core/array/
mod.rs

1//! Utilities for the array primitive type.
2//!
3//! *[See also the array primitive type](array).*
4
5#![stable(feature = "core_array", since = "1.35.0")]
6
7use crate::borrow::{Borrow, BorrowMut};
8use crate::cmp::Ordering;
9use crate::convert::Infallible;
10use crate::error::Error;
11use crate::fmt;
12use crate::hash::{self, Hash};
13use crate::intrinsics::transmute_unchecked;
14use crate::iter::{UncheckedIterator, repeat_n};
15use crate::mem::{self, MaybeUninit};
16use crate::ops::{
17    ChangeOutputType, ControlFlow, FromResidual, Index, IndexMut, NeverShortCircuit, Residual, Try,
18};
19use crate::ptr::{null, null_mut};
20use crate::slice::{Iter, IterMut};
21
22mod ascii;
23mod drain;
24mod equality;
25mod iter;
26
27pub(crate) use drain::drain_array_with;
28#[stable(feature = "array_value_iter", since = "1.51.0")]
29pub use iter::IntoIter;
30
31/// Creates an array of type `[T; N]` by repeatedly cloning a value.
32///
33/// This is the same as `[val; N]`, but it also works for types that do not
34/// implement [`Copy`].
35///
36/// The provided value will be used as an element of the resulting array and
37/// will be cloned N - 1 times to fill up the rest. If N is zero, the value
38/// will be dropped.
39///
40/// # Example
41///
42/// Creating multiple copies of a `String`:
43/// ```rust
44/// use std::array;
45///
46/// let string = "Hello there!".to_string();
47/// let strings = array::repeat(string);
48/// assert_eq!(strings, ["Hello there!", "Hello there!"]);
49/// ```
50#[inline]
51#[must_use = "cloning is often expensive and is not expected to have side effects"]
52#[stable(feature = "array_repeat", since = "CURRENT_RUSTC_VERSION")]
53pub fn repeat<T: Clone, const N: usize>(val: T) -> [T; N] {
54    from_trusted_iterator(repeat_n(val, N))
55}
56
57/// Creates an array where each element is produced by calling `f` with
58/// that element's index while walking forward through the array.
59///
60/// This is essentially the same as writing
61/// ```text
62/// [f(0), f(1), f(2), …, f(N - 2), f(N - 1)]
63/// ```
64/// and is similar to `(0..i).map(f)`, just for arrays not iterators.
65///
66/// If `N == 0`, this produces an empty array without ever calling `f`.
67///
68/// # Example
69///
70/// ```rust
71/// // type inference is helping us here, the way `from_fn` knows how many
72/// // elements to produce is the length of array down there: only arrays of
73/// // equal lengths can be compared, so the const generic parameter `N` is
74/// // inferred to be 5, thus creating array of 5 elements.
75///
76/// let array = core::array::from_fn(|i| i);
77/// // indexes are:    0  1  2  3  4
78/// assert_eq!(array, [0, 1, 2, 3, 4]);
79///
80/// let array2: [usize; 8] = core::array::from_fn(|i| i * 2);
81/// // indexes are:     0  1  2  3  4  5   6   7
82/// assert_eq!(array2, [0, 2, 4, 6, 8, 10, 12, 14]);
83///
84/// let bool_arr = core::array::from_fn::<_, 5, _>(|i| i % 2 == 0);
85/// // indexes are:       0     1      2     3      4
86/// assert_eq!(bool_arr, [true, false, true, false, true]);
87/// ```
88///
89/// You can also capture things, for example to create an array full of clones
90/// where you can't just use `[item; N]` because it's not `Copy`:
91/// ```
92/// # // TBH `array::repeat` would be better for this, but it's not stable yet.
93/// let my_string = String::from("Hello");
94/// let clones: [String; 42] = std::array::from_fn(|_| my_string.clone());
95/// assert!(clones.iter().all(|x| *x == my_string));
96/// ```
97///
98/// The array is generated in ascending index order, starting from the front
99/// and going towards the back, so you can use closures with mutable state:
100/// ```
101/// let mut state = 1;
102/// let a = std::array::from_fn(|_| { let x = state; state *= 2; x });
103/// assert_eq!(a, [1, 2, 4, 8, 16, 32]);
104/// ```
105#[inline]
106#[stable(feature = "array_from_fn", since = "1.63.0")]
107pub fn from_fn<T, const N: usize, F>(f: F) -> [T; N]
108where
109    F: FnMut(usize) -> T,
110{
111    try_from_fn(NeverShortCircuit::wrap_mut_1(f)).0
112}
113
114/// Creates an array `[T; N]` where each fallible array element `T` is returned by the `cb` call.
115/// Unlike [`from_fn`], where the element creation can't fail, this version will return an error
116/// if any element creation was unsuccessful.
117///
118/// The return type of this function depends on the return type of the closure.
119/// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`.
120/// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
121///
122/// # Arguments
123///
124/// * `cb`: Callback where the passed argument is the current array index.
125///
126/// # Example
127///
128/// ```rust
129/// #![feature(array_try_from_fn)]
130///
131/// let array: Result<[u8; 5], _> = std::array::try_from_fn(|i| i.try_into());
132/// assert_eq!(array, Ok([0, 1, 2, 3, 4]));
133///
134/// let array: Result<[i8; 200], _> = std::array::try_from_fn(|i| i.try_into());
135/// assert!(array.is_err());
136///
137/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_add(100));
138/// assert_eq!(array, Some([100, 101, 102, 103]));
139///
140/// let array: Option<[_; 4]> = std::array::try_from_fn(|i| i.checked_sub(100));
141/// assert_eq!(array, None);
142/// ```
143#[inline]
144#[unstable(feature = "array_try_from_fn", issue = "89379")]
145pub fn try_from_fn<R, const N: usize, F>(cb: F) -> ChangeOutputType<R, [R::Output; N]>
146where
147    F: FnMut(usize) -> R,
148    R: Try,
149    R::Residual: Residual<[R::Output; N]>,
150{
151    let mut array = [const { MaybeUninit::uninit() }; N];
152    match try_from_fn_erased(&mut array, cb) {
153        ControlFlow::Break(r) => FromResidual::from_residual(r),
154        ControlFlow::Continue(()) => {
155            // SAFETY: All elements of the array were populated.
156            try { unsafe { MaybeUninit::array_assume_init(array) } }
157        }
158    }
159}
160
161/// Converts a reference to `T` into a reference to an array of length 1 (without copying).
162#[stable(feature = "array_from_ref", since = "1.53.0")]
163#[rustc_const_stable(feature = "const_array_from_ref_shared", since = "1.63.0")]
164pub const fn from_ref<T>(s: &T) -> &[T; 1] {
165    // SAFETY: Converting `&T` to `&[T; 1]` is sound.
166    unsafe { &*(s as *const T).cast::<[T; 1]>() }
167}
168
169/// Converts a mutable reference to `T` into a mutable reference to an array of length 1 (without copying).
170#[stable(feature = "array_from_ref", since = "1.53.0")]
171#[rustc_const_stable(feature = "const_array_from_ref", since = "1.83.0")]
172pub const fn from_mut<T>(s: &mut T) -> &mut [T; 1] {
173    // SAFETY: Converting `&mut T` to `&mut [T; 1]` is sound.
174    unsafe { &mut *(s as *mut T).cast::<[T; 1]>() }
175}
176
177/// The error type returned when a conversion from a slice to an array fails.
178#[stable(feature = "try_from", since = "1.34.0")]
179#[derive(Debug, Copy, Clone)]
180pub struct TryFromSliceError(());
181
182#[stable(feature = "core_array", since = "1.35.0")]
183impl fmt::Display for TryFromSliceError {
184    #[inline]
185    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
186        "could not convert slice to array".fmt(f)
187    }
188}
189
190#[stable(feature = "try_from", since = "1.34.0")]
191impl Error for TryFromSliceError {}
192
193#[stable(feature = "try_from_slice_error", since = "1.36.0")]
194#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
195impl const From<Infallible> for TryFromSliceError {
196    fn from(x: Infallible) -> TryFromSliceError {
197        match x {}
198    }
199}
200
201#[stable(feature = "rust1", since = "1.0.0")]
202#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
203impl<T, const N: usize> const AsRef<[T]> for [T; N] {
204    #[inline]
205    fn as_ref(&self) -> &[T] {
206        &self[..]
207    }
208}
209
210#[stable(feature = "rust1", since = "1.0.0")]
211#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
212impl<T, const N: usize> const AsMut<[T]> for [T; N] {
213    #[inline]
214    fn as_mut(&mut self) -> &mut [T] {
215        &mut self[..]
216    }
217}
218
219#[stable(feature = "array_borrow", since = "1.4.0")]
220#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
221impl<T, const N: usize> const Borrow<[T]> for [T; N] {
222    fn borrow(&self) -> &[T] {
223        self
224    }
225}
226
227#[stable(feature = "array_borrow", since = "1.4.0")]
228#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
229impl<T, const N: usize> const BorrowMut<[T]> for [T; N] {
230    fn borrow_mut(&mut self) -> &mut [T] {
231        self
232    }
233}
234
235/// Tries to create an array `[T; N]` by copying from a slice `&[T]`.
236/// Succeeds if `slice.len() == N`.
237///
238/// ```
239/// let bytes: [u8; 3] = [1, 0, 2];
240///
241/// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&bytes[0..2]).unwrap();
242/// assert_eq!(1, u16::from_le_bytes(bytes_head));
243///
244/// let bytes_tail: [u8; 2] = bytes[1..3].try_into().unwrap();
245/// assert_eq!(512, u16::from_le_bytes(bytes_tail));
246/// ```
247#[stable(feature = "try_from", since = "1.34.0")]
248#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
249impl<T, const N: usize> const TryFrom<&[T]> for [T; N]
250where
251    T: Copy,
252{
253    type Error = TryFromSliceError;
254
255    #[inline]
256    fn try_from(slice: &[T]) -> Result<[T; N], TryFromSliceError> {
257        <&Self>::try_from(slice).copied()
258    }
259}
260
261/// Tries to create an array `[T; N]` by copying from a mutable slice `&mut [T]`.
262/// Succeeds if `slice.len() == N`.
263///
264/// ```
265/// let mut bytes: [u8; 3] = [1, 0, 2];
266///
267/// let bytes_head: [u8; 2] = <[u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
268/// assert_eq!(1, u16::from_le_bytes(bytes_head));
269///
270/// let bytes_tail: [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
271/// assert_eq!(512, u16::from_le_bytes(bytes_tail));
272/// ```
273#[stable(feature = "try_from_mut_slice_to_array", since = "1.59.0")]
274#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
275impl<T, const N: usize> const TryFrom<&mut [T]> for [T; N]
276where
277    T: Copy,
278{
279    type Error = TryFromSliceError;
280
281    #[inline]
282    fn try_from(slice: &mut [T]) -> Result<[T; N], TryFromSliceError> {
283        <Self>::try_from(&*slice)
284    }
285}
286
287/// Tries to create an array ref `&[T; N]` from a slice ref `&[T]`. Succeeds if
288/// `slice.len() == N`.
289///
290/// ```
291/// let bytes: [u8; 3] = [1, 0, 2];
292///
293/// let bytes_head: &[u8; 2] = <&[u8; 2]>::try_from(&bytes[0..2]).unwrap();
294/// assert_eq!(1, u16::from_le_bytes(*bytes_head));
295///
296/// let bytes_tail: &[u8; 2] = bytes[1..3].try_into().unwrap();
297/// assert_eq!(512, u16::from_le_bytes(*bytes_tail));
298/// ```
299#[stable(feature = "try_from", since = "1.34.0")]
300#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
301impl<'a, T, const N: usize> const TryFrom<&'a [T]> for &'a [T; N] {
302    type Error = TryFromSliceError;
303
304    #[inline]
305    fn try_from(slice: &'a [T]) -> Result<&'a [T; N], TryFromSliceError> {
306        slice.as_array().ok_or(TryFromSliceError(()))
307    }
308}
309
310/// Tries to create a mutable array ref `&mut [T; N]` from a mutable slice ref
311/// `&mut [T]`. Succeeds if `slice.len() == N`.
312///
313/// ```
314/// let mut bytes: [u8; 3] = [1, 0, 2];
315///
316/// let bytes_head: &mut [u8; 2] = <&mut [u8; 2]>::try_from(&mut bytes[0..2]).unwrap();
317/// assert_eq!(1, u16::from_le_bytes(*bytes_head));
318///
319/// let bytes_tail: &mut [u8; 2] = (&mut bytes[1..3]).try_into().unwrap();
320/// assert_eq!(512, u16::from_le_bytes(*bytes_tail));
321/// ```
322#[stable(feature = "try_from", since = "1.34.0")]
323#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
324impl<'a, T, const N: usize> const TryFrom<&'a mut [T]> for &'a mut [T; N] {
325    type Error = TryFromSliceError;
326
327    #[inline]
328    fn try_from(slice: &'a mut [T]) -> Result<&'a mut [T; N], TryFromSliceError> {
329        slice.as_mut_array().ok_or(TryFromSliceError(()))
330    }
331}
332
333/// The hash of an array is the same as that of the corresponding slice,
334/// as required by the `Borrow` implementation.
335///
336/// ```
337/// use std::hash::BuildHasher;
338///
339/// let b = std::hash::RandomState::new();
340/// let a: [u8; 3] = [0xa8, 0x3c, 0x09];
341/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
342/// assert_eq!(b.hash_one(a), b.hash_one(s));
343/// ```
344#[stable(feature = "rust1", since = "1.0.0")]
345impl<T: Hash, const N: usize> Hash for [T; N] {
346    fn hash<H: hash::Hasher>(&self, state: &mut H) {
347        Hash::hash(&self[..], state)
348    }
349}
350
351#[stable(feature = "rust1", since = "1.0.0")]
352impl<T: fmt::Debug, const N: usize> fmt::Debug for [T; N] {
353    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
354        fmt::Debug::fmt(&&self[..], f)
355    }
356}
357
358#[stable(feature = "rust1", since = "1.0.0")]
359impl<'a, T, const N: usize> IntoIterator for &'a [T; N] {
360    type Item = &'a T;
361    type IntoIter = Iter<'a, T>;
362
363    fn into_iter(self) -> Iter<'a, T> {
364        self.iter()
365    }
366}
367
368#[stable(feature = "rust1", since = "1.0.0")]
369impl<'a, T, const N: usize> IntoIterator for &'a mut [T; N] {
370    type Item = &'a mut T;
371    type IntoIter = IterMut<'a, T>;
372
373    fn into_iter(self) -> IterMut<'a, T> {
374        self.iter_mut()
375    }
376}
377
378#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
379#[rustc_const_unstable(feature = "const_index", issue = "143775")]
380impl<T, I, const N: usize> const Index<I> for [T; N]
381where
382    [T]: [const] Index<I>,
383{
384    type Output = <[T] as Index<I>>::Output;
385
386    #[inline]
387    fn index(&self, index: I) -> &Self::Output {
388        Index::index(self as &[T], index)
389    }
390}
391
392#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
393#[rustc_const_unstable(feature = "const_index", issue = "143775")]
394impl<T, I, const N: usize> const IndexMut<I> for [T; N]
395where
396    [T]: [const] IndexMut<I>,
397{
398    #[inline]
399    fn index_mut(&mut self, index: I) -> &mut Self::Output {
400        IndexMut::index_mut(self as &mut [T], index)
401    }
402}
403
404/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
405#[stable(feature = "rust1", since = "1.0.0")]
406impl<T: PartialOrd, const N: usize> PartialOrd for [T; N] {
407    #[inline]
408    fn partial_cmp(&self, other: &[T; N]) -> Option<Ordering> {
409        PartialOrd::partial_cmp(&&self[..], &&other[..])
410    }
411    #[inline]
412    fn lt(&self, other: &[T; N]) -> bool {
413        PartialOrd::lt(&&self[..], &&other[..])
414    }
415    #[inline]
416    fn le(&self, other: &[T; N]) -> bool {
417        PartialOrd::le(&&self[..], &&other[..])
418    }
419    #[inline]
420    fn ge(&self, other: &[T; N]) -> bool {
421        PartialOrd::ge(&&self[..], &&other[..])
422    }
423    #[inline]
424    fn gt(&self, other: &[T; N]) -> bool {
425        PartialOrd::gt(&&self[..], &&other[..])
426    }
427}
428
429/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
430#[stable(feature = "rust1", since = "1.0.0")]
431impl<T: Ord, const N: usize> Ord for [T; N] {
432    #[inline]
433    fn cmp(&self, other: &[T; N]) -> Ordering {
434        Ord::cmp(&&self[..], &&other[..])
435    }
436}
437
438#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
439impl<T: Copy, const N: usize> Copy for [T; N] {}
440
441#[stable(feature = "copy_clone_array_lib", since = "1.58.0")]
442impl<T: Clone, const N: usize> Clone for [T; N] {
443    #[inline]
444    fn clone(&self) -> Self {
445        SpecArrayClone::clone(self)
446    }
447
448    #[inline]
449    fn clone_from(&mut self, other: &Self) {
450        self.clone_from_slice(other);
451    }
452}
453
454trait SpecArrayClone: Clone {
455    fn clone<const N: usize>(array: &[Self; N]) -> [Self; N];
456}
457
458impl<T: Clone> SpecArrayClone for T {
459    #[inline]
460    default fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
461        from_trusted_iterator(array.iter().cloned())
462    }
463}
464
465impl<T: Copy> SpecArrayClone for T {
466    #[inline]
467    fn clone<const N: usize>(array: &[T; N]) -> [T; N] {
468        *array
469    }
470}
471
472// The Default impls cannot be done with const generics because `[T; 0]` doesn't
473// require Default to be implemented, and having different impl blocks for
474// different numbers isn't supported yet.
475//
476// Trying to improve the `[T; 0]` situation has proven to be difficult.
477// Please see these issues for more context on past attempts and crater runs:
478// - https://github.com/rust-lang/rust/issues/61415
479// - https://github.com/rust-lang/rust/pull/145457
480
481macro_rules! array_impl_default {
482    {$n:expr, $t:ident $($ts:ident)*} => {
483        #[stable(since = "1.4.0", feature = "array_default")]
484        impl<T> Default for [T; $n] where T: Default {
485            fn default() -> [T; $n] {
486                [$t::default(), $($ts::default()),*]
487            }
488        }
489        array_impl_default!{($n - 1), $($ts)*}
490    };
491    {$n:expr,} => {
492        #[stable(since = "1.4.0", feature = "array_default")]
493        impl<T> Default for [T; $n] {
494            fn default() -> [T; $n] { [] }
495        }
496    };
497}
498
499array_impl_default! {32, T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T}
500
501impl<T, const N: usize> [T; N] {
502    /// Returns an array of the same size as `self`, with function `f` applied to each element
503    /// in order.
504    ///
505    /// If you don't necessarily need a new fixed-size array, consider using
506    /// [`Iterator::map`] instead.
507    ///
508    ///
509    /// # Note on performance and stack usage
510    ///
511    /// Unfortunately, usages of this method are currently not always optimized
512    /// as well as they could be. This mainly concerns large arrays, as mapping
513    /// over small arrays seem to be optimized just fine. Also note that in
514    /// debug mode (i.e. without any optimizations), this method can use a lot
515    /// of stack space (a few times the size of the array or more).
516    ///
517    /// Therefore, in performance-critical code, try to avoid using this method
518    /// on large arrays or check the emitted code. Also try to avoid chained
519    /// maps (e.g. `arr.map(...).map(...)`).
520    ///
521    /// In many cases, you can instead use [`Iterator::map`] by calling `.iter()`
522    /// or `.into_iter()` on your array. `[T; N]::map` is only necessary if you
523    /// really need a new array of the same size as the result. Rust's lazy
524    /// iterators tend to get optimized very well.
525    ///
526    ///
527    /// # Examples
528    ///
529    /// ```
530    /// let x = [1, 2, 3];
531    /// let y = x.map(|v| v + 1);
532    /// assert_eq!(y, [2, 3, 4]);
533    ///
534    /// let x = [1, 2, 3];
535    /// let mut temp = 0;
536    /// let y = x.map(|v| { temp += 1; v * temp });
537    /// assert_eq!(y, [1, 4, 9]);
538    ///
539    /// let x = ["Ferris", "Bueller's", "Day", "Off"];
540    /// let y = x.map(|v| v.len());
541    /// assert_eq!(y, [6, 9, 3, 3]);
542    /// ```
543    #[must_use]
544    #[stable(feature = "array_map", since = "1.55.0")]
545    pub fn map<F, U>(self, f: F) -> [U; N]
546    where
547        F: FnMut(T) -> U,
548    {
549        self.try_map(NeverShortCircuit::wrap_mut_1(f)).0
550    }
551
552    /// A fallible function `f` applied to each element on array `self` in order to
553    /// return an array the same size as `self` or the first error encountered.
554    ///
555    /// The return type of this function depends on the return type of the closure.
556    /// If you return `Result<T, E>` from the closure, you'll get a `Result<[T; N], E>`.
557    /// If you return `Option<T>` from the closure, you'll get an `Option<[T; N]>`.
558    ///
559    /// # Examples
560    ///
561    /// ```
562    /// #![feature(array_try_map)]
563    ///
564    /// let a = ["1", "2", "3"];
565    /// let b = a.try_map(|v| v.parse::<u32>()).unwrap().map(|v| v + 1);
566    /// assert_eq!(b, [2, 3, 4]);
567    ///
568    /// let a = ["1", "2a", "3"];
569    /// let b = a.try_map(|v| v.parse::<u32>());
570    /// assert!(b.is_err());
571    ///
572    /// use std::num::NonZero;
573    ///
574    /// let z = [1, 2, 0, 3, 4];
575    /// assert_eq!(z.try_map(NonZero::new), None);
576    ///
577    /// let a = [1, 2, 3];
578    /// let b = a.try_map(NonZero::new);
579    /// let c = b.map(|x| x.map(NonZero::get));
580    /// assert_eq!(c, Some(a));
581    /// ```
582    #[unstable(feature = "array_try_map", issue = "79711")]
583    pub fn try_map<R>(self, f: impl FnMut(T) -> R) -> ChangeOutputType<R, [R::Output; N]>
584    where
585        R: Try<Residual: Residual<[R::Output; N]>>,
586    {
587        drain_array_with(self, |iter| try_from_trusted_iterator(iter.map(f)))
588    }
589
590    /// Returns a slice containing the entire array. Equivalent to `&s[..]`.
591    #[stable(feature = "array_as_slice", since = "1.57.0")]
592    #[rustc_const_stable(feature = "array_as_slice", since = "1.57.0")]
593    pub const fn as_slice(&self) -> &[T] {
594        self
595    }
596
597    /// Returns a mutable slice containing the entire array. Equivalent to
598    /// `&mut s[..]`.
599    #[stable(feature = "array_as_slice", since = "1.57.0")]
600    #[rustc_const_stable(feature = "const_array_as_mut_slice", since = "1.89.0")]
601    pub const fn as_mut_slice(&mut self) -> &mut [T] {
602        self
603    }
604
605    /// Borrows each element and returns an array of references with the same
606    /// size as `self`.
607    ///
608    ///
609    /// # Example
610    ///
611    /// ```
612    /// let floats = [3.1, 2.7, -1.0];
613    /// let float_refs: [&f64; 3] = floats.each_ref();
614    /// assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);
615    /// ```
616    ///
617    /// This method is particularly useful if combined with other methods, like
618    /// [`map`](#method.map). This way, you can avoid moving the original
619    /// array if its elements are not [`Copy`].
620    ///
621    /// ```
622    /// let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
623    /// let is_ascii = strings.each_ref().map(|s| s.is_ascii());
624    /// assert_eq!(is_ascii, [true, false, true]);
625    ///
626    /// // We can still access the original array: it has not been moved.
627    /// assert_eq!(strings.len(), 3);
628    /// ```
629    #[stable(feature = "array_methods", since = "1.77.0")]
630    #[rustc_const_stable(feature = "const_array_each_ref", since = "CURRENT_RUSTC_VERSION")]
631    pub const fn each_ref(&self) -> [&T; N] {
632        let mut buf = [null::<T>(); N];
633
634        // FIXME(const_trait_impl): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions.
635        let mut i = 0;
636        while i < N {
637            buf[i] = &raw const self[i];
638
639            i += 1;
640        }
641
642        // SAFETY: `*const T` has the same layout as `&T`, and we've also initialised each pointer as a valid reference.
643        unsafe { transmute_unchecked(buf) }
644    }
645
646    /// Borrows each element mutably and returns an array of mutable references
647    /// with the same size as `self`.
648    ///
649    ///
650    /// # Example
651    ///
652    /// ```
653    ///
654    /// let mut floats = [3.1, 2.7, -1.0];
655    /// let float_refs: [&mut f64; 3] = floats.each_mut();
656    /// *float_refs[0] = 0.0;
657    /// assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]);
658    /// assert_eq!(floats, [0.0, 2.7, -1.0]);
659    /// ```
660    #[stable(feature = "array_methods", since = "1.77.0")]
661    #[rustc_const_stable(feature = "const_array_each_ref", since = "CURRENT_RUSTC_VERSION")]
662    pub const fn each_mut(&mut self) -> [&mut T; N] {
663        let mut buf = [null_mut::<T>(); N];
664
665        // FIXME(const_trait_impl): We would like to simply use iterators for this (as in the original implementation), but this is not allowed in constant expressions.
666        let mut i = 0;
667        while i < N {
668            buf[i] = &raw mut self[i];
669
670            i += 1;
671        }
672
673        // SAFETY: `*mut T` has the same layout as `&mut T`, and we've also initialised each pointer as a valid reference.
674        unsafe { transmute_unchecked(buf) }
675    }
676
677    /// Divides one array reference into two at an index.
678    ///
679    /// The first will contain all indices from `[0, M)` (excluding
680    /// the index `M` itself) and the second will contain all
681    /// indices from `[M, N)` (excluding the index `N` itself).
682    ///
683    /// # Panics
684    ///
685    /// Panics if `M > N`.
686    ///
687    /// # Examples
688    ///
689    /// ```
690    /// #![feature(split_array)]
691    ///
692    /// let v = [1, 2, 3, 4, 5, 6];
693    ///
694    /// {
695    ///    let (left, right) = v.split_array_ref::<0>();
696    ///    assert_eq!(left, &[]);
697    ///    assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
698    /// }
699    ///
700    /// {
701    ///     let (left, right) = v.split_array_ref::<2>();
702    ///     assert_eq!(left, &[1, 2]);
703    ///     assert_eq!(right, &[3, 4, 5, 6]);
704    /// }
705    ///
706    /// {
707    ///     let (left, right) = v.split_array_ref::<6>();
708    ///     assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
709    ///     assert_eq!(right, &[]);
710    /// }
711    /// ```
712    #[unstable(
713        feature = "split_array",
714        reason = "return type should have array as 2nd element",
715        issue = "90091"
716    )]
717    #[inline]
718    pub fn split_array_ref<const M: usize>(&self) -> (&[T; M], &[T]) {
719        self.split_first_chunk::<M>().unwrap()
720    }
721
722    /// Divides one mutable array reference into two at an index.
723    ///
724    /// The first will contain all indices from `[0, M)` (excluding
725    /// the index `M` itself) and the second will contain all
726    /// indices from `[M, N)` (excluding the index `N` itself).
727    ///
728    /// # Panics
729    ///
730    /// Panics if `M > N`.
731    ///
732    /// # Examples
733    ///
734    /// ```
735    /// #![feature(split_array)]
736    ///
737    /// let mut v = [1, 0, 3, 0, 5, 6];
738    /// let (left, right) = v.split_array_mut::<2>();
739    /// assert_eq!(left, &mut [1, 0][..]);
740    /// assert_eq!(right, &mut [3, 0, 5, 6]);
741    /// left[1] = 2;
742    /// right[1] = 4;
743    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
744    /// ```
745    #[unstable(
746        feature = "split_array",
747        reason = "return type should have array as 2nd element",
748        issue = "90091"
749    )]
750    #[inline]
751    pub fn split_array_mut<const M: usize>(&mut self) -> (&mut [T; M], &mut [T]) {
752        self.split_first_chunk_mut::<M>().unwrap()
753    }
754
755    /// Divides one array reference into two at an index from the end.
756    ///
757    /// The first will contain all indices from `[0, N - M)` (excluding
758    /// the index `N - M` itself) and the second will contain all
759    /// indices from `[N - M, N)` (excluding the index `N` itself).
760    ///
761    /// # Panics
762    ///
763    /// Panics if `M > N`.
764    ///
765    /// # Examples
766    ///
767    /// ```
768    /// #![feature(split_array)]
769    ///
770    /// let v = [1, 2, 3, 4, 5, 6];
771    ///
772    /// {
773    ///    let (left, right) = v.rsplit_array_ref::<0>();
774    ///    assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
775    ///    assert_eq!(right, &[]);
776    /// }
777    ///
778    /// {
779    ///     let (left, right) = v.rsplit_array_ref::<2>();
780    ///     assert_eq!(left, &[1, 2, 3, 4]);
781    ///     assert_eq!(right, &[5, 6]);
782    /// }
783    ///
784    /// {
785    ///     let (left, right) = v.rsplit_array_ref::<6>();
786    ///     assert_eq!(left, &[]);
787    ///     assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
788    /// }
789    /// ```
790    #[unstable(
791        feature = "split_array",
792        reason = "return type should have array as 2nd element",
793        issue = "90091"
794    )]
795    #[inline]
796    pub fn rsplit_array_ref<const M: usize>(&self) -> (&[T], &[T; M]) {
797        self.split_last_chunk::<M>().unwrap()
798    }
799
800    /// Divides one mutable array reference into two at an index from the end.
801    ///
802    /// The first will contain all indices from `[0, N - M)` (excluding
803    /// the index `N - M` itself) and the second will contain all
804    /// indices from `[N - M, N)` (excluding the index `N` itself).
805    ///
806    /// # Panics
807    ///
808    /// Panics if `M > N`.
809    ///
810    /// # Examples
811    ///
812    /// ```
813    /// #![feature(split_array)]
814    ///
815    /// let mut v = [1, 0, 3, 0, 5, 6];
816    /// let (left, right) = v.rsplit_array_mut::<4>();
817    /// assert_eq!(left, &mut [1, 0]);
818    /// assert_eq!(right, &mut [3, 0, 5, 6][..]);
819    /// left[1] = 2;
820    /// right[1] = 4;
821    /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
822    /// ```
823    #[unstable(
824        feature = "split_array",
825        reason = "return type should have array as 2nd element",
826        issue = "90091"
827    )]
828    #[inline]
829    pub fn rsplit_array_mut<const M: usize>(&mut self) -> (&mut [T], &mut [T; M]) {
830        self.split_last_chunk_mut::<M>().unwrap()
831    }
832}
833
834/// Populate an array from the first `N` elements of `iter`
835///
836/// # Panics
837///
838/// If the iterator doesn't actually have enough items.
839///
840/// By depending on `TrustedLen`, however, we can do that check up-front (where
841/// it easily optimizes away) so it doesn't impact the loop that fills the array.
842#[inline]
843fn from_trusted_iterator<T, const N: usize>(iter: impl UncheckedIterator<Item = T>) -> [T; N] {
844    try_from_trusted_iterator(iter.map(NeverShortCircuit)).0
845}
846
847#[inline]
848fn try_from_trusted_iterator<T, R, const N: usize>(
849    iter: impl UncheckedIterator<Item = R>,
850) -> ChangeOutputType<R, [T; N]>
851where
852    R: Try<Output = T>,
853    R::Residual: Residual<[T; N]>,
854{
855    assert!(iter.size_hint().0 >= N);
856    fn next<T>(mut iter: impl UncheckedIterator<Item = T>) -> impl FnMut(usize) -> T {
857        move |_| {
858            // SAFETY: We know that `from_fn` will call this at most N times,
859            // and we checked to ensure that we have at least that many items.
860            unsafe { iter.next_unchecked() }
861        }
862    }
863
864    try_from_fn(next(iter))
865}
866
867/// Version of [`try_from_fn`] using a passed-in slice in order to avoid
868/// needing to monomorphize for every array length.
869///
870/// This takes a generator rather than an iterator so that *at the type level*
871/// it never needs to worry about running out of items.  When combined with
872/// an infallible `Try` type, that means the loop canonicalizes easily, allowing
873/// it to optimize well.
874///
875/// It would be *possible* to unify this and [`iter_next_chunk_erased`] into one
876/// function that does the union of both things, but last time it was that way
877/// it resulted in poor codegen from the "are there enough source items?" checks
878/// not optimizing away.  So if you give it a shot, make sure to watch what
879/// happens in the codegen tests.
880#[inline]
881fn try_from_fn_erased<T, R>(
882    buffer: &mut [MaybeUninit<T>],
883    mut generator: impl FnMut(usize) -> R,
884) -> ControlFlow<R::Residual>
885where
886    R: Try<Output = T>,
887{
888    let mut guard = Guard { array_mut: buffer, initialized: 0 };
889
890    while guard.initialized < guard.array_mut.len() {
891        let item = generator(guard.initialized).branch()?;
892
893        // SAFETY: The loop condition ensures we have space to push the item
894        unsafe { guard.push_unchecked(item) };
895    }
896
897    mem::forget(guard);
898    ControlFlow::Continue(())
899}
900
901/// Panic guard for incremental initialization of arrays.
902///
903/// Disarm the guard with `mem::forget` once the array has been initialized.
904///
905/// # Safety
906///
907/// All write accesses to this structure are unsafe and must maintain a correct
908/// count of `initialized` elements.
909///
910/// To minimize indirection fields are still pub but callers should at least use
911/// `push_unchecked` to signal that something unsafe is going on.
912struct Guard<'a, T> {
913    /// The array to be initialized.
914    pub array_mut: &'a mut [MaybeUninit<T>],
915    /// The number of items that have been initialized so far.
916    pub initialized: usize,
917}
918
919impl<T> Guard<'_, T> {
920    /// Adds an item to the array and updates the initialized item counter.
921    ///
922    /// # Safety
923    ///
924    /// No more than N elements must be initialized.
925    #[inline]
926    pub(crate) unsafe fn push_unchecked(&mut self, item: T) {
927        // SAFETY: If `initialized` was correct before and the caller does not
928        // invoke this method more than N times then writes will be in-bounds
929        // and slots will not be initialized more than once.
930        unsafe {
931            self.array_mut.get_unchecked_mut(self.initialized).write(item);
932            self.initialized = self.initialized.unchecked_add(1);
933        }
934    }
935}
936
937impl<T> Drop for Guard<'_, T> {
938    #[inline]
939    fn drop(&mut self) {
940        debug_assert!(self.initialized <= self.array_mut.len());
941
942        // SAFETY: this slice will contain only initialized objects.
943        unsafe {
944            self.array_mut.get_unchecked_mut(..self.initialized).assume_init_drop();
945        }
946    }
947}
948
949/// Pulls `N` items from `iter` and returns them as an array. If the iterator
950/// yields fewer than `N` items, `Err` is returned containing an iterator over
951/// the already yielded items.
952///
953/// Since the iterator is passed as a mutable reference and this function calls
954/// `next` at most `N` times, the iterator can still be used afterwards to
955/// retrieve the remaining items.
956///
957/// If `iter.next()` panicks, all items already yielded by the iterator are
958/// dropped.
959///
960/// Used for [`Iterator::next_chunk`].
961#[inline]
962pub(crate) fn iter_next_chunk<T, const N: usize>(
963    iter: &mut impl Iterator<Item = T>,
964) -> Result<[T; N], IntoIter<T, N>> {
965    let mut array = [const { MaybeUninit::uninit() }; N];
966    let r = iter_next_chunk_erased(&mut array, iter);
967    match r {
968        Ok(()) => {
969            // SAFETY: All elements of `array` were populated.
970            Ok(unsafe { MaybeUninit::array_assume_init(array) })
971        }
972        Err(initialized) => {
973            // SAFETY: Only the first `initialized` elements were populated
974            Err(unsafe { IntoIter::new_unchecked(array, 0..initialized) })
975        }
976    }
977}
978
979/// Version of [`iter_next_chunk`] using a passed-in slice in order to avoid
980/// needing to monomorphize for every array length.
981///
982/// Unfortunately this loop has two exit conditions, the buffer filling up
983/// or the iterator running out of items, making it tend to optimize poorly.
984#[inline]
985fn iter_next_chunk_erased<T>(
986    buffer: &mut [MaybeUninit<T>],
987    iter: &mut impl Iterator<Item = T>,
988) -> Result<(), usize> {
989    let mut guard = Guard { array_mut: buffer, initialized: 0 };
990    while guard.initialized < guard.array_mut.len() {
991        let Some(item) = iter.next() else {
992            // Unlike `try_from_fn_erased`, we want to keep the partial results,
993            // so we need to defuse the guard instead of using `?`.
994            let initialized = guard.initialized;
995            mem::forget(guard);
996            return Err(initialized);
997        };
998
999        // SAFETY: The loop condition ensures we have space to push the item
1000        unsafe { guard.push_unchecked(item) };
1001    }
1002
1003    mem::forget(guard);
1004    Ok(())
1005}