core/cmp.rs
1//! Utilities for comparing and ordering values.
2//!
3//! This module contains various tools for comparing and ordering values. In
4//! summary:
5//!
6//! * [`PartialEq<Rhs>`] overloads the `==` and `!=` operators. In cases where
7//! `Rhs` (the right hand side's type) is `Self`, this trait corresponds to a
8//! partial equivalence relation.
9//! * [`Eq`] indicates that the overloaded `==` operator corresponds to an
10//! equivalence relation.
11//! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and
12//! partial orderings between values, respectively. Implementing them overloads
13//! the `<`, `<=`, `>`, and `>=` operators.
14//! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and
15//! [`PartialOrd`], and describes an ordering of two values (less, equal, or
16//! greater).
17//! * [`Reverse`] is a struct that allows you to easily reverse an ordering.
18//! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you
19//! to find the maximum or minimum of two values.
20//!
21//! For more details, see the respective documentation of each item in the list.
22//!
23//! [`max`]: Ord::max
24//! [`min`]: Ord::min
25
26#![stable(feature = "rust1", since = "1.0.0")]
27
28mod bytewise;
29pub(crate) use bytewise::BytewiseEq;
30
31use self::Ordering::*;
32use crate::marker::{Destruct, PointeeSized};
33use crate::ops::ControlFlow;
34
35/// Trait for comparisons using the equality operator.
36///
37/// Implementing this trait for types provides the `==` and `!=` operators for
38/// those types.
39///
40/// `x.eq(y)` can also be written `x == y`, and `x.ne(y)` can be written `x != y`.
41/// We use the easier-to-read infix notation in the remainder of this documentation.
42///
43/// This trait allows for comparisons using the equality operator, for types
44/// that do not have a full equivalence relation. For example, in floating point
45/// numbers `NaN != NaN`, so floating point types implement `PartialEq` but not
46/// [`trait@Eq`]. Formally speaking, when `Rhs == Self`, this trait corresponds
47/// to a [partial equivalence relation].
48///
49/// [partial equivalence relation]: https://en.wikipedia.org/wiki/Partial_equivalence_relation
50///
51/// Implementations must ensure that `eq` and `ne` are consistent with each other:
52///
53/// - `a != b` if and only if `!(a == b)`.
54///
55/// The default implementation of `ne` provides this consistency and is almost
56/// always sufficient. It should not be overridden without very good reason.
57///
58/// If [`PartialOrd`] or [`Ord`] are also implemented for `Self` and `Rhs`, their methods must also
59/// be consistent with `PartialEq` (see the documentation of those traits for the exact
60/// requirements). It's easy to accidentally make them disagree by deriving some of the traits and
61/// manually implementing others.
62///
63/// The equality relation `==` must satisfy the following conditions
64/// (for all `a`, `b`, `c` of type `A`, `B`, `C`):
65///
66/// - **Symmetry**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then **`a == b`
67/// implies `b == a`**; and
68///
69/// - **Transitivity**: if `A: PartialEq<B>` and `B: PartialEq<C>` and `A:
70/// PartialEq<C>`, then **`a == b` and `b == c` implies `a == c`**.
71/// This must also work for longer chains, such as when `A: PartialEq<B>`, `B: PartialEq<C>`,
72/// `C: PartialEq<D>`, and `A: PartialEq<D>` all exist.
73///
74/// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
75/// (transitive) impls are not forced to exist, but these requirements apply
76/// whenever they do exist.
77///
78/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
79/// specified, but users of the trait must ensure that such logic errors do *not* result in
80/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
81/// methods.
82///
83/// ## Cross-crate considerations
84///
85/// Upholding the requirements stated above can become tricky when one crate implements `PartialEq`
86/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
87/// standard library). The recommendation is to never implement this trait for a foreign type. In
88/// other words, such a crate should do `impl PartialEq<ForeignType> for LocalType`, but it should
89/// *not* do `impl PartialEq<LocalType> for ForeignType`.
90///
91/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
92/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T == U`. In
93/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 == ...
94/// == T == V1 == ...`, then all the types that appear to the right of `T` must be types that the
95/// crate defining `T` already knows about. This rules out transitive chains where downstream crates
96/// can add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
97/// transitivity.
98///
99/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
100/// more `PartialEq` implementations can cause build failures in downstream crates.
101///
102/// ## Derivable
103///
104/// This trait can be used with `#[derive]`. When `derive`d on structs, two
105/// instances are equal if all fields are equal, and not equal if any fields
106/// are not equal. When `derive`d on enums, two instances are equal if they
107/// are the same variant and all fields are equal.
108///
109/// ## How can I implement `PartialEq`?
110///
111/// An example implementation for a domain in which two books are considered
112/// the same book if their ISBN matches, even if the formats differ:
113///
114/// ```
115/// enum BookFormat {
116/// Paperback,
117/// Hardback,
118/// Ebook,
119/// }
120///
121/// struct Book {
122/// isbn: i32,
123/// format: BookFormat,
124/// }
125///
126/// impl PartialEq for Book {
127/// fn eq(&self, other: &Self) -> bool {
128/// self.isbn == other.isbn
129/// }
130/// }
131///
132/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
133/// let b2 = Book { isbn: 3, format: BookFormat::Ebook };
134/// let b3 = Book { isbn: 10, format: BookFormat::Paperback };
135///
136/// assert!(b1 == b2);
137/// assert!(b1 != b3);
138/// ```
139///
140/// ## How can I compare two different types?
141///
142/// The type you can compare with is controlled by `PartialEq`'s type parameter.
143/// For example, let's tweak our previous code a bit:
144///
145/// ```
146/// // The derive implements <BookFormat> == <BookFormat> comparisons
147/// #[derive(PartialEq)]
148/// enum BookFormat {
149/// Paperback,
150/// Hardback,
151/// Ebook,
152/// }
153///
154/// struct Book {
155/// isbn: i32,
156/// format: BookFormat,
157/// }
158///
159/// // Implement <Book> == <BookFormat> comparisons
160/// impl PartialEq<BookFormat> for Book {
161/// fn eq(&self, other: &BookFormat) -> bool {
162/// self.format == *other
163/// }
164/// }
165///
166/// // Implement <BookFormat> == <Book> comparisons
167/// impl PartialEq<Book> for BookFormat {
168/// fn eq(&self, other: &Book) -> bool {
169/// *self == other.format
170/// }
171/// }
172///
173/// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
174///
175/// assert!(b1 == BookFormat::Paperback);
176/// assert!(BookFormat::Ebook != b1);
177/// ```
178///
179/// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`,
180/// we allow `BookFormat`s to be compared with `Book`s.
181///
182/// A comparison like the one above, which ignores some fields of the struct,
183/// can be dangerous. It can easily lead to an unintended violation of the
184/// requirements for a partial equivalence relation. For example, if we kept
185/// the above implementation of `PartialEq<Book>` for `BookFormat` and added an
186/// implementation of `PartialEq<Book>` for `Book` (either via a `#[derive]` or
187/// via the manual implementation from the first example) then the result would
188/// violate transitivity:
189///
190/// ```should_panic
191/// #[derive(PartialEq)]
192/// enum BookFormat {
193/// Paperback,
194/// Hardback,
195/// Ebook,
196/// }
197///
198/// #[derive(PartialEq)]
199/// struct Book {
200/// isbn: i32,
201/// format: BookFormat,
202/// }
203///
204/// impl PartialEq<BookFormat> for Book {
205/// fn eq(&self, other: &BookFormat) -> bool {
206/// self.format == *other
207/// }
208/// }
209///
210/// impl PartialEq<Book> for BookFormat {
211/// fn eq(&self, other: &Book) -> bool {
212/// *self == other.format
213/// }
214/// }
215///
216/// fn main() {
217/// let b1 = Book { isbn: 1, format: BookFormat::Paperback };
218/// let b2 = Book { isbn: 2, format: BookFormat::Paperback };
219///
220/// assert!(b1 == BookFormat::Paperback);
221/// assert!(BookFormat::Paperback == b2);
222///
223/// // The following should hold by transitivity but doesn't.
224/// assert!(b1 == b2); // <-- PANICS
225/// }
226/// ```
227///
228/// # Examples
229///
230/// ```
231/// let x: u32 = 0;
232/// let y: u32 = 1;
233///
234/// assert_eq!(x == y, false);
235/// assert_eq!(x.eq(&y), false);
236/// ```
237///
238/// [`eq`]: PartialEq::eq
239/// [`ne`]: PartialEq::ne
240#[lang = "eq"]
241#[stable(feature = "rust1", since = "1.0.0")]
242#[doc(alias = "==")]
243#[doc(alias = "!=")]
244#[rustc_on_unimplemented(
245 message = "can't compare `{Self}` with `{Rhs}`",
246 label = "no implementation for `{Self} == {Rhs}`",
247 append_const_msg
248)]
249#[rustc_diagnostic_item = "PartialEq"]
250#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
251pub const trait PartialEq<Rhs: PointeeSized = Self>: PointeeSized {
252 /// Tests for `self` and `other` values to be equal, and is used by `==`.
253 #[must_use]
254 #[stable(feature = "rust1", since = "1.0.0")]
255 #[rustc_diagnostic_item = "cmp_partialeq_eq"]
256 fn eq(&self, other: &Rhs) -> bool;
257
258 /// Tests for `!=`. The default implementation is almost always sufficient,
259 /// and should not be overridden without very good reason.
260 #[inline]
261 #[must_use]
262 #[stable(feature = "rust1", since = "1.0.0")]
263 #[rustc_diagnostic_item = "cmp_partialeq_ne"]
264 fn ne(&self, other: &Rhs) -> bool {
265 !self.eq(other)
266 }
267}
268
269/// Derive macro generating an impl of the trait [`PartialEq`].
270/// The behavior of this macro is described in detail [here](PartialEq#derivable).
271#[rustc_builtin_macro]
272#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
273#[allow_internal_unstable(core_intrinsics, structural_match)]
274pub macro PartialEq($item:item) {
275 /* compiler built-in */
276}
277
278/// Trait for comparisons corresponding to [equivalence relations](
279/// https://en.wikipedia.org/wiki/Equivalence_relation).
280///
281/// The primary difference to [`PartialEq`] is the additional requirement for reflexivity. A type
282/// that implements [`PartialEq`] guarantees that for all `a`, `b` and `c`:
283///
284/// - symmetric: `a == b` implies `b == a` and `a != b` implies `!(a == b)`
285/// - transitive: `a == b` and `b == c` implies `a == c`
286///
287/// `Eq`, which builds on top of [`PartialEq`] also implies:
288///
289/// - reflexive: `a == a`
290///
291/// This property cannot be checked by the compiler, and therefore `Eq` is a trait without methods.
292///
293/// Violating this property is a logic error. The behavior resulting from a logic error is not
294/// specified, but users of the trait must ensure that such logic errors do *not* result in
295/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
296/// methods.
297///
298/// Floating point types such as [`f32`] and [`f64`] implement only [`PartialEq`] but *not* `Eq`
299/// because `NaN` != `NaN`.
300///
301/// ## Derivable
302///
303/// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has no extra methods, it
304/// is only informing the compiler that this is an equivalence relation rather than a partial
305/// equivalence relation. Note that the `derive` strategy requires all fields are `Eq`, which isn't
306/// always desired.
307///
308/// ## How can I implement `Eq`?
309///
310/// If you cannot use the `derive` strategy, specify that your type implements `Eq`, which has no
311/// extra methods:
312///
313/// ```
314/// enum BookFormat {
315/// Paperback,
316/// Hardback,
317/// Ebook,
318/// }
319///
320/// struct Book {
321/// isbn: i32,
322/// format: BookFormat,
323/// }
324///
325/// impl PartialEq for Book {
326/// fn eq(&self, other: &Self) -> bool {
327/// self.isbn == other.isbn
328/// }
329/// }
330///
331/// impl Eq for Book {}
332/// ```
333#[doc(alias = "==")]
334#[doc(alias = "!=")]
335#[stable(feature = "rust1", since = "1.0.0")]
336#[rustc_diagnostic_item = "Eq"]
337#[const_trait]
338#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
339pub trait Eq: [const] PartialEq<Self> + PointeeSized {
340 // this method is used solely by `impl Eq or #[derive(Eq)]` to assert that every component of a
341 // type implements `Eq` itself. The current deriving infrastructure means doing this assertion
342 // without using a method on this trait is nearly impossible.
343 //
344 // This should never be implemented by hand.
345 #[doc(hidden)]
346 #[coverage(off)]
347 #[inline]
348 #[stable(feature = "rust1", since = "1.0.0")]
349 fn assert_receiver_is_total_eq(&self) {}
350}
351
352/// Derive macro generating an impl of the trait [`Eq`].
353#[rustc_builtin_macro]
354#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
355#[allow_internal_unstable(core_intrinsics, derive_eq, structural_match)]
356#[allow_internal_unstable(coverage_attribute)]
357pub macro Eq($item:item) {
358 /* compiler built-in */
359}
360
361// FIXME: this struct is used solely by #[derive] to
362// assert that every component of a type implements Eq.
363//
364// This struct should never appear in user code.
365#[doc(hidden)]
366#[allow(missing_debug_implementations)]
367#[unstable(feature = "derive_eq", reason = "deriving hack, should not be public", issue = "none")]
368pub struct AssertParamIsEq<T: Eq + PointeeSized> {
369 _field: crate::marker::PhantomData<T>,
370}
371
372/// An `Ordering` is the result of a comparison between two values.
373///
374/// # Examples
375///
376/// ```
377/// use std::cmp::Ordering;
378///
379/// assert_eq!(1.cmp(&2), Ordering::Less);
380///
381/// assert_eq!(1.cmp(&1), Ordering::Equal);
382///
383/// assert_eq!(2.cmp(&1), Ordering::Greater);
384/// ```
385#[derive(Copy, Debug, Hash)]
386#[derive_const(Clone, Eq, PartialOrd, Ord, PartialEq)]
387#[stable(feature = "rust1", since = "1.0.0")]
388// This is a lang item only so that `BinOp::Cmp` in MIR can return it.
389// It has no special behavior, but does require that the three variants
390// `Less`/`Equal`/`Greater` remain `-1_i8`/`0_i8`/`+1_i8` respectively.
391#[lang = "Ordering"]
392#[repr(i8)]
393pub enum Ordering {
394 /// An ordering where a compared value is less than another.
395 #[stable(feature = "rust1", since = "1.0.0")]
396 Less = -1,
397 /// An ordering where a compared value is equal to another.
398 #[stable(feature = "rust1", since = "1.0.0")]
399 Equal = 0,
400 /// An ordering where a compared value is greater than another.
401 #[stable(feature = "rust1", since = "1.0.0")]
402 Greater = 1,
403}
404
405impl Ordering {
406 #[inline]
407 const fn as_raw(self) -> i8 {
408 // FIXME(const-hack): just use `PartialOrd` against `Equal` once that's const
409 crate::intrinsics::discriminant_value(&self)
410 }
411
412 /// Returns `true` if the ordering is the `Equal` variant.
413 ///
414 /// # Examples
415 ///
416 /// ```
417 /// use std::cmp::Ordering;
418 ///
419 /// assert_eq!(Ordering::Less.is_eq(), false);
420 /// assert_eq!(Ordering::Equal.is_eq(), true);
421 /// assert_eq!(Ordering::Greater.is_eq(), false);
422 /// ```
423 #[inline]
424 #[must_use]
425 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
426 #[stable(feature = "ordering_helpers", since = "1.53.0")]
427 pub const fn is_eq(self) -> bool {
428 // All the `is_*` methods are implemented as comparisons against zero
429 // to follow how clang's libcxx implements their equivalents in
430 // <https://github.com/llvm/llvm-project/blob/60486292b79885b7800b082754153202bef5b1f0/libcxx/include/__compare/is_eq.h#L23-L28>
431
432 self.as_raw() == 0
433 }
434
435 /// Returns `true` if the ordering is not the `Equal` variant.
436 ///
437 /// # Examples
438 ///
439 /// ```
440 /// use std::cmp::Ordering;
441 ///
442 /// assert_eq!(Ordering::Less.is_ne(), true);
443 /// assert_eq!(Ordering::Equal.is_ne(), false);
444 /// assert_eq!(Ordering::Greater.is_ne(), true);
445 /// ```
446 #[inline]
447 #[must_use]
448 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
449 #[stable(feature = "ordering_helpers", since = "1.53.0")]
450 pub const fn is_ne(self) -> bool {
451 self.as_raw() != 0
452 }
453
454 /// Returns `true` if the ordering is the `Less` variant.
455 ///
456 /// # Examples
457 ///
458 /// ```
459 /// use std::cmp::Ordering;
460 ///
461 /// assert_eq!(Ordering::Less.is_lt(), true);
462 /// assert_eq!(Ordering::Equal.is_lt(), false);
463 /// assert_eq!(Ordering::Greater.is_lt(), false);
464 /// ```
465 #[inline]
466 #[must_use]
467 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
468 #[stable(feature = "ordering_helpers", since = "1.53.0")]
469 pub const fn is_lt(self) -> bool {
470 self.as_raw() < 0
471 }
472
473 /// Returns `true` if the ordering is the `Greater` variant.
474 ///
475 /// # Examples
476 ///
477 /// ```
478 /// use std::cmp::Ordering;
479 ///
480 /// assert_eq!(Ordering::Less.is_gt(), false);
481 /// assert_eq!(Ordering::Equal.is_gt(), false);
482 /// assert_eq!(Ordering::Greater.is_gt(), true);
483 /// ```
484 #[inline]
485 #[must_use]
486 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
487 #[stable(feature = "ordering_helpers", since = "1.53.0")]
488 pub const fn is_gt(self) -> bool {
489 self.as_raw() > 0
490 }
491
492 /// Returns `true` if the ordering is either the `Less` or `Equal` variant.
493 ///
494 /// # Examples
495 ///
496 /// ```
497 /// use std::cmp::Ordering;
498 ///
499 /// assert_eq!(Ordering::Less.is_le(), true);
500 /// assert_eq!(Ordering::Equal.is_le(), true);
501 /// assert_eq!(Ordering::Greater.is_le(), false);
502 /// ```
503 #[inline]
504 #[must_use]
505 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
506 #[stable(feature = "ordering_helpers", since = "1.53.0")]
507 pub const fn is_le(self) -> bool {
508 self.as_raw() <= 0
509 }
510
511 /// Returns `true` if the ordering is either the `Greater` or `Equal` variant.
512 ///
513 /// # Examples
514 ///
515 /// ```
516 /// use std::cmp::Ordering;
517 ///
518 /// assert_eq!(Ordering::Less.is_ge(), false);
519 /// assert_eq!(Ordering::Equal.is_ge(), true);
520 /// assert_eq!(Ordering::Greater.is_ge(), true);
521 /// ```
522 #[inline]
523 #[must_use]
524 #[rustc_const_stable(feature = "ordering_helpers", since = "1.53.0")]
525 #[stable(feature = "ordering_helpers", since = "1.53.0")]
526 pub const fn is_ge(self) -> bool {
527 self.as_raw() >= 0
528 }
529
530 /// Reverses the `Ordering`.
531 ///
532 /// * `Less` becomes `Greater`.
533 /// * `Greater` becomes `Less`.
534 /// * `Equal` becomes `Equal`.
535 ///
536 /// # Examples
537 ///
538 /// Basic behavior:
539 ///
540 /// ```
541 /// use std::cmp::Ordering;
542 ///
543 /// assert_eq!(Ordering::Less.reverse(), Ordering::Greater);
544 /// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal);
545 /// assert_eq!(Ordering::Greater.reverse(), Ordering::Less);
546 /// ```
547 ///
548 /// This method can be used to reverse a comparison:
549 ///
550 /// ```
551 /// let data: &mut [_] = &mut [2, 10, 5, 8];
552 ///
553 /// // sort the array from largest to smallest.
554 /// data.sort_by(|a, b| a.cmp(b).reverse());
555 ///
556 /// let b: &mut [_] = &mut [10, 8, 5, 2];
557 /// assert!(data == b);
558 /// ```
559 #[inline]
560 #[must_use]
561 #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
562 #[stable(feature = "rust1", since = "1.0.0")]
563 pub const fn reverse(self) -> Ordering {
564 match self {
565 Less => Greater,
566 Equal => Equal,
567 Greater => Less,
568 }
569 }
570
571 /// Chains two orderings.
572 ///
573 /// Returns `self` when it's not `Equal`. Otherwise returns `other`.
574 ///
575 /// # Examples
576 ///
577 /// ```
578 /// use std::cmp::Ordering;
579 ///
580 /// let result = Ordering::Equal.then(Ordering::Less);
581 /// assert_eq!(result, Ordering::Less);
582 ///
583 /// let result = Ordering::Less.then(Ordering::Equal);
584 /// assert_eq!(result, Ordering::Less);
585 ///
586 /// let result = Ordering::Less.then(Ordering::Greater);
587 /// assert_eq!(result, Ordering::Less);
588 ///
589 /// let result = Ordering::Equal.then(Ordering::Equal);
590 /// assert_eq!(result, Ordering::Equal);
591 ///
592 /// let x: (i64, i64, i64) = (1, 2, 7);
593 /// let y: (i64, i64, i64) = (1, 5, 3);
594 /// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2));
595 ///
596 /// assert_eq!(result, Ordering::Less);
597 /// ```
598 #[inline]
599 #[must_use]
600 #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
601 #[stable(feature = "ordering_chaining", since = "1.17.0")]
602 pub const fn then(self, other: Ordering) -> Ordering {
603 match self {
604 Equal => other,
605 _ => self,
606 }
607 }
608
609 /// Chains the ordering with the given function.
610 ///
611 /// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns
612 /// the result.
613 ///
614 /// # Examples
615 ///
616 /// ```
617 /// use std::cmp::Ordering;
618 ///
619 /// let result = Ordering::Equal.then_with(|| Ordering::Less);
620 /// assert_eq!(result, Ordering::Less);
621 ///
622 /// let result = Ordering::Less.then_with(|| Ordering::Equal);
623 /// assert_eq!(result, Ordering::Less);
624 ///
625 /// let result = Ordering::Less.then_with(|| Ordering::Greater);
626 /// assert_eq!(result, Ordering::Less);
627 ///
628 /// let result = Ordering::Equal.then_with(|| Ordering::Equal);
629 /// assert_eq!(result, Ordering::Equal);
630 ///
631 /// let x: (i64, i64, i64) = (1, 2, 7);
632 /// let y: (i64, i64, i64) = (1, 5, 3);
633 /// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2));
634 ///
635 /// assert_eq!(result, Ordering::Less);
636 /// ```
637 #[inline]
638 #[must_use]
639 #[stable(feature = "ordering_chaining", since = "1.17.0")]
640 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
641 pub const fn then_with<F>(self, f: F) -> Ordering
642 where
643 F: [const] FnOnce() -> Ordering + [const] Destruct,
644 {
645 match self {
646 Equal => f(),
647 _ => self,
648 }
649 }
650}
651
652/// A helper struct for reverse ordering.
653///
654/// This struct is a helper to be used with functions like [`Vec::sort_by_key`] and
655/// can be used to reverse order a part of a key.
656///
657/// [`Vec::sort_by_key`]: ../../std/vec/struct.Vec.html#method.sort_by_key
658///
659/// # Examples
660///
661/// ```
662/// use std::cmp::Reverse;
663///
664/// let mut v = vec![1, 2, 3, 4, 5, 6];
665/// v.sort_by_key(|&num| (num > 3, Reverse(num)));
666/// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]);
667/// ```
668#[derive(Copy, Debug, Hash)]
669#[derive_const(PartialEq, Eq, Default)]
670#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
671#[repr(transparent)]
672pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T);
673
674#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
675#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
676impl<T: [const] PartialOrd> const PartialOrd for Reverse<T> {
677 #[inline]
678 fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> {
679 other.0.partial_cmp(&self.0)
680 }
681
682 #[inline]
683 fn lt(&self, other: &Self) -> bool {
684 other.0 < self.0
685 }
686 #[inline]
687 fn le(&self, other: &Self) -> bool {
688 other.0 <= self.0
689 }
690 #[inline]
691 fn gt(&self, other: &Self) -> bool {
692 other.0 > self.0
693 }
694 #[inline]
695 fn ge(&self, other: &Self) -> bool {
696 other.0 >= self.0
697 }
698}
699
700#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
701#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
702impl<T: [const] Ord> const Ord for Reverse<T> {
703 #[inline]
704 fn cmp(&self, other: &Reverse<T>) -> Ordering {
705 other.0.cmp(&self.0)
706 }
707}
708
709#[stable(feature = "reverse_cmp_key", since = "1.19.0")]
710impl<T: Clone> Clone for Reverse<T> {
711 #[inline]
712 fn clone(&self) -> Reverse<T> {
713 Reverse(self.0.clone())
714 }
715
716 #[inline]
717 fn clone_from(&mut self, source: &Self) {
718 self.0.clone_from(&source.0)
719 }
720}
721
722/// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order).
723///
724/// Implementations must be consistent with the [`PartialOrd`] implementation, and ensure `max`,
725/// `min`, and `clamp` are consistent with `cmp`:
726///
727/// - `partial_cmp(a, b) == Some(cmp(a, b))`.
728/// - `max(a, b) == max_by(a, b, cmp)` (ensured by the default implementation).
729/// - `min(a, b) == min_by(a, b, cmp)` (ensured by the default implementation).
730/// - For `a.clamp(min, max)`, see the [method docs](#method.clamp) (ensured by the default
731/// implementation).
732///
733/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
734/// specified, but users of the trait must ensure that such logic errors do *not* result in
735/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
736/// methods.
737///
738/// ## Corollaries
739///
740/// From the above and the requirements of `PartialOrd`, it follows that for all `a`, `b` and `c`:
741///
742/// - exactly one of `a < b`, `a == b` or `a > b` is true; and
743/// - `<` is transitive: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and
744/// `>`.
745///
746/// Mathematically speaking, the `<` operator defines a strict [weak order]. In cases where `==`
747/// conforms to mathematical equality, it also defines a strict [total order].
748///
749/// [weak order]: https://en.wikipedia.org/wiki/Weak_ordering
750/// [total order]: https://en.wikipedia.org/wiki/Total_order
751///
752/// ## Derivable
753///
754/// This trait can be used with `#[derive]`.
755///
756/// When `derive`d on structs, it will produce a
757/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
758/// top-to-bottom declaration order of the struct's members.
759///
760/// When `derive`d on enums, variants are ordered primarily by their discriminants. Secondarily,
761/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
762/// top, and largest for variants at the bottom. Here's an example:
763///
764/// ```
765/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
766/// enum E {
767/// Top,
768/// Bottom,
769/// }
770///
771/// assert!(E::Top < E::Bottom);
772/// ```
773///
774/// However, manually setting the discriminants can override this default behavior:
775///
776/// ```
777/// #[derive(PartialEq, Eq, PartialOrd, Ord)]
778/// enum E {
779/// Top = 2,
780/// Bottom = 1,
781/// }
782///
783/// assert!(E::Bottom < E::Top);
784/// ```
785///
786/// ## Lexicographical comparison
787///
788/// Lexicographical comparison is an operation with the following properties:
789/// - Two sequences are compared element by element.
790/// - The first mismatching element defines which sequence is lexicographically less or greater
791/// than the other.
792/// - If one sequence is a prefix of another, the shorter sequence is lexicographically less than
793/// the other.
794/// - If two sequences have equivalent elements and are of the same length, then the sequences are
795/// lexicographically equal.
796/// - An empty sequence is lexicographically less than any non-empty sequence.
797/// - Two empty sequences are lexicographically equal.
798///
799/// ## How can I implement `Ord`?
800///
801/// `Ord` requires that the type also be [`PartialOrd`], [`PartialEq`], and [`Eq`].
802///
803/// Because `Ord` implies a stronger ordering relationship than [`PartialOrd`], and both `Ord` and
804/// [`PartialOrd`] must agree, you must choose how to implement `Ord` **first**. You can choose to
805/// derive it, or implement it manually. If you derive it, you should derive all four traits. If you
806/// implement it manually, you should manually implement all four traits, based on the
807/// implementation of `Ord`.
808///
809/// Here's an example where you want to define the `Character` comparison by `health` and
810/// `experience` only, disregarding the field `mana`:
811///
812/// ```
813/// use std::cmp::Ordering;
814///
815/// struct Character {
816/// health: u32,
817/// experience: u32,
818/// mana: f32,
819/// }
820///
821/// impl Ord for Character {
822/// fn cmp(&self, other: &Self) -> Ordering {
823/// self.experience
824/// .cmp(&other.experience)
825/// .then(self.health.cmp(&other.health))
826/// }
827/// }
828///
829/// impl PartialOrd for Character {
830/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
831/// Some(self.cmp(other))
832/// }
833/// }
834///
835/// impl PartialEq for Character {
836/// fn eq(&self, other: &Self) -> bool {
837/// self.health == other.health && self.experience == other.experience
838/// }
839/// }
840///
841/// impl Eq for Character {}
842/// ```
843///
844/// If all you need is to `slice::sort` a type by a field value, it can be simpler to use
845/// `slice::sort_by_key`.
846///
847/// ## Examples of incorrect `Ord` implementations
848///
849/// ```
850/// use std::cmp::Ordering;
851///
852/// #[derive(Debug)]
853/// struct Character {
854/// health: f32,
855/// }
856///
857/// impl Ord for Character {
858/// fn cmp(&self, other: &Self) -> std::cmp::Ordering {
859/// if self.health < other.health {
860/// Ordering::Less
861/// } else if self.health > other.health {
862/// Ordering::Greater
863/// } else {
864/// Ordering::Equal
865/// }
866/// }
867/// }
868///
869/// impl PartialOrd for Character {
870/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
871/// Some(self.cmp(other))
872/// }
873/// }
874///
875/// impl PartialEq for Character {
876/// fn eq(&self, other: &Self) -> bool {
877/// self.health == other.health
878/// }
879/// }
880///
881/// impl Eq for Character {}
882///
883/// let a = Character { health: 4.5 };
884/// let b = Character { health: f32::NAN };
885///
886/// // Mistake: floating-point values do not form a total order and using the built-in comparison
887/// // operands to implement `Ord` irregardless of that reality does not change it. Use
888/// // `f32::total_cmp` if you need a total order for floating-point values.
889///
890/// // Reflexivity requirement of `Ord` is not given.
891/// assert!(a == a);
892/// assert!(b != b);
893///
894/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
895/// // true, not both or neither.
896/// assert_eq!((a < b) as u8 + (b < a) as u8, 0);
897/// ```
898///
899/// ```
900/// use std::cmp::Ordering;
901///
902/// #[derive(Debug)]
903/// struct Character {
904/// health: u32,
905/// experience: u32,
906/// }
907///
908/// impl PartialOrd for Character {
909/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
910/// Some(self.cmp(other))
911/// }
912/// }
913///
914/// impl Ord for Character {
915/// fn cmp(&self, other: &Self) -> std::cmp::Ordering {
916/// if self.health < 50 {
917/// self.health.cmp(&other.health)
918/// } else {
919/// self.experience.cmp(&other.experience)
920/// }
921/// }
922/// }
923///
924/// // For performance reasons implementing `PartialEq` this way is not the idiomatic way, but it
925/// // ensures consistent behavior between `PartialEq`, `PartialOrd` and `Ord` in this example.
926/// impl PartialEq for Character {
927/// fn eq(&self, other: &Self) -> bool {
928/// self.cmp(other) == Ordering::Equal
929/// }
930/// }
931///
932/// impl Eq for Character {}
933///
934/// let a = Character {
935/// health: 3,
936/// experience: 5,
937/// };
938/// let b = Character {
939/// health: 10,
940/// experience: 77,
941/// };
942/// let c = Character {
943/// health: 143,
944/// experience: 2,
945/// };
946///
947/// // Mistake: The implementation of `Ord` compares different fields depending on the value of
948/// // `self.health`, the resulting order is not total.
949///
950/// // Transitivity requirement of `Ord` is not given. If a is smaller than b and b is smaller than
951/// // c, by transitive property a must also be smaller than c.
952/// assert!(a < b && b < c && c < a);
953///
954/// // Antisymmetry requirement of `Ord` is not given. Only one of a < c and c < a is allowed to be
955/// // true, not both or neither.
956/// assert_eq!((a < c) as u8 + (c < a) as u8, 2);
957/// ```
958///
959/// The documentation of [`PartialOrd`] contains further examples, for example it's wrong for
960/// [`PartialOrd`] and [`PartialEq`] to disagree.
961///
962/// [`cmp`]: Ord::cmp
963#[doc(alias = "<")]
964#[doc(alias = ">")]
965#[doc(alias = "<=")]
966#[doc(alias = ">=")]
967#[stable(feature = "rust1", since = "1.0.0")]
968#[rustc_diagnostic_item = "Ord"]
969#[const_trait]
970#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
971pub trait Ord: [const] Eq + [const] PartialOrd<Self> + PointeeSized {
972 /// This method returns an [`Ordering`] between `self` and `other`.
973 ///
974 /// By convention, `self.cmp(&other)` returns the ordering matching the expression
975 /// `self <operator> other` if true.
976 ///
977 /// # Examples
978 ///
979 /// ```
980 /// use std::cmp::Ordering;
981 ///
982 /// assert_eq!(5.cmp(&10), Ordering::Less);
983 /// assert_eq!(10.cmp(&5), Ordering::Greater);
984 /// assert_eq!(5.cmp(&5), Ordering::Equal);
985 /// ```
986 #[must_use]
987 #[stable(feature = "rust1", since = "1.0.0")]
988 #[rustc_diagnostic_item = "ord_cmp_method"]
989 fn cmp(&self, other: &Self) -> Ordering;
990
991 /// Compares and returns the maximum of two values.
992 ///
993 /// Returns the second argument if the comparison determines them to be equal.
994 ///
995 /// # Examples
996 ///
997 /// ```
998 /// assert_eq!(1.max(2), 2);
999 /// assert_eq!(2.max(2), 2);
1000 /// ```
1001 /// ```
1002 /// use std::cmp::Ordering;
1003 ///
1004 /// #[derive(Eq)]
1005 /// struct Equal(&'static str);
1006 ///
1007 /// impl PartialEq for Equal {
1008 /// fn eq(&self, other: &Self) -> bool { true }
1009 /// }
1010 /// impl PartialOrd for Equal {
1011 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1012 /// }
1013 /// impl Ord for Equal {
1014 /// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1015 /// }
1016 ///
1017 /// assert_eq!(Equal("self").max(Equal("other")).0, "other");
1018 /// ```
1019 #[stable(feature = "ord_max_min", since = "1.21.0")]
1020 #[inline]
1021 #[must_use]
1022 #[rustc_diagnostic_item = "cmp_ord_max"]
1023 fn max(self, other: Self) -> Self
1024 where
1025 Self: Sized + [const] Destruct,
1026 {
1027 if other < self { self } else { other }
1028 }
1029
1030 /// Compares and returns the minimum of two values.
1031 ///
1032 /// Returns the first argument if the comparison determines them to be equal.
1033 ///
1034 /// # Examples
1035 ///
1036 /// ```
1037 /// assert_eq!(1.min(2), 1);
1038 /// assert_eq!(2.min(2), 2);
1039 /// ```
1040 /// ```
1041 /// use std::cmp::Ordering;
1042 ///
1043 /// #[derive(Eq)]
1044 /// struct Equal(&'static str);
1045 ///
1046 /// impl PartialEq for Equal {
1047 /// fn eq(&self, other: &Self) -> bool { true }
1048 /// }
1049 /// impl PartialOrd for Equal {
1050 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1051 /// }
1052 /// impl Ord for Equal {
1053 /// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1054 /// }
1055 ///
1056 /// assert_eq!(Equal("self").min(Equal("other")).0, "self");
1057 /// ```
1058 #[stable(feature = "ord_max_min", since = "1.21.0")]
1059 #[inline]
1060 #[must_use]
1061 #[rustc_diagnostic_item = "cmp_ord_min"]
1062 fn min(self, other: Self) -> Self
1063 where
1064 Self: Sized + [const] Destruct,
1065 {
1066 if other < self { other } else { self }
1067 }
1068
1069 /// Restrict a value to a certain interval.
1070 ///
1071 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1072 /// less than `min`. Otherwise this returns `self`.
1073 ///
1074 /// # Panics
1075 ///
1076 /// Panics if `min > max`.
1077 ///
1078 /// # Examples
1079 ///
1080 /// ```
1081 /// assert_eq!((-3).clamp(-2, 1), -2);
1082 /// assert_eq!(0.clamp(-2, 1), 0);
1083 /// assert_eq!(2.clamp(-2, 1), 1);
1084 /// ```
1085 #[must_use]
1086 #[inline]
1087 #[stable(feature = "clamp", since = "1.50.0")]
1088 fn clamp(self, min: Self, max: Self) -> Self
1089 where
1090 Self: Sized + [const] Destruct,
1091 {
1092 assert!(min <= max);
1093 if self < min {
1094 min
1095 } else if self > max {
1096 max
1097 } else {
1098 self
1099 }
1100 }
1101}
1102
1103/// Derive macro generating an impl of the trait [`Ord`].
1104/// The behavior of this macro is described in detail [here](Ord#derivable).
1105#[rustc_builtin_macro]
1106#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1107#[allow_internal_unstable(core_intrinsics)]
1108pub macro Ord($item:item) {
1109 /* compiler built-in */
1110}
1111
1112/// Trait for types that form a [partial order](https://en.wikipedia.org/wiki/Partial_order).
1113///
1114/// The `lt`, `le`, `gt`, and `ge` methods of this trait can be called using the `<`, `<=`, `>`, and
1115/// `>=` operators, respectively.
1116///
1117/// This trait should **only** contain the comparison logic for a type **if one plans on only
1118/// implementing `PartialOrd` but not [`Ord`]**. Otherwise the comparison logic should be in [`Ord`]
1119/// and this trait implemented with `Some(self.cmp(other))`.
1120///
1121/// The methods of this trait must be consistent with each other and with those of [`PartialEq`].
1122/// The following conditions must hold:
1123///
1124/// 1. `a == b` if and only if `partial_cmp(a, b) == Some(Equal)`.
1125/// 2. `a < b` if and only if `partial_cmp(a, b) == Some(Less)`
1126/// 3. `a > b` if and only if `partial_cmp(a, b) == Some(Greater)`
1127/// 4. `a <= b` if and only if `a < b || a == b`
1128/// 5. `a >= b` if and only if `a > b || a == b`
1129/// 6. `a != b` if and only if `!(a == b)`.
1130///
1131/// Conditions 2–5 above are ensured by the default implementation. Condition 6 is already ensured
1132/// by [`PartialEq`].
1133///
1134/// If [`Ord`] is also implemented for `Self` and `Rhs`, it must also be consistent with
1135/// `partial_cmp` (see the documentation of that trait for the exact requirements). It's easy to
1136/// accidentally make them disagree by deriving some of the traits and manually implementing others.
1137///
1138/// The comparison relations must satisfy the following conditions (for all `a`, `b`, `c` of type
1139/// `A`, `B`, `C`):
1140///
1141/// - **Transitivity**: if `A: PartialOrd<B>` and `B: PartialOrd<C>` and `A: PartialOrd<C>`, then `a
1142/// < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. This must also
1143/// work for longer chains, such as when `A: PartialOrd<B>`, `B: PartialOrd<C>`, `C:
1144/// PartialOrd<D>`, and `A: PartialOrd<D>` all exist.
1145/// - **Duality**: if `A: PartialOrd<B>` and `B: PartialOrd<A>`, then `a < b` if and only if `b >
1146/// a`.
1147///
1148/// Note that the `B: PartialOrd<A>` (dual) and `A: PartialOrd<C>` (transitive) impls are not forced
1149/// to exist, but these requirements apply whenever they do exist.
1150///
1151/// Violating these requirements is a logic error. The behavior resulting from a logic error is not
1152/// specified, but users of the trait must ensure that such logic errors do *not* result in
1153/// undefined behavior. This means that `unsafe` code **must not** rely on the correctness of these
1154/// methods.
1155///
1156/// ## Cross-crate considerations
1157///
1158/// Upholding the requirements stated above can become tricky when one crate implements `PartialOrd`
1159/// for a type of another crate (i.e., to allow comparing one of its own types with a type from the
1160/// standard library). The recommendation is to never implement this trait for a foreign type. In
1161/// other words, such a crate should do `impl PartialOrd<ForeignType> for LocalType`, but it should
1162/// *not* do `impl PartialOrd<LocalType> for ForeignType`.
1163///
1164/// This avoids the problem of transitive chains that criss-cross crate boundaries: for all local
1165/// types `T`, you may assume that no other crate will add `impl`s that allow comparing `T < U`. In
1166/// other words, if other crates add `impl`s that allow building longer transitive chains `U1 < ...
1167/// < T < V1 < ...`, then all the types that appear to the right of `T` must be types that the crate
1168/// defining `T` already knows about. This rules out transitive chains where downstream crates can
1169/// add new `impl`s that "stitch together" comparisons of foreign types in ways that violate
1170/// transitivity.
1171///
1172/// Not having such foreign `impl`s also avoids forward compatibility issues where one crate adding
1173/// more `PartialOrd` implementations can cause build failures in downstream crates.
1174///
1175/// ## Corollaries
1176///
1177/// The following corollaries follow from the above requirements:
1178///
1179/// - irreflexivity of `<` and `>`: `!(a < a)`, `!(a > a)`
1180/// - transitivity of `>`: if `a > b` and `b > c` then `a > c`
1181/// - duality of `partial_cmp`: `partial_cmp(a, b) == partial_cmp(b, a).map(Ordering::reverse)`
1182///
1183/// ## Strict and non-strict partial orders
1184///
1185/// The `<` and `>` operators behave according to a *strict* partial order. However, `<=` and `>=`
1186/// do **not** behave according to a *non-strict* partial order. That is because mathematically, a
1187/// non-strict partial order would require reflexivity, i.e. `a <= a` would need to be true for
1188/// every `a`. This isn't always the case for types that implement `PartialOrd`, for example:
1189///
1190/// ```
1191/// let a = f64::sqrt(-1.0);
1192/// assert_eq!(a <= a, false);
1193/// ```
1194///
1195/// ## Derivable
1196///
1197/// This trait can be used with `#[derive]`.
1198///
1199/// When `derive`d on structs, it will produce a
1200/// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the
1201/// top-to-bottom declaration order of the struct's members.
1202///
1203/// When `derive`d on enums, variants are primarily ordered by their discriminants. Secondarily,
1204/// they are ordered by their fields. By default, the discriminant is smallest for variants at the
1205/// top, and largest for variants at the bottom. Here's an example:
1206///
1207/// ```
1208/// #[derive(PartialEq, PartialOrd)]
1209/// enum E {
1210/// Top,
1211/// Bottom,
1212/// }
1213///
1214/// assert!(E::Top < E::Bottom);
1215/// ```
1216///
1217/// However, manually setting the discriminants can override this default behavior:
1218///
1219/// ```
1220/// #[derive(PartialEq, PartialOrd)]
1221/// enum E {
1222/// Top = 2,
1223/// Bottom = 1,
1224/// }
1225///
1226/// assert!(E::Bottom < E::Top);
1227/// ```
1228///
1229/// ## How can I implement `PartialOrd`?
1230///
1231/// `PartialOrd` only requires implementation of the [`partial_cmp`] method, with the others
1232/// generated from default implementations.
1233///
1234/// However it remains possible to implement the others separately for types which do not have a
1235/// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 == false`
1236/// (cf. IEEE 754-2008 section 5.11).
1237///
1238/// `PartialOrd` requires your type to be [`PartialEq`].
1239///
1240/// If your type is [`Ord`], you can implement [`partial_cmp`] by using [`cmp`]:
1241///
1242/// ```
1243/// use std::cmp::Ordering;
1244///
1245/// struct Person {
1246/// id: u32,
1247/// name: String,
1248/// height: u32,
1249/// }
1250///
1251/// impl PartialOrd for Person {
1252/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1253/// Some(self.cmp(other))
1254/// }
1255/// }
1256///
1257/// impl Ord for Person {
1258/// fn cmp(&self, other: &Self) -> Ordering {
1259/// self.height.cmp(&other.height)
1260/// }
1261/// }
1262///
1263/// impl PartialEq for Person {
1264/// fn eq(&self, other: &Self) -> bool {
1265/// self.height == other.height
1266/// }
1267/// }
1268///
1269/// impl Eq for Person {}
1270/// ```
1271///
1272/// You may also find it useful to use [`partial_cmp`] on your type's fields. Here is an example of
1273/// `Person` types who have a floating-point `height` field that is the only field to be used for
1274/// sorting:
1275///
1276/// ```
1277/// use std::cmp::Ordering;
1278///
1279/// struct Person {
1280/// id: u32,
1281/// name: String,
1282/// height: f64,
1283/// }
1284///
1285/// impl PartialOrd for Person {
1286/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1287/// self.height.partial_cmp(&other.height)
1288/// }
1289/// }
1290///
1291/// impl PartialEq for Person {
1292/// fn eq(&self, other: &Self) -> bool {
1293/// self.height == other.height
1294/// }
1295/// }
1296/// ```
1297///
1298/// ## Examples of incorrect `PartialOrd` implementations
1299///
1300/// ```
1301/// use std::cmp::Ordering;
1302///
1303/// #[derive(PartialEq, Debug)]
1304/// struct Character {
1305/// health: u32,
1306/// experience: u32,
1307/// }
1308///
1309/// impl PartialOrd for Character {
1310/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1311/// Some(self.health.cmp(&other.health))
1312/// }
1313/// }
1314///
1315/// let a = Character {
1316/// health: 10,
1317/// experience: 5,
1318/// };
1319/// let b = Character {
1320/// health: 10,
1321/// experience: 77,
1322/// };
1323///
1324/// // Mistake: `PartialEq` and `PartialOrd` disagree with each other.
1325///
1326/// assert_eq!(a.partial_cmp(&b).unwrap(), Ordering::Equal); // a == b according to `PartialOrd`.
1327/// assert_ne!(a, b); // a != b according to `PartialEq`.
1328/// ```
1329///
1330/// # Examples
1331///
1332/// ```
1333/// let x: u32 = 0;
1334/// let y: u32 = 1;
1335///
1336/// assert_eq!(x < y, true);
1337/// assert_eq!(x.lt(&y), true);
1338/// ```
1339///
1340/// [`partial_cmp`]: PartialOrd::partial_cmp
1341/// [`cmp`]: Ord::cmp
1342#[lang = "partial_ord"]
1343#[stable(feature = "rust1", since = "1.0.0")]
1344#[doc(alias = ">")]
1345#[doc(alias = "<")]
1346#[doc(alias = "<=")]
1347#[doc(alias = ">=")]
1348#[rustc_on_unimplemented(
1349 message = "can't compare `{Self}` with `{Rhs}`",
1350 label = "no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`",
1351 append_const_msg
1352)]
1353#[rustc_diagnostic_item = "PartialOrd"]
1354#[allow(multiple_supertrait_upcastable)] // FIXME(sized_hierarchy): remove this
1355#[const_trait]
1356#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1357pub trait PartialOrd<Rhs: PointeeSized = Self>: PartialEq<Rhs> + PointeeSized {
1358 /// This method returns an ordering between `self` and `other` values if one exists.
1359 ///
1360 /// # Examples
1361 ///
1362 /// ```
1363 /// use std::cmp::Ordering;
1364 ///
1365 /// let result = 1.0.partial_cmp(&2.0);
1366 /// assert_eq!(result, Some(Ordering::Less));
1367 ///
1368 /// let result = 1.0.partial_cmp(&1.0);
1369 /// assert_eq!(result, Some(Ordering::Equal));
1370 ///
1371 /// let result = 2.0.partial_cmp(&1.0);
1372 /// assert_eq!(result, Some(Ordering::Greater));
1373 /// ```
1374 ///
1375 /// When comparison is impossible:
1376 ///
1377 /// ```
1378 /// let result = f64::NAN.partial_cmp(&1.0);
1379 /// assert_eq!(result, None);
1380 /// ```
1381 #[must_use]
1382 #[stable(feature = "rust1", since = "1.0.0")]
1383 #[rustc_diagnostic_item = "cmp_partialord_cmp"]
1384 fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
1385
1386 /// Tests less than (for `self` and `other`) and is used by the `<` operator.
1387 ///
1388 /// # Examples
1389 ///
1390 /// ```
1391 /// assert_eq!(1.0 < 1.0, false);
1392 /// assert_eq!(1.0 < 2.0, true);
1393 /// assert_eq!(2.0 < 1.0, false);
1394 /// ```
1395 #[inline]
1396 #[must_use]
1397 #[stable(feature = "rust1", since = "1.0.0")]
1398 #[rustc_diagnostic_item = "cmp_partialord_lt"]
1399 fn lt(&self, other: &Rhs) -> bool {
1400 self.partial_cmp(other).is_some_and(Ordering::is_lt)
1401 }
1402
1403 /// Tests less than or equal to (for `self` and `other`) and is used by the
1404 /// `<=` operator.
1405 ///
1406 /// # Examples
1407 ///
1408 /// ```
1409 /// assert_eq!(1.0 <= 1.0, true);
1410 /// assert_eq!(1.0 <= 2.0, true);
1411 /// assert_eq!(2.0 <= 1.0, false);
1412 /// ```
1413 #[inline]
1414 #[must_use]
1415 #[stable(feature = "rust1", since = "1.0.0")]
1416 #[rustc_diagnostic_item = "cmp_partialord_le"]
1417 fn le(&self, other: &Rhs) -> bool {
1418 self.partial_cmp(other).is_some_and(Ordering::is_le)
1419 }
1420
1421 /// Tests greater than (for `self` and `other`) and is used by the `>`
1422 /// operator.
1423 ///
1424 /// # Examples
1425 ///
1426 /// ```
1427 /// assert_eq!(1.0 > 1.0, false);
1428 /// assert_eq!(1.0 > 2.0, false);
1429 /// assert_eq!(2.0 > 1.0, true);
1430 /// ```
1431 #[inline]
1432 #[must_use]
1433 #[stable(feature = "rust1", since = "1.0.0")]
1434 #[rustc_diagnostic_item = "cmp_partialord_gt"]
1435 fn gt(&self, other: &Rhs) -> bool {
1436 self.partial_cmp(other).is_some_and(Ordering::is_gt)
1437 }
1438
1439 /// Tests greater than or equal to (for `self` and `other`) and is used by
1440 /// the `>=` operator.
1441 ///
1442 /// # Examples
1443 ///
1444 /// ```
1445 /// assert_eq!(1.0 >= 1.0, true);
1446 /// assert_eq!(1.0 >= 2.0, false);
1447 /// assert_eq!(2.0 >= 1.0, true);
1448 /// ```
1449 #[inline]
1450 #[must_use]
1451 #[stable(feature = "rust1", since = "1.0.0")]
1452 #[rustc_diagnostic_item = "cmp_partialord_ge"]
1453 fn ge(&self, other: &Rhs) -> bool {
1454 self.partial_cmp(other).is_some_and(Ordering::is_ge)
1455 }
1456
1457 /// If `self == other`, returns `ControlFlow::Continue(())`.
1458 /// Otherwise, returns `ControlFlow::Break(self < other)`.
1459 ///
1460 /// This is useful for chaining together calls when implementing a lexical
1461 /// `PartialOrd::lt`, as it allows types (like primitives) which can cheaply
1462 /// check `==` and `<` separately to do rather than needing to calculate
1463 /// (then optimize out) the three-way `Ordering` result.
1464 #[inline]
1465 // Added to improve the behaviour of tuples; not necessarily stabilization-track.
1466 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1467 #[doc(hidden)]
1468 fn __chaining_lt(&self, other: &Rhs) -> ControlFlow<bool> {
1469 default_chaining_impl(self, other, Ordering::is_lt)
1470 }
1471
1472 /// Same as `__chaining_lt`, but for `<=` instead of `<`.
1473 #[inline]
1474 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1475 #[doc(hidden)]
1476 fn __chaining_le(&self, other: &Rhs) -> ControlFlow<bool> {
1477 default_chaining_impl(self, other, Ordering::is_le)
1478 }
1479
1480 /// Same as `__chaining_lt`, but for `>` instead of `<`.
1481 #[inline]
1482 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1483 #[doc(hidden)]
1484 fn __chaining_gt(&self, other: &Rhs) -> ControlFlow<bool> {
1485 default_chaining_impl(self, other, Ordering::is_gt)
1486 }
1487
1488 /// Same as `__chaining_lt`, but for `>=` instead of `<`.
1489 #[inline]
1490 #[unstable(feature = "partial_ord_chaining_methods", issue = "none")]
1491 #[doc(hidden)]
1492 fn __chaining_ge(&self, other: &Rhs) -> ControlFlow<bool> {
1493 default_chaining_impl(self, other, Ordering::is_ge)
1494 }
1495}
1496
1497#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1498const fn default_chaining_impl<T, U>(
1499 lhs: &T,
1500 rhs: &U,
1501 p: impl [const] FnOnce(Ordering) -> bool + [const] Destruct,
1502) -> ControlFlow<bool>
1503where
1504 T: [const] PartialOrd<U> + PointeeSized,
1505 U: PointeeSized,
1506{
1507 // It's important that this only call `partial_cmp` once, not call `eq` then
1508 // one of the relational operators. We don't want to `bcmp`-then-`memcp` a
1509 // `String`, for example, or similarly for other data structures (#108157).
1510 match <T as PartialOrd<U>>::partial_cmp(lhs, rhs) {
1511 Some(Equal) => ControlFlow::Continue(()),
1512 Some(c) => ControlFlow::Break(p(c)),
1513 None => ControlFlow::Break(false),
1514 }
1515}
1516
1517/// Derive macro generating an impl of the trait [`PartialOrd`].
1518/// The behavior of this macro is described in detail [here](PartialOrd#derivable).
1519#[rustc_builtin_macro]
1520#[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1521#[allow_internal_unstable(core_intrinsics)]
1522pub macro PartialOrd($item:item) {
1523 /* compiler built-in */
1524}
1525
1526/// Compares and returns the minimum of two values.
1527///
1528/// Returns the first argument if the comparison determines them to be equal.
1529///
1530/// Internally uses an alias to [`Ord::min`].
1531///
1532/// # Examples
1533///
1534/// ```
1535/// use std::cmp;
1536///
1537/// assert_eq!(cmp::min(1, 2), 1);
1538/// assert_eq!(cmp::min(2, 2), 2);
1539/// ```
1540/// ```
1541/// use std::cmp::{self, Ordering};
1542///
1543/// #[derive(Eq)]
1544/// struct Equal(&'static str);
1545///
1546/// impl PartialEq for Equal {
1547/// fn eq(&self, other: &Self) -> bool { true }
1548/// }
1549/// impl PartialOrd for Equal {
1550/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1551/// }
1552/// impl Ord for Equal {
1553/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1554/// }
1555///
1556/// assert_eq!(cmp::min(Equal("v1"), Equal("v2")).0, "v1");
1557/// ```
1558#[inline]
1559#[must_use]
1560#[stable(feature = "rust1", since = "1.0.0")]
1561#[rustc_diagnostic_item = "cmp_min"]
1562#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1563pub const fn min<T: [const] Ord + [const] Destruct>(v1: T, v2: T) -> T {
1564 v1.min(v2)
1565}
1566
1567/// Returns the minimum of two values with respect to the specified comparison function.
1568///
1569/// Returns the first argument if the comparison determines them to be equal.
1570///
1571/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1572/// always passed as the first argument and `v2` as the second.
1573///
1574/// # Examples
1575///
1576/// ```
1577/// use std::cmp;
1578///
1579/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1580///
1581/// let result = cmp::min_by(2, -1, abs_cmp);
1582/// assert_eq!(result, -1);
1583///
1584/// let result = cmp::min_by(2, -3, abs_cmp);
1585/// assert_eq!(result, 2);
1586///
1587/// let result = cmp::min_by(1, -1, abs_cmp);
1588/// assert_eq!(result, 1);
1589/// ```
1590#[inline]
1591#[must_use]
1592#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1593#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1594pub const fn min_by<T: [const] Destruct, F: [const] FnOnce(&T, &T) -> Ordering>(
1595 v1: T,
1596 v2: T,
1597 compare: F,
1598) -> T {
1599 if compare(&v1, &v2).is_le() { v1 } else { v2 }
1600}
1601
1602/// Returns the element that gives the minimum value from the specified function.
1603///
1604/// Returns the first argument if the comparison determines them to be equal.
1605///
1606/// # Examples
1607///
1608/// ```
1609/// use std::cmp;
1610///
1611/// let result = cmp::min_by_key(2, -1, |x: &i32| x.abs());
1612/// assert_eq!(result, -1);
1613///
1614/// let result = cmp::min_by_key(2, -3, |x: &i32| x.abs());
1615/// assert_eq!(result, 2);
1616///
1617/// let result = cmp::min_by_key(1, -1, |x: &i32| x.abs());
1618/// assert_eq!(result, 1);
1619/// ```
1620#[inline]
1621#[must_use]
1622#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1623#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1624pub const fn min_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> T
1625where
1626 T: [const] Destruct,
1627 F: [const] FnMut(&T) -> K + [const] Destruct,
1628 K: [const] Ord + [const] Destruct,
1629{
1630 if f(&v2) < f(&v1) { v2 } else { v1 }
1631}
1632
1633/// Compares and returns the maximum of two values.
1634///
1635/// Returns the second argument if the comparison determines them to be equal.
1636///
1637/// Internally uses an alias to [`Ord::max`].
1638///
1639/// # Examples
1640///
1641/// ```
1642/// use std::cmp;
1643///
1644/// assert_eq!(cmp::max(1, 2), 2);
1645/// assert_eq!(cmp::max(2, 2), 2);
1646/// ```
1647/// ```
1648/// use std::cmp::{self, Ordering};
1649///
1650/// #[derive(Eq)]
1651/// struct Equal(&'static str);
1652///
1653/// impl PartialEq for Equal {
1654/// fn eq(&self, other: &Self) -> bool { true }
1655/// }
1656/// impl PartialOrd for Equal {
1657/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1658/// }
1659/// impl Ord for Equal {
1660/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1661/// }
1662///
1663/// assert_eq!(cmp::max(Equal("v1"), Equal("v2")).0, "v2");
1664/// ```
1665#[inline]
1666#[must_use]
1667#[stable(feature = "rust1", since = "1.0.0")]
1668#[rustc_diagnostic_item = "cmp_max"]
1669#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1670pub const fn max<T: [const] Ord + [const] Destruct>(v1: T, v2: T) -> T {
1671 v1.max(v2)
1672}
1673
1674/// Returns the maximum of two values with respect to the specified comparison function.
1675///
1676/// Returns the second argument if the comparison determines them to be equal.
1677///
1678/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1679/// always passed as the first argument and `v2` as the second.
1680///
1681/// # Examples
1682///
1683/// ```
1684/// use std::cmp;
1685///
1686/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1687///
1688/// let result = cmp::max_by(3, -2, abs_cmp) ;
1689/// assert_eq!(result, 3);
1690///
1691/// let result = cmp::max_by(1, -2, abs_cmp);
1692/// assert_eq!(result, -2);
1693///
1694/// let result = cmp::max_by(1, -1, abs_cmp);
1695/// assert_eq!(result, -1);
1696/// ```
1697#[inline]
1698#[must_use]
1699#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1700#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1701pub const fn max_by<T: [const] Destruct, F: [const] FnOnce(&T, &T) -> Ordering>(
1702 v1: T,
1703 v2: T,
1704 compare: F,
1705) -> T {
1706 if compare(&v1, &v2).is_gt() { v1 } else { v2 }
1707}
1708
1709/// Returns the element that gives the maximum value from the specified function.
1710///
1711/// Returns the second argument if the comparison determines them to be equal.
1712///
1713/// # Examples
1714///
1715/// ```
1716/// use std::cmp;
1717///
1718/// let result = cmp::max_by_key(3, -2, |x: &i32| x.abs());
1719/// assert_eq!(result, 3);
1720///
1721/// let result = cmp::max_by_key(1, -2, |x: &i32| x.abs());
1722/// assert_eq!(result, -2);
1723///
1724/// let result = cmp::max_by_key(1, -1, |x: &i32| x.abs());
1725/// assert_eq!(result, -1);
1726/// ```
1727#[inline]
1728#[must_use]
1729#[stable(feature = "cmp_min_max_by", since = "1.53.0")]
1730#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1731pub const fn max_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> T
1732where
1733 T: [const] Destruct,
1734 F: [const] FnMut(&T) -> K + [const] Destruct,
1735 K: [const] Ord + [const] Destruct,
1736{
1737 if f(&v2) < f(&v1) { v1 } else { v2 }
1738}
1739
1740/// Compares and sorts two values, returning minimum and maximum.
1741///
1742/// Returns `[v1, v2]` if the comparison determines them to be equal.
1743///
1744/// # Examples
1745///
1746/// ```
1747/// #![feature(cmp_minmax)]
1748/// use std::cmp;
1749///
1750/// assert_eq!(cmp::minmax(1, 2), [1, 2]);
1751/// assert_eq!(cmp::minmax(2, 1), [1, 2]);
1752///
1753/// // You can destructure the result using array patterns
1754/// let [min, max] = cmp::minmax(42, 17);
1755/// assert_eq!(min, 17);
1756/// assert_eq!(max, 42);
1757/// ```
1758/// ```
1759/// #![feature(cmp_minmax)]
1760/// use std::cmp::{self, Ordering};
1761///
1762/// #[derive(Eq)]
1763/// struct Equal(&'static str);
1764///
1765/// impl PartialEq for Equal {
1766/// fn eq(&self, other: &Self) -> bool { true }
1767/// }
1768/// impl PartialOrd for Equal {
1769/// fn partial_cmp(&self, other: &Self) -> Option<Ordering> { Some(Ordering::Equal) }
1770/// }
1771/// impl Ord for Equal {
1772/// fn cmp(&self, other: &Self) -> Ordering { Ordering::Equal }
1773/// }
1774///
1775/// assert_eq!(cmp::minmax(Equal("v1"), Equal("v2")).map(|v| v.0), ["v1", "v2"]);
1776/// ```
1777#[inline]
1778#[must_use]
1779#[unstable(feature = "cmp_minmax", issue = "115939")]
1780#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1781pub const fn minmax<T>(v1: T, v2: T) -> [T; 2]
1782where
1783 T: [const] Ord,
1784{
1785 if v2 < v1 { [v2, v1] } else { [v1, v2] }
1786}
1787
1788/// Returns minimum and maximum values with respect to the specified comparison function.
1789///
1790/// Returns `[v1, v2]` if the comparison determines them to be equal.
1791///
1792/// The parameter order is preserved when calling the `compare` function, i.e. `v1` is
1793/// always passed as the first argument and `v2` as the second.
1794///
1795/// # Examples
1796///
1797/// ```
1798/// #![feature(cmp_minmax)]
1799/// use std::cmp;
1800///
1801/// let abs_cmp = |x: &i32, y: &i32| x.abs().cmp(&y.abs());
1802///
1803/// assert_eq!(cmp::minmax_by(-2, 1, abs_cmp), [1, -2]);
1804/// assert_eq!(cmp::minmax_by(-1, 2, abs_cmp), [-1, 2]);
1805/// assert_eq!(cmp::minmax_by(-2, 2, abs_cmp), [-2, 2]);
1806///
1807/// // You can destructure the result using array patterns
1808/// let [min, max] = cmp::minmax_by(-42, 17, abs_cmp);
1809/// assert_eq!(min, 17);
1810/// assert_eq!(max, -42);
1811/// ```
1812#[inline]
1813#[must_use]
1814#[unstable(feature = "cmp_minmax", issue = "115939")]
1815#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1816pub const fn minmax_by<T, F>(v1: T, v2: T, compare: F) -> [T; 2]
1817where
1818 F: [const] FnOnce(&T, &T) -> Ordering,
1819{
1820 if compare(&v1, &v2).is_le() { [v1, v2] } else { [v2, v1] }
1821}
1822
1823/// Returns minimum and maximum values with respect to the specified key function.
1824///
1825/// Returns `[v1, v2]` if the comparison determines them to be equal.
1826///
1827/// # Examples
1828///
1829/// ```
1830/// #![feature(cmp_minmax)]
1831/// use std::cmp;
1832///
1833/// assert_eq!(cmp::minmax_by_key(-2, 1, |x: &i32| x.abs()), [1, -2]);
1834/// assert_eq!(cmp::minmax_by_key(-2, 2, |x: &i32| x.abs()), [-2, 2]);
1835///
1836/// // You can destructure the result using array patterns
1837/// let [min, max] = cmp::minmax_by_key(-42, 17, |x: &i32| x.abs());
1838/// assert_eq!(min, 17);
1839/// assert_eq!(max, -42);
1840/// ```
1841#[inline]
1842#[must_use]
1843#[unstable(feature = "cmp_minmax", issue = "115939")]
1844#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1845pub const fn minmax_by_key<T, F, K>(v1: T, v2: T, mut f: F) -> [T; 2]
1846where
1847 F: [const] FnMut(&T) -> K + [const] Destruct,
1848 K: [const] Ord + [const] Destruct,
1849{
1850 if f(&v2) < f(&v1) { [v2, v1] } else { [v1, v2] }
1851}
1852
1853// Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
1854mod impls {
1855 use crate::cmp::Ordering::{self, Equal, Greater, Less};
1856 use crate::hint::unreachable_unchecked;
1857 use crate::marker::PointeeSized;
1858 use crate::ops::ControlFlow::{self, Break, Continue};
1859
1860 macro_rules! partial_eq_impl {
1861 ($($t:ty)*) => ($(
1862 #[stable(feature = "rust1", since = "1.0.0")]
1863 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1864 impl const PartialEq for $t {
1865 #[inline]
1866 fn eq(&self, other: &Self) -> bool { *self == *other }
1867 #[inline]
1868 fn ne(&self, other: &Self) -> bool { *self != *other }
1869 }
1870 )*)
1871 }
1872
1873 #[stable(feature = "rust1", since = "1.0.0")]
1874 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1875 impl const PartialEq for () {
1876 #[inline]
1877 fn eq(&self, _other: &()) -> bool {
1878 true
1879 }
1880 #[inline]
1881 fn ne(&self, _other: &()) -> bool {
1882 false
1883 }
1884 }
1885
1886 partial_eq_impl! {
1887 bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f16 f32 f64 f128
1888 }
1889
1890 macro_rules! eq_impl {
1891 ($($t:ty)*) => ($(
1892 #[stable(feature = "rust1", since = "1.0.0")]
1893 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1894 impl const Eq for $t {}
1895 )*)
1896 }
1897
1898 eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1899
1900 #[rustfmt::skip]
1901 macro_rules! partial_ord_methods_primitive_impl {
1902 () => {
1903 #[inline(always)]
1904 fn lt(&self, other: &Self) -> bool { *self < *other }
1905 #[inline(always)]
1906 fn le(&self, other: &Self) -> bool { *self <= *other }
1907 #[inline(always)]
1908 fn gt(&self, other: &Self) -> bool { *self > *other }
1909 #[inline(always)]
1910 fn ge(&self, other: &Self) -> bool { *self >= *other }
1911
1912 // These implementations are the same for `Ord` or `PartialOrd` types
1913 // because if either is NAN the `==` test will fail so we end up in
1914 // the `Break` case and the comparison will correctly return `false`.
1915
1916 #[inline]
1917 fn __chaining_lt(&self, other: &Self) -> ControlFlow<bool> {
1918 let (lhs, rhs) = (*self, *other);
1919 if lhs == rhs { Continue(()) } else { Break(lhs < rhs) }
1920 }
1921 #[inline]
1922 fn __chaining_le(&self, other: &Self) -> ControlFlow<bool> {
1923 let (lhs, rhs) = (*self, *other);
1924 if lhs == rhs { Continue(()) } else { Break(lhs <= rhs) }
1925 }
1926 #[inline]
1927 fn __chaining_gt(&self, other: &Self) -> ControlFlow<bool> {
1928 let (lhs, rhs) = (*self, *other);
1929 if lhs == rhs { Continue(()) } else { Break(lhs > rhs) }
1930 }
1931 #[inline]
1932 fn __chaining_ge(&self, other: &Self) -> ControlFlow<bool> {
1933 let (lhs, rhs) = (*self, *other);
1934 if lhs == rhs { Continue(()) } else { Break(lhs >= rhs) }
1935 }
1936 };
1937 }
1938
1939 macro_rules! partial_ord_impl {
1940 ($($t:ty)*) => ($(
1941 #[stable(feature = "rust1", since = "1.0.0")]
1942 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1943 impl const PartialOrd for $t {
1944 #[inline]
1945 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1946 match (*self <= *other, *self >= *other) {
1947 (false, false) => None,
1948 (false, true) => Some(Greater),
1949 (true, false) => Some(Less),
1950 (true, true) => Some(Equal),
1951 }
1952 }
1953
1954 partial_ord_methods_primitive_impl!();
1955 }
1956 )*)
1957 }
1958
1959 #[stable(feature = "rust1", since = "1.0.0")]
1960 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1961 impl const PartialOrd for () {
1962 #[inline]
1963 fn partial_cmp(&self, _: &()) -> Option<Ordering> {
1964 Some(Equal)
1965 }
1966 }
1967
1968 #[stable(feature = "rust1", since = "1.0.0")]
1969 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1970 impl const PartialOrd for bool {
1971 #[inline]
1972 fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
1973 Some(self.cmp(other))
1974 }
1975
1976 partial_ord_methods_primitive_impl!();
1977 }
1978
1979 partial_ord_impl! { f16 f32 f64 f128 }
1980
1981 macro_rules! ord_impl {
1982 ($($t:ty)*) => ($(
1983 #[stable(feature = "rust1", since = "1.0.0")]
1984 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1985 impl const PartialOrd for $t {
1986 #[inline]
1987 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1988 Some(crate::intrinsics::three_way_compare(*self, *other))
1989 }
1990
1991 partial_ord_methods_primitive_impl!();
1992 }
1993
1994 #[stable(feature = "rust1", since = "1.0.0")]
1995 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
1996 impl const Ord for $t {
1997 #[inline]
1998 fn cmp(&self, other: &Self) -> Ordering {
1999 crate::intrinsics::three_way_compare(*self, *other)
2000 }
2001 }
2002 )*)
2003 }
2004
2005 #[stable(feature = "rust1", since = "1.0.0")]
2006 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2007 impl const Ord for () {
2008 #[inline]
2009 fn cmp(&self, _other: &()) -> Ordering {
2010 Equal
2011 }
2012 }
2013
2014 #[stable(feature = "rust1", since = "1.0.0")]
2015 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2016 impl const Ord for bool {
2017 #[inline]
2018 fn cmp(&self, other: &bool) -> Ordering {
2019 // Casting to i8's and converting the difference to an Ordering generates
2020 // more optimal assembly.
2021 // See <https://github.com/rust-lang/rust/issues/66780> for more info.
2022 match (*self as i8) - (*other as i8) {
2023 -1 => Less,
2024 0 => Equal,
2025 1 => Greater,
2026 // SAFETY: bool as i8 returns 0 or 1, so the difference can't be anything else
2027 _ => unsafe { unreachable_unchecked() },
2028 }
2029 }
2030
2031 #[inline]
2032 fn min(self, other: bool) -> bool {
2033 self & other
2034 }
2035
2036 #[inline]
2037 fn max(self, other: bool) -> bool {
2038 self | other
2039 }
2040
2041 #[inline]
2042 fn clamp(self, min: bool, max: bool) -> bool {
2043 assert!(min <= max);
2044 self.max(min).min(max)
2045 }
2046 }
2047
2048 ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
2049
2050 #[unstable(feature = "never_type", issue = "35121")]
2051 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2052 impl const PartialEq for ! {
2053 #[inline]
2054 fn eq(&self, _: &!) -> bool {
2055 *self
2056 }
2057 }
2058
2059 #[unstable(feature = "never_type", issue = "35121")]
2060 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2061 impl const Eq for ! {}
2062
2063 #[unstable(feature = "never_type", issue = "35121")]
2064 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2065 impl const PartialOrd for ! {
2066 #[inline]
2067 fn partial_cmp(&self, _: &!) -> Option<Ordering> {
2068 *self
2069 }
2070 }
2071
2072 #[unstable(feature = "never_type", issue = "35121")]
2073 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2074 impl const Ord for ! {
2075 #[inline]
2076 fn cmp(&self, _: &!) -> Ordering {
2077 *self
2078 }
2079 }
2080
2081 // & pointers
2082
2083 #[stable(feature = "rust1", since = "1.0.0")]
2084 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2085 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &A
2086 where
2087 A: [const] PartialEq<B>,
2088 {
2089 #[inline]
2090 fn eq(&self, other: &&B) -> bool {
2091 PartialEq::eq(*self, *other)
2092 }
2093 #[inline]
2094 fn ne(&self, other: &&B) -> bool {
2095 PartialEq::ne(*self, *other)
2096 }
2097 }
2098 #[stable(feature = "rust1", since = "1.0.0")]
2099 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2100 impl<A: PointeeSized, B: PointeeSized> const PartialOrd<&B> for &A
2101 where
2102 A: [const] PartialOrd<B>,
2103 {
2104 #[inline]
2105 fn partial_cmp(&self, other: &&B) -> Option<Ordering> {
2106 PartialOrd::partial_cmp(*self, *other)
2107 }
2108 #[inline]
2109 fn lt(&self, other: &&B) -> bool {
2110 PartialOrd::lt(*self, *other)
2111 }
2112 #[inline]
2113 fn le(&self, other: &&B) -> bool {
2114 PartialOrd::le(*self, *other)
2115 }
2116 #[inline]
2117 fn gt(&self, other: &&B) -> bool {
2118 PartialOrd::gt(*self, *other)
2119 }
2120 #[inline]
2121 fn ge(&self, other: &&B) -> bool {
2122 PartialOrd::ge(*self, *other)
2123 }
2124 #[inline]
2125 fn __chaining_lt(&self, other: &&B) -> ControlFlow<bool> {
2126 PartialOrd::__chaining_lt(*self, *other)
2127 }
2128 #[inline]
2129 fn __chaining_le(&self, other: &&B) -> ControlFlow<bool> {
2130 PartialOrd::__chaining_le(*self, *other)
2131 }
2132 #[inline]
2133 fn __chaining_gt(&self, other: &&B) -> ControlFlow<bool> {
2134 PartialOrd::__chaining_gt(*self, *other)
2135 }
2136 #[inline]
2137 fn __chaining_ge(&self, other: &&B) -> ControlFlow<bool> {
2138 PartialOrd::__chaining_ge(*self, *other)
2139 }
2140 }
2141 #[stable(feature = "rust1", since = "1.0.0")]
2142 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2143 impl<A: PointeeSized> const Ord for &A
2144 where
2145 A: [const] Ord,
2146 {
2147 #[inline]
2148 fn cmp(&self, other: &Self) -> Ordering {
2149 Ord::cmp(*self, *other)
2150 }
2151 }
2152 #[stable(feature = "rust1", since = "1.0.0")]
2153 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2154 impl<A: PointeeSized> const Eq for &A where A: [const] Eq {}
2155
2156 // &mut pointers
2157
2158 #[stable(feature = "rust1", since = "1.0.0")]
2159 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2160 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &mut A
2161 where
2162 A: [const] PartialEq<B>,
2163 {
2164 #[inline]
2165 fn eq(&self, other: &&mut B) -> bool {
2166 PartialEq::eq(*self, *other)
2167 }
2168 #[inline]
2169 fn ne(&self, other: &&mut B) -> bool {
2170 PartialEq::ne(*self, *other)
2171 }
2172 }
2173 #[stable(feature = "rust1", since = "1.0.0")]
2174 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2175 impl<A: PointeeSized, B: PointeeSized> const PartialOrd<&mut B> for &mut A
2176 where
2177 A: [const] PartialOrd<B>,
2178 {
2179 #[inline]
2180 fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> {
2181 PartialOrd::partial_cmp(*self, *other)
2182 }
2183 #[inline]
2184 fn lt(&self, other: &&mut B) -> bool {
2185 PartialOrd::lt(*self, *other)
2186 }
2187 #[inline]
2188 fn le(&self, other: &&mut B) -> bool {
2189 PartialOrd::le(*self, *other)
2190 }
2191 #[inline]
2192 fn gt(&self, other: &&mut B) -> bool {
2193 PartialOrd::gt(*self, *other)
2194 }
2195 #[inline]
2196 fn ge(&self, other: &&mut B) -> bool {
2197 PartialOrd::ge(*self, *other)
2198 }
2199 #[inline]
2200 fn __chaining_lt(&self, other: &&mut B) -> ControlFlow<bool> {
2201 PartialOrd::__chaining_lt(*self, *other)
2202 }
2203 #[inline]
2204 fn __chaining_le(&self, other: &&mut B) -> ControlFlow<bool> {
2205 PartialOrd::__chaining_le(*self, *other)
2206 }
2207 #[inline]
2208 fn __chaining_gt(&self, other: &&mut B) -> ControlFlow<bool> {
2209 PartialOrd::__chaining_gt(*self, *other)
2210 }
2211 #[inline]
2212 fn __chaining_ge(&self, other: &&mut B) -> ControlFlow<bool> {
2213 PartialOrd::__chaining_ge(*self, *other)
2214 }
2215 }
2216 #[stable(feature = "rust1", since = "1.0.0")]
2217 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2218 impl<A: PointeeSized> const Ord for &mut A
2219 where
2220 A: [const] Ord,
2221 {
2222 #[inline]
2223 fn cmp(&self, other: &Self) -> Ordering {
2224 Ord::cmp(*self, *other)
2225 }
2226 }
2227 #[stable(feature = "rust1", since = "1.0.0")]
2228 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2229 impl<A: PointeeSized> const Eq for &mut A where A: [const] Eq {}
2230
2231 #[stable(feature = "rust1", since = "1.0.0")]
2232 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2233 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&mut B> for &A
2234 where
2235 A: [const] PartialEq<B>,
2236 {
2237 #[inline]
2238 fn eq(&self, other: &&mut B) -> bool {
2239 PartialEq::eq(*self, *other)
2240 }
2241 #[inline]
2242 fn ne(&self, other: &&mut B) -> bool {
2243 PartialEq::ne(*self, *other)
2244 }
2245 }
2246
2247 #[stable(feature = "rust1", since = "1.0.0")]
2248 #[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2249 impl<A: PointeeSized, B: PointeeSized> const PartialEq<&B> for &mut A
2250 where
2251 A: [const] PartialEq<B>,
2252 {
2253 #[inline]
2254 fn eq(&self, other: &&B) -> bool {
2255 PartialEq::eq(*self, *other)
2256 }
2257 #[inline]
2258 fn ne(&self, other: &&B) -> bool {
2259 PartialEq::ne(*self, *other)
2260 }
2261 }
2262}