core/array/mod.rs
1//! Utilities for the array primitive type.
2//!
3//! *[See also the array primitive type](array).*
4
5#![stable(feature = "core_array", since = "1.35.0")]
6
7use crate::borrow::{Borrow, BorrowMut};
8use crate::cmp::Ordering;
9use crate::convert::Infallible;
10use crate::error::Error;
11use crate::fmt;
12use crate::hash::{self, Hash};
13use crate::intrinsics::transmute_unchecked;
14use crate::iter::{UncheckedIterator, repeat_n};
15use crate::mem::{self, MaybeUninit};
16use crate::ops::{
17 ChangeOutputType, ControlFlow, FromResidual, Index, IndexMut, NeverShortCircuit, Residual, Try,
18};
19use crate::ptr::{null, null_mut};
20use crate::slice::{Iter, IterMut};
21
22mod ascii;
23mod drain;
24mod equality;
25mod iter;
26
27pub(crate) use drain::drain_array_with;
28#[stable(feature = "array_value_iter", since = "1.51.0")]
29pub use iter::IntoIter;
30
31/// Creates an array of type `[T; N]` by repeatedly cloning a value.
32///
33/// This is the same as `[val; N]`, but it also works for types that do not
34/// implement [`Copy`].
35///
36/// The provided value will be used as an element of the resulting array and
37/// will be cloned N - 1 times to fill up the rest. If N is zero, the value
38/// will be dropped.
39///
40/// # Example
41///
42/// Creating multiple copies of a `String`:
43/// ```rust
44/// use std::array;
45///
46/// let string = "Hello there!".to_string();
47/// let strings = array::repeat(string);
48/// assert_eq!(strings, ["Hello there!", "Hello there!"]);
49/// ```
50#[inline]
51#[must_use = "cloning is often expensive and is not expected to have side effects"]
52#[stable(feature = "array_repeat", since = "CURRENT_RUSTC_VERSION")]
53pub fn repeat<T: Clone, const N: usize>(val: T) -> [T; N] {
54 from_trusted_iterator(repeat_n(val, N))
55}
56
57/// Creates an array where each element is produced by calling `f` with
58/// that element's index while walking forward through the array.
59///
60/// This is essentially the same as writing
61/// ```text
62/// [f(0), f(1), f(2), …, f(N - 2), f(N - 1)]
63/// ```
64/// and is similar to `(0..i).map(f)`, just for arrays not iterators.
65///
66/// If `N == 0`, this produces an empty array without ever calling `f`.
67///
68/// # Example
69///
70/// ```rust
71/// // type inference is helping us here, the way `from_fn` knows how many
72/// // elements to produce is the length of array down there: only arrays of
73/// // equal lengths can be compared, so the const generic parameter `N` is
74/// // inferred to be 5, thus creating array of 5 elements.
75///
76/// let array = core::array::from_fn(|i| i);
77/// // indexes are: 0 1 2 3 4
78/// assert_eq!(array, [0, 1, 2, 3, 4]);
79///
80/// let array2: [usize; 8] = core::array::from_fn(|i| i * 2);
81/// // indexes are: 0 1 2 3 4 5 6 7
82/// assert_eq!(array2, [0, 2, 4, 6, 8, 10, 12, 14]);
83///
84/// let bool_arr = core::array::from_fn::<_, 5, _>(|i| i % 2 == 0);
85/// // indexes are: 0 1 2 3 4
86/// assert_eq!(bool_arr, [true, false, true, false, true]);
87/// ```
88///
89/// You can also capture things, for example to create an array full of clones
90/// where you can't just use `[item; N]` because it's not `Copy`:
91/// ```
92/// # // TBH `array::repeat` would be better for this, but it's not stable yet.
93/// let my_string = String::from("Hello");
94/// let clones: [String; 42] = std::array::from_fn(|_| my_string.clone());
95/// assert!(clones.iter().all(|x| *x == my_string));
96/// ```
97///
98/// The array is generated in ascending index order, starting from the front
99/// and going towards the back, so you can use closures with mutable state:
100/// ```
101/// let mut state = 1;
102/// let a = std::array::from_fn(|_| { let x = state; state *= 2; x });
103/// assert_eq!(a, [1, 2, 4, 8, 16, 32]);
104/// ```
105#[inline]
106#[stable(feature = "array_from_fn", since = "1.63.0")]
107pub fn from_fn<T, const N: usize, F>(f: F) -> [T; N]
108where
109 F: FnMut(usize) -> T,
110{
111 try_from_fn(NeverShortCircuit::wrap_mut_1(f)).0
112}
113
114/// Creates an array `[T; N]` where each fallible array element `T` is returned by the `cb` call.
115/// Unlike [`from_fn`], where the element creation can't fail, this version will return an error
116/// if any element creation was unsuccessful.
117///
118/// The return type of this function depends on the return type of the closure.
119/// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`.
120/// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
121///
122/// # Arguments
123///
124/// * `cb`: Callback where the passed argument is the current array index.
125///
126/// # Example
127///
128/// ```rust
129/// #![feature(array_try_from_fn)]
130///
131/// let array: Result<[u8; 5], _> = std::array::try_from_fn(|i| i.try_into());
132/// assert_eq!(array, Ok([0, 1, 2, 3, 4]));
133///
134/// let array: Result<[i8; 200], _> = std::array::try_from_fn(|i| i.try_into());
135/// assert!(array.is_err());
136///
137/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_add(100));
138/// assert_eq!(array, Some([100, 101, 102, 103]));
139///
140/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_sub(100));
141/// assert_eq!(array, None);
142/// ```
143#[inline]
144#[unstable(feature = "array_try_from_fn", issue = "89379")]
145pub fn try_from_fn<R, const N: usize, F>(cb: F) -> ChangeOutputType<R, [R::Output; N]>
146where
147 F: FnMut(usize) -> R,
148 R: Try,
149 R::Residual: Residual<[R::Output; N]>,
150{
151 let mut array = [const { MaybeUninit::uninit() }; N];
152 match try_from_fn_erased(&mut array, cb) {
153 ControlFlow::Break(r) => FromResidual::from_residual(r),
154 ControlFlow::Continue(()) => {
155 // SAFETY: All elements of the array were populated.
156 try { unsafe { MaybeUninit::array_assume_init(array) } }
157 }
158 }
159}
160
161/// Converts a reference to `T` into a reference to an array of length 1 (without copying).
162#[stable(feature = "array_from_ref", since = "1.53.0")]
163#[rustc_const_stable(feature = "const_array_from_ref_shared", since = "1.63.0")]
164pub const fn from_ref<T>(s: &T) -> &[T; 1] {
165 // SAFETY: Converting `&T` to `&[T; 1]` is sound.
166 unsafe { &*(s as *const T).cast::<[T; 1]>() }
167}
168
169/// Converts a mutable reference to `T` into a mutable reference to an array of length 1 (without copying).
170#[stable(feature = "array_from_ref", since = "1.53.0")]
171#[rustc_const_stable(feature = "const_array_from_ref", since = "1.83.0")]
172pub const fn from_mut<T>(s: &mut T) -> &mut [T; 1] {
173 // SAFETY: Converting `&mut T` to `&mut [T; 1]` is sound.
174 unsafe { &mut *(s as *mut T).cast::<[T; 1]>() }
175}
176
177/// The error type returned when a conversion from a slice to an array fails.
178#[stable(feature = "try_from", since = "1.34.0")]
179#[derive(Debug, Copy, Clone)]
180pub struct TryFromSliceError(());
181
182#[stable(feature = "core_array", since = "1.35.0")]
183impl fmt::Display for TryFromSliceError {
184 #[inline]
185 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
186 "could not convert slice to array".fmt(f)
187 }
188}
189
190#[stable(feature = "try_from", since = "1.34.0")]
191impl Error for TryFromSliceError {}
192
193#[stable(feature = "try_from_slice_error", since = "1.36.0")]
194#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
195impl const From<Infallible> for TryFromSliceError {
196 fn from(x: Infallible) -> TryFromSliceError {
197 match x {}
198 }
199}
200
201#[stable(feature = "rust1", since = "1.0.0")]
202#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
203impl<T, const N: usize> const AsRef<[T]> for [T; N] {
204 #[inline]
205 fn as_ref(&self) -> &[T] {
206 &self[..]
207 }
208}
209
210#[stable(feature = "rust1", since = "1.0.0")]
211#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
212impl<T, const N: usize> const AsMut<[T]> for [T; N] {
213 #[inline]
214 fn as_mut(&mut self) -> &mut [T] {
215 &mut self[..]
216 }
217}
218
219#[stable(feature = "array_borrow", since = "1.4.0")]
220#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
221impl<T, const N: usize> const Borrow<[T]> for [T; N] {
222 fn borrow(&self) -> &[T] {
223 self
224 }
225}
226
227#[stable(feature = "array_borrow", since = "1.4.0")]
228#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
229impl<T, const N: usize> const BorrowMut<[T]> for [T; N] {
230 fn borrow_mut(&mut self) -> &mut [T] {
231 self
232 }
233}
234
235/// Tries to create an array `[T; N]` by copying from a slice `&[T]`.
236/// Succeeds if `slice.len() == N`.
237///
238/// ```
239/// let bytes: [u8; 3] = [1, 0, 2];
240///
241/// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&bytes[0..2]).unwrap();
242/// assert_eq!(1, u16::from_le_bytes(bytes_head));
243///
244/// let bytes_tail: [u8; 2] = bytes[1..3].try_into().unwrap();
245/// assert_eq!(512, u16::from_le_bytes(bytes_tail));
246/// ```
247#[stable(feature = "try_from", since = "1.34.0")]
248#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
249impl<T, const N: usize> const TryFrom<&[T]> for [T; N]
250where
251 T: Copy,
252{
253 type Error = TryFromSliceError;
254
255 #[inline]
256 fn try_from(slice: &[T]) -> Result<[T; N], TryFromSliceError> {
257 <&Self>::try_from(slice).copied()
258 }
259}
260
261/// Tries to create an array `[T; N]` by copying from a mutable slice `&mut [T]`.
262/// Succeeds if `slice.len() == N`.
263///
264/// ```
265/// let mut bytes: [u8; 3] = [1, 0, 2];
266///
267/// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
268/// assert_eq!(1, u16::from_le_bytes(bytes_head));
269///
270/// let bytes_tail: [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
271/// assert_eq!(512, u16::from_le_bytes(bytes_tail));
272/// ```
273#[stable(feature = "try_from_mut_slice_to_array", since = "1.59.0")]
274#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
275impl<T, const N: usize> const TryFrom<&mut [T]> for [T; N]
276where
277 T: Copy,
278{
279 type Error = TryFromSliceError;
280
281 #[inline]
282 fn try_from(slice: &mut [T]) -> Result<[T; N], TryFromSliceError> {
283 <Self>::try_from(&*slice)
284 }
285}
286
287/// Tries to create an array ref `&[T; N]` from a slice ref `&[T]`. Succeeds if
288/// `slice.len() == N`.
289///
290/// ```
291/// let bytes: [u8; 3] = [1, 0, 2];
292///
293/// let bytes_head: &[u8; 2] = <&[u8; 2]>::try_from(&bytes[0..2]).unwrap();
294/// assert_eq!(1, u16::from_le_bytes(*bytes_head));
295///
296/// let bytes_tail: &[u8; 2] = bytes[1..3].try_into().unwrap();
297/// assert_eq!(512, u16::from_le_bytes(*bytes_tail));
298/// ```
299#[stable(feature = "try_from", since = "1.34.0")]
300#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
301impl<'a, T, const N: usize> const TryFrom<&'a [T]> for &'a [T; N] {
302 type Error = TryFromSliceError;
303
304 #[inline]
305 fn try_from(slice: &'a [T]) -> Result<&'a [T; N], TryFromSliceError> {
306 slice.as_array().ok_or(TryFromSliceError(()))
307 }
308}
309
310/// Tries to create a mutable array ref `&mut [T; N]` from a mutable slice ref
311/// `&mut [T]`. Succeeds if `slice.len() == N`.
312///
313/// ```
314/// let mut bytes: [u8; 3] = [1, 0, 2];
315///
316/// let bytes_head: &mut [u8; 2] = <&mut [u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
317/// assert_eq!(1, u16::from_le_bytes(*bytes_head));
318///
319/// let bytes_tail: &mut [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
320/// assert_eq!(512, u16::from_le_bytes(*bytes_tail));
321/// ```
322#[stable(feature = "try_from", since = "1.34.0")]
323#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
324impl<'a, T, const N: usize> const TryFrom<&'a mut [T]> for &'a mut [T; N] {
325 type Error = TryFromSliceError;
326
327 #[inline]
328 fn try_from(slice: &'a mut [T]) -> Result<&'a mut [T; N], TryFromSliceError> {
329 slice.as_mut_array().ok_or(TryFromSliceError(()))
330 }
331}
332
333/// The hash of an array is the same as that of the corresponding slice,
334/// as required by the `Borrow` implementation.
335///
336/// ```
337/// use std::hash::BuildHasher;
338///
339/// let b = std::hash::RandomState::new();
340/// let a: [u8; 3] = [0xa8, 0x3c, 0x09];
341/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
342/// assert_eq!(b.hash_one(a), b.hash_one(s));
343/// ```
344#[stable(feature = "rust1", since = "1.0.0")]
345impl<T: Hash, const N: usize> Hash for [T; N] {
346 fn hash<H: hash::Hasher>(&self, state: &mut H) {
347 Hash::hash(&self[..], state)
348 }
349}
350
351#[stable(feature = "rust1", since = "1.0.0")]
352impl<T: fmt::Debug, const N: usize> fmt::Debug for [T; N] {
353 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
354 fmt::Debug::fmt(&&self[..], f)
355 }
356}
357
358#[stable(feature = "rust1", since = "1.0.0")]
359impl<'a, T, const N: usize> IntoIterator for &'a [T; N] {
360 type Item = &'a T;
361 type IntoIter = Iter<'a, T>;
362
363 fn into_iter(self) -> Iter<'a, T> {
364 self.iter()
365 }
366}
367
368#[stable(feature = "rust1", since = "1.0.0")]
369impl<'a, T, const N: usize> IntoIterator for &'a mut [T; N] {
370 type Item = &'a mut T;
371 type IntoIter = IterMut<'a, T>;
372
373 fn into_iter(self) -> IterMut<'a, T> {
374 self.iter_mut()
375 }
376}
377
378#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
379#[rustc_const_unstable(feature = "const_index", issue = "143775")]
380impl<T, I, const N: usize> const Index<I> for [T; N]
381where
382 [T]: [const] Index<I>,
383{
384 type Output = <[T] as Index<I>>::Output;
385
386 #[inline]
387 fn index(&self, index: I) -> &Self::Output {
388 Index::index(self as &[T], index)
389 }
390}
391
392#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
393#[rustc_const_unstable(feature = "const_index", issue = "143775")]
394impl<T, I, const N: usize> const IndexMut<I> for [T; N]
395where
396 [T]: [const] IndexMut<I>,
397{
398 #[inline]
399 fn index_mut(&mut self, index: I) -> &mut Self::Output {
400 IndexMut::index_mut(self as &mut [T], index)
401 }
402}
403
404/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
405#[stable(feature = "rust1", since = "1.0.0")]
406impl<T: PartialOrd, const N: usize> PartialOrd for [T; N] {
407 #[inline]
408 fn partial_cmp(&self, other: &[T; N]) -> Option<Ordering> {
409 PartialOrd::partial_cmp(&&self[..], &&other[..])
410 }
411 #[inline]
412 fn lt(&self, other: &[T; N]) -> bool {
413 PartialOrd::lt(&&self[..], &&other[..])
414 }
415 #[inline]
416 fn le(&self, other: &[T; N]) -> bool {
417 PartialOrd::le(&&self[..], &&other[..])
418 }
419 #[inline]
420 fn ge(&self, other: &[T; N]) -> bool {
421 PartialOrd::ge(&&self[..], &&other[..])
422 }
423 #[inline]
424 fn gt(&self, other: &[T; N]) -> bool {
425 PartialOrd::gt(&&self[..], &&other[..])
426 }
427}
428
429/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
430#[stable(feature = "rust1", since = "1.0.0")]
431impl<T: Ord, const N: usize> Ord for [T; N] {
432 #[inline]
433 fn cmp(&self, other: &[T; N]) -> Ordering {
434 Ord::cmp(&&self[..], &&other[..])
435 }
436}
437
438#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
439impl<T: Copy, const N: usize> Copy for [T; N] {}
440
441#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
442impl<T: Clone, const N: usize> Clone for [T; N] {
443 #[inline]
444 fn clone(&self) -> Self {
445 SpecArrayClone::clone(self)
446 }
447
448 #[inline]
449 fn clone_from(&mut self, other: &Self) {
450 self.clone_from_slice(other);
451 }
452}
453
454trait SpecArrayClone: Clone {
455 fn clone<const N: usize>(array: &[Self; N]) -> [Self; N];
456}
457
458impl<T: Clone> SpecArrayClone for T {
459 #[inline]
460 default fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
461 from_trusted_iterator(array.iter().cloned())
462 }
463}
464
465impl<T: Copy> SpecArrayClone for T {
466 #[inline]
467 fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
468 *array
469 }
470}
471
472// The Default impls cannot be done with const generics because `[T; 0]` doesn't
473// require Default to be implemented, and having different impl blocks for
474// different numbers isn't supported yet.
475
476macro_rules! array_impl_default {
477 {$n:expr, $t:ident $($ts:ident)*} => {
478 #[stable(since = "1.4.0", feature = "array_default")]
479 impl<T> Default for [T; $n] where T: Default {
480 fn default() -> [T; $n] {
481 [$t::default(), $($ts::default()),*]
482 }
483 }
484 array_impl_default!{($n - 1), $($ts)*}
485 };
486 {$n:expr,} => {
487 #[stable(since = "1.4.0", feature = "array_default")]
488 impl<T> Default for [T; $n] {
489 fn default() -> [T; $n] { [] }
490 }
491 };
492}
493
494array_impl_default! {32, T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T}
495
496impl<T, const N: usize> [T; N] {
497 /// Returns an array of the same size as `self`, with function `f` applied to each element
498 /// in order.
499 ///
500 /// If you don't necessarily need a new fixed-size array, consider using
501 /// [`Iterator::map`] instead.
502 ///
503 ///
504 /// # Note on performance and stack usage
505 ///
506 /// Unfortunately, usages of this method are currently not always optimized
507 /// as well as they could be. This mainly concerns large arrays, as mapping
508 /// over small arrays seem to be optimized just fine. Also note that in
509 /// debug mode (i.e. without any optimizations), this method can use a lot
510 /// of stack space (a few times the size of the array or more).
511 ///
512 /// Therefore, in performance-critical code, try to avoid using this method
513 /// on large arrays or check the emitted code. Also try to avoid chained
514 /// maps (e.g. `arr.map(...).map(...)`).
515 ///
516 /// In many cases, you can instead use [`Iterator::map`] by calling `.iter()`
517 /// or `.into_iter()` on your array. `[T; N]::map` is only necessary if you
518 /// really need a new array of the same size as the result. Rust's lazy
519 /// iterators tend to get optimized very well.
520 ///
521 ///
522 /// # Examples
523 ///
524 /// ```
525 /// let x = [1, 2, 3];
526 /// let y = x.map(|v| v + 1);
527 /// assert_eq!(y, [2, 3, 4]);
528 ///
529 /// let x = [1, 2, 3];
530 /// let mut temp = 0;
531 /// let y = x.map(|v| { temp += 1; v * temp });
532 /// assert_eq!(y, [1, 4, 9]);
533 ///
534 /// let x = ["Ferris", "Bueller's", "Day", "Off"];
535 /// let y = x.map(|v| v.len());
536 /// assert_eq!(y, [6, 9, 3, 3]);
537 /// ```
538 #[must_use]
539 #[stable(feature = "array_map", since = "1.55.0")]
540 pub fn map<F, U>(self, f: F) -> [U; N]
541 where
542 F: FnMut(T) -> U,
543 {
544 self.try_map(NeverShortCircuit::wrap_mut_1(f)).0
545 }
546
547 /// A fallible function `f` applied to each element on array `self` in order to
548 /// return an array the same size as `self` or the first error encountered.
549 ///
550 /// The return type of this function depends on the return type of the closure.
551 /// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`.
552 /// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
553 ///
554 /// # Examples
555 ///
556 /// ```
557 /// #![feature(array_try_map)]
558 ///
559 /// let a = ["1", "2", "3"];
560 /// let b = a.try_map(|v| v.parse::<u32>()).unwrap().map(|v| v + 1);
561 /// assert_eq!(b, [2, 3, 4]);
562 ///
563 /// let a = ["1", "2a", "3"];
564 /// let b = a.try_map(|v| v.parse::<u32>());
565 /// assert!(b.is_err());
566 ///
567 /// use std::num::NonZero;
568 ///
569 /// let z = [1, 2, 0, 3, 4];
570 /// assert_eq!(z.try_map(NonZero::new), None);
571 ///
572 /// let a = [1, 2, 3];
573 /// let b = a.try_map(NonZero::new);
574 /// let c = b.map(|x| x.map(NonZero::get));
575 /// assert_eq!(c, Some(a));
576 /// ```
577 #[unstable(feature = "array_try_map", issue = "79711")]
578 pub fn try_map<R>(self, f: impl FnMut(T) -> R) -> ChangeOutputType<R, [R::Output; N]>
579 where
580 R: Try<Residual: Residual<[R::Output; N]>>,
581 {
582 drain_array_with(self, |iter| try_from_trusted_iterator(iter.map(f)))
583 }
584
585 /// Returns a slice containing the entire array. Equivalent to `&s[..]`.
586 #[stable(feature = "array_as_slice", since = "1.57.0")]
587 #[rustc_const_stable(feature = "array_as_slice", since = "1.57.0")]
588 pub const fn as_slice(&self) -> &[T] {
589 self
590 }
591
592 /// Returns a mutable slice containing the entire array. Equivalent to
593 /// `&mut s[..]`.
594 #[stable(feature = "array_as_slice", since = "1.57.0")]
595 #[rustc_const_stable(feature = "const_array_as_mut_slice", since = "1.89.0")]
596 pub const fn as_mut_slice(&mut self) -> &mut [T] {
597 self
598 }
599
600 /// Borrows each element and returns an array of references with the same
601 /// size as `self`.
602 ///
603 ///
604 /// # Example
605 ///
606 /// ```
607 /// let floats = [3.1, 2.7, -1.0];
608 /// let float_refs: [&f64; 3] = floats.each_ref();
609 /// assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);
610 /// ```
611 ///
612 /// This method is particularly useful if combined with other methods, like
613 /// [`map`](#method.map). This way, you can avoid moving the original
614 /// array if its elements are not [`Copy`].
615 ///
616 /// ```
617 /// let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
618 /// let is_ascii = strings.each_ref().map(|s| s.is_ascii());
619 /// assert_eq!(is_ascii, [true, false, true]);
620 ///
621 /// // We can still access the original array: it has not been moved.
622 /// assert_eq!(strings.len(), 3);
623 /// ```
624 #[stable(feature = "array_methods", since = "1.77.0")]
625 #[rustc_const_stable(feature = "const_array_each_ref", since = "CURRENT_RUSTC_VERSION")]
626 pub const fn each_ref(&self) -> [&T; N] {
627 let mut buf = [null::<T>(); N];
628
629 // FIXME(const_trait_impl): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions.
630 let mut i = 0;
631 while i < N {
632 buf[i] = &raw const self[i];
633
634 i += 1;
635 }
636
637 // SAFETY: `*const T` has the same layout as `&T`, and we've also initialised each pointer as a valid reference.
638 unsafe { transmute_unchecked(buf) }
639 }
640
641 /// Borrows each element mutably and returns an array of mutable references
642 /// with the same size as `self`.
643 ///
644 ///
645 /// # Example
646 ///
647 /// ```
648 ///
649 /// let mut floats = [3.1, 2.7, -1.0];
650 /// let float_refs: [&mut f64; 3] = floats.each_mut();
651 /// *float_refs[0] = 0.0;
652 /// assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]);
653 /// assert_eq!(floats, [0.0, 2.7, -1.0]);
654 /// ```
655 #[stable(feature = "array_methods", since = "1.77.0")]
656 #[rustc_const_stable(feature = "const_array_each_ref", since = "CURRENT_RUSTC_VERSION")]
657 pub const fn each_mut(&mut self) -> [&mut T; N] {
658 let mut buf = [null_mut::<T>(); N];
659
660 // FIXME(const_trait_impl): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions.
661 let mut i = 0;
662 while i < N {
663 buf[i] = &raw mut self[i];
664
665 i += 1;
666 }
667
668 // SAFETY: `*mut T` has the same layout as `&mut T`, and we've also initialised each pointer as a valid reference.
669 unsafe { transmute_unchecked(buf) }
670 }
671
672 /// Divides one array reference into two at an index.
673 ///
674 /// The first will contain all indices from `[0, M)` (excluding
675 /// the index `M` itself) and the second will contain all
676 /// indices from `[M, N)` (excluding the index `N` itself).
677 ///
678 /// # Panics
679 ///
680 /// Panics if `M > N`.
681 ///
682 /// # Examples
683 ///
684 /// ```
685 /// #![feature(split_array)]
686 ///
687 /// let v = [1, 2, 3, 4, 5, 6];
688 ///
689 /// {
690 /// let (left, right) = v.split_array_ref::<0>();
691 /// assert_eq!(left, &[]);
692 /// assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
693 /// }
694 ///
695 /// {
696 /// let (left, right) = v.split_array_ref::<2>();
697 /// assert_eq!(left, &[1, 2]);
698 /// assert_eq!(right, &[3, 4, 5, 6]);
699 /// }
700 ///
701 /// {
702 /// let (left, right) = v.split_array_ref::<6>();
703 /// assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
704 /// assert_eq!(right, &[]);
705 /// }
706 /// ```
707 #[unstable(
708 feature = "split_array",
709 reason = "return type should have array as 2nd element",
710 issue = "90091"
711 )]
712 #[inline]
713 pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T]) {
714 self.split_first_chunk::<M>().unwrap()
715 }
716
717 /// Divides one mutable array reference into two at an index.
718 ///
719 /// The first will contain all indices from `[0, M)` (excluding
720 /// the index `M` itself) and the second will contain all
721 /// indices from `[M, N)` (excluding the index `N` itself).
722 ///
723 /// # Panics
724 ///
725 /// Panics if `M > N`.
726 ///
727 /// # Examples
728 ///
729 /// ```
730 /// #![feature(split_array)]
731 ///
732 /// let mut v = [1, 0, 3, 0, 5, 6];
733 /// let (left, right) = v.split_array_mut::<2>();
734 /// assert_eq!(left, &mut [1, 0][..]);
735 /// assert_eq!(right, &mut [3, 0, 5, 6]);
736 /// left[1] = 2;
737 /// right[1] = 4;
738 /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
739 /// ```
740 #[unstable(
741 feature = "split_array",
742 reason = "return type should have array as 2nd element",
743 issue = "90091"
744 )]
745 #[inline]
746 pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T]) {
747 self.split_first_chunk_mut::<M>().unwrap()
748 }
749
750 /// Divides one array reference into two at an index from the end.
751 ///
752 /// The first will contain all indices from `[0, N - M)` (excluding
753 /// the index `N - M` itself) and the second will contain all
754 /// indices from `[N - M, N)` (excluding the index `N` itself).
755 ///
756 /// # Panics
757 ///
758 /// Panics if `M > N`.
759 ///
760 /// # Examples
761 ///
762 /// ```
763 /// #![feature(split_array)]
764 ///
765 /// let v = [1, 2, 3, 4, 5, 6];
766 ///
767 /// {
768 /// let (left, right) = v.rsplit_array_ref::<0>();
769 /// assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
770 /// assert_eq!(right, &[]);
771 /// }
772 ///
773 /// {
774 /// let (left, right) = v.rsplit_array_ref::<2>();
775 /// assert_eq!(left, &[1, 2, 3, 4]);
776 /// assert_eq!(right, &[5, 6]);
777 /// }
778 ///
779 /// {
780 /// let (left, right) = v.rsplit_array_ref::<6>();
781 /// assert_eq!(left, &[]);
782 /// assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
783 /// }
784 /// ```
785 #[unstable(
786 feature = "split_array",
787 reason = "return type should have array as 2nd element",
788 issue = "90091"
789 )]
790 #[inline]
791 pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M]) {
792 self.split_last_chunk::<M>().unwrap()
793 }
794
795 /// Divides one mutable array reference into two at an index from the end.
796 ///
797 /// The first will contain all indices from `[0, N - M)` (excluding
798 /// the index `N - M` itself) and the second will contain all
799 /// indices from `[N - M, N)` (excluding the index `N` itself).
800 ///
801 /// # Panics
802 ///
803 /// Panics if `M > N`.
804 ///
805 /// # Examples
806 ///
807 /// ```
808 /// #![feature(split_array)]
809 ///
810 /// let mut v = [1, 0, 3, 0, 5, 6];
811 /// let (left, right) = v.rsplit_array_mut::<4>();
812 /// assert_eq!(left, &mut [1, 0]);
813 /// assert_eq!(right, &mut [3, 0, 5, 6][..]);
814 /// left[1] = 2;
815 /// right[1] = 4;
816 /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
817 /// ```
818 #[unstable(
819 feature = "split_array",
820 reason = "return type should have array as 2nd element",
821 issue = "90091"
822 )]
823 #[inline]
824 pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M]) {
825 self.split_last_chunk_mut::<M>().unwrap()
826 }
827}
828
829/// Populate an array from the first `N` elements of `iter`
830///
831/// # Panics
832///
833/// If the iterator doesn't actually have enough items.
834///
835/// By depending on `TrustedLen`, however, we can do that check up-front (where
836/// it easily optimizes away) so it doesn't impact the loop that fills the array.
837#[inline]
838fn from_trusted_iterator<T, const N: usize>(iter: impl UncheckedIterator<Item = T>) -> [T; N] {
839 try_from_trusted_iterator(iter.map(NeverShortCircuit)).0
840}
841
842#[inline]
843fn try_from_trusted_iterator<T, R, const N: usize>(
844 iter: impl UncheckedIterator<Item = R>,
845) -> ChangeOutputType<R, [T; N]>
846where
847 R: Try<Output = T>,
848 R::Residual: Residual<[T; N]>,
849{
850 assert!(iter.size_hint().0 >= N);
851 fn next<T>(mut iter: impl UncheckedIterator<Item = T>) -> impl FnMut(usize) -> T {
852 move |_| {
853 // SAFETY: We know that `from_fn` will call this at most N times,
854 // and we checked to ensure that we have at least that many items.
855 unsafe { iter.next_unchecked() }
856 }
857 }
858
859 try_from_fn(next(iter))
860}
861
862/// Version of [`try_from_fn`] using a passed-in slice in order to avoid
863/// needing to monomorphize for every array length.
864///
865/// This takes a generator rather than an iterator so that *at the type level*
866/// it never needs to worry about running out of items. When combined with
867/// an infallible `Try` type, that means the loop canonicalizes easily, allowing
868/// it to optimize well.
869///
870/// It would be *possible* to unify this and [`iter_next_chunk_erased`] into one
871/// function that does the union of both things, but last time it was that way
872/// it resulted in poor codegen from the "are there enough source items?" checks
873/// not optimizing away. So if you give it a shot, make sure to watch what
874/// happens in the codegen tests.
875#[inline]
876fn try_from_fn_erased<T, R>(
877 buffer: &mut [MaybeUninit<T>],
878 mut generator: impl FnMut(usize) -> R,
879) -> ControlFlow<R::Residual>
880where
881 R: Try<Output = T>,
882{
883 let mut guard = Guard { array_mut: buffer, initialized: 0 };
884
885 while guard.initialized < guard.array_mut.len() {
886 let item = generator(guard.initialized).branch()?;
887
888 // SAFETY: The loop condition ensures we have space to push the item
889 unsafe { guard.push_unchecked(item) };
890 }
891
892 mem::forget(guard);
893 ControlFlow::Continue(())
894}
895
896/// Panic guard for incremental initialization of arrays.
897///
898/// Disarm the guard with `mem::forget` once the array has been initialized.
899///
900/// # Safety
901///
902/// All write accesses to this structure are unsafe and must maintain a correct
903/// count of `initialized` elements.
904///
905/// To minimize indirection fields are still pub but callers should at least use
906/// `push_unchecked` to signal that something unsafe is going on.
907struct Guard<'a, T> {
908 /// The array to be initialized.
909 pub array_mut: &'a mut [MaybeUninit<T>],
910 /// The number of items that have been initialized so far.
911 pub initialized: usize,
912}
913
914impl<T> Guard<'_, T> {
915 /// Adds an item to the array and updates the initialized item counter.
916 ///
917 /// # Safety
918 ///
919 /// No more than N elements must be initialized.
920 #[inline]
921 pub(crate) unsafe fn push_unchecked(&mut self, item: T) {
922 // SAFETY: If `initialized` was correct before and the caller does not
923 // invoke this method more than N times then writes will be in-bounds
924 // and slots will not be initialized more than once.
925 unsafe {
926 self.array_mut.get_unchecked_mut(self.initialized).write(item);
927 self.initialized = self.initialized.unchecked_add(1);
928 }
929 }
930}
931
932impl<T> Drop for Guard<'_, T> {
933 #[inline]
934 fn drop(&mut self) {
935 debug_assert!(self.initialized <= self.array_mut.len());
936
937 // SAFETY: this slice will contain only initialized objects.
938 unsafe {
939 self.array_mut.get_unchecked_mut(..self.initialized).assume_init_drop();
940 }
941 }
942}
943
944/// Pulls `N` items from `iter` and returns them as an array. If the iterator
945/// yields fewer than `N` items, `Err` is returned containing an iterator over
946/// the already yielded items.
947///
948/// Since the iterator is passed as a mutable reference and this function calls
949/// `next` at most `N` times, the iterator can still be used afterwards to
950/// retrieve the remaining items.
951///
952/// If `iter.next()` panicks, all items already yielded by the iterator are
953/// dropped.
954///
955/// Used for [`Iterator::next_chunk`].
956#[inline]
957pub(crate) fn iter_next_chunk<T, const N: usize>(
958 iter: &mut impl Iterator<Item = T>,
959) -> Result<[T; N], IntoIter<T, N>> {
960 let mut array = [const { MaybeUninit::uninit() }; N];
961 let r = iter_next_chunk_erased(&mut array, iter);
962 match r {
963 Ok(()) => {
964 // SAFETY: All elements of `array` were populated.
965 Ok(unsafe { MaybeUninit::array_assume_init(array) })
966 }
967 Err(initialized) => {
968 // SAFETY: Only the first `initialized` elements were populated
969 Err(unsafe { IntoIter::new_unchecked(array, 0..initialized) })
970 }
971 }
972}
973
974/// Version of [`iter_next_chunk`] using a passed-in slice in order to avoid
975/// needing to monomorphize for every array length.
976///
977/// Unfortunately this loop has two exit conditions, the buffer filling up
978/// or the iterator running out of items, making it tend to optimize poorly.
979#[inline]
980fn iter_next_chunk_erased<T>(
981 buffer: &mut [MaybeUninit<T>],
982 iter: &mut impl Iterator<Item = T>,
983) -> Result<(), usize> {
984 let mut guard = Guard { array_mut: buffer, initialized: 0 };
985 while guard.initialized < guard.array_mut.len() {
986 let Some(item) = iter.next() else {
987 // Unlike `try_from_fn_erased`, we want to keep the partial results,
988 // so we need to defuse the guard instead of using `?`.
989 let initialized = guard.initialized;
990 mem::forget(guard);
991 return Err(initialized);
992 };
993
994 // SAFETY: The loop condition ensures we have space to push the item
995 unsafe { guard.push_unchecked(item) };
996 }
997
998 mem::forget(guard);
999 Ok(())
1000}