core/cell.rs
1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//! interior value by duplicating it.
38//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//! interior value with [`Default::default()`] and returns the replaced value.
40//! - All types have:
41//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//! value.
43//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//! interior value.
45//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//! if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//! // Create a new block to limit the scope of the dynamic borrow
131//! {
132//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//! map.insert("africa", 92388);
134//! map.insert("kyoto", 11837);
135//! map.insert("piccadilly", 11826);
136//! map.insert("marbles", 38);
137//! }
138//!
139//! // Note that if we had not let the previous borrow of the cache fall out
140//! // of scope then the subsequent borrow would cause a dynamic thread panic.
141//! // This is the major hazard of using `RefCell`.
142//! let total: i32 = shared_map.borrow().values().sum();
143//! println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//! edges: Vec<(i32, i32)>,
164//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//! self.span_tree_cache
170//! .get_or_init(|| self.calc_span_tree())
171//! .clone()
172//! }
173//!
174//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//! // Expensive computation goes here
176//! vec![]
177//! }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//! ptr: NonNull<RcInner<T>>,
197//! phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//! strong: Cell<usize>,
202//! refcount: Cell<usize>,
203//! value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//! fn clone(&self) -> Rc<T> {
208//! self.inc_strong();
209//! Rc {
210//! ptr: self.ptr,
211//! phantom: PhantomData,
212//! }
213//! }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//! fn inner(&self) -> &RcInner<T>;
219//!
220//! fn strong(&self) -> usize {
221//! self.inner().strong.get()
222//! }
223//!
224//! fn inc_strong(&self) {
225//! self.inner()
226//! .strong
227//! .set(self.strong()
228//! .checked_add(1)
229//! .unwrap_or_else(|| abort() ));
230//! }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//! fn inner(&self) -> &RcInner<T> {
235//! unsafe {
236//! self.ptr.as_ref()
237//! }
238//! }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{PhantomData, Unsize};
256use crate::mem::{self, ManuallyDrop};
257use crate::ops::{self, CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::panic::const_panic;
259use crate::pin::PinCoerceUnsized;
260use crate::ptr::{self, NonNull};
261use crate::range;
262
263mod lazy;
264mod once;
265
266#[stable(feature = "lazy_cell", since = "1.80.0")]
267pub use lazy::LazyCell;
268#[stable(feature = "once_cell", since = "1.70.0")]
269pub use once::OnceCell;
270
271/// A mutable memory location.
272///
273/// # Memory layout
274///
275/// `Cell<T>` has the same [memory layout and caveats as
276/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
277/// `Cell<T>` has the same in-memory representation as its inner type `T`.
278///
279/// # Examples
280///
281/// In this example, you can see that `Cell<T>` enables mutation inside an
282/// immutable struct. In other words, it enables "interior mutability".
283///
284/// ```
285/// use std::cell::Cell;
286///
287/// struct SomeStruct {
288/// regular_field: u8,
289/// special_field: Cell<u8>,
290/// }
291///
292/// let my_struct = SomeStruct {
293/// regular_field: 0,
294/// special_field: Cell::new(1),
295/// };
296///
297/// let new_value = 100;
298///
299/// // ERROR: `my_struct` is immutable
300/// // my_struct.regular_field = new_value;
301///
302/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
303/// // which can always be mutated
304/// my_struct.special_field.set(new_value);
305/// assert_eq!(my_struct.special_field.get(), new_value);
306/// ```
307///
308/// See the [module-level documentation](self) for more.
309#[rustc_diagnostic_item = "Cell"]
310#[stable(feature = "rust1", since = "1.0.0")]
311#[repr(transparent)]
312#[rustc_pub_transparent]
313pub struct Cell<T: ?Sized> {
314 value: UnsafeCell<T>,
315}
316
317#[stable(feature = "rust1", since = "1.0.0")]
318unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
319
320// Note that this negative impl isn't strictly necessary for correctness,
321// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
322// However, given how important `Cell`'s `!Sync`-ness is,
323// having an explicit negative impl is nice for documentation purposes
324// and results in nicer error messages.
325#[stable(feature = "rust1", since = "1.0.0")]
326impl<T: ?Sized> !Sync for Cell<T> {}
327
328#[stable(feature = "rust1", since = "1.0.0")]
329impl<T: Copy> Clone for Cell<T> {
330 #[inline]
331 fn clone(&self) -> Cell<T> {
332 Cell::new(self.get())
333 }
334}
335
336#[stable(feature = "rust1", since = "1.0.0")]
337#[rustc_const_unstable(feature = "const_default", issue = "143894")]
338impl<T: [const] Default> const Default for Cell<T> {
339 /// Creates a `Cell<T>`, with the `Default` value for T.
340 #[inline]
341 fn default() -> Cell<T> {
342 Cell::new(Default::default())
343 }
344}
345
346#[stable(feature = "rust1", since = "1.0.0")]
347impl<T: PartialEq + Copy> PartialEq for Cell<T> {
348 #[inline]
349 fn eq(&self, other: &Cell<T>) -> bool {
350 self.get() == other.get()
351 }
352}
353
354#[stable(feature = "cell_eq", since = "1.2.0")]
355impl<T: Eq + Copy> Eq for Cell<T> {}
356
357#[stable(feature = "cell_ord", since = "1.10.0")]
358impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
359 #[inline]
360 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
361 self.get().partial_cmp(&other.get())
362 }
363
364 #[inline]
365 fn lt(&self, other: &Cell<T>) -> bool {
366 self.get() < other.get()
367 }
368
369 #[inline]
370 fn le(&self, other: &Cell<T>) -> bool {
371 self.get() <= other.get()
372 }
373
374 #[inline]
375 fn gt(&self, other: &Cell<T>) -> bool {
376 self.get() > other.get()
377 }
378
379 #[inline]
380 fn ge(&self, other: &Cell<T>) -> bool {
381 self.get() >= other.get()
382 }
383}
384
385#[stable(feature = "cell_ord", since = "1.10.0")]
386impl<T: Ord + Copy> Ord for Cell<T> {
387 #[inline]
388 fn cmp(&self, other: &Cell<T>) -> Ordering {
389 self.get().cmp(&other.get())
390 }
391}
392
393#[stable(feature = "cell_from", since = "1.12.0")]
394#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
395impl<T> const From<T> for Cell<T> {
396 /// Creates a new `Cell<T>` containing the given value.
397 fn from(t: T) -> Cell<T> {
398 Cell::new(t)
399 }
400}
401
402impl<T> Cell<T> {
403 /// Creates a new `Cell` containing the given value.
404 ///
405 /// # Examples
406 ///
407 /// ```
408 /// use std::cell::Cell;
409 ///
410 /// let c = Cell::new(5);
411 /// ```
412 #[stable(feature = "rust1", since = "1.0.0")]
413 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
414 #[inline]
415 pub const fn new(value: T) -> Cell<T> {
416 Cell { value: UnsafeCell::new(value) }
417 }
418
419 /// Sets the contained value.
420 ///
421 /// # Examples
422 ///
423 /// ```
424 /// use std::cell::Cell;
425 ///
426 /// let c = Cell::new(5);
427 ///
428 /// c.set(10);
429 /// ```
430 #[inline]
431 #[stable(feature = "rust1", since = "1.0.0")]
432 pub fn set(&self, val: T) {
433 self.replace(val);
434 }
435
436 /// Swaps the values of two `Cell`s.
437 ///
438 /// The difference with `std::mem::swap` is that this function doesn't
439 /// require a `&mut` reference.
440 ///
441 /// # Panics
442 ///
443 /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
444 /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
445 /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
446 ///
447 /// # Examples
448 ///
449 /// ```
450 /// use std::cell::Cell;
451 ///
452 /// let c1 = Cell::new(5i32);
453 /// let c2 = Cell::new(10i32);
454 /// c1.swap(&c2);
455 /// assert_eq!(10, c1.get());
456 /// assert_eq!(5, c2.get());
457 /// ```
458 #[inline]
459 #[stable(feature = "move_cell", since = "1.17.0")]
460 pub fn swap(&self, other: &Self) {
461 // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
462 // do the check in const, so trying to use it here would be inviting unnecessary fragility.
463 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
464 let src_usize = src.addr();
465 let dst_usize = dst.addr();
466 let diff = src_usize.abs_diff(dst_usize);
467 diff >= size_of::<T>()
468 }
469
470 if ptr::eq(self, other) {
471 // Swapping wouldn't change anything.
472 return;
473 }
474 if !is_nonoverlapping(self, other) {
475 // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
476 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
477 }
478 // SAFETY: This can be risky if called from separate threads, but `Cell`
479 // is `!Sync` so this won't happen. This also won't invalidate any
480 // pointers since `Cell` makes sure nothing else will be pointing into
481 // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
482 // so `swap` will just properly copy two full values of type `T` back and forth.
483 unsafe {
484 mem::swap(&mut *self.value.get(), &mut *other.value.get());
485 }
486 }
487
488 /// Replaces the contained value with `val`, and returns the old contained value.
489 ///
490 /// # Examples
491 ///
492 /// ```
493 /// use std::cell::Cell;
494 ///
495 /// let cell = Cell::new(5);
496 /// assert_eq!(cell.get(), 5);
497 /// assert_eq!(cell.replace(10), 5);
498 /// assert_eq!(cell.get(), 10);
499 /// ```
500 #[inline]
501 #[stable(feature = "move_cell", since = "1.17.0")]
502 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
503 #[rustc_confusables("swap")]
504 pub const fn replace(&self, val: T) -> T {
505 // SAFETY: This can cause data races if called from a separate thread,
506 // but `Cell` is `!Sync` so this won't happen.
507 mem::replace(unsafe { &mut *self.value.get() }, val)
508 }
509
510 /// Unwraps the value, consuming the cell.
511 ///
512 /// # Examples
513 ///
514 /// ```
515 /// use std::cell::Cell;
516 ///
517 /// let c = Cell::new(5);
518 /// let five = c.into_inner();
519 ///
520 /// assert_eq!(five, 5);
521 /// ```
522 #[stable(feature = "move_cell", since = "1.17.0")]
523 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
524 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
525 pub const fn into_inner(self) -> T {
526 self.value.into_inner()
527 }
528}
529
530impl<T: Copy> Cell<T> {
531 /// Returns a copy of the contained value.
532 ///
533 /// # Examples
534 ///
535 /// ```
536 /// use std::cell::Cell;
537 ///
538 /// let c = Cell::new(5);
539 ///
540 /// let five = c.get();
541 /// ```
542 #[inline]
543 #[stable(feature = "rust1", since = "1.0.0")]
544 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
545 pub const fn get(&self) -> T {
546 // SAFETY: This can cause data races if called from a separate thread,
547 // but `Cell` is `!Sync` so this won't happen.
548 unsafe { *self.value.get() }
549 }
550
551 /// Updates the contained value using a function.
552 ///
553 /// # Examples
554 ///
555 /// ```
556 /// use std::cell::Cell;
557 ///
558 /// let c = Cell::new(5);
559 /// c.update(|x| x + 1);
560 /// assert_eq!(c.get(), 6);
561 /// ```
562 #[inline]
563 #[stable(feature = "cell_update", since = "1.88.0")]
564 pub fn update(&self, f: impl FnOnce(T) -> T) {
565 let old = self.get();
566 self.set(f(old));
567 }
568}
569
570impl<T: ?Sized> Cell<T> {
571 /// Returns a raw pointer to the underlying data in this cell.
572 ///
573 /// # Examples
574 ///
575 /// ```
576 /// use std::cell::Cell;
577 ///
578 /// let c = Cell::new(5);
579 ///
580 /// let ptr = c.as_ptr();
581 /// ```
582 #[inline]
583 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
584 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
585 #[rustc_as_ptr]
586 #[rustc_never_returns_null_ptr]
587 pub const fn as_ptr(&self) -> *mut T {
588 self.value.get()
589 }
590
591 /// Returns a mutable reference to the underlying data.
592 ///
593 /// This call borrows `Cell` mutably (at compile-time) which guarantees
594 /// that we possess the only reference.
595 ///
596 /// However be cautious: this method expects `self` to be mutable, which is
597 /// generally not the case when using a `Cell`. If you require interior
598 /// mutability by reference, consider using `RefCell` which provides
599 /// run-time checked mutable borrows through its [`borrow_mut`] method.
600 ///
601 /// [`borrow_mut`]: RefCell::borrow_mut()
602 ///
603 /// # Examples
604 ///
605 /// ```
606 /// use std::cell::Cell;
607 ///
608 /// let mut c = Cell::new(5);
609 /// *c.get_mut() += 1;
610 ///
611 /// assert_eq!(c.get(), 6);
612 /// ```
613 #[inline]
614 #[stable(feature = "cell_get_mut", since = "1.11.0")]
615 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
616 pub const fn get_mut(&mut self) -> &mut T {
617 self.value.get_mut()
618 }
619
620 /// Returns a `&Cell<T>` from a `&mut T`
621 ///
622 /// # Examples
623 ///
624 /// ```
625 /// use std::cell::Cell;
626 ///
627 /// let slice: &mut [i32] = &mut [1, 2, 3];
628 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
629 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
630 ///
631 /// assert_eq!(slice_cell.len(), 3);
632 /// ```
633 #[inline]
634 #[stable(feature = "as_cell", since = "1.37.0")]
635 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
636 pub const fn from_mut(t: &mut T) -> &Cell<T> {
637 // SAFETY: `&mut` ensures unique access.
638 unsafe { &*(t as *mut T as *const Cell<T>) }
639 }
640}
641
642impl<T: Default> Cell<T> {
643 /// Takes the value of the cell, leaving `Default::default()` in its place.
644 ///
645 /// # Examples
646 ///
647 /// ```
648 /// use std::cell::Cell;
649 ///
650 /// let c = Cell::new(5);
651 /// let five = c.take();
652 ///
653 /// assert_eq!(five, 5);
654 /// assert_eq!(c.into_inner(), 0);
655 /// ```
656 #[stable(feature = "move_cell", since = "1.17.0")]
657 pub fn take(&self) -> T {
658 self.replace(Default::default())
659 }
660}
661
662#[unstable(feature = "coerce_unsized", issue = "18598")]
663impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
664
665// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
666// and become dyn-compatible method receivers.
667// Note that currently `Cell` itself cannot be a method receiver
668// because it does not implement Deref.
669// In other words:
670// `self: Cell<&Self>` won't work
671// `self: CellWrapper<Self>` becomes possible
672#[unstable(feature = "dispatch_from_dyn", issue = "none")]
673impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
674
675impl<T> Cell<[T]> {
676 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
677 ///
678 /// # Examples
679 ///
680 /// ```
681 /// use std::cell::Cell;
682 ///
683 /// let slice: &mut [i32] = &mut [1, 2, 3];
684 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
685 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
686 ///
687 /// assert_eq!(slice_cell.len(), 3);
688 /// ```
689 #[stable(feature = "as_cell", since = "1.37.0")]
690 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
691 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
692 // SAFETY: `Cell<T>` has the same memory layout as `T`.
693 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
694 }
695}
696
697impl<T, const N: usize> Cell<[T; N]> {
698 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
699 ///
700 /// # Examples
701 ///
702 /// ```
703 /// use std::cell::Cell;
704 ///
705 /// let mut array: [i32; 3] = [1, 2, 3];
706 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
707 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
708 /// ```
709 #[stable(feature = "as_array_of_cells", since = "1.91.0")]
710 #[rustc_const_stable(feature = "as_array_of_cells", since = "1.91.0")]
711 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
712 // SAFETY: `Cell<T>` has the same memory layout as `T`.
713 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
714 }
715}
716
717/// Types for which cloning `Cell<Self>` is sound.
718///
719/// # Safety
720///
721/// Implementing this trait for a type is sound if and only if the following code is sound for T =
722/// that type.
723///
724/// ```
725/// #![feature(cell_get_cloned)]
726/// # use std::cell::{CloneFromCell, Cell};
727/// fn clone_from_cell<T: CloneFromCell>(cell: &Cell<T>) -> T {
728/// unsafe { T::clone(&*cell.as_ptr()) }
729/// }
730/// ```
731///
732/// Importantly, you can't just implement `CloneFromCell` for any arbitrary `Copy` type, e.g. the
733/// following is unsound:
734///
735/// ```rust
736/// #![feature(cell_get_cloned)]
737/// # use std::cell::Cell;
738///
739/// #[derive(Copy, Debug)]
740/// pub struct Bad<'a>(Option<&'a Cell<Bad<'a>>>, u8);
741///
742/// impl Clone for Bad<'_> {
743/// fn clone(&self) -> Self {
744/// let a: &u8 = &self.1;
745/// // when self.0 points to self, we write to self.1 while we have a live `&u8` pointing to
746/// // it -- this is UB
747/// self.0.unwrap().set(Self(None, 1));
748/// dbg!((a, self));
749/// Self(None, 0)
750/// }
751/// }
752///
753/// // this is not sound
754/// // unsafe impl CloneFromCell for Bad<'_> {}
755/// ```
756#[unstable(feature = "cell_get_cloned", issue = "145329")]
757// Allow potential overlapping implementations in user code
758#[marker]
759pub unsafe trait CloneFromCell: Clone {}
760
761// `CloneFromCell` can be implemented for types that don't have indirection and which don't access
762// `Cell`s in their `Clone` implementation. A commonly-used subset is covered here.
763#[unstable(feature = "cell_get_cloned", issue = "145329")]
764unsafe impl<T: CloneFromCell, const N: usize> CloneFromCell for [T; N] {}
765#[unstable(feature = "cell_get_cloned", issue = "145329")]
766unsafe impl<T: CloneFromCell> CloneFromCell for Option<T> {}
767#[unstable(feature = "cell_get_cloned", issue = "145329")]
768unsafe impl<T: CloneFromCell, E: CloneFromCell> CloneFromCell for Result<T, E> {}
769#[unstable(feature = "cell_get_cloned", issue = "145329")]
770unsafe impl<T: ?Sized> CloneFromCell for PhantomData<T> {}
771#[unstable(feature = "cell_get_cloned", issue = "145329")]
772unsafe impl<T: CloneFromCell> CloneFromCell for ManuallyDrop<T> {}
773#[unstable(feature = "cell_get_cloned", issue = "145329")]
774unsafe impl<T: CloneFromCell> CloneFromCell for ops::Range<T> {}
775#[unstable(feature = "cell_get_cloned", issue = "145329")]
776unsafe impl<T: CloneFromCell> CloneFromCell for range::Range<T> {}
777
778#[unstable(feature = "cell_get_cloned", issue = "145329")]
779impl<T: CloneFromCell> Cell<T> {
780 /// Get a clone of the `Cell` that contains a copy of the original value.
781 ///
782 /// This allows a cheaply `Clone`-able type like an `Rc` to be stored in a `Cell`, exposing the
783 /// cheaper `clone()` method.
784 ///
785 /// # Examples
786 ///
787 /// ```
788 /// #![feature(cell_get_cloned)]
789 ///
790 /// use core::cell::Cell;
791 /// use std::rc::Rc;
792 ///
793 /// let rc = Rc::new(1usize);
794 /// let c1 = Cell::new(rc);
795 /// let c2 = c1.get_cloned();
796 /// assert_eq!(*c2.into_inner(), 1);
797 /// ```
798 pub fn get_cloned(&self) -> Self {
799 // SAFETY: T is CloneFromCell, which guarantees that this is sound.
800 Cell::new(T::clone(unsafe { &*self.as_ptr() }))
801 }
802}
803
804/// A mutable memory location with dynamically checked borrow rules
805///
806/// See the [module-level documentation](self) for more.
807#[rustc_diagnostic_item = "RefCell"]
808#[stable(feature = "rust1", since = "1.0.0")]
809pub struct RefCell<T: ?Sized> {
810 borrow: Cell<BorrowCounter>,
811 // Stores the location of the earliest currently active borrow.
812 // This gets updated whenever we go from having zero borrows
813 // to having a single borrow. When a borrow occurs, this gets included
814 // in the generated `BorrowError`/`BorrowMutError`
815 #[cfg(feature = "debug_refcell")]
816 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
817 value: UnsafeCell<T>,
818}
819
820/// An error returned by [`RefCell::try_borrow`].
821#[stable(feature = "try_borrow", since = "1.13.0")]
822#[non_exhaustive]
823#[derive(Debug)]
824pub struct BorrowError {
825 #[cfg(feature = "debug_refcell")]
826 location: &'static crate::panic::Location<'static>,
827}
828
829#[stable(feature = "try_borrow", since = "1.13.0")]
830impl Display for BorrowError {
831 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
832 #[cfg(feature = "debug_refcell")]
833 let res = write!(
834 f,
835 "RefCell already mutably borrowed; a previous borrow was at {}",
836 self.location
837 );
838
839 #[cfg(not(feature = "debug_refcell"))]
840 let res = Display::fmt("RefCell already mutably borrowed", f);
841
842 res
843 }
844}
845
846/// An error returned by [`RefCell::try_borrow_mut`].
847#[stable(feature = "try_borrow", since = "1.13.0")]
848#[non_exhaustive]
849#[derive(Debug)]
850pub struct BorrowMutError {
851 #[cfg(feature = "debug_refcell")]
852 location: &'static crate::panic::Location<'static>,
853}
854
855#[stable(feature = "try_borrow", since = "1.13.0")]
856impl Display for BorrowMutError {
857 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
858 #[cfg(feature = "debug_refcell")]
859 let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
860
861 #[cfg(not(feature = "debug_refcell"))]
862 let res = Display::fmt("RefCell already borrowed", f);
863
864 res
865 }
866}
867
868// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
869#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
870#[track_caller]
871#[cold]
872const fn panic_already_borrowed(err: BorrowMutError) -> ! {
873 const_panic!(
874 "RefCell already borrowed",
875 "{err}",
876 err: BorrowMutError = err,
877 )
878}
879
880// This ensures the panicking code is outlined from `borrow` for `RefCell`.
881#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
882#[track_caller]
883#[cold]
884const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
885 const_panic!(
886 "RefCell already mutably borrowed",
887 "{err}",
888 err: BorrowError = err,
889 )
890}
891
892// Positive values represent the number of `Ref` active. Negative values
893// represent the number of `RefMut` active. Multiple `RefMut`s can only be
894// active at a time if they refer to distinct, nonoverlapping components of a
895// `RefCell` (e.g., different ranges of a slice).
896//
897// `Ref` and `RefMut` are both two words in size, and so there will likely never
898// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
899// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
900// However, this is not a guarantee, as a pathological program could repeatedly
901// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
902// explicitly check for overflow and underflow in order to avoid unsafety, or at
903// least behave correctly in the event that overflow or underflow happens (e.g.,
904// see BorrowRef::new).
905type BorrowCounter = isize;
906const UNUSED: BorrowCounter = 0;
907
908#[inline(always)]
909const fn is_writing(x: BorrowCounter) -> bool {
910 x < UNUSED
911}
912
913#[inline(always)]
914const fn is_reading(x: BorrowCounter) -> bool {
915 x > UNUSED
916}
917
918impl<T> RefCell<T> {
919 /// Creates a new `RefCell` containing `value`.
920 ///
921 /// # Examples
922 ///
923 /// ```
924 /// use std::cell::RefCell;
925 ///
926 /// let c = RefCell::new(5);
927 /// ```
928 #[stable(feature = "rust1", since = "1.0.0")]
929 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
930 #[inline]
931 pub const fn new(value: T) -> RefCell<T> {
932 RefCell {
933 value: UnsafeCell::new(value),
934 borrow: Cell::new(UNUSED),
935 #[cfg(feature = "debug_refcell")]
936 borrowed_at: Cell::new(None),
937 }
938 }
939
940 /// Consumes the `RefCell`, returning the wrapped value.
941 ///
942 /// # Examples
943 ///
944 /// ```
945 /// use std::cell::RefCell;
946 ///
947 /// let c = RefCell::new(5);
948 ///
949 /// let five = c.into_inner();
950 /// ```
951 #[stable(feature = "rust1", since = "1.0.0")]
952 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
953 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
954 #[inline]
955 pub const fn into_inner(self) -> T {
956 // Since this function takes `self` (the `RefCell`) by value, the
957 // compiler statically verifies that it is not currently borrowed.
958 self.value.into_inner()
959 }
960
961 /// Replaces the wrapped value with a new one, returning the old value,
962 /// without deinitializing either one.
963 ///
964 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
965 ///
966 /// # Panics
967 ///
968 /// Panics if the value is currently borrowed.
969 ///
970 /// # Examples
971 ///
972 /// ```
973 /// use std::cell::RefCell;
974 /// let cell = RefCell::new(5);
975 /// let old_value = cell.replace(6);
976 /// assert_eq!(old_value, 5);
977 /// assert_eq!(cell, RefCell::new(6));
978 /// ```
979 #[inline]
980 #[stable(feature = "refcell_replace", since = "1.24.0")]
981 #[track_caller]
982 #[rustc_confusables("swap")]
983 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
984 pub const fn replace(&self, t: T) -> T {
985 mem::replace(&mut self.borrow_mut(), t)
986 }
987
988 /// Replaces the wrapped value with a new one computed from `f`, returning
989 /// the old value, without deinitializing either one.
990 ///
991 /// # Panics
992 ///
993 /// Panics if the value is currently borrowed.
994 ///
995 /// # Examples
996 ///
997 /// ```
998 /// use std::cell::RefCell;
999 /// let cell = RefCell::new(5);
1000 /// let old_value = cell.replace_with(|&mut old| old + 1);
1001 /// assert_eq!(old_value, 5);
1002 /// assert_eq!(cell, RefCell::new(6));
1003 /// ```
1004 #[inline]
1005 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
1006 #[track_caller]
1007 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
1008 let mut_borrow = &mut *self.borrow_mut();
1009 let replacement = f(mut_borrow);
1010 mem::replace(mut_borrow, replacement)
1011 }
1012
1013 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
1014 /// without deinitializing either one.
1015 ///
1016 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
1017 ///
1018 /// # Panics
1019 ///
1020 /// Panics if the value in either `RefCell` is currently borrowed, or
1021 /// if `self` and `other` point to the same `RefCell`.
1022 ///
1023 /// # Examples
1024 ///
1025 /// ```
1026 /// use std::cell::RefCell;
1027 /// let c = RefCell::new(5);
1028 /// let d = RefCell::new(6);
1029 /// c.swap(&d);
1030 /// assert_eq!(c, RefCell::new(6));
1031 /// assert_eq!(d, RefCell::new(5));
1032 /// ```
1033 #[inline]
1034 #[stable(feature = "refcell_swap", since = "1.24.0")]
1035 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1036 pub const fn swap(&self, other: &Self) {
1037 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
1038 }
1039}
1040
1041impl<T: ?Sized> RefCell<T> {
1042 /// Immutably borrows the wrapped value.
1043 ///
1044 /// The borrow lasts until the returned `Ref` exits scope. Multiple
1045 /// immutable borrows can be taken out at the same time.
1046 ///
1047 /// # Panics
1048 ///
1049 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
1050 /// [`try_borrow`](#method.try_borrow).
1051 ///
1052 /// # Examples
1053 ///
1054 /// ```
1055 /// use std::cell::RefCell;
1056 ///
1057 /// let c = RefCell::new(5);
1058 ///
1059 /// let borrowed_five = c.borrow();
1060 /// let borrowed_five2 = c.borrow();
1061 /// ```
1062 ///
1063 /// An example of panic:
1064 ///
1065 /// ```should_panic
1066 /// use std::cell::RefCell;
1067 ///
1068 /// let c = RefCell::new(5);
1069 ///
1070 /// let m = c.borrow_mut();
1071 /// let b = c.borrow(); // this causes a panic
1072 /// ```
1073 #[stable(feature = "rust1", since = "1.0.0")]
1074 #[inline]
1075 #[track_caller]
1076 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1077 pub const fn borrow(&self) -> Ref<'_, T> {
1078 match self.try_borrow() {
1079 Ok(b) => b,
1080 Err(err) => panic_already_mutably_borrowed(err),
1081 }
1082 }
1083
1084 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
1085 /// borrowed.
1086 ///
1087 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
1088 /// taken out at the same time.
1089 ///
1090 /// This is the non-panicking variant of [`borrow`](#method.borrow).
1091 ///
1092 /// # Examples
1093 ///
1094 /// ```
1095 /// use std::cell::RefCell;
1096 ///
1097 /// let c = RefCell::new(5);
1098 ///
1099 /// {
1100 /// let m = c.borrow_mut();
1101 /// assert!(c.try_borrow().is_err());
1102 /// }
1103 ///
1104 /// {
1105 /// let m = c.borrow();
1106 /// assert!(c.try_borrow().is_ok());
1107 /// }
1108 /// ```
1109 #[stable(feature = "try_borrow", since = "1.13.0")]
1110 #[inline]
1111 #[cfg_attr(feature = "debug_refcell", track_caller)]
1112 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1113 pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1114 match BorrowRef::new(&self.borrow) {
1115 Some(b) => {
1116 #[cfg(feature = "debug_refcell")]
1117 {
1118 // `borrowed_at` is always the *first* active borrow
1119 if b.borrow.get() == 1 {
1120 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1121 }
1122 }
1123
1124 // SAFETY: `BorrowRef` ensures that there is only immutable access
1125 // to the value while borrowed.
1126 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1127 Ok(Ref { value, borrow: b })
1128 }
1129 None => Err(BorrowError {
1130 // If a borrow occurred, then we must already have an outstanding borrow,
1131 // so `borrowed_at` will be `Some`
1132 #[cfg(feature = "debug_refcell")]
1133 location: self.borrowed_at.get().unwrap(),
1134 }),
1135 }
1136 }
1137
1138 /// Mutably borrows the wrapped value.
1139 ///
1140 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1141 /// from it exit scope. The value cannot be borrowed while this borrow is
1142 /// active.
1143 ///
1144 /// # Panics
1145 ///
1146 /// Panics if the value is currently borrowed. For a non-panicking variant, use
1147 /// [`try_borrow_mut`](#method.try_borrow_mut).
1148 ///
1149 /// # Examples
1150 ///
1151 /// ```
1152 /// use std::cell::RefCell;
1153 ///
1154 /// let c = RefCell::new("hello".to_owned());
1155 ///
1156 /// *c.borrow_mut() = "bonjour".to_owned();
1157 ///
1158 /// assert_eq!(&*c.borrow(), "bonjour");
1159 /// ```
1160 ///
1161 /// An example of panic:
1162 ///
1163 /// ```should_panic
1164 /// use std::cell::RefCell;
1165 ///
1166 /// let c = RefCell::new(5);
1167 /// let m = c.borrow();
1168 ///
1169 /// let b = c.borrow_mut(); // this causes a panic
1170 /// ```
1171 #[stable(feature = "rust1", since = "1.0.0")]
1172 #[inline]
1173 #[track_caller]
1174 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1175 pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1176 match self.try_borrow_mut() {
1177 Ok(b) => b,
1178 Err(err) => panic_already_borrowed(err),
1179 }
1180 }
1181
1182 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1183 ///
1184 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1185 /// from it exit scope. The value cannot be borrowed while this borrow is
1186 /// active.
1187 ///
1188 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1189 ///
1190 /// # Examples
1191 ///
1192 /// ```
1193 /// use std::cell::RefCell;
1194 ///
1195 /// let c = RefCell::new(5);
1196 ///
1197 /// {
1198 /// let m = c.borrow();
1199 /// assert!(c.try_borrow_mut().is_err());
1200 /// }
1201 ///
1202 /// assert!(c.try_borrow_mut().is_ok());
1203 /// ```
1204 #[stable(feature = "try_borrow", since = "1.13.0")]
1205 #[inline]
1206 #[cfg_attr(feature = "debug_refcell", track_caller)]
1207 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1208 pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1209 match BorrowRefMut::new(&self.borrow) {
1210 Some(b) => {
1211 #[cfg(feature = "debug_refcell")]
1212 {
1213 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1214 }
1215
1216 // SAFETY: `BorrowRefMut` guarantees unique access.
1217 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1218 Ok(RefMut { value, borrow: b, marker: PhantomData })
1219 }
1220 None => Err(BorrowMutError {
1221 // If a borrow occurred, then we must already have an outstanding borrow,
1222 // so `borrowed_at` will be `Some`
1223 #[cfg(feature = "debug_refcell")]
1224 location: self.borrowed_at.get().unwrap(),
1225 }),
1226 }
1227 }
1228
1229 /// Returns a raw pointer to the underlying data in this cell.
1230 ///
1231 /// # Examples
1232 ///
1233 /// ```
1234 /// use std::cell::RefCell;
1235 ///
1236 /// let c = RefCell::new(5);
1237 ///
1238 /// let ptr = c.as_ptr();
1239 /// ```
1240 #[inline]
1241 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1242 #[rustc_as_ptr]
1243 #[rustc_never_returns_null_ptr]
1244 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1245 pub const fn as_ptr(&self) -> *mut T {
1246 self.value.get()
1247 }
1248
1249 /// Returns a mutable reference to the underlying data.
1250 ///
1251 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1252 /// that no borrows to the underlying data exist. The dynamic checks inherent
1253 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1254 /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1255 /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1256 /// consider using the unstable [`undo_leak`] method.
1257 ///
1258 /// This method can only be called if `RefCell` can be mutably borrowed,
1259 /// which in general is only the case directly after the `RefCell` has
1260 /// been created. In these situations, skipping the aforementioned dynamic
1261 /// borrowing checks may yield better ergonomics and runtime-performance.
1262 ///
1263 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1264 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1265 ///
1266 /// [`borrow_mut`]: RefCell::borrow_mut()
1267 /// [`forget()`]: mem::forget
1268 /// [`undo_leak`]: RefCell::undo_leak()
1269 ///
1270 /// # Examples
1271 ///
1272 /// ```
1273 /// use std::cell::RefCell;
1274 ///
1275 /// let mut c = RefCell::new(5);
1276 /// *c.get_mut() += 1;
1277 ///
1278 /// assert_eq!(c, RefCell::new(6));
1279 /// ```
1280 #[inline]
1281 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1282 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1283 pub const fn get_mut(&mut self) -> &mut T {
1284 self.value.get_mut()
1285 }
1286
1287 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1288 ///
1289 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1290 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1291 /// if some `Ref` or `RefMut` borrows have been leaked.
1292 ///
1293 /// [`get_mut`]: RefCell::get_mut()
1294 ///
1295 /// # Examples
1296 ///
1297 /// ```
1298 /// #![feature(cell_leak)]
1299 /// use std::cell::RefCell;
1300 ///
1301 /// let mut c = RefCell::new(0);
1302 /// std::mem::forget(c.borrow_mut());
1303 ///
1304 /// assert!(c.try_borrow().is_err());
1305 /// c.undo_leak();
1306 /// assert!(c.try_borrow().is_ok());
1307 /// ```
1308 #[unstable(feature = "cell_leak", issue = "69099")]
1309 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1310 pub const fn undo_leak(&mut self) -> &mut T {
1311 *self.borrow.get_mut() = UNUSED;
1312 self.get_mut()
1313 }
1314
1315 /// Immutably borrows the wrapped value, returning an error if the value is
1316 /// currently mutably borrowed.
1317 ///
1318 /// # Safety
1319 ///
1320 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1321 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1322 /// borrowing the `RefCell` while the reference returned by this method
1323 /// is alive is undefined behavior.
1324 ///
1325 /// # Examples
1326 ///
1327 /// ```
1328 /// use std::cell::RefCell;
1329 ///
1330 /// let c = RefCell::new(5);
1331 ///
1332 /// {
1333 /// let m = c.borrow_mut();
1334 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1335 /// }
1336 ///
1337 /// {
1338 /// let m = c.borrow();
1339 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1340 /// }
1341 /// ```
1342 #[stable(feature = "borrow_state", since = "1.37.0")]
1343 #[inline]
1344 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1345 pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1346 if !is_writing(self.borrow.get()) {
1347 // SAFETY: We check that nobody is actively writing now, but it is
1348 // the caller's responsibility to ensure that nobody writes until
1349 // the returned reference is no longer in use.
1350 // Also, `self.value.get()` refers to the value owned by `self`
1351 // and is thus guaranteed to be valid for the lifetime of `self`.
1352 Ok(unsafe { &*self.value.get() })
1353 } else {
1354 Err(BorrowError {
1355 // If a borrow occurred, then we must already have an outstanding borrow,
1356 // so `borrowed_at` will be `Some`
1357 #[cfg(feature = "debug_refcell")]
1358 location: self.borrowed_at.get().unwrap(),
1359 })
1360 }
1361 }
1362}
1363
1364impl<T: Default> RefCell<T> {
1365 /// Takes the wrapped value, leaving `Default::default()` in its place.
1366 ///
1367 /// # Panics
1368 ///
1369 /// Panics if the value is currently borrowed.
1370 ///
1371 /// # Examples
1372 ///
1373 /// ```
1374 /// use std::cell::RefCell;
1375 ///
1376 /// let c = RefCell::new(5);
1377 /// let five = c.take();
1378 ///
1379 /// assert_eq!(five, 5);
1380 /// assert_eq!(c.into_inner(), 0);
1381 /// ```
1382 #[stable(feature = "refcell_take", since = "1.50.0")]
1383 pub fn take(&self) -> T {
1384 self.replace(Default::default())
1385 }
1386}
1387
1388#[stable(feature = "rust1", since = "1.0.0")]
1389unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1390
1391#[stable(feature = "rust1", since = "1.0.0")]
1392impl<T: ?Sized> !Sync for RefCell<T> {}
1393
1394#[stable(feature = "rust1", since = "1.0.0")]
1395impl<T: Clone> Clone for RefCell<T> {
1396 /// # Panics
1397 ///
1398 /// Panics if the value is currently mutably borrowed.
1399 #[inline]
1400 #[track_caller]
1401 fn clone(&self) -> RefCell<T> {
1402 RefCell::new(self.borrow().clone())
1403 }
1404
1405 /// # Panics
1406 ///
1407 /// Panics if `source` is currently mutably borrowed.
1408 #[inline]
1409 #[track_caller]
1410 fn clone_from(&mut self, source: &Self) {
1411 self.get_mut().clone_from(&source.borrow())
1412 }
1413}
1414
1415#[stable(feature = "rust1", since = "1.0.0")]
1416#[rustc_const_unstable(feature = "const_default", issue = "143894")]
1417impl<T: [const] Default> const Default for RefCell<T> {
1418 /// Creates a `RefCell<T>`, with the `Default` value for T.
1419 #[inline]
1420 fn default() -> RefCell<T> {
1421 RefCell::new(Default::default())
1422 }
1423}
1424
1425#[stable(feature = "rust1", since = "1.0.0")]
1426impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1427 /// # Panics
1428 ///
1429 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1430 #[inline]
1431 fn eq(&self, other: &RefCell<T>) -> bool {
1432 *self.borrow() == *other.borrow()
1433 }
1434}
1435
1436#[stable(feature = "cell_eq", since = "1.2.0")]
1437impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1438
1439#[stable(feature = "cell_ord", since = "1.10.0")]
1440impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1441 /// # Panics
1442 ///
1443 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1444 #[inline]
1445 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1446 self.borrow().partial_cmp(&*other.borrow())
1447 }
1448
1449 /// # Panics
1450 ///
1451 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1452 #[inline]
1453 fn lt(&self, other: &RefCell<T>) -> bool {
1454 *self.borrow() < *other.borrow()
1455 }
1456
1457 /// # Panics
1458 ///
1459 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1460 #[inline]
1461 fn le(&self, other: &RefCell<T>) -> bool {
1462 *self.borrow() <= *other.borrow()
1463 }
1464
1465 /// # Panics
1466 ///
1467 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1468 #[inline]
1469 fn gt(&self, other: &RefCell<T>) -> bool {
1470 *self.borrow() > *other.borrow()
1471 }
1472
1473 /// # Panics
1474 ///
1475 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1476 #[inline]
1477 fn ge(&self, other: &RefCell<T>) -> bool {
1478 *self.borrow() >= *other.borrow()
1479 }
1480}
1481
1482#[stable(feature = "cell_ord", since = "1.10.0")]
1483impl<T: ?Sized + Ord> Ord for RefCell<T> {
1484 /// # Panics
1485 ///
1486 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1487 #[inline]
1488 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1489 self.borrow().cmp(&*other.borrow())
1490 }
1491}
1492
1493#[stable(feature = "cell_from", since = "1.12.0")]
1494#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1495impl<T> const From<T> for RefCell<T> {
1496 /// Creates a new `RefCell<T>` containing the given value.
1497 fn from(t: T) -> RefCell<T> {
1498 RefCell::new(t)
1499 }
1500}
1501
1502#[unstable(feature = "coerce_unsized", issue = "18598")]
1503impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1504
1505struct BorrowRef<'b> {
1506 borrow: &'b Cell<BorrowCounter>,
1507}
1508
1509impl<'b> BorrowRef<'b> {
1510 #[inline]
1511 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1512 let b = borrow.get().wrapping_add(1);
1513 if !is_reading(b) {
1514 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1515 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1516 // due to Rust's reference aliasing rules
1517 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1518 // into isize::MIN (the max amount of writing borrows) so we can't allow
1519 // an additional read borrow because isize can't represent so many read borrows
1520 // (this can only happen if you mem::forget more than a small constant amount of
1521 // `Ref`s, which is not good practice)
1522 None
1523 } else {
1524 // Incrementing borrow can result in a reading value (> 0) in these cases:
1525 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1526 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1527 // is large enough to represent having one more read borrow
1528 borrow.replace(b);
1529 Some(BorrowRef { borrow })
1530 }
1531 }
1532}
1533
1534#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1535impl const Drop for BorrowRef<'_> {
1536 #[inline]
1537 fn drop(&mut self) {
1538 let borrow = self.borrow.get();
1539 debug_assert!(is_reading(borrow));
1540 self.borrow.replace(borrow - 1);
1541 }
1542}
1543
1544#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1545impl const Clone for BorrowRef<'_> {
1546 #[inline]
1547 fn clone(&self) -> Self {
1548 // Since this Ref exists, we know the borrow flag
1549 // is a reading borrow.
1550 let borrow = self.borrow.get();
1551 debug_assert!(is_reading(borrow));
1552 // Prevent the borrow counter from overflowing into
1553 // a writing borrow.
1554 assert!(borrow != BorrowCounter::MAX);
1555 self.borrow.replace(borrow + 1);
1556 BorrowRef { borrow: self.borrow }
1557 }
1558}
1559
1560/// Wraps a borrowed reference to a value in a `RefCell` box.
1561/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1562///
1563/// See the [module-level documentation](self) for more.
1564#[stable(feature = "rust1", since = "1.0.0")]
1565#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1566#[rustc_diagnostic_item = "RefCellRef"]
1567pub struct Ref<'b, T: ?Sized + 'b> {
1568 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1569 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1570 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1571 value: NonNull<T>,
1572 borrow: BorrowRef<'b>,
1573}
1574
1575#[stable(feature = "rust1", since = "1.0.0")]
1576#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
1577impl<T: ?Sized> const Deref for Ref<'_, T> {
1578 type Target = T;
1579
1580 #[inline]
1581 fn deref(&self) -> &T {
1582 // SAFETY: the value is accessible as long as we hold our borrow.
1583 unsafe { self.value.as_ref() }
1584 }
1585}
1586
1587#[unstable(feature = "deref_pure_trait", issue = "87121")]
1588unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1589
1590impl<'b, T: ?Sized> Ref<'b, T> {
1591 /// Copies a `Ref`.
1592 ///
1593 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1594 ///
1595 /// This is an associated function that needs to be used as
1596 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1597 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1598 /// a `RefCell`.
1599 #[stable(feature = "cell_extras", since = "1.15.0")]
1600 #[must_use]
1601 #[inline]
1602 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1603 pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1604 Ref { value: orig.value, borrow: orig.borrow.clone() }
1605 }
1606
1607 /// Makes a new `Ref` for a component of the borrowed data.
1608 ///
1609 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1610 ///
1611 /// This is an associated function that needs to be used as `Ref::map(...)`.
1612 /// A method would interfere with methods of the same name on the contents
1613 /// of a `RefCell` used through `Deref`.
1614 ///
1615 /// # Examples
1616 ///
1617 /// ```
1618 /// use std::cell::{RefCell, Ref};
1619 ///
1620 /// let c = RefCell::new((5, 'b'));
1621 /// let b1: Ref<'_, (u32, char)> = c.borrow();
1622 /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1623 /// assert_eq!(*b2, 5)
1624 /// ```
1625 #[stable(feature = "cell_map", since = "1.8.0")]
1626 #[inline]
1627 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1628 where
1629 F: FnOnce(&T) -> &U,
1630 {
1631 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1632 }
1633
1634 /// Makes a new `Ref` for an optional component of the borrowed data. The
1635 /// original guard is returned as an `Err(..)` if the closure returns
1636 /// `None`.
1637 ///
1638 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1639 ///
1640 /// This is an associated function that needs to be used as
1641 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1642 /// name on the contents of a `RefCell` used through `Deref`.
1643 ///
1644 /// # Examples
1645 ///
1646 /// ```
1647 /// use std::cell::{RefCell, Ref};
1648 ///
1649 /// let c = RefCell::new(vec![1, 2, 3]);
1650 /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1651 /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1652 /// assert_eq!(*b2.unwrap(), 2);
1653 /// ```
1654 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1655 #[inline]
1656 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1657 where
1658 F: FnOnce(&T) -> Option<&U>,
1659 {
1660 match f(&*orig) {
1661 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1662 None => Err(orig),
1663 }
1664 }
1665
1666 /// Tries to makes a new `Ref` for a component of the borrowed data.
1667 /// On failure, the original guard is returned alongside with the error
1668 /// returned by the closure.
1669 ///
1670 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1671 ///
1672 /// This is an associated function that needs to be used as
1673 /// `Ref::try_map(...)`. A method would interfere with methods of the same
1674 /// name on the contents of a `RefCell` used through `Deref`.
1675 ///
1676 /// # Examples
1677 ///
1678 /// ```
1679 /// #![feature(refcell_try_map)]
1680 /// use std::cell::{RefCell, Ref};
1681 /// use std::str::{from_utf8, Utf8Error};
1682 ///
1683 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6 ,0x80]);
1684 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1685 /// let b2: Result<Ref<'_, str>, _> = Ref::try_map(b1, |v| from_utf8(v));
1686 /// assert_eq!(&*b2.unwrap(), "🦀");
1687 ///
1688 /// let c = RefCell::new(vec![0xF0, 0x9F, 0xA6]);
1689 /// let b1: Ref<'_, Vec<u8>> = c.borrow();
1690 /// let b2: Result<_, (Ref<'_, Vec<u8>>, Utf8Error)> = Ref::try_map(b1, |v| from_utf8(v));
1691 /// let (b3, e) = b2.unwrap_err();
1692 /// assert_eq!(*b3, vec![0xF0, 0x9F, 0xA6]);
1693 /// assert_eq!(e.valid_up_to(), 0);
1694 /// ```
1695 #[unstable(feature = "refcell_try_map", issue = "143801")]
1696 #[inline]
1697 pub fn try_map<U: ?Sized, E>(
1698 orig: Ref<'b, T>,
1699 f: impl FnOnce(&T) -> Result<&U, E>,
1700 ) -> Result<Ref<'b, U>, (Self, E)> {
1701 match f(&*orig) {
1702 Ok(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1703 Err(e) => Err((orig, e)),
1704 }
1705 }
1706
1707 /// Splits a `Ref` into multiple `Ref`s for different components of the
1708 /// borrowed data.
1709 ///
1710 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1711 ///
1712 /// This is an associated function that needs to be used as
1713 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1714 /// name on the contents of a `RefCell` used through `Deref`.
1715 ///
1716 /// # Examples
1717 ///
1718 /// ```
1719 /// use std::cell::{Ref, RefCell};
1720 ///
1721 /// let cell = RefCell::new([1, 2, 3, 4]);
1722 /// let borrow = cell.borrow();
1723 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1724 /// assert_eq!(*begin, [1, 2]);
1725 /// assert_eq!(*end, [3, 4]);
1726 /// ```
1727 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1728 #[inline]
1729 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1730 where
1731 F: FnOnce(&T) -> (&U, &V),
1732 {
1733 let (a, b) = f(&*orig);
1734 let borrow = orig.borrow.clone();
1735 (
1736 Ref { value: NonNull::from(a), borrow },
1737 Ref { value: NonNull::from(b), borrow: orig.borrow },
1738 )
1739 }
1740
1741 /// Converts into a reference to the underlying data.
1742 ///
1743 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1744 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1745 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1746 /// have occurred in total.
1747 ///
1748 /// This is an associated function that needs to be used as
1749 /// `Ref::leak(...)`. A method would interfere with methods of the
1750 /// same name on the contents of a `RefCell` used through `Deref`.
1751 ///
1752 /// # Examples
1753 ///
1754 /// ```
1755 /// #![feature(cell_leak)]
1756 /// use std::cell::{RefCell, Ref};
1757 /// let cell = RefCell::new(0);
1758 ///
1759 /// let value = Ref::leak(cell.borrow());
1760 /// assert_eq!(*value, 0);
1761 ///
1762 /// assert!(cell.try_borrow().is_ok());
1763 /// assert!(cell.try_borrow_mut().is_err());
1764 /// ```
1765 #[unstable(feature = "cell_leak", issue = "69099")]
1766 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1767 pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1768 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1769 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1770 // unique reference to the borrowed RefCell. No further mutable references can be created
1771 // from the original cell.
1772 mem::forget(orig.borrow);
1773 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1774 unsafe { orig.value.as_ref() }
1775 }
1776}
1777
1778#[unstable(feature = "coerce_unsized", issue = "18598")]
1779impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1780
1781#[stable(feature = "std_guard_impls", since = "1.20.0")]
1782impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1783 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1784 (**self).fmt(f)
1785 }
1786}
1787
1788impl<'b, T: ?Sized> RefMut<'b, T> {
1789 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1790 /// variant.
1791 ///
1792 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1793 ///
1794 /// This is an associated function that needs to be used as
1795 /// `RefMut::map(...)`. A method would interfere with methods of the same
1796 /// name on the contents of a `RefCell` used through `Deref`.
1797 ///
1798 /// # Examples
1799 ///
1800 /// ```
1801 /// use std::cell::{RefCell, RefMut};
1802 ///
1803 /// let c = RefCell::new((5, 'b'));
1804 /// {
1805 /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1806 /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1807 /// assert_eq!(*b2, 5);
1808 /// *b2 = 42;
1809 /// }
1810 /// assert_eq!(*c.borrow(), (42, 'b'));
1811 /// ```
1812 #[stable(feature = "cell_map", since = "1.8.0")]
1813 #[inline]
1814 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1815 where
1816 F: FnOnce(&mut T) -> &mut U,
1817 {
1818 let value = NonNull::from(f(&mut *orig));
1819 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1820 }
1821
1822 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1823 /// original guard is returned as an `Err(..)` if the closure returns
1824 /// `None`.
1825 ///
1826 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1827 ///
1828 /// This is an associated function that needs to be used as
1829 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1830 /// same name on the contents of a `RefCell` used through `Deref`.
1831 ///
1832 /// # Examples
1833 ///
1834 /// ```
1835 /// use std::cell::{RefCell, RefMut};
1836 ///
1837 /// let c = RefCell::new(vec![1, 2, 3]);
1838 ///
1839 /// {
1840 /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1841 /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1842 ///
1843 /// if let Ok(mut b2) = b2 {
1844 /// *b2 += 2;
1845 /// }
1846 /// }
1847 ///
1848 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1849 /// ```
1850 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1851 #[inline]
1852 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1853 where
1854 F: FnOnce(&mut T) -> Option<&mut U>,
1855 {
1856 // SAFETY: function holds onto an exclusive reference for the duration
1857 // of its call through `orig`, and the pointer is only de-referenced
1858 // inside of the function call never allowing the exclusive reference to
1859 // escape.
1860 match f(&mut *orig) {
1861 Some(value) => {
1862 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1863 }
1864 None => Err(orig),
1865 }
1866 }
1867
1868 /// Tries to makes a new `RefMut` for a component of the borrowed data.
1869 /// On failure, the original guard is returned alongside with the error
1870 /// returned by the closure.
1871 ///
1872 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1873 ///
1874 /// This is an associated function that needs to be used as
1875 /// `RefMut::try_map(...)`. A method would interfere with methods of the same
1876 /// name on the contents of a `RefCell` used through `Deref`.
1877 ///
1878 /// # Examples
1879 ///
1880 /// ```
1881 /// #![feature(refcell_try_map)]
1882 /// use std::cell::{RefCell, RefMut};
1883 /// use std::str::{from_utf8_mut, Utf8Error};
1884 ///
1885 /// let c = RefCell::new(vec![0x68, 0x65, 0x6C, 0x6C, 0x6F]);
1886 /// {
1887 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1888 /// let b2: Result<RefMut<'_, str>, _> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1889 /// let mut b2 = b2.unwrap();
1890 /// assert_eq!(&*b2, "hello");
1891 /// b2.make_ascii_uppercase();
1892 /// }
1893 /// assert_eq!(*c.borrow(), "HELLO".as_bytes());
1894 ///
1895 /// let c = RefCell::new(vec![0xFF]);
1896 /// let b1: RefMut<'_, Vec<u8>> = c.borrow_mut();
1897 /// let b2: Result<_, (RefMut<'_, Vec<u8>>, Utf8Error)> = RefMut::try_map(b1, |v| from_utf8_mut(v));
1898 /// let (b3, e) = b2.unwrap_err();
1899 /// assert_eq!(*b3, vec![0xFF]);
1900 /// assert_eq!(e.valid_up_to(), 0);
1901 /// ```
1902 #[unstable(feature = "refcell_try_map", issue = "143801")]
1903 #[inline]
1904 pub fn try_map<U: ?Sized, E>(
1905 mut orig: RefMut<'b, T>,
1906 f: impl FnOnce(&mut T) -> Result<&mut U, E>,
1907 ) -> Result<RefMut<'b, U>, (Self, E)> {
1908 // SAFETY: function holds onto an exclusive reference for the duration
1909 // of its call through `orig`, and the pointer is only de-referenced
1910 // inside of the function call never allowing the exclusive reference to
1911 // escape.
1912 match f(&mut *orig) {
1913 Ok(value) => {
1914 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1915 }
1916 Err(e) => Err((orig, e)),
1917 }
1918 }
1919
1920 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1921 /// borrowed data.
1922 ///
1923 /// The underlying `RefCell` will remain mutably borrowed until both
1924 /// returned `RefMut`s go out of scope.
1925 ///
1926 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1927 ///
1928 /// This is an associated function that needs to be used as
1929 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1930 /// same name on the contents of a `RefCell` used through `Deref`.
1931 ///
1932 /// # Examples
1933 ///
1934 /// ```
1935 /// use std::cell::{RefCell, RefMut};
1936 ///
1937 /// let cell = RefCell::new([1, 2, 3, 4]);
1938 /// let borrow = cell.borrow_mut();
1939 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1940 /// assert_eq!(*begin, [1, 2]);
1941 /// assert_eq!(*end, [3, 4]);
1942 /// begin.copy_from_slice(&[4, 3]);
1943 /// end.copy_from_slice(&[2, 1]);
1944 /// ```
1945 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1946 #[inline]
1947 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1948 mut orig: RefMut<'b, T>,
1949 f: F,
1950 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1951 where
1952 F: FnOnce(&mut T) -> (&mut U, &mut V),
1953 {
1954 let borrow = orig.borrow.clone();
1955 let (a, b) = f(&mut *orig);
1956 (
1957 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1958 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1959 )
1960 }
1961
1962 /// Converts into a mutable reference to the underlying data.
1963 ///
1964 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1965 /// mutably borrowed, making the returned reference the only to the interior.
1966 ///
1967 /// This is an associated function that needs to be used as
1968 /// `RefMut::leak(...)`. A method would interfere with methods of the
1969 /// same name on the contents of a `RefCell` used through `Deref`.
1970 ///
1971 /// # Examples
1972 ///
1973 /// ```
1974 /// #![feature(cell_leak)]
1975 /// use std::cell::{RefCell, RefMut};
1976 /// let cell = RefCell::new(0);
1977 ///
1978 /// let value = RefMut::leak(cell.borrow_mut());
1979 /// assert_eq!(*value, 0);
1980 /// *value = 1;
1981 ///
1982 /// assert!(cell.try_borrow_mut().is_err());
1983 /// ```
1984 #[unstable(feature = "cell_leak", issue = "69099")]
1985 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1986 pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
1987 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1988 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1989 // require a unique reference to the borrowed RefCell. No further references can be created
1990 // from the original cell within that lifetime, making the current borrow the only
1991 // reference for the remaining lifetime.
1992 mem::forget(orig.borrow);
1993 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1994 unsafe { orig.value.as_mut() }
1995 }
1996}
1997
1998struct BorrowRefMut<'b> {
1999 borrow: &'b Cell<BorrowCounter>,
2000}
2001
2002#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
2003impl const Drop for BorrowRefMut<'_> {
2004 #[inline]
2005 fn drop(&mut self) {
2006 let borrow = self.borrow.get();
2007 debug_assert!(is_writing(borrow));
2008 self.borrow.replace(borrow + 1);
2009 }
2010}
2011
2012impl<'b> BorrowRefMut<'b> {
2013 #[inline]
2014 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
2015 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
2016 // mutable reference, and so there must currently be no existing
2017 // references. Thus, while clone increments the mutable refcount, here
2018 // we explicitly only allow going from UNUSED to UNUSED - 1.
2019 match borrow.get() {
2020 UNUSED => {
2021 borrow.replace(UNUSED - 1);
2022 Some(BorrowRefMut { borrow })
2023 }
2024 _ => None,
2025 }
2026 }
2027
2028 // Clones a `BorrowRefMut`.
2029 //
2030 // This is only valid if each `BorrowRefMut` is used to track a mutable
2031 // reference to a distinct, nonoverlapping range of the original object.
2032 // This isn't in a Clone impl so that code doesn't call this implicitly.
2033 #[inline]
2034 fn clone(&self) -> BorrowRefMut<'b> {
2035 let borrow = self.borrow.get();
2036 debug_assert!(is_writing(borrow));
2037 // Prevent the borrow counter from underflowing.
2038 assert!(borrow != BorrowCounter::MIN);
2039 self.borrow.set(borrow - 1);
2040 BorrowRefMut { borrow: self.borrow }
2041 }
2042}
2043
2044/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
2045///
2046/// See the [module-level documentation](self) for more.
2047#[stable(feature = "rust1", since = "1.0.0")]
2048#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
2049#[rustc_diagnostic_item = "RefCellRefMut"]
2050pub struct RefMut<'b, T: ?Sized + 'b> {
2051 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
2052 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
2053 value: NonNull<T>,
2054 borrow: BorrowRefMut<'b>,
2055 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
2056 marker: PhantomData<&'b mut T>,
2057}
2058
2059#[stable(feature = "rust1", since = "1.0.0")]
2060#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2061impl<T: ?Sized> const Deref for RefMut<'_, T> {
2062 type Target = T;
2063
2064 #[inline]
2065 fn deref(&self) -> &T {
2066 // SAFETY: the value is accessible as long as we hold our borrow.
2067 unsafe { self.value.as_ref() }
2068 }
2069}
2070
2071#[stable(feature = "rust1", since = "1.0.0")]
2072#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2073impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
2074 #[inline]
2075 fn deref_mut(&mut self) -> &mut T {
2076 // SAFETY: the value is accessible as long as we hold our borrow.
2077 unsafe { self.value.as_mut() }
2078 }
2079}
2080
2081#[unstable(feature = "deref_pure_trait", issue = "87121")]
2082unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
2083
2084#[unstable(feature = "coerce_unsized", issue = "18598")]
2085impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
2086
2087#[stable(feature = "std_guard_impls", since = "1.20.0")]
2088impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
2089 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2090 (**self).fmt(f)
2091 }
2092}
2093
2094/// The core primitive for interior mutability in Rust.
2095///
2096/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
2097/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
2098/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
2099/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
2100/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
2101///
2102/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
2103/// use `UnsafeCell` to wrap their data.
2104///
2105/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
2106/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
2107/// aliasing `&mut`, not even with `UnsafeCell<T>`.
2108///
2109/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
2110/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
2111/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
2112/// [`core::sync::atomic`].
2113///
2114/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
2115/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
2116/// correctly.
2117///
2118/// [`.get()`]: `UnsafeCell::get`
2119/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
2120///
2121/// # Aliasing rules
2122///
2123/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
2124///
2125/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
2126/// you must not access the data in any way that contradicts that reference for the remainder of
2127/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
2128/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
2129/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a
2130/// `&mut T` reference that is released to safe code, then you must not access the data within the
2131/// `UnsafeCell` until that reference expires.
2132///
2133/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
2134/// until the reference expires. As a special exception, given an `&T`, any part of it that is
2135/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
2136/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
2137/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
2138/// *every part of it* (including padding) is inside an `UnsafeCell`.
2139///
2140/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
2141/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
2142/// memory has not yet been deallocated.
2143///
2144/// To assist with proper design, the following scenarios are explicitly declared legal
2145/// for single-threaded code:
2146///
2147/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
2148/// references, but not with a `&mut T`
2149///
2150/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
2151/// co-exist with it. A `&mut T` must always be unique.
2152///
2153/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
2154/// `&UnsafeCell<T>` references alias the cell) is
2155/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
2156/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
2157/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
2158/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
2159/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
2160/// may be aliased for the duration of that `&mut` borrow.
2161/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
2162/// a `&mut T`.
2163///
2164/// [`.get_mut()`]: `UnsafeCell::get_mut`
2165///
2166/// # Memory layout
2167///
2168/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
2169/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
2170/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
2171/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
2172/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
2173/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
2174/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
2175/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
2176/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
2177/// thus this can cause distortions in the type size in these cases.
2178///
2179/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
2180/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
2181/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
2182/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2183/// same memory layout, the following is not allowed and undefined behavior:
2184///
2185/// ```rust,compile_fail
2186/// # use std::cell::UnsafeCell;
2187/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2188/// let t = ptr as *const UnsafeCell<T> as *mut T;
2189/// // This is undefined behavior, because the `*mut T` pointer
2190/// // was not obtained through `.get()` nor `.raw_get()`:
2191/// unsafe { &mut *t }
2192/// }
2193/// ```
2194///
2195/// Instead, do this:
2196///
2197/// ```rust
2198/// # use std::cell::UnsafeCell;
2199/// // Safety: the caller must ensure that there are no references that
2200/// // point to the *contents* of the `UnsafeCell`.
2201/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2202/// unsafe { &mut *ptr.get() }
2203/// }
2204/// ```
2205///
2206/// Converting in the other direction from a `&mut T`
2207/// to an `&UnsafeCell<T>` is allowed:
2208///
2209/// ```rust
2210/// # use std::cell::UnsafeCell;
2211/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2212/// let t = ptr as *mut T as *const UnsafeCell<T>;
2213/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2214/// unsafe { &*t }
2215/// }
2216/// ```
2217///
2218/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2219/// [`.raw_get()`]: `UnsafeCell::raw_get`
2220///
2221/// # Examples
2222///
2223/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2224/// there being multiple references aliasing the cell:
2225///
2226/// ```
2227/// use std::cell::UnsafeCell;
2228///
2229/// let x: UnsafeCell<i32> = 42.into();
2230/// // Get multiple / concurrent / shared references to the same `x`.
2231/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2232///
2233/// unsafe {
2234/// // SAFETY: within this scope there are no other references to `x`'s contents,
2235/// // so ours is effectively unique.
2236/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2237/// *p1_exclusive += 27; // |
2238/// } // <---------- cannot go beyond this point -------------------+
2239///
2240/// unsafe {
2241/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2242/// // so we can have multiple shared accesses concurrently.
2243/// let p2_shared: &i32 = &*p2.get();
2244/// assert_eq!(*p2_shared, 42 + 27);
2245/// let p1_shared: &i32 = &*p1.get();
2246/// assert_eq!(*p1_shared, *p2_shared);
2247/// }
2248/// ```
2249///
2250/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2251/// implies exclusive access to its `T`:
2252///
2253/// ```rust
2254/// #![forbid(unsafe_code)]
2255/// // with exclusive accesses, `UnsafeCell` is a transparent no-op wrapper, so no need for
2256/// // `unsafe` here.
2257/// use std::cell::UnsafeCell;
2258///
2259/// let mut x: UnsafeCell<i32> = 42.into();
2260///
2261/// // Get a compile-time-checked unique reference to `x`.
2262/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2263/// // With an exclusive reference, we can mutate the contents for free.
2264/// *p_unique.get_mut() = 0;
2265/// // Or, equivalently:
2266/// x = UnsafeCell::new(0);
2267///
2268/// // When we own the value, we can extract the contents for free.
2269/// let contents: i32 = x.into_inner();
2270/// assert_eq!(contents, 0);
2271/// ```
2272#[lang = "unsafe_cell"]
2273#[stable(feature = "rust1", since = "1.0.0")]
2274#[repr(transparent)]
2275#[rustc_pub_transparent]
2276pub struct UnsafeCell<T: ?Sized> {
2277 value: T,
2278}
2279
2280#[stable(feature = "rust1", since = "1.0.0")]
2281impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2282
2283impl<T> UnsafeCell<T> {
2284 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2285 /// value.
2286 ///
2287 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2288 ///
2289 /// # Examples
2290 ///
2291 /// ```
2292 /// use std::cell::UnsafeCell;
2293 ///
2294 /// let uc = UnsafeCell::new(5);
2295 /// ```
2296 #[stable(feature = "rust1", since = "1.0.0")]
2297 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2298 #[inline(always)]
2299 pub const fn new(value: T) -> UnsafeCell<T> {
2300 UnsafeCell { value }
2301 }
2302
2303 /// Unwraps the value, consuming the cell.
2304 ///
2305 /// # Examples
2306 ///
2307 /// ```
2308 /// use std::cell::UnsafeCell;
2309 ///
2310 /// let uc = UnsafeCell::new(5);
2311 ///
2312 /// let five = uc.into_inner();
2313 /// ```
2314 #[inline(always)]
2315 #[stable(feature = "rust1", since = "1.0.0")]
2316 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2317 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2318 pub const fn into_inner(self) -> T {
2319 self.value
2320 }
2321
2322 /// Replace the value in this `UnsafeCell` and return the old value.
2323 ///
2324 /// # Safety
2325 ///
2326 /// The caller must take care to avoid aliasing and data races.
2327 ///
2328 /// - It is Undefined Behavior to allow calls to race with
2329 /// any other access to the wrapped value.
2330 /// - It is Undefined Behavior to call this while any other
2331 /// reference(s) to the wrapped value are alive.
2332 ///
2333 /// # Examples
2334 ///
2335 /// ```
2336 /// #![feature(unsafe_cell_access)]
2337 /// use std::cell::UnsafeCell;
2338 ///
2339 /// let uc = UnsafeCell::new(5);
2340 ///
2341 /// let old = unsafe { uc.replace(10) };
2342 /// assert_eq!(old, 5);
2343 /// ```
2344 #[inline]
2345 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2346 pub const unsafe fn replace(&self, value: T) -> T {
2347 // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2348 unsafe { ptr::replace(self.get(), value) }
2349 }
2350}
2351
2352impl<T: ?Sized> UnsafeCell<T> {
2353 /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2354 ///
2355 /// # Examples
2356 ///
2357 /// ```
2358 /// use std::cell::UnsafeCell;
2359 ///
2360 /// let mut val = 42;
2361 /// let uc = UnsafeCell::from_mut(&mut val);
2362 ///
2363 /// *uc.get_mut() -= 1;
2364 /// assert_eq!(*uc.get_mut(), 41);
2365 /// ```
2366 #[inline(always)]
2367 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2368 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2369 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2370 // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2371 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2372 }
2373
2374 /// Gets a mutable pointer to the wrapped value.
2375 ///
2376 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2377 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2378 /// caveats.
2379 ///
2380 /// # Examples
2381 ///
2382 /// ```
2383 /// use std::cell::UnsafeCell;
2384 ///
2385 /// let uc = UnsafeCell::new(5);
2386 ///
2387 /// let five = uc.get();
2388 /// ```
2389 #[inline(always)]
2390 #[stable(feature = "rust1", since = "1.0.0")]
2391 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2392 #[rustc_as_ptr]
2393 #[rustc_never_returns_null_ptr]
2394 pub const fn get(&self) -> *mut T {
2395 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2396 // #[repr(transparent)]. This exploits std's special status, there is
2397 // no guarantee for user code that this will work in future versions of the compiler!
2398 self as *const UnsafeCell<T> as *const T as *mut T
2399 }
2400
2401 /// Returns a mutable reference to the underlying data.
2402 ///
2403 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2404 /// guarantees that we possess the only reference.
2405 ///
2406 /// # Examples
2407 ///
2408 /// ```
2409 /// use std::cell::UnsafeCell;
2410 ///
2411 /// let mut c = UnsafeCell::new(5);
2412 /// *c.get_mut() += 1;
2413 ///
2414 /// assert_eq!(*c.get_mut(), 6);
2415 /// ```
2416 #[inline(always)]
2417 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2418 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2419 pub const fn get_mut(&mut self) -> &mut T {
2420 &mut self.value
2421 }
2422
2423 /// Gets a mutable pointer to the wrapped value.
2424 /// The difference from [`get`] is that this function accepts a raw pointer,
2425 /// which is useful to avoid the creation of temporary references.
2426 ///
2427 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2428 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2429 /// caveats.
2430 ///
2431 /// [`get`]: UnsafeCell::get()
2432 ///
2433 /// # Examples
2434 ///
2435 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2436 /// calling `get` would require creating a reference to uninitialized data:
2437 ///
2438 /// ```
2439 /// use std::cell::UnsafeCell;
2440 /// use std::mem::MaybeUninit;
2441 ///
2442 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2443 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2444 /// // avoid below which references to uninitialized data
2445 /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2446 /// let uc = unsafe { m.assume_init() };
2447 ///
2448 /// assert_eq!(uc.into_inner(), 5);
2449 /// ```
2450 #[inline(always)]
2451 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2452 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2453 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2454 pub const fn raw_get(this: *const Self) -> *mut T {
2455 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2456 // #[repr(transparent)]. This exploits std's special status, there is
2457 // no guarantee for user code that this will work in future versions of the compiler!
2458 this as *const T as *mut T
2459 }
2460
2461 /// Get a shared reference to the value within the `UnsafeCell`.
2462 ///
2463 /// # Safety
2464 ///
2465 /// - It is Undefined Behavior to call this while any mutable
2466 /// reference to the wrapped value is alive.
2467 /// - Mutating the wrapped value while the returned
2468 /// reference is alive is Undefined Behavior.
2469 ///
2470 /// # Examples
2471 ///
2472 /// ```
2473 /// #![feature(unsafe_cell_access)]
2474 /// use std::cell::UnsafeCell;
2475 ///
2476 /// let uc = UnsafeCell::new(5);
2477 ///
2478 /// let val = unsafe { uc.as_ref_unchecked() };
2479 /// assert_eq!(val, &5);
2480 /// ```
2481 #[inline]
2482 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2483 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2484 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2485 unsafe { self.get().as_ref_unchecked() }
2486 }
2487
2488 /// Get an exclusive reference to the value within the `UnsafeCell`.
2489 ///
2490 /// # Safety
2491 ///
2492 /// - It is Undefined Behavior to call this while any other
2493 /// reference(s) to the wrapped value are alive.
2494 /// - Mutating the wrapped value through other means while the
2495 /// returned reference is alive is Undefined Behavior.
2496 ///
2497 /// # Examples
2498 ///
2499 /// ```
2500 /// #![feature(unsafe_cell_access)]
2501 /// use std::cell::UnsafeCell;
2502 ///
2503 /// let uc = UnsafeCell::new(5);
2504 ///
2505 /// unsafe { *uc.as_mut_unchecked() += 1; }
2506 /// assert_eq!(uc.into_inner(), 6);
2507 /// ```
2508 #[inline]
2509 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2510 #[allow(clippy::mut_from_ref)]
2511 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2512 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2513 unsafe { self.get().as_mut_unchecked() }
2514 }
2515}
2516
2517#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2518#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2519impl<T: [const] Default> const Default for UnsafeCell<T> {
2520 /// Creates an `UnsafeCell`, with the `Default` value for T.
2521 fn default() -> UnsafeCell<T> {
2522 UnsafeCell::new(Default::default())
2523 }
2524}
2525
2526#[stable(feature = "cell_from", since = "1.12.0")]
2527#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2528impl<T> const From<T> for UnsafeCell<T> {
2529 /// Creates a new `UnsafeCell<T>` containing the given value.
2530 fn from(t: T) -> UnsafeCell<T> {
2531 UnsafeCell::new(t)
2532 }
2533}
2534
2535#[unstable(feature = "coerce_unsized", issue = "18598")]
2536impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2537
2538// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2539// and become dyn-compatible method receivers.
2540// Note that currently `UnsafeCell` itself cannot be a method receiver
2541// because it does not implement Deref.
2542// In other words:
2543// `self: UnsafeCell<&Self>` won't work
2544// `self: UnsafeCellWrapper<Self>` becomes possible
2545#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2546impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2547
2548/// [`UnsafeCell`], but [`Sync`].
2549///
2550/// This is just an `UnsafeCell`, except it implements `Sync`
2551/// if `T` implements `Sync`.
2552///
2553/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2554/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2555/// shared between threads, if that's intentional.
2556/// Providing proper synchronization is still the task of the user,
2557/// making this type just as unsafe to use.
2558///
2559/// See [`UnsafeCell`] for details.
2560#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2561#[repr(transparent)]
2562#[rustc_diagnostic_item = "SyncUnsafeCell"]
2563#[rustc_pub_transparent]
2564pub struct SyncUnsafeCell<T: ?Sized> {
2565 value: UnsafeCell<T>,
2566}
2567
2568#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2569unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2570
2571#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2572impl<T> SyncUnsafeCell<T> {
2573 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2574 #[inline]
2575 pub const fn new(value: T) -> Self {
2576 Self { value: UnsafeCell { value } }
2577 }
2578
2579 /// Unwraps the value, consuming the cell.
2580 #[inline]
2581 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2582 pub const fn into_inner(self) -> T {
2583 self.value.into_inner()
2584 }
2585}
2586
2587#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2588impl<T: ?Sized> SyncUnsafeCell<T> {
2589 /// Gets a mutable pointer to the wrapped value.
2590 ///
2591 /// This can be cast to a pointer of any kind.
2592 /// Ensure that the access is unique (no active references, mutable or not)
2593 /// when casting to `&mut T`, and ensure that there are no mutations
2594 /// or mutable aliases going on when casting to `&T`
2595 #[inline]
2596 #[rustc_as_ptr]
2597 #[rustc_never_returns_null_ptr]
2598 pub const fn get(&self) -> *mut T {
2599 self.value.get()
2600 }
2601
2602 /// Returns a mutable reference to the underlying data.
2603 ///
2604 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2605 /// guarantees that we possess the only reference.
2606 #[inline]
2607 pub const fn get_mut(&mut self) -> &mut T {
2608 self.value.get_mut()
2609 }
2610
2611 /// Gets a mutable pointer to the wrapped value.
2612 ///
2613 /// See [`UnsafeCell::get`] for details.
2614 #[inline]
2615 pub const fn raw_get(this: *const Self) -> *mut T {
2616 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2617 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2618 // See UnsafeCell::raw_get.
2619 this as *const T as *mut T
2620 }
2621}
2622
2623#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2624#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2625impl<T: [const] Default> const Default for SyncUnsafeCell<T> {
2626 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2627 fn default() -> SyncUnsafeCell<T> {
2628 SyncUnsafeCell::new(Default::default())
2629 }
2630}
2631
2632#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2633#[rustc_const_unstable(feature = "const_convert", issue = "143773")]
2634impl<T> const From<T> for SyncUnsafeCell<T> {
2635 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2636 fn from(t: T) -> SyncUnsafeCell<T> {
2637 SyncUnsafeCell::new(t)
2638 }
2639}
2640
2641#[unstable(feature = "coerce_unsized", issue = "18598")]
2642//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2643impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2644
2645// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2646// and become dyn-compatible method receivers.
2647// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2648// because it does not implement Deref.
2649// In other words:
2650// `self: SyncUnsafeCell<&Self>` won't work
2651// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2652#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2653//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2654impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2655
2656#[allow(unused)]
2657fn assert_coerce_unsized(
2658 a: UnsafeCell<&i32>,
2659 b: SyncUnsafeCell<&i32>,
2660 c: Cell<&i32>,
2661 d: RefCell<&i32>,
2662) {
2663 let _: UnsafeCell<&dyn Send> = a;
2664 let _: SyncUnsafeCell<&dyn Send> = b;
2665 let _: Cell<&dyn Send> = c;
2666 let _: RefCell<&dyn Send> = d;
2667}
2668
2669#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2670unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2671
2672#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2673unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2674
2675#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2676unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2677
2678#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2679unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2680
2681#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2682unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2683
2684#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2685unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}