxed::Box;
94use crate::collections::TryReserveError;
95use crate::raw_vec::RawVec;
96
97mod extract_if;
98
99#[cfg(not(no_global_oom_handling))]
100#[stable(feature = "vec_splice", since = "1.21.0")]
101pub use self::splice::Splice;
102
103#[cfg(not(no_global_oom_handling))]
104mod splice;
105
106#[stable(feature = "drain", since = "1.6.0")]
107pub use self::drain::Drain;
108
109mod drain;
110
111#[cfg(not(no_global_oom_handling))]
112mod cow;
113
114#[cfg(not(no_global_oom_handling))]
115pub(crate) use self::in_place_collect::AsVecIntoIter;
116#[stable(feature = "rust1", since = "1.0.0")]
117pub use self::into_iter::IntoIter;
118
119mod into_iter;
120
121#[cfg(not(no_global_oom_handling))]
122use self::is_zero::IsZero;
123
124#[cfg(not(no_global_oom_handling))]
125mod is_zero;
126
127#[cfg(not(no_global_oom_handling))]
128mod in_place_collect;
129
130mod partial_eq;
131
132#[unstable(feature = "vec_peek_mut", issue = "122742")]
133pub use self::peek_mut::PeekMut;
134
135mod peek_mut;
136
137#[cfg(not(no_global_oom_handling))]
138use self::spec_from_elem::SpecFromElem;
139
140#[cfg(not(no_global_oom_handling))]
141mod spec_from_elem;
142
143#[cfg(not(no_global_oom_handling))]
144use self::set_len_on_drop::SetLenOnDrop;
145
146#[cfg(not(no_global_oom_handling))]
147mod set_len_on_drop;
148
149#[cfg(not(no_global_oom_handling))]
150use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
151
152#[cfg(not(no_global_oom_handling))]
153mod in_place_drop;
154
155#[cfg(not(no_global_oom_handling))]
156use self::spec_from_iter_nested::SpecFromIterNested;
157
158#[cfg(not(no_global_oom_handling))]
159mod spec_from_iter_nested;
160
161#[cfg(not(no_global_oom_handling))]
162use self::spec_from_iter::SpecFromIter;
163
164#[cfg(not(no_global_oom_handling))]
165mod spec_from_iter;
166
167#[cfg(not(no_global_oom_handling))]
168use self::spec_extend::SpecExtend;
169
170#[cfg(not(no_global_oom_handling))]
171mod spec_extend;
172
173/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
174///
175/// # Examples
176///
177/// ```
178/// let mut vec = Vec::new();
179/// vec.push(1);
180/// vec.push(2);
181///
182/// assert_eq!(vec.len(), 2);
183/// assert_eq!(vec[0], 1);
184///
185/// assert_eq!(vec.pop(), Some(2));
186/// assert_eq!(vec.len(), 1);
187///
188/// vec[0] = 7;
189/// assert_eq!(vec[0], 7);
190///
191/// vec.extend([1, 2, 3]);
192///
193/// for x in &vec {
194///     println!("{x}");
195/// }
196/// assert_eq!(vec, [7, 1, 2, 3]);
197/// ```
198///
199/// The [`vec!`] macro is provided for convenient initialization:
200///
201/// ```
202/// let mut vec1 = vec![1, 2, 3];
203/// vec1.push(4);
204/// let vec2 = Vec::from([1, 2, 3, 4]);
205/// assert_eq!(vec1, vec2);
206/// ```
207///
208/// It can also initialize each element of a `Vec<T>` with a given value.
209/// This may be more efficient than performing allocation and initialization
210/// in separate steps, especially when initializing a vector of zeros:
211///
212/// ```
213/// let vec = vec![0; 5];
214/// assert_eq!(vec, [0, 0, 0, 0, 0]);
215///
216/// // The following is equivalent, but potentially slower:
217/// let mut vec = Vec::with_capacity(5);
218/// vec.resize(5, 0);
219/// assert_eq!(vec, [0, 0, 0, 0, 0]);
220/// ```
221///
222/// For more information, see
223/// [Capacity and Reallocation](#capacity-and-reallocation).
224///
225/// Use a `Vec<T>` as an efficient stack:
226///
227/// ```
228/// let mut stack = Vec::new();
229///
230/// stack.push(1);
231/// stack.push(2);
232/// stack.push(3);
233///
234/// while let Some(top) = stack.pop() {
235///     // Prints 3, 2, 1
236///     println!("{top}");
237/// }
238/// ```
239///
240/// # Indexing
241///
242/// The `Vec` type allows access to values by index, because it implements the
243/// [`Index`] trait. An example will be more explicit:
244///
245/// ```
246/// let v = vec![0, 2, 4, 6];
247/// println!("{}", v[1]); // it will display '2'
248/// ```
249///
250/// However be careful: if you try to access an index which isn't in the `Vec`,
251/// your software will panic! You cannot do this:
252///
253/// ```should_panic
254/// let v = vec![0, 2, 4, 6];
255/// println!("{}", v[6]); // it will panic!
256/// ```
257///
258/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
259/// the `Vec`.
260///
261/// # Slicing
262///
263/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
264/// To get a [slice][prim@slice], use [`&`]. Example:
265///
266/// ```
267/// fn read_slice(slice: &[usize]) {
268///     // ...
269/// }
270///
271/// let v = vec![0, 1];
272/// read_slice(&v);
273///
274/// // ... and that's all!
275/// // you can also do it like this:
276/// let u: &[usize] = &v;
277/// // or like this:
278/// let u: &[_] = &v;
279/// ```
280///
281/// In Rust, it's more common to pass slices as arguments rather than vectors
282/// when you just want to provide read access. The same goes for [`String`] and
283/// [`&str`].
284///
285/// # Capacity and reallocation
286///
287/// The capacity of a vector is the amount of space allocated for any future
288/// elements that will be added onto the vector. This is not to be confused with
289/// the *length* of a vector, which specifies the number of actual elements
290/// within the vector. If a vector's length exceeds its capacity, its capacity
291/// will automatically be increased, but its elements will have to be
292/// reallocated.
293///
294/// For example, a vector with capacity 10 and length 0 would be an empty vector
295/// with space for 10 more elements. Pushing 10 or fewer elements onto the
296/// vector will not change its capacity or cause reallocation to occur. However,
297/// if the vector's length is increased to 11, it will have to reallocate, which
298/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
299/// whenever possible to specify how big the vector is expected to get.
300///
301/// # Guarantees
302///
303/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
304/// about its design. This ensures that it's as low-overhead as possible in
305/// the general case, and can be correctly manipulated in primitive ways
306/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
307/// If additional type parameters are added (e.g., to support custom allocators),
308/// overriding their defaults may change the behavior.
309///
310/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
311/// triplet. No more, no less. The order of these fields is completely
312/// unspecified, and you should use the appropriate methods to modify these.
313/// The pointer will never be null, so this type is null-pointer-optimized.
314///
315/// However, the pointer might not actually point to allocated memory. In particular,
316/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
317/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
318/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
319/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
320/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
321/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
322/// details are very subtle --- if you intend to allocate memory using a `Vec`
323/// and use it for something else (either to pass to unsafe code, or to build your
324/// own memory-backed collection), be sure to deallocate this memory by using
325/// `from_raw_parts` to recover the `Vec` and then dropping it.
326///
327/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
328/// (as defined by the allocator Rust is configured to use by default), and its
329/// pointer points to [`len`] initialized, contiguous elements in order (what
330/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
331/// logically uninitialized, contiguous elements.
332///
333/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
334/// visualized as below. The top part is the `Vec` struct, it contains a
335/// pointer to the head of the allocation in the heap, length and capacity.
336/// The bottom part is the allocation on the heap, a contiguous memory block.
337///
338/// ```text
339///             ptr      len  capacity
340///        +--------+--------+--------+
341///        | 0x0123 |      2 |      4 |
342///        +--------+--------+--------+
343///             |
344///             v
345/// Heap   +--------+--------+--------+--------+
346///        |    'a' |    'b' | uninit | uninit |
347///        +--------+--------+--------+--------+
348/// ```
349///
350/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
351/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
352///   layout (including the order of fields).
353///
354/// `Vec` will never perform a "small optimization" where elements are actually
355/// stored on the stack for two reasons:
356///
357/// * It would make it more difficult for unsafe code to correctly manipulate
358///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
359///   only moved, and it would be more difficult to determine if a `Vec` had
360///   actually allocated memory.
361///
362/// * It would penalize the general case, incurring an additional branch
363///   on every access.
364///
365/// `Vec` will never automatically shrink itself, even if completely empty. This
366/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
367/// and then filling it back up to the same [`len`] should incur no calls to
368/// the allocator. If you wish to free up unused memory, use
369/// [`shrink_to_fit`] or [`shrink_to`].
370///
371/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
372/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
373/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
374/// accurate, and can be relied on. It can even be used to manually free the memory
375/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
376/// when not necessary.
377///
378/// `Vec` does not guarantee any particular growth strategy when reallocating
379/// when full, nor when [`reserve`] is called. The current strategy is basic
380/// and it may prove desirable to use a non-constant growth factor. Whatever
381/// strategy is used will of course guarantee *O*(1) amortized [`push`].
382///
383/// It is guaranteed, in order to respect the intentions of the programmer, that
384/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
385/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
386/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
387/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
388///
389/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
390/// and not more than the allocated capacity.
391///
392/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
393/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
394/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
395/// `Vec` exploits this fact as much as reasonable when implementing common conversions
396/// such as [`into_boxed_slice`].
397///
398/// `Vec` will not specifically overwrite any data that is removed from it,
399/// but also won't specifically preserve it. Its uninitialized memory is
400/// scratch space that it may use however it wants. It will generally just do
401/// whatever is most efficient or otherwise easy to implement. Do not rely on
402/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
403/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
404/// first, that might not actually happen because the optimizer does not consider
405/// this a side-effect that must be preserved. There is one case which we will
406/// not break, however: using `unsafe` code to write to the excess capacity,
407/// and then increasing the length to match, is always valid.
408///
409/// Currently, `Vec` does not guarantee the order in which elements are dropped.
410/// The order has changed in the past and may change again.
411///
412/// [`get`]: slice::get
413/// [`get_mut`]: slice::get_mut
414/// [`String`]: crate::string::String
415/// [`&str`]: type@str
416/// [`shrink_to_fit`]: Vec::shrink_to_fit
417/// [`shrink_to`]: Vec::shrink_to
418/// [capacity]: Vec::capacity
419/// [`capacity`]: Vec::capacity
420/// [`Vec::capacity`]: Vec::capacity
421/// [size_of::\<T>]: size_of
422/// [len]: Vec::len
423/// [`len`]: Vec::len
424/// [`push`]: Vec::push
425/// [`insert`]: Vec::insert
426/// [`reserve`]: Vec::reserve
427/// [`Vec::with_capacity(n)`]: Vec::with_capacity
428/// [`MaybeUninit`]: core::mem::MaybeUninit
429/// [owned slice]: Box
430/// [`into_boxed_slice`]: Vec::into_boxed_slice
431#[stable(feature = "rust1", since = "1.0.0")]
432#[rustc_diagnostic_item = "Vec"]
433#[rustc_insignificant_dtor]
434pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
435    buf: RawVec<T, A>,
436    len: usize,
437}
438
439////////////////////////////////////////////////////////////////////////////////
440// Inherent methods
441////////////////////////////////////////////////////////////////////////////////
442
443impl<T> Vec<T> {
444    /// Constructs a new, empty `Vec<T>`.
445    ///
446    /// The vector will not allocate until elements are pushed onto it.
447    ///
448    /// # Examples
449    ///
450    /// ```
451    /// # #![allow(unused_mut)]
452    /// let mut vec: Vec<i32> = Vec::new();
453    /// ```
454    #[inline]
455    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
456    #[rustc_diagnostic_item = "vec_new"]
457    #[stable(feature = "rust1", since = "1.0.0")]
458    #[must_use]
459    pub const fn new() -> Self {
460        Vec { buf: RawVec::new(), len: 0 }
461    }
462
463    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
464    ///
465    /// The vector will be able to hold at least `capacity` elements without
466    /// reallocating. This method is allowed to allocate for more elements than
467    /// `capacity`. If `capacity` is zero, the vector will not allocate.
468    ///
469    /// It is important to note that although the returned vector has the
470    /// minimum *capacity* specified, the vector will have a zero *length*. For
471    /// an explanation of the difference between length and capacity, see
472    /// *[Capacity and reallocation]*.
473    ///
474    /// If it is important to know the exact allocated capacity of a `Vec`,
475    /// always use the [`capacity`] method after construction.
476    ///
477    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
478    /// and the capacity will always be `usize::MAX`.
479    ///
480    /// [Capacity and reallocation]: #capacity-and-reallocation
481    /// [`capacity`]: Vec::capacity
482    ///
483    /// # Panics
484    ///
485    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
486    ///
487    /// # Examples
488    ///
489    /// ```
490    /// let mut vec = Vec::with_capacity(10);
491    ///
492    /// // The vector contains no items, even though it has capacity for more
493    /// assert_eq!(vec.len(), 0);
494    /// assert!(vec.capacity() >= 10);
495    ///
496    /// // These are all done without reallocating...
497    /// for i in 0..10 {
498    ///     vec.push(i);
499    /// }
500    /// assert_eq!(vec.len(), 10);
501    /// assert!(vec.capacity() >= 10);
502    ///
503    /// // ...but this may make the vector reallocate
504    /// vec.push(11);
505    /// assert_eq!(vec.len(), 11);
506    /// assert!(vec.capacity() >= 11);
507    ///
508    /// // A vector of a zero-sized type will always over-allocate, since no
509    /// // allocation is necessary
510    /// let vec_units = Vec::<()>::with_capacity(10);
511    /// assert_eq!(vec_units.capacity(), usize::MAX);
512    /// ```
513    #[cfg(not(no_global_oom_handling))]
514    #[inline]
515    #[stable(feature = "rust1", since = "1.0.0")]
516    #[must_use]
517    #[rustc_diagnostic_item = "vec_with_capacity"]
518    pub fn with_capacity(capacity: usize) -> Self {
519        Self::with_capacity_in(capacity, Global)
520    }
521
522    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
523    ///
524    /// The vector will be able to hold at least `capacity` elements without
525    /// reallocating. This method is allowed to allocate for more elements than
526    /// `capacity`. If `capacity` is zero, the vector will not allocate.
527    ///
528    /// # Errors
529    ///
530    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
531    /// or if the allocator reports allocation failure.
532    #[inline]
533    #[unstable(feature = "try_with_capacity", issue = "91913")]
534    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
535        Self::try_with_capacity_in(capacity, Global)
536    }
537
538    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
539    ///
540    /// # Safety
541    ///
542    /// This is highly unsafe, due to the number of invariants that aren't
543    /// checked:
544    ///
545    /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
546    ///   been allocated using the global allocator, such as via the [`alloc::alloc`]
547    ///   function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
548    ///   only be non-null and aligned.
549    /// * `T` needs to have the same alignment as what `ptr` was allocated with,
550    ///   if the pointer is required to be allocated.
551    ///   (`T` having a less strict alignment is not sufficient, the alignment really
552    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
553    ///   allocated and deallocated with the same layout.)
554    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
555    ///   nonzero, needs to be the same size as the pointer was allocated with.
556    ///   (Because similar to alignment, [`dealloc`] must be called with the same
557    ///   layout `size`.)
558    /// * `length` needs to be less than or equal to `capacity`.
559    /// * The first `length` values must be properly initialized values of type `T`.
560    /// * `capacity` needs to be the capacity that the pointer was allocated with,
561    ///   if the pointer is required to be allocated.
562    /// * The allocated size in bytes must be no larger than `isize::MAX`.
563    ///   See the safety documentation of [`pointer::offset`].
564    ///
565    /// These requirements are always upheld by any `ptr` that has been allocated
566    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
567    /// upheld.
568    ///
569    /// Violating these may cause problems like corrupting the allocator's
570    /// internal data structures. For example it is normally **not** safe
571    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
572    /// `size_t`, doing so is only safe if the array was initially allocated by
573    /// a `Vec` or `String`.
574    /// It's also not safe to build one from a `Vec<u16>` and its length, because
575    /// the allocator cares about the alignment, and these two types have different
576    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
577    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
578    /// these issues, it is often preferable to do casting/transmuting using
579    /// [`slice::from_raw_parts`] instead.
580    ///
581    /// The ownership of `ptr` is effectively transferred to the
582    /// `Vec<T>` which may then deallocate, reallocate or change the
583    /// contents of memory pointed to by the pointer at will. Ensure
584    /// that nothing else uses the pointer after calling this
585    /// function.
586    ///
587    /// [`String`]: crate::string::String
588    /// [`alloc::alloc`]: crate::alloc::alloc
589    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
590    ///
591    /// # Examples
592    ///
593    // FIXME Update this when vec_into_raw_parts is stabilized
594    /// ```
595    /// use std::ptr;
596    /// use std::mem;
597    ///
598    /// let v = vec![1, 2, 3];
599    ///
600    /// // Prevent running `v`'s destructor so we are in complete control
601    /// // of the allocation.
602    /// let mut v = mem::ManuallyDrop::new(v);
603    ///
604    /// // Pull out the various important pieces of information about `v`
605    /// let p = v.as_mut_ptr();
606    /// let len = v.len();
607    /// let cap = v.capacity();
608    ///
609    /// unsafe {
610    ///     // Overwrite memory with 4, 5, 6
611    ///     for i in 0..len {
612    ///         ptr::write(p.add(i), 4 + i);
613    ///     }
614    ///
615    ///     // Put everything back together into a Vec
616    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
617    ///     assert_eq!(rebuilt, [4, 5, 6]);
618    /// }
619    /// ```
620    ///
621    /// Using memory that was allocated elsewhere:
622    ///
623    /// ```rust
624    /// use std::alloc::{alloc, Layout};
625    ///
626    /// fn main() {
627    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
628    ///
629    ///     let vec = unsafe {
630    ///         let mem = alloc(layout).cast::<u32>();
631    ///         if mem.is_null() {
632    ///             return;
633    ///         }
634    ///
635    ///         mem.write(1_000_000);
636    ///
637    ///         Vec::from_raw_parts(mem, 1, 16)
638    ///     };
639    ///
640    ///     assert_eq!(vec, &[1_000_000]);
641    ///     assert_eq!(vec.capacity(), 16);
642    /// }
643    /// ```
644    #[inline]
645    #[stable(feature = "rust1", since = "1.0.0")]
646    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
647        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
648    }
649
650    #[doc(alias = "from_non_null_parts")]
651    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
652    ///
653    /// # Safety
654    ///
655    /// This is highly unsafe, due to the number of invariants that aren't
656    /// checked:
657    ///
658    /// * `ptr` must have been allocated using the global allocator, such as via
659    ///   the [`alloc::alloc`] function.
660    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
661    ///   (`T` having a less strict alignment is not sufficient, the alignment really
662    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
663    ///   allocated and deallocated with the same layout.)
664    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
665    ///   to be the same size as the pointer was allocated with. (Because similar to
666    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
667    /// * `length` needs to be less than or equal to `capacity`.
668    /// * The first `length` values must be properly initialized values of type `T`.
669    /// * `capacity` needs to be the capacity that the pointer was allocated with.
670    /// * The allocated size in bytes must be no larger than `isize::MAX`.
671    ///   See the safety documentation of [`pointer::offset`].
672    ///
673    /// These requirements are always upheld by any `ptr` that has been allocated
674    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
675    /// upheld.
676    ///
677    /// Violating these may cause problems like corrupting the allocator's
678    /// internal data structures. For example it is normally **not** safe
679    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
680    /// `size_t`, doing so is only safe if the array was initially allocated by
681    /// a `Vec` or `String`.
682    /// It's also not safe to build one from a `Vec<u16>` and its length, because
683    /// the allocator cares about the alignment, and these two types have different
684    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
685    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
686    /// these issues, it is often preferable to do casting/transmuting using
687    /// [`NonNull::slice_from_raw_parts`] instead.
688    ///
689    /// The ownership of `ptr` is effectively transferred to the
690    /// `Vec<T>` which may then deallocate, reallocate or change the
691    /// contents of memory pointed to by the pointer at will. Ensure
692    /// that nothing else uses the pointer after calling this
693    /// function.
694    ///
695    /// [`String`]: crate::string::String
696    /// [`alloc::alloc`]: crate::alloc::alloc
697    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
698    ///
699    /// # Examples
700    ///
701    // FIXME Update this when vec_into_raw_parts is stabilized
702    /// ```
703    /// #![feature(box_vec_non_null)]
704    ///
705    /// use std::ptr::NonNull;
706    /// use std::mem;
707    ///
708    /// let v = vec![1, 2, 3];
709    ///
710    /// // Prevent running `v`'s destructor so we are in complete control
711    /// // of the allocation.
712    /// let mut v = mem::ManuallyDrop::new(v);
713    ///
714    /// // Pull out the various important pieces of information about `v`
715    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
716    /// let len = v.len();
717    /// let cap = v.capacity();
718    ///
719    /// unsafe {
720    ///     // Overwrite memory with 4, 5, 6
721    ///     for i in 0..len {
722    ///         p.add(i).write(4 + i);
723    ///     }
724    ///
725    ///     // Put everything back together into a Vec
726    ///     let rebuilt = Vec::from_parts(p, len, cap);
727    ///     assert_eq!(rebuilt, [4, 5, 6]);
728    /// }
729    /// ```
730    ///
731    /// Using memory that was allocated elsewhere:
732    ///
733    /// ```rust
734    /// #![feature(box_vec_non_null)]
735    ///
736    /// use std::alloc::{alloc, Layout};
737    /// use std::ptr::NonNull;
738    ///
739    /// fn main() {
740    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
741    ///
742    ///     let vec = unsafe {
743    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
744    ///             return;
745    ///         };
746    ///
747    ///         mem.write(1_000_000);
748    ///
749    ///         Vec::from_parts(mem, 1, 16)
750    ///     };
751    ///
752    ///     assert_eq!(vec, &[1_000_000]);
753    ///     assert_eq!(vec.capacity(), 16);
754    /// }
755    /// ```
756    #[inline]
757    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
758    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
759        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
760    }
761
762    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
763    ///
764    /// Returns the raw pointer to the underlying data, the length of
765    /// the vector (in elements), and the allocated capacity of the
766    /// data (in elements). These are the same arguments in the same
767    /// order as the arguments to [`from_raw_parts`].
768    ///
769    /// After calling this function, the caller is responsible for the
770    /// memory previously managed by the `Vec`. Most often, one does
771    /// this by converting the raw pointer, length, and capacity back
772    /// into a `Vec` with the [`from_raw_parts`] function; more generally,
773    /// if `T` is non-zero-sized and the capacity is nonzero, one may use
774    /// any method that calls [`dealloc`] with a layout of
775    /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
776    /// capacity is zero, nothing needs to be done.
777    ///
778    /// [`from_raw_parts`]: Vec::from_raw_parts
779    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
780    ///
781    /// # Examples
782    ///
783    /// ```
784    /// #![feature(vec_into_raw_parts)]
785    /// let v: Vec<i32> = vec![-1, 0, 1];
786    ///
787    /// let (ptr, len, cap) = v.into_raw_parts();
788    ///
789    /// let rebuilt = unsafe {
790    ///     // We can now make changes to the components, such as
791    ///     // transmuting the raw pointer to a compatible type.
792    ///     let ptr = ptr as *mut u32;
793    ///
794    ///     Vec::from_raw_parts(ptr, len, cap)
795    /// };
796    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
797    /// ```
798    #[must_use = "losing the pointer will leak memory"]
799    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
800    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
801        let mut me = ManuallyDrop::new(self);
802        (me.as_mut_ptr(), me.len(), me.capacity())
803    }
804
805    #[doc(alias = "into_non_null_parts")]
806    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
807    ///
808    /// Returns the `NonNull` pointer to the underlying data, the length of
809    /// the vector (in elements), and the allocated capacity of the
810    /// data (in elements). These are the same arguments in the same
811    /// order as the arguments to [`from_parts`].
812    ///
813    /// After calling this function, the caller is responsible for the
814    /// memory previously managed by the `Vec`. The only way to do
815    /// this is to convert the `NonNull` pointer, length, and capacity back
816    /// into a `Vec` with the [`from_parts`] function, allowing
817    /// the destructor to perform the cleanup.
818    ///
819    /// [`from_parts`]: Vec::from_parts
820    ///
821    /// # Examples
822    ///
823    /// ```
824    /// #![feature(vec_into_raw_parts, box_vec_non_null)]
825    ///
826    /// let v: Vec<i32> = vec![-1, 0, 1];
827    ///
828    /// let (ptr, len, cap) = v.into_parts();
829    ///
830    /// let rebuilt = unsafe {
831    ///     // We can now make changes to the components, such as
832    ///     // transmuting the raw pointer to a compatible type.
833    ///     let ptr = ptr.cast::<u32>();
834    ///
835    ///     Vec::from_parts(ptr, len, cap)
836    /// };
837    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
838    /// ```
839    #[must_use = "losing the pointer will leak memory"]
840    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
841    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
842    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
843        let (ptr, len, capacity) = self.into_raw_parts();
844        // SAFETY: A `Vec` always has a non-null pointer.
845        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
846    }
847}
848
849impl<T, A: Allocator> Vec<T, A> {
850    /// Constructs a new, empty `Vec<T, A>`.
851    ///
852    /// The vector will not allocate until elements are pushed onto it.
853    ///
854    /// # Examples
855    ///
856    /// ```
857    /// #![feature(allocator_api)]
858    ///
859    /// use std::alloc::System;
860    ///
861    /// # #[allow(unused_mut)]
862    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
863    /// ```
864    #[inline]
865    #[unstable(feature = "allocator_api", issue = "32838")]
866    pub const fn new_in(alloc: A) -> Self {
867        Vec { buf: RawVec::new_in(alloc), len: 0 }
868    }
869
870    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
871    /// with the provided allocator.
872    ///
873    /// The vector will be able to hold at least `capacity` elements without
874    /// reallocating. This method is allowed to allocate for more elements than
875    /// `capacity`. If `capacity` is zero, the vector will not allocate.
876    ///
877    /// It is important to note that although the returned vector has the
878    /// minimum *capacity* specified, the vector will have a zero *length*. For
879    /// an explanation of the difference between length and capacity, see
880    /// *[Capacity and reallocation]*.
881    ///
882    /// If it is important to know the exact allocated capacity of a `Vec`,
883    /// always use the [`capacity`] method after construction.
884    ///
885    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
886    /// and the capacity will always be `usize::MAX`.
887    ///
888    /// [Capacity and reallocation]: #capacity-and-reallocation
889    /// [`capacity`]: Vec::capacity
890    ///
891    /// # Panics
892    ///
893    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
894    ///
895    /// # Examples
896    ///
897    /// ```
898    /// #![feature(allocator_api)]
899    ///
900    /// use std::alloc::System;
901    ///
902    /// let mut vec = Vec::with_capacity_in(10, System);
903    ///
904    /// // The vector contains no items, even though it has capacity for more
905    /// assert_eq!(vec.len(), 0);
906    /// assert!(vec.capacity() >= 10);
907    ///
908    /// // These are all done without reallocating...
909    /// for i in 0..10 {
910    ///     vec.push(i);
911    /// }
912    /// assert_eq!(vec.len(), 10);
913    /// assert!(vec.capacity() >= 10);
914    ///
915    /// // ...but this may make the vector reallocate
916    /// vec.push(11);
917    /// assert_eq!(vec.len(), 11);
918    /// assert!(vec.capacity() >= 11);
919    ///
920    /// // A vector of a zero-sized type will always over-allocate, since no
921    /// // allocation is necessary
922    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
923    /// assert_eq!(vec_units.capacity(), usize::MAX);
924    /// ```
925    #[cfg(not(no_global_oom_handling))]
926    #[inline]
927    #[unstable(feature = "allocator_api", issue = "32838")]
928    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
929        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
930    }
931
932    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
933    /// with the provided allocator.
934    ///
935    /// The vector will be able to hold at least `capacity` elements without
936    /// reallocating. This method is allowed to allocate for more elements than
937    /// `capacity`. If `capacity` is zero, the vector will not allocate.
938    ///
939    /// # Errors
940    ///
941    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
942    /// or if the allocator reports allocation failure.
943    #[inline]
944    #[unstable(feature = "allocator_api", issue = "32838")]
945    // #[unstable(feature = "try_with_capacity", issue = "91913")]
946    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
947        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
948    }
949
950    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
951    /// and an allocator.
952    ///
953    /// # Safety
954    ///
955    /// This is highly unsafe, due to the number of invariants that aren't
956    /// checked:
957    ///
958    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
959    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
960    ///   (`T` having a less strict alignment is not sufficient, the alignment really
961    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
962    ///   allocated and deallocated with the same layout.)
963    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
964    ///   to be the same size as the pointer was allocated with. (Because similar to
965    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
966    /// * `length` needs to be less than or equal to `capacity`.
967    /// * The first `length` values must be properly initialized values of type `T`.
968    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
969    /// * The allocated size in bytes must be no larger than `isize::MAX`.
970    ///   See the safety documentation of [`pointer::offset`].
971    ///
972    /// These requirements are always upheld by any `ptr` that has been allocated
973    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
974    /// upheld.
975    ///
976    /// Violating these may cause problems like corrupting the allocator's
977    /// internal data structures. For example it is **not** safe
978    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
979    /// It's also not safe to build one from a `Vec<u16>` and its length, because
980    /// the allocator cares about the alignment, and these two types have different
981    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
982    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
983    ///
984    /// The ownership of `ptr` is effectively transferred to the
985    /// `Vec<T>` which may then deallocate, reallocate or change the
986    /// contents of memory pointed to by the pointer at will. Ensure
987    /// that nothing else uses the pointer after calling this
988    /// function.
989    ///
990    /// [`String`]: crate::string::String
991    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
992    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
993    /// [*fit*]: crate::alloc::Allocator#memory-fitting
994    ///
995    /// # Examples
996    ///
997    // FIXME Update this when vec_into_raw_parts is stabilized
998    /// ```
999    /// #![feature(allocator_api)]
1000    ///
1001    /// use std::alloc::System;
1002    ///
1003    /// use std::ptr;
1004    /// use std::mem;
1005    ///
1006    /// let mut v = Vec::with_capacity_in(3, System);
1007    /// v.push(1);
1008    /// v.push(2);
1009    /// v.push(3);
1010    ///
1011    /// // Prevent running `v`'s destructor so we are in complete control
1012    /// // of the allocation.
1013    /// let mut v = mem::ManuallyDrop::new(v);
1014    ///
1015    /// // Pull out the various important pieces of information about `v`
1016    /// let p = v.as_mut_ptr();
1017    /// let len = v.len();
1018    /// let cap = v.capacity();
1019    /// let alloc = v.allocator();
1020    ///
1021    /// unsafe {
1022    ///     // Overwrite memory with 4, 5, 6
1023    ///     for i in 0..len {
1024    ///         ptr::write(p.add(i), 4 + i);
1025    ///     }
1026    ///
1027    ///     // Put everything back together into a Vec
1028    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1029    ///     assert_eq!(rebuilt, [4, 5, 6]);
1030    /// }
1031    /// ```
1032    ///
1033    /// Using memory that was allocated elsewhere:
1034    ///
1035    /// ```rust
1036    /// #![feature(allocator_api)]
1037    ///
1038    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1039    ///
1040    /// fn main() {
1041    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1042    ///
1043    ///     let vec = unsafe {
1044    ///         let mem = match Global.allocate(layout) {
1045    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
1046    ///             Err(AllocError) => return,
1047    ///         };
1048    ///
1049    ///         mem.write(1_000_000);
1050    ///
1051    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
1052    ///     };
1053    ///
1054    ///     assert_eq!(vec, &[1_000_000]);
1055    ///     assert_eq!(vec.capacity(), 16);
1056    /// }
1057    /// ```
1058    #[inline]
1059    #[unstable(feature = "allocator_api", issue = "32838")]
1060    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1061        ub_checks::assert_unsafe_precondition!(
1062            check_library_ub,
1063            "Vec::from_raw_parts_in requires that length <= capacity",
1064            (length: usize = length, capacity: usize = capacity) => length <= capacity
1065        );
1066        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1067    }
1068
1069    #[doc(alias = "from_non_null_parts_in")]
1070    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1071    /// and an allocator.
1072    ///
1073    /// # Safety
1074    ///
1075    /// This is highly unsafe, due to the number of invariants that aren't
1076    /// checked:
1077    ///
1078    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1079    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1080    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1081    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1082    ///   allocated and deallocated with the same layout.)
1083    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1084    ///   to be the same size as the pointer was allocated with. (Because similar to
1085    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1086    /// * `length` needs to be less than or equal to `capacity`.
1087    /// * The first `length` values must be properly initialized values of type `T`.
1088    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1089    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1090    ///   See the safety documentation of [`pointer::offset`].
1091    ///
1092    /// These requirements are always upheld by any `ptr` that has been allocated
1093    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1094    /// upheld.
1095    ///
1096    /// Violating these may cause problems like corrupting the allocator's
1097    /// internal data structures. For example it is **not** safe
1098    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1099    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1100    /// the allocator cares about the alignment, and these two types have different
1101    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1102    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1103    ///
1104    /// The ownership of `ptr` is effectively transferred to the
1105    /// `Vec<T>` which may then deallocate, reallocate or change the
1106    /// contents of memory pointed to by the pointer at will. Ensure
1107    /// that nothing else uses the pointer after calling this
1108    /// function.
1109    ///
1110    /// [`String`]: crate::string::String
1111    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1112    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1113    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1114    ///
1115    /// # Examples
1116    ///
1117    // FIXME Update this when vec_into_raw_parts is stabilized
1118    /// ```
1119    /// #![feature(allocator_api, box_vec_non_null)]
1120    ///
1121    /// use std::alloc::System;
1122    ///
1123    /// use std::ptr::NonNull;
1124    /// use std::mem;
1125    ///
1126    /// let mut v = Vec::with_capacity_in(3, System);
1127    /// v.push(1);
1128    /// v.push(2);
1129    /// v.push(3);
1130    ///
1131    /// // Prevent running `v`'s destructor so we are in complete control
1132    /// // of the allocation.
1133    /// let mut v = mem::ManuallyDrop::new(v);
1134    ///
1135    /// // Pull out the various important pieces of information about `v`
1136    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
1137    /// let len = v.len();
1138    /// let cap = v.capacity();
1139    /// let alloc = v.allocator();
1140    ///
1141    /// unsafe {
1142    ///     // Overwrite memory with 4, 5, 6
1143    ///     for i in 0..len {
1144    ///         p.add(i).write(4 + i);
1145    ///     }
1146    ///
1147    ///     // Put everything back together into a Vec
1148    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1149    ///     assert_eq!(rebuilt, [4, 5, 6]);
1150    /// }
1151    /// ```
1152    ///
1153    /// Using memory that was allocated elsewhere:
1154    ///
1155    /// ```rust
1156    /// #![feature(allocator_api, box_vec_non_null)]
1157    ///
1158    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1159    ///
1160    /// fn main() {
1161    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1162    ///
1163    ///     let vec = unsafe {
1164    ///         let mem = match Global.allocate(layout) {
1165    ///             Ok(mem) => mem.cast::<u32>(),
1166    ///             Err(AllocError) => return,
1167    ///         };
1168    ///
1169    ///         mem.write(1_000_000);
1170    ///
1171    ///         Vec::from_parts_in(mem, 1, 16, Global)
1172    ///     };
1173    ///
1174    ///     assert_eq!(vec, &[1_000_000]);
1175    ///     assert_eq!(vec.capacity(), 16);
1176    /// }
1177    /// ```
1178    #[inline]
1179    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1180    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1181    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1182        ub_checks::assert_unsafe_precondition!(
1183            check_library_ub,
1184            "Vec::from_parts_in requires that length <= capacity",
1185            (length: usize = length, capacity: usize = capacity) => length <= capacity
1186        );
1187        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1188    }
1189
1190    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1191    ///
1192    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1193    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1194    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1195    ///
1196    /// After calling this function, the caller is responsible for the
1197    /// memory previously managed by the `Vec`. The only way to do
1198    /// this is to convert the raw pointer, length, and capacity back
1199    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1200    /// the destructor to perform the cleanup.
1201    ///
1202    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1203    ///
1204    /// # Examples
1205    ///
1206    /// ```
1207    /// #![feature(allocator_api, vec_into_raw_parts)]
1208    ///
1209    /// use std::alloc::System;
1210    ///
1211    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1212    /// v.push(-1);
1213    /// v.push(0);
1214    /// v.push(1);
1215    ///
1216    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1217    ///
1218    /// let rebuilt = unsafe {
1219    ///     // We can now make changes to the components, such as
1220    ///     // transmuting the raw pointer to a compatible type.
1221    ///     let ptr = ptr as *mut u32;
1222    ///
1223    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1224    /// };
1225    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1226    /// ```
1227    #[must_use = "losing the pointer will leak memory"]
1228    #[unstable(feature = "allocator_api", issue = "32838")]
1229    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1230    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1231        let mut me = ManuallyDrop::new(self);
1232        let len = me.len();
1233        let capacity = me.capacity();
1234        let ptr = me.as_mut_ptr();
1235        let alloc = unsafe { ptr::read(me.allocator()) };
1236        (ptr, len, capacity, alloc)
1237    }
1238
1239    #[doc(alias = "into_non_null_parts_with_alloc")]
1240    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1241    ///
1242    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1243    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1244    /// arguments in the same order as the arguments to [`from_parts_in`].
1245    ///
1246    /// After calling this function, the caller is responsible for the
1247    /// memory previously managed by the `Vec`. The only way to do
1248    /// this is to convert the `NonNull` pointer, length, and capacity back
1249    /// into a `Vec` with the [`from_parts_in`] function, allowing
1250    /// the destructor to perform the cleanup.
1251    ///
1252    /// [`from_parts_in`]: Vec::from_parts_in
1253    ///
1254    /// # Examples
1255    ///
1256    /// ```
1257    /// #![feature(allocator_api, vec_into_raw_parts, box_vec_non_null)]
1258    ///
1259    /// use std::alloc::System;
1260    ///
1261    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1262    /// v.push(-1);
1263    /// v.push(0);
1264    /// v.push(1);
1265    ///
1266    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1267    ///
1268    /// let rebuilt = unsafe {
1269    ///     // We can now make changes to the components, such as
1270    ///     // transmuting the raw pointer to a compatible type.
1271    ///     let ptr = ptr.cast::<u32>();
1272    ///
1273    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1274    /// };
1275    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1276    /// ```
1277    #[must_use = "losing the pointer will leak memory"]
1278    #[unstable(feature = "allocator_api", issue = "32838")]
1279    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1280    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1281    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1282        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1283        // SAFETY: A `Vec` always has a non-null pointer.
1284        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1285    }
1286
1287    /// Returns the total number of elements the vector can hold without
1288    /// reallocating.
1289    ///
1290    /// # Examples
1291    ///
1292    /// ```
1293    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1294    /// vec.push(42);
1295    /// assert!(vec.capacity() >= 10);
1296    /// ```
1297    ///
1298    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1299    ///
1300    /// ```
1301    /// #[derive(Clone)]
1302    /// struct ZeroSized;
1303    ///
1304    /// fn main() {
1305    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1306    ///     let v = vec![ZeroSized; 0];
1307    ///     assert_eq!(v.capacity(), usize::MAX);
1308    /// }
1309    /// ```
1310    #[inline]
1311    #[stable(feature = "rust1", since = "1.0.0")]
1312    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1313    pub const fn capacity(&self) -> usize {
1314        self.buf.capacity()
1315    }
1316
1317    /// Reserves capacity for at least `additional` more elements to be inserted
1318    /// in the given `Vec<T>`. The collection may reserve more space to
1319    /// speculatively avoid frequent reallocations. After calling `reserve`,
1320    /// capacity will be greater than or equal to `self.len() + additional`.
1321    /// Does nothing if capacity is already sufficient.
1322    ///
1323    /// # Panics
1324    ///
1325    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1326    ///
1327    /// # Examples
1328    ///
1329    /// ```
1330    /// let mut vec = vec![1];
1331    /// vec.reserve(10);
1332    /// assert!(vec.capacity() >= 11);
1333    /// ```
1334    #[cfg(not(no_global_oom_handling))]
1335    #[stable(feature = "rust1", since = "1.0.0")]
1336    #[rustc_diagnostic_item = "vec_reserve"]
1337    pub fn reserve(&mut self, additional: usize) {
1338        self.buf.reserve(self.len, additional);
1339    }
1340
1341    /// Reserves the minimum capacity for at least `additional` more elements to
1342    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1343    /// deliberately over-allocate to speculatively avoid frequent allocations.
1344    /// After calling `reserve_exact`, capacity will be greater than or equal to
1345    /// `self.len() + additional`. Does nothing if the capacity is already
1346    /// sufficient.
1347    ///
1348    /// Note that the allocator may give the collection more space than it
1349    /// requests. Therefore, capacity can not be relied upon to be precisely
1350    /// minimal. Prefer [`reserve`] if future insertions are expected.
1351    ///
1352    /// [`reserve`]: Vec::reserve
1353    ///
1354    /// # Panics
1355    ///
1356    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1357    ///
1358    /// # Examples
1359    ///
1360    /// ```
1361    /// let mut vec = vec![1];
1362    /// vec.reserve_exact(10);
1363    /// assert!(vec.capacity() >= 11);
1364    /// ```
1365    #[cfg(not(no_global_oom_handling))]
1366    #[stable(feature = "rust1", since = "1.0.0")]
1367    pub fn reserve_exact(&mut self, additional: usize) {
1368        self.buf.reserve_exact(self.len, additional);
1369    }
1370
1371    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1372    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1373    /// frequent reallocations. After calling `try_reserve`, capacity will be
1374    /// greater than or equal to `self.len() + additional` if it returns
1375    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1376    /// preserves the contents even if an error occurs.
1377    ///
1378    /// # Errors
1379    ///
1380    /// If the capacity overflows, or the allocator reports a failure, then an error
1381    /// is returned.
1382    ///
1383    /// # Examples
1384    ///
1385    /// ```
1386    /// use std::collections::TryReserveError;
1387    ///
1388    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1389    ///     let mut output = Vec::new();
1390    ///
1391    ///     // Pre-reserve the memory, exiting if we can't
1392    ///     output.try_reserve(data.len())?;
1393    ///
1394    ///     // Now we know this can't OOM in the middle of our complex work
1395    ///     output.extend(data.iter().map(|&val| {
1396    ///         val * 2 + 5 // very complicated
1397    ///     }));
1398    ///
1399    ///     Ok(output)
1400    /// }
1401    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1402    /// ```
1403    #[stable(feature = "try_reserve", since = "1.57.0")]
1404    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1405        self.buf.try_reserve(self.len, additional)
1406    }
1407
1408    /// Tries to reserve the minimum capacity for at least `additional`
1409    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1410    /// this will not deliberately over-allocate to speculatively avoid frequent
1411    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1412    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1413    /// Does nothing if the capacity is already sufficient.
1414    ///
1415    /// Note that the allocator may give the collection more space than it
1416    /// requests. Therefore, capacity can not be relied upon to be precisely
1417    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1418    ///
1419    /// [`try_reserve`]: Vec::try_reserve
1420    ///
1421    /// # Errors
1422    ///
1423    /// If the capacity overflows, or the allocator reports a failure, then an error
1424    /// is returned.
1425    ///
1426    /// # Examples
1427    ///
1428    /// ```
1429    /// use std::collections::TryReserveError;
1430    ///
1431    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1432    ///     let mut output = Vec::new();
1433    ///
1434    ///     // Pre-reserve the memory, exiting if we can't
1435    ///     output.try_reserve_exact(data.len())?;
1436    ///
1437    ///     // Now we know this can't OOM in the middle of our complex work
1438    ///     output.extend(data.iter().map(|&val| {
1439    ///         val * 2 + 5 // very complicated
1440    ///     }));
1441    ///
1442    ///     Ok(output)
1443    /// }
1444    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1445    /// ```
1446    #[stable(feature = "try_reserve", since = "1.57.0")]
1447    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1448        self.buf.try_reserve_exact(self.len, additional)
1449    }
1450
1451    /// Shrinks the capacity of the vector as much as possible.
1452    ///
1453    /// The behavior of this method depends on the allocator, which may either shrink the vector
1454    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1455    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1456    ///
1457    /// [`with_capacity`]: Vec::with_capacity
1458    ///
1459    /// # Examples
1460    ///
1461    /// ```
1462    /// let mut vec = Vec::with_capacity(10);
1463    /// vec.extend([1, 2, 3]);
1464    /// assert!(vec.capacity() >= 10);
1465    /// vec.shrink_to_fit();
1466    /// assert!(vec.capacity() >= 3);
1467    /// ```
1468    #[cfg(not(no_global_oom_handling))]
1469    #[stable(feature = "rust1", since = "1.0.0")]
1470    #[inline]
1471    pub fn shrink_to_fit(&mut self) {
1472        // The capacity is never less than the length, and there's nothing to do when
1473        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1474        // by only calling it with a greater capacity.
1475        if self.capacity() > self.len {
1476            self.buf.shrink_to_fit(self.len);
1477        }
1478    }
1479
1480    /// Shrinks the capacity of the vector with a lower bound.
1481    ///
1482    /// The capacity will remain at least as large as both the length
1483    /// and the supplied value.
1484    ///
1485    /// If the current capacity is less than the lower limit, this is a no-op.
1486    ///
1487    /// # Examples
1488    ///
1489    /// ```
1490    /// let mut vec = Vec::with_capacity(10);
1491    /// vec.extend([1, 2, 3]);
1492    /// assert!(vec.capacity() >= 10);
1493    /// vec.shrink_to(4);
1494    /// assert!(vec.capacity() >= 4);
1495    /// vec.shrink_to(0);
1496    /// assert!(vec.capacity() >= 3);
1497    /// ```
1498    #[cfg(not(no_global_oom_handling))]
1499    #[stable(feature = "shrink_to", since = "1.56.0")]
1500    pub fn shrink_to(&mut self, min_capacity: usize) {
1501        if self.capacity() > min_capacity {
1502            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1503        }
1504    }
1505
1506    /// Converts the vector into [`Box<[T]>`][owned slice].
1507    ///
1508    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1509    ///
1510    /// [owned slice]: Box
1511    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1512    ///
1513    /// # Examples
1514    ///
1515    /// ```
1516    /// let v = vec![1, 2, 3];
1517    ///
1518    /// let slice = v.into_boxed_slice();
1519    /// ```
1520    ///
1521    /// Any excess capacity is removed:
1522    ///
1523    /// ```
1524    /// let mut vec = Vec::with_capacity(10);
1525    /// vec.extend([1, 2, 3]);
1526    ///
1527    /// assert!(vec.capacity() >= 10);
1528    /// let slice = vec.into_boxed_slice();
1529    /// assert_eq!(slice.into_vec().capacity(), 3);
1530    /// ```
1531    #[cfg(not(no_global_oom_handling))]
1532    #[stable(feature = "rust1", since = "1.0.0")]
1533    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1534        unsafe {
1535            self.shrink_to_fit();
1536            let me = ManuallyDrop::new(self);
1537            let buf = ptr::read(&me.buf);
1538            let len = me.len();
1539            buf.into_box(len).assume_init()
1540        }
1541    }
1542
1543    /// Shortens the vector, keeping the first `len` elements and dropping
1544    /// the rest.
1545    ///
1546    /// If `len` is greater or equal to the vector's current length, this has
1547    /// no effect.
1548    ///
1549    /// The [`drain`] method can emulate `truncate`, but causes the excess
1550    /// elements to be returned instead of dropped.
1551    ///
1552    /// Note that this method has no effect on the allocated capacity
1553    /// of the vector.
1554    ///
1555    /// # Examples
1556    ///
1557    /// Truncating a five element vector to two elements:
1558    ///
1559    /// ```
1560    /// let mut vec = vec![1, 2, 3, 4, 5];
1561    /// vec.truncate(2);
1562    /// assert_eq!(vec, [1, 2]);
1563    /// ```
1564    ///
1565    /// No truncation occurs when `len` is greater than the vector's current
1566    /// length:
1567    ///
1568    /// ```
1569    /// let mut vec = vec![1, 2, 3];
1570    /// vec.truncate(8);
1571    /// assert_eq!(vec, [1, 2, 3]);
1572    /// ```
1573    ///
1574    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1575    /// method.
1576    ///
1577    /// ```
1578    /// let mut vec = vec![1, 2, 3];
1579    /// vec.truncate(0);
1580    /// assert_eq!(vec, []);
1581    /// ```
1582    ///
1583    /// [`clear`]: Vec::clear
1584    /// [`drain`]: Vec::drain
1585    #[stable(feature = "rust1", since = "1.0.0")]
1586    pub fn truncate(&mut self, len: usize) {
1587        // This is safe because:
1588        //
1589        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1590        //   case avoids creating an invalid slice, and
1591        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1592        //   such that no value will be dropped twice in case `drop_in_place`
1593        //   were to panic once (if it panics twice, the program aborts).
1594        unsafe {
1595            // Note: It's intentional that this is `>` and not `>=`.
1596            //       Changing it to `>=` has negative performance
1597            //       implications in some cases. See #78884 for more.
1598            if len > self.len {
1599                return;
1600            }
1601            let remaining_len = self.len - len;
1602            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1603            self.len = len;
1604            ptr::drop_in_place(s);
1605        }
1606    }
1607
1608    /// Extracts a slice containing the entire vector.
1609    ///
1610    /// Equivalent to `&s[..]`.
1611    ///
1612    /// # Examples
1613    ///
1614    /// ```
1615    /// use std::io::{self, Write};
1616    /// let buffer = vec![1, 2, 3, 5, 8];
1617    /// io::sink().write(buffer.as_slice()).unwrap();
1618    /// ```
1619    #[inline]
1620    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1621    #[rustc_diagnostic_item = "vec_as_slice"]
1622    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1623    pub const fn as_slice(&self) -> &[T] {
1624        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1625        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1626        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1627        // "wrap" through overflowing memory addresses.
1628        //
1629        // * Vec API guarantees that self.buf:
1630        //      * contains only properly-initialized items within 0..len
1631        //      * is aligned, contiguous, and valid for `len` reads
1632        //      * obeys size and address-wrapping constraints
1633        //
1634        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1635        //   check ensures that it is not possible to mutably alias `self.buf` within the
1636        //   returned lifetime.
1637        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1638    }
1639
1640    /// Extracts a mutable slice of the entire vector.
1641    ///
1642    /// Equivalent to `&mut s[..]`.
1643    ///
1644    /// # Examples
1645    ///
1646    /// ```
1647    /// use std::io::{self, Read};
1648    /// let mut buffer = vec![0; 3];
1649    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1650    /// ```
1651    #[inline]
1652    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1653    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1654    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1655    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1656        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1657        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1658        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1659        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1660        //
1661        // * Vec API guarantees that self.buf:
1662        //      * contains only properly-initialized items within 0..len
1663        //      * is aligned, contiguous, and valid for `len` reads
1664        //      * obeys size and address-wrapping constraints
1665        //
1666        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1667        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1668        //   within the returned lifetime.
1669        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1670    }
1671
1672    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1673    /// valid for zero sized reads if the vector didn't allocate.
1674    ///
1675    /// The caller must ensure that the vector outlives the pointer this
1676    /// function returns, or else it will end up dangling.
1677    /// Modifying the vector may cause its buffer to be reallocated,
1678    /// which would also make any pointers to it invalid.
1679    ///
1680    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1681    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1682    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1683    ///
1684    /// This method guarantees that for the purpose of the aliasing model, this method
1685    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1686    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1687    /// and [`as_non_null`].
1688    /// Note that calling other methods that materialize mutable references to the slice,
1689    /// or mutable references to specific elements you are planning on accessing through this pointer,
1690    /// as well as writing to those elements, may still invalidate this pointer.
1691    /// See the second example below for how this guarantee can be used.
1692    ///
1693    ///
1694    /// # Examples
1695    ///
1696    /// ```
1697    /// let x = vec![1, 2, 4];
1698    /// let x_ptr = x.as_ptr();
1699    ///
1700    /// unsafe {
1701    ///     for i in 0..x.len() {
1702    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1703    ///     }
1704    /// }
1705    /// ```
1706    ///
1707    /// Due to the aliasing guarantee, the following code is legal:
1708    ///
1709    /// ```rust
1710    /// unsafe {
1711    ///     let mut v = vec![0, 1, 2];
1712    ///     let ptr1 = v.as_ptr();
1713    ///     let _ = ptr1.read();
1714    ///     let ptr2 = v.as_mut_ptr().offset(2);
1715    ///     ptr2.write(2);
1716    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1717    ///     // because it mutated a different element:
1718    ///     let _ = ptr1.read();
1719    /// }
1720    /// ```
1721    ///
1722    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1723    /// [`as_ptr`]: Vec::as_ptr
1724    /// [`as_non_null`]: Vec::as_non_null
1725    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1726    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1727    #[rustc_never_returns_null_ptr]
1728    #[rustc_as_ptr]
1729    #[inline]
1730    pub const fn as_ptr(&self) -> *const T {
1731        // We shadow the slice method of the same name to avoid going through
1732        // `deref`, which creates an intermediate reference.
1733        self.buf.ptr()
1734    }
1735
1736    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1737    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1738    ///
1739    /// The caller must ensure that the vector outlives the pointer this
1740    /// function returns, or else it will end up dangling.
1741    /// Modifying the vector may cause its buffer to be reallocated,
1742    /// which would also make any pointers to it invalid.
1743    ///
1744    /// This method guarantees that for the purpose of the aliasing model, this method
1745    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1746    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1747    /// and [`as_non_null`].
1748    /// Note that calling other methods that materialize references to the slice,
1749    /// or references to specific elements you are planning on accessing through this pointer,
1750    /// may still invalidate this pointer.
1751    /// See the second example below for how this guarantee can be used.
1752    ///
1753    /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1754    /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1755    /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1756    /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1757    /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1758    ///
1759    /// # Examples
1760    ///
1761    /// ```
1762    /// // Allocate vector big enough for 4 elements.
1763    /// let size = 4;
1764    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1765    /// let x_ptr = x.as_mut_ptr();
1766    ///
1767    /// // Initialize elements via raw pointer writes, then set length.
1768    /// unsafe {
1769    ///     for i in 0..size {
1770    ///         *x_ptr.add(i) = i as i32;
1771    ///     }
1772    ///     x.set_len(size);
1773    /// }
1774    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1775    /// ```
1776    ///
1777    /// Due to the aliasing guarantee, the following code is legal:
1778    ///
1779    /// ```rust
1780    /// unsafe {
1781    ///     let mut v = vec![0];
1782    ///     let ptr1 = v.as_mut_ptr();
1783    ///     ptr1.write(1);
1784    ///     let ptr2 = v.as_mut_ptr();
1785    ///     ptr2.write(2);
1786    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1787    ///     ptr1.write(3);
1788    /// }
1789    /// ```
1790    ///
1791    /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1792    ///
1793    /// ```
1794    /// use std::mem::{ManuallyDrop, MaybeUninit};
1795    ///
1796    /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1797    /// let ptr = v.as_mut_ptr();
1798    /// let capacity = v.capacity();
1799    /// let slice_ptr: *mut [MaybeUninit<i32>] =
1800    ///     std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1801    /// drop(unsafe { Box::from_raw(slice_ptr) });
1802    /// ```
1803    ///
1804    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1805    /// [`as_ptr`]: Vec::as_ptr
1806    /// [`as_non_null`]: Vec::as_non_null
1807    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1808    /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1809    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1810    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1811    #[rustc_never_returns_null_ptr]
1812    #[rustc_as_ptr]
1813    #[inline]
1814    pub const fn as_mut_ptr(&mut self) -> *mut T {
1815        // We shadow the slice method of the same name to avoid going through
1816        // `deref_mut`, which creates an intermediate reference.
1817        self.buf.ptr()
1818    }
1819
1820    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1821    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1822    ///
1823    /// The caller must ensure that the vector outlives the pointer this
1824    /// function returns, or else it will end up dangling.
1825    /// Modifying the vector may cause its buffer to be reallocated,
1826    /// which would also make any pointers to it invalid.
1827    ///
1828    /// This method guarantees that for the purpose of the aliasing model, this method
1829    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1830    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1831    /// and [`as_non_null`].
1832    /// Note that calling other methods that materialize references to the slice,
1833    /// or references to specific elements you are planning on accessing through this pointer,
1834    /// may still invalidate this pointer.
1835    /// See the second example below for how this guarantee can be used.
1836    ///
1837    /// # Examples
1838    ///
1839    /// ```
1840    /// #![feature(box_vec_non_null)]
1841    ///
1842    /// // Allocate vector big enough for 4 elements.
1843    /// let size = 4;
1844    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1845    /// let x_ptr = x.as_non_null();
1846    ///
1847    /// // Initialize elements via raw pointer writes, then set length.
1848    /// unsafe {
1849    ///     for i in 0..size {
1850    ///         x_ptr.add(i).write(i as i32);
1851    ///     }
1852    ///     x.set_len(size);
1853    /// }
1854    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1855    /// ```
1856    ///
1857    /// Due to the aliasing guarantee, the following code is legal:
1858    ///
1859    /// ```rust
1860    /// #![feature(box_vec_non_null)]
1861    ///
1862    /// unsafe {
1863    ///     let mut v = vec![0];
1864    ///     let ptr1 = v.as_non_null();
1865    ///     ptr1.write(1);
1866    ///     let ptr2 = v.as_non_null();
1867    ///     ptr2.write(2);
1868    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1869    ///     ptr1.write(3);
1870    /// }
1871    /// ```
1872    ///
1873    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1874    /// [`as_ptr`]: Vec::as_ptr
1875    /// [`as_non_null`]: Vec::as_non_null
1876    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1877    #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1878    #[inline]
1879    pub const fn as_non_null(&mut self) -> NonNull<T> {
1880        self.buf.non_null()
1881    }
1882
1883    /// Returns a reference to the underlying allocator.
1884    #[unstable(feature = "allocator_api", issue = "32838")]
1885    #[inline]
1886    pub fn allocator(&self) -> &A {
1887        self.buf.allocator()
1888    }
1889
1890    /// Forces the length of the vector to `new_len`.
1891    ///
1892    /// This is a low-level operation that maintains none of the normal
1893    /// invariants of the type. Normally changing the length of a vector
1894    /// is done using one of the safe operations instead, such as
1895    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1896    ///
1897    /// [`truncate`]: Vec::truncate
1898    /// [`resize`]: Vec::resize
1899    /// [`extend`]: Extend::extend
1900    /// [`clear`]: Vec::clear
1901    ///
1902    /// # Safety
1903    ///
1904    /// - `new_len` must be less than or equal to [`capacity()`].
1905    /// - The elements at `old_len..new_len` must be initialized.
1906    ///
1907    /// [`capacity()`]: Vec::capacity
1908    ///
1909    /// # Examples
1910    ///
1911    /// See [`spare_capacity_mut()`] for an example with safe
1912    /// initialization of capacity elements and use of this method.
1913    ///
1914    /// `set_len()` can be useful for situations in which the vector
1915    /// is serving as a buffer for other code, particularly over FFI:
1916    ///
1917    /// ```no_run
1918    /// # #![allow(dead_code)]
1919    /// # // This is just a minimal skeleton for the doc example;
1920    /// # // don't use this as a starting point for a real library.
1921    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1922    /// # const Z_OK: i32 = 0;
1923    /// # unsafe extern "C" {
1924    /// #     fn deflateGetDictionary(
1925    /// #         strm: *mut std::ffi::c_void,
1926    /// #         dictionary: *mut u8,
1927    /// #         dictLength: *mut usize,
1928    /// #     ) -> i32;
1929    /// # }
1930    /// # impl StreamWrapper {
1931    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1932    ///     // Per the FFI method's docs, "32768 bytes is always enough".
1933    ///     let mut dict = Vec::with_capacity(32_768);
1934    ///     let mut dict_length = 0;
1935    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1936    ///     // 1. `dict_length` elements were initialized.
1937    ///     // 2. `dict_length` <= the capacity (32_768)
1938    ///     // which makes `set_len` safe to call.
1939    ///     unsafe {
1940    ///         // Make the FFI call...
1941    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1942    ///         if r == Z_OK {
1943    ///             // ...and update the length to what was initialized.
1944    ///             dict.set_len(dict_length);
1945    ///             Some(dict)
1946    ///         } else {
1947    ///             None
1948    ///         }
1949    ///     }
1950    /// }
1951    /// # }
1952    /// ```
1953    ///
1954    /// While the following example is sound, there is a memory leak since
1955    /// the inner vectors were not freed prior to the `set_len` call:
1956    ///
1957    /// ```
1958    /// let mut vec = vec![vec![1, 0, 0],
1959    ///                    vec![0, 1, 0],
1960    ///                    vec![0, 0, 1]];
1961    /// // SAFETY:
1962    /// // 1. `old_len..0` is empty so no elements need to be initialized.
1963    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1964    /// unsafe {
1965    ///     vec.set_len(0);
1966    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
1967    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1968    /// #   vec.set_len(3);
1969    /// }
1970    /// ```
1971    ///
1972    /// Normally, here, one would use [`clear`] instead to correctly drop
1973    /// the contents and thus not leak memory.
1974    ///
1975    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1976    #[inline]
1977    #[stable(feature = "rust1", since = "1.0.0")]
1978    pub unsafe fn set_len(&mut self, new_len: usize) {
1979        ub_checks::assert_unsafe_precondition!(
1980            check_library_ub,
1981            "Vec::set_len requires that new_len <= capacity()",
1982            (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
1983        );
1984
1985        self.len = new_len;
1986    }
1987
1988    /// Removes an element from the vector and returns it.
1989    ///
1990    /// The removed element is replaced by the last element of the vector.
1991    ///
1992    /// This does not preserve ordering of the remaining elements, but is *O*(1).
1993    /// If you need to preserve the element order, use [`remove`] instead.
1994    ///
1995    /// [`remove`]: Vec::remove
1996    ///
1997    /// # Panics
1998    ///
1999    /// Panics if `index` is out of bounds.
2000    ///
2001    /// # Examples
2002    ///
2003    /// ```
2004    /// let mut v = vec!["foo", "bar", "baz", "qux"];
2005    ///
2006    /// assert_eq!(v.swap_remove(1), "bar");
2007    /// assert_eq!(v, ["foo", "qux", "baz"]);
2008    ///
2009    /// assert_eq!(v.swap_remove(0), "foo");
2010    /// assert_eq!(v, ["baz", "qux"]);
2011    /// ```
2012    #[inline]
2013    #[stable(feature = "rust1", since = "1.0.0")]
2014    pub fn swap_remove(&mut self, index: usize) -> T {
2015        #[cold]
2016        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2017        #[optimize(size)]
2018        fn assert_failed(index: usize, len: usize) -> ! {
2019            panic!("swap_remove index (is {index}) should be < len (is {len})");
2020        }
2021
2022        let len = self.len();
2023        if index >= len {
2024            assert_failed(index, len);
2025        }
2026        unsafe {
2027            // We replace self[index] with the last element. Note that if the
2028            // bounds check above succeeds there must be a last element (which
2029            // can be self[index] itself).
2030            let value = ptr::read(self.as_ptr().add(index));
2031            let base_ptr = self.as_mut_ptr();
2032            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2033            self.set_len(len - 1);
2034            value
2035        }
2036    }
2037
2038    /// Inserts an element at position `index` within the vector, shifting all
2039    /// elements after it to the right.
2040    ///
2041    /// # Panics
2042    ///
2043    /// Panics if `index > len`.
2044    ///
2045    /// # Examples
2046    ///
2047    /// ```
2048    /// let mut vec = vec!['a', 'b', 'c'];
2049    /// vec.insert(1, 'd');
2050    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2051    /// vec.insert(4, 'e');
2052    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2053    /// ```
2054    ///
2055    /// # Time complexity
2056    ///
2057    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2058    /// shifted to the right. In the worst case, all elements are shifted when
2059    /// the insertion index is 0.
2060    #[cfg(not(no_global_oom_handling))]
2061    #[stable(feature = "rust1", since = "1.0.0")]
2062    #[track_caller]
2063    pub fn insert(&mut self, index: usize, element: T) {
2064        let _ = self.insert_mut(index, element);
2065    }
2066
2067    /// Inserts an element at position `index` within the vector, shifting all
2068    /// elements after it to the right, and returning a reference to the new
2069    /// element.
2070    ///
2071    /// # Panics
2072    ///
2073    /// Panics if `index > len`.
2074    ///
2075    /// # Examples
2076    ///
2077    /// ```
2078    /// #![feature(push_mut)]
2079    /// let mut vec = vec![1, 3, 5, 9];
2080    /// let x = vec.insert_mut(3, 6);
2081    /// *x += 1;
2082    /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2083    /// ```
2084    ///
2085    /// # Time complexity
2086    ///
2087    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2088    /// shifted to the right. In the worst case, all elements are shifted when
2089    /// the insertion index is 0.
2090    #[cfg(not(no_global_oom_handling))]
2091    #[inline]
2092    #[unstable(feature = "push_mut", issue = "135974")]
2093    #[track_caller]
2094    #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2095    pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2096        #[cold]
2097        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2098        #[track_caller]
2099        #[optimize(size)]
2100        fn assert_failed(index: usize, len: usize) -> ! {
2101            panic!("insertion index (is {index}) should be <= len (is {len})");
2102        }
2103
2104        let len = self.len();
2105        if index > len {
2106            assert_failed(index, len);
2107        }
2108
2109        // space for the new element
2110        if len == self.buf.capacity() {
2111            self.buf.grow_one();
2112        }
2113
2114        unsafe {
2115            // infallible
2116            // The spot to put the new value
2117            let p = self.as_mut_ptr().add(index);
2118            {
2119                if index < len {
2120                    // Shift everything over to make space. (Duplicating the
2121                    // `index`th element into two consecutive places.)
2122                    ptr::copy(p, p.add(1), len - index);
2123                }
2124                // Write it in, overwriting the first copy of the `index`th
2125                // element.
2126                ptr::write(p, element);
2127            }
2128            self.set_len(len + 1);
2129            &mut *p
2130        }
2131    }
2132
2133    /// Removes and returns the element at position `index` within the vector,
2134    /// shifting all elements after it to the left.
2135    ///
2136    /// Note: Because this shifts over the remaining elements, it has a
2137    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2138    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2139    /// elements from the beginning of the `Vec`, consider using
2140    /// [`VecDeque::pop_front`] instead.
2141    ///
2142    /// [`swap_remove`]: Vec::swap_remove
2143    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2144    ///
2145    /// # Panics
2146    ///
2147    /// Panics if `index` is out of bounds.
2148    ///
2149    /// # Examples
2150    ///
2151    /// ```
2152    /// let mut v = vec!['a', 'b', 'c'];
2153    /// assert_eq!(v.remove(1), 'b');
2154    /// assert_eq!(v, ['a', 'c']);
2155    /// ```
2156    #[stable(feature = "rust1", since = "1.0.0")]
2157    #[track_caller]
2158    #[rustc_confusables("delete", "take")]
2159    pub fn remove(&mut self, index: usize) -> T {
2160        #[cold]
2161        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2162        #[track_caller]
2163        #[optimize(size)]
2164        fn assert_failed(index: usize, len: usize) -> ! {
2165            panic!("removal index (is {index}) should be < len (is {len})");
2166        }
2167
2168        match self.try_remove(index) {
2169            Some(elem) => elem,
2170            None => assert_failed(index, self.len()),
2171        }
2172    }
2173
2174    /// Remove and return the element at position `index` within the vector,
2175    /// shifting all elements after it to the left, or [`None`] if it does not
2176    /// exist.
2177    ///
2178    /// Note: Because this shifts over the remaining elements, it has a
2179    /// worst-case performance of *O*(*n*). If you'd like to remove
2180    /// elements from the beginning of the `Vec`, consider using
2181    /// [`VecDeque::pop_front`] instead.
2182    ///
2183    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2184    ///
2185    /// # Examples
2186    ///
2187    /// ```
2188    /// #![feature(vec_try_remove)]
2189    /// let mut v = vec![1, 2, 3];
2190    /// assert_eq!(v.try_remove(0), Some(1));
2191    /// assert_eq!(v.try_remove(2), None);
2192    /// ```
2193    #[unstable(feature = "vec_try_remove", issue = "146954")]
2194    #[rustc_confusables("delete", "take", "remove")]
2195    pub fn try_remove(&mut self, index: usize) -> Option<T> {
2196        let len = self.len();
2197        if index >= len {
2198            return None;
2199        }
2200        unsafe {
2201            // infallible
2202            let ret;
2203            {
2204                // the place we are taking from.
2205                let ptr = self.as_mut_ptr().add(index);
2206                // copy it out, unsafely having a copy of the value on
2207                // the stack and in the vector at the same time.
2208                ret = ptr::read(ptr);
2209
2210                // Shift everything down to fill in that spot.
2211                ptr::copy(ptr.add(1), ptr, len - index - 1);
2212            }
2213            self.set_len(len - 1);
2214            Some(ret)
2215        }
2216    }
2217
2218    /// Retains only the elements specified by the predicate.
2219    ///
2220    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2221    /// This method operates in place, visiting each element exactly once in the
2222    /// original order, and preserves the order of the retained elements.
2223    ///
2224    /// # Examples
2225    ///
2226    /// ```
2227    /// let mut vec = vec![1, 2, 3, 4];
2228    /// vec.retain(|&x| x % 2 == 0);
2229    /// assert_eq!(vec, [2, 4]);
2230    /// ```
2231    ///
2232    /// Because the elements are visited exactly once in the original order,
2233    /// external state may be used to decide which elements to keep.
2234    ///
2235    /// ```
2236    /// let mut vec = vec![1, 2, 3, 4, 5];
2237    /// let keep = [false, true, true, false, true];
2238    /// let mut iter = keep.iter();
2239    /// vec.retain(|_| *iter.next().unwrap());
2240    /// assert_eq!(vec, [2, 3, 5]);
2241    /// ```
2242    #[stable(feature = "rust1", since = "1.0.0")]
2243    pub fn retain<F>(&mut self, mut f: F)
2244    where
2245        F: FnMut(&T) -> bool,
2246    {
2247        self.retain_mut(|elem| f(elem));
2248    }
2249
2250    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2251    ///
2252    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2253    /// This method operates in place, visiting each element exactly once in the
2254    /// original order, and preserves the order of the retained elements.
2255    ///
2256    /// # Examples
2257    ///
2258    /// ```
2259    /// let mut vec = vec![1, 2, 3, 4];
2260    /// vec.retain_mut(|x| if *x <= 3 {
2261    ///     *x += 1;
2262    ///     true
2263    /// } else {
2264    ///     false
2265    /// });
2266    /// assert_eq!(vec, [2, 3, 4]);
2267    /// ```
2268    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2269    pub fn retain_mut<F>(&mut self, mut f: F)
2270    where
2271        F: FnMut(&mut T) -> bool,
2272    {
2273        let original_len = self.len();
2274
2275        if original_len == 0 {
2276            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2277            return;
2278        }
2279
2280        // Avoid double drop if the drop guard is not executed,
2281        // since we may make some holes during the process.
2282        unsafe { self.set_len(0) };
2283
2284        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2285        //      |<-              processed len   ->| ^- next to check
2286        //                  |<-  deleted cnt     ->|
2287        //      |<-              original_len                          ->|
2288        // Kept: Elements which predicate returns true on.
2289        // Hole: Moved or dropped element slot.
2290        // Unchecked: Unchecked valid elements.
2291        //
2292        // This drop guard will be invoked when predicate or `drop` of element panicked.
2293        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2294        // In cases when predicate and `drop` never panick, it will be optimized out.
2295        struct BackshiftOnDrop<'a, T, A: Allocator> {
2296            v: &'a mut Vec<T, A>,
2297            processed_len: usize,
2298            deleted_cnt: usize,
2299            original_len: usize,
2300        }
2301
2302        impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2303            fn drop(&mut self) {
2304                if self.deleted_cnt > 0 {
2305                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
2306                    unsafe {
2307                        ptr::copy(
2308                            self.v.as_ptr().add(self.processed_len),
2309                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2310                            self.original_len - self.processed_len,
2311                        );
2312                    }
2313                }
2314                // SAFETY: After filling holes, all items are in contiguous memory.
2315                unsafe {
2316                    self.v.set_len(self.original_len - self.deleted_cnt);
2317                }
2318            }
2319        }
2320
2321        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2322
2323        fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2324            original_len: usize,
2325            f: &mut F,
2326            g: &mut BackshiftOnDrop<'_, T, A>,
2327        ) where
2328            F: FnMut(&mut T) -> bool,
2329        {
2330            while g.processed_len != original_len {
2331                // SAFETY: Unchecked element must be valid.
2332                let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2333                if !f(cur) {
2334                    // Advance early to avoid double drop if `drop_in_place` panicked.
2335                    g.processed_len += 1;
2336                    g.deleted_cnt += 1;
2337                    // SAFETY: We never touch this element again after dropped.
2338                    unsafe { ptr::drop_in_place(cur) };
2339                    // We already advanced the counter.
2340                    if DELETED {
2341                        continue;
2342                    } else {
2343                        break;
2344                    }
2345                }
2346                if DELETED {
2347                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2348                    // We use copy for move, and never touch this element again.
2349                    unsafe {
2350                        let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2351                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
2352                    }
2353                }
2354                g.processed_len += 1;
2355            }
2356        }
2357
2358        // Stage 1: Nothing was deleted.
2359        process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2360
2361        // Stage 2: Some elements were deleted.
2362        process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2363
2364        // All item are processed. This can be optimized to `set_len` by LLVM.
2365        drop(g);
2366    }
2367
2368    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2369    /// key.
2370    ///
2371    /// If the vector is sorted, this removes all duplicates.
2372    ///
2373    /// # Examples
2374    ///
2375    /// ```
2376    /// let mut vec = vec![10, 20, 21, 30, 20];
2377    ///
2378    /// vec.dedup_by_key(|i| *i / 10);
2379    ///
2380    /// assert_eq!(vec, [10, 20, 30, 20]);
2381    /// ```
2382    #[stable(feature = "dedup_by", since = "1.16.0")]
2383    #[inline]
2384    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2385    where
2386        F: FnMut(&mut T) -> K,
2387        K: PartialEq,
2388    {
2389        self.dedup_by(|a, b| key(a) == key(b))
2390    }
2391
2392    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2393    /// relation.
2394    ///
2395    /// The `same_bucket` function is passed references to two elements from the vector and
2396    /// must determine if the elements compare equal. The elements are passed in opposite order
2397    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2398    ///
2399    /// If the vector is sorted, this removes all duplicates.
2400    ///
2401    /// # Examples
2402    ///
2403    /// ```
2404    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2405    ///
2406    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2407    ///
2408    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2409    /// ```
2410    #[stable(feature = "dedup_by", since = "1.16.0")]
2411    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2412    where
2413        F: FnMut(&mut T, &mut T) -> bool,
2414    {
2415        let len = self.len();
2416        if len <= 1 {
2417            return;
2418        }
2419
2420        // Check if we ever want to remove anything.
2421        // This allows to use copy_non_overlapping in next cycle.
2422        // And avoids any memory writes if we don't need to remove anything.
2423        let mut first_duplicate_idx: usize = 1;
2424        let start = self.as_mut_ptr();
2425        while first_duplicate_idx != len {
2426            let found_duplicate = unsafe {
2427                // SAFETY: first_duplicate always in range [1..len)
2428                // Note that we start iteration from 1 so we never overflow.
2429                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2430                let current = start.add(first_duplicate_idx);
2431                // We explicitly say in docs that references are reversed.
2432                same_bucket(&mut *current, &mut *prev)
2433            };
2434            if found_duplicate {
2435                break;
2436            }
2437            first_duplicate_idx += 1;
2438        }
2439        // Don't need to remove anything.
2440        // We cannot get bigger than len.
2441        if first_duplicate_idx == len {
2442            return;
2443        }
2444
2445        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2446        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2447            /* Offset of the element we want to check if it is duplicate */
2448            read: usize,
2449
2450            /* Offset of the place where we want to place the non-duplicate
2451             * when we find it. */
2452            write: usize,
2453
2454            /* The Vec that would need correction if `same_bucket` panicked */
2455            vec: &'a mut Vec<T, A>,
2456        }
2457
2458        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2459            fn drop(&mut self) {
2460                /* This code gets executed when `same_bucket` panics */
2461
2462                /* SAFETY: invariant guarantees that `read - write`
2463                 * and `len - read` never overflow and that the copy is always
2464                 * in-bounds. */
2465                unsafe {
2466                    let ptr = self.vec.as_mut_ptr();
2467                    let len = self.vec.len();
2468
2469                    /* How many items were left when `same_bucket` panicked.
2470                     * Basically vec[read..].len() */
2471                    let items_left = len.wrapping_sub(self.read);
2472
2473                    /* Pointer to first item in vec[write..write+items_left] slice */
2474                    let dropped_ptr = ptr.add(self.write);
2475                    /* Pointer to first item in vec[read..] slice */
2476                    let valid_ptr = ptr.add(self.read);
2477
2478                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2479                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2480                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2481
2482                    /* How many items have been already dropped
2483                     * Basically vec[read..write].len() */
2484                    let dropped = self.read.wrapping_sub(self.write);
2485
2486                    self.vec.set_len(len - dropped);
2487                }
2488            }
2489        }
2490
2491        /* Drop items while going through Vec, it should be more efficient than
2492         * doing slice partition_dedup + truncate */
2493
2494        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2495        let mut gap =
2496            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2497        unsafe {
2498            // SAFETY: we checked that first_duplicate_idx in bounds before.
2499            // If drop panics, `gap` would remove this item without drop.
2500            ptr::drop_in_place(start.add(first_duplicate_idx));
2501        }
2502
2503        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2504         * are always in-bounds and read_ptr never aliases prev_ptr */
2505        unsafe {
2506            while gap.read < len {
2507                let read_ptr = start.add(gap.read);
2508                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2509
2510                // We explicitly say in docs that references are reversed.
2511                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2512                if found_duplicate {
2513                    // Increase `gap.read` now since the drop may panic.
2514                    gap.read += 1;
2515                    /* We have found duplicate, drop it in-place */
2516                    ptr::drop_in_place(read_ptr);
2517                } else {
2518                    let write_ptr = start.add(gap.write);
2519
2520                    /* read_ptr cannot be equal to write_ptr because at this point
2521                     * we guaranteed to skip at least one element (before loop starts).
2522                     */
2523                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2524
2525                    /* We have filled that place, so go further */
2526                    gap.write += 1;
2527                    gap.read += 1;
2528                }
2529            }
2530
2531            /* Technically we could let `gap` clean up with its Drop, but
2532             * when `same_bucket` is guaranteed to not panic, this bloats a little
2533             * the codegen, so we just do it manually */
2534            gap.vec.set_len(gap.write);
2535            mem::forget(gap);
2536        }
2537    }
2538
2539    /// Appends an element to the back of a collection.
2540    ///
2541    /// # Panics
2542    ///
2543    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2544    ///
2545    /// # Examples
2546    ///
2547    /// ```
2548    /// let mut vec = vec![1, 2];
2549    /// vec.push(3);
2550    /// assert_eq!(vec, [1, 2, 3]);
2551    /// ```
2552    ///
2553    /// # Time complexity
2554    ///
2555    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2556    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2557    /// vector's elements to a larger allocation. This expensive operation is
2558    /// offset by the *capacity* *O*(1) insertions it allows.
2559    #[cfg(not(no_global_oom_handling))]
2560    #[inline]
2561    #[stable(feature = "rust1", since = "1.0.0")]
2562    #[rustc_confusables("push_back", "put", "append")]
2563    pub fn push(&mut self, value: T) {
2564        let _ = self.push_mut(value);
2565    }
2566
2567    /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
2568    /// with the element.
2569    ///
2570    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2571    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2572    ///
2573    /// [`push`]: Vec::push
2574    /// [`reserve`]: Vec::reserve
2575    /// [`try_reserve`]: Vec::try_reserve
2576    ///
2577    /// # Examples
2578    ///
2579    /// A manual, panic-free alternative to [`FromIterator`]:
2580    ///
2581    /// ```
2582    /// #![feature(vec_push_within_capacity)]
2583    ///
2584    /// use std::collections::TryReserveError;
2585    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2586    ///     let mut vec = Vec::new();
2587    ///     for value in iter {
2588    ///         if let Err(value) = vec.push_within_capacity(value) {
2589    ///             vec.try_reserve(1)?;
2590    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2591    ///             let _ = vec.push_within_capacity(value);
2592    ///         }
2593    ///     }
2594    ///     Ok(vec)
2595    /// }
2596    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2597    /// ```
2598    ///
2599    /// # Time complexity
2600    ///
2601    /// Takes *O*(1) time.
2602    #[inline]
2603    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2604    pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2605        self.push_mut_within_capacity(value).map(|_| ())
2606    }
2607
2608    /// Appends an element to the back of a collection, returning a reference to it.
2609    ///
2610    /// # Panics
2611    ///
2612    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2613    ///
2614    /// # Examples
2615    ///
2616    /// ```
2617    /// #![feature(push_mut)]
2618    ///
2619    ///
2620    /// let mut vec = vec![1, 2];
2621    /// let last = vec.push_mut(3);
2622    /// assert_eq!(*last, 3);
2623    /// assert_eq!(vec, [1, 2, 3]);
2624    ///
2625    /// let last = vec.push_mut(3);
2626    /// *last += 1;
2627    /// assert_eq!(vec, [1, 2, 3, 4]);
2628    /// ```
2629    ///
2630    /// # Time complexity
2631    ///
2632    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2633    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2634    /// vector's elements to a larger allocation. This expensive operation is
2635    /// offset by the *capacity* *O*(1) insertions it allows.
2636    #[cfg(not(no_global_oom_handling))]
2637    #[inline]
2638    #[unstable(feature = "push_mut", issue = "135974")]
2639    #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
2640    pub fn push_mut(&mut self, value: T) -> &mut T {
2641        // Inform codegen that the length does not change across grow_one().
2642        let len = self.len;
2643        // This will panic or abort if we would allocate > isize::MAX bytes
2644        // or if the length increment would overflow for zero-sized types.
2645        if len == self.buf.capacity() {
2646            self.buf.grow_one();
2647        }
2648        unsafe {
2649            let end = self.as_mut_ptr().add(len);
2650            ptr::write(end, value);
2651            self.len = len + 1;
2652            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2653            &mut *end
2654        }
2655    }
2656
2657    /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2658    /// otherwise an error is returned with the element.
2659    ///
2660    /// Unlike [`push_mut`] this method will not reallocate when there's insufficient capacity.
2661    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2662    ///
2663    /// [`push_mut`]: Vec::push_mut
2664    /// [`reserve`]: Vec::reserve
2665    /// [`try_reserve`]: Vec::try_reserve
2666    ///
2667    /// # Time complexity
2668    ///
2669    /// Takes *O*(1) time.
2670    #[unstable(feature = "push_mut", issue = "135974")]
2671    // #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2672    #[inline]
2673    #[must_use = "if you don't need a reference to the value, use `Vec::push_within_capacity` instead"]
2674    pub fn push_mut_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2675        if self.len == self.buf.capacity() {
2676            return Err(value);
2677        }
2678        unsafe {
2679            let end = self.as_mut_ptr().add(self.len);
2680            ptr::write(end, value);
2681            self.len += 1;
2682            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2683            Ok(&mut *end)
2684        }
2685    }
2686
2687    /// Removes the last element from a vector and returns it, or [`None`] if it
2688    /// is empty.
2689    ///
2690    /// If you'd like to pop the first element, consider using
2691    /// [`VecDeque::pop_front`] instead.
2692    ///
2693    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2694    ///
2695    /// # Examples
2696    ///
2697    /// ```
2698    /// let mut vec = vec![1, 2, 3];
2699    /// assert_eq!(vec.pop(), Some(3));
2700    /// assert_eq!(vec, [1, 2]);
2701    /// ```
2702    ///
2703    /// # Time complexity
2704    ///
2705    /// Takes *O*(1) time.
2706    #[inline]
2707    #[stable(feature = "rust1", since = "1.0.0")]
2708    #[rustc_diagnostic_item = "vec_pop"]
2709    pub fn pop(&mut self) -> Option<T> {
2710        if self.len == 0 {
2711            None
2712        } else {
2713            unsafe {
2714                self.len -= 1;
2715                core::hint::assert_unchecked(self.len < self.capacity());
2716                Some(ptr::read(self.as_ptr().add(self.len())))
2717            }
2718        }
2719    }
2720
2721    /// Removes and returns the last element from a vector if the predicate
2722    /// returns `true`, or [`None`] if the predicate returns false or the vector
2723    /// is empty (the predicate will not be called in that case).
2724    ///
2725    /// # Examples
2726    ///
2727    /// ```
2728    /// let mut vec = vec![1, 2, 3, 4];
2729    /// let pred = |x: &mut i32| *x % 2 == 0;
2730    ///
2731    /// assert_eq!(vec.pop_if(pred), Some(4));
2732    /// assert_eq!(vec, [1, 2, 3]);
2733    /// assert_eq!(vec.pop_if(pred), None);
2734    /// ```
2735    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2736    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2737        let last = self.last_mut()?;
2738        if predicate(last) { self.pop() } else { None }
2739    }
2740
2741    /// Returns a mutable reference to the last item in the vector, or
2742    /// `None` if it is empty.
2743    ///
2744    /// # Examples
2745    ///
2746    /// Basic usage:
2747    ///
2748    /// ```
2749    /// #![feature(vec_peek_mut)]
2750    /// let mut vec = Vec::new();
2751    /// assert!(vec.peek_mut().is_none());
2752    ///
2753    /// vec.push(1);
2754    /// vec.push(5);
2755    /// vec.push(2);
2756    /// assert_eq!(vec.last(), Some(&2));
2757    /// if let Some(mut val) = vec.peek_mut() {
2758    ///     *val = 0;
2759    /// }
2760    /// assert_eq!(vec.last(), Some(&0));
2761    /// ```
2762    #[inline]
2763    #[unstable(feature = "vec_peek_mut", issue = "122742")]
2764    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2765        PeekMut::new(self)
2766    }
2767
2768    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2769    ///
2770    /// # Panics
2771    ///
2772    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2773    ///
2774    /// # Examples
2775    ///
2776    /// ```
2777    /// let mut vec = vec![1, 2, 3];
2778    /// let mut vec2 = vec![4, 5, 6];
2779    /// vec.append(&mut vec2);
2780    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2781    /// assert_eq!(vec2, []);
2782    /// ```
2783    #[cfg(not(no_global_oom_handling))]
2784    #[inline]
2785    #[stable(feature = "append", since = "1.4.0")]
2786    pub fn append(&mut self, other: &mut Self) {
2787        unsafe {
2788            self.append_elements(other.as_slice() as _);
2789            other.set_len(0);
2790        }
2791    }
2792
2793    /// Appends elements to `self` from other buffer.
2794    #[cfg(not(no_global_oom_handling))]
2795    #[inline]
2796    unsafe fn append_elements(&mut self, other: *const [T]) {
2797        let count = other.len();
2798        self.reserve(count);
2799        let len = self.len();
2800        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2801        self.len += count;
2802    }
2803
2804    /// Removes the subslice indicated by the given range from the vector,
2805    /// returning a double-ended iterator over the removed subslice.
2806    ///
2807    /// If the iterator is dropped before being fully consumed,
2808    /// it drops the remaining removed elements.
2809    ///
2810    /// The returned iterator keeps a mutable borrow on the vector to optimize
2811    /// its implementation.
2812    ///
2813    /// # Panics
2814    ///
2815    /// Panics if the range has `start_bound > end_bound`, or, if the range is
2816    /// bounded on either end and past the length of the vector.
2817    ///
2818    /// # Leaking
2819    ///
2820    /// If the returned iterator goes out of scope without being dropped (due to
2821    /// [`mem::forget`], for example), the vector may have lost and leaked
2822    /// elements arbitrarily, including elements outside the range.
2823    ///
2824    /// # Examples
2825    ///
2826    /// ```
2827    /// let mut v = vec![1, 2, 3];
2828    /// let u: Vec<_> = v.drain(1..).collect();
2829    /// assert_eq!(v, &[1]);
2830    /// assert_eq!(u, &[2, 3]);
2831    ///
2832    /// // A full range clears the vector, like `clear()` does
2833    /// v.drain(..);
2834    /// assert_eq!(v, &[]);
2835    /// ```
2836    #[stable(feature = "drain", since = "1.6.0")]
2837    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2838    where
2839        R: RangeBounds<usize>,
2840    {
2841        // Memory safety
2842        //
2843        // When the Drain is first created, it shortens the length of
2844        // the source vector to make sure no uninitialized or moved-from elements
2845        // are accessible at all if the Drain's destructor never gets to run.
2846        //
2847        // Drain will ptr::read out the values to remove.
2848        // When finished, remaining tail of the vec is copied back to cover
2849        // the hole, and the vector length is restored to the new length.
2850        //
2851        let len = self.len();
2852        let Range { start, end } = slice::range(range, ..len);
2853
2854        unsafe {
2855            // set self.vec length's to start, to be safe in case Drain is leaked
2856            self.set_len(start);
2857            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2858            Drain {
2859                tail_start: end,
2860                tail_len: len - end,
2861                iter: range_slice.iter(),
2862                vec: NonNull::from(self),
2863            }
2864        }
2865    }
2866
2867    /// Clears the vector, removing all values.
2868    ///
2869    /// Note that this method has no effect on the allocated capacity
2870    /// of the vector.
2871    ///
2872    /// # Examples
2873    ///
2874    /// ```
2875    /// let mut v = vec![1, 2, 3];
2876    ///
2877    /// v.clear();
2878    ///
2879    /// assert!(v.is_empty());
2880    /// ```
2881    #[inline]
2882    #[stable(feature = "rust1", since = "1.0.0")]
2883    pub fn clear(&mut self) {
2884        let elems: *mut [T] = self.as_mut_slice();
2885
2886        // SAFETY:
2887        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2888        // - Setting `self.len` before calling `drop_in_place` means that,
2889        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2890        //   do nothing (leaking the rest of the elements) instead of dropping
2891        //   some twice.
2892        unsafe {
2893            self.len = 0;
2894            ptr::drop_in_place(elems);
2895        }
2896    }
2897
2898    /// Returns the number of elements in the vector, also referred to
2899    /// as its 'length'.
2900    ///
2901    /// # Examples
2902    ///
2903    /// ```
2904    /// let a = vec![1, 2, 3];
2905    /// assert_eq!(a.len(), 3);
2906    /// ```
2907    #[inline]
2908    #[stable(feature = "rust1", since = "1.0.0")]
2909    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2910    #[rustc_confusables("length", "size")]
2911    pub const fn len(&self) -> usize {
2912        let len = self.len;
2913
2914        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2915        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2916        // matches the definition of `T::MAX_SLICE_LEN`.
2917        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2918
2919        len
2920    }
2921
2922    /// Returns `true` if the vector contains no elements.
2923    ///
2924    /// # Examples
2925    ///
2926    /// ```
2927    /// let mut v = Vec::new();
2928    /// assert!(v.is_empty());
2929    ///
2930    /// v.push(1);
2931    /// assert!(!v.is_empty());
2932    /// ```
2933    #[stable(feature = "rust1", since = "1.0.0")]
2934    #[rustc_diagnostic_item = "vec_is_empty"]
2935    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2936    pub const fn is_empty(&self) -> bool {
2937        self.len() == 0
2938    }
2939
2940    /// Splits the collection into two at the given index.
2941    ///
2942    /// Returns a newly allocated vector containing the elements in the range
2943    /// `[at, len)`. After the call, the original vector will be left containing
2944    /// the elements `[0, at)` with its previous capacity unchanged.
2945    ///
2946    /// - If you want to take ownership of the entire contents and capacity of
2947    ///   the vector, see [`mem::take`] or [`mem::replace`].
2948    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2949    /// - If you want to take ownership of an arbitrary subslice, or you don't
2950    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2951    ///
2952    /// # Panics
2953    ///
2954    /// Panics if `at > len`.
2955    ///
2956    /// # Examples
2957    ///
2958    /// ```
2959    /// let mut vec = vec!['a', 'b', 'c'];
2960    /// let vec2 = vec.split_off(1);
2961    /// assert_eq!(vec, ['a']);
2962    /// assert_eq!(vec2, ['b', 'c']);
2963    /// ```
2964    #[cfg(not(no_global_oom_handling))]
2965    #[inline]
2966    #[must_use = "use `.truncate()` if you don't need the other half"]
2967    #[stable(feature = "split_off", since = "1.4.0")]
2968    #[track_caller]
2969    pub fn split_off(&mut self, at: usize) -> Self
2970    where
2971        A: Clone,
2972    {
2973        #[cold]
2974        #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2975        #[track_caller]
2976        #[optimize(size)]
2977        fn assert_failed(at: usize, len: usize) -> ! {
2978            panic!("`at` split index (is {at}) should be <= len (is {len})");
2979        }
2980
2981        if at > self.len() {
2982            assert_failed(at, self.len());
2983        }
2984
2985        let other_len = self.len - at;
2986        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2987
2988        // Unsafely `set_len` and copy items to `other`.
2989        unsafe {
2990            self.set_len(at);
2991            other.set_len(other_len);
2992
2993            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2994        }
2995        other
2996    }
2997
2998    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2999    ///
3000    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3001    /// difference, with each additional slot filled with the result of
3002    /// calling the closure `f`. The return values from `f` will end up
3003    /// in the `Vec` in the order they have been generated.
3004    ///
3005    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3006    ///
3007    /// This method uses a closure to create new values on every push. If
3008    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
3009    /// want to use the [`Default`] trait to generate values, you can
3010    /// pass [`Default::default`] as the second argument.
3011    ///
3012    /// # Panics
3013    ///
3014    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3015    ///
3016    /// # Examples
3017    ///
3018    /// ```
3019    /// let mut vec = vec![1, 2, 3];
3020    /// vec.resize_with(5, Default::default);
3021    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
3022    ///
3023    /// let mut vec = vec![];
3024    /// let mut p = 1;
3025    /// vec.resize_with(4, || { p *= 2; p });
3026    /// assert_eq!(vec, [2, 4, 8, 16]);
3027    /// ```
3028    #[cfg(not(no_global_oom_handling))]
3029    #[stable(feature = "vec_resize_with", since = "1.33.0")]
3030    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
3031    where
3032        F: FnMut() -> T,
3033    {
3034        let len = self.len();
3035        if new_len > len {
3036            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
3037        } else {
3038            self.truncate(new_len);
3039        }
3040    }
3041
3042    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
3043    /// `&'a mut [T]`.
3044    ///
3045    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
3046    /// has only static references, or none at all, then this may be chosen to be
3047    /// `'static`.
3048    ///
3049    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
3050    /// so the leaked allocation may include unused capacity that is not part
3051    /// of the returned slice.
3052    ///
3053    /// This function is mainly useful for data that lives for the remainder of
3054    /// the program's life. Dropping the returned reference will cause a memory
3055    /// leak.
3056    ///
3057    /// # Examples
3058    ///
3059    /// Simple usage:
3060    ///
3061    /// ```
3062    /// let x = vec![1, 2, 3];
3063    /// let static_ref: &'static mut [usize] = x.leak();
3064    /// static_ref[0] += 1;
3065    /// assert_eq!(static_ref, &[2, 2, 3]);
3066    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3067    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3068    /// # drop(unsafe { Box::from_raw(static_ref) });
3069    /// ```
3070    #[stable(feature = "vec_leak", since = "1.47.0")]
3071    #[inline]
3072    pub fn leak<'a>(self) -> &'a mut [T]
3073    where
3074        A: 'a,
3075    {
3076        let mut me = ManuallyDrop::new(self);
3077        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3078    }
3079
3080    /// Returns the remaining spare capacity of the vector as a slice of
3081    /// `MaybeUninit<T>`.
3082    ///
3083    /// The returned slice can be used to fill the vector with data (e.g. by
3084    /// reading from a file) before marking the data as initialized using the
3085    /// [`set_len`] method.
3086    ///
3087    /// [`set_len`]: Vec::set_len
3088    ///
3089    /// # Examples
3090    ///
3091    /// ```
3092    /// // Allocate vector big enough for 10 elements.
3093    /// let mut v = Vec::with_capacity(10);
3094    ///
3095    /// // Fill in the first 3 elements.
3096    /// let uninit = v.spare_capacity_mut();
3097    /// uninit[0].write(0);
3098    /// uninit[1].write(1);
3099    /// uninit[2].write(2);
3100    ///
3101    /// // Mark the first 3 elements of the vector as being initialized.
3102    /// unsafe {
3103    ///     v.set_len(3);
3104    /// }
3105    ///
3106    /// assert_eq!(&v, &[0, 1, 2]);
3107    /// ```
3108    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3109    #[inline]
3110    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3111        // Note:
3112        // This method is not implemented in terms of `split_at_spare_mut`,
3113        // to prevent invalidation of pointers to the buffer.
3114        unsafe {
3115            slice::from_raw_parts_mut(
3116                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3117                self.buf.capacity() - self.len,
3118            )
3119        }
3120    }
3121
3122    /// Returns vector content as a slice of `T`, along with the remaining spare
3123    /// capacity of the vector as a slice of `MaybeUninit<T>`.
3124    ///
3125    /// The returned spare capacity slice can be used to fill the vector with data
3126    /// (e.g. by reading from a file) before marking the data as initialized using
3127    /// the [`set_len`] method.
3128    ///
3129    /// [`set_len`]: Vec::set_len
3130    ///
3131    /// Note that this is a low-level API, which should be used with care for
3132    /// optimization purposes. If you need to append data to a `Vec`
3133    /// you can use [`push`], [`extend`], [`extend_from_slice`],
3134    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3135    /// [`resize_with`], depending on your exact needs.
3136    ///
3137    /// [`push`]: Vec::push
3138    /// [`extend`]: Vec::extend
3139    /// [`extend_from_slice`]: Vec::extend_from_slice
3140    /// [`extend_from_within`]: Vec::extend_from_within
3141    /// [`insert`]: Vec::insert
3142    /// [`append`]: Vec::append
3143    /// [`resize`]: Vec::resize
3144    /// [`resize_with`]: Vec::resize_with
3145    ///
3146    /// # Examples
3147    ///
3148    /// ```
3149    /// #![feature(vec_split_at_spare)]
3150    ///
3151    /// let mut v = vec![1, 1, 2];
3152    ///
3153    /// // Reserve additional space big enough for 10 elements.
3154    /// v.reserve(10);
3155    ///
3156    /// let (init, uninit) = v.split_at_spare_mut();
3157    /// let sum = init.iter().copied().sum::<u32>();
3158    ///
3159    /// // Fill in the next 4 elements.
3160    /// uninit[0].write(sum);
3161    /// uninit[1].write(sum * 2);
3162    /// uninit[2].write(sum * 3);
3163    /// uninit[3].write(sum * 4);
3164    ///
3165    /// // Mark the 4 elements of the vector as being initialized.
3166    /// unsafe {
3167    ///     let len = v.len();
3168    ///     v.set_len(len + 4);
3169    /// }
3170    ///
3171    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3172    /// ```
3173    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3174    #[inline]
3175    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3176        // SAFETY:
3177        // - len is ignored and so never changed
3178        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3179        (init, spare)
3180    }
3181
3182    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3183    ///
3184    /// This method provides unique access to all vec parts at once in `extend_from_within`.
3185    unsafe fn split_at_spare_mut_with_len(
3186        &mut self,
3187    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3188        let ptr = self.as_mut_ptr();
3189        // SAFETY:
3190        // - `ptr` is guaranteed to be valid for `self.len` elements
3191        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3192        // uninitialized
3193        let spare_ptr = unsafe { ptr.add(self.len) };
3194        let spare_ptr = spare_ptr.cast_uninit();
3195        let spare_len = self.buf.capacity() - self.len;
3196
3197        // SAFETY:
3198        // - `ptr` is guaranteed to be valid for `self.len` elements
3199        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3200        unsafe {
3201            let initialized = slice::from_raw_parts_mut(ptr, self.len);
3202            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3203
3204            (initialized, spare, &mut self.len)
3205        }
3206    }
3207
3208    /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3209    /// elements in the remainder. `N` must be greater than zero.
3210    ///
3211    /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3212    /// nearest multiple with a reallocation or deallocation.
3213    ///
3214    /// This function can be used to reverse [`Vec::into_flattened`].
3215    ///
3216    /// # Examples
3217    ///
3218    /// ```
3219    /// #![feature(vec_into_chunks)]
3220    ///
3221    /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3222    /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3223    ///
3224    /// let vec = vec![0, 1, 2, 3];
3225    /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3226    /// assert!(chunks.is_empty());
3227    ///
3228    /// let flat = vec![0; 8 * 8 * 8];
3229    /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3230    /// assert_eq!(reshaped.len(), 1);
3231    /// ```
3232    #[cfg(not(no_global_oom_handling))]
3233    #[unstable(feature = "vec_into_chunks", issue = "142137")]
3234    pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3235        const {
3236            assert!(N != 0, "chunk size must be greater than zero");
3237        }
3238
3239        let (len, cap) = (self.len(), self.capacity());
3240
3241        let len_remainder = len % N;
3242        if len_remainder != 0 {
3243            self.truncate(len - len_remainder);
3244        }
3245
3246        let cap_remainder = cap % N;
3247        if !T::IS_ZST && cap_remainder != 0 {
3248            self.buf.shrink_to_fit(cap - cap_remainder);
3249        }
3250
3251        let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3252
3253        // SAFETY:
3254        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3255        // - `[T; N]` has the same alignment as `T`
3256        // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3257        // - `len / N <= cap / N` because `len <= cap`
3258        // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3259        // - `cap / N` fits the size of the allocated memory after shrinking
3260        unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3261    }
3262}
3263
3264impl<T: Clone, A: Allocator> Vec<T, A> {
3265    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3266    ///
3267    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3268    /// difference, with each additional slot filled with `value`.
3269    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3270    ///
3271    /// This method requires `T` to implement [`Clone`],
3272    /// in order to be able to clone the passed value.
3273    /// If you need more flexibility (or want to rely on [`Default`] instead of
3274    /// [`Clone`]), use [`Vec::resize_with`].
3275    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3276    ///
3277    /// # Panics
3278    ///
3279    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3280    ///
3281    /// # Examples
3282    ///
3283    /// ```
3284    /// let mut vec = vec!["hello"];
3285    /// vec.resize(3, "world");
3286    /// assert_eq!(vec, ["hello", "world", "world"]);
3287    ///
3288    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3289    /// vec.resize(2, '_');
3290    /// assert_eq!(vec, ['a', 'b']);
3291    /// ```
3292    #[cfg(not(no_global_oom_handling))]
3293    #[stable(feature = "vec_resize", since = "1.5.0")]
3294    pub fn resize(&mut self, new_len: usize, value: T) {
3295        let len = self.len();
3296
3297        if new_len > len {
3298            self.extend_with(new_len - len, value)
3299        } else {
3300            self.truncate(new_len);
3301        }
3302    }
3303
3304    /// Clones and appends all elements in a slice to the `Vec`.
3305    ///
3306    /// Iterates over the slice `other`, clones each element, and then appends
3307    /// it to this `Vec`. The `other` slice is traversed in-order.
3308    ///
3309    /// Note that this function is the same as [`extend`],
3310    /// except that it also works with slice elements that are Clone but not Copy.
3311    /// If Rust gets specialization this function may be deprecated.
3312    ///
3313    /// # Examples
3314    ///
3315    /// ```
3316    /// let mut vec = vec![1];
3317    /// vec.extend_from_slice(&[2, 3, 4]);
3318    /// assert_eq!(vec, [1, 2, 3, 4]);
3319    /// ```
3320    ///
3321    /// [`extend`]: Vec::extend
3322    #[cfg(not(no_global_oom_handling))]
3323    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3324    pub fn extend_from_slice(&mut self, other: &[T]) {
3325        self.spec_extend(other.iter())
3326    }
3327
3328    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3329    ///
3330    /// `src` must be a range that can form a valid subslice of the `Vec`.
3331    ///
3332    /// # Panics
3333    ///
3334    /// Panics if starting index is greater than the end index
3335    /// or if the index is greater than the length of the vector.
3336    ///
3337    /// # Examples
3338    ///
3339    /// ```
3340    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3341    /// characters.extend_from_within(2..);
3342    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3343    ///
3344    /// let mut numbers = vec![0, 1, 2, 3, 4];
3345    /// numbers.extend_from_within(..2);
3346    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3347    ///
3348    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3349    /// strings.extend_from_within(1..=2);
3350    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3351    /// ```
3352    #[cfg(not(no_global_oom_handling))]
3353    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3354    pub fn extend_from_within<R>(&mut self, src: R)
3355    where
3356        R: RangeBounds<usize>,
3357    {
3358        let range = slice::range(src, ..self.len());
3359        self.reserve(range.len());
3360
3361        // SAFETY:
3362        // - `slice::range` guarantees that the given range is valid for indexing self
3363        unsafe {
3364            self.spec_extend_from_within(range);
3365        }
3366    }
3367}
3368
3369impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3370    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3371    ///
3372    /// # Panics
3373    ///
3374    /// Panics if the length of the resulting vector would overflow a `usize`.
3375    ///
3376    /// This is only possible when flattening a vector of arrays of zero-sized
3377    /// types, and thus tends to be irrelevant in practice. If
3378    /// `size_of::<T>() > 0`, this will never panic.
3379    ///
3380    /// # Examples
3381    ///
3382    /// ```
3383    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3384    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3385    ///
3386    /// let mut flattened = vec.into_flattened();
3387    /// assert_eq!(flattened.pop(), Some(6));
3388    /// ```
3389    #[stable(feature = "slice_flatten", since = "1.80.0")]
3390    pub fn into_flattened(self) -> Vec<T, A> {
3391        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3392        let (new_len, new_cap) = if T::IS_ZST {
3393            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3394        } else {
3395            // SAFETY:
3396            // - `cap * N` cannot overflow because the allocation is already in
3397            // the address space.
3398            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3399            // valid elements in the allocation.
3400            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3401        };
3402        // SAFETY:
3403        // - `ptr` was allocated by `self`
3404        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3405        // - `new_cap` refers to the same sized allocation as `cap` because
3406        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3407        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3408        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3409    }
3410}
3411
3412impl<T: Clone, A: Allocator> Vec<T, A> {
3413    #[cfg(not(no_global_oom_handling))]
3414    /// Extend the vector by `n` clones of value.
3415    fn extend_with(&mut self, n: usize, value: T) {
3416        self.reserve(n);
3417
3418        unsafe {
3419            let mut ptr = self.as_mut_ptr().add(self.len());
3420            // Use SetLenOnDrop to work around bug where compiler
3421            // might not realize the store through `ptr` through self.set_len()
3422            // don't alias.
3423            let mut local_len = SetLenOnDrop::new(&mut self.len);
3424
3425            // Write all elements except the last one
3426            for _ in 1..n {
3427                ptr::write(ptr, value.clone());
3428                ptr = ptr.add(1);
3429                // Increment the length in every step in case clone() panics
3430                local_len.increment_len(1);
3431            }
3432
3433            if n > 0 {
3434                // We can write the last element directly without cloning needlessly
3435                ptr::write(ptr, value);
3436                local_len.increment_len(1);
3437            }
3438
3439            // len set by scope guard
3440        }
3441    }
3442}
3443
3444impl<T: PartialEq, A: Allocator> Vec<T, A> {
3445    /// Removes consecutive repeated elements in the vector according to the
3446    /// [`PartialEq`] trait implementation.
3447    ///
3448    /// If the vector is sorted, this removes all duplicates.
3449    ///
3450    /// # Examples
3451    ///
3452    /// ```
3453    /// let mut vec = vec![1, 2, 2, 3, 2];
3454    ///
3455    /// vec.dedup();
3456    ///
3457    /// assert_eq!(vec, [1, 2, 3, 2]);
3458    /// ```
3459    #[stable(feature = "rust1", since = "1.0.0")]
3460    #[inline]
3461    pub fn dedup(&mut self) {
3462        self.dedup_by(|a, b| a == b)
3463    }
3464}
3465
3466////////////////////////////////////////////////////////////////////////////////
3467// Internal methods and functions
3468////////////////////////////////////////////////////////////////////////////////
3469
3470#[doc(hidden)]
3471#[cfg(not(no_global_oom_handling))]
3472#[stable(feature = "rust1", since = "1.0.0")]
3473#[rustc_diagnostic_item = "vec_from_elem"]
3474pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3475    <T as SpecFromElem>::from_elem(elem, n, Global)
3476}
3477
3478#[doc(hidden)]
3479#[cfg(not(no_global_oom_handling))]
3480#[unstable(feature = "allocator_api", issue = "32838")]
3481pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3482    <T as SpecFromElem>::from_elem(elem, n, alloc)
3483}
3484
3485#[cfg(not(no_global_oom_handling))]
3486trait ExtendFromWithinSpec {
3487    /// # Safety
3488    ///
3489    /// - `src` needs to be valid index
3490    /// - `self.capacity() - self.len()` must be `>= src.len()`
3491    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3492}
3493
3494#[cfg(not(no_global_oom_handling))]
3495impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3496    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3497        // SAFETY:
3498        // - len is increased only after initializing elements
3499        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3500
3501        // SAFETY:
3502        // - caller guarantees that src is a valid index
3503        let to_clone = unsafe { this.get_unchecked(src) };
3504
3505        iter::zip(to_clone, spare)
3506            .map(|(src, dst)| dst.write(src.clone()))
3507            // Note:
3508            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3509            // - len is increased after each element to prevent leaks (see issue #82533)
3510            .for_each(|_| *len += 1);
3511    }
3512}
3513
3514#[cfg(not(no_global_oom_handling))]
3515impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3516    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3517        let count = src.len();
3518        {
3519            let (init, spare) = self.split_at_spare_mut();
3520
3521            // SAFETY:
3522            // - caller guarantees that `src` is a valid index
3523            let source = unsafe { init.get_unchecked(src) };
3524
3525            // SAFETY:
3526            // - Both pointers are created from unique slice references (`&mut [_]`)
3527            //   so they are valid and do not overlap.
3528            // - Elements are :Copy so it's OK to copy them, without doing
3529            //   anything with the original values
3530            // - `count` is equal to the len of `source`, so source is valid for
3531            //   `count` reads
3532            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3533            //   is valid for `count` writes
3534            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3535        }
3536
3537        // SAFETY:
3538        // - The elements were just initialized by `copy_nonoverlapping`
3539        self.len += count;
3540    }
3541}
3542
3543////////////////////////////////////////////////////////////////////////////////
3544// Common trait implementations for Vec
3545////////////////////////////////////////////////////////////////////////////////
3546
3547#[stable(feature = "rust1", since = "1.0.0")]
3548impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3549    type Target = [T];
3550
3551    #[inline]
3552    fn deref(&self) -> &[T] {
3553        self.as_slice()
3554    }
3555}
3556
3557#[stable(feature = "rust1", since = "1.0.0")]
3558impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3559    #[inline]
3560    fn deref_mut(&mut self) -> &mut [T] {
3561        self.as_mut_slice()
3562    }
3563}
3564
3565#[unstable(feature = "deref_pure_trait", issue = "87121")]
3566unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3567
3568#[cfg(not(no_global_oom_handling))]
3569#[stable(feature = "rust1", since = "1.0.0")]
3570impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3571    fn clone(&self) -> Self {
3572        let alloc = self.allocator().clone();
3573        <[T]>::to_vec_in(&**self, alloc)
3574    }
3575
3576    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3577    ///
3578    /// This method is preferred over simply assigning `source.clone()` to `self`,
3579    /// as it avoids reallocation if possible. Additionally, if the element type
3580    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3581    /// elements as well.
3582    ///
3583    /// # Examples
3584    ///
3585    /// ```
3586    /// let x = vec![5, 6, 7];
3587    /// let mut y = vec![8, 9, 10];
3588    /// let yp: *const i32 = y.as_ptr();
3589    ///
3590    /// y.clone_from(&x);
3591    ///
3592    /// // The value is the same
3593    /// assert_eq!(x, y);
3594    ///
3595    /// // And no reallocation occurred
3596    /// assert_eq!(yp, y.as_ptr());
3597    /// ```
3598    fn clone_from(&mut self, source: &Self) {
3599        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3600    }
3601}
3602
3603/// The hash of a vector is the same as that of the corresponding slice,
3604/// as required by the `core::borrow::Borrow` implementation.
3605///
3606/// ```
3607/// use std::hash::BuildHasher;
3608///
3609/// let b = std::hash::RandomState::new();
3610/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3611/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3612/// assert_eq!(b.hash_one(v), b.hash_one(s));
3613/// ```
3614#[stable(feature = "rust1", since = "1.0.0")]
3615impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3616    #[inline]
3617    fn hash<H: Hasher>(&self, state: &mut H) {
3618        Hash::hash(&**self, state)
3619    }
3620}
3621
3622#[stable(feature = "rust1", since = "1.0.0")]
3623impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3624    type Output = I::Output;
3625
3626    #[inline]
3627    fn index(&self, index: I) -> &Self::Output {
3628        Index::index(&**self, index)
3629    }
3630}
3631
3632#[stable(feature = "rust1", since = "1.0.0")]
3633impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3634    #[inline]
3635    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3636        IndexMut::index_mut(&mut **self, index)
3637    }
3638}
3639
3640/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3641///
3642/// # Allocation behavior
3643///
3644/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3645/// That also applies to this trait impl.
3646///
3647/// **Note:** This section covers implementation details and is therefore exempt from
3648/// stability guarantees.
3649///
3650/// Vec may use any or none of the following strategies,
3651/// depending on the supplied iterator:
3652///
3653/// * preallocate based on [`Iterator::size_hint()`]
3654///   * and panic if the number of items is outside the provided lower/upper bounds
3655/// * use an amortized growth strategy similar to `pushing` one item at a time
3656/// * perform the iteration in-place on the original allocation backing the iterator
3657///
3658/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3659/// consumption and improves cache locality. But when big, short-lived allocations are created,
3660/// only a small fraction of their items get collected, no further use is made of the spare capacity
3661/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3662/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3663/// footprint.
3664///
3665/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3666/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3667/// the size of the long-lived struct.
3668///
3669/// [owned slice]: Box
3670///
3671/// ```rust
3672/// # use std::sync::Mutex;
3673/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3674///
3675/// for i in 0..10 {
3676///     let big_temporary: Vec<u16> = (0..1024).collect();
3677///     // discard most items
3678///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3679///     // without this a lot of unused capacity might be moved into the global
3680///     result.shrink_to_fit();
3681///     LONG_LIVED.lock().unwrap().push(result);
3682/// }
3683/// ```
3684#[cfg(not(no_global_oom_handling))]
3685#[stable(feature = "rust1", since = "1.0.0")]
3686impl<T> FromIterator<T> for Vec<T> {
3687    #[inline]
3688    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3689        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3690    }
3691}
3692
3693#[stable(feature = "rust1", since = "1.0.0")]
3694impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3695    type Item = T;
3696    type IntoIter = IntoIter<T, A>;
3697
3698    /// Creates a consuming iterator, that is, one that moves each value out of
3699    /// the vector (from start to end). The vector cannot be used after calling
3700    /// this.
3701    ///
3702    /// # Examples
3703    ///
3704    /// ```
3705    /// let v = vec!["a".to_string(), "b".to_string()];
3706    /// let mut v_iter = v.into_iter();
3707    ///
3708    /// let first_element: Option<String> = v_iter.next();
3709    ///
3710    /// assert_eq!(first_element, Some("a".to_string()));
3711    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3712    /// assert_eq!(v_iter.next(), None);
3713    /// ```
3714    #[inline]
3715    fn into_iter(self) -> Self::IntoIter {
3716        unsafe {
3717            let me = ManuallyDrop::new(self);
3718            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3719            let buf = me.buf.non_null();
3720            let begin = buf.as_ptr();
3721            let end = if T::IS_ZST {
3722                begin.wrapping_byte_add(me.len())
3723            } else {
3724                begin.add(me.len()) as *const T
3725            };
3726            let cap = me.buf.capacity();
3727            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3728        }
3729    }
3730}
3731
3732#[stable(feature = "rust1", since = "1.0.0")]
3733impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3734    type Item = &'a T;
3735    type IntoIter = slice::Iter<'a, T>;
3736
3737    fn into_iter(self) -> Self::IntoIter {
3738        self.iter()
3739    }
3740}
3741
3742#[stable(feature = "rust1", since = "1.0.0")]
3743impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3744    type Item = &'a mut T;
3745    type IntoIter = slice::IterMut<'a, T>;
3746
3747    fn into_iter(self) -> Self::IntoIter {
3748        self.iter_mut()
3749    }
3750}
3751
3752#[cfg(not(no_global_oom_handling))]
3753#[stable(feature = "rust1", since = "1.0.0")]
3754impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3755    #[inline]
3756    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3757        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3758    }
3759
3760    #[inline]
3761    fn extend_one(&mut self, item: T) {
3762        self.push(item);
3763    }
3764
3765    #[inline]
3766    fn extend_reserve(&mut self, additional: usize) {
3767        self.reserve(additional);
3768    }
3769
3770    #[inline]
3771    unsafe fn extend_one_unchecked(&mut self, item: T) {
3772        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3773        unsafe {
3774            let len = self.len();
3775            ptr::write(self.as_mut_ptr().add(len), item);
3776            self.set_len(len + 1);
3777        }
3778    }
3779}
3780
3781impl<T, A: Allocator> Vec<T, A> {
3782    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3783    // they have no further optimizations to apply
3784    #[cfg(not(no_global_oom_handling))]
3785    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3786        // This is the case for a general iterator.
3787        //
3788        // This function should be the moral equivalent of:
3789        //
3790        //      for item in iterator {
3791        //          self.push(item);
3792        //      }
3793        while let Some(element) = iterator.next() {
3794            let len = self.len();
3795            if len == self.capacity() {
3796                let (lower, _) = iterator.size_hint();
3797                self.reserve(lower.saturating_add(1));
3798            }
3799            unsafe {
3800                ptr::write(self.as_mut_ptr().add(len), element);
3801                // Since next() executes user code which can panic we have to bump the length
3802                // after each step.
3803                // NB can't overflow since we would have had to alloc the address space
3804                self.set_len(len + 1);
3805            }
3806        }
3807    }
3808
3809    // specific extend for `TrustedLen` iterators, called both by the specializations
3810    // and internal places where resolving specialization makes compilation slower
3811    #[cfg(not(no_global_oom_handling))]
3812    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3813        let (low, high) = iterator.size_hint();
3814        if let Some(additional) = high {
3815            debug_assert_eq!(
3816                low,
3817                additional,
3818                "TrustedLen iterator's size hint is not exact: {:?}",
3819                (low, high)
3820            );
3821            self.reserve(additional);
3822            unsafe {
3823                let ptr = self.as_mut_ptr();
3824                let mut local_len = SetLenOnDrop::new(&mut self.len);
3825                iterator.for_each(move |element| {
3826                    ptr::write(ptr.add(local_len.current_len()), element);
3827                    // Since the loop executes user code which can panic we have to update
3828                    // the length every step to correctly drop what we've written.
3829                    // NB can't overflow since we would have had to alloc the address space
3830                    local_len.increment_len(1);
3831                });
3832            }
3833        } else {
3834            // Per TrustedLen contract a `None` upper bound means that the iterator length
3835            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3836            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3837            // This avoids additional codegen for a fallback code path which would eventually
3838            // panic anyway.
3839            panic!("capacity overflow");
3840        }
3841    }
3842
3843    /// Creates a splicing iterator that replaces the specified range in the vector
3844    /// with the given `replace_with` iterator and yields the removed items.
3845    /// `replace_with` does not need to be the same length as `range`.
3846    ///
3847    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3848    ///
3849    /// It is unspecified how many elements are removed from the vector
3850    /// if the `Splice` value is leaked.
3851    ///
3852    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3853    ///
3854    /// This is optimal if:
3855    ///
3856    /// * The tail (elements in the vector after `range`) is empty,
3857    /// * or `replace_with` yields fewer or equal elements than `range`'s length
3858    /// * or the lower bound of its `size_hint()` is exact.
3859    ///
3860    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3861    ///
3862    /// # Panics
3863    ///
3864    /// Panics if the range has `start_bound > end_bound`, or, if the range is
3865    /// bounded on either end and past the length of the vector.
3866    ///
3867    /// # Examples
3868    ///
3869    /// ```
3870    /// let mut v = vec![1, 2, 3, 4];
3871    /// let new = [7, 8, 9];
3872    /// let u: Vec<_> = v.splice(1..3, new).collect();
3873    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3874    /// assert_eq!(u, [2, 3]);
3875    /// ```
3876    ///
3877    /// Using `splice` to insert new items into a vector efficiently at a specific position
3878    /// indicated by an empty range:
3879    ///
3880    /// ```
3881    /// let mut v = vec![1, 5];
3882    /// let new = [2, 3, 4];
3883    /// v.splice(1..1, new);
3884    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3885    /// ```
3886    #[cfg(not(no_global_oom_handling))]
3887    #[inline]
3888    #[stable(feature = "vec_splice", since = "1.21.0")]
3889    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3890    where
3891        R: RangeBounds<usize>,
3892        I: IntoIterator<Item = T>,
3893    {
3894        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3895    }
3896
3897    /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
3898    ///
3899    /// If the closure returns `true`, the element is removed from the vector
3900    /// and yielded. If the closure returns `false`, or panics, the element
3901    /// remains in the vector and will not be yielded.
3902    ///
3903    /// Only elements that fall in the provided range are considered for extraction, but any elements
3904    /// after the range will still have to be moved if any element has been extracted.
3905    ///
3906    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3907    /// or the iteration short-circuits, then the remaining elements will be retained.
3908    /// Use [`retain_mut`] with a negated predicate if you do not need the returned iterator.
3909    ///
3910    /// [`retain_mut`]: Vec::retain_mut
3911    ///
3912    /// Using this method is equivalent to the following code:
3913    ///
3914    /// ```
3915    /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
3916    /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
3917    /// # let mut vec2 = vec.clone();
3918    /// # let range = 1..5;
3919    /// let mut i = range.start;
3920    /// let end_items = vec.len() - range.end;
3921    /// # let mut extracted = vec![];
3922    ///
3923    /// while i < vec.len() - end_items {
3924    ///     if some_predicate(&mut vec[i]) {
3925    ///         let val = vec.remove(i);
3926    ///         // your code here
3927    /// #         extracted.push(val);
3928    ///     } else {
3929    ///         i += 1;
3930    ///     }
3931    /// }
3932    ///
3933    /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
3934    /// # assert_eq!(vec, vec2);
3935    /// # assert_eq!(extracted, extracted2);
3936    /// ```
3937    ///
3938    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3939    /// because it can backshift the elements of the array in bulk.
3940    ///
3941    /// The iterator also lets you mutate the value of each element in the
3942    /// closure, regardless of whether you choose to keep or remove it.
3943    ///
3944    /// # Panics
3945    ///
3946    /// If `range` is out of bounds.
3947    ///
3948    /// # Examples
3949    ///
3950    /// Splitting a vector into even and odd values, reusing the original vector:
3951    ///
3952    /// ```
3953    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3954    ///
3955    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
3956    /// let odds = numbers;
3957    ///
3958    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3959    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3960    /// ```
3961    ///
3962    /// Using the range argument to only process a part of the vector:
3963    ///
3964    /// ```
3965    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
3966    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
3967    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
3968    /// assert_eq!(ones.len(), 3);
3969    /// ```
3970    #[stable(feature = "extract_if", since = "1.87.0")]
3971    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
3972    where
3973        F: FnMut(&mut T) -> bool,
3974        R: RangeBounds<usize>,
3975    {
3976        ExtractIf::new(self, filter, range)
3977    }
3978}
3979
3980/// Extend implementation that copies elements out of references before pushing them onto the Vec.
3981///
3982/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3983/// append the entire slice at once.
3984///
3985/// [`copy_from_slice`]: slice::copy_from_slice
3986#[cfg(not(no_global_oom_handling))]
3987#[stable(feature = "extend_ref", since = "1.2.0")]
3988impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
3989    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3990        self.spec_extend(iter.into_iter())
3991    }
3992
3993    #[inline]
3994    fn extend_one(&mut self, &item: &'a T) {
3995        self.push(item);
3996    }
3997
3998    #[inline]
3999    fn extend_reserve(&mut self, additional: usize) {
4000        self.reserve(additional);
4001    }
4002
4003    #[inline]
4004    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4005        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4006        unsafe {
4007            let len = self.len();
4008            ptr::write(self.as_mut_ptr().add(len), item);
4009            self.set_len(len + 1);
4010        }
4011    }
4012}
4013
4014/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4015#[stable(feature = "rust1", since = "1.0.0")]
4016impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4017where
4018    T: PartialOrd,
4019    A1: Allocator,
4020    A2: Allocator,
4021{
4022    #[inline]
4023    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4024        PartialOrd::partial_cmp(&**self, &**other)
4025    }
4026}
4027
4028#[stable(feature = "rust1", since = "1.0.0")]
4029impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4030
4031/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4032#[stable(feature = "rust1", since = "1.0.0")]
4033impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4034    #[inline]
4035    fn cmp(&self, other: &Self) -> Ordering {
4036        Ord::cmp(&**self, &**other)
4037    }
4038}
4039
4040#[stable(feature = "rust1", since = "1.0.0")]
4041unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4042    fn drop(&mut self) {
4043        unsafe {
4044            // use drop for [T]
4045            // use a raw slice to refer to the elements of the vector as weakest necessary type;
4046            // could avoid questions of validity in certain cases
4047            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4048        }
4049        // RawVec handles deallocation
4050    }
4051}
4052
4053#[stable(feature = "rust1", since = "1.0.0")]
4054#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4055impl<T> const Default for Vec<T> {
4056    /// Creates an empty `Vec<T>`.
4057    ///
4058    /// The vector will not allocate until elements are pushed onto it.
4059    fn default() -> Vec<T> {
4060        Vec::new()
4061    }
4062}
4063
4064#[stable(feature = "rust1", since = "1.0.0")]
4065impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4066    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4067        fmt::Debug::fmt(&**self, f)
4068    }
4069}
4070
4071#[stable(feature = "rust1", since = "1.0.0")]
4072impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4073    fn as_ref(&self) -> &Vec<T, A> {
4074        self
4075    }
4076}
4077
4078#[stable(feature = "vec_as_mut", since = "1.5.0")]
4079impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4080    fn as_mut(&mut self) -> &mut Vec<T, A> {
4081        self
4082    }
4083}
4084
4085#[stable(feature = "rust1", since = "1.0.0")]
4086impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4087    fn as_ref(&self) -> &[T] {
4088        self
4089    }
4090}
4091
4092#[stable(feature = "vec_as_mut", since = "1.5.0")]
4093impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4094    fn as_mut(&mut self) -> &mut [T] {
4095        self
4096    }
4097}
4098
4099#[cfg(not(no_global_oom_handling))]
4100#[stable(feature = "rust1", since = "1.0.0")]
4101impl<T: Clone> From<&[T]> for Vec<T> {
4102    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4103    ///
4104    /// # Examples
4105    ///
4106    /// ```
4107    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4108    /// ```
4109    fn from(s: &[T]) -> Vec<T> {
4110        s.to_vec()
4111    }
4112}
4113
4114#[cfg(not(no_global_oom_handling))]
4115#[stable(feature = "vec_from_mut", since = "1.19.0")]
4116impl<T: Clone> From<&mut [T]> for Vec<T> {
4117    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4118    ///
4119    /// # Examples
4120    ///
4121    /// ```
4122    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4123    /// ```
4124    fn from(s: &mut [T]) -> Vec<T> {
4125        s.to_vec()
4126    }
4127}
4128
4129#[cfg(not(no_global_oom_handling))]
4130#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4131impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4132    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4133    ///
4134    /// # Examples
4135    ///
4136    /// ```
4137    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4138    /// ```
4139    fn from(s: &[T; N]) -> Vec<T> {
4140        Self::from(s.as_slice())
4141    }
4142}
4143
4144#[cfg(not(no_global_oom_handling))]
4145#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4146impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4147    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4148    ///
4149    /// # Examples
4150    ///
4151    /// ```
4152    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4153    /// ```
4154    fn from(s: &mut [T; N]) -> Vec<T> {
4155        Self::from(s.as_mut_slice())
4156    }
4157}
4158
4159#[cfg(not(no_global_oom_handling))]
4160#[stable(feature = "vec_from_array", since = "1.44.0")]
4161impl<T, const N: usize> From<[T; N]> for Vec<T> {
4162    /// Allocates a `Vec<T>` and moves `s`'s items into it.
4163    ///
4164    /// # Examples
4165    ///
4166    /// ```
4167    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4168    /// ```
4169    fn from(s: [T; N]) -> Vec<T> {
4170        <[T]>::into_vec(Box::new(s))
4171    }
4172}
4173
4174#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4175impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4176where
4177    [T]: ToOwned<Owned = Vec<T>>,
4178{
4179    /// Converts a clone-on-write slice into a vector.
4180    ///
4181    /// If `s` already owns a `Vec<T>`, it will be returned directly.
4182    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4183    /// filled by cloning `s`'s items into it.
4184    ///
4185    /// # Examples
4186    ///
4187    /// ```
4188    /// # use std::borrow::Cow;
4189    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4190    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4191    /// assert_eq!(Vec::from(o), Vec::from(b));
4192    /// ```
4193    fn from(s: Cow<'a, [T]>) -> Vec<T> {
4194        s.into_owned()
4195    }
4196}
4197
4198// note: test pulls in std, which causes errors here
4199#[stable(feature = "vec_from_box", since = "1.18.0")]
4200impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4201    /// Converts a boxed slice into a vector by transferring ownership of
4202    /// the existing heap allocation.
4203    ///
4204    /// # Examples
4205    ///
4206    /// ```
4207    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4208    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4209    /// ```
4210    fn from(s: Box<[T], A>) -> Self {
4211        s.into_vec()
4212    }
4213}
4214
4215// note: test pulls in std, which causes errors here
4216#[cfg(not(no_global_oom_handling))]
4217#[stable(feature = "box_from_vec", since = "1.20.0")]
4218impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4219    /// Converts a vector into a boxed slice.
4220    ///
4221    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4222    ///
4223    /// [owned slice]: Box
4224    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4225    ///
4226    /// # Examples
4227    ///
4228    /// ```
4229    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4230    /// ```
4231    ///
4232    /// Any excess capacity is removed:
4233    /// ```
4234    /// let mut vec = Vec::with_capacity(10);
4235    /// vec.extend([1, 2, 3]);
4236    ///
4237    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4238    /// ```
4239    fn from(v: Vec<T, A>) -> Self {
4240        v.into_boxed_slice()
4241    }
4242}
4243
4244#[cfg(not(no_global_oom_handling))]
4245#[stable(feature = "rust1", since = "1.0.0")]
4246impl From<&str> for Vec<u8> {
4247    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4248    ///
4249    /// # Examples
4250    ///
4251    /// ```
4252    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4253    /// ```
4254    fn from(s: &str) -> Vec<u8> {
4255        From::from(s.as_bytes())
4256    }
4257}
4258
4259#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4260impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4261    type Error = Vec<T, A>;
4262
4263    /// Gets the entire contents of the `Vec<T>` as an array,
4264    /// if its size exactly matches that of the requested array.
4265    ///
4266    /// # Examples
4267    ///
4268    /// ```
4269    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4270    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4271    /// ```
4272    ///
4273    /// If the length doesn't match, the input comes back in `Err`:
4274    /// ```
4275    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4276    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4277    /// ```
4278    ///
4279    /// If you're fine with just getting a prefix of the `Vec<T>`,
4280    /// you can call [`.truncate(N)`](Vec::truncate) first.
4281    /// ```
4282    /// let mut v = String::from("hello world").into_bytes();
4283    /// v.sort();
4284    /// v.truncate(2);
4285    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4286    /// assert_eq!(a, b' ');
4287    /// assert_eq!(b, b'd');
4288    /// ```
4289    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4290        if vec.len() != N {
4291            return Err(vec);
4292        }
4293
4294        // SAFETY: `.set_len(0)` is always sound.
4295        unsafe { vec.set_len(0) };
4296
4297        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4298        // the alignment the array needs is the same as the items.
4299        // We checked earlier that we have sufficient items.
4300        // The items will not double-drop as the `set_len`
4301        // tells the `Vec` not to also drop them.
4302        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4303        Ok(array)
4304    }
4305}